xref: /linux/fs/proc/task_mmu.c (revision 834f0c353ae430c1a6ce023c9b77bbd3ff9241a7)
1 #include <linux/mm.h>
2 #include <linux/hugetlb.h>
3 #include <linux/huge_mm.h>
4 #include <linux/mount.h>
5 #include <linux/seq_file.h>
6 #include <linux/highmem.h>
7 #include <linux/ptrace.h>
8 #include <linux/slab.h>
9 #include <linux/pagemap.h>
10 #include <linux/mempolicy.h>
11 #include <linux/rmap.h>
12 #include <linux/swap.h>
13 #include <linux/swapops.h>
14 
15 #include <asm/elf.h>
16 #include <asm/uaccess.h>
17 #include <asm/tlbflush.h>
18 #include "internal.h"
19 
20 void task_mem(struct seq_file *m, struct mm_struct *mm)
21 {
22 	unsigned long data, text, lib, swap;
23 	unsigned long hiwater_vm, total_vm, hiwater_rss, total_rss;
24 
25 	/*
26 	 * Note: to minimize their overhead, mm maintains hiwater_vm and
27 	 * hiwater_rss only when about to *lower* total_vm or rss.  Any
28 	 * collector of these hiwater stats must therefore get total_vm
29 	 * and rss too, which will usually be the higher.  Barriers? not
30 	 * worth the effort, such snapshots can always be inconsistent.
31 	 */
32 	hiwater_vm = total_vm = mm->total_vm;
33 	if (hiwater_vm < mm->hiwater_vm)
34 		hiwater_vm = mm->hiwater_vm;
35 	hiwater_rss = total_rss = get_mm_rss(mm);
36 	if (hiwater_rss < mm->hiwater_rss)
37 		hiwater_rss = mm->hiwater_rss;
38 
39 	data = mm->total_vm - mm->shared_vm - mm->stack_vm;
40 	text = (PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK)) >> 10;
41 	lib = (mm->exec_vm << (PAGE_SHIFT-10)) - text;
42 	swap = get_mm_counter(mm, MM_SWAPENTS);
43 	seq_printf(m,
44 		"VmPeak:\t%8lu kB\n"
45 		"VmSize:\t%8lu kB\n"
46 		"VmLck:\t%8lu kB\n"
47 		"VmHWM:\t%8lu kB\n"
48 		"VmRSS:\t%8lu kB\n"
49 		"VmData:\t%8lu kB\n"
50 		"VmStk:\t%8lu kB\n"
51 		"VmExe:\t%8lu kB\n"
52 		"VmLib:\t%8lu kB\n"
53 		"VmPTE:\t%8lu kB\n"
54 		"VmSwap:\t%8lu kB\n",
55 		hiwater_vm << (PAGE_SHIFT-10),
56 		(total_vm - mm->reserved_vm) << (PAGE_SHIFT-10),
57 		mm->locked_vm << (PAGE_SHIFT-10),
58 		hiwater_rss << (PAGE_SHIFT-10),
59 		total_rss << (PAGE_SHIFT-10),
60 		data << (PAGE_SHIFT-10),
61 		mm->stack_vm << (PAGE_SHIFT-10), text, lib,
62 		(PTRS_PER_PTE*sizeof(pte_t)*mm->nr_ptes) >> 10,
63 		swap << (PAGE_SHIFT-10));
64 }
65 
66 unsigned long task_vsize(struct mm_struct *mm)
67 {
68 	return PAGE_SIZE * mm->total_vm;
69 }
70 
71 unsigned long task_statm(struct mm_struct *mm,
72 			 unsigned long *shared, unsigned long *text,
73 			 unsigned long *data, unsigned long *resident)
74 {
75 	*shared = get_mm_counter(mm, MM_FILEPAGES);
76 	*text = (PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK))
77 								>> PAGE_SHIFT;
78 	*data = mm->total_vm - mm->shared_vm;
79 	*resident = *shared + get_mm_counter(mm, MM_ANONPAGES);
80 	return mm->total_vm;
81 }
82 
83 static void pad_len_spaces(struct seq_file *m, int len)
84 {
85 	len = 25 + sizeof(void*) * 6 - len;
86 	if (len < 1)
87 		len = 1;
88 	seq_printf(m, "%*c", len, ' ');
89 }
90 
91 static void vma_stop(struct proc_maps_private *priv, struct vm_area_struct *vma)
92 {
93 	if (vma && vma != priv->tail_vma) {
94 		struct mm_struct *mm = vma->vm_mm;
95 		up_read(&mm->mmap_sem);
96 		mmput(mm);
97 	}
98 }
99 
100 static void *m_start(struct seq_file *m, loff_t *pos)
101 {
102 	struct proc_maps_private *priv = m->private;
103 	unsigned long last_addr = m->version;
104 	struct mm_struct *mm;
105 	struct vm_area_struct *vma, *tail_vma = NULL;
106 	loff_t l = *pos;
107 
108 	/* Clear the per syscall fields in priv */
109 	priv->task = NULL;
110 	priv->tail_vma = NULL;
111 
112 	/*
113 	 * We remember last_addr rather than next_addr to hit with
114 	 * mmap_cache most of the time. We have zero last_addr at
115 	 * the beginning and also after lseek. We will have -1 last_addr
116 	 * after the end of the vmas.
