xref: /linux/fs/proc/task_mmu.c (revision 79d2e1919a2728ef49d938eb20ebd5903c14dfb0)
1 // SPDX-License-Identifier: GPL-2.0
2 #include <linux/pagewalk.h>
3 #include <linux/mm_inline.h>
4 #include <linux/hugetlb.h>
5 #include <linux/huge_mm.h>
6 #include <linux/mount.h>
7 #include <linux/ksm.h>
8 #include <linux/seq_file.h>
9 #include <linux/highmem.h>
10 #include <linux/ptrace.h>
11 #include <linux/slab.h>
12 #include <linux/pagemap.h>
13 #include <linux/mempolicy.h>
14 #include <linux/rmap.h>
15 #include <linux/swap.h>
16 #include <linux/sched/mm.h>
17 #include <linux/swapops.h>
18 #include <linux/mmu_notifier.h>
19 #include <linux/page_idle.h>
20 #include <linux/shmem_fs.h>
21 #include <linux/uaccess.h>
22 #include <linux/pkeys.h>
23 #include <linux/minmax.h>
24 #include <linux/overflow.h>
25 #include <linux/buildid.h>
26 
27 #include <asm/elf.h>
28 #include <asm/tlb.h>
29 #include <asm/tlbflush.h>
30 #include "internal.h"
31 
32 #define SEQ_PUT_DEC(str, val) \
33 		seq_put_decimal_ull_width(m, str, (val) << (PAGE_SHIFT-10), 8)
34 void task_mem(struct seq_file *m, struct mm_struct *mm)
35 {
36 	unsigned long text, lib, swap, anon, file, shmem;
37 	unsigned long hiwater_vm, total_vm, hiwater_rss, total_rss;
38 
39 	anon = get_mm_counter(mm, MM_ANONPAGES);
40 	file = get_mm_counter(mm, MM_FILEPAGES);
41 	shmem = get_mm_counter(mm, MM_SHMEMPAGES);
42 
43 	/*
44 	 * Note: to minimize their overhead, mm maintains hiwater_vm and
45 	 * hiwater_rss only when about to *lower* total_vm or rss.  Any
46 	 * collector of these hiwater stats must therefore get total_vm
47 	 * and rss too, which will usually be the higher.  Barriers? not
48 	 * worth the effort, such snapshots can always be inconsistent.
49 	 */
50 	hiwater_vm = total_vm = mm->total_vm;
51 	if (hiwater_vm < mm->hiwater_vm)
52 		hiwater_vm = mm->hiwater_vm;
53 	hiwater_rss = total_rss = anon + file + shmem;
54 	if (hiwater_rss < mm->hiwater_rss)
55 		hiwater_rss = mm->hiwater_rss;
56 
57 	/* split executable areas between text and lib */
58 	text = PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK);
59 	text = min(text, mm->exec_vm << PAGE_SHIFT);
60 	lib = (mm->exec_vm << PAGE_SHIFT) - text;
61 
62 	swap = get_mm_counter(mm, MM_SWAPENTS);
63 	SEQ_PUT_DEC("VmPeak:\t", hiwater_vm);
64 	SEQ_PUT_DEC(" kB\nVmSize:\t", total_vm);
65 	SEQ_PUT_DEC(" kB\nVmLck:\t", mm->locked_vm);
66 	SEQ_PUT_DEC(" kB\nVmPin:\t", atomic64_read(&mm->pinned_vm));
67 	SEQ_PUT_DEC(" kB\nVmHWM:\t", hiwater_rss);
68 	SEQ_PUT_DEC(" kB\nVmRSS:\t", total_rss);
69 	SEQ_PUT_DEC(" kB\nRssAnon:\t", anon);
70 	SEQ_PUT_DEC(" kB\nRssFile:\t", file);
71 	SEQ_PUT_DEC(" kB\nRssShmem:\t", shmem);
72 	SEQ_PUT_DEC(" kB\nVmData:\t", mm->data_vm);
73 	SEQ_PUT_DEC(" kB\nVmStk:\t", mm->stack_vm);
74 	seq_put_decimal_ull_width(m,
75 		    " kB\nVmExe:\t", text >> 10, 8);
76 	seq_put_decimal_ull_width(m,
77 		    " kB\nVmLib:\t", lib >> 10, 8);
78 	seq_put_decimal_ull_width(m,
79 		    " kB\nVmPTE:\t", mm_pgtables_bytes(mm) >> 10, 8);
80 	SEQ_PUT_DEC(" kB\nVmSwap:\t", swap);
81 	seq_puts(m, " kB\n");
82 	hugetlb_report_usage(m, mm);
83 }
84 #undef SEQ_PUT_DEC
85 
86 unsigned long task_vsize(struct mm_struct *mm)
87 {
88 	return PAGE_SIZE * mm->total_vm;
89 }
90 
91 unsigned long task_statm(struct mm_struct *mm,
92 			 unsigned long *shared, unsigned long *text,
93 			 unsigned long *data, unsigned long *resident)
94 {
95 	*shared = get_mm_counter(mm, MM_FILEPAGES) +
96 			get_mm_counter(mm, MM_SHMEMPAGES);
97 	*text = (PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK))
98 								>> PAGE_SHIFT;
99 	*data = mm->data_vm + mm->stack_vm;
100 	*resident = *shared + get_mm_counter(mm, MM_ANONPAGES);
101 	return mm->total_vm;
102 }
103 
104 #ifdef CONFIG_NUMA
105 /*
106  * Save get_task_policy() for show_numa_map().
