1 // SPDX-License-Identifier: GPL-2.0 2 #include <linux/pagewalk.h> 3 #include <linux/mm_inline.h> 4 #include <linux/hugetlb.h> 5 #include <linux/huge_mm.h> 6 #include <linux/mount.h> 7 #include <linux/ksm.h> 8 #include <linux/seq_file.h> 9 #include <linux/highmem.h> 10 #include <linux/ptrace.h> 11 #include <linux/slab.h> 12 #include <linux/pagemap.h> 13 #include <linux/mempolicy.h> 14 #include <linux/rmap.h> 15 #include <linux/swap.h> 16 #include <linux/sched/mm.h> 17 #include <linux/swapops.h> 18 #include <linux/mmu_notifier.h> 19 #include <linux/page_idle.h> 20 #include <linux/shmem_fs.h> 21 #include <linux/uaccess.h> 22 #include <linux/pkeys.h> 23 #include <linux/minmax.h> 24 #include <linux/overflow.h> 25 #include <linux/buildid.h> 26 27 #include <asm/elf.h> 28 #include <asm/tlb.h> 29 #include <asm/tlbflush.h> 30 #include "internal.h" 31 32 #define SENTINEL_VMA_END -1 33 #define SENTINEL_VMA_GATE -2 34 35 #define SEQ_PUT_DEC(str, val) \ 36 seq_put_decimal_ull_width(m, str, (val) << (PAGE_SHIFT-10), 8) 37 void task_mem(struct seq_file *m, struct mm_struct *mm) 38 { 39 unsigned long text, lib, swap, anon, file, shmem; 40 unsigned long hiwater_vm, total_vm, hiwater_rss, total_rss; 41 42 anon = get_mm_counter_sum(mm, MM_ANONPAGES); 43 file = get_mm_counter_sum(mm, MM_FILEPAGES); 44 shmem = get_mm_counter_sum(mm, MM_SHMEMPAGES); 45 46 /* 47 * Note: to minimize their overhead, mm maintains hiwater_vm and 48 * hiwater_rss only when about to *lower* total_vm or rss. Any 49 * collector of these hiwater stats must therefore get total_vm 50 * and rss too, which will usually be the higher. Barriers? not 51 * worth the effort, such snapshots can always be inconsistent. 52 */ 53 hiwater_vm = total_vm = mm->total_vm; 54 if (hiwater_vm < mm->hiwater_vm) 55 hiwater_vm = mm->hiwater_vm; 56 hiwater_rss = total_rss = anon + file + shmem; 57 if (hiwater_rss < mm->hiwater_rss) 58 hiwater_rss = mm->hiwater_rss; 59 60 /* split executable areas between text and lib */ 61 text = PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK); 62 text = min(text, mm->exec_vm << PAGE_SHIFT); 63 lib = (mm->exec_vm << PAGE_SHIFT) - text; 64 65 swap = get_mm_counter_sum(mm, MM_SWAPENTS); 66 SEQ_PUT_DEC("VmPeak:\t", hiwater_vm); 67 SEQ_PUT_DEC(" kB\nVmSize:\t", total_vm); 68 SEQ_PUT_DEC(" kB\nVmLck:\t", mm->locked_vm); 69 SEQ_PUT_DEC(" kB\nVmPin:\t", atomic64_read(&mm->pinned_vm)); 70 SEQ_PUT_DEC(" kB\nVmHWM:\t", hiwater_rss); 71 SEQ_PUT_DEC(" kB\nVmRSS:\t", total_rss); 72 SEQ_PUT_DEC(" kB\nRssAnon:\t", anon); 73 SEQ_PUT_DEC(" kB\nRssFile:\t", file); 74 SEQ_PUT_DEC(" kB\nRssShmem:\t", shmem); 75 SEQ_PUT_DEC(" kB\nVmData:\t", mm->data_vm); 76 SEQ_PUT_DEC(" kB\nVmStk:\t", mm->stack_vm); 77 seq_put_decimal_ull_width(m, 78 " kB\nVmExe:\t", text >> 10, 8); 79 seq_put_decimal_ull_width(m, 80 " kB\nVmLib:\t", lib >> 10, 8); 81 seq_put_decimal_ull_width(m, 82 " kB\nVmPTE:\t", mm_pgtables_bytes(mm) >> 10, 8); 83 SEQ_PUT_DEC(" kB\nVmSwap:\t", swap); 84 seq_puts(m, " kB\n"); 85 hugetlb_report_usage(m, mm); 86 } 87 #undef SEQ_PUT_DEC 88 89 unsigned long task_vsize(struct mm_struct *mm) 90 { 91 return PAGE_SIZE * mm->total_vm; 92 } 93 94 unsigned long task_statm(struct mm_struct *mm, 95 unsigned long *shared, unsigned long *text, 96 unsigned long *data, unsigned long *resident) 97 { 98 *shared = get_mm_counter_sum(mm, MM_FILEPAGES) + 99 get_mm_counter_sum(mm, MM_SHMEMPAGES); 100 *text = (PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK)) 101 >> PAGE_SHIFT; 102 *data = mm->data_vm + mm->stack_vm; 103 *resident = *shared + get_mm_counter_sum(mm, MM_ANONPAGES); 104 return mm->total_vm; 105 } 106 107 #ifdef CONFIG_NUMA 108 /* 109 * Save get_task_policy() for show_numa_map(). 110 */ 111 static void hold_task_mempolicy(struct proc_maps_private *priv) 112 { 113 struct task_struct *task = priv->task; 114 115 task_lock(task); 116 priv->task_mempolicy = get_task_policy(task); 117 mpol_get(priv->task_mempolicy); 118 task_unlock(task); 119 } 120 static void release_task_mempolicy(struct proc_maps_private *priv) 121 { 122 mpol_put(priv->task_mempolicy); 123 } 124 #else 125 static void hold_task_mempolicy(struct proc_maps_private *priv) 126 { 127 } 128 static void release_task_mempolicy(struct proc_maps_private *priv) 129 { 130 } 131 #endif 132 133 #ifdef CONFIG_PER_VMA_LOCK 134 135 static void reset_lock_ctx(struct proc_maps_locking_ctx *lock_ctx) 136 { 137 lock_ctx->locked_vma = NULL; 138 lock_ctx->mmap_locked = false; 139 } 140 141 static void unlock_ctx_vma(struct proc_maps_locking_ctx *lock_ctx) 142 { 143 if (lock_ctx->locked_vma) { 144 vma_end_read(lock_ctx->locked_vma); 145 lock_ctx->locked_vma = NULL; 146 } 147 } 148 149 static const struct seq_operations proc_pid_maps_op; 150 151 static inline bool lock_vma_range(struct seq_file *m, 152 struct proc_maps_locking_ctx *lock_ctx) 153 { 154 /* 155 * smaps and numa_maps perform page table walk, therefore require 156 * mmap_lock but maps can be read with locking just the vma and 157 * walking the vma tree under rcu read protection. 158 */ 159 if (m->op != &proc_pid_maps_op) { 160 if (mmap_read_lock_killable(lock_ctx->mm)) 161 return false; 162 163 lock_ctx->mmap_locked = true; 164 } else { 165 rcu_read_lock(); 166 reset_lock_ctx(lock_ctx); 167 } 168 169 return true; 170 } 171 172 static inline void unlock_vma_range(struct proc_maps_locking_ctx *lock_ctx) 173 { 174 if (lock_ctx->mmap_locked) { 175 mmap_read_unlock(lock_ctx->mm); 176 } else { 177 unlock_ctx_vma(lock_ctx); 178 rcu_read_unlock(); 179 } 180 } 181 182 static struct vm_area_struct *get_next_vma(struct proc_maps_private *priv, 183 loff_t last_pos) 184 { 185 struct proc_maps_locking_ctx *lock_ctx = &priv->lock_ctx; 186 struct vm_area_struct *vma; 187 188 if (lock_ctx->mmap_locked) 189 return vma_next(&priv->iter); 190 191 unlock_ctx_vma(lock_ctx); 192 vma = lock_next_vma(lock_ctx->mm, &priv->iter, last_pos); 193 if (!IS_ERR_OR_NULL(vma)) 194 lock_ctx->locked_vma = vma; 195 196 return vma; 197 } 198 199 static inline bool fallback_to_mmap_lock(struct proc_maps_private *priv, 200 loff_t pos) 201 { 202 struct proc_maps_locking_ctx *lock_ctx = &priv->lock_ctx; 203 204 if (lock_ctx->mmap_locked) 205 return false; 206 207 rcu_read_unlock(); 208 mmap_read_lock(lock_ctx->mm); 209 /* Reinitialize the iterator after taking mmap_lock */ 210 vma_iter_set(&priv->iter, pos); 211 lock_ctx->mmap_locked = true; 212 213 return true; 214 } 215 216 #else /* CONFIG_PER_VMA_LOCK */ 217 218 static inline bool lock_vma_range(struct seq_file *m, 219 struct proc_maps_locking_ctx *lock_ctx) 220 { 221 return mmap_read_lock_killable(lock_ctx->mm) == 0; 222 } 223 224 static inline void unlock_vma_range(struct proc_maps_locking_ctx *lock_ctx) 225 { 226 mmap_read_unlock(lock_ctx->mm); 227 } 228 229 static struct vm_area_struct *get_next_vma(struct proc_maps_private *priv, 230 loff_t last_pos) 231 { 232 return vma_next(&priv->iter); 233 } 234 235 static inline bool fallback_to_mmap_lock(struct proc_maps_private *priv, 236 loff_t pos) 237 { 238 return false; 239 } 240 241 #endif /* CONFIG_PER_VMA_LOCK */ 242 243 static struct vm_area_struct *proc_get_vma(struct seq_file *m, loff_t *ppos) 244 { 245 struct proc_maps_private *priv = m->private; 246 struct vm_area_struct *vma; 247 248 retry: 249 vma = get_next_vma(priv, *ppos); 250 /* EINTR of EAGAIN is possible */ 251 if (IS_ERR(vma)) { 252 if (PTR_ERR(vma) == -EAGAIN && fallback_to_mmap_lock(priv, *ppos)) 253 goto retry; 254 255 return vma; 256 } 257 258 /* Store previous position to be able to restart if needed */ 259 priv->last_pos = *ppos; 260 if (vma) { 261 /* 262 * Track the end of the reported vma to ensure position changes 263 * even if previous vma was merged with the next vma and we 264 * found the extended vma with the same vm_start. 265 */ 266 *ppos = vma->vm_end; 267 } else { 268 *ppos = SENTINEL_VMA_GATE; 269 vma = get_gate_vma(priv->lock_ctx.mm); 270 } 271 272 return vma; 273 } 274 275 static void *m_start(struct seq_file *m, loff_t *ppos) 276 { 277 struct proc_maps_private *priv = m->private; 278 struct proc_maps_locking_ctx *lock_ctx; 279 loff_t last_addr = *ppos; 280 struct mm_struct *mm; 281 282 /* See m_next(). Zero at the start or after lseek. */ 283 if (last_addr == SENTINEL_VMA_END) 284 return NULL; 285 286 priv->task = get_proc_task(priv->inode); 287 if (!priv->task) 288 return ERR_PTR(-ESRCH); 289 290 lock_ctx = &priv->lock_ctx; 291 mm = lock_ctx->mm; 292 if (!mm || !mmget_not_zero(mm)) { 293 put_task_struct(priv->task); 294 priv->task = NULL; 295 return NULL; 296 } 297 298 if (!lock_vma_range(m, lock_ctx)) { 299 mmput(mm); 300 put_task_struct(priv->task); 301 priv->task = NULL; 302 return ERR_PTR(-EINTR); 303 } 304 305 /* 306 * Reset current position if last_addr was set before 307 * and it's not a sentinel. 308 */ 309 if (last_addr > 0) 310 *ppos = last_addr = priv->last_pos; 311 vma_iter_init(&priv->iter, mm, (unsigned long)last_addr); 312 hold_task_mempolicy(priv); 313 if (last_addr == SENTINEL_VMA_GATE) 314 return get_gate_vma(mm); 315 316 return proc_get_vma(m, ppos); 317 } 318 319 static void *m_next(struct seq_file *m, void *v, loff_t *ppos) 320 { 321 if (*ppos == SENTINEL_VMA_GATE) { 322 *ppos = SENTINEL_VMA_END; 323 return NULL; 324 } 325 return proc_get_vma(m, ppos); 326 } 327 328 static void m_stop(struct seq_file *m, void *v) 329 { 330 struct proc_maps_private *priv = m->private; 331 struct mm_struct *mm = priv->lock_ctx.mm; 332 333 if (!priv->task) 334 return; 335 336 release_task_mempolicy(priv); 337 unlock_vma_range(&priv->lock_ctx); 338 mmput(mm); 339 put_task_struct(priv->task); 340 priv->task = NULL; 341 } 342 343 static int proc_maps_open(struct inode *inode, struct file *file, 344 const struct seq_operations *ops, int psize) 345 { 346 struct proc_maps_private *priv = __seq_open_private(file, ops, psize); 347 348 if (!priv) 349 return -ENOMEM; 350 351 priv->inode = inode; 352 priv->lock_ctx.mm = proc_mem_open(inode, PTRACE_MODE_READ); 353 if (IS_ERR(priv->lock_ctx.mm)) { 354 int err = PTR_ERR(priv->lock_ctx.mm); 355 356 seq_release_private(inode, file); 357 return err; 358 } 359 360 return 0; 361 } 362 363 static int proc_map_release(struct inode *inode, struct file *file) 364 { 365 struct seq_file *seq = file->private_data; 366 struct proc_maps_private *priv = seq->private; 367 368 if (priv->lock_ctx.mm) 369 mmdrop(priv->lock_ctx.mm); 370 371 return seq_release_private(inode, file); 372 } 373 374 static int do_maps_open(struct inode *inode, struct file *file, 375 const struct seq_operations *ops) 376 { 377 return proc_maps_open(inode, file, ops, 378 sizeof(struct proc_maps_private)); 379 } 380 381 static void get_vma_name(struct vm_area_struct *vma, 382 const struct path **path, 383 const char **name, 384 const char **name_fmt) 385 { 386 struct anon_vma_name *anon_name = vma->vm_mm ? anon_vma_name(vma) : NULL; 387 388 *name = NULL; 389 *path = NULL; 390 *name_fmt = NULL; 391 392 /* 393 * Print the dentry name for named mappings, and a 394 * special [heap] marker for the heap: 395 */ 396 if (vma->vm_file) { 397 /* 398 * If user named this anon shared memory via 399 * prctl(PR_SET_VMA ..., use the provided name. 400 */ 401 if (anon_name) { 402 *name_fmt = "[anon_shmem:%s]"; 403 *name = anon_name->name; 404 } else { 405 *path = file_user_path(vma->vm_file); 406 } 407 return; 408 } 409 410 if (vma->vm_ops && vma->vm_ops->name) { 411 *name = vma->vm_ops->name(vma); 412 if (*name) 413 return; 414 } 415 416 *name = arch_vma_name(vma); 417 if (*name) 418 return; 419 420 if (!vma->vm_mm) { 421 *name = "[vdso]"; 422 return; 423 } 424 425 if (vma_is_initial_heap(vma)) { 426 *name = "[heap]"; 427 return; 428 } 429 430 if (vma_is_initial_stack(vma)) { 431 *name = "[stack]"; 432 return; 433 } 434 435 if (anon_name) { 436 *name_fmt = "[anon:%s]"; 437 *name = anon_name->name; 438 return; 439 } 440 } 441 442 static void show_vma_header_prefix(struct seq_file *m, 443 unsigned long start, unsigned long end, 444 vm_flags_t flags, unsigned long long pgoff, 445 dev_t dev, unsigned long ino) 446 { 447 seq_setwidth(m, 25 + sizeof(void *) * 6 - 1); 448 seq_put_hex_ll(m, NULL, start, 8); 449 seq_put_hex_ll(m, "-", end, 8); 450 seq_putc(m, ' '); 451 seq_putc(m, flags & VM_READ ? 