117 	 */
118 
119 	if (last_addr == -1UL)
120 		return NULL;
121 
122 	priv->task = get_pid_task(priv->pid, PIDTYPE_PID);
123 	if (!priv->task)
124 		return ERR_PTR(-ESRCH);
125 
126 	mm = mm_for_maps(priv->task);
127 	if (!mm || IS_ERR(mm))
128 		return mm;
129 	down_read(&mm->mmap_sem);
130 
131 	tail_vma = get_gate_vma(priv->task->mm);
132 	priv->tail_vma = tail_vma;
133 
134 	/* Start with last addr hint */
135 	vma = find_vma(mm, last_addr);
136 	if (last_addr && vma) {
137 		vma = vma->vm_next;
138 		goto out;
139 	}
140 
141 	/*
142 	 * Check the vma index is within the range and do
143 	 * sequential scan until m_index.
144 	 */
145 	vma = NULL;
146 	if ((unsigned long)l < mm->map_count) {
147 		vma = mm->mmap;
148 		while (l-- && vma)
149 			vma = vma->vm_next;
150 		goto out;
151 	}
152 
153 	if (l != mm->map_count)
154 		tail_vma = NULL; /* After gate vma */
155 
156 out:
157 	if (vma)
158 		return vma;
159 
160 	/* End of vmas has been reached */
161 	m->version = (tail_vma != NULL)? 0: -1UL;
162 	up_read(&mm->mmap_sem);
163 	mmput(mm);
164 	return tail_vma;
165 }
166 
167 static void *m_next(struct seq_file *m, void *v, loff_t *pos)
168 {
169 	struct proc_maps_private *priv = m->private;
170 	struct vm_area_struct *vma = v;
171 	struct vm_area_struct *tail_vma = priv->tail_vma;
172 
173 	(*pos)++;
174 	if (vma && (vma != tail_vma) && vma->vm_next)
175 		return vma->vm_next;
176 	vma_stop(priv, vma);
177 	return (vma != tail_vma)? tail_vma: NULL;
178 }
179 
180 static void m_stop(struct seq_file *m, void *v)
181 {
182 	struct proc_maps_private *priv = m->private;
183 	struct vm_area_struct *vma = v;
184 
185 	if (!IS_ERR(vma))
186 		vma_stop(priv, vma);
187 	if (priv->task)
188 		put_task_struct(priv->task);
189 }
190 
191 static int do_maps_open(struct inode *inode, struct file *file,
192 			const struct seq_operations *ops)
193 {
194 	struct proc_maps_private *priv;
195 	int ret = -ENOMEM;
196 	priv = kzalloc(sizeof(*priv), GFP_KERNEL);
197 	if (priv) {
198 		priv->pid = proc_pid(inode);
199 		ret = seq_open(file, ops);
200 		if (!ret) {
201 			struct seq_file *m = file->private_data;
202 			m->private = priv;
203 		} else {
204 			kfree(priv);
205 		}
206 	}
207 	return ret;
208 }
209 
210 static void show_map_vma(struct seq_file *m, struct vm_area_struct *vma)
211 {
212 	struct mm_struct *mm = vma->vm_mm;
213 	struct file *file = vma->vm_file;
214 	int flags = vma->vm_flags;
215 	unsigned long ino = 0;
216 	unsigned long long pgoff = 0;
217 	unsigned long start;
218 	dev_t dev = 0;
219 	int len;
220 
221 	if (file) {
222 		struct inode *inode = vma->vm_file->f_path.dentry->d_inode;
223 		dev = inode->i_sb->s_dev;
224 		ino = inode->i_ino;
225 		pgoff = ((loff_t)vma->vm_pgoff) << PAGE_SHIFT;
226 	}
227 
228 	/* We don't show the stack guard page in /proc/maps */
