xref: /linux/fs/proc/task_mmu.c (revision 8b83369ddcb3fb9cab5c1088987ce477565bb630)
1 // SPDX-License-Identifier: GPL-2.0
2 #include <linux/pagewalk.h>
3 #include <linux/vmacache.h>
4 #include <linux/hugetlb.h>
5 #include <linux/huge_mm.h>
6 #include <linux/mount.h>
7 #include <linux/seq_file.h>
8 #include <linux/highmem.h>
9 #include <linux/ptrace.h>
10 #include <linux/slab.h>
11 #include <linux/pagemap.h>
12 #include <linux/mempolicy.h>
13 #include <linux/rmap.h>
14 #include <linux/swap.h>
15 #include <linux/sched/mm.h>
16 #include <linux/swapops.h>
17 #include <linux/mmu_notifier.h>
18 #include <linux/page_idle.h>
19 #include <linux/shmem_fs.h>
20 #include <linux/uaccess.h>
21 #include <linux/pkeys.h>
22 
23 #include <asm/elf.h>
24 #include <asm/tlb.h>
25 #include <asm/tlbflush.h>
26 #include "internal.h"
27 
28 #define SEQ_PUT_DEC(str, val) \
29 		seq_put_decimal_ull_width(m, str, (val) << (PAGE_SHIFT-10), 8)
30 void task_mem(struct seq_file *m, struct mm_struct *mm)
31 {
32 	unsigned long text, lib, swap, anon, file, shmem;
33 	unsigned long hiwater_vm, total_vm, hiwater_rss, total_rss;
34 
35 	anon = get_mm_counter(mm, MM_ANONPAGES);
36 	file = get_mm_counter(mm, MM_FILEPAGES);
37 	shmem = get_mm_counter(mm, MM_SHMEMPAGES);
38 
39 	/*
40 	 * Note: to minimize their overhead, mm maintains hiwater_vm and
41 	 * hiwater_rss only when about to *lower* total_vm or rss.  Any
42 	 * collector of these hiwater stats must therefore get total_vm
43 	 * and rss too, which will usually be the higher.  Barriers? not
44 	 * worth the effort, such snapshots can always be inconsistent.
45 	 */
46 	hiwater_vm = total_vm = mm->total_vm;
47 	if (hiwater_vm < mm->hiwater_vm)
48 		hiwater_vm = mm->hiwater_vm;
49 	hiwater_rss = total_rss = anon + file + shmem;
50 	if (hiwater_rss < mm->hiwater_rss)
51 		hiwater_rss = mm->hiwater_rss;
52 
53 	/* split executable areas between text and lib */
54 	text = PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK);
55 	text = min(text, mm->exec_vm << PAGE_SHIFT);
56 	lib = (mm->exec_vm << PAGE_SHIFT) - text;
57 
58 	swap = get_mm_counter(mm, MM_SWAPENTS);
59 	SEQ_PUT_DEC("VmPeak:\t", hiwater_vm);
60 	SEQ_PUT_DEC(" kB\nVmSize:\t", total_vm);
61 	SEQ_PUT_DEC(" kB\nVmLck:\t", mm->locked_vm);
62 	SEQ_PUT_DEC(" kB\nVmPin:\t", atomic64_read(&mm->pinned_vm));
63 	SEQ_PUT_DEC(" kB\nVmHWM:\t", hiwater_rss);
64 	SEQ_PUT_DEC(" kB\nVmRSS:\t", total_rss);
65 	SEQ_PUT_DEC(" kB\nRssAnon:\t", anon);
66 	SEQ_PUT_DEC(" kB\nRssFile:\t", file);
67 	SEQ_PUT_DEC(" kB\nRssShmem:\t", shmem);
68 	SEQ_PUT_DEC(" kB\nVmData:\t", mm->data_vm);
69 	SEQ_PUT_DEC(" kB\nVmStk:\t", mm->stack_vm);
70 	seq_put_decimal_ull_width(m,
71 		    " kB\nVmExe:\t", text >> 10, 8);
72 	seq_put_decimal_ull_width(m,
73 		    " kB\nVmLib:\t", lib >> 10, 8);
74 	seq_put_decimal_ull_width(m,
75 		    " kB\nVmPTE:\t", mm_pgtables_bytes(mm) >> 10, 8);
76 	SEQ_PUT_DEC(" kB\nVmSwap:\t", swap);
77 	seq_puts(m, " kB\n");
78 	hugetlb_report_usage(m, mm);
79 }
80 #undef SEQ_PUT_DEC
81 
82 unsigned long task_vsize(struct mm_struct *mm)
83 {
84 	return PAGE_SIZE * mm->total_vm;
85 }
86 
87 unsigned long task_statm(struct mm_struct *mm,
88 			 unsigned long *shared, unsigned long *text,
89 			 unsigned long *data, unsigned long *resident)
90 {
91 	*shared = get_mm_counter(mm, MM_FILEPAGES) +
92 			get_mm_counter(mm, MM_SHMEMPAGES);
93 	*text = (PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK))
94 								>> PAGE_SHIFT;
95 	*data = mm->data_vm + mm->stack_vm;
96 	*resident = *shared + get_mm_counter(mm, MM_ANONPAGES);
97 	return mm->total_vm;
98 }
99 
100 #ifdef CONFIG_NUMA
101 /*
102  * Save get_task_policy() for show_numa_map().
103  */
104 static void hold_task_mempolicy(struct proc_maps_private *priv)
105 {
106 	struct task_struct *task = priv->task;
107 
108 	task_lock(task);
109 	priv->task_mempolicy = get_task_policy(task);
110 	mpol_get(priv->task_mempolicy);
111 	task_unlock(task);
112 }
113 static void release_task_mempolicy(struct proc_maps_private *priv)
114 {
115 	mpol_put(priv->task_mempolicy);
116 }
117 #else
118 static void hold_task_mempolicy(struct proc_maps_private *priv)
119 {
120 }
121 static void release_task_mempolicy(struct proc_maps_private *priv)
122 {
123 }
124 #endif
125 
126 static void *m_start(struct seq_file *m, loff_t *ppos)
127 {
128 	struct proc_maps_private *priv = m->private;
129 	unsigned long last_addr = *ppos;
130 	struct mm_struct *mm;
131 	struct vm_area_struct *vma;
132 
133 	/* See m_next(). Zero at the start or after lseek. */
134 	if (last_addr == -1UL)
135 		return NULL;
136 
137 	priv->task = get_proc_task(priv->inode);
138 	if (!priv->task)
139 		return ERR_PTR(-ESRCH);
140 
141 	mm = priv->mm;
142 	if (!mm || !mmget_not_zero(mm)) {
143 		put_task_struct(priv->task);
144 		priv->task = NULL;
145 		return NULL;
146 	}
147 
148 	if (mmap_read_lock_killable(mm)) {
149 		mmput(mm);
150 		put_task_struct(priv->task);
151 		priv->task = NULL;
152 		return ERR_PTR(-EINTR);
153 	}
154 
155 	hold_task_mempolicy(priv);
156 	priv->tail_vma = get_gate_vma(mm);
157 
158 	vma = find_vma(mm, last_addr);
159 	if (vma)
160 		return vma;
161 
162 	return priv->tail_vma;
163 }
164 
165 static void *m_next(struct seq_file *m, void *v, loff_t *ppos)
166 {
167 	struct proc_maps_private *priv = m->private;
168 	struct vm_area_struct *next, *vma = v;
169 
170 	if (vma == priv->tail_vma)
171 		next = NULL;
172 	else if (vma->vm_next)
173 		next = vma->vm_next;
174 	else
175 		next = priv->tail_vma;
176 
177 	*ppos = next ? next->vm_start : -1UL;
178 
179 	return next;
180 }
181 
182 static void m_stop(struct seq_file *m, void *v)
183 {
184 	struct proc_maps_private *priv = m->private;
185 	struct mm_struct *mm = priv->mm;
186 
187 	if (!priv->task)
188 		return;
189 
190 	release_task_mempolicy(priv);
191 	mmap_read_unlock(mm);
192 	mmput(mm);
193 	put_task_struct(priv->task);
194 	priv->task = NULL;
195 }
196 
197 static int proc_maps_open(struct inode *inode, struct file *file,
198 			const struct seq_operations *ops, int psize)
199 {
200 	struct proc_maps_private *priv = __seq_open_private(file, ops, psize);
201 
202 	if (!priv)
203 		return -ENOMEM;
204 
205 	priv->inode = inode;
206 	priv->mm = proc_mem_open(inode, PTRACE_MODE_READ);
207 	if (IS_ERR(priv->mm)) {
208 		int err = PTR_ERR(priv->mm);
209 
210 		seq_release_private(inode, file);
211 		return err;
212 	}
213 
214 	return 0;
215 }
216 
217 static int proc_map_release(struct inode *inode, struct file *file)
218 {
219 	struct seq_file *seq = file->private_data;
220 	struct proc_maps_private *priv = seq->private;
221 
222 	if (priv->mm)
223 		mmdrop(priv->mm);
224 
225 	return seq_release_private(inode, file);
226 }
227 
228 static int do_maps_open(struct inode *inode, struct file *file,
229 			const struct seq_operations *ops)
230 {
231 	return proc_maps_open(inode, file, ops,
232 				sizeof(struct proc_maps_private));
233 }
234 
235 /*
236  * Indicate if the VMA is a stack for the given task; for
237  * /proc/PID/maps that is the stack of the main task.
238  */
239 static int is_stack(struct vm_area_struct *vma)
240 {
241 	/*
242 	 * We make no effort to guess what a given thread considers to be
243 	 * its "stack".  It's not even well-defined for programs written
244 	 * languages like Go.
