xref: /linux/fs/proc/task_mmu.c (revision 9d9659b6c0ebf7dde65ebada4c67980818245913)
1 #include <linux/mm.h>
2 #include <linux/hugetlb.h>
3 #include <linux/huge_mm.h>
4 #include <linux/mount.h>
5 #include <linux/seq_file.h>
6 #include <linux/highmem.h>
7 #include <linux/ptrace.h>
8 #include <linux/slab.h>
9 #include <linux/pagemap.h>
10 #include <linux/mempolicy.h>
11 #include <linux/rmap.h>
12 #include <linux/swap.h>
13 #include <linux/swapops.h>
14 
15 #include <asm/elf.h>
16 #include <asm/uaccess.h>
17 #include <asm/tlbflush.h>
18 #include "internal.h"
19 
20 void task_mem(struct seq_file *m, struct mm_struct *mm)
21 {
22 	unsigned long data, text, lib, swap;
23 	unsigned long hiwater_vm, total_vm, hiwater_rss, total_rss;
24 
25 	/*
26 	 * Note: to minimize their overhead, mm maintains hiwater_vm and
27 	 * hiwater_rss only when about to *lower* total_vm or rss.  Any
28 	 * collector of these hiwater stats must therefore get total_vm
29 	 * and rss too, which will usually be the higher.  Barriers? not
30 	 * worth the effort, such snapshots can always be inconsistent.
31 	 */
32 	hiwater_vm = total_vm = mm->total_vm;
33 	if (hiwater_vm < mm->hiwater_vm)
34 		hiwater_vm = mm->hiwater_vm;
35 	hiwater_rss = total_rss = get_mm_rss(mm);
36 	if (hiwater_rss < mm->hiwater_rss)
37 		hiwater_rss = mm->hiwater_rss;
38 
39 	data = mm->total_vm - mm->shared_vm - mm->stack_vm;
40 	text = (PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK)) >> 10;
41 	lib = (mm->exec_vm << (PAGE_SHIFT-10)) - text;
42 	swap = get_mm_counter(mm, MM_SWAPENTS);
43 	seq_printf(m,
44 		"VmPeak:\t%8lu kB\n"
45 		"VmSize:\t%8lu kB\n"
46 		"VmLck:\t%8lu kB\n"
47 		"VmHWM:\t%8lu kB\n"
48 		"VmRSS:\t%8lu kB\n"
49 		"VmData:\t%8lu kB\n"
50 		"VmStk:\t%8lu kB\n"
51 		"VmExe:\t%8lu kB\n"
52 		"VmLib:\t%8lu kB\n"
53 		"VmPTE:\t%8lu kB\n"
54 		"VmSwap:\t%8lu kB\n",
55 		hiwater_vm << (PAGE_SHIFT-10),
56 		(total_vm - mm->reserved_vm) << (PAGE_SHIFT-10),
57 		mm->locked_vm << (PAGE_SHIFT-10),
58 		hiwater_rss << (PAGE_SHIFT-10),
59 		total_rss << (PAGE_SHIFT-10),
60 		data << (PAGE_SHIFT-10),
61 		mm->stack_vm << (PAGE_SHIFT-10), text, lib,
62 		(PTRS_PER_PTE*sizeof(pte_t)*mm->nr_ptes) >> 10,
63 		swap << (PAGE_SHIFT-10));
64 }
65 
66 unsigned long task_vsize(struct mm_struct *mm)
67 {
68 	return PAGE_SIZE * mm->total_vm;
69 }
70 
71 unsigned long task_statm(struct mm_struct *mm,
72 			 unsigned long *shared, unsigned long *text,
73 			 unsigned long *data, unsigned long *resident)
74 {
75 	*shared = get_mm_counter(mm, MM_FILEPAGES);
76 	*text = (PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK))
77 								>> PAGE_SHIFT;
78 	*data = mm->total_vm - mm->shared_vm;
79 	*resident = *shared + get_mm_counter(mm, MM_ANONPAGES);
80 	return mm->total_vm;
81 }
82 
83 static void pad_len_spaces(struct seq_file *m, int len)
84 {
85 	len = 25 + sizeof(void*) * 6 - len;
86 	if (len < 1)
87 		len = 1;
88 	seq_printf(m, "%*c", len, ' ');
89 }
90 
91 static void vma_stop(struct proc_maps_private *priv, struct vm_area_struct *vma)
92 {
93 	if (vma && vma != priv->tail_vma) {
94 		struct mm_struct *mm = vma->vm_mm;
95 		up_read(&mm->mmap_sem);
96 		mmput(mm);
97 	}
98 }
99 
100 static void *m_start(struct seq_file *m, loff_t *pos)
101 {
102 	struct proc_maps_private *priv = m->private;
103 	unsigned long last_addr = m->version;
104 	struct mm_struct *mm;
105 	struct vm_area_struct *vma, *tail_vma = NULL;
106 	loff_t l = *pos;
107 
108 	/* Clear the per syscall fields in priv */
109 	priv->task = NULL;
110 	priv->tail_vma = NULL;
111 
112 	/*
113 	 * We remember last_addr rather than next_addr to hit with
114 	 * mmap_cache most of the time. We have zero last_addr at
115 	 * the beginning and also after lseek. We will have -1 last_addr
116 	 * after the end of the vmas.