'r' : '-'); 452 seq_putc(m, flags & VM_WRITE ? 'w' : '-'); 453 seq_putc(m, flags & VM_EXEC ? 'x' : '-'); 454 seq_putc(m, flags & VM_MAYSHARE ? 's' : 'p'); 455 seq_put_hex_ll(m, " ", pgoff, 8); 456 seq_put_hex_ll(m, " ", MAJOR(dev), 2); 457 seq_put_hex_ll(m, ":", MINOR(dev), 2); 458 seq_put_decimal_ull(m, " ", ino); 459 seq_putc(m, ' '); 460 } 461 462 static void 463 show_map_vma(struct seq_file *m, struct vm_area_struct *vma) 464 { 465 const struct path *path; 466 const char *name_fmt, *name; 467 vm_flags_t flags = vma->vm_flags; 468 unsigned long ino = 0; 469 unsigned long long pgoff = 0; 470 unsigned long start, end; 471 dev_t dev = 0; 472 473 if (vma->vm_file) { 474 const struct inode *inode = file_user_inode(vma->vm_file); 475 476 dev = inode->i_sb->s_dev; 477 ino = inode->i_ino; 478 pgoff = ((loff_t)vma->vm_pgoff) << PAGE_SHIFT; 479 } 480 481 start = vma->vm_start; 482 end = vma->vm_end; 483 show_vma_header_prefix(m, start, end, flags, pgoff, dev, ino); 484 485 get_vma_name(vma, &path, &name, &name_fmt); 486 if (path) { 487 seq_pad(m, ' '); 488 seq_path(m, path, "\n"); 489 } else if (name_fmt) { 490 seq_pad(m, ' '); 491 seq_printf(m, name_fmt, name); 492 } else if (name) { 493 seq_pad(m, ' '); 494 seq_puts(m, name); 495 } 496 seq_putc(m, '\n'); 497 } 498 499 static int show_map(struct seq_file *m, void *v) 500 { 501 show_map_vma(m, v); 502 return 0; 503 } 504 505 static const struct seq_operations proc_pid_maps_op = { 506 .start = m_start, 507 .next = m_next, 508 .stop = m_stop, 509 .show = show_map 510 }; 511 512 static int pid_maps_open(struct inode *inode, struct file *file) 513 { 514 return do_maps_open(inode, file, &proc_pid_maps_op); 515 } 516 517 #define PROCMAP_QUERY_VMA_FLAGS ( \ 518 PROCMAP_QUERY_VMA_READABLE | \ 519 PROCMAP_QUERY_VMA_WRITABLE | \ 520 PROCMAP_QUERY_VMA_EXECUTABLE | \ 521 PROCMAP_QUERY_VMA_SHARED \ 522 ) 523 524 #define PROCMAP_QUERY_VALID_FLAGS_MASK ( \ 525 PROCMAP_QUERY_COVERING_OR_NEXT_VMA | \ 526 PROCMAP_QUERY_FILE_BACKED_VMA | \ 527 PROCMAP_QUERY_VMA_FLAGS \ 528 ) 529 530 #ifdef CONFIG_PER_VMA_LOCK 531 532 static int query_vma_setup(struct proc_maps_locking_ctx *lock_ctx) 533 { 534 reset_lock_ctx(lock_ctx); 535 536 return 0; 537 } 538 539 static void query_vma_teardown(struct proc_maps_locking_ctx *lock_ctx) 540 { 541 if (lock_ctx->mmap_locked) { 542 mmap_read_unlock(lock_ctx->mm); 543 lock_ctx->mmap_locked = false; 544 } else { 545 unlock_ctx_vma(lock_ctx); 546 } 547 } 548 549 static struct vm_area_struct *query_vma_find_by_addr(struct proc_maps_locking_ctx *lock_ctx, 550 unsigned long addr) 551 { 552 struct mm_struct *mm = lock_ctx->mm; 553 struct vm_area_struct *vma; 554 struct vma_iterator vmi; 555 556 if (lock_ctx->mmap_locked) 557 return find_vma(mm, addr); 558 559 /* Unlock previously locked VMA and find the next one under RCU */ 560 unlock_ctx_vma(lock_ctx); 561 rcu_read_lock(); 562 vma_iter_init(&vmi, mm, addr); 563 vma = lock_next_vma(mm, &vmi, addr); 564 rcu_read_unlock(); 565 566 if (!vma) 567 return NULL; 568 569 if (!IS_ERR(vma)) { 570 lock_ctx->locked_vma = vma; 571 return vma; 572 } 573 574 if (PTR_ERR(vma) == -EAGAIN) { 575 /* Fallback to mmap_lock on vma->vm_refcnt overflow */ 576 mmap_read_lock(mm); 577 vma = find_vma(mm, addr); 578 lock_ctx->mmap_locked = true; 579 } 580 581 return vma; 582 } 583 584 #else /* CONFIG_PER_VMA_LOCK */ 585 586 static int query_vma_setup(struct proc_maps_locking_ctx *lock_ctx) 587 { 588 return mmap_read_lock_killable(lock_ctx->mm); 589 } 590 591 static void query_vma_teardown(struct proc_maps_locking_ctx *lock_ctx) 592 { 593 mmap_read_unlock(lock_ctx->mm); 594 } 595 596 static struct vm_area_struct *query_vma_find_by_addr(struct proc_maps_locking_ctx *lock_ctx, 597 unsigned long addr) 598 { 599 return find_vma(lock_ctx->mm, addr); 600 } 601 602 #endif /* CONFIG_PER_VMA_LOCK */ 603 604 static struct vm_area_struct *query_matching_vma(struct proc_maps_locking_ctx *lock_ctx, 605 unsigned long addr, u32 flags) 606 { 607 struct vm_area_struct *vma; 608 609 next_vma: 610 vma = query_vma_find_by_addr(lock_ctx, addr); 611 if (IS_ERR(vma)) 612 return vma; 613 614 if (!vma) 615 goto no_vma; 616 617 /* user requested only file-backed VMA, keep iterating */ 618 if ((flags & PROCMAP_QUERY_FILE_BACKED_VMA) && !vma->vm_file) 619 goto skip_vma; 620 621 /* VMA permissions should satisfy query flags */ 622 if (flags & PROCMAP_QUERY_VMA_FLAGS) { 623 u32 perm = 0; 624 625 if (flags & PROCMAP_QUERY_VMA_READABLE) 626 perm |= VM_READ; 627 if (flags & PROCMAP_QUERY_VMA_WRITABLE) 628 perm |= VM_WRITE; 629 if (flags & PROCMAP_QUERY_VMA_EXECUTABLE) 630 perm |= VM_EXEC; 631 if (flags & PROCMAP_QUERY_VMA_SHARED) 632 perm |= VM_MAYSHARE; 633 634 if ((vma->vm_flags & perm) != perm) 635 goto skip_vma; 636 } 637 638 /* found covering VMA or user is OK with the matching next VMA */ 639 if ((flags & PROCMAP_QUERY_COVERING_OR_NEXT_VMA) || vma->vm_start <= addr) 640 return vma; 641 642 skip_vma: 643 /* 644 * If the user needs closest matching VMA, keep iterating. 645 */ 646 addr = vma->vm_end; 647 if (flags & PROCMAP_QUERY_COVERING_OR_NEXT_VMA) 648 goto next_vma; 649 650 no_vma: 651 return ERR_PTR(-ENOENT); 652 } 653 654 static int do_procmap_query(struct mm_struct *mm, void __user *uarg) 655 { 656 struct proc_maps_locking_ctx lock_ctx = { .mm = mm }; 657 struct procmap_query karg; 658 struct vm_area_struct *vma; 659 const char *name = NULL; 660 char build_id_buf[BUILD_ID_SIZE_MAX], *name_buf = NULL; 661 __u64 usize; 662 int err; 663 664 if (copy_from_user(&usize, (void __user *)uarg, sizeof(usize))) 665 return -EFAULT; 666 /* argument struct can never be that large, reject abuse */ 667 if (usize > PAGE_SIZE) 668 return -E2BIG; 669 /* argument struct should have at least query_flags and query_addr fields */ 670 if (usize < offsetofend(struct procmap_query, query_addr)) 671 return -EINVAL; 672 err = copy_struct_from_user(&karg, sizeof(karg), uarg, usize); 673 if (err) 674 return err; 675 676 /* reject unknown flags */ 677 if (karg.query_flags & ~PROCMAP_QUERY_VALID_FLAGS_MASK) 678 return -EINVAL; 679 /* either both buffer address and size are set, or both should be zero */ 680 if (!!karg.vma_name_size != !!karg.vma_name_addr) 681 return -EINVAL; 682 if (!!karg.build_id_size != !!karg.build_id_addr) 683 return -EINVAL; 684 685 if (!mm || !mmget_not_zero(mm)) 686 return -ESRCH; 687 688 err = query_vma_setup(&lock_ctx); 689 if (err) { 690 mmput(mm); 691 return err; 692 } 693 694 vma = query_matching_vma(&lock_ctx, karg.query_addr, karg.query_flags); 695 if (IS_ERR(vma)) { 696 err = PTR_ERR(vma); 697 vma = NULL; 698 goto out; 699 } 700 701 karg.vma_start = vma->vm_start; 702 karg.vma_end = vma->vm_end; 703 704 karg.vma_flags = 0; 705 if (vma->vm_flags & VM_READ) 706 karg.vma_flags |= PROCMAP_QUERY_VMA_READABLE; 707 if (vma->vm_flags & VM_WRITE) 708 karg.vma_flags |= PROCMAP_QUERY_VMA_WRITABLE; 709 if (vma->vm_flags & VM_EXEC) 710 karg.vma_flags |= PROCMAP_QUERY_VMA_EXECUTABLE; 711 if (vma->vm_flags & VM_MAYSHARE) 712 karg.vma_flags |= PROCMAP_QUERY_VMA_SHARED; 713 714 karg.vma_page_size = vma_kernel_pagesize(vma); 715 716 if (vma->vm_file) { 717 const struct inode *inode = file_user_inode(vma->vm_file); 718 719 karg.vma_offset = ((__u64)vma->vm_pgoff) << PAGE_SHIFT; 720 karg.dev_major = MAJOR(inode->i_sb->s_dev); 721 karg.dev_minor = MINOR(inode->i_sb->s_dev); 722 karg.inode = inode->i_ino; 723 } else { 724 karg.vma_offset = 0; 725 karg.dev_major = 0; 726 karg.dev_minor = 0; 727 karg.inode = 0; 728 } 729 730 if (karg.build_id_size) { 731 __u32 build_id_sz; 732 733 err = build_id_parse(vma, build_id_buf, &build_id_sz); 734 if (err) { 735 karg.build_id_size = 0; 736 } else { 737 if (karg.build_id_size < build_id_sz) { 738 err = -ENAMETOOLONG; 739 goto out; 740 } 741 karg.build_id_size = build_id_sz; 742 } 743 } 744 745 if (karg.vma_name_size) { 746 size_t name_buf_sz = min_t(size_t, PATH_MAX, karg.vma_name_size); 747 const struct path *path; 748 const char *name_fmt; 749 size_t name_sz = 0; 750 751 get_vma_name(vma, &path, &name, &name_fmt); 752 753 if (path || name_fmt || name) { 754 name_buf = kmalloc(name_buf_sz, GFP_KERNEL); 755 if (!name_buf) { 756 err = -ENOMEM; 757 goto out; 758 } 759 } 760 if (path) { 761 name = d_path(path, name_buf, name_buf_sz); 762 if (IS_ERR(name)) { 763 err = PTR_ERR(name); 764 goto out; 765 } 766 name_sz = name_buf + name_buf_sz - name; 767 } else if (name || name_fmt) { 768 name_sz = 1 + snprintf(name_buf, name_buf_sz, name_fmt ?: "%s", name); 769 name = name_buf; 770 } 771 if (name_sz > name_buf_sz) { 772 err = -ENAMETOOLONG; 773 goto out; 774 } 775 karg.vma_name_size = name_sz; 776 } 777 778 /* unlock vma or mmap_lock, and put mm_struct before copying data to user */ 779 query_vma_teardown(&lock_ctx); 780 mmput(mm); 781 782 if (karg.vma_name_size && copy_to_user(u64_to_user_ptr(karg.vma_name_addr), 783 name, karg.vma_name_size)) { 784 kfree(name_buf); 785 return -EFAULT; 786 } 787 kfree(name_buf); 788 789 if (karg.build_id_size && copy_to_user(u64_to_user_ptr(karg.build_id_addr), 790 build_id_buf, karg.build_id_size)) 791 return -EFAULT; 792 793 if (copy_to_user(uarg, &karg, min_t(size_t, sizeof(karg), usize))) 794 return -EFAULT; 795 796 return 0; 797 798 out: 799 query_vma_teardown(&lock_ctx); 800 mmput(mm); 801 kfree(name_buf); 802 return err; 803 } 804 805 static long procfs_procmap_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 806 { 807 struct seq_file *seq = file->private_data; 808 struct proc_maps_private *priv = seq->private; 809 810 switch (cmd) { 811 case PROCMAP_QUERY: 812 /* priv->lock_ctx.mm is set during file open operation */ 813 return do_procmap_query(priv->lock_ctx.mm, (void __user *)arg); 814 default: 815 return -ENOIOCTLCMD; 816 } 817 } 818 819 const struct file_operations proc_pid_maps_operations = { 820 .open = pid_maps_open, 821 .read = seq_read, 822 .llseek = seq_lseek, 823 .release = proc_map_release, 824 .unlocked_ioctl = procfs_procmap_ioctl, 825 .compat_ioctl = compat_ptr_ioctl, 826 }; 827 828 /* 829 * Proportional Set Size(PSS): my share of RSS. 830 * 831 * PSS of a process is the count of pages it has in memory, where each 832 * page is divided by the number of processes sharing it. So if a 833 * process has 1000 pages all to itself, and 1000 shared with one other 834 * process, its PSS will be 1500. 835 * 836 * To keep (accumulated) division errors low, we adopt a 64bit 837 * fixed-point pss counter to minimize division errors. So (pss >> 838 * PSS_SHIFT) would be the real byte count. 