245 	 */
246 	return vma->vm_start <= vma->vm_mm->start_stack &&
247 		vma->vm_end >= vma->vm_mm->start_stack;
248 }
249 
250 static void show_vma_header_prefix(struct seq_file *m,
251 				   unsigned long start, unsigned long end,
252 				   vm_flags_t flags, unsigned long long pgoff,
253 				   dev_t dev, unsigned long ino)
254 {
255 	seq_setwidth(m, 25 + sizeof(void *) * 6 - 1);
256 	seq_put_hex_ll(m, NULL, start, 8);
257 	seq_put_hex_ll(m, "-", end, 8);
258 	seq_putc(m, ' ');
259 	seq_putc(m, flags & VM_READ ? 'r' : '-');
260 	seq_putc(m, flags & VM_WRITE ? 'w' : '-');
261 	seq_putc(m, flags & VM_EXEC ? 'x' : '-');
262 	seq_putc(m, flags & VM_MAYSHARE ? 's' : 'p');
263 	seq_put_hex_ll(m, " ", pgoff, 8);
264 	seq_put_hex_ll(m, " ", MAJOR(dev), 2);
265 	seq_put_hex_ll(m, ":", MINOR(dev), 2);
266 	seq_put_decimal_ull(m, " ", ino);
267 	seq_putc(m, ' ');
268 }
269 
270 static void
271 show_map_vma(struct seq_file *m, struct vm_area_struct *vma)
272 {
273 	struct mm_struct *mm = vma->vm_mm;
274 	struct file *file = vma->vm_file;
275 	vm_flags_t flags = vma->vm_flags;
276 	unsigned long ino = 0;
277 	unsigned long long pgoff = 0;
278 	unsigned long start, end;
279 	dev_t dev = 0;
280 	const char *name = NULL;
281 
282 	if (file) {
283 		struct inode *inode = file_inode(vma->vm_file);
284 		dev = inode->i_sb->s_dev;
285 		ino = inode->i_ino;
286 		pgoff = ((loff_t)vma->vm_pgoff) << PAGE_SHIFT;
287 	}
288 
289 	start = vma->vm_start;
290 	end = vma->vm_end;
291 	show_vma_header_prefix(m, start, end, flags, pgoff, dev, ino);
292 
293 	/*
294 	 * Print the dentry name for named mappings, and a
295 	 * special [heap] marker for the heap:
296 	 */
297 	if (file) {
298 		seq_pad(m, ' ');
299 		seq_file_path(m, file, "\n");
300 		goto done;
301 	}
302 
303 	if (vma->vm_ops && vma->vm_ops->name) {
304 		name = vma->vm_ops->name(vma);
305 		if (name)
306 			goto done;
307 	}
308 
309 	name = arch_vma_name(vma);
310 	if (!name) {
311 		if (!mm) {
312 			name = "[vdso]";
313 			goto done;
314 		}
315 
316 		if (vma->vm_start <= mm->brk &&
317 		    vma->vm_end >= mm->start_brk) {
318 			name = "[heap]";
319 			goto done;
320 		}
321 
322 		if (is_stack(vma))
323 			name = "[stack]";
324 	}
325 
326 done:
327 	if (name) {
328 		seq_pad(m, ' ');
329 		seq_puts(m, name);
330 	}
331 	seq_putc(m, '\n');
332 }
333 
334 static int show_map(struct seq_file *m, void *v)
335 {
336 	show_map_vma(m, v);
337 	return 0;
338 }
339 
340 static const struct seq_operations proc_pid_maps_op = {
341 	.start	= m_start,
342 	.next	= m_next,
343 	.stop	= m_stop,
344 	.show	= show_map
345 };
346 
347 static int pid_maps_open(struct inode *inode, struct file *file)
348 {
349 	return do_maps_open(inode, file, &proc_pid_maps_op);
350 }
351 
352 const struct file_operations proc_pid_maps_operations = {
353 	.open		= pid_maps_open,
354 	.read		= seq_read,
355 	.llseek		= seq_lseek,
356 	.release	= proc_map_release,
357 };
358 
359 /*
360  * Proportional Set Size(PSS): my share of RSS.
361  *
362  * PSS of a process is the count of pages it has in memory, where each
363  * page is divided by the number of processes sharing it.  So if a
364  * process has 1000 pages all to itself, and 1000 shared with one other
365  * process, its PSS will be 1500.
366  *
367  * To keep (accumulated) division errors low, we adopt a 64bit
368  * fixed-point pss counter to minimize division errors. So (pss >>
369  * PSS_SHIFT) would be the real byte count.
370  *
371  * A shift of 12 before division means (assuming 4K page size):
372  * 	- 1M 3-user-pages add up to 8KB errors;
373  * 	- supports mapcount up to 2^24, or 16M;
374  * 	- supports PSS up to 2^52 bytes, or 4PB.
375  */
376 #define PSS_SHIFT 12
377 
378 #ifdef CONFIG_PROC_PAGE_MONITOR
379 struct mem_size_stats {
380 	unsigned long resident;
381 	unsigned long shared_clean;
382 	unsigned long shared_dirty;
383 	unsigned long private_clean;
384 	unsigned long private_dirty;
385 	unsigned long referenced;
386 	unsigned long anonymous;
387 	unsigned long lazyfree;
388 	unsigned long anonymous_thp;
389 	unsigned long shmem_thp;
390 	unsigned long file_thp;
391 	unsigned long swap;
392 	unsigned long shared_hugetlb;
393 	unsigned long private_hugetlb;
394 	u64 pss;
395 	u64 pss_anon;
396 	u64 pss_file;
397 	u64 pss_shmem;
398 	u64 pss_locked;
399 	u64 swap_pss;
400 	bool check_shmem_swap;
401 };
402 
403 static void smaps_page_accumulate(struct mem_size_stats *mss,
404 		struct page *page, unsigned long size, unsigned long pss,
405 		bool dirty, bool locked, bool private)
406 {
407 	mss->pss += pss;
408 
409 	if (PageAnon(page))
410 		mss->pss_anon += pss;
411 	else if (PageSwapBacked(page))
412 		mss->pss_shmem += pss;
413 	else
414 		mss->pss_file += pss;
415 
416 	if (locked)
417 		mss->pss_locked += pss;
418 
419 	if (dirty || PageDirty(page)) {
420 		if (private)
421 			mss->private_dirty += size;
422 		else
423 			mss->shared_dirty += size;
424 	} else {
425 		if (private)
426 			mss->private_clean += size;
427 		else
428 			mss->shared_clean += size;
429 	}
430 }
431 
432 static void smaps_account(struct mem_size_stats *mss, struct page *page,
433 		bool compound, bool young, bool dirty, bool locked)
434 {
435 	int i, nr = compound ? compound_nr(page) : 1;
436 	unsigned long size = nr * PAGE_SIZE;
437 
438 	/*
439 	 * First accumulate quantities that depend only on |size| and the type
440 	 * of the compound page.
441 	 */
442 	if (PageAnon(page)) {
443 		mss->anonymous += size;
444 		if (!PageSwapBacked(page) && !dirty && !PageDirty(page))
445 			mss->lazyfree += size;
446 	}
447 
448 	mss->resident += size;
449 	/* Accumulate the size in pages that have been accessed. */
450 	if (young || page_is_young(page) || PageReferenced(page))
451 		mss->referenced += size;
452 
453 	/*
454 	 * Then accumulate quantities that may depend on sharing, or that may
455 	 * differ page-by-page.
456 	 *
457 	 * page_count(page) == 1 guarantees the page is mapped exactly once.
458 	 * If any subpage of the compound page mapped with PTE it would elevate
459 	 * page_count().