117 	 */
118 
119 	if (last_addr == -1UL)
120 		return NULL;
121 
122 	priv->task = get_pid_task(priv->pid, PIDTYPE_PID);
123 	if (!priv->task)
124 		return NULL;
125 
126 	mm = mm_for_maps(priv->task);
127 	if (!mm)
128 		return NULL;
129 	down_read(&mm->mmap_sem);
130 
131 	tail_vma = get_gate_vma(priv->task);
132 	priv->tail_vma = tail_vma;
133 
134 	/* Start with last addr hint */
135 	vma = find_vma(mm, last_addr);
136 	if (last_addr && vma) {
137 		vma = vma->vm_next;
138 		goto out;
139 	}
140 
141 	/*
142 	 * Check the vma index is within the range and do
143 	 * sequential scan until m_index.
144 	 */
145 	vma = NULL;
146 	if ((unsigned long)l < mm->map_count) {
147 		vma = mm->mmap;
148 		while (l-- && vma)
149 			vma = vma->vm_next;
150 		goto out;
151 	}
152 
153 	if (l != mm->map_count)
154 		tail_vma = NULL; /* After gate vma */
155 
156 out:
157 	if (vma)
158 		return vma;
159 
160 	/* End of vmas has been reached */
161 	m->version = (tail_vma != NULL)? 0: -1UL;
162 	up_read(&mm->mmap_sem);
163 	mmput(mm);
164 	return tail_vma;
165 }
166 
167 static void *m_next(struct seq_file *m, void *v, loff_t *pos)
168 {
169 	struct proc_maps_private *priv = m->private;
170 	struct vm_area_struct *vma = v;
171 	struct vm_area_struct *tail_vma = priv->tail_vma;
172 
173 	(*pos)++;
174 	if (vma && (vma != tail_vma) && vma->vm_next)
175 		return vma->vm_next;
176 	vma_stop(priv, vma);
177 	return (vma != tail_vma)? tail_vma: NULL;
178 }
179 
180 static void m_stop(struct seq_file *m, void *v)
181 {
182 	struct proc_maps_private *priv = m->private;
183 	struct vm_area_struct *vma = v;
184 
185 	vma_stop(priv, vma);
186 	if (priv->task)
187 		put_task_struct(priv->task);
188 }
189 
190 static int do_maps_open(struct inode *inode, struct file *file,
191 			const struct seq_operations *ops)
192 {
193 	struct proc_maps_private *priv;
194 	int ret = -ENOMEM;
195 	priv = kzalloc(sizeof(*priv), GFP_KERNEL);
196 	if (priv) {
197 		priv->pid = proc_pid(inode);
198 		ret = seq_open(file, ops);
199 		if (!ret) {
200 			struct seq_file *m = file->private_data;
201 			m->private = priv;
202 		} else {
203 			kfree(priv);
204 		}
205 	}
206 	return ret;
207 }
208 
209 static void show_map_vma(struct seq_file *m, struct vm_area_struct *vma)
210 {
211 	struct mm_struct *mm = vma->vm_mm;
212 	struct file *file = vma->vm_file;
213 	int flags = vma->vm_flags;
214 	unsigned long ino = 0;
215 	unsigned long long pgoff = 0;
216 	unsigned long start;
217 	dev_t dev = 0;
218 	int len;
219 
220 	if (file) {
221 		struct inode *inode = vma->vm_file->f_path.dentry->d_inode;
222 		dev = inode->i_sb->s_dev;
223 		ino = inode->i_ino;
224 		pgoff = ((loff_t)vma->vm_pgoff) << PAGE_SHIFT;
225 	}
226 
227 	/* We don't show the stack guard page in /proc/maps */