229 	start = vma->vm_start;
230 	if (vma->vm_flags & VM_GROWSDOWN)
231 		if (!vma_stack_continue(vma->vm_prev, vma->vm_start))
232 			start += PAGE_SIZE;
233 
234 	seq_printf(m, "%08lx-%08lx %c%c%c%c %08llx %02x:%02x %lu %n",
235 			start,
236 			vma->vm_end,
237 			flags & VM_READ ? 'r' : '-',
238 			flags & VM_WRITE ? 'w' : '-',
239 			flags & VM_EXEC ? 'x' : '-',
240 			flags & VM_MAYSHARE ? 's' : 'p',
241 			pgoff,
242 			MAJOR(dev), MINOR(dev), ino, &len);
243 
244 	/*
245 	 * Print the dentry name for named mappings, and a
246 	 * special [heap] marker for the heap:
247 	 */
248 	if (file) {
249 		pad_len_spaces(m, len);
250 		seq_path(m, &file->f_path, "\n");
251 	} else {
252 		const char *name = arch_vma_name(vma);
253 		if (!name) {
254 			if (mm) {
255 				if (vma->vm_start <= mm->brk &&
256 						vma->vm_end >= mm->start_brk) {
257 					name = "[heap]";
258 				} else if (vma->vm_start <= mm->start_stack &&
259 					   vma->vm_end >= mm->start_stack) {
260 					name = "[stack]";
261 				}
262 			} else {
263 				name = "[vdso]";
264 			}
265 		}
266 		if (name) {
267 			pad_len_spaces(m, len);
268 			seq_puts(m, name);
269 		}
270 	}
271 	seq_putc(m, '\n');
272 }
273 
274 static int show_map(struct seq_file *m, void *v)
275 {
276 	struct vm_area_struct *vma = v;
277 	struct proc_maps_private *priv = m->private;
278 	struct task_struct *task = priv->task;
279 
280 	show_map_vma(m, vma);
281 
282 	if (m->count < m->size)  /* vma is copied successfully */
283 		m->version = (vma != get_gate_vma(task->mm))
284 			? vma->vm_start : 0;
285 	return 0;
286 }
287 
288 static const struct seq_operations proc_pid_maps_op = {
289 	.start	= m_start,
290 	.next	= m_next,
291 	.stop	= m_stop,
292 	.show	= show_map
293 };
294 
295 static int maps_open(struct inode *inode, struct file *file)
296 {
297 	return do_maps_open(inode, file, &proc_pid_maps_op);
298 }
299 
300 const struct file_operations proc_maps_operations = {
301 	.open		= maps_open,
302 	.read		= seq_read,
303 	.llseek		= seq_lseek,
304 	.release	= seq_release_private,
305 };
306 
307 /*
308  * Proportional Set Size(PSS): my share of RSS.
309  *
310  * PSS of a process is the count of pages it has in memory, where each
311  * page is divided by the number of processes sharing it.  So if a
312  * process has 1000 pages all to itself, and 1000 shared with one other
313  * process, its PSS will be 1500.
314  *
315  * To keep (accumulated) division errors low, we adopt a 64bit
316  * fixed-point pss counter to minimize division errors. So (pss >>
317  * PSS_SHIFT) would be the real byte count.
318  *
319  * A shift of 12 before division means (assuming 4K page size):
320  * 	- 1M 3-user-pages add up to 8KB errors;
321  * 	- supports mapcount up to 2^24, or 16M;
322  * 	- supports PSS up to 2^52 bytes, or 4PB.