460 	 */
461 	if (page_count(page) == 1) {
462 		smaps_page_accumulate(mss, page, size, size << PSS_SHIFT, dirty,
463 			locked, true);
464 		return;
465 	}
466 	for (i = 0; i < nr; i++, page++) {
467 		int mapcount = page_mapcount(page);
468 		unsigned long pss = PAGE_SIZE << PSS_SHIFT;
469 		if (mapcount >= 2)
470 			pss /= mapcount;
471 		smaps_page_accumulate(mss, page, PAGE_SIZE, pss, dirty, locked,
472 				      mapcount < 2);
473 	}
474 }
475 
476 #ifdef CONFIG_SHMEM
477 static int smaps_pte_hole(unsigned long addr, unsigned long end,
478 			  __always_unused int depth, struct mm_walk *walk)
479 {
480 	struct mem_size_stats *mss = walk->private;
481 
482 	mss->swap += shmem_partial_swap_usage(
483 			walk->vma->vm_file->f_mapping, addr, end);
484 
485 	return 0;
486 }
487 #else
488 #define smaps_pte_hole		NULL
489 #endif /* CONFIG_SHMEM */
490 
491 static void smaps_pte_entry(pte_t *pte, unsigned long addr,
492 		struct mm_walk *walk)
493 {
494 	struct mem_size_stats *mss = walk->private;
495 	struct vm_area_struct *vma = walk->vma;
496 	bool locked = !!(vma->vm_flags & VM_LOCKED);
497 	struct page *page = NULL;
498 
499 	if (pte_present(*pte)) {
500 		page = vm_normal_page(vma, addr, *pte);
501 	} else if (is_swap_pte(*pte)) {
502 		swp_entry_t swpent = pte_to_swp_entry(*pte);
503 
504 		if (!non_swap_entry(swpent)) {
505 			int mapcount;
506 
507 			mss->swap += PAGE_SIZE;
508 			mapcount = swp_swapcount(swpent);
509 			if (mapcount >= 2) {
510 				u64 pss_delta = (u64)PAGE_SIZE << PSS_SHIFT;
511 
512 				do_div(pss_delta, mapcount);
513 				mss->swap_pss += pss_delta;
514 			} else {
515 				mss->swap_pss += (u64)PAGE_SIZE << PSS_SHIFT;
516 			}
517 		} else if (is_migration_entry(swpent))
518 			page = migration_entry_to_page(swpent);
519 		else if (is_device_private_entry(swpent))
520 			page = device_private_entry_to_page(swpent);
521 	} else if (unlikely(IS_ENABLED(CONFIG_SHMEM) && mss->check_shmem_swap
522 							&& pte_none(*pte))) {
523 		page = xa_load(&vma->vm_file->f_mapping->i_pages,
524 						linear_page_index(vma, addr));
525 		if (xa_is_value(page))
526 			mss->swap += PAGE_SIZE;
527 		return;
528 	}
529 
530 	if (!page)
531 		return;
532 
533 	smaps_account(mss, page, false, pte_young(*pte), pte_dirty(*pte), locked);
534 }
535 
536 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
537 static void smaps_pmd_entry(pmd_t *pmd, unsigned long addr,
538 		struct mm_walk *walk)
539 {
540 	struct mem_size_stats *mss = walk->private;
541 	struct vm_area_struct *vma = walk->vma;
542 	bool locked = !!(vma->vm_flags & VM_LOCKED);
543 	struct page *page = NULL;
544 
545 	if (pmd_present(*pmd)) {
546 		/* FOLL_DUMP will return -EFAULT on huge zero page */
547 		page = follow_trans_huge_pmd(vma, addr, pmd, FOLL_DUMP);
548 	} else if (unlikely(thp_migration_supported() && is_swap_pmd(*pmd))) {
549 		swp_entry_t entry = pmd_to_swp_entry(*pmd);
550 
551 		if (is_migration_entry(entry))
552 			page = migration_entry_to_page(entry);
553 	}
554 	if (IS_ERR_OR_NULL(page))
555 		return;
556 	if (PageAnon(page))
557 		mss->anonymous_thp += HPAGE_PMD_SIZE;
558 	else if (PageSwapBacked(page))
559 		mss->shmem_thp += HPAGE_PMD_SIZE;
560 	else if (is_zone_device_page(page))
561 		/* pass */;
562 	else
563 		mss->file_thp += HPAGE_PMD_SIZE;
564 	smaps_account(mss, page, true, pmd_young(*pmd), pmd_dirty(*pmd), locked);
565 }
566 #else
567 static void smaps_pmd_entry(pmd_t *pmd, unsigned long addr,
568 		struct mm_walk *walk)
569 {
570 }
571 #endif
572 
573 static int smaps_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
574 			   struct mm_walk *walk)
575 {
576 	struct vm_area_struct *vma = walk->vma;
577 	pte_t *pte;
578 	spinlock_t *ptl;
579 
580 	ptl = pmd_trans_huge_lock(pmd, vma);
581 	if (ptl) {
582 		smaps_pmd_entry(pmd, addr, walk);
583 		spin_unlock(ptl);
584 		goto out;
585 	}
586 
587 	if (pmd_trans_unstable(pmd))
588 		goto out;
589 	/*
590 	 * The mmap_lock held all the way back in m_start() is what
591 	 * keeps khugepaged out of here and from collapsing things
592 	 * in here.
593 	 */
594 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
595 	for (; addr != end; pte++, addr += PAGE_SIZE)
596 		smaps_pte_entry(pte, addr, walk);
597 	pte_unmap_unlock(pte - 1, ptl);
598 out:
599 	cond_resched();
600 	return 0;
601 }
602 
603 static void show_smap_vma_flags(struct seq_file *m, struct vm_area_struct *vma)
604 {
605 	/*
606 	 * Don't forget to update Documentation/ on changes.
607 	 */
608 	static const char mnemonics[BITS_PER_LONG][2] = {
609 		/*
610 		 * In case if we meet a flag we don't know about.
611 		 */
612 		[0 ... (BITS_PER_LONG-1)] = "??",
613 
614 		[ilog2(VM_READ)]	= "rd",
615 		[ilog2(VM_WRITE)]	= "wr",
616 		[ilog2(VM_EXEC)]	= "ex",
617 		[ilog2(VM_SHARED)]	= "sh",
618 		[ilog2(VM_MAYREAD)]	= "mr",
619 		[ilog2(VM_MAYWRITE)]	= "mw",
620 		[ilog2(VM_MAYEXEC)]	= "me",
621 		[ilog2(VM_MAYSHARE)]	= "ms",
622 		[ilog2(VM_GROWSDOWN)]	= "gd",
623 		[ilog2(VM_PFNMAP)]	= "pf",
624 		[ilog2(VM_DENYWRITE)]	= "dw",
625 		[ilog2(VM_LOCKED)]	= "lo",
626 		[ilog2(VM_IO)]		= "io",
627 		[ilog2(VM_SEQ_READ)]	= "sr",
628 		[ilog2(VM_RAND_READ)]	= "rr",
629 		[ilog2(VM_DONTCOPY)]	= "dc",
630 		[ilog2(VM_DONTEXPAND)]	= "de",
631 		[ilog2(VM_ACCOUNT)]	= "ac",
632 		[ilog2(VM_NORESERVE)]	= "nr",
633 		[ilog2(VM_HUGETLB)]	= "ht",
634 		[ilog2(VM_SYNC)]	= "sf",
635 		[ilog2(VM_ARCH_1)]	= "ar",
636 		[ilog2(VM_WIPEONFORK)]	= "wf",
637 		[ilog2(VM_DONTDUMP)]	= "dd",
638 #ifdef CONFIG_ARM64_BTI
639 		[ilog2(VM_ARM64_BTI)]	= "bt",
640 #endif
641 #ifdef CONFIG_MEM_SOFT_DIRTY
642 		[ilog2(VM_SOFTDIRTY)]	= "sd",
643 #endif
644 		[ilog2(VM_MIXEDMAP)]	= "mm",
645 		[ilog2(VM_HUGEPAGE)]	= "hg",
646 		[ilog2(VM_NOHUGEPAGE)]	= "nh",
647 		[ilog2(VM_MERGEABLE)]	= "mg",
648 		[ilog2(VM_UFFD_MISSING)]= "um",
649 		[ilog2(VM_UFFD_WP)]	= "uw",
650 #ifdef CONFIG_ARM64_MTE
651 		[ilog2(VM_MTE)]		= "mt",
652 		[ilog2(VM_MTE_ALLOWED)]	= "",
653 #endif
654 #ifdef CONFIG_ARCH_HAS_PKEYS
655 		/* These come out via ProtectionKey: */
656 		[ilog2(VM_PKEY_BIT0)]	= "",
657 		[ilog2(VM_PKEY_BIT1)]	= "",
658 		[ilog2(VM_PKEY_BIT2)]	= "",
659 		[ilog2(VM_PKEY_BIT3)]	= "",
660 #if VM_PKEY_BIT4
661 		[ilog2(VM_PKEY_BIT4)]	= "",
662 #endif
663 #endif /* CONFIG_ARCH_HAS_PKEYS */
664 	};
665 	size_t i;
666 
667 	seq_puts(m, "VmFlags: ");
668 	for (i = 0; i < BITS_PER_LONG; i++) {
669 		if (!mnemonics[i][0])
670 			continue;
671 		if (vma->vm_flags & (1UL << i)) {
672 			seq_putc(m, mnemonics[i][0]);
673 			seq_putc(m, mnemonics[i][1]);
674 			seq_putc(m, ' ');
675 		}
676 	}
677 	seq_putc(m, '\n');
678 }
679 
680 #ifdef CONFIG_HUGETLB_PAGE
681 static int smaps_hugetlb_range(pte_t *pte, unsigned long hmask,
682 				 unsigned long addr, unsigned long end,
683 				 struct mm_walk *walk)
684 {
685 	struct mem_size_stats *mss = walk->private;
686 	struct vm_area_struct *vma = walk->vma;
687 	struct page *page = NULL;
688 
689 	if (pte_present(*pte)) {
690 		page = vm_normal_page(vma, addr, *pte);
691 	} else if (is_swap_pte(*pte)) {
692 		swp_entry_t swpent = pte_to_swp_entry(*pte);
693 
694 		if (is_migration_entry(swpent))
695 			page = migration_entry_to_page(swpent);
696 		else if (is_device_private_entry(swpent))
697 			page = device_private_entry_to_page(swpent);
698 	}
699 	if (page) {
700 		int mapcount = page_mapcount(page);
701 
702 		if (mapcount >= 2)
703 			mss->shared_hugetlb += huge_page_size(hstate_vma(vma));
704 		else
705 			mss->private_hugetlb += huge_page_size(hstate_vma(vma));
706 	}
707 	return 0;
708 }
709 #else
710 #define smaps_hugetlb_range	NULL
711 #endif /* HUGETLB_PAGE */
712 
713 static const struct mm_walk_ops smaps_walk_ops = {
714 	.pmd_entry		= smaps_pte_range,
715 	.hugetlb_entry		= smaps_hugetlb_range,
716 };
717 
718 static const struct mm_walk_ops smaps_shmem_walk_ops = {
719 	.pmd_entry		= smaps_pte_range,
720 	.hugetlb_entry		= smaps_hugetlb_range,
721 	.pte_hole		= smaps_pte_hole,
722 };
723 
724 /*
725  * Gather mem stats from @vma with the indicated beginning
726  * address @start, and keep them in @mss.