228 	start = vma->vm_start;
229 	if (vma->vm_flags & VM_GROWSDOWN)
230 		if (!vma_stack_continue(vma->vm_prev, vma->vm_start))
231 			start += PAGE_SIZE;
232 
233 	seq_printf(m, "%08lx-%08lx %c%c%c%c %08llx %02x:%02x %lu %n",
234 			start,
235 			vma->vm_end,
236 			flags & VM_READ ? 'r' : '-',
237 			flags & VM_WRITE ? 'w' : '-',
238 			flags & VM_EXEC ? 'x' : '-',
239 			flags & VM_MAYSHARE ? 's' : 'p',
240 			pgoff,
241 			MAJOR(dev), MINOR(dev), ino, &len);
242 
243 	/*
244 	 * Print the dentry name for named mappings, and a
245 	 * special [heap] marker for the heap:
246 	 */
247 	if (file) {
248 		pad_len_spaces(m, len);
249 		seq_path(m, &file->f_path, "\n");
250 	} else {
251 		const char *name = arch_vma_name(vma);
252 		if (!name) {
253 			if (mm) {
254 				if (vma->vm_start <= mm->start_brk &&
255 						vma->vm_end >= mm->brk) {
256 					name = "[heap]";
257 				} else if (vma->vm_start <= mm->start_stack &&
258 					   vma->vm_end >= mm->start_stack) {
259 					name = "[stack]";
260 				}
261 			} else {
262 				name = "[vdso]";
263 			}
264 		}
265 		if (name) {
266 			pad_len_spaces(m, len);
267 			seq_puts(m, name);
268 		}
269 	}
270 	seq_putc(m, '\n');
271 }
272 
273 static int show_map(struct seq_file *m, void *v)
274 {
275 	struct vm_area_struct *vma = v;
276 	struct proc_maps_private *priv = m->private;
277 	struct task_struct *task = priv->task;
278 
279 	show_map_vma(m, vma);
280 
281 	if (m->count < m->size)  /* vma is copied successfully */
282 		m->version = (vma != get_gate_vma(task))? vma->vm_start: 0;
283 	return 0;
284 }
285 
286 static const struct seq_operations proc_pid_maps_op = {
287 	.start	= m_start,
288 	.next	= m_next,
289 	.stop	= m_stop,
290 	.show	= show_map
291 };
292 
293 static int maps_open(struct inode *inode, struct file *file)
294 {
295 	return do_maps_open(inode, file, &proc_pid_maps_op);
296 }
297 
298 const struct file_operations proc_maps_operations = {
299 	.open		= maps_open,
300 	.read		= seq_read,
301 	.llseek		= seq_lseek,
302 	.release	= seq_release_private,
303 };
304 
305 /*
306  * Proportional Set Size(PSS): my share of RSS.
307  *
308  * PSS of a process is the count of pages it has in memory, where each
309  * page is divided by the number of processes sharing it.  So if a
310  * process has 1000 pages all to itself, and 1000 shared with one other
311  * process, its PSS will be 1500.
312  *
313  * To keep (accumulated) division errors low, we adopt a 64bit
314  * fixed-point pss counter to minimize division errors. So (pss >>
315  * PSS_SHIFT) would be the real byte count.
316  *
317  * A shift of 12 before division means (assuming 4K page size):
318  * 	- 1M 3-user-pages add up to 8KB errors;
319  * 	- supports mapcount up to 2^24, or 16M;
320  * 	- supports PSS up to 2^52 bytes, or 4PB.