107  */
108 static void hold_task_mempolicy(struct proc_maps_private *priv)
109 {
110 	struct task_struct *task = priv->task;
111 
112 	task_lock(task);
113 	priv->task_mempolicy = get_task_policy(task);
114 	mpol_get(priv->task_mempolicy);
115 	task_unlock(task);
116 }
117 static void release_task_mempolicy(struct proc_maps_private *priv)
118 {
119 	mpol_put(priv->task_mempolicy);
120 }
121 #else
122 static void hold_task_mempolicy(struct proc_maps_private *priv)
123 {
124 }
125 static void release_task_mempolicy(struct proc_maps_private *priv)
126 {
127 }
128 #endif
129 
130 static struct vm_area_struct *proc_get_vma(struct proc_maps_private *priv,
131 						loff_t *ppos)
132 {
133 	struct vm_area_struct *vma = vma_next(&priv->iter);
134 
135 	if (vma) {
136 		*ppos = vma->vm_start;
137 	} else {
138 		*ppos = -2UL;
139 		vma = get_gate_vma(priv->mm);
140 	}
141 
142 	return vma;
143 }
144 
145 static void *m_start(struct seq_file *m, loff_t *ppos)
146 {
147 	struct proc_maps_private *priv = m->private;
148 	unsigned long last_addr = *ppos;
149 	struct mm_struct *mm;
150 
151 	/* See m_next(). Zero at the start or after lseek. */
152 	if (last_addr == -1UL)
153 		return NULL;
154 
155 	priv->task = get_proc_task(priv->inode);
156 	if (!priv->task)
157 		return ERR_PTR(-ESRCH);
158 
159 	mm = priv->mm;
160 	if (!mm || !mmget_not_zero(mm)) {
161 		put_task_struct(priv->task);
162 		priv->task = NULL;
163 		return NULL;
164 	}
165 
166 	if (mmap_read_lock_killable(mm)) {
167 		mmput(mm);
168 		put_task_struct(priv->task);
169 		priv->task = NULL;
170 		return ERR_PTR(-EINTR);
171 	}
172 
173 	vma_iter_init(&priv->iter, mm, last_addr);
174 	hold_task_mempolicy(priv);
175 	if (last_addr == -2UL)
176 		return get_gate_vma(mm);
177 
178 	return proc_get_vma(priv, ppos);
179 }
180 
181 static void *m_next(struct seq_file *m, void *v, loff_t *ppos)
182 {
183 	if (*ppos == -2UL) {
184 		*ppos = -1UL;
185 		return NULL;
186 	}
187 	return proc_get_vma(m->private, ppos);
188 }
189 
190 static void m_stop(struct seq_file *m, void *v)
191 {
192 	struct proc_maps_private *priv = m->private;
193 	struct mm_struct *mm = priv->mm;
194 
195 	if (!priv->task)
196 		return;
197 
198 	release_task_mempolicy(priv);
199 	mmap_read_unlock(mm);
200 	mmput(mm);
201 	put_task_struct(priv->task);
202 	priv->task = NULL;
203 }
204 
205 static int proc_maps_open(struct inode *inode, struct file *file,
206 			const struct seq_operations *ops, int psize)
207 {
208 	struct proc_maps_private *priv = __seq_open_private(file, ops, psize);
209 
210 	if (!priv)
211 		return -ENOMEM;
212 
213 	priv->inode = inode;
214 	priv->mm = proc_mem_open(inode, PTRACE_MODE_READ);
215 	if (IS_ERR(priv->mm)) {
216 		int err = PTR_ERR(priv->mm);
217 
218 		seq_release_private(inode, file);
219 		return err;
220 	}
221 
222 	return 0;
223 }
224 
225 static int proc_map_release(struct inode *inode, struct file *file)
226 {
227 	struct seq_file *seq = file->private_data;
228 	struct proc_maps_private *priv = seq->private;
229 
230 	if (priv->mm)
231 		mmdrop(priv->mm);
232 
233 	return seq_release_private(inode, file);
234 }
235 
236 static int do_maps_open(struct inode *inode, struct file *file,
237 			const struct seq_operations *ops)
238 {
239 	return proc_maps_open(inode, file, ops,
240 				sizeof(struct proc_maps_private));
241 }
242 
243 static void get_vma_name(struct vm_area_struct *vma,
244 			 const struct path **path,
245 			 const char **name,
246 			 const char **name_fmt)
247 {
248 	struct anon_vma_name *anon_name = vma->vm_mm ? anon_vma_name(vma) : NULL;
249 
250 	*name = NULL;
251 	*path = NULL;
252 	*name_fmt = NULL;
253 
254 	/*
255 	 * Print the dentry name for named mappings, and a
256 	 * special [heap] marker for the heap:
257 	 */
258 	if (vma->vm_file) {
259 		/*
260 		 * If user named this anon shared memory via
261 		 * prctl(PR_SET_VMA ..., use the provided name.