839 * 840 * A shift of 12 before division means (assuming 4K page size): 841 * - 1M 3-user-pages add up to 8KB errors; 842 * - supports mapcount up to 2^24, or 16M; 843 * - supports PSS up to 2^52 bytes, or 4PB. 844 */ 845 #define PSS_SHIFT 12 846 847 #ifdef CONFIG_PROC_PAGE_MONITOR 848 struct mem_size_stats { 849 unsigned long resident; 850 unsigned long shared_clean; 851 unsigned long shared_dirty; 852 unsigned long private_clean; 853 unsigned long private_dirty; 854 unsigned long referenced; 855 unsigned long anonymous; 856 unsigned long lazyfree; 857 unsigned long anonymous_thp; 858 unsigned long shmem_thp; 859 unsigned long file_thp; 860 unsigned long swap; 861 unsigned long shared_hugetlb; 862 unsigned long private_hugetlb; 863 unsigned long ksm; 864 u64 pss; 865 u64 pss_anon; 866 u64 pss_file; 867 u64 pss_shmem; 868 u64 pss_dirty; 869 u64 pss_locked; 870 u64 swap_pss; 871 }; 872 873 static void smaps_page_accumulate(struct mem_size_stats *mss, 874 struct folio *folio, unsigned long size, unsigned long pss, 875 bool dirty, bool locked, bool private) 876 { 877 mss->pss += pss; 878 879 if (folio_test_anon(folio)) 880 mss->pss_anon += pss; 881 else if (folio_test_swapbacked(folio)) 882 mss->pss_shmem += pss; 883 else 884 mss->pss_file += pss; 885 886 if (locked) 887 mss->pss_locked += pss; 888 889 if (dirty || folio_test_dirty(folio)) { 890 mss->pss_dirty += pss; 891 if (private) 892 mss->private_dirty += size; 893 else 894 mss->shared_dirty += size; 895 } else { 896 if (private) 897 mss->private_clean += size; 898 else 899 mss->shared_clean += size; 900 } 901 } 902 903 static void smaps_account(struct mem_size_stats *mss, struct page *page, 904 bool compound, bool young, bool dirty, bool locked, 905 bool present) 906 { 907 struct folio *folio = page_folio(page); 908 int i, nr = compound ? compound_nr(page) : 1; 909 unsigned long size = nr * PAGE_SIZE; 910 bool exclusive; 911 int mapcount; 912 913 /* 914 * First accumulate quantities that depend only on |size| and the type 915 * of the compound page. 916 */ 917 if (folio_test_anon(folio)) { 918 mss->anonymous += size; 919 if (!folio_test_swapbacked(folio) && !dirty && 920 !folio_test_dirty(folio)) 921 mss->lazyfree += size; 922 } 923 924 if (folio_test_ksm(folio)) 925 mss->ksm += size; 926 927 mss->resident += size; 928 /* Accumulate the size in pages that have been accessed. */ 929 if (young || folio_test_young(folio) || folio_test_referenced(folio)) 930 mss->referenced += size; 931 932 /* 933 * Then accumulate quantities that may depend on sharing, or that may 934 * differ page-by-page. 935 * 936 * refcount == 1 for present entries guarantees that the folio is mapped 937 * exactly once. For large folios this implies that exactly one 938 * PTE/PMD/... maps (a part of) this folio. 939 * 940 * Treat all non-present entries (where relying on the mapcount and 941 * refcount doesn't make sense) as "maybe shared, but not sure how 942 * often". We treat device private entries as being fake-present. 943 * 944 * Note that it would not be safe to read the mapcount especially for 945 * pages referenced by migration entries, even with the PTL held. 946 */ 947 if (folio_ref_count(folio) == 1 || !present) { 948 smaps_page_accumulate(mss, folio, size, size << PSS_SHIFT, 949 dirty, locked, present); 950 return; 951 } 952 953 if (IS_ENABLED(CONFIG_NO_PAGE_MAPCOUNT)) { 954 mapcount = folio_average_page_mapcount(folio); 955 exclusive = !folio_maybe_mapped_shared(folio); 956 } 957 958 /* 959 * We obtain a snapshot of the mapcount. Without holding the folio lock 960 * this snapshot can be slightly wrong as we cannot always read the 961 * mapcount atomically. 962 */ 963 for (i = 0; i < nr; i++, page++) { 964 unsigned long pss = PAGE_SIZE << PSS_SHIFT; 965 966 if (IS_ENABLED(CONFIG_PAGE_MAPCOUNT)) { 967 mapcount = folio_precise_page_mapcount(folio, page); 968 exclusive = mapcount < 2; 969 } 970 971 if (mapcount >= 2) 972 pss /= mapcount; 973 smaps_page_accumulate(mss, folio, PAGE_SIZE, pss, 974 dirty, locked, exclusive); 975 } 976 } 977 978 #ifdef CONFIG_SHMEM 979 static int smaps_pte_hole(unsigned long addr, unsigned long end, 980 __always_unused int depth, struct mm_walk *walk) 981 { 982 struct mem_size_stats *mss = walk->private; 983 struct vm_area_struct *vma = walk->vma; 984 985 mss->swap += shmem_partial_swap_usage(walk->vma->vm_file->f_mapping, 986 linear_page_index(vma, addr), 987 linear_page_index(vma, end)); 988 989 return 0; 990 } 991 #else 992 #define smaps_pte_hole NULL 993 #endif /* CONFIG_SHMEM */ 994 995 static void smaps_pte_hole_lookup(unsigned long addr, struct mm_walk *walk) 996 { 997 #ifdef CONFIG_SHMEM 998 if (walk->ops->pte_hole) { 999 /* depth is not used */ 1000 smaps_pte_hole(addr, addr + PAGE_SIZE, 0, walk); 1001 } 1002 #endif 1003 } 1004 1005 static void smaps_pte_entry(pte_t *pte, unsigned long addr, 1006 struct mm_walk *walk) 1007 { 1008 struct mem_size_stats *mss = walk->private; 1009 struct vm_area_struct *vma = walk->vma; 1010 bool locked = !!(vma->vm_flags & VM_LOCKED); 1011 struct page *page = NULL; 1012 bool present = false, young = false, dirty = false; 1013 pte_t ptent = ptep_get(pte); 1014 1015 if (pte_present(ptent)) { 1016 page = vm_normal_page(vma, addr, ptent); 1017 young = pte_young(ptent); 1018 dirty = pte_dirty(ptent); 1019 present = true; 1020 } else if (is_swap_pte(ptent)) { 1021 swp_entry_t swpent = pte_to_swp_entry(ptent); 1022 1023 if (!non_swap_entry(swpent)) { 1024 int mapcount; 1025 1026 mss->swap += PAGE_SIZE; 1027 mapcount = swp_swapcount(swpent); 1028 if (mapcount >= 2) { 1029 u64 pss_delta = (u64)PAGE_SIZE << PSS_SHIFT; 1030 1031 do_div(pss_delta, mapcount); 1032 mss->swap_pss += pss_delta; 1033 } else { 1034 mss->swap_pss += (u64)PAGE_SIZE << PSS_SHIFT; 1035 } 1036 } else if (is_pfn_swap_entry(swpent)) { 1037 if (is_device_private_entry(swpent)) 1038 present = true; 1039 page = pfn_swap_entry_to_page(swpent); 1040 } 1041 } else { 1042 smaps_pte_hole_lookup(addr, walk); 1043 return; 1044 } 1045 1046 if (!page) 1047 return; 1048 1049 smaps_account(mss, page, false, young, dirty, locked, present); 1050 } 1051 1052 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1053 static void smaps_pmd_entry(pmd_t *pmd, unsigned long addr, 1054 struct mm_walk *walk) 1055 { 1056 struct mem_size_stats *mss = walk->private; 1057 struct vm_area_struct *vma = walk->vma; 1058 bool locked = !!(vma->vm_flags & VM_LOCKED); 1059 struct page *page = NULL; 1060 bool present = false; 1061 struct folio *folio; 1062 1063 if (pmd_present(*pmd)) { 1064 page = vm_normal_page_pmd(vma, addr, *pmd); 1065 present = true; 1066 } else if (unlikely(thp_migration_supported() && is_swap_pmd(*pmd))) { 1067 swp_entry_t entry = pmd_to_swp_entry(*pmd); 1068 1069 if (is_pfn_swap_entry(entry)) 1070 page = pfn_swap_entry_to_page(entry); 1071 } 1072 if (IS_ERR_OR_NULL(page)) 1073 return; 1074 folio = page_folio(page); 1075 if (folio_test_anon(folio)) 1076 mss->anonymous_thp += HPAGE_PMD_SIZE; 1077 else if (folio_test_swapbacked(folio)) 1078 mss->shmem_thp += HPAGE_PMD_SIZE; 1079 else if (folio_is_zone_device(folio)) 1080 /* pass */; 1081 else 1082 mss->file_thp += HPAGE_PMD_SIZE; 1083 1084 smaps_account(mss, page, true, pmd_young(*pmd), pmd_dirty(*pmd), 1085 locked, present); 1086 } 1087 #else 1088 static void smaps_pmd_entry(pmd_t *pmd, unsigned long addr, 1089 struct mm_walk *walk) 1090 { 1091 } 1092 #endif 1093 1094 static int smaps_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end, 1095 struct mm_walk *walk) 1096 { 1097 struct vm_area_struct *vma = walk->vma; 1098 pte_t *pte; 1099 spinlock_t *ptl; 1100 1101 ptl = pmd_trans_huge_lock(pmd, vma); 1102 if (ptl) { 1103 smaps_pmd_entry(pmd, addr, walk); 1104 spin_unlock(ptl); 1105 goto out; 1106 } 1107 1108 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl); 1109 if (!pte) { 1110 walk->action = ACTION_AGAIN; 1111 return 0; 1112 } 1113 for (; addr != end; pte++, addr += PAGE_SIZE) 1114 smaps_pte_entry(pte, addr, walk); 1115 pte_unmap_unlock(pte - 1, ptl); 1116 out: 1117 cond_resched(); 1118 return 0; 1119 } 1120 1121 static void show_smap_vma_flags(struct seq_file *m, struct vm_area_struct *vma) 1122 { 1123 /* 1124 * Don't forget to update Documentation/ on changes. 1125 * 1126 * The length of the second argument of mnemonics[] 1127 * needs to be 3 instead of previously set 2 1128 * (i.e. from [BITS_PER_LONG][2] to [BITS_PER_LONG][3]) 1129 * to avoid spurious 1130 * -Werror=unterminated-string-initialization warning 1131 * with GCC 15 1132 */ 1133 static const char mnemonics[BITS_PER_LONG][3] = { 1134 /* 1135 * In case if we meet a flag we don't know about. 1136 */ 1137 [0 ... (BITS_PER_LONG-1)] = "??", 1138 1139 [ilog2(VM_READ)] = "rd", 1140 [ilog2(VM_WRITE)] = "wr", 1141 [ilog2(VM_EXEC)] = "ex", 1142 [ilog2(VM_SHARED)] = "sh", 1143 [ilog2(VM_MAYREAD)] = "mr", 1144 [ilog2(VM_MAYWRITE)] = "mw", 1145 [ilog2(VM_MAYEXEC)] = "me", 1146 [ilog2(VM_MAYSHARE)] = "ms", 1147 [ilog2(VM_GROWSDOWN)] = "gd", 1148 [ilog2(VM_PFNMAP)] = "pf", 1149 [ilog2(VM_LOCKED)] = "lo", 1150 [ilog2(VM_IO)] = "io", 1151 [ilog2(VM_SEQ_READ)] = "sr", 1152 [ilog2(VM_RAND_READ)] = "rr", 1153 [ilog2(VM_DONTCOPY)] = "dc", 1154 [ilog2(VM_DONTEXPAND)] = "de", 1155 [ilog2(VM_LOCKONFAULT)] = "lf", 1156 [ilog2(VM_ACCOUNT)] = "ac", 1157 [ilog2(VM_NORESERVE)] = "nr", 1158 [ilog2(VM_HUGETLB)] = "ht", 1159 [ilog2(VM_SYNC)] = "sf", 1160 [ilog2(VM_ARCH_1)] = "ar", 1161 [ilog2(VM_WIPEONFORK)] = "wf", 1162 [ilog2(VM_DONTDUMP)] = "dd", 1163 #ifdef CONFIG_ARM64_BTI 1164 [ilog2(VM_ARM64_BTI)] = "bt", 1165 #endif 1166 #ifdef CONFIG_MEM_SOFT_DIRTY 1167 [ilog2(VM_SOFTDIRTY)] = "sd", 1168 #endif 1169 [ilog2(VM_MIXEDMAP)] = "mm", 1170 [ilog2(VM_HUGEPAGE)] = "hg", 1171 [ilog2(VM_NOHUGEPAGE)] = "nh", 1172 [ilog2(VM_MERGEABLE)] = "mg", 1173 [ilog2(VM_UFFD_MISSING)]= "um", 1174 [ilog2(VM_UFFD_WP)] = "uw", 1175 #ifdef CONFIG_ARM64_MTE 1176 [ilog2(VM_MTE)] = "mt", 1177 [ilog2(VM_MTE_ALLOWED)] = "", 1178 #endif 1179 #ifdef CONFIG_ARCH_HAS_PKEYS 1180 /* These come out via ProtectionKey: */ 1181 [ilog2(VM_PKEY_BIT0)] = "", 1182 [ilog2(VM_PKEY_BIT1)] = "", 1183 [ilog2(VM_PKEY_BIT2)] = "", 1184 #if VM_PKEY_BIT3 1185 [ilog2(VM_PKEY_BIT3)] = "", 1186 #endif 1187 #if VM_PKEY_BIT4 1188 [ilog2(VM_PKEY_BIT4)] = "", 1189 #endif 1190 #endif /* CONFIG_ARCH_HAS_PKEYS */ 1191 #ifdef CONFIG_HAVE_ARCH_USERFAULTFD_MINOR 1192 [ilog2(VM_UFFD_MINOR)] = "ui", 1193 #endif /* CONFIG_HAVE_ARCH_USERFAULTFD_MINOR */ 1194 #ifdef CONFIG_ARCH_HAS_USER_SHADOW_STACK 1195 [ilog2(VM_SHADOW_STACK)] = "ss", 1196 #endif 1197 #if defined(CONFIG_64BIT) || defined(CONFIG_PPC32) 1198 [ilog2(VM_DROPPABLE)] = "dp", 1199 #endif 1200 #ifdef CONFIG_64BIT 1201 [ilog2(VM_SEALED)] = "sl", 1202 #endif 1203 }; 1204 size_t i; 1205 1206 seq_puts(m, "VmFlags: "); 1207 for (i = 0; i < BITS_PER_LONG; i++) { 1208 if (!mnemonics[i][0]) 1209 continue; 1210 if (vma->vm_flags & (1UL << i)) 1211 seq_printf(m, "%s ", mnemonics[i]); 1212 } 1213 seq_putc(m, '\n'); 1214 } 1215 1216 #ifdef CONFIG_HUGETLB_PAGE 1217 static int smaps_hugetlb_range(pte_t *pte, unsigned long hmask, 1218 unsigned long addr, unsigned long end, 1219 struct mm_walk *walk) 1220 { 1221 struct mem_size_stats *mss = walk->private; 1222 struct vm_area_struct *vma = walk->vma; 1223 struct folio *folio = NULL; 1224 bool present = false; 1225 spinlock_t *ptl; 1226 pte_t ptent; 1227 1228 ptl = huge_pte_lock(hstate_vma(vma), walk->mm, pte); 1229 ptent = huge_ptep_get(walk->mm, addr, pte); 1230 if (pte_present(ptent)) { 1231 folio = page_folio(pte_page(ptent)); 1232 present = true; 1233 } else if (is_swap_pte(ptent)) { 1234 swp_entry_t swpent = pte_to_swp_entry(ptent); 1235 1236 if (is_pfn_swap_entry(swpent)) 1237 folio = pfn_swap_entry_folio(swpent); 1238 } 1239 1240 if (folio) { 1241 /* We treat non-present entries as "maybe shared". */ 1242 if (!present || folio_maybe_mapped_shared(folio) || 1243 hugetlb_pmd_shared(pte)) 1244 mss->shared_hugetlb += huge_page_size(hstate_vma(vma)); 1245 else 1246 mss->private_hugetlb += huge_page_size(hstate_vma(vma)); 1247 } 1248 spin_unlock(ptl); 1249 return 0; 1250 } 1251 #else 1252 #define smaps_hugetlb_range NULL 1253 #endif /* HUGETLB_PAGE */ 1254 1255 static const struct mm_walk_ops smaps_walk_ops = { 1256 .pmd_entry = smaps_pte_range, 1257 .hugetlb_entry = smaps_hugetlb_range, 1258 .walk_lock = PGWALK_RDLOCK, 1259 }; 1260 1261 static const struct mm_walk_ops smaps_shmem_walk_ops = { 1262 .pmd_entry = smaps_pte_range, 1263 .hugetlb_entry = smaps_hugetlb_range, 1264 .pte_hole = smaps_pte_hole, 1265 .walk_lock = PGWALK_RDLOCK, 1266 }; 1267 1268 /* 1269 * Gather mem stats from @vma with the indicated beginning 1270 * address @start, and keep them in @mss. 1271 * 1272 * Use vm_start of @vma as the beginning address if @start is 0. 