321  */
322 #define PSS_SHIFT 12
323 
324 #ifdef CONFIG_PROC_PAGE_MONITOR
325 struct mem_size_stats {
326 	struct vm_area_struct *vma;
327 	unsigned long resident;
328 	unsigned long shared_clean;
329 	unsigned long shared_dirty;
330 	unsigned long private_clean;
331 	unsigned long private_dirty;
332 	unsigned long referenced;
333 	unsigned long anonymous;
334 	unsigned long anonymous_thp;
335 	unsigned long swap;
336 	u64 pss;
337 };
338 
339 
340 static void smaps_pte_entry(pte_t ptent, unsigned long addr,
341 		unsigned long ptent_size, struct mm_walk *walk)
342 {
343 	struct mem_size_stats *mss = walk->private;
344 	struct vm_area_struct *vma = mss->vma;
345 	struct page *page;
346 	int mapcount;
347 
348 	if (is_swap_pte(ptent)) {
349 		mss->swap += ptent_size;
350 		return;
351 	}
352 
353 	if (!pte_present(ptent))
354 		return;
355 
356 	page = vm_normal_page(vma, addr, ptent);
357 	if (!page)
358 		return;
359 
360 	if (PageAnon(page))
361 		mss->anonymous += ptent_size;
362 
363 	mss->resident += ptent_size;
364 	/* Accumulate the size in pages that have been accessed. */
365 	if (pte_young(ptent) || PageReferenced(page))
366 		mss->referenced += ptent_size;
367 	mapcount = page_mapcount(page);
368 	if (mapcount >= 2) {
369 		if (pte_dirty(ptent) || PageDirty(page))
370 			mss->shared_dirty += ptent_size;
371 		else
372 			mss->shared_clean += ptent_size;
373 		mss->pss += (ptent_size << PSS_SHIFT) / mapcount;
374 	} else {
375 		if (pte_dirty(ptent) || PageDirty(page))
376 			mss->private_dirty += ptent_size;
377 		else
378 			mss->private_clean += ptent_size;
379 		mss->pss += (ptent_size << PSS_SHIFT);
380 	}
381 }
382 
383 static int smaps_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
384 			   struct mm_walk *walk)
385 {
386 	struct mem_size_stats *mss = walk->private;
387 	struct vm_area_struct *vma = mss->vma;
388 	pte_t *pte;
389 	spinlock_t *ptl;
390 
391 	spin_lock(&walk->mm->page_table_lock);
392 	if (pmd_trans_huge(*pmd)) {
393 		if (pmd_trans_splitting(*pmd)) {
394 			spin_unlock(&walk->mm->page_table_lock);
395 			wait_split_huge_page(vma->anon_vma, pmd);
396 		} else {
397 			smaps_pte_entry(*(pte_t *)pmd, addr,
398 					HPAGE_PMD_SIZE, walk);
399 			spin_unlock(&walk->mm->page_table_lock);
400 			mss->anonymous_thp += HPAGE_PMD_SIZE;
401 			return 0;
402 		}
403 	} else {
404 		spin_unlock(&walk->mm->page_table_lock);
405 	}
406 	/*
407 	 * The mmap_sem held all the way back in m_start() is what
408 	 * keeps khugepaged out of here and from collapsing things
409 	 * in here.
410 	 */
411 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
412 	for (; addr != end; pte++, addr += PAGE_SIZE)
413 		smaps_pte_entry(*pte, addr, PAGE_SIZE, walk);
414 	pte_unmap_unlock(pte - 1, ptl);
415 	cond_resched();
416 	return 0;
417 }
418 
419 static int show_smap(struct seq_file *m, void *v)
420 {
421 	struct proc_maps_private *priv = m->private;
422 	struct task_struct *task = priv->task;
423 	struct vm_area_struct *vma = v;
424 	struct mem_size_stats mss;
425 	struct mm_walk smaps_walk = {
426 		.pmd_entry = smaps_pte_range,
427 		.mm = vma->vm_mm,
428 		.private = &mss,
429 	};
430 
431 	memset(&mss, 0, sizeof mss);
432 	mss.vma = vma;
433 	/* mmap_sem is held in m_start */
434 	if (vma->vm_mm && !is_vm_hugetlb_page(vma))
435 		walk_page_range(vma->vm_start, vma->vm_end, &smaps_walk);
436 
437 	show_map_vma(m, vma);
438 
439 	seq_printf(m,
440 		   "Size:           %8lu kB\n"
441 		   "Rss:            %8lu kB\n"
442 		   "Pss:            %8lu kB\n"
443 		   "Shared_Clean:   %8lu kB\n"
444 		   "Shared_Dirty:   %8lu kB\n"
445 		   "Private_Clean:  %8lu kB\n"
446 		   "Private_Dirty:  %8lu kB\n"
447 		   "Referenced:     %8lu kB\n"
448 		   "Anonymous:      %8lu kB\n"
449 		   "AnonHugePages:  %8lu kB\n"
450 		   "Swap:           %8lu kB\n"
451 		   "KernelPageSize: %8lu kB\n"
452 		   "MMUPageSize:    %8lu kB\n"
453 		   "Locked:         %8lu kB\n",
454 		   (vma->vm_end - vma->vm_start) >> 10,
455 		   mss.resident >> 10,
456 		   (unsigned long)(mss.pss >> (10 + PSS_SHIFT)),
457 		   mss.shared_clean  >> 10,
458 		   mss.shared_dirty  >> 10,
459 		   mss.private_clean >> 10,
460 		   mss.private_dirty >> 10,
461 		   mss.referenced >> 10,
462 		   mss.anonymous >> 10,
463 		   mss.anonymous_thp >> 10,
464 		   mss.swap >> 10,
465 		   vma_kernel_pagesize(vma) >> 10,
466 		   vma_mmu_pagesize(vma) >> 10,
467 		   (vma->vm_flags & VM_LOCKED) ?