262 		 */
263 		if (anon_name) {
264 			*name_fmt = "[anon_shmem:%s]";
265 			*name = anon_name->name;
266 		} else {
267 			*path = file_user_path(vma->vm_file);
268 		}
269 		return;
270 	}
271 
272 	if (vma->vm_ops && vma->vm_ops->name) {
273 		*name = vma->vm_ops->name(vma);
274 		if (*name)
275 			return;
276 	}
277 
278 	*name = arch_vma_name(vma);
279 	if (*name)
280 		return;
281 
282 	if (!vma->vm_mm) {
283 		*name = "[vdso]";
284 		return;
285 	}
286 
287 	if (vma_is_initial_heap(vma)) {
288 		*name = "[heap]";
289 		return;
290 	}
291 
292 	if (vma_is_initial_stack(vma)) {
293 		*name = "[stack]";
294 		return;
295 	}
296 
297 	if (anon_name) {
298 		*name_fmt = "[anon:%s]";
299 		*name = anon_name->name;
300 		return;
301 	}
302 }
303 
304 static void show_vma_header_prefix(struct seq_file *m,
305 				   unsigned long start, unsigned long end,
306 				   vm_flags_t flags, unsigned long long pgoff,
307 				   dev_t dev, unsigned long ino)
308 {
309 	seq_setwidth(m, 25 + sizeof(void *) * 6 - 1);
310 	seq_put_hex_ll(m, NULL, start, 8);
311 	seq_put_hex_ll(m, "-", end, 8);
312 	seq_putc(m, ' ');
313 	seq_putc(m, flags & VM_READ ? 'r' : '-');
314 	seq_putc(m, flags & VM_WRITE ? 'w' : '-');
315 	seq_putc(m, flags & VM_EXEC ? 'x' : '-');
316 	seq_putc(m, flags & VM_MAYSHARE ? 's' : 'p');
317 	seq_put_hex_ll(m, " ", pgoff, 8);
318 	seq_put_hex_ll(m, " ", MAJOR(dev), 2);
319 	seq_put_hex_ll(m, ":", MINOR(dev), 2);
320 	seq_put_decimal_ull(m, " ", ino);
321 	seq_putc(m, ' ');
322 }
323 
324 static void
325 show_map_vma(struct seq_file *m, struct vm_area_struct *vma)
326 {
327 	const struct path *path;
328 	const char *name_fmt, *name;
329 	vm_flags_t flags = vma->vm_flags;
330 	unsigned long ino = 0;
331 	unsigned long long pgoff = 0;
332 	unsigned long start, end;
333 	dev_t dev = 0;
334 
335 	if (vma->vm_file) {
336 		const struct inode *inode = file_user_inode(vma->vm_file);
337 
338 		dev = inode->i_sb->s_dev;
339 		ino = inode->i_ino;
340 		pgoff = ((loff_t)vma->vm_pgoff) << PAGE_SHIFT;
341 	}
342 
343 	start = vma->vm_start;
344 	end = vma->vm_end;
345 	show_vma_header_prefix(m, start, end, flags, pgoff, dev, ino);
346 
347 	get_vma_name(vma, &path, &name, &name_fmt);
348 	if (path) {
349 		seq_pad(m, ' ');
350 		seq_path(m, path, "\n");
351 	} else if (name_fmt) {
352 		seq_pad(m, ' ');
353 		seq_printf(m, name_fmt, name);
354 	} else if (name) {
355 		seq_pad(m, ' ');
356 		seq_puts(m, name);
357 	}
358 	seq_putc(m, '\n');
359 }
360 
361 static int show_map(struct seq_file *m, void *v)
362 {
363 	show_map_vma(m, v);
364 	return 0;
365 }
366 
367 static const struct seq_operations proc_pid_maps_op = {
368 	.start	= m_start,
369 	.next	= m_next,
370 	.stop	= m_stop,
371 	.show	= show_map
372 };
373 
374 static int pid_maps_open(struct inode *inode, struct file *file)
375 {
376 	return do_maps_open(inode, file, &proc_pid_maps_op);
377 }
378 
379 #define PROCMAP_QUERY_VMA_FLAGS (				\
380 		PROCMAP_QUERY_VMA_READABLE |			\
381 		PROCMAP_QUERY_VMA_WRITABLE |			\
382 		PROCMAP_QUERY_VMA_EXECUTABLE |			\
383 		PROCMAP_QUERY_VMA_SHARED			\
384 )
385 
386 #define PROCMAP_QUERY_VALID_FLAGS_MASK (			\
387 		PROCMAP_QUERY_COVERING_OR_NEXT_VMA |		\
388 		PROCMAP_QUERY_FILE_BACKED_VMA |			\
389 		PROCMAP_QUERY_VMA_FLAGS				\
390 )
391 
392 static int query_vma_setup(struct mm_struct *mm)
393 {
394 	return mmap_read_lock_killable(mm);
395 }
396 
397 static void query_vma_teardown(struct mm_struct *mm, struct vm_area_struct *vma)
398 {
399 	mmap_read_unlock(mm);
400 }
401 
402 static struct vm_area_struct *query_vma_find_by_addr(struct mm_struct *mm, unsigned long addr)
403 {
404 	return find_vma(mm, addr);
405 }
406 
407 static struct vm_area_struct *query_matching_vma(struct mm_struct *mm,
408 						 unsigned long addr, u32 flags)
409 {
410 	struct vm_area_struct *vma;
411 
412 next_vma:
413 	vma = query_vma_find_by_addr(mm, addr);
414 	if (!vma)
415 		goto no_vma;
416 
417 	/* user requested only file-backed VMA, keep iterating */
418 	if ((flags & PROCMAP_QUERY_FILE_BACKED_VMA) && !vma->vm_file)
419 		goto skip_vma;
420 
421 	/* VMA permissions should satisfy query flags */
422 	if (flags & PROCMAP_QUERY_VMA_FLAGS) {
423 		u32 perm = 0;
424 
425 		if (flags & PROCMAP_QUERY_VMA_READABLE)
426 			perm |= VM_READ;
427 		if (flags & PROCMAP_QUERY_VMA_WRITABLE)
428 			perm |= VM_WRITE;
429 		if (flags & PROCMAP_QUERY_VMA_EXECUTABLE)
430 			perm |= VM_EXEC;
431 		if (flags & PROCMAP_QUERY_VMA_SHARED)
432 			perm |= VM_MAYSHARE;
433 
434 		if ((vma->vm_flags & perm) != perm)
435 			goto skip_vma;
436 	}
437 
438 	/* found covering VMA or user is OK with the matching next VMA */
439 	if ((flags & PROCMAP_QUERY_COVERING_OR_NEXT_VMA) || vma->vm_start <= addr)
440 		return vma;
441 
442 skip_vma:
443 	/*
444 	 * If the user needs closest matching VMA, keep iterating.