1273 */ 1274 static void smap_gather_stats(struct vm_area_struct *vma, 1275 struct mem_size_stats *mss, unsigned long start) 1276 { 1277 const struct mm_walk_ops *ops = &smaps_walk_ops; 1278 1279 /* Invalid start */ 1280 if (start >= vma->vm_end) 1281 return; 1282 1283 if (vma->vm_file && shmem_mapping(vma->vm_file->f_mapping)) { 1284 /* 1285 * For shared or readonly shmem mappings we know that all 1286 * swapped out pages belong to the shmem object, and we can 1287 * obtain the swap value much more efficiently. For private 1288 * writable mappings, we might have COW pages that are 1289 * not affected by the parent swapped out pages of the shmem 1290 * object, so we have to distinguish them during the page walk. 1291 * Unless we know that the shmem object (or the part mapped by 1292 * our VMA) has no swapped out pages at all. 1293 */ 1294 unsigned long shmem_swapped = shmem_swap_usage(vma); 1295 1296 if (!start && (!shmem_swapped || (vma->vm_flags & VM_SHARED) || 1297 !(vma->vm_flags & VM_WRITE))) { 1298 mss->swap += shmem_swapped; 1299 } else { 1300 ops = &smaps_shmem_walk_ops; 1301 } 1302 } 1303 1304 /* mmap_lock is held in m_start */ 1305 if (!start) 1306 walk_page_vma(vma, ops, mss); 1307 else 1308 walk_page_range(vma->vm_mm, start, vma->vm_end, ops, mss); 1309 } 1310 1311 #define SEQ_PUT_DEC(str, val) \ 1312 seq_put_decimal_ull_width(m, str, (val) >> 10, 8) 1313 1314 /* Show the contents common for smaps and smaps_rollup */ 1315 static void __show_smap(struct seq_file *m, const struct mem_size_stats *mss, 1316 bool rollup_mode) 1317 { 1318 SEQ_PUT_DEC("Rss: ", mss->resident); 1319 SEQ_PUT_DEC(" kB\nPss: ", mss->pss >> PSS_SHIFT); 1320 SEQ_PUT_DEC(" kB\nPss_Dirty: ", mss->pss_dirty >> PSS_SHIFT); 1321 if (rollup_mode) { 1322 /* 1323 * These are meaningful only for smaps_rollup, otherwise two of 1324 * them are zero, and the other one is the same as Pss. 1325 */ 1326 SEQ_PUT_DEC(" kB\nPss_Anon: ", 1327 mss->pss_anon >> PSS_SHIFT); 1328 SEQ_PUT_DEC(" kB\nPss_File: ", 1329 mss->pss_file >> PSS_SHIFT); 1330 SEQ_PUT_DEC(" kB\nPss_Shmem: ", 1331 mss->pss_shmem >> PSS_SHIFT); 1332 } 1333 SEQ_PUT_DEC(" kB\nShared_Clean: ", mss->shared_clean); 1334 SEQ_PUT_DEC(" kB\nShared_Dirty: ", mss->shared_dirty); 1335 SEQ_PUT_DEC(" kB\nPrivate_Clean: ", mss->private_clean); 1336 SEQ_PUT_DEC(" kB\nPrivate_Dirty: ", mss->private_dirty); 1337 SEQ_PUT_DEC(" kB\nReferenced: ", mss->referenced); 1338 SEQ_PUT_DEC(" kB\nAnonymous: ", mss->anonymous); 1339 SEQ_PUT_DEC(" kB\nKSM: ", mss->ksm); 1340 SEQ_PUT_DEC(" kB\nLazyFree: ", mss->lazyfree); 1341 SEQ_PUT_DEC(" kB\nAnonHugePages: ", mss->anonymous_thp); 1342 SEQ_PUT_DEC(" kB\nShmemPmdMapped: ", mss->shmem_thp); 1343 SEQ_PUT_DEC(" kB\nFilePmdMapped: ", mss->file_thp); 1344 SEQ_PUT_DEC(" kB\nShared_Hugetlb: ", mss->shared_hugetlb); 1345 seq_put_decimal_ull_width(m, " kB\nPrivate_Hugetlb: ", 1346 mss->private_hugetlb >> 10, 7); 1347 SEQ_PUT_DEC(" kB\nSwap: ", mss->swap); 1348 SEQ_PUT_DEC(" kB\nSwapPss: ", 1349 mss->swap_pss >> PSS_SHIFT); 1350 SEQ_PUT_DEC(" kB\nLocked: ", 1351 mss->pss_locked >> PSS_SHIFT); 1352 seq_puts(m, " kB\n"); 1353 } 1354 1355 static int show_smap(struct seq_file *m, void *v) 1356 { 1357 struct vm_area_struct *vma = v; 1358 struct mem_size_stats mss = {}; 1359 1360 smap_gather_stats(vma, &mss, 0); 1361 1362 show_map_vma(m, vma); 1363 1364 SEQ_PUT_DEC("Size: ", vma->vm_end - vma->vm_start); 1365 SEQ_PUT_DEC(" kB\nKernelPageSize: ", vma_kernel_pagesize(vma)); 1366 SEQ_PUT_DEC(" kB\nMMUPageSize: ", vma_mmu_pagesize(vma)); 1367 seq_puts(m, " kB\n"); 1368 1369 __show_smap(m, &mss, false); 1370 1371 seq_printf(m, "THPeligible: %8u\n", 1372 !!thp_vma_allowable_orders(vma, vma->vm_flags, TVA_SMAPS, 1373 THP_ORDERS_ALL)); 1374 1375 if (arch_pkeys_enabled()) 1376 seq_printf(m, "ProtectionKey: %8u\n", vma_pkey(vma)); 1377 show_smap_vma_flags(m, vma); 1378 1379 return 0; 1380 } 1381 1382 static int show_smaps_rollup(struct seq_file *m, void *v) 1383 { 1384 struct proc_maps_private *priv = m->private; 1385 struct mem_size_stats mss = {}; 1386 struct mm_struct *mm = priv->lock_ctx.mm; 1387 struct vm_area_struct *vma; 1388 unsigned long vma_start = 0, last_vma_end = 0; 1389 int ret = 0; 1390 VMA_ITERATOR(vmi, mm, 0); 1391 1392 priv->task = get_proc_task(priv->inode); 1393 if (!priv->task) 1394 return -ESRCH; 1395 1396 if (!mm || !mmget_not_zero(mm)) { 1397 ret = -ESRCH; 1398 goto out_put_task; 1399 } 1400 1401 ret = mmap_read_lock_killable(mm); 1402 if (ret) 1403 goto out_put_mm; 1404 1405 hold_task_mempolicy(priv); 1406 vma = vma_next(&vmi); 1407 1408 if (unlikely(!vma)) 1409 goto empty_set; 1410 1411 vma_start = vma->vm_start; 1412 do { 1413 smap_gather_stats(vma, &mss, 0); 1414 last_vma_end = vma->vm_end; 1415 1416 /* 1417 * Release mmap_lock temporarily if someone wants to 1418 * access it for write request. 1419 */ 1420 if (mmap_lock_is_contended(mm)) { 1421 vma_iter_invalidate(&vmi); 1422 mmap_read_unlock(mm); 1423 ret = mmap_read_lock_killable(mm); 1424 if (ret) { 1425 release_task_mempolicy(priv); 1426 goto out_put_mm; 1427 } 1428 1429 /* 1430 * After dropping the lock, there are four cases to 1431 * consider. See the following example for explanation. 1432 * 1433 * +------+------+-----------+ 1434 * | VMA1 | VMA2 | VMA3 | 1435 * +------+------+-----------+ 1436 * | | | | 1437 * 4k 8k 16k 400k 1438 * 1439 * Suppose we drop the lock after reading VMA2 due to 1440 * contention, then we get: 1441 * 1442 * last_vma_end = 16k 1443 * 1444 * 1) VMA2 is freed, but VMA3 exists: 1445 * 1446 * vma_next(vmi) will return VMA3. 1447 * In this case, just continue from VMA3. 1448 * 1449 * 2) VMA2 still exists: 1450 * 1451 * vma_next(vmi) will return VMA3. 1452 * In this case, just continue from VMA3. 1453 * 1454 * 3) No more VMAs can be found: 1455 * 1456 * vma_next(vmi) will return NULL. 1457 * No more things to do, just break. 1458 * 1459 * 4) (last_vma_end - 1) is the middle of a vma (VMA'): 1460 * 1461 * vma_next(vmi) will return VMA' whose range 1462 * contains last_vma_end. 1463 * Iterate VMA' from last_vma_end. 1464 */ 1465 vma = vma_next(&vmi); 1466 /* Case 3 above */ 1467 if (!vma) 1468 break; 1469 1470 /* Case 1 and 2 above */ 1471 if (vma->vm_start >= last_vma_end) { 1472 smap_gather_stats(vma, &mss, 0); 1473 last_vma_end = vma->vm_end; 1474 continue; 1475 } 1476 1477 /* Case 4 above */ 1478 if (vma->vm_end > last_vma_end) { 1479 smap_gather_stats(vma, &mss, last_vma_end); 1480 last_vma_end = vma->vm_end; 1481 } 1482 } 1483 } for_each_vma(vmi, vma); 1484 1485 empty_set: 1486 show_vma_header_prefix(m, vma_start, last_vma_end, 0, 0, 0, 0); 1487 seq_pad(m, ' '); 1488 seq_puts(m, "[rollup]\n"); 1489 1490 __show_smap(m, &mss, true); 1491 1492 release_task_mempolicy(priv); 1493 mmap_read_unlock(mm); 1494 1495 out_put_mm: 1496 mmput(mm); 1497 out_put_task: 1498 put_task_struct(priv->task); 1499 priv->task = NULL; 1500 1501 return ret; 1502 } 1503 #undef SEQ_PUT_DEC 1504 1505 static const struct seq_operations proc_pid_smaps_op = { 1506 .start = m_start, 1507 .next = m_next, 1508 .stop = m_stop, 1509 .show = show_smap 1510 }; 1511 1512 static int pid_smaps_open(struct inode *inode, struct file *file) 1513 { 1514 return do_maps_open(inode, file, &proc_pid_smaps_op); 1515 } 1516 1517 static int smaps_rollup_open(struct inode *inode, struct file *file) 1518 { 1519 int ret; 1520 struct proc_maps_private *priv; 1521 1522 priv = kzalloc(sizeof(*priv), GFP_KERNEL_ACCOUNT); 1523 if (!priv) 1524 return -ENOMEM; 1525 1526 ret = single_open(file, show_smaps_rollup, priv); 1527 if (ret) 1528 goto out_free; 1529 1530 priv->inode = inode; 1531 priv->lock_ctx.mm = proc_mem_open(inode, PTRACE_MODE_READ); 1532 if (IS_ERR_OR_NULL(priv->lock_ctx.mm)) { 1533 ret = priv->lock_ctx.mm ? PTR_ERR(priv->lock_ctx.mm) : -ESRCH; 1534 1535 single_release(inode, file); 1536 goto out_free; 1537 } 1538 1539 return 0; 1540 1541 out_free: 1542 kfree(priv); 1543 return ret; 1544 } 1545 1546 static int smaps_rollup_release(struct inode *inode, struct file *file) 1547 { 1548 struct seq_file *seq = file->private_data; 1549 struct proc_maps_private *priv = seq->private; 1550 1551 if (priv->lock_ctx.mm) 1552 mmdrop(priv->lock_ctx.mm); 1553 1554 kfree(priv); 1555 return single_release(inode, file); 1556 } 1557 1558 const struct file_operations proc_pid_smaps_operations = { 1559 .open = pid_smaps_open, 1560 .read = seq_read, 1561 .llseek = seq_lseek, 1562 .release = proc_map_release, 1563 }; 1564 1565 const struct file_operations proc_pid_smaps_rollup_operations = { 1566 .open = smaps_rollup_open, 1567 .read = seq_read, 1568 .llseek = seq_lseek, 1569 .release = smaps_rollup_release, 1570 }; 1571 1572 enum clear_refs_types { 1573 CLEAR_REFS_ALL = 1, 1574 CLEAR_REFS_ANON, 1575 CLEAR_REFS_MAPPED, 1576 CLEAR_REFS_SOFT_DIRTY, 1577 CLEAR_REFS_MM_HIWATER_RSS, 1578 CLEAR_REFS_LAST, 1579 }; 1580 1581 struct clear_refs_private { 1582 enum clear_refs_types type; 1583 }; 1584 1585 #ifdef CONFIG_MEM_SOFT_DIRTY 1586 1587 static inline bool pte_is_pinned(struct vm_area_struct *vma, unsigned long addr, pte_t pte) 1588 { 1589 struct folio *folio; 1590 1591 if (!pte_write(pte)) 1592 return false; 1593 if (!is_cow_mapping(vma->vm_flags)) 1594 return false; 1595 if (likely(!mm_flags_test(MMF_HAS_PINNED, vma->vm_mm))) 1596 return false; 1597 folio = vm_normal_folio(vma, addr, pte); 1598 if (!folio) 1599 return false; 1600 return folio_maybe_dma_pinned(folio); 1601 } 1602 1603 static inline void clear_soft_dirty(struct vm_area_struct *vma, 1604 unsigned long addr, pte_t *pte) 1605 { 1606 /* 1607 * The soft-dirty tracker uses #PF-s to catch writes 1608 * to pages, so write-protect the pte as well. See the 1609 * Documentation/admin-guide/mm/soft-dirty.rst for full description 1610 * of how soft-dirty works. 