468 			(unsigned long)(mss.pss >> (10 + PSS_SHIFT)) : 0);
469 
470 	if (m->count < m->size)  /* vma is copied successfully */
471 		m->version = (vma != get_gate_vma(task)) ? vma->vm_start : 0;
472 	return 0;
473 }
474 
475 static const struct seq_operations proc_pid_smaps_op = {
476 	.start	= m_start,
477 	.next	= m_next,
478 	.stop	= m_stop,
479 	.show	= show_smap
480 };
481 
482 static int smaps_open(struct inode *inode, struct file *file)
483 {
484 	return do_maps_open(inode, file, &proc_pid_smaps_op);
485 }
486 
487 const struct file_operations proc_smaps_operations = {
488 	.open		= smaps_open,
489 	.read		= seq_read,
490 	.llseek		= seq_lseek,
491 	.release	= seq_release_private,
492 };
493 
494 static int clear_refs_pte_range(pmd_t *pmd, unsigned long addr,
495 				unsigned long end, struct mm_walk *walk)
496 {
497 	struct vm_area_struct *vma = walk->private;
498 	pte_t *pte, ptent;
499 	spinlock_t *ptl;
500 	struct page *page;
501 
502 	split_huge_page_pmd(walk->mm, pmd);
503 
504 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
505 	for (; addr != end; pte++, addr += PAGE_SIZE) {
506 		ptent = *pte;
507 		if (!pte_present(ptent))
508 			continue;
509 
510 		page = vm_normal_page(vma, addr, ptent);
511 		if (!page)
512 			continue;
513 
514 		/* Clear accessed and referenced bits. */
515 		ptep_test_and_clear_young(vma, addr, pte);
516 		ClearPageReferenced(page);
517 	}
518 	pte_unmap_unlock(pte - 1, ptl);
519 	cond_resched();
520 	return 0;
521 }
522 
523 #define CLEAR_REFS_ALL 1
524 #define CLEAR_REFS_ANON 2
525 #define CLEAR_REFS_MAPPED 3
526 
527 static ssize_t clear_refs_write(struct file *file, const char __user *buf,
528 				size_t count, loff_t *ppos)
529 {
530 	struct task_struct *task;
531 	char buffer[PROC_NUMBUF];
532 	struct mm_struct *mm;
533 	struct vm_area_struct *vma;
534 	long type;
535 
536 	memset(buffer, 0, sizeof(buffer));
537 	if (count > sizeof(buffer) - 1)
538 		count = sizeof(buffer) - 1;
539 	if (copy_from_user(buffer, buf, count))
540 		return -EFAULT;
541 	if (strict_strtol(strstrip(buffer), 10, &type))
542 		return -EINVAL;
543 	if (type < CLEAR_REFS_ALL || type > CLEAR_REFS_MAPPED)
544 		return -EINVAL;
545 	task = get_proc_task(file->f_path.dentry->d_inode);
546 	if (!task)
547 		return -ESRCH;
548 	mm = get_task_mm(task);
549 	if (mm) {
550 		struct mm_walk clear_refs_walk = {
551 			.pmd_entry = clear_refs_pte_range,
552 			.mm = mm,
553 		};
554 		down_read(&mm->mmap_sem);
555 		for (vma = mm->mmap; vma; vma = vma->vm_next) {
556 			clear_refs_walk.private = vma;
557 			if (is_vm_hugetlb_page(vma))
558 				continue;
559 			/*
560 			 * Writing 1 to /proc/pid/clear_refs affects all pages.