445 	 */
446 	addr = vma->vm_end;
447 	if (flags & PROCMAP_QUERY_COVERING_OR_NEXT_VMA)
448 		goto next_vma;
449 
450 no_vma:
451 	return ERR_PTR(-ENOENT);
452 }
453 
454 static int do_procmap_query(struct proc_maps_private *priv, void __user *uarg)
455 {
456 	struct procmap_query karg;
457 	struct vm_area_struct *vma;
458 	struct mm_struct *mm;
459 	const char *name = NULL;
460 	char build_id_buf[BUILD_ID_SIZE_MAX], *name_buf = NULL;
461 	__u64 usize;
462 	int err;
463 
464 	if (copy_from_user(&usize, (void __user *)uarg, sizeof(usize)))
465 		return -EFAULT;
466 	/* argument struct can never be that large, reject abuse */
467 	if (usize > PAGE_SIZE)
468 		return -E2BIG;
469 	/* argument struct should have at least query_flags and query_addr fields */
470 	if (usize < offsetofend(struct procmap_query, query_addr))
471 		return -EINVAL;
472 	err = copy_struct_from_user(&karg, sizeof(karg), uarg, usize);
473 	if (err)
474 		return err;
475 
476 	/* reject unknown flags */
477 	if (karg.query_flags & ~PROCMAP_QUERY_VALID_FLAGS_MASK)
478 		return -EINVAL;
479 	/* either both buffer address and size are set, or both should be zero */
480 	if (!!karg.vma_name_size != !!karg.vma_name_addr)
481 		return -EINVAL;
482 	if (!!karg.build_id_size != !!karg.build_id_addr)
483 		return -EINVAL;
484 
485 	mm = priv->mm;
486 	if (!mm || !mmget_not_zero(mm))
487 		return -ESRCH;
488 
489 	err = query_vma_setup(mm);
490 	if (err) {
491 		mmput(mm);
492 		return err;
493 	}
494 
495 	vma = query_matching_vma(mm, karg.query_addr, karg.query_flags);
496 	if (IS_ERR(vma)) {
497 		err = PTR_ERR(vma);
498 		vma = NULL;
499 		goto out;
500 	}
501 
502 	karg.vma_start = vma->vm_start;
503 	karg.vma_end = vma->vm_end;
504 
505 	karg.vma_flags = 0;
506 	if (vma->vm_flags & VM_READ)
507 		karg.vma_flags |= PROCMAP_QUERY_VMA_READABLE;
508 	if (vma->vm_flags & VM_WRITE)
509 		karg.vma_flags |= PROCMAP_QUERY_VMA_WRITABLE;
510 	if (vma->vm_flags & VM_EXEC)
511 		karg.vma_flags |= PROCMAP_QUERY_VMA_EXECUTABLE;
512 	if (vma->vm_flags & VM_MAYSHARE)
513 		karg.vma_flags |= PROCMAP_QUERY_VMA_SHARED;
514 
515 	karg.vma_page_size = vma_kernel_pagesize(vma);
516 
517 	if (vma->vm_file) {
518 		const struct inode *inode = file_user_inode(vma->vm_file);
519 
520 		karg.vma_offset = ((__u64)vma->vm_pgoff) << PAGE_SHIFT;
521 		karg.dev_major = MAJOR(inode->i_sb->s_dev);
522 		karg.dev_minor = MINOR(inode->i_sb->s_dev);
523 		karg.inode = inode->i_ino;
524 	} else {
525 		karg.vma_offset = 0;
526 		karg.dev_major = 0;
527 		karg.dev_minor = 0;
528 		karg.inode = 0;
529 	}
530 
531 	if (karg.build_id_size) {
532 		__u32 build_id_sz;
533 
534 		err = build_id_parse(vma, build_id_buf, &build_id_sz);
535 		if (err) {
536 			karg.build_id_size = 0;
537 		} else {
538 			if (karg.build_id_size < build_id_sz) {
539 				err = -ENAMETOOLONG;
540 				goto out;
541 			}
542 			karg.build_id_size = build_id_sz;
543 		}
544 	}
545 
546 	if (karg.vma_name_size) {
547 		size_t name_buf_sz = min_t(size_t, PATH_MAX, karg.vma_name_size);
548 		const struct path *path;
549 		const char *name_fmt;
550 		size_t name_sz = 0;
551 
552 		get_vma_name(vma, &path, &name, &name_fmt);
553 
554 		if (path || name_fmt || name) {
555 			name_buf = kmalloc(name_buf_sz, GFP_KERNEL);
556 			if (!name_buf) {
557 				err = -ENOMEM;
558 				goto out;
559 			}
560 		}
561 		if (path) {
562 			name = d_path(path, name_buf, name_buf_sz);
563 			if (IS_ERR(name)) {
564 				err = PTR_ERR(name);
565 				goto out;
566 			}
567 			name_sz = name_buf + name_buf_sz - name;
568 		} else if (name || name_fmt) {
569 			name_sz = 1 + snprintf(name_buf, name_buf_sz, name_fmt ?: "%s", name);
570 			name = name_buf;
571 		}
572 		if (name_sz > name_buf_sz) {
573 			err = -ENAMETOOLONG;
574 			goto out;
575 		}
576 		karg.vma_name_size = name_sz;
577 	}
578 
579 	/* unlock vma or mmap_lock, and put mm_struct before copying data to user */