1611 */ 1612 pte_t ptent = ptep_get(pte); 1613 1614 if (pte_present(ptent)) { 1615 pte_t old_pte; 1616 1617 if (pte_is_pinned(vma, addr, ptent)) 1618 return; 1619 old_pte = ptep_modify_prot_start(vma, addr, pte); 1620 ptent = pte_wrprotect(old_pte); 1621 ptent = pte_clear_soft_dirty(ptent); 1622 ptep_modify_prot_commit(vma, addr, pte, old_pte, ptent); 1623 } else if (is_swap_pte(ptent)) { 1624 ptent = pte_swp_clear_soft_dirty(ptent); 1625 set_pte_at(vma->vm_mm, addr, pte, ptent); 1626 } 1627 } 1628 #else 1629 static inline void clear_soft_dirty(struct vm_area_struct *vma, 1630 unsigned long addr, pte_t *pte) 1631 { 1632 } 1633 #endif 1634 1635 #if defined(CONFIG_MEM_SOFT_DIRTY) && defined(CONFIG_TRANSPARENT_HUGEPAGE) 1636 static inline void clear_soft_dirty_pmd(struct vm_area_struct *vma, 1637 unsigned long addr, pmd_t *pmdp) 1638 { 1639 pmd_t old, pmd = *pmdp; 1640 1641 if (pmd_present(pmd)) { 1642 /* See comment in change_huge_pmd() */ 1643 old = pmdp_invalidate(vma, addr, pmdp); 1644 if (pmd_dirty(old)) 1645 pmd = pmd_mkdirty(pmd); 1646 if (pmd_young(old)) 1647 pmd = pmd_mkyoung(pmd); 1648 1649 pmd = pmd_wrprotect(pmd); 1650 pmd = pmd_clear_soft_dirty(pmd); 1651 1652 set_pmd_at(vma->vm_mm, addr, pmdp, pmd); 1653 } else if (is_migration_entry(pmd_to_swp_entry(pmd))) { 1654 pmd = pmd_swp_clear_soft_dirty(pmd); 1655 set_pmd_at(vma->vm_mm, addr, pmdp, pmd); 1656 } 1657 } 1658 #else 1659 static inline void clear_soft_dirty_pmd(struct vm_area_struct *vma, 1660 unsigned long addr, pmd_t *pmdp) 1661 { 1662 } 1663 #endif 1664 1665 static int clear_refs_pte_range(pmd_t *pmd, unsigned long addr, 1666 unsigned long end, struct mm_walk *walk) 1667 { 1668 struct clear_refs_private *cp = walk->private; 1669 struct vm_area_struct *vma = walk->vma; 1670 pte_t *pte, ptent; 1671 spinlock_t *ptl; 1672 struct folio *folio; 1673 1674 ptl = pmd_trans_huge_lock(pmd, vma); 1675 if (ptl) { 1676 if (cp->type == CLEAR_REFS_SOFT_DIRTY) { 1677 clear_soft_dirty_pmd(vma, addr, pmd); 1678 goto out; 1679 } 1680 1681 if (!pmd_present(*pmd)) 1682 goto out; 1683 1684 folio = pmd_folio(*pmd); 1685 1686 /* Clear accessed and referenced bits. */ 1687 pmdp_test_and_clear_young(vma, addr, pmd); 1688 folio_test_clear_young(folio); 1689 folio_clear_referenced(folio); 1690 out: 1691 spin_unlock(ptl); 1692 return 0; 1693 } 1694 1695 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl); 1696 if (!pte) { 1697 walk->action = ACTION_AGAIN; 1698 return 0; 1699 } 1700 for (; addr != end; pte++, addr += PAGE_SIZE) { 1701 ptent = ptep_get(pte); 1702 1703 if (cp->type == CLEAR_REFS_SOFT_DIRTY) { 1704 clear_soft_dirty(vma, addr, pte); 1705 continue; 1706 } 1707 1708 if (!pte_present(ptent)) 1709 continue; 1710 1711 folio = vm_normal_folio(vma, addr, ptent); 1712 if (!folio) 1713 continue; 1714 1715 /* Clear accessed and referenced bits. */ 1716 ptep_test_and_clear_young(vma, addr, pte); 1717 folio_test_clear_young(folio); 1718 folio_clear_referenced(folio); 1719 } 1720 pte_unmap_unlock(pte - 1, ptl); 1721 cond_resched(); 1722 return 0; 1723 } 1724 1725 static int clear_refs_test_walk(unsigned long start, unsigned long end, 1726 struct mm_walk *walk) 1727 { 1728 struct clear_refs_private *cp = walk->private; 1729 struct vm_area_struct *vma = walk->vma; 1730 1731 if (vma->vm_flags & VM_PFNMAP) 1732 return 1; 1733 1734 /* 1735 * Writing 1 to /proc/pid/clear_refs affects all pages. 1736 * Writing 2 to /proc/pid/clear_refs only affects anonymous pages. 1737 * Writing 3 to /proc/pid/clear_refs only affects file mapped pages. 1738 * Writing 4 to /proc/pid/clear_refs affects all pages. 1739 */ 1740 if (cp->type == CLEAR_REFS_ANON && vma->vm_file) 1741 return 1; 1742 if (cp->type == CLEAR_REFS_MAPPED && !vma->vm_file) 1743 return 1; 1744 return 0; 1745 } 1746 1747 static const struct mm_walk_ops clear_refs_walk_ops = { 1748 .pmd_entry = clear_refs_pte_range, 1749 .test_walk = clear_refs_test_walk, 1750 .walk_lock = PGWALK_WRLOCK, 1751 }; 1752 1753 static ssize_t clear_refs_write(struct file *file, const char __user *buf, 1754 size_t count, loff_t *ppos) 1755 { 1756 struct task_struct *task; 1757 char buffer[PROC_NUMBUF] = {}; 1758 struct mm_struct *mm; 1759 struct vm_area_struct *vma; 1760 enum clear_refs_types type; 1761 int itype; 1762 int rv; 1763 1764 if (count > sizeof(buffer) - 1) 1765 count = sizeof(buffer) - 1; 1766 if (copy_from_user(buffer, buf, count)) 1767 return -EFAULT; 1768 rv = kstrtoint(strstrip(buffer), 10, &itype); 1769 if (rv < 0) 1770 return rv; 1771 type = (enum clear_refs_types)itype; 1772 if (type < CLEAR_REFS_ALL || type >= CLEAR_REFS_LAST) 1773 return -EINVAL; 1774 1775 task = get_proc_task(file_inode(file)); 1776 if (!task) 1777 return -ESRCH; 1778 mm = get_task_mm(task); 1779 if (mm) { 1780 VMA_ITERATOR(vmi, mm, 0); 1781 struct mmu_notifier_range range; 1782 struct clear_refs_private cp = { 1783 .type = type, 1784 }; 1785 1786 if (mmap_write_lock_killable(mm)) { 1787 count = -EINTR; 1788 goto out_mm; 1789 } 1790 if (type == CLEAR_REFS_MM_HIWATER_RSS) { 1791 /* 1792 * Writing 5 to /proc/pid/clear_refs resets the peak 1793 * resident set size to this mm's current rss value. 1794 */ 1795 reset_mm_hiwater_rss(mm); 1796 goto out_unlock; 1797 } 1798 1799 if (type == CLEAR_REFS_SOFT_DIRTY) { 1800 for_each_vma(vmi, vma) { 1801 if (!(vma->vm_flags & VM_SOFTDIRTY)) 1802 continue; 1803 vm_flags_clear(vma, VM_SOFTDIRTY); 1804 vma_set_page_prot(vma); 1805 } 1806 1807 inc_tlb_flush_pending(mm); 1808 mmu_notifier_range_init(&range, MMU_NOTIFY_SOFT_DIRTY, 1809 0, mm, 0, -1UL); 1810 mmu_notifier_invalidate_range_start(&range); 1811 } 1812 walk_page_range(mm, 0, -1, &clear_refs_walk_ops, &cp); 1813 if (type == CLEAR_REFS_SOFT_DIRTY) { 1814 mmu_notifier_invalidate_range_end(&range); 1815 flush_tlb_mm(mm); 1816 dec_tlb_flush_pending(mm); 1817 } 1818 out_unlock: 1819 mmap_write_unlock(mm); 1820 out_mm: 1821 mmput(mm); 1822 } 1823 put_task_struct(task); 1824 1825 return count; 1826 } 1827 1828 const struct file_operations proc_clear_refs_operations = { 1829 .write = clear_refs_write, 1830 .llseek = noop_llseek, 1831 }; 1832 1833 typedef struct { 1834 u64 pme; 1835 } pagemap_entry_t; 1836 1837 struct pagemapread { 1838 int pos, len; /* units: PM_ENTRY_BYTES, not bytes */ 1839 pagemap_entry_t *buffer; 1840 bool show_pfn; 1841 }; 1842 1843 #define PAGEMAP_WALK_SIZE (PMD_SIZE) 1844 #define PAGEMAP_WALK_MASK (PMD_MASK) 1845 1846 #define PM_ENTRY_BYTES sizeof(pagemap_entry_t) 1847 #define PM_PFRAME_BITS 55 1848 #define PM_PFRAME_MASK GENMASK_ULL(PM_PFRAME_BITS - 1, 0) 1849 #define PM_SOFT_DIRTY BIT_ULL(55) 1850 #define PM_MMAP_EXCLUSIVE BIT_ULL(56) 1851 #define PM_UFFD_WP BIT_ULL(57) 1852 #define PM_GUARD_REGION BIT_ULL(58) 1853 #define PM_FILE BIT_ULL(61) 1854 #define PM_SWAP BIT_ULL(62) 1855 #define PM_PRESENT BIT_ULL(63) 1856 1857 #define PM_END_OF_BUFFER 1 1858 1859 static inline pagemap_entry_t make_pme(u64 frame, u64 flags) 1860 { 1861 return (pagemap_entry_t) { .pme = (frame & PM_PFRAME_MASK) | flags }; 1862 } 1863 1864 static int add_to_pagemap(pagemap_entry_t *pme, struct pagemapread *pm) 1865 { 1866 pm->buffer[pm->pos++] = *pme; 1867 if (pm->pos >= pm->len) 1868 return PM_END_OF_BUFFER; 1869 return 0; 1870 } 1871 1872 static bool __folio_page_mapped_exclusively(struct folio *folio, struct page *page) 1873 { 1874 if (IS_ENABLED(CONFIG_PAGE_MAPCOUNT)) 1875 return folio_precise_page_mapcount(folio, page) == 1; 1876 return !folio_maybe_mapped_shared(folio); 1877 } 1878 1879 static int pagemap_pte_hole(unsigned long start, unsigned long end, 1880 __always_unused int depth, struct mm_walk *walk) 1881 { 1882 struct pagemapread *pm = walk->private; 1883 unsigned long addr = start; 1884 int err = 0; 1885 1886 while (addr < end) { 1887 struct vm_area_struct *vma = find_vma(walk->mm, addr); 1888 pagemap_entry_t pme = make_pme(0, 0); 1889 /* End of address space hole, which we mark as non-present. */ 1890 unsigned long hole_end; 1891 1892 if (vma) 1893 hole_end = min(end, vma->vm_start); 1894 else 1895 hole_end = end; 1896 1897 for (; addr < hole_end; addr += PAGE_SIZE) { 1898 err = add_to_pagemap(&pme, pm); 1899 if (err) 1900 goto out; 1901 } 1902 1903 if (!vma) 1904 break; 1905 1906 /* Addresses in the VMA. */ 1907 if (vma->vm_flags & VM_SOFTDIRTY) 1908 pme = make_pme(0, PM_SOFT_DIRTY); 1909 for (; addr < min(end, vma->vm_end); addr += PAGE_SIZE) { 1910 err = add_to_pagemap(&pme, pm); 1911 if (err) 1912 goto out; 1913 } 1914 } 1915 out: 1916 return err; 1917 } 1918 1919 static pagemap_entry_t pte_to_pagemap_entry(struct pagemapread *pm, 1920 struct vm_area_struct *vma, unsigned long addr, pte_t pte) 1921 { 1922 u64 frame = 0, flags = 0; 1923 struct page *page = NULL; 1924 struct folio *folio; 1925 1926 if (pte_present(pte)) { 1927 if (pm->show_pfn) 1928 frame = pte_pfn(pte); 1929 flags |= PM_PRESENT; 1930 page = vm_normal_page(vma, addr, pte); 1931 if (pte_soft_dirty(pte)) 1932 flags |= PM_SOFT_DIRTY; 1933 if (pte_uffd_wp(pte)) 1934 flags |= PM_UFFD_WP; 1935 } else if (is_swap_pte(pte)) { 1936 swp_entry_t entry; 1937 if (pte_swp_soft_dirty(pte)) 1938 flags |= PM_SOFT_DIRTY; 1939 if (pte_swp_uffd_wp(pte)) 1940 flags |= PM_UFFD_WP; 1941 entry = pte_to_swp_entry(pte); 1942 if (pm->show_pfn) { 1943 pgoff_t offset; 1944 /* 1945 * For PFN swap offsets, keeping the offset field 1946 * to be PFN only to be compatible with old smaps. 1947 */ 1948 if (is_pfn_swap_entry(entry)) 1949 offset = swp_offset_pfn(entry); 1950 else 1951 offset = swp_offset(entry); 1952 frame = swp_type(entry) | 1953 (offset << MAX_SWAPFILES_SHIFT); 1954 } 1955 flags |= PM_SWAP; 1956 if (is_pfn_swap_entry(entry)) 1957 page = pfn_swap_entry_to_page(entry); 1958 if (pte_marker_entry_uffd_wp(entry)) 1959 flags |= PM_UFFD_WP; 1960 if (is_guard_swp_entry(entry)) 1961 flags |= PM_GUARD_REGION; 1962 } 1963 1964 if (page) { 1965 folio = page_folio(page); 1966 if (!folio_test_anon(folio)) 1967 flags |= PM_FILE; 1968 if ((flags & PM_PRESENT) && 1969 __folio_page_mapped_exclusively(folio, page)) 1970 flags |= PM_MMAP_EXCLUSIVE; 1971 } 1972 if (vma->vm_flags & VM_SOFTDIRTY) 1973 flags |= PM_SOFT_DIRTY; 1974 1975 return make_pme(frame, flags); 1976 } 1977 1978 static int pagemap_pmd_range(pmd_t *pmdp, unsigned long addr, unsigned long end, 1979 struct mm_walk *walk) 1980 { 1981 struct vm_area_struct *vma = walk->vma; 1982 struct pagemapread *pm = walk->private; 1983 spinlock_t *ptl; 1984 pte_t *pte, *orig_pte; 1985 int err = 0; 1986 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1987 1988 ptl = pmd_trans_huge_lock(pmdp, vma); 1989 if (ptl) { 1990 unsigned int idx = (addr & ~PMD_MASK) >> PAGE_SHIFT; 1991 u64 flags = 0, frame = 0; 1992 pmd_t pmd = *pmdp; 1993 struct page *page = NULL; 1994 struct folio *folio = NULL; 1995 1996 if (vma->vm_flags & VM_SOFTDIRTY) 1997 flags |= PM_SOFT_DIRTY; 1998 1999 if (pmd_present(pmd)) { 2000 page = pmd_page(pmd); 2001 2002 flags |= PM_PRESENT; 2003 if (pmd_soft_dirty(pmd)) 2004 flags |= PM_SOFT_DIRTY; 2005 if (pmd_uffd_wp(pmd)) 2006 flags |= PM_UFFD_WP; 2007 if (pm->show_pfn) 2008 frame = pmd_pfn(pmd) + idx; 2009 } 2010 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION 2011 else if (is_swap_pmd(pmd)) { 2012 swp_entry_t entry = pmd_to_swp_entry(pmd); 2013 unsigned long offset; 2014 2015 if (pm->show_pfn) { 2016 if (is_pfn_swap_entry(entry)) 2017 offset = swp_offset_pfn(entry) + idx; 2018 else 2019 offset = swp_offset(entry) + idx; 2020 frame = swp_type(entry) | 2021 (offset << MAX_SWAPFILES_SHIFT); 2022 } 2023 flags |= PM_SWAP; 2024 if (pmd_swp_soft_dirty(pmd)) 2025 flags |= PM_SOFT_DIRTY; 2026 if (pmd_swp_uffd_wp(pmd)) 2027 flags |= PM_UFFD_WP; 2028 VM_BUG_ON(!is_pmd_migration_entry(pmd)); 2029 page = pfn_swap_entry_to_page(entry); 2030 } 2031 #endif 2032 2033 if (page) { 2034 folio = page_folio(page); 2035 if (!folio_test_anon(folio)) 2036 flags |= PM_FILE; 2037 } 2038 2039 for (; addr != end; addr += PAGE_SIZE, idx++) { 2040 u64 cur_flags = flags; 2041 pagemap_entry_t pme; 2042 2043 if (folio && (flags & PM_PRESENT) && 2044 __folio_page_mapped_exclusively(folio, page)) 2045 cur_flags |= PM_MMAP_EXCLUSIVE; 2046 2047 pme = make_pme(frame, cur_flags); 2048 err = add_to_pagemap(&pme, pm); 2049 if (err) 2050 break; 2051 if (pm->show_pfn) { 2052 if (flags & PM_PRESENT) 2053 frame++; 2054 else if (flags & PM_SWAP) 2055 frame += (1 << MAX_SWAPFILES_SHIFT); 2056 } 2057 } 2058 spin_unlock(ptl); 2059 return err; 2060 } 2061 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 2062 2063 /* 2064 * We can assume that @vma always points to a valid one and @end never 2065 * goes beyond vma->vm_end. 2066 */ 2067 orig_pte = pte = pte_offset_map_lock(walk->mm, pmdp, addr, &ptl); 2068 if (!pte) { 2069 walk->action = ACTION_AGAIN; 2070 return err; 2071 } 2072 for (; addr < end; pte++, addr += PAGE_SIZE) { 2073 pagemap_entry_t pme; 2074 2075 pme = pte_to_pagemap_entry(pm, vma, addr, ptep_get(pte)); 2076 err = add_to_pagemap(&pme, pm); 2077 if (err) 2078 break; 2079 } 2080 pte_unmap_unlock(orig_pte, ptl); 2081 2082 cond_resched(); 2083 2084 return err; 2085 } 2086 2087 #ifdef CONFIG_HUGETLB_PAGE 2088 /* This function walks within one hugetlb entry in the single call */ 2089 static int pagemap_hugetlb_range(pte_t *ptep, unsigned long hmask, 2090 unsigned