561 			 *
562 			 * Writing 2 to /proc/pid/clear_refs only affects
563 			 * Anonymous pages.
564 			 *
565 			 * Writing 3 to /proc/pid/clear_refs only affects file
566 			 * mapped pages.
567 			 */
568 			if (type == CLEAR_REFS_ANON && vma->vm_file)
569 				continue;
570 			if (type == CLEAR_REFS_MAPPED && !vma->vm_file)
571 				continue;
572 			walk_page_range(vma->vm_start, vma->vm_end,
573 					&clear_refs_walk);
574 		}
575 		flush_tlb_mm(mm);
576 		up_read(&mm->mmap_sem);
577 		mmput(mm);
578 	}
579 	put_task_struct(task);
580 
581 	return count;
582 }
583 
584 const struct file_operations proc_clear_refs_operations = {
585 	.write		= clear_refs_write,
586 	.llseek		= noop_llseek,
587 };
588 
589 struct pagemapread {
590 	int pos, len;
591 	u64 *buffer;
592 };
593 
594 #define PM_ENTRY_BYTES      sizeof(u64)
595 #define PM_STATUS_BITS      3
596 #define PM_STATUS_OFFSET    (64 - PM_STATUS_BITS)
597 #define PM_STATUS_MASK      (((1LL << PM_STATUS_BITS) - 1) << PM_STATUS_OFFSET)
598 #define PM_STATUS(nr)       (((nr) << PM_STATUS_OFFSET) & PM_STATUS_MASK)
599 #define PM_PSHIFT_BITS      6
600 #define PM_PSHIFT_OFFSET    (PM_STATUS_OFFSET - PM_PSHIFT_BITS)
601 #define PM_PSHIFT_MASK      (((1LL << PM_PSHIFT_BITS) - 1) << PM_PSHIFT_OFFSET)
602 #define PM_PSHIFT(x)        (((u64) (x) << PM_PSHIFT_OFFSET) & PM_PSHIFT_MASK)
603 #define PM_PFRAME_MASK      ((1LL << PM_PSHIFT_OFFSET) - 1)
604 #define PM_PFRAME(x)        ((x) & PM_PFRAME_MASK)
605 
606 #define PM_PRESENT          PM_STATUS(4LL)
607 #define PM_SWAP             PM_STATUS(2LL)
608 #define PM_NOT_PRESENT      PM_PSHIFT(PAGE_SHIFT)
609 #define PM_END_OF_BUFFER    1
610 
611 static int add_to_pagemap(unsigned long addr, u64 pfn,
612 			  struct pagemapread *pm)
613 {
614 	pm->buffer[pm->pos++] = pfn;
615 	if (pm->pos >= pm->len)
616 		return PM_END_OF_BUFFER;
617 	return 0;
618 }
619 
620 static int pagemap_pte_hole(unsigned long start, unsigned long end,
621 				struct mm_walk *walk)
622 {
623 	struct pagemapread *pm = walk->private;
624 	unsigned long addr;
625 	int err = 0;
626 	for (addr = start; addr < end; addr += PAGE_SIZE) {
627 		err = add_to_pagemap(addr, PM_NOT_PRESENT, pm);
628 		if (err)
629 			break;
630 	}
631 	return err;
632 }
633 
634 static u64 swap_pte_to_pagemap_entry(pte_t pte)
635 {
636 	swp_entry_t e = pte_to_swp_entry(pte);
637 	return swp_type(e) | (swp_offset(e) << MAX_SWAPFILES_SHIFT);
638 }
639 
640 static u64 pte_to_pagemap_entry(pte_t pte)
641 {
642 	u64 pme = 0;
643 	if (is_swap_pte(pte))
644 		pme = PM_PFRAME(swap_pte_to_pagemap_entry(pte))
645 			| PM_PSHIFT(PAGE_SHIFT) | PM_SWAP;
646 	else if (pte_present(pte))
647 		pme = PM_PFRAME(pte_pfn(pte))
648 			| PM_PSHIFT(PAGE_SHIFT) | PM_PRESENT;
649 	return pme;
650 }
651 
652 static int pagemap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
653 			     struct mm_walk *walk)
654 {