727  *
728  * Use vm_start of @vma as the beginning address if @start is 0.
729  */
730 static void smap_gather_stats(struct vm_area_struct *vma,
731 		struct mem_size_stats *mss, unsigned long start)
732 {
733 	const struct mm_walk_ops *ops = &smaps_walk_ops;
734 
735 	/* Invalid start */
736 	if (start >= vma->vm_end)
737 		return;
738 
739 #ifdef CONFIG_SHMEM
740 	/* In case of smaps_rollup, reset the value from previous vma */
741 	mss->check_shmem_swap = false;
742 	if (vma->vm_file && shmem_mapping(vma->vm_file->f_mapping)) {
743 		/*
744 		 * For shared or readonly shmem mappings we know that all
745 		 * swapped out pages belong to the shmem object, and we can
746 		 * obtain the swap value much more efficiently. For private
747 		 * writable mappings, we might have COW pages that are
748 		 * not affected by the parent swapped out pages of the shmem
749 		 * object, so we have to distinguish them during the page walk.
750 		 * Unless we know that the shmem object (or the part mapped by
751 		 * our VMA) has no swapped out pages at all.
752 		 */
753 		unsigned long shmem_swapped = shmem_swap_usage(vma);
754 
755 		if (!start && (!shmem_swapped || (vma->vm_flags & VM_SHARED) ||
756 					!(vma->vm_flags & VM_WRITE))) {
757 			mss->swap += shmem_swapped;
758 		} else {
759 			mss->check_shmem_swap = true;
760 			ops = &smaps_shmem_walk_ops;
761 		}
762 	}
763 #endif
764 	/* mmap_lock is held in m_start */
765 	if (!start)
766 		walk_page_vma(vma, ops, mss);
767 	else
768 		walk_page_range(vma->vm_mm, start, vma->vm_end, ops, mss);
769 }
770 
771 #define SEQ_PUT_DEC(str, val) \
772 		seq_put_decimal_ull_width(m, str, (val) >> 10, 8)
773 
774 /* Show the contents common for smaps and smaps_rollup */
775 static void __show_smap(struct seq_file *m, const struct mem_size_stats *mss,
776 	bool rollup_mode)
777 {
778 	SEQ_PUT_DEC("Rss:            ", mss->resident);
779 	SEQ_PUT_DEC(" kB\nPss:            ", mss->pss >> PSS_SHIFT);
780 	if (rollup_mode) {
781 		/*
782 		 * These are meaningful only for smaps_rollup, otherwise two of
783 		 * them are zero, and the other one is the same as Pss.
784 		 */
785 		SEQ_PUT_DEC(" kB\nPss_Anon:       ",
786 			mss->pss_anon >> PSS_SHIFT);
787 		SEQ_PUT_DEC(" kB\nPss_File:       ",
788 			mss->pss_file >> PSS_SHIFT);
789 		SEQ_PUT_DEC(" kB\nPss_Shmem:      ",
790 			mss->pss_shmem >> PSS_SHIFT);
791 	}
792 	SEQ_PUT_DEC(" kB\nShared_Clean:   ", mss->shared_clean);
793 	SEQ_PUT_DEC(" kB\nShared_Dirty:   ", mss->shared_dirty);
794 	SEQ_PUT_DEC(" kB\nPrivate_Clean:  ", mss->private_clean);
795 	SEQ_PUT_DEC(" kB\nPrivate_Dirty:  ", mss->private_dirty);
796 	SEQ_PUT_DEC(" kB\nReferenced:     ", mss->referenced);
797 	SEQ_PUT_DEC(" kB\nAnonymous:      ", mss->anonymous);
798 	SEQ_PUT_DEC(" kB\nLazyFree:       ", mss->lazyfree);
799 	SEQ_PUT_DEC(" kB\nAnonHugePages:  ", mss->anonymous_thp);
800 	SEQ_PUT_DEC(" kB\nShmemPmdMapped: ", mss->shmem_thp);
801 	SEQ_PUT_DEC(" kB\nFilePmdMapped:  ", mss->file_thp);
802 	SEQ_PUT_DEC(" kB\nShared_Hugetlb: ", mss->shared_hugetlb);
803 	seq_put_decimal_ull_width(m, " kB\nPrivate_Hugetlb: ",
804 				  mss->private_hugetlb >> 10, 7);
805 	SEQ_PUT_DEC(" kB\nSwap:           ", mss->swap);
806 	SEQ_PUT_DEC(" kB\nSwapPss:        ",
807 					mss->swap_pss >> PSS_SHIFT);
808 	SEQ_PUT_DEC(" kB\nLocked:         ",
809 					mss->pss_locked >> PSS_SHIFT);
810 	seq_puts(m, " kB\n");
811 }
812 
813 static int show_smap(struct seq_file *m, void *v)
814 {
815 	struct vm_area_struct *vma = v;
816 	struct mem_size_stats mss;
817 
818 	memset(&mss, 0, sizeof(mss));
819 
820 	smap_gather_stats(vma, &mss, 0);
821 
822 	show_map_vma(m, vma);
823 
824 	SEQ_PUT_DEC("Size:           ", vma->vm_end - vma->vm_start);
825 	SEQ_PUT_DEC(" kB\nKernelPageSize: ", vma_kernel_pagesize(vma));
826 	SEQ_PUT_DEC(" kB\nMMUPageSize:    ", vma_mmu_pagesize(vma));
827 	seq_puts(m, " kB\n");
828 
829 	__show_smap(m, &mss, false);
830 
831 	seq_printf(m, "THPeligible:    %d\n",
832 		   transparent_hugepage_enabled(vma));
833 
834 	if (arch_pkeys_enabled())
835 		seq_printf(m, "ProtectionKey:  %8u\n", vma_pkey(vma));
836 	show_smap_vma_flags(m, vma);
837 
838 	return 0;
839 }
840 
841 static int show_smaps_rollup(struct seq_file *m, void *v)
842 {
843 	struct proc_maps_private *priv = m->private;
844 	struct mem_size_stats mss;
845 	struct mm_struct *mm;
846 	struct vm_area_struct *vma;
847 	unsigned long last_vma_end = 0;
848 	int ret = 0;
849 
850 	priv->task = get_proc_task(priv->inode);
851 	if (!priv->task)
852 		return -ESRCH;
853 
854 	mm = priv->mm;
855 	if (!mm || !mmget_not_zero(mm)) {
856 		ret = -ESRCH;
857 		goto out_put_task;
858 	}
859 
860 	memset(&mss, 0, sizeof(mss));
861 
862 	ret = mmap_read_lock_killable(mm);
863 	if (ret)
864 		goto out_put_mm;
865 
866 	hold_task_mempolicy(priv);
867 
868 	for (vma = priv->mm->mmap; vma;) {
869 		smap_gather_stats(vma, &mss, 0);
870 		last_vma_end = vma->vm_end;
871 
872 		/*
873 		 * Release mmap_lock temporarily if someone wants to
874 		 * access it for write request.
875 		 */
876 		if (mmap_lock_is_contended(mm)) {
877 			mmap_read_unlock(mm);
878 			ret = mmap_read_lock_killable(mm);
879 			if (ret) {
880 				release_task_mempolicy(priv);
881 				goto out_put_mm;
882 			}
883 
884 			/*
885 			 * After dropping the lock, there are four cases to
886 			 * consider. See the following example for explanation.
887 			 *
888 			 *   +------+------+-----------+
889 			 *   | VMA1 | VMA2 | VMA3      |
890 			 *   +------+------+-----------+
891 			 *   |      |      |           |
892 			 *  4k     8k     16k         400k
893 			 *
894 			 * Suppose we drop the lock after reading VMA2 due to
895 			 * contention, then we get:
896 			 *
897 			 *	last_vma_end = 16k
898 			 *
899 			 * 1) VMA2 is freed, but VMA3 exists:
900 			 *
901 			 *    find_vma(mm, 16k - 1) will return VMA3.
902 			 *    In this case, just continue from VMA3.
903 			 *
904 			 * 2) VMA2 still exists:
905 			 *
906 			 *    find_vma(mm, 16k - 1) will return VMA2.
907 			 *    Iterate the loop like the original one.
908 			 *
909 			 * 3) No more VMAs can be found:
910 			 *
911 			 *    find_vma(mm, 16k - 1) will return NULL.
912 			 *    No more things to do, just break.
913 			 *
914 			 * 4) (last_vma_end - 1) is the middle of a vma (VMA'):
915 			 *
916 			 *    find_vma(mm, 16k - 1) will return VMA' whose range
917 			 *    contains last_vma_end.
918 			 *    Iterate VMA' from last_vma_end.