580 	query_vma_teardown(mm, vma);
581 	mmput(mm);
582 
583 	if (karg.vma_name_size && copy_to_user(u64_to_user_ptr(karg.vma_name_addr),
584 					       name, karg.vma_name_size)) {
585 		kfree(name_buf);
586 		return -EFAULT;
587 	}
588 	kfree(name_buf);
589 
590 	if (karg.build_id_size && copy_to_user(u64_to_user_ptr(karg.build_id_addr),
591 					       build_id_buf, karg.build_id_size))
592 		return -EFAULT;
593 
594 	if (copy_to_user(uarg, &karg, min_t(size_t, sizeof(karg), usize)))
595 		return -EFAULT;
596 
597 	return 0;
598 
599 out:
600 	query_vma_teardown(mm, vma);
601 	mmput(mm);
602 	kfree(name_buf);
603 	return err;
604 }
605 
606 static long procfs_procmap_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
607 {
608 	struct seq_file *seq = file->private_data;
609 	struct proc_maps_private *priv = seq->private;
610 
611 	switch (cmd) {
612 	case PROCMAP_QUERY:
613 		return do_procmap_query(priv, (void __user *)arg);
614 	default:
615 		return -ENOIOCTLCMD;
616 	}
617 }
618 
619 const struct file_operations proc_pid_maps_operations = {
620 	.open		= pid_maps_open,
621 	.read		= seq_read,
622 	.llseek		= seq_lseek,
623 	.release	= proc_map_release,
624 	.unlocked_ioctl = procfs_procmap_ioctl,
625 	.compat_ioctl	= compat_ptr_ioctl,
626 };
627 
628 /*
629  * Proportional Set Size(PSS): my share of RSS.
630  *
631  * PSS of a process is the count of pages it has in memory, where each
632  * page is divided by the number of processes sharing it.  So if a
633  * process has 1000 pages all to itself, and 1000 shared with one other
634  * process, its PSS will be 1500.
635  *
636  * To keep (accumulated) division errors low, we adopt a 64bit
637  * fixed-point pss counter to minimize division errors. So (pss >>
638  * PSS_SHIFT) would be the real byte count.
639  *
640  * A shift of 12 before division means (assuming 4K page size):
641  * 	- 1M 3-user-pages add up to 8KB errors;
642  * 	- supports mapcount up to 2^24, or 16M;
643  * 	- supports PSS up to 2^52 bytes, or 4PB.
644  */
645 #define PSS_SHIFT 12
646 
647 #ifdef CONFIG_PROC_PAGE_MONITOR
648 struct mem_size_stats {
649 	unsigned long resident;
650 	unsigned long shared_clean;
651 	unsigned long shared_dirty;
652 	unsigned long private_clean;
653 	unsigned long private_dirty;
654 	unsigned long referenced;
655 	unsigned long anonymous;
656 	unsigned long lazyfree;
657 	unsigned long anonymous_thp;
658 	unsigned long shmem_thp;
659 	unsigned long file_thp;
660 	unsigned long swap;
661 	unsigned long shared_hugetlb;
662 	unsigned long private_hugetlb;
663 	unsigned long ksm;
664 	u64 pss;
665 	u64 pss_anon;
666 	u64 pss_file;
667 	u64 pss_shmem;
668 	u64 pss_dirty;
669 	u64 pss_locked;
670 	u64 swap_pss;
671 };
672 
673 static void smaps_page_accumulate(struct mem_size_stats *mss,
674 		struct folio *folio, unsigned long size, unsigned long pss,
675 		bool dirty, bool locked, bool private)
676 {
677 	mss->pss += pss;
678 
679 	if (folio_test_anon(folio))
680 		mss->pss_anon += pss;
681 	else if (folio_test_swapbacked(folio))
682 		mss->pss_shmem += pss;
683 	else
684 		mss->pss_file += pss;
685 
686 	if (locked)
687 		mss->pss_locked += pss;
688 
689 	if (dirty || folio_test_dirty(folio)) {
690 		mss->pss_dirty += pss;
691 		if (private)
692 			mss->private_dirty += size;
693 		else
694 			mss->shared_dirty += size;
695 	} else {
696 		if (private)
697 			mss->private_clean += size;
698 		else
699 			mss->shared_clean += size;
700 	}
701 }
702 
703 static void smaps_account(struct mem_size_stats *mss, struct page *page,
704 		bool compound, bool young, bool dirty, bool locked,
705 		bool present)
706 {
707 	struct folio *folio = page_folio(page);
708 	int i, nr = compound ? compound_nr(page) : 1;
709 	unsigned long size = nr * PAGE_SIZE;
710 
711 	/*
712 	 * First accumulate quantities that depend only on |size| and the type
713 	 * of the compound page.