655 	struct vm_area_struct *vma;
656 	struct pagemapread *pm = walk->private;
657 	pte_t *pte;
658 	int err = 0;
659 
660 	split_huge_page_pmd(walk->mm, pmd);
661 
662 	/* find the first VMA at or above 'addr' */
663 	vma = find_vma(walk->mm, addr);
664 	for (; addr != end; addr += PAGE_SIZE) {
665 		u64 pfn = PM_NOT_PRESENT;
666 
667 		/* check to see if we've left 'vma' behind
668 		 * and need a new, higher one */
669 		if (vma && (addr >= vma->vm_end))
670 			vma = find_vma(walk->mm, addr);
671 
672 		/* check that 'vma' actually covers this address,
673 		 * and that it isn't a huge page vma */
674 		if (vma && (vma->vm_start <= addr) &&
675 		    !is_vm_hugetlb_page(vma)) {
676 			pte = pte_offset_map(pmd, addr);
677 			pfn = pte_to_pagemap_entry(*pte);
678 			/* unmap before userspace copy */
679 			pte_unmap(pte);
680 		}
681 		err = add_to_pagemap(addr, pfn, pm);
682 		if (err)
683 			return err;
684 	}
685 
686 	cond_resched();
687 
688 	return err;
689 }
690 
691 #ifdef CONFIG_HUGETLB_PAGE
692 static u64 huge_pte_to_pagemap_entry(pte_t pte, int offset)
693 {
694 	u64 pme = 0;
695 	if (pte_present(pte))
696 		pme = PM_PFRAME(pte_pfn(pte) + offset)
697 			| PM_PSHIFT(PAGE_SHIFT) | PM_PRESENT;
698 	return pme;
699 }
700 
701 /* This function walks within one hugetlb entry in the single call */
702 static int pagemap_hugetlb_range(pte_t *pte, unsigned long hmask,
703 				 unsigned long addr, unsigned long end,
704 				 struct mm_walk *walk)
705 {
706 	struct pagemapread *pm = walk->private;
707 	int err = 0;
708 	u64 pfn;
709 
710 	for (; addr != end; addr += PAGE_SIZE) {
711 		int offset = (addr & ~hmask) >> PAGE_SHIFT;
712 		pfn = huge_pte_to_pagemap_entry(*pte, offset);
713 		err = add_to_pagemap(addr, pfn, pm);
714 		if (err)
715 			return err;
716 	}
717 
718 	cond_resched();
719 
720 	return err;
721 }
722 #endif /* HUGETLB_PAGE */
723 
724 /*
725  * /proc/pid/pagemap - an array mapping virtual pages to pfns
726  *
727  * For each page in the address space, this file contains one 64-bit entry
728  * consisting of the following:
729  *
730  * Bits 0-55  page frame number (PFN) if present
731  * Bits 0-4   swap type if swapped
732  * Bits 5-55  swap offset if swapped
733  * Bits 55-60 page shift (page size = 1<<page shift)
734  * Bit  61    reserved for future use
735  * Bit  62    page swapped
736  * Bit  63    page present
737  *
738  * If the page is not present but in swap, then the PFN contains an
739  * encoding of the swap file number and the page's offset into the
740  * swap. Unmapped pages return a null PFN. This allows determining
741  * precisely which pages are mapped (or in swap) and comparing mapped
742  * pages between processes.
743  *
744  * Efficient users of this interface will use /proc/pid/maps to
745  * determine which areas of memory are actually mapped and llseek to
746  * skip over unmapped regions.