919 			 */
920 			vma = find_vma(mm, last_vma_end - 1);
921 			/* Case 3 above */
922 			if (!vma)
923 				break;
924 
925 			/* Case 1 above */
926 			if (vma->vm_start >= last_vma_end)
927 				continue;
928 
929 			/* Case 4 above */
930 			if (vma->vm_end > last_vma_end)
931 				smap_gather_stats(vma, &mss, last_vma_end);
932 		}
933 		/* Case 2 above */
934 		vma = vma->vm_next;
935 	}
936 
937 	show_vma_header_prefix(m, priv->mm->mmap->vm_start,
938 			       last_vma_end, 0, 0, 0, 0);
939 	seq_pad(m, ' ');
940 	seq_puts(m, "[rollup]\n");
941 
942 	__show_smap(m, &mss, true);
943 
944 	release_task_mempolicy(priv);
945 	mmap_read_unlock(mm);
946 
947 out_put_mm:
948 	mmput(mm);
949 out_put_task:
950 	put_task_struct(priv->task);
951 	priv->task = NULL;
952 
953 	return ret;
954 }
955 #undef SEQ_PUT_DEC
956 
957 static const struct seq_operations proc_pid_smaps_op = {
958 	.start	= m_start,
959 	.next	= m_next,
960 	.stop	= m_stop,
961 	.show	= show_smap
962 };
963 
964 static int pid_smaps_open(struct inode *inode, struct file *file)
965 {
966 	return do_maps_open(inode, file, &proc_pid_smaps_op);
967 }
968 
969 static int smaps_rollup_open(struct inode *inode, struct file *file)
970 {
971 	int ret;
972 	struct proc_maps_private *priv;
973 
974 	priv = kzalloc(sizeof(*priv), GFP_KERNEL_ACCOUNT);
975 	if (!priv)
976 		return -ENOMEM;
977 
978 	ret = single_open(file, show_smaps_rollup, priv);
979 	if (ret)
980 		goto out_free;
981 
982 	priv->inode = inode;
983 	priv->mm = proc_mem_open(inode, PTRACE_MODE_READ);
984 	if (IS_ERR(priv->mm)) {
985 		ret = PTR_ERR(priv->mm);
986 
987 		single_release(inode, file);
988 		goto out_free;
989 	}
990 
991 	return 0;
992 
993 out_free:
994 	kfree(priv);
995 	return ret;
996 }
997 
998 static int smaps_rollup_release(struct inode *inode, struct file *file)
999 {
1000 	struct seq_file *seq = file->private_data;
1001 	struct proc_maps_private *priv = seq->private;
1002 
1003 	if (priv->mm)
1004 		mmdrop(priv->mm);
1005 
1006 	kfree(priv);
1007 	return single_release(inode, file);
1008 }
1009 
1010 const struct file_operations proc_pid_smaps_operations = {
1011 	.open		= pid_smaps_open,
1012 	.read		= seq_read,
1013 	.llseek		= seq_lseek,
1014 	.release	= proc_map_release,
1015 };
1016 
1017 const struct file_operations proc_pid_smaps_rollup_operations = {
1018 	.open		= smaps_rollup_open,
1019 	.read		= seq_read,
1020 	.llseek		= seq_lseek,
1021 	.release	= smaps_rollup_release,
1022 };
1023 
1024 enum clear_refs_types {
1025 	CLEAR_REFS_ALL = 1,
1026 	CLEAR_REFS_ANON,
1027 	CLEAR_REFS_MAPPED,
1028 	CLEAR_REFS_SOFT_DIRTY,
1029 	CLEAR_REFS_MM_HIWATER_RSS,
1030 	CLEAR_REFS_LAST,
1031 };
1032 
1033 struct clear_refs_private {
1034 	enum clear_refs_types type;
1035 };
1036 
1037 #ifdef CONFIG_MEM_SOFT_DIRTY
1038 
1039 #define is_cow_mapping(flags) (((flags) & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE)
1040 
1041 static inline bool pte_is_pinned(struct vm_area_struct *vma, unsigned long addr, pte_t pte)
1042 {
1043 	struct page *page;
1044 
1045 	if (!pte_write(pte))
1046 		return false;
1047 	if (!is_cow_mapping(vma->vm_flags))
1048 		return false;
1049 	if (likely(!atomic_read(&vma->vm_mm->has_pinned)))
1050 		return false;
1051 	page = vm_normal_page(vma, addr, pte);
1052 	if (!page)
1053 		return false;
1054 	return page_maybe_dma_pinned(page);
1055 }
1056 
1057 static inline void clear_soft_dirty(struct vm_area_struct *vma,
1058 		unsigned long addr, pte_t *pte)
1059 {
1060 	/*
1061 	 * The soft-dirty tracker uses #PF-s to catch writes
1062 	 * to pages, so write-protect the pte as well. See the
1063 	 * Documentation/admin-guide/mm/soft-dirty.rst for full description
1064 	 * of how soft-dirty works.
1065 	 */
1066 	pte_t ptent = *pte;
1067 
1068 	if (pte_present(ptent)) {
1069 		pte_t old_pte;
1070 
1071 		if (pte_is_pinned(vma, addr, ptent))
1072 			return;
1073 		old_pte = ptep_modify_prot_start(vma, addr, pte);
1074 		ptent = pte_wrprotect(old_pte);
1075 		ptent = pte_clear_soft_dirty(ptent);
1076 		ptep_modify_prot_commit(vma, addr, pte, old_pte, ptent);
1077 	} else if (is_swap_pte(ptent)) {
1078 		ptent = pte_swp_clear_soft_dirty(ptent);
1079 		set_pte_at(vma->vm_mm, addr, pte, ptent);
1080 	}
1081 }
1082 #else
1083 static inline void clear_soft_dirty(struct vm_area_struct *vma,
1084 		unsigned long addr, pte_t *pte)
1085 {
1086 }
1087 #endif
1088 
1089 #if defined(CONFIG_MEM_SOFT_DIRTY) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
1090 static inline void clear_soft_dirty_pmd(struct vm_area_struct *vma,
1091 		unsigned long addr, pmd_t *pmdp)
1092 {
1093 	pmd_t old, pmd = *pmdp;
1094 
1095 	if (pmd_present(pmd)) {
1096 		/* See comment in change_huge_pmd() */
1097 		old = pmdp_invalidate(vma, addr, pmdp);
1098 		if (pmd_dirty(old))
1099 			pmd = pmd_mkdirty(pmd);
1100 		if (pmd_young(old))
1101 			pmd = pmd_mkyoung(pmd);
1102 
1103 		pmd = pmd_wrprotect(pmd);
1104 		pmd = pmd_clear_soft_dirty(pmd);
1105 
1106 		set_pmd_at(vma->vm_mm, addr, pmdp, pmd);
1107 	} else if (is_migration_entry(pmd_to_swp_entry(pmd))) {
1108 		pmd = pmd_swp_clear_soft_dirty(pmd);
1109 		set_pmd_at(vma->vm_mm, addr, pmdp, pmd);
1110 	}
1111 }
1112 #else
1113 static inline void clear_soft_dirty_pmd(struct vm_area_struct *vma,
1114 		unsigned long addr, pmd_t *pmdp)
1115 {
1116 }
1117 #endif
1118 
1119 static int clear_refs_pte_range(pmd_t *pmd, unsigned long addr,
1120 				unsigned long end, struct mm_walk *walk)
1121 {
1122 	struct clear_refs_private *cp = walk->private;
1123 	struct vm_area_struct *vma = walk->vma;
1124 	pte_t *pte, ptent;
1125 	spinlock_t *ptl;
1126 	struct page *page;
1127 
1128 	ptl = pmd_trans_huge_lock(pmd, vma);
1129 	if (ptl) {
1130 		if (cp->type == CLEAR_REFS_SOFT_DIRTY) {
1131 			clear_soft_dirty_pmd(vma, addr, pmd);
1132 			goto out;
1133 		}
1134 
1135 		if (!pmd_present(*pmd))
1136 			goto out;
1137 
1138 		page = pmd_page(*pmd);
1139 
1140 		/* Clear accessed and referenced bits. */
1141 		pmdp_test_and_clear_young(vma, addr, pmd);
1142 		test_and_clear_page_young(page);
1143 		ClearPageReferenced(page);
1144 out:
1145 		spin_unlock(ptl);
1146 		return 0;
1147 	}
1148 
1149 	if (pmd_trans_unstable(pmd))
1150 		return 0;
1151 
1152 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
1153 	for (; addr != end; pte++, addr += PAGE_SIZE) {
1154 		ptent = *pte;
1155 
1156 		if (cp->type == CLEAR_REFS_SOFT_DIRTY) {
1157 			clear_soft_dirty(vma, addr, pte);
1158 			continue;
1159 		}
1160 
1161 		if (!pte_present(ptent))
1162 			continue;
1163 
1164 		page = vm_normal_page(vma, addr, ptent);
1165 		if (!page)
1166 			continue;
1167 
1168 		/* Clear accessed and referenced bits. */
1169 		ptep_test_and_clear_young(vma, addr, pte);
1170 		test_and_clear_page_young(page);
1171 		ClearPageReferenced(page);
1172 	}
1173 	pte_unmap_unlock(pte - 1, ptl);
1174 	cond_resched();
1175 	return 0;
1176 }
1177 
1178 static int clear_refs_test_walk(unsigned long start, unsigned long end,
1179 				struct mm_walk *walk)
1180 {
1181 	struct clear_refs_private *cp = walk->private;
1182 	struct vm_area_struct *vma = walk->vma;
1183 
1184 	if (vma->vm_flags & VM_PFNMAP)
1185 		return 1;
1186 
1187 	/*
1188 	 * Writing 1 to /proc/pid/clear_refs affects all pages.
1189 	 * Writing 2 to /proc/pid/clear_refs only affects anonymous pages.
1190 	 * Writing 3 to /proc/pid/clear_refs only affects file mapped pages.
1191 	 * Writing 4 to /proc/pid/clear_refs affects all pages.