323  */
324 #define PSS_SHIFT 12
325 
326 #ifdef CONFIG_PROC_PAGE_MONITOR
327 struct mem_size_stats {
328 	struct vm_area_struct *vma;
329 	unsigned long resident;
330 	unsigned long shared_clean;
331 	unsigned long shared_dirty;
332 	unsigned long private_clean;
333 	unsigned long private_dirty;
334 	unsigned long referenced;
335 	unsigned long anonymous;
336 	unsigned long anonymous_thp;
337 	unsigned long swap;
338 	u64 pss;
339 };
340 
341 
342 static void smaps_pte_entry(pte_t ptent, unsigned long addr,
343 		unsigned long ptent_size, struct mm_walk *walk)
344 {
345 	struct mem_size_stats *mss = walk->private;
346 	struct vm_area_struct *vma = mss->vma;
347 	struct page *page;
348 	int mapcount;
349 
350 	if (is_swap_pte(ptent)) {
351 		mss->swap += ptent_size;
352 		return;
353 	}
354 
355 	if (!pte_present(ptent))
356 		return;
357 
358 	page = vm_normal_page(vma, addr, ptent);
359 	if (!page)
360 		return;
361 
362 	if (PageAnon(page))
363 		mss->anonymous += ptent_size;
364 
365 	mss->resident += ptent_size;
366 	/* Accumulate the size in pages that have been accessed. */
367 	if (pte_young(ptent) || PageReferenced(page))
368 		mss->referenced += ptent_size;
369 	mapcount = page_mapcount(page);
370 	if (mapcount >= 2) {
371 		if (pte_dirty(ptent) || PageDirty(page))
372 			mss->shared_dirty += ptent_size;
373 		else
374 			mss->shared_clean += ptent_size;
375 		mss->pss += (ptent_size << PSS_SHIFT) / mapcount;
376 	} else {
377 		if (pte_dirty(ptent) || PageDirty(page))
378 			mss->private_dirty += ptent_size;
379 		else
380 			mss->private_clean += ptent_size;
381 		mss->pss += (ptent_size << PSS_SHIFT);
382 	}
383 }
384 
385 static int smaps_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
386 			   struct mm_walk *walk)
387 {
388 	struct mem_size_stats *mss = walk->private;
389 	struct vm_area_struct *vma = mss->vma;
390 	pte_t *pte;
391 	spinlock_t *ptl;
392 
393 	spin_lock(&walk->mm->page_table_lock);
394 	if (pmd_trans_huge(*pmd)) {
395 		if (pmd_trans_splitting(*pmd)) {
396 			spin_unlock(&walk->mm->page_table_lock);
397 			wait_split_huge_page(vma->anon_vma, pmd);
398 		} else {
399 			smaps_pte_entry(*(pte_t *)pmd, addr,
400 					HPAGE_PMD_SIZE, walk);
401 			spin_unlock(&walk->mm->page_table_lock);
402 			mss->anonymous_thp += HPAGE_PMD_SIZE;
403 			return 0;
404 		}
405 	} else {
406 		spin_unlock(&walk->mm->page_table_lock);
407 	}
408 	/*
409 	 * The mmap_sem held all the way back in m_start() is what
410 	 * keeps khugepaged out of here and from collapsing things
411 	 * in here.
412 	 */
413 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
414 	for (; addr != end; pte++, addr += PAGE_SIZE)
415 		smaps_pte_entry(*pte, addr, PAGE_SIZE, walk);
416 	pte_unmap_unlock(pte - 1, ptl);
417 	cond_resched();
418 	return 0;
419 }
420 
421 static int show_smap(struct seq_file *m, void *v)
422 {
423 	struct proc_maps_private *priv = m->private;
424 	struct task_struct *task = priv->task;
425 	struct vm_area_struct *vma = v;
426 	struct mem_size_stats mss;
427 	struct mm_walk smaps_walk = {
428 		.pmd_entry = smaps_pte_range,
429 		.mm = vma->vm_mm,
430 		.private = &mss,
431 	};
432 
433 	memset(&mss, 0, sizeof mss);
434 	mss.vma = vma;
435 	/* mmap_sem is held in m_start */
436 	if (vma->vm_mm && !is_vm_hugetlb_page(vma))
437 		walk_page_range(vma->vm_start, vma->vm_end, &smaps_walk);
438 
439 	show_map_vma(m, vma);
440 
441 	seq_printf(m,
442 		   "Size:           %8lu kB\n"
443 		   "Rss:            %8lu kB\n"
444 		   "Pss:            %8lu kB\n"
445 		   "Shared_Clean:   %8lu kB\n"
446 		   "Shared_Dirty:   %8lu kB\n"
447 		   "Private_Clean:  %8lu kB\n"
448 		   "Private_Dirty:  %8lu kB\n"
449 		   "Referenced:     %8lu kB\n"
450 		   "Anonymous:      %8lu kB\n"
451 		   "AnonHugePages:  %8lu kB\n"
452 		   "Swap:           %8lu kB\n"
453 		   "KernelPageSize: %8lu kB\n"
454 		   "MMUPageSize:    %8lu kB\n"
455 		   "Locked:         %8lu kB\n",
456 		   (vma->vm_end - vma->vm_start) >> 10,
457 		   mss.resident >> 10,
458 		   (unsigned long)(mss.pss >> (10 + PSS_SHIFT)),
459 		   mss.shared_clean  >> 10,
460 		   mss.shared_dirty  >> 10,
461 		   mss.private_clean >> 10,
462 		   mss.private_dirty >> 10,
463 		   mss.referenced >> 10,
464 		   mss.anonymous >> 10,
465 		   mss.anonymous_thp >> 10,
466 		   mss.swap >> 10,
467 		   vma_kernel_pagesize(vma) >> 10,
468 		   vma_mmu_pagesize(vma) >> 10,
469 		   (vma->vm_flags & VM_LOCKED) ?