714 	 */
715 	if (folio_test_anon(folio)) {
716 		mss->anonymous += size;
717 		if (!folio_test_swapbacked(folio) && !dirty &&
718 		    !folio_test_dirty(folio))
719 			mss->lazyfree += size;
720 	}
721 
722 	if (folio_test_ksm(folio))
723 		mss->ksm += size;
724 
725 	mss->resident += size;
726 	/* Accumulate the size in pages that have been accessed. */
727 	if (young || folio_test_young(folio) || folio_test_referenced(folio))
728 		mss->referenced += size;
729 
730 	/*
731 	 * Then accumulate quantities that may depend on sharing, or that may
732 	 * differ page-by-page.
733 	 *
734 	 * refcount == 1 for present entries guarantees that the folio is mapped
735 	 * exactly once. For large folios this implies that exactly one
736 	 * PTE/PMD/... maps (a part of) this folio.
737 	 *
738 	 * Treat all non-present entries (where relying on the mapcount and
739 	 * refcount doesn't make sense) as "maybe shared, but not sure how
740 	 * often". We treat device private entries as being fake-present.
741 	 *
742 	 * Note that it would not be safe to read the mapcount especially for
743 	 * pages referenced by migration entries, even with the PTL held.
744 	 */
745 	if (folio_ref_count(folio) == 1 || !present) {
746 		smaps_page_accumulate(mss, folio, size, size << PSS_SHIFT,
747 				      dirty, locked, present);
748 		return;
749 	}
750 	/*
751 	 * We obtain a snapshot of the mapcount. Without holding the folio lock
752 	 * this snapshot can be slightly wrong as we cannot always read the
753 	 * mapcount atomically.
754 	 */
755 	for (i = 0; i < nr; i++, page++) {
756 		int mapcount = folio_precise_page_mapcount(folio, page);
757 		unsigned long pss = PAGE_SIZE << PSS_SHIFT;
758 		if (mapcount >= 2)
759 			pss /= mapcount;
760 		smaps_page_accumulate(mss, folio, PAGE_SIZE, pss,
761 				dirty, locked, mapcount < 2);
762 	}
763 }
764 
765 #ifdef CONFIG_SHMEM
766 static int smaps_pte_hole(unsigned long addr, unsigned long end,
767 			  __always_unused int depth, struct mm_walk *walk)
768 {
769 	struct mem_size_stats *mss = walk->private;
770 	struct vm_area_struct *vma = walk->vma;
771 
772 	mss->swap += shmem_partial_swap_usage(walk->vma->vm_file->f_mapping,
773 					      linear_page_index(vma, addr),
774 					      linear_page_index(vma, end));
775 
776 	return 0;
777 }
778 #else
779 #define smaps_pte_hole		NULL
780 #endif /* CONFIG_SHMEM */
781 
782 static void smaps_pte_hole_lookup(unsigned long addr, struct mm_walk *walk)
783 {
784 #ifdef CONFIG_SHMEM
785 	if (walk->ops->pte_hole) {
786 		/* depth is not used */
787 		smaps_pte_hole(addr, addr + PAGE_SIZE, 0, walk);
788 	}
789 #endif
790 }
791 
792 static void smaps_pte_entry(pte_t *pte, unsigned long addr,
793 		struct mm_walk *walk)
794 {
795 	struct mem_size_stats *mss = walk->private;
796 	struct vm_area_struct *vma = walk->vma;
797 	bool locked = !!(vma->vm_flags & VM_LOCKED);
798 	struct page *page = NULL;
799 	bool present = false, young = false, dirty = false;
800 	pte_t ptent = ptep_get(pte);
801 
802 	if (pte_present(ptent)) {
803 		page = vm_normal_page(vma, addr, ptent);
804 		young = pte_young(ptent);
805 		dirty = pte_dirty(ptent);
806 		present = true;
807 	} else if (is_swap_pte(ptent)) {
808 		swp_entry_t swpent = pte_to_swp_entry(ptent);
809 
810 		if (!non_swap_entry(swpent)) {
811 			int mapcount;
812 
813 			mss->swap += PAGE_SIZE;
814 			mapcount = swp_swapcount(swpent);
815 			if (mapcount >= 2) {
816 				u64 pss_delta = (u64)PAGE_SIZE << PSS_SHIFT;
817 
818 				do_div(pss_delta, mapcount);
819 				mss->swap_pss += pss_delta;
820 			} else {
821 				mss->swap_pss += (u64)PAGE_SIZE << PSS_SHIFT;
822 			}