1192 	 */
1193 	if (cp->type == CLEAR_REFS_ANON && vma->vm_file)
1194 		return 1;
1195 	if (cp->type == CLEAR_REFS_MAPPED && !vma->vm_file)
1196 		return 1;
1197 	return 0;
1198 }
1199 
1200 static const struct mm_walk_ops clear_refs_walk_ops = {
1201 	.pmd_entry		= clear_refs_pte_range,
1202 	.test_walk		= clear_refs_test_walk,
1203 };
1204 
1205 static ssize_t clear_refs_write(struct file *file, const char __user *buf,
1206 				size_t count, loff_t *ppos)
1207 {
1208 	struct task_struct *task;
1209 	char buffer[PROC_NUMBUF];
1210 	struct mm_struct *mm;
1211 	struct vm_area_struct *vma;
1212 	enum clear_refs_types type;
1213 	int itype;
1214 	int rv;
1215 
1216 	memset(buffer, 0, sizeof(buffer));
1217 	if (count > sizeof(buffer) - 1)
1218 		count = sizeof(buffer) - 1;
1219 	if (copy_from_user(buffer, buf, count))
1220 		return -EFAULT;
1221 	rv = kstrtoint(strstrip(buffer), 10, &itype);
1222 	if (rv < 0)
1223 		return rv;
1224 	type = (enum clear_refs_types)itype;
1225 	if (type < CLEAR_REFS_ALL || type >= CLEAR_REFS_LAST)
1226 		return -EINVAL;
1227 
1228 	task = get_proc_task(file_inode(file));
1229 	if (!task)
1230 		return -ESRCH;
1231 	mm = get_task_mm(task);
1232 	if (mm) {
1233 		struct mmu_notifier_range range;
1234 		struct clear_refs_private cp = {
1235 			.type = type,
1236 		};
1237 
1238 		if (mmap_write_lock_killable(mm)) {
1239 			count = -EINTR;
1240 			goto out_mm;
1241 		}
1242 		if (type == CLEAR_REFS_MM_HIWATER_RSS) {
1243 			/*
1244 			 * Writing 5 to /proc/pid/clear_refs resets the peak
1245 			 * resident set size to this mm's current rss value.
1246 			 */
1247 			reset_mm_hiwater_rss(mm);
1248 			goto out_unlock;
1249 		}
1250 
1251 		if (type == CLEAR_REFS_SOFT_DIRTY) {
1252 			for (vma = mm->mmap; vma; vma = vma->vm_next) {
1253 				if (!(vma->vm_flags & VM_SOFTDIRTY))
1254 					continue;
1255 				vma->vm_flags &= ~VM_SOFTDIRTY;
1256 				vma_set_page_prot(vma);
1257 			}
1258 
1259 			inc_tlb_flush_pending(mm);
1260 			mmu_notifier_range_init(&range, MMU_NOTIFY_SOFT_DIRTY,
1261 						0, NULL, mm, 0, -1UL);
1262 			mmu_notifier_invalidate_range_start(&range);
1263 		}
1264 		walk_page_range(mm, 0, mm->highest_vm_end, &clear_refs_walk_ops,
1265 				&cp);
1266 		if (type == CLEAR_REFS_SOFT_DIRTY) {
1267 			mmu_notifier_invalidate_range_end(&range);
1268 			flush_tlb_mm(mm);
1269 			dec_tlb_flush_pending(mm);
1270 		}
1271 out_unlock:
1272 		mmap_write_unlock(mm);
1273 out_mm:
1274 		mmput(mm);
1275 	}
1276 	put_task_struct(task);
1277 
1278 	return count;
1279 }
1280 
1281 const struct file_operations proc_clear_refs_operations = {
1282 	.write		= clear_refs_write,
1283 	.llseek		= noop_llseek,
1284 };
1285 
1286 typedef struct {
1287 	u64 pme;
1288 } pagemap_entry_t;
1289 
1290 struct pagemapread {
1291 	int pos, len;		/* units: PM_ENTRY_BYTES, not bytes */
1292 	pagemap_entry_t *buffer;
1293 	bool show_pfn;
1294 };
1295 
1296 #define PAGEMAP_WALK_SIZE	(PMD_SIZE)
1297 #define PAGEMAP_WALK_MASK	(PMD_MASK)
1298 
1299 #define PM_ENTRY_BYTES		sizeof(pagemap_entry_t)
1300 #define PM_PFRAME_BITS		55
1301 #define PM_PFRAME_MASK		GENMASK_ULL(PM_PFRAME_BITS - 1, 0)
1302 #define PM_SOFT_DIRTY		BIT_ULL(55)
1303 #define PM_MMAP_EXCLUSIVE	BIT_ULL(56)
1304 #define PM_FILE			BIT_ULL(61)
1305 #define PM_SWAP			BIT_ULL(62)
1306 #define PM_PRESENT		BIT_ULL(63)
1307 
1308 #define PM_END_OF_BUFFER    1
1309 
1310 static inline pagemap_entry_t make_pme(u64 frame, u64 flags)
1311 {
1312 	return (pagemap_entry_t) { .pme = (frame & PM_PFRAME_MASK) | flags };
1313 }
1314 
1315 static int add_to_pagemap(unsigned long addr, pagemap_entry_t *pme,
1316 			  struct pagemapread *pm)
1317 {
1318 	pm->buffer[pm->pos++] = *pme;
1319 	if (pm->pos >= pm->len)
1320 		return PM_END_OF_BUFFER;
1321 	return 0;
1322 }
1323 
1324 static int pagemap_pte_hole(unsigned long start, unsigned long end,
1325 			    __always_unused int depth, struct mm_walk *walk)
1326 {
1327 	struct pagemapread *pm = walk->private;
1328 	unsigned long addr = start;
1329 	int err = 0;
1330 
1331 	while (addr < end) {
1332 		struct vm_area_struct *vma = find_vma(walk->mm, addr);
1333 		pagemap_entry_t pme = make_pme(0, 0);
1334 		/* End of address space hole, which we mark as non-present. */
1335 		unsigned long hole_end;
1336 
1337 		if (vma)
1338 			hole_end = min(end, vma->vm_start);
1339 		else
1340 			hole_end = end;
1341 
1342 		for (; addr < hole_end; addr += PAGE_SIZE) {
1343 			err = add_to_pagemap(addr, &pme, pm);
1344 			if (err)
1345 				goto out;
1346 		}
1347 
1348 		if (!vma)
1349 			break;
1350 
1351 		/* Addresses in the VMA. */
1352 		if (vma->vm_flags & VM_SOFTDIRTY)
1353 			pme = make_pme(0, PM_SOFT_DIRTY);
1354 		for (; addr < min(end, vma->vm_end); addr += PAGE_SIZE) {
1355 			err = add_to_pagemap(addr, &pme, pm);
1356 			if (err)
1357 				goto out;
1358 		}
1359 	}
1360 out:
1361 	return err;
1362 }
1363 
1364 static pagemap_entry_t pte_to_pagemap_entry(struct pagemapread *pm,
1365 		struct vm_area_struct *vma, unsigned long addr, pte_t pte)
1366 {
1367 	u64 frame = 0, flags = 0;
1368 	struct page *page = NULL;
1369 
1370 	if (pte_present(pte)) {
1371 		if (pm->show_pfn)
1372 			frame = pte_pfn(pte);
1373 		flags |= PM_PRESENT;
1374 		page = vm_normal_page(vma, addr, pte);
1375 		if (pte_soft_dirty(pte))
1376 			flags |= PM_SOFT_DIRTY;
1377 	} else if (is_swap_pte(pte)) {
1378 		swp_entry_t entry;
1379 		if (pte_swp_soft_dirty(pte))
1380 			flags |= PM_SOFT_DIRTY;
1381 		entry = pte_to_swp_entry(pte);
1382 		if (pm->show_pfn)
1383 			frame = swp_type(entry) |
1384 				(swp_offset(entry) << MAX_SWAPFILES_SHIFT);
1385 		flags |= PM_SWAP;
1386 		if (is_migration_entry(entry))
1387 			page = migration_entry_to_page(entry);
1388 
1389 		if (is_device_private_entry(entry))
1390 			page = device_private_entry_to_page(entry);
1391 	}
1392 
1393 	if (page && !PageAnon(page))
1394 		flags |= PM_FILE;
1395 	if (page && page_mapcount(page) == 1)
1396 		flags |= PM_MMAP_EXCLUSIVE;
1397 	if (vma->vm_flags & VM_SOFTDIRTY)
1398 		flags |= PM_SOFT_DIRTY;
1399 
1400 	return make_pme(frame, flags);
1401 }
1402 
1403 static int pagemap_pmd_range(pmd_t *pmdp, unsigned long addr, unsigned long end,
1404 			     struct mm_walk *walk)
1405 {
1406 	struct vm_area_struct *vma = walk->vma;
1407 	struct pagemapread *pm = walk->private;
1408 	spinlock_t *ptl;
1409 	pte_t *pte, *orig_pte;
1410 	int err = 0;
1411 
1412 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1413 	ptl = pmd_trans_huge_lock(pmdp, vma);
1414 	if (ptl) {
1415 		u64 flags = 0, frame = 0;
1416 		pmd_t pmd = *pmdp;
1417 		struct page *page = NULL;
1418 
1419 		if (vma->vm_flags & VM_SOFTDIRTY)
1420 			flags |= PM_SOFT_DIRTY;
1421 
1422 		if (pmd_present(pmd)) {
1423 			page = pmd_page(pmd);
1424 
1425 			flags |= PM_PRESENT;
1426 			if (pmd_soft_dirty(pmd))
1427 				flags |= PM_SOFT_DIRTY;
1428 			if (pm->show_pfn)
1429 				frame = pmd_pfn(pmd) +
1430 					((addr & ~PMD_MASK) >> PAGE_SHIFT);
1431 		}
1432 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1433 		else if (is_swap_pmd(pmd)) {
1434 			swp_entry_t entry = pmd_to_swp_entry(pmd);
1435 			unsigned long offset;
1436 
1437 			if (pm->show_pfn) {
1438 				offset = swp_offset(entry) +
1439 					((addr & ~PMD_MASK) >> PAGE_SHIFT);
1440 				frame = swp_type(entry) |
1441 					(offset << MAX_SWAPFILES_SHIFT);
1442 			}
1443 			flags |= PM_SWAP;
1444 			if (pmd_swp_soft_dirty(pmd))
1445 				flags |= PM_SOFT_DIRTY;
1446 			VM_BUG_ON(!is_pmd_migration_entry(pmd));
1447 			page = migration_entry_to_page(entry);
1448 		}
1449 #endif
1450 
1451 		if (page && page_mapcount(page) == 1)
1452 			flags |= PM_MMAP_EXCLUSIVE;
1453 
1454 		for (; addr != end; addr += PAGE_SIZE) {
1455 			pagemap_entry_t pme = make_pme(frame, flags);
1456 
1457 			err = add_to_pagemap(addr, &pme, pm);
1458 			if (err)
1459 				break;
1460 			if (pm->show_pfn) {
1461 				if (flags & PM_PRESENT)
1462 					frame++;
1463 				else if (flags & PM_SWAP)
1464 					frame += (1 << MAX_SWAPFILES_SHIFT);
1465 			}
1466 		}
1467 		spin_unlock(ptl);
1468 		return err;
1469 	}
1470 
1471 	if (pmd_trans_unstable(pmdp))
1472 		return 0;
1473 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1474 
1475 	/*
1476 	 * We can assume that @vma always points to a valid one and @end never
1477 	 * goes beyond vma->vm_end.