long addr, unsigned long end, 2091 struct mm_walk *walk) 2092 { 2093 struct pagemapread *pm = walk->private; 2094 struct vm_area_struct *vma = walk->vma; 2095 u64 flags = 0, frame = 0; 2096 spinlock_t *ptl; 2097 int err = 0; 2098 pte_t pte; 2099 2100 if (vma->vm_flags & VM_SOFTDIRTY) 2101 flags |= PM_SOFT_DIRTY; 2102 2103 ptl = huge_pte_lock(hstate_vma(vma), walk->mm, ptep); 2104 pte = huge_ptep_get(walk->mm, addr, ptep); 2105 if (pte_present(pte)) { 2106 struct folio *folio = page_folio(pte_page(pte)); 2107 2108 if (!folio_test_anon(folio)) 2109 flags |= PM_FILE; 2110 2111 if (!folio_maybe_mapped_shared(folio) && 2112 !hugetlb_pmd_shared(ptep)) 2113 flags |= PM_MMAP_EXCLUSIVE; 2114 2115 if (huge_pte_uffd_wp(pte)) 2116 flags |= PM_UFFD_WP; 2117 2118 flags |= PM_PRESENT; 2119 if (pm->show_pfn) 2120 frame = pte_pfn(pte) + 2121 ((addr & ~hmask) >> PAGE_SHIFT); 2122 } else if (pte_swp_uffd_wp_any(pte)) { 2123 flags |= PM_UFFD_WP; 2124 } 2125 2126 for (; addr != end; addr += PAGE_SIZE) { 2127 pagemap_entry_t pme = make_pme(frame, flags); 2128 2129 err = add_to_pagemap(&pme, pm); 2130 if (err) 2131 break; 2132 if (pm->show_pfn && (flags & PM_PRESENT)) 2133 frame++; 2134 } 2135 2136 spin_unlock(ptl); 2137 cond_resched(); 2138 2139 return err; 2140 } 2141 #else 2142 #define pagemap_hugetlb_range NULL 2143 #endif /* HUGETLB_PAGE */ 2144 2145 static const struct mm_walk_ops pagemap_ops = { 2146 .pmd_entry = pagemap_pmd_range, 2147 .pte_hole = pagemap_pte_hole, 2148 .hugetlb_entry = pagemap_hugetlb_range, 2149 .walk_lock = PGWALK_RDLOCK, 2150 }; 2151 2152 /* 2153 * /proc/pid/pagemap - an array mapping virtual pages to pfns 2154 * 2155 * For each page in the address space, this file contains one 64-bit entry 2156 * consisting of the following: 2157 * 2158 * Bits 0-54 page frame number (PFN) if present 2159 * Bits 0-4 swap type if swapped 2160 * Bits 5-54 swap offset if swapped 2161 * Bit 55 pte is soft-dirty (see Documentation/admin-guide/mm/soft-dirty.rst) 2162 * Bit 56 page exclusively mapped 2163 * Bit 57 pte is uffd-wp write-protected 2164 * Bit 58 pte is a guard region 2165 * Bits 59-60 zero 2166 * Bit 61 page is file-page or shared-anon 2167 * Bit 62 page swapped 2168 * Bit 63 page present 2169 * 2170 * If the page is not present but in swap, then the PFN contains an 2171 * encoding of the swap file number and the page's offset into the 2172 * swap. Unmapped pages return a null PFN. This allows determining 2173 * precisely which pages are mapped (or in swap) and comparing mapped 2174 * pages between processes. 2175 * 2176 * Efficient users of this interface will use /proc/pid/maps to 2177 * determine which areas of memory are actually mapped and llseek to 2178 * skip over unmapped regions. 2179 */ 2180 static ssize_t pagemap_read(struct file *file, char __user *buf, 2181 size_t count, loff_t *ppos) 2182 { 2183 struct mm_struct *mm = file->private_data; 2184 struct pagemapread pm; 2185 unsigned long src; 2186 unsigned long svpfn; 2187 unsigned long start_vaddr; 2188 unsigned long end_vaddr; 2189 int ret = 0, copied = 0; 2190 2191 if (!mm || !mmget_not_zero(mm)) 2192 goto out; 2193 2194 ret = -EINVAL; 2195 /* file position must be aligned */ 2196 if ((*ppos % PM_ENTRY_BYTES) || (count % PM_ENTRY_BYTES)) 2197 goto out_mm; 2198 2199 ret = 0; 2200 if (!count) 2201 goto out_mm; 2202 2203 /* do not disclose physical addresses: attack vector */ 2204 pm.show_pfn = file_ns_capable(file, &init_user_ns, CAP_SYS_ADMIN); 2205 2206 pm.len = (PAGEMAP_WALK_SIZE >> PAGE_SHIFT); 2207 pm.buffer = kmalloc_array(pm.len, PM_ENTRY_BYTES, GFP_KERNEL); 2208 ret = -ENOMEM; 2209 if (!pm.buffer) 2210 goto out_mm; 2211 2212 src = *ppos; 2213 svpfn = src / PM_ENTRY_BYTES; 2214 end_vaddr = mm->task_size; 2215 2216 /* watch out for wraparound */ 2217 start_vaddr = end_vaddr; 2218 if (svpfn <= (ULONG_MAX >> PAGE_SHIFT)) { 2219 unsigned long end; 2220 2221 ret = mmap_read_lock_killable(mm); 2222 if (ret) 2223 goto out_free; 2224 start_vaddr = untagged_addr_remote(mm, svpfn << PAGE_SHIFT); 2225 mmap_read_unlock(mm); 2226 2227 end = start_vaddr + ((count / PM_ENTRY_BYTES) << PAGE_SHIFT); 2228 if (end >= start_vaddr && end < mm->task_size) 2229 end_vaddr = end; 2230 } 2231 2232 /* Ensure the address is inside the task */ 2233 if (start_vaddr > mm->task_size) 2234 start_vaddr = end_vaddr; 2235 2236 ret = 0; 2237 while (count && (start_vaddr < end_vaddr)) { 2238 int len; 2239 unsigned long end; 2240 2241 pm.pos = 0; 2242 end = (start_vaddr + PAGEMAP_WALK_SIZE) & PAGEMAP_WALK_MASK; 2243 /* overflow ? */ 2244 if (end < start_vaddr || end > end_vaddr) 2245 end = end_vaddr; 2246 ret = mmap_read_lock_killable(mm); 2247 if (ret) 2248 goto out_free; 2249 ret = walk_page_range(mm, start_vaddr, end, &pagemap_ops, &pm); 2250 mmap_read_unlock(mm); 2251 start_vaddr = end; 2252 2253 len = min(count, PM_ENTRY_BYTES * pm.pos); 2254 if (copy_to_user(buf, pm.buffer, len)) { 2255 ret = -EFAULT; 2256 goto out_free; 2257 } 2258 copied += len; 2259 buf += len; 2260 count -= len; 2261 } 2262 *ppos += copied; 2263 if (!ret || ret == PM_END_OF_BUFFER) 2264 ret = copied; 2265 2266 out_free: 2267 kfree(pm.buffer); 2268 out_mm: 2269 mmput(mm); 2270 out: 2271 return ret; 2272 } 2273 2274 static int pagemap_open(struct inode *inode, struct file *file) 2275 { 2276 struct mm_struct *mm; 2277 2278 mm = proc_mem_open(inode, PTRACE_MODE_READ); 2279 if (IS_ERR_OR_NULL(mm)) 2280 return mm ? PTR_ERR(mm) : -ESRCH; 2281 file->private_data = mm; 2282 return 0; 2283 } 2284 2285 static int pagemap_release(struct inode *inode, struct file *file) 2286 { 2287 struct mm_struct *mm = file->private_data; 2288 2289 if (mm) 2290 mmdrop(mm); 2291 return 0; 2292 } 2293 2294 #define PM_SCAN_CATEGORIES (PAGE_IS_WPALLOWED | PAGE_IS_WRITTEN | \ 2295 PAGE_IS_FILE | PAGE_IS_PRESENT | \ 2296 PAGE_IS_SWAPPED | PAGE_IS_PFNZERO | \ 2297 PAGE_IS_HUGE | PAGE_IS_SOFT_DIRTY | \ 2298 PAGE_IS_GUARD) 2299 #define PM_SCAN_FLAGS (PM_SCAN_WP_MATCHING | PM_SCAN_CHECK_WPASYNC) 2300 2301 struct pagemap_scan_private { 2302 struct pm_scan_arg arg; 2303 unsigned long masks_of_interest, cur_vma_category; 2304 struct page_region *vec_buf; 2305 unsigned long vec_buf_len, vec_buf_index, found_pages; 2306 struct page_region __user *vec_out; 2307 }; 2308 2309 static unsigned long pagemap_page_category(struct pagemap_scan_private *p, 2310 struct vm_area_struct *vma, 2311 unsigned long addr, pte_t pte) 2312 { 2313 unsigned long categories = 0; 2314 2315 if (pte_present(pte)) { 2316 struct page *page; 2317 2318 categories |= PAGE_IS_PRESENT; 2319 if (!pte_uffd_wp(pte)) 2320 categories |= PAGE_IS_WRITTEN; 2321 2322 if (p->masks_of_interest & PAGE_IS_FILE) { 2323 page = vm_normal_page(vma, addr, pte); 2324 if (page && !PageAnon(page)) 2325 categories |= PAGE_IS_FILE; 2326 } 2327 2328 if (is_zero_pfn(pte_pfn(pte))) 2329 categories |= PAGE_IS_PFNZERO; 2330 if (pte_soft_dirty(pte)) 2331 categories |= PAGE_IS_SOFT_DIRTY; 2332 } else if (is_swap_pte(pte)) { 2333 swp_entry_t swp; 2334 2335 categories |= PAGE_IS_SWAPPED; 2336 if (!pte_swp_uffd_wp_any(pte)) 2337 categories |= PAGE_IS_WRITTEN; 2338 2339 swp = pte_to_swp_entry(pte); 2340 if (is_guard_swp_entry(swp)) 2341 categories |= PAGE_IS_GUARD; 2342 else if ((p->masks_of_interest & PAGE_IS_FILE) && 2343 is_pfn_swap_entry(swp) && 2344 !folio_test_anon(pfn_swap_entry_folio(swp))) 2345 categories |= PAGE_IS_FILE; 2346 2347 if (pte_swp_soft_dirty(pte)) 2348 categories |= PAGE_IS_SOFT_DIRTY; 2349 } 2350 2351 return categories; 2352 } 2353 2354 static void make_uffd_wp_pte(struct vm_area_struct *vma, 2355 unsigned long addr, pte_t *pte, pte_t ptent) 2356 { 2357 if (pte_present(ptent)) { 2358 pte_t old_pte; 2359 2360 old_pte = ptep_modify_prot_start(vma, addr, pte); 2361 ptent = pte_mkuffd_wp(old_pte); 2362 ptep_modify_prot_commit(vma, addr, pte, old_pte, ptent); 2363 } else if (is_swap_pte(ptent)) { 2364 ptent = pte_swp_mkuffd_wp(ptent); 2365 set_pte_at(vma->vm_mm, addr, pte, ptent); 2366 } else { 2367 set_pte_at(vma->vm_mm, addr, pte, 2368 make_pte_marker(PTE_MARKER_UFFD_WP)); 2369 } 2370 } 2371 2372 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 2373 static unsigned long pagemap_thp_category(struct pagemap_scan_private *p, 2374 struct vm_area_struct *vma, 2375 unsigned long addr, pmd_t pmd) 2376 { 2377 unsigned long categories = PAGE_IS_HUGE; 2378 2379 if (pmd_present(pmd)) { 2380 struct page *page; 2381 2382 categories |= PAGE_IS_PRESENT; 2383 if (!pmd_uffd_wp(pmd)) 2384 categories |= PAGE_IS_WRITTEN; 2385 2386 if (p->masks_of_interest & PAGE_IS_FILE) { 2387 page = vm_normal_page_pmd(vma, addr, pmd); 2388 if (page && !PageAnon(page)) 2389 categories |= PAGE_IS_FILE; 2390 } 2391 2392 if (is_huge_zero_pmd(pmd)) 2393 categories |= PAGE_IS_PFNZERO; 2394 if (pmd_soft_dirty(pmd)) 2395 categories |= PAGE_IS_SOFT_DIRTY; 2396 } else if (is_swap_pmd(pmd)) { 2397 swp_entry_t swp; 2398 2399 categories |= PAGE_IS_SWAPPED; 2400 if (!pmd_swp_uffd_wp(pmd)) 2401 categories |= PAGE_IS_WRITTEN; 2402 if (pmd_swp_soft_dirty(pmd)) 2403 categories |= PAGE_IS_SOFT_DIRTY; 2404 2405 if (p->masks_of_interest & PAGE_IS_FILE) { 2406 swp = pmd_to_swp_entry(pmd); 2407 if (is_pfn_swap_entry(swp) && 2408 !folio_test_anon(pfn_swap_entry_folio(swp))) 2409 categories |= PAGE_IS_FILE; 2410 } 2411 } 2412 2413 return categories; 2414 } 2415 2416 static void make_uffd_wp_pmd(struct vm_area_struct *vma, 2417 unsigned long addr, pmd_t *pmdp) 2418 { 2419 pmd_t old, pmd = *pmdp; 2420 2421 if (pmd_present(pmd)) { 2422 old = pmdp_invalidate_ad(vma, addr, pmdp); 2423 pmd = pmd_mkuffd_wp(old); 2424 set_pmd_at(vma->vm_mm, addr, pmdp, pmd); 2425 } else if (is_migration_entry(pmd_to_swp_entry(pmd))) { 2426 pmd = pmd_swp_mkuffd_wp(pmd); 2427 set_pmd_at(vma->vm_mm, addr, pmdp, pmd); 2428 } 2429 } 2430 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 2431 2432 #ifdef CONFIG_HUGETLB_PAGE 2433 static unsigned long pagemap_hugetlb_category(pte_t pte) 2434 { 2435 unsigned long categories = PAGE_IS_HUGE; 2436 2437 /* 2438 * According to pagemap_hugetlb_range(), file-backed HugeTLB 2439 * page cannot be swapped. So PAGE_IS_FILE is not checked for 2440 * swapped pages. 2441 */ 2442 if (pte_present(pte)) { 2443 categories |= PAGE_IS_PRESENT; 2444 if (!huge_pte_uffd_wp(pte)) 2445 categories |= PAGE_IS_WRITTEN; 2446 if (!PageAnon(pte_page(pte))) 2447 categories |= PAGE_IS_FILE; 2448 if (is_zero_pfn(pte_pfn(pte))) 2449 categories |= PAGE_IS_PFNZERO; 2450 if (pte_soft_dirty(pte)) 2451 categories |= PAGE_IS_SOFT_DIRTY; 2452 } else if (is_swap_pte(pte)) { 2453 categories |= PAGE_IS_SWAPPED; 2454 if (!pte_swp_uffd_wp_any(pte)) 2455 categories |= PAGE_IS_WRITTEN; 2456 if (pte_swp_soft_dirty(pte)) 2457 categories |= PAGE_IS_SOFT_DIRTY; 2458 } 2459 2460 return categories; 2461 } 2462 2463 static void make_uffd_wp_huge_pte(struct vm_area_struct *vma, 2464 unsigned long addr, pte_t *ptep, 2465 pte_t ptent) 2466 { 2467 unsigned long psize; 2468 2469 if (is_hugetlb_entry_hwpoisoned(ptent) || is_pte_marker(ptent)) 2470 return; 2471 2472 psize = huge_page_size(hstate_vma(vma)); 2473 2474 if (is_hugetlb_entry_migration(ptent)) 2475 set_huge_pte_at(vma->vm_mm, addr, ptep, 2476 pte_swp_mkuffd_wp(ptent), psize); 2477 else if (!huge_pte_none(ptent)) 2478 huge_ptep_modify_prot_commit(vma, addr, ptep, ptent, 2479 huge_pte_mkuffd_wp(ptent)); 2480 else 2481 set_huge_pte_at(vma->vm_mm, addr, ptep, 2482 make_pte_marker(PTE_MARKER_UFFD_WP), psize); 2483 } 2484 #endif /* CONFIG_HUGETLB_PAGE */ 2485 2486 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLB_PAGE) 2487 static void pagemap_scan_backout_range(struct pagemap_scan_private *p, 2488 unsigned long addr, unsigned long end) 2489 { 2490 struct page_region *cur_buf = &p->vec_buf[p->vec_buf_index]; 2491 2492 if (cur_buf->start != addr) 2493 cur_buf->end = addr; 2494 else 2495 cur_buf->start = cur_buf->end = 0; 2496 2497 p->found_pages -= (end - addr) / PAGE_SIZE; 2498 } 2499 #endif 2500 2501 static bool pagemap_scan_is_interesting_page(unsigned long categories, 2502 const struct pagemap_scan_private *p) 2503 { 2504 categories ^= p->arg.category_inverted; 2505 if ((categories & p->arg.category_mask) != p->arg.category_mask) 2506 return false; 2507 if (p->arg.category_anyof_mask && !