470 			(unsigned long)(mss.pss >> (10 + PSS_SHIFT)) : 0);
471 
472 	if (m->count < m->size)  /* vma is copied successfully */
473 		m->version = (vma != get_gate_vma(task->mm))
474 			? vma->vm_start : 0;
475 	return 0;
476 }
477 
478 static const struct seq_operations proc_pid_smaps_op = {
479 	.start	= m_start,
480 	.next	= m_next,
481 	.stop	= m_stop,
482 	.show	= show_smap
483 };
484 
485 static int smaps_open(struct inode *inode, struct file *file)
486 {
487 	return do_maps_open(inode, file, &proc_pid_smaps_op);
488 }
489 
490 const struct file_operations proc_smaps_operations = {
491 	.open		= smaps_open,
492 	.read		= seq_read,
493 	.llseek		= seq_lseek,
494 	.release	= seq_release_private,
495 };
496 
497 static int clear_refs_pte_range(pmd_t *pmd, unsigned long addr,
498 				unsigned long end, struct mm_walk *walk)
499 {
500 	struct vm_area_struct *vma = walk->private;
501 	pte_t *pte, ptent;
502 	spinlock_t *ptl;
503 	struct page *page;
504 
505 	split_huge_page_pmd(walk->mm, pmd);
506 
507 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
508 	for (; addr != end; pte++, addr += PAGE_SIZE) {
509 		ptent = *pte;
510 		if (!pte_present(ptent))
511 			continue;
512 
513 		page = vm_normal_page(vma, addr, ptent);
514 		if (!page)
515 			continue;
516 
517 		/* Clear accessed and referenced bits. */
518 		ptep_test_and_clear_young(vma, addr, pte);
519 		ClearPageReferenced(page);
520 	}
521 	pte_unmap_unlock(pte - 1, ptl);
522 	cond_resched();
523 	return 0;
524 }
525 
526 #define CLEAR_REFS_ALL 1
527 #define CLEAR_REFS_ANON 2
528 #define CLEAR_REFS_MAPPED 3
529 
530 static ssize_t clear_refs_write(struct file *file, const char __user *buf,
531 				size_t count, loff_t *ppos)
532 {
533 	struct task_struct *task;
534 	char buffer[PROC_NUMBUF];
535 	struct mm_struct *mm;
536 	struct vm_area_struct *vma;
537 	long type;
538 
539 	memset(buffer, 0, sizeof(buffer));
540 	if (count > sizeof(buffer) - 1)
541 		count = sizeof(buffer) - 1;
542 	if (copy_from_user(buffer, buf, count))
543 		return -EFAULT;
544 	if (strict_strtol(strstrip(buffer), 10, &type))
545 		return -EINVAL;
546 	if (type < CLEAR_REFS_ALL || type > CLEAR_REFS_MAPPED)
547 		return -EINVAL;
548 	task = get_proc_task(file->f_path.dentry->d_inode);
549 	if (!task)
550 		return -ESRCH;
551 	mm = get_task_mm(task);
552 	if (mm) {
553 		struct mm_walk clear_refs_walk = {
554 			.pmd_entry = clear_refs_pte_range,
555 			.mm = mm,
556 		};
557 		down_read(&mm->mmap_sem);
558 		for (vma = mm->mmap; vma; vma = vma->vm_next) {
559 			clear_refs_walk.private = vma;
560 			if (is_vm_hugetlb_page(vma))
561 				continue;
562 			/*
563 			 * Writing 1 to /proc/pid/clear_refs affects all pages.