1478 	 */
1479 	orig_pte = pte = pte_offset_map_lock(walk->mm, pmdp, addr, &ptl);
1480 	for (; addr < end; pte++, addr += PAGE_SIZE) {
1481 		pagemap_entry_t pme;
1482 
1483 		pme = pte_to_pagemap_entry(pm, vma, addr, *pte);
1484 		err = add_to_pagemap(addr, &pme, pm);
1485 		if (err)
1486 			break;
1487 	}
1488 	pte_unmap_unlock(orig_pte, ptl);
1489 
1490 	cond_resched();
1491 
1492 	return err;
1493 }
1494 
1495 #ifdef CONFIG_HUGETLB_PAGE
1496 /* This function walks within one hugetlb entry in the single call */
1497 static int pagemap_hugetlb_range(pte_t *ptep, unsigned long hmask,
1498 				 unsigned long addr, unsigned long end,
1499 				 struct mm_walk *walk)
1500 {
1501 	struct pagemapread *pm = walk->private;
1502 	struct vm_area_struct *vma = walk->vma;
1503 	u64 flags = 0, frame = 0;
1504 	int err = 0;
1505 	pte_t pte;
1506 
1507 	if (vma->vm_flags & VM_SOFTDIRTY)
1508 		flags |= PM_SOFT_DIRTY;
1509 
1510 	pte = huge_ptep_get(ptep);
1511 	if (pte_present(pte)) {
1512 		struct page *page = pte_page(pte);
1513 
1514 		if (!PageAnon(page))
1515 			flags |= PM_FILE;
1516 
1517 		if (page_mapcount(page) == 1)
1518 			flags |= PM_MMAP_EXCLUSIVE;
1519 
1520 		flags |= PM_PRESENT;
1521 		if (pm->show_pfn)
1522 			frame = pte_pfn(pte) +
1523 				((addr & ~hmask) >> PAGE_SHIFT);
1524 	}
1525 
1526 	for (; addr != end; addr += PAGE_SIZE) {
1527 		pagemap_entry_t pme = make_pme(frame, flags);
1528 
1529 		err = add_to_pagemap(addr, &pme, pm);
1530 		if (err)
1531 			return err;
1532 		if (pm->show_pfn && (flags & PM_PRESENT))
1533 			frame++;
1534 	}
1535 
1536 	cond_resched();
1537 
1538 	return err;
1539 }
1540 #else
1541 #define pagemap_hugetlb_range	NULL
1542 #endif /* HUGETLB_PAGE */
1543 
1544 static const struct mm_walk_ops pagemap_ops = {
1545 	.pmd_entry	= pagemap_pmd_range,
1546 	.pte_hole	= pagemap_pte_hole,
1547 	.hugetlb_entry	= pagemap_hugetlb_range,
1548 };
1549 
1550 /*
1551  * /proc/pid/pagemap - an array mapping virtual pages to pfns
1552  *
1553  * For each page in the address space, this file contains one 64-bit entry
1554  * consisting of the following:
1555  *
1556  * Bits 0-54  page frame number (PFN) if present
1557  * Bits 0-4   swap type if swapped
1558  * Bits 5-54  swap offset if swapped
1559  * Bit  55    pte is soft-dirty (see Documentation/admin-guide/mm/soft-dirty.rst)
1560  * Bit  56    page exclusively mapped
1561  * Bits 57-60 zero
1562  * Bit  61    page is file-page or shared-anon
1563  * Bit  62    page swapped
1564  * Bit  63    page present
1565  *
1566  * If the page is not present but in swap, then the PFN contains an
1567  * encoding of the swap file number and the page's offset into the
1568  * swap. Unmapped pages return a null PFN. This allows determining
1569  * precisely which pages are mapped (or in swap) and comparing mapped
1570  * pages between processes.
1571  *
1572  * Efficient users of this interface will use /proc/pid/maps to
1573  * determine which areas of memory are actually mapped and llseek to
1574  * skip over unmapped regions.
1575  */
1576 static ssize_t pagemap_read(struct file *file, char __user *buf,
1577 			    size_t count, loff_t *ppos)
1578 {
1579 	struct mm_struct *mm = file->private_data;
1580 	struct pagemapread pm;
1581 	unsigned long src;
1582 	unsigned long svpfn;
1583 	unsigned long start_vaddr;
1584 	unsigned long end_vaddr;
1585 	int ret = 0, copied = 0;
1586 
1587 	if (!mm || !mmget_not_zero(mm))
1588 		goto out;
1589 
1590 	ret = -EINVAL;
1591 	/* file position must be aligned */
1592 	if ((*ppos % PM_ENTRY_BYTES) || (count % PM_ENTRY_BYTES))
1593 		goto out_mm;
1594 
1595 	ret = 0;
1596 	if (!count)
1597 		goto out_mm;
1598 
1599 	/* do not disclose physical addresses: attack vector */
1600 	pm.show_pfn = file_ns_capable(file, &init_user_ns, CAP_SYS_ADMIN);
1601 
1602 	pm.len = (PAGEMAP_WALK_SIZE >> PAGE_SHIFT);
1603 	pm.buffer = kmalloc_array(pm.len, PM_ENTRY_BYTES, GFP_KERNEL);
1604 	ret = -ENOMEM;
1605 	if (!pm.buffer)
1606 		goto out_mm;
1607 
1608 	src = *ppos;
1609 	svpfn = src / PM_ENTRY_BYTES;
1610 	end_vaddr = mm->task_size;
1611 
1612 	/* watch out for wraparound */
1613 	start_vaddr = end_vaddr;
1614 	if (svpfn <= (ULONG_MAX >> PAGE_SHIFT))
1615 		start_vaddr = untagged_addr(svpfn << PAGE_SHIFT);
1616 
1617 	/* Ensure the address is inside the task */
1618 	if (start_vaddr > mm->task_size)
1619 		start_vaddr = end_vaddr;
1620 
1621 	/*
1622 	 * The odds are that this will stop walking way
1623 	 * before end_vaddr, because the length of the
1624 	 * user buffer is tracked in "pm", and the walk
1625 	 * will stop when we hit the end of the buffer.