(categories & p->arg.category_anyof_mask)) 2508 return false; 2509 2510 return true; 2511 } 2512 2513 static bool pagemap_scan_is_interesting_vma(unsigned long categories, 2514 const struct pagemap_scan_private *p) 2515 { 2516 unsigned long required = p->arg.category_mask & PAGE_IS_WPALLOWED; 2517 2518 categories ^= p->arg.category_inverted; 2519 if ((categories & required) != required) 2520 return false; 2521 2522 return true; 2523 } 2524 2525 static int pagemap_scan_test_walk(unsigned long start, unsigned long end, 2526 struct mm_walk *walk) 2527 { 2528 struct pagemap_scan_private *p = walk->private; 2529 struct vm_area_struct *vma = walk->vma; 2530 unsigned long vma_category = 0; 2531 bool wp_allowed = userfaultfd_wp_async(vma) && 2532 userfaultfd_wp_use_markers(vma); 2533 2534 if (!wp_allowed) { 2535 /* User requested explicit failure over wp-async capability */ 2536 if (p->arg.flags & PM_SCAN_CHECK_WPASYNC) 2537 return -EPERM; 2538 /* 2539 * User requires wr-protect, and allows silently skipping 2540 * unsupported vmas. 2541 */ 2542 if (p->arg.flags & PM_SCAN_WP_MATCHING) 2543 return 1; 2544 /* 2545 * Then the request doesn't involve wr-protects at all, 2546 * fall through to the rest checks, and allow vma walk. 2547 */ 2548 } 2549 2550 if (vma->vm_flags & VM_PFNMAP) 2551 return 1; 2552 2553 if (wp_allowed) 2554 vma_category |= PAGE_IS_WPALLOWED; 2555 2556 if (vma->vm_flags & VM_SOFTDIRTY) 2557 vma_category |= PAGE_IS_SOFT_DIRTY; 2558 2559 if (!pagemap_scan_is_interesting_vma(vma_category, p)) 2560 return 1; 2561 2562 p->cur_vma_category = vma_category; 2563 2564 return 0; 2565 } 2566 2567 static bool pagemap_scan_push_range(unsigned long categories, 2568 struct pagemap_scan_private *p, 2569 unsigned long addr, unsigned long end) 2570 { 2571 struct page_region *cur_buf = &p->vec_buf[p->vec_buf_index]; 2572 2573 /* 2574 * When there is no output buffer provided at all, the sentinel values 2575 * won't match here. There is no other way for `cur_buf->end` to be 2576 * non-zero other than it being non-empty. 2577 */ 2578 if (addr == cur_buf->end && categories == cur_buf->categories) { 2579 cur_buf->end = end; 2580 return true; 2581 } 2582 2583 if (cur_buf->end) { 2584 if (p->vec_buf_index >= p->vec_buf_len - 1) 2585 return false; 2586 2587 cur_buf = &p->vec_buf[++p->vec_buf_index]; 2588 } 2589 2590 cur_buf->start = addr; 2591 cur_buf->end = end; 2592 cur_buf->categories = categories; 2593 2594 return true; 2595 } 2596 2597 static int pagemap_scan_output(unsigned long categories, 2598 struct pagemap_scan_private *p, 2599 unsigned long addr, unsigned long *end) 2600 { 2601 unsigned long n_pages, total_pages; 2602 int ret = 0; 2603 2604 if (!p->vec_buf) 2605 return 0; 2606 2607 categories &= p->arg.return_mask; 2608 2609 n_pages = (*end - addr) / PAGE_SIZE; 2610 if (check_add_overflow(p->found_pages, n_pages, &total_pages) || 2611 total_pages > p->arg.max_pages) { 2612 size_t n_too_much = total_pages - p->arg.max_pages; 2613 *end -= n_too_much * PAGE_SIZE; 2614 n_pages -= n_too_much; 2615 ret = -ENOSPC; 2616 } 2617 2618 if (!pagemap_scan_push_range(categories, p, addr, *end)) { 2619 *end = addr; 2620 n_pages = 0; 2621 ret = -ENOSPC; 2622 } 2623 2624 p->found_pages += n_pages; 2625 if (ret) 2626 p->arg.walk_end = *end; 2627 2628 return ret; 2629 } 2630 2631 static int pagemap_scan_thp_entry(pmd_t *pmd, unsigned long start, 2632 unsigned long end, struct mm_walk *walk) 2633 { 2634 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 2635 struct pagemap_scan_private *p = walk->private; 2636 struct vm_area_struct *vma = walk->vma; 2637 unsigned long categories; 2638 spinlock_t *ptl; 2639 int ret = 0; 2640 2641 ptl = pmd_trans_huge_lock(pmd, vma); 2642 if (!ptl) 2643 return -ENOENT; 2644 2645 categories = p->cur_vma_category | 2646 pagemap_thp_category(p, vma, start, *pmd); 2647 2648 if (!pagemap_scan_is_interesting_page(categories, p)) 2649 goto out_unlock; 2650 2651 ret = pagemap_scan_output(categories, p, start, &end); 2652 if (start == end) 2653 goto out_unlock; 2654 2655 if (~p->arg.flags & PM_SCAN_WP_MATCHING) 2656 goto out_unlock; 2657 if (~categories & PAGE_IS_WRITTEN) 2658 goto out_unlock; 2659 2660 /* 2661 * Break huge page into small pages if the WP operation 2662 * needs to be performed on a portion of the huge page. 2663 */ 2664 if (end != start + HPAGE_SIZE) { 2665 spin_unlock(ptl); 2666 split_huge_pmd(vma, pmd, start); 2667 pagemap_scan_backout_range(p, start, end); 2668 /* Report as if there was no THP */ 2669 return -ENOENT; 2670 } 2671 2672 make_uffd_wp_pmd(vma, start, pmd); 2673 flush_tlb_range(vma, start, end); 2674 out_unlock: 2675 spin_unlock(ptl); 2676 return ret; 2677 #else /* !CONFIG_TRANSPARENT_HUGEPAGE */ 2678 return -ENOENT; 2679 #endif 2680 } 2681 2682 static int pagemap_scan_pmd_entry(pmd_t *pmd, unsigned long start, 2683 unsigned long end, struct mm_walk *walk) 2684 { 2685 struct pagemap_scan_private *p = walk->private; 2686 struct vm_area_struct *vma = walk->vma; 2687 unsigned long addr, flush_end = 0; 2688 pte_t *pte, *start_pte; 2689 spinlock_t *ptl; 2690 int ret; 2691 2692 ret = pagemap_scan_thp_entry(pmd, start, end, walk); 2693 if (ret != -ENOENT) 2694 return ret; 2695 2696 ret = 0; 2697 start_pte = pte = pte_offset_map_lock(vma->vm_mm, pmd, start, &ptl); 2698 if (!pte) { 2699 walk->action = ACTION_AGAIN; 2700 return 0; 2701 } 2702 2703 arch_enter_lazy_mmu_mode(); 2704 2705 if ((p->arg.flags & PM_SCAN_WP_MATCHING) && !p->vec_out) { 2706 /* Fast path for performing exclusive WP */ 2707 for (addr = start; addr != end; pte++, addr += PAGE_SIZE) { 2708 pte_t ptent = ptep_get(pte); 2709 2710 if ((pte_present(ptent) && pte_uffd_wp(ptent)) || 2711 pte_swp_uffd_wp_any(ptent)) 2712 continue; 2713 make_uffd_wp_pte(vma, addr, pte, ptent); 2714 if (!flush_end) 2715 start = addr; 2716 flush_end = addr + PAGE_SIZE; 2717 } 2718 goto flush_and_return; 2719 } 2720 2721 if (!p->arg.category_anyof_mask && !p->arg.category_inverted && 2722 p->arg.category_mask == PAGE_IS_WRITTEN && 2723 p->arg.return_mask == PAGE_IS_WRITTEN) { 2724 for (addr = start; addr < end; pte++, addr += PAGE_SIZE) { 2725 unsigned long next = addr + PAGE_SIZE; 2726 pte_t ptent = ptep_get(pte); 2727 2728 if ((pte_present(ptent) && pte_uffd_wp(ptent)) || 2729 pte_swp_uffd_wp_any(ptent)) 2730 continue; 2731 ret = pagemap_scan_output(p->cur_vma_category | PAGE_IS_WRITTEN, 2732 p, addr, &next); 2733 if (next == addr) 2734 break; 2735 if (~p->arg.flags & PM_SCAN_WP_MATCHING) 2736 continue; 2737 make_uffd_wp_pte(vma, addr, pte, ptent); 2738 if (!flush_end) 2739 start = addr; 2740 flush_end = next; 2741 } 2742 goto flush_and_return; 2743 } 2744 2745 for (addr = start; addr != end; pte++, addr += PAGE_SIZE) { 2746 pte_t ptent = ptep_get(pte); 2747 unsigned long categories = p->cur_vma_category | 2748 pagemap_page_category(p, vma, addr, ptent); 2749 unsigned long next = addr + PAGE_SIZE; 2750 2751 if (!pagemap_scan_is_interesting_page(categories, p)) 2752 continue; 2753 2754 ret = pagemap_scan_output(categories, p, addr, &next); 2755 if (next == addr) 2756 break; 2757 2758 if (~p->arg.flags & PM_SCAN_WP_MATCHING) 2759 continue; 2760 if (~categories & PAGE_IS_WRITTEN) 2761 continue; 2762 2763 make_uffd_wp_pte(vma, addr, pte, ptent); 2764 if (!flush_end) 2765 start = addr; 2766 flush_end = next; 2767 } 2768 2769 flush_and_return: 2770 if (flush_end) 2771 flush_tlb_range(vma, start, addr); 2772 2773 arch_leave_lazy_mmu_mode(); 2774 pte_unmap_unlock(start_pte, ptl); 2775 2776 cond_resched(); 2777 return ret; 2778 } 2779 2780 #ifdef CONFIG_HUGETLB_PAGE 2781 static int pagemap_scan_hugetlb_entry(pte_t *ptep, unsigned long hmask, 2782 unsigned long start, unsigned long end, 2783 struct mm_walk *walk) 2784 { 2785 struct pagemap_scan_private *p = walk->private; 2786 struct vm_area_struct *vma = walk->vma; 2787 unsigned long categories; 2788 spinlock_t *ptl; 2789 int ret = 0; 2790 pte_t pte; 2791 2792 if (~p->arg.flags & PM_SCAN_WP_MATCHING) { 2793 /* Go the short route when not write-protecting pages. */ 2794 2795 pte = huge_ptep_get(walk->mm, start, ptep); 2796 categories = p->cur_vma_category | pagemap_hugetlb_category(pte); 2797 2798 if (!pagemap_scan_is_interesting_page(categories, p)) 2799 return 0; 2800 2801 return pagemap_scan_output(categories, p, start, &end); 2802 } 2803 2804 i_mmap_lock_write(vma->vm_file->f_mapping); 2805 ptl = huge_pte_lock(hstate_vma(vma), vma->vm_mm, ptep); 2806 2807 pte = huge_ptep_get(walk->mm, start, ptep); 2808 categories = p->cur_vma_category | pagemap_hugetlb_category(pte); 2809 2810 if (!pagemap_scan_is_interesting_page(categories, p)) 2811 goto out_unlock; 2812 2813 ret = pagemap_scan_output(categories, p, start, &end); 2814 if (start == end) 2815 goto out_unlock; 2816 2817 if (~categories & PAGE_IS_WRITTEN) 2818 goto out_unlock; 2819 2820 if (end != start + HPAGE_SIZE) { 2821 /* Partial HugeTLB page WP isn't possible. */ 2822 pagemap_scan_backout_range(p, start, end); 2823 p->arg.walk_end = start; 2824 ret = 0; 2825 goto out_unlock; 2826 } 2827 2828 make_uffd_wp_huge_pte(vma, start, ptep, pte); 2829 flush_hugetlb_tlb_range(vma, start, end); 2830 2831 out_unlock: 2832 spin_unlock(ptl); 2833 i_mmap_unlock_write(vma->vm_file->f_mapping); 2834 2835 return ret; 2836 } 2837 #else 2838 #define pagemap_scan_hugetlb_entry NULL 2839 #endif 2840 2841 static int pagemap_scan_pte_hole(unsigned long addr, unsigned long end, 2842 int depth, struct mm_walk *walk) 2843 { 2844 struct pagemap_scan_private *p = walk->private; 2845 struct vm_area_struct *vma = walk->vma; 2846 int ret, err; 2847 2848 if (!vma || !pagemap_scan_is_interesting_page(p->cur_vma_category, p)) 2849 return 0; 2850 2851 ret = pagemap_scan_output(p->cur_vma_category, p, addr, &end); 2852 if (addr == end) 2853 return ret; 2854 2855 if (~p->arg.flags & PM_SCAN_WP_MATCHING) 2856 return ret; 2857 2858 err = uffd_wp_range(vma, addr, end - addr, true); 2859 if (err < 0) 2860 ret = err; 2861 2862 return ret; 2863 } 2864 2865 static const struct mm_walk_ops pagemap_scan_ops = { 2866 .test_walk = pagemap_scan_test_walk, 2867 .pmd_entry = pagemap_scan_pmd_entry, 2868 .pte_hole = pagemap_scan_pte_hole, 2869 .hugetlb_entry = pagemap_scan_hugetlb_entry, 2870 }; 2871 2872 static int pagemap_scan_get_args(struct pm_scan_arg *arg, 2873 unsigned long uarg) 2874 { 2875 if (copy_from_user(arg, (void __user *)uarg, sizeof(*arg))) 2876 return -EFAULT; 2877 2878 if (arg->size != sizeof(struct pm_scan_arg)) 2879 return -EINVAL; 2880 2881 /* Validate requested features */ 2882 if (arg->flags & ~PM_SCAN_FLAGS) 2883 return -EINVAL; 2884 if ((arg->category_inverted | arg->category_mask | 2885 arg->category_anyof_mask | arg->return_mask) & ~PM_SCAN_CATEGORIES) 2886 return -EINVAL; 2887 2888 arg->start = untagged_addr((unsigned long)arg->start); 2889 arg->end = untagged_addr((unsigned long)arg->end); 2890 arg->vec = untagged_addr((unsigned long)arg->vec); 2891 2892 /* Validate memory pointers */ 2893 if (!IS_ALIGNED(arg->start, PAGE_SIZE)) 2894 return -EINVAL; 2895 if (!access_ok((void __user *)(long)arg->start, arg->end - arg->start)) 2896 return -EFAULT; 2897 if (!arg->vec && arg->vec_len) 2898 return -EINVAL; 2899 if (UINT_MAX == SIZE_MAX && arg->vec_len > SIZE_MAX) 2900 return -EINVAL; 2901 if (arg->vec && !access_ok((void __user *)(long)arg->vec, 2902 size_mul(arg->vec_len, sizeof(struct page_region)))) 2903 return -EFAULT; 2904 2905 /* Fixup default values */ 2906 arg->end = ALIGN(arg->end, PAGE_SIZE); 2907 arg->walk_end = 0; 2908 if (!arg->max_pages) 2909 arg->max_pages = ULONG_MAX; 2910 2911 return 0; 2912 } 2913 2914 static int pagemap_scan_writeback_args(struct pm_scan_arg *arg, 2915 unsigned long uargl) 2916 { 2917 struct pm_scan_arg __user *uarg = (void __user *)uargl; 2918 2919 if (copy_to_user(&uarg->walk_end, &arg->walk_end, sizeof(arg->walk_end))) 2920 return -EFAULT; 2921 2922 return 0; 2923 } 2924 2925 static int pagemap_scan_init_bounce_buffer(struct pagemap_scan_private *p) 2926 { 2927 if (!p->arg.vec_len) 2928 return 0; 2929 2930 p->vec_buf_len = min_t(size_t, PAGEMAP_WALK_SIZE >> PAGE_SHIFT, 2931 p->arg.vec_len); 2932 p->vec_buf = kmalloc_array(p->vec_buf_len, sizeof(*p->vec_buf), 2933 GFP_KERNEL); 2934 if (!p->vec_buf) 2935 return -ENOMEM; 2936 2937 p->vec_buf->start = p->vec_buf->end = 0; 2938 p->vec_out = (struct page_region __user *)(long)p->arg.vec; 2939 2940 return 0; 2941 } 2942 2943 static long pagemap_scan_flush_buffer(struct pagemap_scan_private *p) 2944 { 2945 const struct page_region *buf = p->vec_buf; 2946 long n = p->vec_buf_index; 2947 2948 if (!p->vec_buf) 2949 return 0; 2950 2951 if (buf[n].end != buf[n].start) 2952 n++; 2953 2954 if (!n) 2955 return 0; 2956 2957 if (copy_to_user(p->vec_out, buf, n * sizeof(*buf))) 2958 return -EFAULT; 2959 2960 p->arg.vec_len -= n; 2961 p->vec_out += n; 2962 2963 p->vec_buf_index = 0; 2964 p->vec_buf_len = min_t(size_t, p->vec_buf_len, p->arg.vec_len); 2965 p->vec_buf->start = p->vec_buf->end = 0; 2966 2967 return n; 2968 } 2969 2970 static long do_pagemap_scan(struct mm_struct *mm, unsigned long uarg) 2971 { 2972 struct pagemap_scan_private p = {0}; 2973 unsigned long walk_start; 2974 size_t n_ranges_out = 0; 2975 int ret; 2976 2977 ret = pagemap_scan_get_args(&p.arg, uarg); 2978 if (ret) 2979 return ret; 2980 2981 p.masks_of_interest = p.arg.category_mask | p.arg.category_anyof_mask | 2982 p.arg.return_mask; 2983 ret = pagemap_scan_init_bounce_buffer(&p); 2984 if (ret) 2985 return ret; 2986 2987 for (walk_start = p.arg.start; walk_start < p.arg.end; 2988 walk_start = p.arg.walk_end) { 2989 struct mmu_notifier_range range; 2990 long n_out; 2991 2992 if (fatal_signal_pending(current)) { 2993 ret = -EINTR; 2994 break; 2995 } 2996 2997 ret = mmap_read_lock_killable(mm); 2998 if (ret) 2999 break; 3000 3001 /* Protection change for the range is going to happen. */ 3002 if (p.arg.flags & PM_SCAN_WP_MATCHING) { 3003 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_VMA, 0, 3004 mm, walk_start, p.arg.end); 3005 mmu_notifier_invalidate_range_start(&range); 3006 } 3007 3008 ret = walk_page_range(mm, walk_start, p.arg.end, 3009 &pagemap_scan_ops, &p); 3010 3011 if (p.arg.flags & PM_SCAN_WP_MATCHING) 3012 mmu_notifier_invalidate_range_end(&range); 3013 3014 mmap_read_unlock(mm); 3015 3016 n_out = pagemap_scan_flush_buffer(&p); 3017 if (n_out < 0) 3018 ret = n_out; 3019 else 3020 n_ranges_out += n_out; 3021 3022 if (ret != -ENOSPC) 3023 break; 3024 3025 if (p.arg.vec_len == 0 || p.found_pages == p.arg.max_pages) 3026 break; 3027 } 3028 3029 /* ENOSPC signifies early stop (buffer full) from the walk. */ 3030 if (!ret || ret == -ENOSPC) 3031 ret = n_ranges_out; 3032 3033 /* The walk_end isn't set when ret is zero */ 3034 if (!p.arg.walk_end) 3035 p.arg.walk_end = p.arg.end; 3036 if (pagemap_scan_writeback_args(&p.arg, uarg)) 3037 ret = -EFAULT; 3038 3039 kfree(p.vec_buf); 3040 return ret; 3041 } 3042 3043 static long do_pagemap_cmd(struct file *file, unsigned int cmd, 3044 unsigned long arg) 3045 { 3046 struct mm_struct *mm = file->private_data; 3047 3048 switch (cmd) { 3049 case PAGEMAP_SCAN: 3050 return do_pagemap_scan(mm, arg); 3051 3052 default: 3053 return -EINVAL; 3054 } 3055 } 3056 3057 const struct file_operations proc_pagemap_operations = { 3058 .llseek = mem_lseek, /* borrow this */ 3059 .read = pagemap_read, 3060 .open = pagemap_open, 3061 .release = pagemap_release, 3062 .unlocked_ioctl = do_pagemap_cmd, 3063 .compat_ioctl = do_pagemap_cmd, 3064 }; 3065 #endif /* CONFIG_PROC_PAGE_MONITOR */ 3066 3067 #ifdef CONFIG_NUMA 3068 3069 struct numa_maps { 3070 unsigned long pages; 3071 unsigned long anon; 3072 unsigned long active; 3073 unsigned long writeback; 3074 unsigned long mapcount_max; 3075 unsigned long dirty; 3076 unsigned long swapcache; 3077 unsigned long node[MAX_NUMNODES]; 3078 }; 3079 3080 struct numa_maps_private { 3081 struct proc_maps_private proc_maps; 3082 struct numa_maps md; 3083 }; 3084 3085 static void gather_stats(struct page *page, struct numa_maps *md, int pte_dirty, 3086 unsigned long nr_pages) 3087 { 3088 struct folio *folio = page_folio(page); 3089 int count; 3090 3091 if (IS_ENABLED(CONFIG_PAGE_MAPCOUNT)) 3092 count = folio_precise_page_mapcount(folio, page); 3093 else 3094 count = folio_average_page_mapcount(folio); 3095 3096 md->pages += nr_pages; 3097 if (pte_dirty || folio_test_dirty(folio)) 3098 md->dirty += nr_pages; 3099 3100 if (folio_test_swapcache(folio)) 3101 md->swapcache += nr_pages; 3102 3103 if (folio_test_active(folio) || folio_test_unevictable(folio)) 3104 md->active += nr_pages; 3105 3106 if (folio_test_writeback(folio)) 3107 md->writeback += nr_pages; 3108 3109 if (folio_test_anon(folio)) 3110 md->anon += nr_pages; 3111 3112 if (count > md->mapcount_max) 3113 md->mapcount_max = count; 3114 3115 md->node[folio_nid(folio)] += nr_pages; 3116 } 3117 3118 static struct page *can_gather_numa_stats(pte_t pte, struct vm_area_struct *vma, 3119 unsigned long addr) 3120 { 3121 struct page *page; 3122 int nid; 3123 3124 if (!pte_present(pte)) 3125 return NULL; 3126 3127 page = vm_normal_page(vma, addr, pte); 3128 if (!page || is_zone_device_page(page)) 3129 return NULL; 3130 3131 if (PageReserved(page)) 3132 return NULL; 3133 3134 nid = page_to_nid(page); 3135 if (!node_isset(nid, node_states[N_MEMORY])) 3136 return NULL; 3137 3138 return page; 3139 } 3140 3141 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 3142 static struct page *can_gather_numa_stats_pmd(pmd_t pmd, 3143 struct vm_area_struct *vma, 3144 unsigned long addr) 3145 { 3146 struct page *page; 3147 int nid; 3148 3149 if (!pmd_present(pmd)) 3150 return NULL; 3151 3152 page = vm_normal_page_pmd(vma, addr, pmd); 3153 if (!page) 3154 return NULL; 3155 3156 if (PageReserved(page)) 3157 return NULL; 3158 3159 nid = page_to_nid(page); 3160 if (!node_isset(nid, node_states[N_MEMORY])) 3161 return NULL; 3162 3163 return page; 3164 } 3165 #endif 3166 3167 static int gather_pte_stats(pmd_t *pmd, unsigned long addr, 3168 unsigned long end, struct mm_walk *walk) 3169 { 3170 struct numa_maps *md = walk->private; 3171 struct vm_area_struct *vma = walk->vma; 3172 spinlock_t *ptl; 3173 pte_t *orig_pte; 3174 pte_t *pte; 3175 3176 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 3177 ptl = pmd_trans_huge_lock(pmd, vma); 3178 if (ptl) { 3179 struct page *page; 3180 3181 page = can_gather_numa_stats_pmd(*pmd, vma, addr); 3182 if (page) 3183 gather_stats(page, md, pmd_dirty(*pmd), 3184 HPAGE_PMD_SIZE/PAGE_SIZE); 3185 spin_unlock(ptl); 3186 return 0; 3187 } 3188 #endif 3189 orig_pte = pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl); 3190 if (!pte) { 3191 walk->action = ACTION_AGAIN; 3192 return 0; 3193 } 3194 do { 3195 pte_t ptent = ptep_get(pte); 3196 struct page *page = can_gather_numa_stats(ptent, vma, addr); 3197 if (!page) 3198 continue; 3199 gather_stats(page, md, pte_dirty(ptent), 1); 3200 3201 } while (pte++, addr += PAGE_SIZE, addr != end); 3202 pte_unmap_unlock(orig_pte, ptl); 3203 cond_resched(); 3204 return 0; 3205 } 3206 #ifdef CONFIG_HUGETLB_PAGE 3207 static int gather_hugetlb_stats(pte_t *pte, unsigned long hmask, 3208 unsigned long addr, unsigned long end, struct mm_walk *walk) 3209 { 3210 pte_t huge_pte; 3211 struct numa_maps *md; 3212 struct page *page; 3213 spinlock_t *ptl; 3214 3215 ptl = huge_pte_lock(hstate_vma(walk->vma), walk->mm, pte); 3216 huge_pte = huge_ptep_get(walk->mm, addr, pte); 3217 if (!pte_present(huge_pte)) 3218 goto out; 3219 3220 page = pte_page(huge_pte); 3221 3222 md = walk->private; 3223 gather_stats(page, md, pte_dirty(huge_pte), 1); 3224 out: 3225 spin_unlock(ptl); 3226 return 0; 3227 } 3228 3229 #else 3230 static int gather_hugetlb_stats(pte_t *pte, unsigned long hmask, 3231 unsigned long addr, unsigned long end, struct mm_walk *walk) 3232 { 3233 return 0; 3234 } 3235 #endif 3236 3237 static const struct mm_walk_ops show_numa_ops = { 3238 .hugetlb_entry = gather_hugetlb_stats, 3239 .pmd_entry = gather_pte_stats, 3240 .walk_lock = PGWALK_RDLOCK, 3241 }; 3242 3243 /* 3244 * Display pages allocated per node and memory policy via /proc. 3245 */ 3246 static int show_numa_map(struct seq_file *m, void *v) 3247 { 3248 struct numa_maps_private *numa_priv = m->private; 3249 struct proc_maps_private *proc_priv = &numa_priv->proc_maps; 3250 struct vm_area_struct *vma = v; 3251 struct numa_maps *md = &numa_priv->md; 3252 struct file *file = vma->vm_file; 3253 struct mm_struct *mm = vma->vm_mm; 3254 char buffer[64]; 3255 struct mempolicy *pol; 3256 pgoff_t ilx; 3257 int nid; 3258 3259 if (!mm) 3260 return 0; 3261 3262 /* Ensure we start with an empty set of numa_maps statistics. */ 3263 memset(md, 0, sizeof(*md)); 3264 3265 pol = __get_vma_policy(vma, vma->vm_start, &ilx); 3266 if (pol) { 3267 mpol_to_str(buffer, sizeof(buffer), pol); 3268 mpol_cond_put(pol); 3269 } else { 3270 mpol_to_str(buffer, sizeof(buffer), proc_priv->task_mempolicy); 3271 } 3272 3273 seq_printf(m, "%08lx %s", vma->vm_start, buffer); 3274 3275 if (file) { 3276 seq_puts(m, " file="); 3277 seq_path(m, file_user_path(file), "\n\t= "); 3278 } else if (vma_is_initial_heap(vma)) { 3279 seq_puts(m, " heap"); 3280 } else if (vma_is_initial_stack(vma)) { 3281 seq_puts(m, " stack"); 3282 } 3283 3284 if (is_vm_hugetlb_page(vma)) 3285 seq_puts(m, " huge"); 3286 3287 /* mmap_lock is held by m_start */ 3288 walk_page_vma(vma, &show_numa_ops, md); 3289 3290 if (!md->pages) 3291 goto out; 3292 3293 if (md->anon) 3294 seq_printf(m, " anon=%lu", md->anon); 3295 3296 if (md->dirty) 3297 seq_printf(m, " dirty=%lu", md->dirty); 3298 3299 if (md->pages != md->anon && md->pages != md->dirty) 3300 seq_printf(m, " mapped=%lu", md->pages); 3301 3302 if (md->mapcount_max > 1) 3303 seq_printf(m, " mapmax=%lu", md->mapcount_max); 3304 3305 if (md->swapcache) 3306 seq_printf(m, " swapcache=%lu", md->swapcache); 3307 3308 if (md->active < md->pages && !is_vm_hugetlb_page(vma)) 3309 seq_printf(m, " active=%lu", md->active); 3310 3311 if (md->writeback) 3312 seq_printf(m, " writeback=%lu", md->writeback); 3313 3314 for_each_node_state(nid, N_MEMORY) 3315 if (md->node[nid]) 3316 seq_printf(m, " N%d=%lu", nid, md->node[nid]); 3317 3318 seq_printf(m, " kernelpagesize_kB=%lu", vma_kernel_pagesize(vma) >> 10); 3319 out: 3320 seq_putc(m, '\n'); 3321 return 0; 3322 } 3323 3324 static const struct seq_operations proc_pid_numa_maps_op = { 3325 .start = m_start, 3326 .next = m_next, 3327 .stop = m_stop, 3328 .show = show_numa_map, 3329 }; 3330 3331 static int pid_numa_maps_open(struct inode *inode, struct file *file) 3332 { 3333 return proc_maps_open(inode, file, &proc_pid_numa_maps_op, 3334 sizeof(struct numa_maps_private)); 3335 } 3336 3337 const struct file_operations proc_pid_numa_maps_operations = { 3338 .open = pid_numa_maps_open, 3339 .read = seq_read, 3340 .llseek = seq_lseek, 3341 .release = proc_map_release, 3342 }; 3343 3344 #endif /* CONFIG_NUMA */ 3345