564 			 *
565 			 * Writing 2 to /proc/pid/clear_refs only affects
566 			 * Anonymous pages.
567 			 *
568 			 * Writing 3 to /proc/pid/clear_refs only affects file
569 			 * mapped pages.
570 			 */
571 			if (type == CLEAR_REFS_ANON && vma->vm_file)
572 				continue;
573 			if (type == CLEAR_REFS_MAPPED && !vma->vm_file)
574 				continue;
575 			walk_page_range(vma->vm_start, vma->vm_end,
576 					&clear_refs_walk);
577 		}
578 		flush_tlb_mm(mm);
579 		up_read(&mm->mmap_sem);
580 		mmput(mm);
581 	}
582 	put_task_struct(task);
583 
584 	return count;
585 }
586 
587 const struct file_operations proc_clear_refs_operations = {
588 	.write		= clear_refs_write,
589 	.llseek		= noop_llseek,
590 };
591 
592 struct pagemapread {
593 	int pos, len;
594 	u64 *buffer;
595 };
596 
597 #define PM_ENTRY_BYTES      sizeof(u64)
598 #define PM_STATUS_BITS      3
599 #define PM_STATUS_OFFSET    (64 - PM_STATUS_BITS)
600 #define PM_STATUS_MASK      (((1LL << PM_STATUS_BITS) - 1) << PM_STATUS_OFFSET)
601 #define PM_STATUS(nr)       (((nr) << PM_STATUS_OFFSET) & PM_STATUS_MASK)
602 #define PM_PSHIFT_BITS      6
603 #define PM_PSHIFT_OFFSET    (PM_STATUS_OFFSET - PM_PSHIFT_BITS)
604 #define PM_PSHIFT_MASK      (((1LL << PM_PSHIFT_BITS) - 1) << PM_PSHIFT_OFFSET)
605 #define PM_PSHIFT(x)        (((u64) (x) << PM_PSHIFT_OFFSET) & PM_PSHIFT_MASK)
606 #define PM_PFRAME_MASK      ((1LL << PM_PSHIFT_OFFSET) - 1)
607 #define PM_PFRAME(x)        ((x) & PM_PFRAME_MASK)
608 
609 #define PM_PRESENT          PM_STATUS(4LL)
610 #define PM_SWAP             PM_STATUS(2LL)
611 #define PM_NOT_PRESENT      PM_PSHIFT(PAGE_SHIFT)
612 #define PM_END_OF_BUFFER    1
613 
614 static int add_to_pagemap(unsigned long addr, u64 pfn,
615 			  struct pagemapread *pm)
616 {
617 	pm->buffer[pm->pos++] = pfn;
618 	if (pm->pos >= pm->len)
619 		return PM_END_OF_BUFFER;
620 	return 0;
621 }
622 
623 static int pagemap_pte_hole(unsigned long start, unsigned long end,
624 				struct mm_walk *walk)
625 {
626 	struct pagemapread *pm = walk->private;
627 	unsigned long addr;
628 	int err = 0;
629 	for (addr = start; addr < end; addr += PAGE_SIZE) {
630 		err = add_to_pagemap(addr, PM_NOT_PRESENT, pm);
631 		if (err)
632 			break;
633 	}
634 	return err;
635 }
636 
637 static u64 swap_pte_to_pagemap_entry(pte_t pte)
638 {
639 	swp_entry_t e = pte_to_swp_entry(pte);
640 	return swp_type(e) | (swp_offset(e) << MAX_SWAPFILES_SHIFT);
641 }
642 
643 static u64 pte_to_pagemap_entry(pte_t pte)
644 {
645 	u64 pme = 0;
646 	if (is_swap_pte(pte))
647 		pme = PM_PFRAME(swap_pte_to_pagemap_entry(pte))
648 			| PM_PSHIFT(PAGE_SHIFT) | PM_SWAP;
649 	else if (pte_present(pte))
650 		pme = PM_PFRAME(pte_pfn(pte))
651 			| PM_PSHIFT(PAGE_SHIFT) | PM_PRESENT;
652 	return pme;
653 }
654 
655 static int pagemap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
656 			     struct mm_walk *walk)
657 {