1626 	 */
1627 	ret = 0;
1628 	while (count && (start_vaddr < end_vaddr)) {
1629 		int len;
1630 		unsigned long end;
1631 
1632 		pm.pos = 0;
1633 		end = (start_vaddr + PAGEMAP_WALK_SIZE) & PAGEMAP_WALK_MASK;
1634 		/* overflow ? */
1635 		if (end < start_vaddr || end > end_vaddr)
1636 			end = end_vaddr;
1637 		ret = mmap_read_lock_killable(mm);
1638 		if (ret)
1639 			goto out_free;
1640 		ret = walk_page_range(mm, start_vaddr, end, &pagemap_ops, &pm);
1641 		mmap_read_unlock(mm);
1642 		start_vaddr = end;
1643 
1644 		len = min(count, PM_ENTRY_BYTES * pm.pos);
1645 		if (copy_to_user(buf, pm.buffer, len)) {
1646 			ret = -EFAULT;
1647 			goto out_free;
1648 		}
1649 		copied += len;
1650 		buf += len;
1651 		count -= len;
1652 	}
1653 	*ppos += copied;
1654 	if (!ret || ret == PM_END_OF_BUFFER)
1655 		ret = copied;
1656 
1657 out_free:
1658 	kfree(pm.buffer);
1659 out_mm:
1660 	mmput(mm);
1661 out:
1662 	return ret;
1663 }
1664 
1665 static int pagemap_open(struct inode *inode, struct file *file)
1666 {
1667 	struct mm_struct *mm;
1668 
1669 	mm = proc_mem_open(inode, PTRACE_MODE_READ);
1670 	if (IS_ERR(mm))
1671 		return PTR_ERR(mm);
1672 	file->private_data = mm;
1673 	return 0;
1674 }
1675 
1676 static int pagemap_release(struct inode *inode, struct file *file)
1677 {
1678 	struct mm_struct *mm = file->private_data;
1679 
1680 	if (mm)
1681 		mmdrop(mm);
1682 	return 0;
1683 }
1684 
1685 const struct file_operations proc_pagemap_operations = {
1686 	.llseek		= mem_lseek, /* borrow this */
1687 	.read		= pagemap_read,
1688 	.open		= pagemap_open,
1689 	.release	= pagemap_release,
1690 };
1691 #endif /* CONFIG_PROC_PAGE_MONITOR */
1692 
1693 #ifdef CONFIG_NUMA
1694 
1695 struct numa_maps {
1696 	unsigned long pages;
1697 	unsigned long anon;
1698 	unsigned long active;
1699 	unsigned long writeback;
1700 	unsigned long mapcount_max;
1701 	unsigned long dirty;
1702 	unsigned long swapcache;
1703 	unsigned long node[MAX_NUMNODES];
1704 };
1705 
1706 struct numa_maps_private {
1707 	struct proc_maps_private proc_maps;
1708 	struct numa_maps md;
1709 };
1710 
1711 static void gather_stats(struct page *page, struct numa_maps *md, int pte_dirty,
1712 			unsigned long nr_pages)
1713 {
1714 	int count = page_mapcount(page);
1715 
1716 	md->pages += nr_pages;
1717 	if (pte_dirty || PageDirty(page))
1718 		md->dirty += nr_pages;
1719 
1720 	if (PageSwapCache(page))
1721 		md->swapcache += nr_pages;
1722 
1723 	if (PageActive(page) || PageUnevictable(page))
1724 		md->active += nr_pages;
1725 
1726 	if (PageWriteback(page))
1727 		md->writeback += nr_pages;
1728 
1729 	if (PageAnon(page))
1730 		md->anon += nr_pages;
1731 
1732 	if (count > md->mapcount_max)
1733 		md->mapcount_max = count;
1734 
1735 	md->node[page_to_nid(page)] += nr_pages;
1736 }
1737 
1738 static struct page *can_gather_numa_stats(pte_t pte, struct vm_area_struct *vma,
1739 		unsigned long addr)
1740 {
1741 	struct page *page;
1742 	int nid;
1743 
1744 	if (!pte_present(pte))
1745 		return NULL;
1746 
1747 	page = vm_normal_page(vma, addr, pte);
1748 	if (!page)
1749 		return NULL;
1750 
1751 	if (PageReserved(page))
1752 		return NULL;
1753 
1754 	nid = page_to_nid(page);
1755 	if (!node_isset(nid, node_states[N_MEMORY]))
1756 		return NULL;
1757 
1758 	return page;
1759 }
1760 
1761 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1762 static struct page *can_gather_numa_stats_pmd(pmd_t pmd,
1763 					      struct vm_area_struct *vma,
1764 					      unsigned long addr)
1765 {
1766 	struct page *page;
1767 	int nid;
1768 
1769 	if (!pmd_present(pmd))
1770 		return NULL;
1771 
1772 	page = vm_normal_page_pmd(vma, addr, pmd);
1773 	if (!page)
1774 		return NULL;
1775 
1776 	if (PageReserved(page))
1777 		return NULL;
1778 
1779 	nid = page_to_nid(page);
1780 	if (!node_isset(nid, node_states[N_MEMORY]))
1781 		return NULL;
1782 
1783 	return page;
1784 }
1785 #endif
1786 
1787 static int gather_pte_stats(pmd_t *pmd, unsigned long addr,
1788 		unsigned long end, struct mm_walk *walk)
1789 {
1790 	struct numa_maps *md = walk->private;
1791 	struct vm_area_struct *vma = walk->vma;
1792 	spinlock_t *ptl;
1793 	pte_t *orig_pte;
1794 	pte_t *pte;
1795 
1796 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1797 	ptl = pmd_trans_huge_lock(pmd, vma);
1798 	if (ptl) {
1799 		struct page *page;
1800 
1801 		page = can_gather_numa_stats_pmd(*pmd, vma, addr);
1802 		if (page)
1803 			gather_stats(page, md, pmd_dirty(*pmd),
1804 				     HPAGE_PMD_SIZE/PAGE_SIZE);
1805 		spin_unlock(ptl);
1806 		return 0;
1807 	}
1808 
1809 	if (pmd_trans_unstable(pmd))
1810 		return 0;
1811 #endif
1812 	orig_pte = pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
1813 	do {
1814 		struct page *page = can_gather_numa_stats(*pte, vma, addr);
1815 		if (!page)
1816 			continue;
1817 		gather_stats(page, md, pte_dirty(*pte), 1);
1818 
1819 	} while (pte++, addr += PAGE_SIZE, addr != end);
1820 	pte_unmap_unlock(orig_pte, ptl);
1821 	cond_resched();
1822 	return 0;
1823 }
1824 #ifdef CONFIG_HUGETLB_PAGE
1825 static int gather_hugetlb_stats(pte_t *pte, unsigned long hmask,
1826 		unsigned long addr, unsigned long end, struct mm_walk *walk)
1827 {
1828 	pte_t huge_pte = huge_ptep_get(pte);
1829 	struct numa_maps *md;
1830 	struct page *page;
1831 
1832 	if (!pte_present(huge_pte))
1833 		return 0;
1834 
1835 	page = pte_page(huge_pte);
1836 	if (!page)
1837 		return 0;
1838 
1839 	md = walk->private;
1840 	gather_stats(page, md, pte_dirty(huge_pte), 1);
1841 	return 0;
1842 }
1843 
1844 #else
1845 static int gather_hugetlb_stats(pte_t *pte, unsigned long hmask,
1846 		unsigned long addr, unsigned long end, struct mm_walk *walk)
1847 {
1848 	return 0;
1849 }
1850 #endif
1851 
1852 static const struct mm_walk_ops show_numa_ops = {
1853 	.hugetlb_entry = gather_hugetlb_stats,
1854 	.pmd_entry = gather_pte_stats,
1855 };
1856 
1857 /*
1858  * Display pages allocated per node and memory policy via /proc.
1859  */
1860 static int show_numa_map(struct seq_file *m, void *v)
1861 {
1862 	struct numa_maps_private *numa_priv = m->private;
1863 	struct proc_maps_private *proc_priv = &numa_priv->proc_maps;
1864 	struct vm_area_struct *vma = v;
1865 	struct numa_maps *md = &numa_priv->md;
1866 	struct file *file = vma->vm_file;
1867 	struct mm_struct *mm = vma->vm_mm;
1868 	struct mempolicy *pol;
1869 	char buffer[64];
1870 	int nid;
1871 
1872 	if (!mm)
1873 		return 0;
1874 
1875 	/* Ensure we start with an empty set of numa_maps statistics. */
1876 	memset(md, 0, sizeof(*md));
1877 
1878 	pol = __get_vma_policy(vma, vma->vm_start);
1879 	if (pol) {
1880 		mpol_to_str(buffer, sizeof(buffer), pol);
1881 		mpol_cond_put(pol);
1882 	} else {
1883 		mpol_to_str(buffer, sizeof(buffer), proc_priv->task_mempolicy);
1884 	}
1885 
1886 	seq_printf(m, "%08lx %s", vma->vm_start, buffer);
1887 
1888 	if (file) {
1889 		seq_puts(m, " file=");
1890 		seq_file_path(m, file, "\n\t= ");
1891 	} else if (vma->vm_start <= mm->brk && vma->vm_end >= mm->start_brk) {
1892 		seq_puts(m, " heap");
1893 	} else if (is_stack(vma)) {
1894 		seq_puts(m, " stack");
1895 	}
1896 
1897 	if (is_vm_hugetlb_page(vma))
1898 		seq_puts(m, " huge");
1899 
1900 	/* mmap_lock is held by m_start */
1901 	walk_page_vma(vma, &show_numa_ops, md);
1902 
1903 	if (!md->pages)
1904 		goto out;
1905 
1906 	if (md->anon)
1907 		seq_printf(m, " anon=%lu", md->anon);
1908 
1909 	if (md->dirty)
1910 		seq_printf(m, " dirty=%lu", md->dirty);
1911 
1912 	if (md->pages != md->anon && md->pages != md->dirty)
1913 		seq_printf(m, " mapped=%lu", md->pages);
1914 
1915 	if (md->mapcount_max > 1)
1916 		seq_printf(m, " mapmax=%lu", md->mapcount_max);
1917 
1918 	if (md->swapcache)
1919 		seq_printf(m, " swapcache=%lu", md->swapcache);
1920 
1921 	if (md->active < md->pages && !is_vm_hugetlb_page(vma))
1922 		seq_printf(m, " active=%lu", md->active);
1923 
1924 	if (md->writeback)
1925 		seq_printf(m, " writeback=%lu", md->writeback);
1926 
1927 	for_each_node_state(nid, N_MEMORY)
1928 		if (md->node[nid])
1929 			seq_printf(m, " N%d=%lu", nid, md->node[nid]);
1930 
1931 	seq_printf(m, " kernelpagesize_kB=%lu", vma_kernel_pagesize(vma) >> 10);
1932 out:
1933 	seq_putc(m, '\n');
1934 	return 0;
1935 }
1936 
1937 static const struct seq_operations proc_pid_numa_maps_op = {
1938 	.start  = m_start,
1939 	.next   = m_next,
1940 	.stop   = m_stop,
1941 	.show   = show_numa_map,
1942 };
1943 
1944 static int pid_numa_maps_open(struct inode *inode, struct file *file)
1945 {
1946 	return proc_maps_open(inode, file, &proc_pid_numa_maps_op,
1947 				sizeof(struct numa_maps_private));
1948 }
1949 
1950 const struct file_operations proc_pid_numa_maps_operations = {
1951 	.open		= pid_numa_maps_open,
1952 	.read		= seq_read,
1953 	.llseek		= seq_lseek,
1954 	.release	= proc_map_release,
1955 };
1956 
1957 #endif /* CONFIG_NUMA */
1958