823 		} else if (is_pfn_swap_entry(swpent)) {
824 			if (is_device_private_entry(swpent))
825 				present = true;
826 			page = pfn_swap_entry_to_page(swpent);
827 		}
828 	} else {
829 		smaps_pte_hole_lookup(addr, walk);
830 		return;
831 	}
832 
833 	if (!page)
834 		return;
835 
836 	smaps_account(mss, page, false, young, dirty, locked, present);
837 }
838 
839 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
840 static void smaps_pmd_entry(pmd_t *pmd, unsigned long addr,
841 		struct mm_walk *walk)
842 {
843 	struct mem_size_stats *mss = walk->private;
844 	struct vm_area_struct *vma = walk->vma;
845 	bool locked = !!(vma->vm_flags & VM_LOCKED);
846 	struct page *page = NULL;
847 	bool present = false;
848 	struct folio *folio;
849 
850 	if (pmd_present(*pmd)) {
851 		page = vm_normal_page_pmd(vma, addr, *pmd);
852 		present = true;
853 	} else if (unlikely(thp_migration_supported() && is_swap_pmd(*pmd))) {
854 		swp_entry_t entry = pmd_to_swp_entry(*pmd);
855 
856 		if (is_pfn_swap_entry(entry))
857 			page = pfn_swap_entry_to_page(entry);
858 	}
859 	if (IS_ERR_OR_NULL(page))
860 		return;
861 	folio = page_folio(page);
862 	if (folio_test_anon(folio))
863 		mss->anonymous_thp += HPAGE_PMD_SIZE;
864 	else if (folio_test_swapbacked(folio))
865 		mss->shmem_thp += HPAGE_PMD_SIZE;
866 	else if (folio_is_zone_device(folio))
867 		/* pass */;
868 	else
869 		mss->file_thp += HPAGE_PMD_SIZE;
870 
871 	smaps_account(mss, page, true, pmd_young(*pmd), pmd_dirty(*pmd),
872 		      locked, present);
873 }
874 #else
875 static void smaps_pmd_entry(pmd_t *pmd, unsigned long addr,
876 		struct mm_walk *walk)
877 {
878 }
879 #endif
880 
881 static int smaps_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
882 			   struct mm_walk *walk)
883 {
884 	struct vm_area_struct *vma = walk->vma;
885 	pte_t *pte;
886 	spinlock_t *ptl;
887 
888 	ptl = pmd_trans_huge_lock(pmd, vma);
889 	if (ptl) {
890 		smaps_pmd_entry(pmd, addr, walk);
891 		spin_unlock(ptl);
892 		goto out;
893 	}
894 
895 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
896 	if (!pte) {
897 		walk->action = ACTION_AGAIN;
898 		return 0;
899 	}
900 	for (; addr != end; pte++, addr += PAGE_SIZE)
901 		smaps_pte_entry(pte, addr, walk);
902 	pte_unmap_unlock(pte - 1, ptl);
903 out:
904 	cond_resched();
905 	return 0;
906 }
907 
908 static void show_smap_vma_flags(struct seq_file *m, struct vm_area_struct *vma)
909 {
910 	/*
911 	 * Don't forget to update Documentation/ on changes.
912 	 *
913 	 * The length of the second argument of mnemonics[]
914 	 * needs to be 3 instead of previously set 2
915 	 * (i.e. from [BITS_PER_LONG][2] to [BITS_PER_LONG][3])
916 	 * to avoid spurious
917 	 * -Werror=unterminated-string-initialization warning
918 	 *  with GCC 15
919 	 */
920 	static const char mnemonics[BITS_PER_LONG][3] = {
921 		/*
922 		 * In case if we meet a flag we don't know about.
923 		 */
924 		[0 ... (BITS_PER_LONG-1)] = "??",
925 
926 		[ilog2(VM_READ)]	= "rd",
927 		[ilog2(VM_WRITE)]	= "wr",
928 		[ilog2(VM_EXEC)]	= "ex",
929 		[ilog2(VM_SHARED)]	= "sh",
930 		[ilog2(VM_MAYREAD)]	= "mr",
931 		[ilog2(VM_MAYWRITE)]	= "mw",
932 		[ilog2(VM_MAYEXEC)]	= "me",
933 		[ilog2(VM_MAYSHARE)]	= "ms",
934 		[ilog2(VM_GROWSDOWN)]	= "gd",
935 		[ilog2(VM_PFNMAP)]	= "pf",
936 		[ilog2(VM_LOCKED)]	= "lo",
937 		[ilog2(VM_IO)]		= "io",
938 		[ilog2(VM_SEQ_READ)]	= "sr",
939 		[ilog2(VM_RAND_READ)]	= "rr",
940 		[ilog2(VM_DONTCOPY)]	= "dc",
941 		[ilog2(VM_DONTEXPAND)]	= "de",
942 		[ilog2(VM_LOCKONFAULT)]	= "lf",
943 		[ilog2(VM_ACCOUNT)]	= "ac",
944 		[ilog2(VM_NORESERVE)]	= "nr",
945 		[ilog2(VM_HUGETLB)]	= "ht",