658 	struct vm_area_struct *vma;
659 	struct pagemapread *pm = walk->private;
660 	pte_t *pte;
661 	int err = 0;
662 
663 	split_huge_page_pmd(walk->mm, pmd);
664 
665 	/* find the first VMA at or above 'addr' */
666 	vma = find_vma(walk->mm, addr);
667 	for (; addr != end; addr += PAGE_SIZE) {
668 		u64 pfn = PM_NOT_PRESENT;
669 
670 		/* check to see if we've left 'vma' behind
671 		 * and need a new, higher one */
672 		if (vma && (addr >= vma->vm_end))
673 			vma = find_vma(walk->mm, addr);
674 
675 		/* check that 'vma' actually covers this address,
676 		 * and that it isn't a huge page vma */
677 		if (vma && (vma->vm_start <= addr) &&
678 		    !is_vm_hugetlb_page(vma)) {
679 			pte = pte_offset_map(pmd, addr);
680 			pfn = pte_to_pagemap_entry(*pte);
681 			/* unmap before userspace copy */
682 			pte_unmap(pte);
683 		}
684 		err = add_to_pagemap(addr, pfn, pm);
685 		if (err)
686 			return err;
687 	}
688 
689 	cond_resched();
690 
691 	return err;
692 }
693 
694 #ifdef CONFIG_HUGETLB_PAGE
695 static u64 huge_pte_to_pagemap_entry(pte_t pte, int offset)
696 {
697 	u64 pme = 0;
698 	if (pte_present(pte))
699 		pme = PM_PFRAME(pte_pfn(pte) + offset)
700 			| PM_PSHIFT(PAGE_SHIFT) | PM_PRESENT;
701 	return pme;
702 }
703 
704 /* This function walks within one hugetlb entry in the single call */
705 static int pagemap_hugetlb_range(pte_t *pte, unsigned long hmask,
706 				 unsigned long addr, unsigned long end,
707 				 struct mm_walk *walk)
708 {
709 	struct pagemapread *pm = walk->private;
710 	int err = 0;
711 	u64 pfn;
712 
713 	for (; addr != end; addr += PAGE_SIZE) {
714 		int offset = (addr & ~hmask) >> PAGE_SHIFT;
715 		pfn = huge_pte_to_pagemap_entry(*pte, offset);
716 		err = add_to_pagemap(addr, pfn, pm);
717 		if (err)
718 			return err;
719 	}
720 
721 	cond_resched();
722 
723 	return err;
724 }
725 #endif /* HUGETLB_PAGE */
726 
727 /*
728  * /proc/pid/pagemap - an array mapping virtual pages to pfns
729  *
730  * For each page in the address space, this file contains one 64-bit entry
731  * consisting of the following:
732  *
733  * Bits 0-55  page frame number (PFN) if present
734  * Bits 0-4   swap type if swapped
735  * Bits 5-55  swap offset if swapped
736  * Bits 55-60 page shift (page size = 1<<page shift)
737  * Bit  61    reserved for future use
738  * Bit  62    page swapped
739  * Bit  63    page present
740  *
741  * If the page is not present but in swap, then the PFN contains an
742  * encoding of the swap file number and the page's offset into the
743  * swap. Unmapped pages return a null PFN. This allows determining
744  * precisely which pages are mapped (or in swap) and comparing mapped
745  * pages between processes.
746  *
747  * Efficient users of this interface will use /proc/pid/maps to
748  * determine which areas of memory are actually mapped and llseek to
749  * skip over unmapped regions.