747  */
748 #define PAGEMAP_WALK_SIZE	(PMD_SIZE)
749 #define PAGEMAP_WALK_MASK	(PMD_MASK)
750 static ssize_t pagemap_read(struct file *file, char __user *buf,
751 			    size_t count, loff_t *ppos)
752 {
753 	struct task_struct *task = get_proc_task(file->f_path.dentry->d_inode);
754 	struct mm_struct *mm;
755 	struct pagemapread pm;
756 	int ret = -ESRCH;
757 	struct mm_walk pagemap_walk = {};
758 	unsigned long src;
759 	unsigned long svpfn;
760 	unsigned long start_vaddr;
761 	unsigned long end_vaddr;
762 	int copied = 0;
763 
764 	if (!task)
765 		goto out;
766 
767 	ret = -EACCES;
768 	if (!ptrace_may_access(task, PTRACE_MODE_READ))
769 		goto out_task;
770 
771 	ret = -EINVAL;
772 	/* file position must be aligned */
773 	if ((*ppos % PM_ENTRY_BYTES) || (count % PM_ENTRY_BYTES))
774 		goto out_task;
775 
776 	ret = 0;
777 
778 	if (!count)
779 		goto out_task;
780 
781 	mm = get_task_mm(task);
782 	if (!mm)
783 		goto out_task;
784 
785 	pm.len = PM_ENTRY_BYTES * (PAGEMAP_WALK_SIZE >> PAGE_SHIFT);
786 	pm.buffer = kmalloc(pm.len, GFP_TEMPORARY);
787 	ret = -ENOMEM;
788 	if (!pm.buffer)
789 		goto out_mm;
790 
791 	pagemap_walk.pmd_entry = pagemap_pte_range;
792 	pagemap_walk.pte_hole = pagemap_pte_hole;
793 #ifdef CONFIG_HUGETLB_PAGE
794 	pagemap_walk.hugetlb_entry = pagemap_hugetlb_range;
795 #endif
796 	pagemap_walk.mm = mm;
797 	pagemap_walk.private = &pm;
798 
799 	src = *ppos;
800 	svpfn = src / PM_ENTRY_BYTES;
801 	start_vaddr = svpfn << PAGE_SHIFT;
802 	end_vaddr = TASK_SIZE_OF(task);
803 
804 	/* watch out for wraparound */
805 	if (svpfn > TASK_SIZE_OF(task) >> PAGE_SHIFT)
806 		start_vaddr = end_vaddr;
807 
808 	/*
809 	 * The odds are that this will stop walking way
810 	 * before end_vaddr, because the length of the
811 	 * user buffer is tracked in "pm", and the walk
812 	 * will stop when we hit the end of the buffer.
813 	 */
814 	ret = 0;
815 	while (count && (start_vaddr < end_vaddr)) {
816 		int len;
817 		unsigned long end;
818 
819 		pm.pos = 0;
820 		end = (start_vaddr + PAGEMAP_WALK_SIZE) & PAGEMAP_WALK_MASK;
821 		/* overflow ? */
822 		if (end < start_vaddr || end > end_vaddr)
823 			end = end_vaddr;
824 		down_read(&mm->mmap_sem);
825 		ret = walk_page_range(start_vaddr, end, &pagemap_walk);
826 		up_read(&mm->mmap_sem);
827 		start_vaddr = end;
828 
829 		len = min(count, PM_ENTRY_BYTES * pm.pos);
830 		if (copy_to_user(buf, pm.buffer, len)) {
831 			ret = -EFAULT;
832 			goto out_free;
833 		}
834 		copied += len;
835 		buf += len;
836 		count -= len;
837 	}
838 	*ppos += copied;
839 	if (!ret || ret == PM_END_OF_BUFFER)
840 		ret = copied;
841 
842 out_free:
843 	kfree(pm.buffer);
844 out_mm:
845 	mmput(mm);
846 out_task:
847 	put_task_struct(task);
848 out:
849 	return ret;
850 }
851 
852 const struct file_operations proc_pagemap_operations = {
853 	.llseek		= mem_lseek, /* borrow this */
854 	.read		= pagemap_read,
855 };
856 #endif /* CONFIG_PROC_PAGE_MONITOR */
857 
858 #ifdef CONFIG_NUMA
859 extern int show_numa_map(struct seq_file *m, void *v);
860 
861 static const struct seq_operations proc_pid_numa_maps_op = {
862         .start  = m_start,
863         .next   = m_next,
864         .stop   = m_stop,
865         .show   = show_numa_map,
866 };
867 
868 static int numa_maps_open(struct inode *inode, struct file *file)
869 {
870 	return do_maps_open(inode, file, &proc_pid_numa_maps_op);
871 }
872 
873 const struct file_operations proc_numa_maps_operations = {
874 	.open		= numa_maps_open,
875 	.read		= seq_read,
876 	.llseek		= seq_lseek,
877 	.release	= seq_release_private,
878 };
879 #endif
880