750  */
751 #define PAGEMAP_WALK_SIZE	(PMD_SIZE)
752 #define PAGEMAP_WALK_MASK	(PMD_MASK)
753 static ssize_t pagemap_read(struct file *file, char __user *buf,
754 			    size_t count, loff_t *ppos)
755 {
756 	struct task_struct *task = get_proc_task(file->f_path.dentry->d_inode);
757 	struct mm_struct *mm;
758 	struct pagemapread pm;
759 	int ret = -ESRCH;
760 	struct mm_walk pagemap_walk = {};
761 	unsigned long src;
762 	unsigned long svpfn;
763 	unsigned long start_vaddr;
764 	unsigned long end_vaddr;
765 	int copied = 0;
766 
767 	if (!task)
768 		goto out;
769 
770 	mm = mm_for_maps(task);
771 	ret = PTR_ERR(mm);
772 	if (!mm || IS_ERR(mm))
773 		goto out_task;
774 
775 	ret = -EINVAL;
776 	/* file position must be aligned */
777 	if ((*ppos % PM_ENTRY_BYTES) || (count % PM_ENTRY_BYTES))
778 		goto out_task;
779 
780 	ret = 0;
781 
782 	if (!count)
783 		goto out_task;
784 
785 	pm.len = PM_ENTRY_BYTES * (PAGEMAP_WALK_SIZE >> PAGE_SHIFT);
786 	pm.buffer = kmalloc(pm.len, GFP_TEMPORARY);
787 	ret = -ENOMEM;
788 	if (!pm.buffer)
789 		goto out_mm;
790 
791 	pagemap_walk.pmd_entry = pagemap_pte_range;
792 	pagemap_walk.pte_hole = pagemap_pte_hole;
793 #ifdef CONFIG_HUGETLB_PAGE
794 	pagemap_walk.hugetlb_entry = pagemap_hugetlb_range;
795 #endif
796 	pagemap_walk.mm = mm;
797 	pagemap_walk.private = &pm;
798 
799 	src = *ppos;
800 	svpfn = src / PM_ENTRY_BYTES;
801 	start_vaddr = svpfn << PAGE_SHIFT;
802 	end_vaddr = TASK_SIZE_OF(task);
803 
804 	/* watch out for wraparound */
805 	if (svpfn > TASK_SIZE_OF(task) >> PAGE_SHIFT)
806 		start_vaddr = end_vaddr;
807 
808 	/*
809 	 * The odds are that this will stop walking way
810 	 * before end_vaddr, because the length of the
811 	 * user buffer is tracked in "pm", and the walk
812 	 * will stop when we hit the end of the buffer.
813 	 */
814 	ret = 0;
815 	while (count && (start_vaddr < end_vaddr)) {
816 		int len;
817 		unsigned long end;
818 
819 		pm.pos = 0;
820 		end = (start_vaddr + PAGEMAP_WALK_SIZE) & PAGEMAP_WALK_MASK;
821 		/* overflow ? */
822 		if (end < start_vaddr || end > end_vaddr)
823 			end = end_vaddr;
824 		down_read(&mm->mmap_sem);
825 		ret = walk_page_range(start_vaddr, end, &pagemap_walk);
826 		up_read(&mm->mmap_sem);
827 		start_vaddr = end;
828 
829 		len = min(count, PM_ENTRY_BYTES * pm.pos);
830 		if (copy_to_user(buf, pm.buffer, len)) {
831 			ret = -EFAULT;
832 			goto out_free;
833 		}
834 		copied += len;
835 		buf += len;
836 		count -= len;
837 	}
838 	*ppos += copied;
839 	if (!ret || ret == PM_END_OF_BUFFER)
840 		ret = copied;
841 
842 out_free:
843 	kfree(pm.buffer);
844 out_mm:
845 	mmput(mm);
846 out_task:
847 	put_task_struct(task);
848 out:
849 	return ret;
850 }
851 
852 const struct file_operations proc_pagemap_operations = {
853 	.llseek		= mem_lseek, /* borrow this */
854 	.read		= pagemap_read,
855 };
856 #endif /* CONFIG_PROC_PAGE_MONITOR */
857 
858 #ifdef CONFIG_NUMA
859 extern int show_numa_map(struct seq_file *m, void *v);
860 
861 static const struct seq_operations proc_pid_numa_maps_op = {
862         .start  = m_start,
863         .next   = m_next,
864         .stop   = m_stop,
865         .show   = show_numa_map,
866 };
867 
868 static int numa_maps_open(struct inode *inode, struct file *file)
869 {
870 	return do_maps_open(inode, file, &proc_pid_numa_maps_op);
871 }
872 
873 const struct file_operations proc_numa_maps_operations = {
874 	.open		= numa_maps_open,
875 	.read		= seq_read,
876 	.llseek		= seq_lseek,
877 	.release	= seq_release_private,
878 };
879 #endif
880