946 		[ilog2(VM_SYNC)]	= "sf",
947 		[ilog2(VM_ARCH_1)]	= "ar",
948 		[ilog2(VM_WIPEONFORK)]	= "wf",
949 		[ilog2(VM_DONTDUMP)]	= "dd",
950 #ifdef CONFIG_ARM64_BTI
951 		[ilog2(VM_ARM64_BTI)]	= "bt",
952 #endif
953 #ifdef CONFIG_MEM_SOFT_DIRTY
954 		[ilog2(VM_SOFTDIRTY)]	= "sd",
955 #endif
956 		[ilog2(VM_MIXEDMAP)]	= "mm",
957 		[ilog2(VM_HUGEPAGE)]	= "hg",
958 		[ilog2(VM_NOHUGEPAGE)]	= "nh",
959 		[ilog2(VM_MERGEABLE)]	= "mg",
960 		[ilog2(VM_UFFD_MISSING)]= "um",
961 		[ilog2(VM_UFFD_WP)]	= "uw",
962 #ifdef CONFIG_ARM64_MTE
963 		[ilog2(VM_MTE)]		= "mt",
964 		[ilog2(VM_MTE_ALLOWED)]	= "",
965 #endif
966 #ifdef CONFIG_ARCH_HAS_PKEYS
967 		/* These come out via ProtectionKey: */
968 		[ilog2(VM_PKEY_BIT0)]	= "",
969 		[ilog2(VM_PKEY_BIT1)]	= "",
970 		[ilog2(VM_PKEY_BIT2)]	= "",
971 #if VM_PKEY_BIT3
972 		[ilog2(VM_PKEY_BIT3)]	= "",
973 #endif
974 #if VM_PKEY_BIT4
975 		[ilog2(VM_PKEY_BIT4)]	= "",
976 #endif
977 #endif /* CONFIG_ARCH_HAS_PKEYS */
978 #ifdef CONFIG_HAVE_ARCH_USERFAULTFD_MINOR
979 		[ilog2(VM_UFFD_MINOR)]	= "ui",
980 #endif /* CONFIG_HAVE_ARCH_USERFAULTFD_MINOR */
981 #ifdef CONFIG_ARCH_HAS_USER_SHADOW_STACK
982 		[ilog2(VM_SHADOW_STACK)] = "ss",
983 #endif
984 #if defined(CONFIG_64BIT) || defined(CONFIG_PPC32)
985 		[ilog2(VM_DROPPABLE)] = "dp",
986 #endif
987 #ifdef CONFIG_64BIT
988 		[ilog2(VM_SEALED)] = "sl",
989 #endif
990 	};
991 	size_t i;
992 
993 	seq_puts(m, "VmFlags: ");
994 	for (i = 0; i < BITS_PER_LONG; i++) {
995 		if (!mnemonics[i][0])
996 			continue;
997 		if (vma->vm_flags & (1UL << i))
998 			seq_printf(m, "%s ", mnemonics[i]);
999 	}
1000 	seq_putc(m, '\n');
1001 }
1002 
1003 #ifdef CONFIG_HUGETLB_PAGE
1004 static int smaps_hugetlb_range(pte_t *pte, unsigned long hmask,
1005 				 unsigned long addr, unsigned long end,
1006 				 struct mm_walk *walk)
1007 {
1008 	struct mem_size_stats *mss = walk->private;
1009 	struct vm_area_struct *vma = walk->vma;
1010 	pte_t ptent = huge_ptep_get(walk->mm, addr, pte);
1011 	struct folio *folio = NULL;
1012 	bool present = false;
1013 
1014 	if (pte_present(ptent)) {
1015 		folio = page_folio(pte_page(ptent));
1016 		present = true;
1017 	} else if (is_swap_pte(ptent)) {
1018 		swp_entry_t swpent = pte_to_swp_entry(ptent);
1019 
1020 		if (is_pfn_swap_entry(swpent))
1021 			folio = pfn_swap_entry_folio(swpent);
1022 	}
1023 
1024 	if (folio) {
1025 		/* We treat non-present entries as "maybe shared". */
1026 		if (!present || folio_likely_mapped_shared(folio) ||
1027 		    hugetlb_pmd_shared(pte))
1028 			mss->shared_hugetlb += huge_page_size(hstate_vma(vma));
1029 		else
1030 			mss->private_hugetlb += huge_page_size(hstate_vma(vma));
1031 	}
1032 	return 0;
1033 }
1034 #else
1035 #define smaps_hugetlb_range	NULL
1036 #endif /* HUGETLB_PAGE */
1037 
1038 static const struct mm_walk_ops smaps_walk_ops = {
1039 	.pmd_entry		= smaps_pte_range,
1040 	.hugetlb_entry		= smaps_hugetlb_range,
1041 	.walk_lock		= PGWALK_RDLOCK,
1042 };
1043 
1044 static const struct mm_walk_ops smaps_shmem_walk_ops = {
1045 	.pmd_entry		= smaps_pte_range,
1046 	.hugetlb_entry		= smaps_hugetlb_range,
1047 	.pte_hole		= smaps_pte_hole,
1048 	.walk_lock		= PGWALK_RDLOCK,
1049 };
1050 
1051 /*
1052  * Gather mem stats from @vma with the indicated beginning
1053  * address @start, and keep them in @mss.
1054  *
1055  * Use vm_start of @vma as the beginning address if @start is 0.
1056  */
1057 static void smap_gather_stats(struct vm_area_struct *vma,
1058 		struct mem_size_stats *mss, unsigned long start)
1059 {
1060 	const struct mm_walk_ops *ops = &smaps_walk_ops;
1061 
1062 	/* Invalid start */
1063 	if (start >= vma->vm_end)
1064 		return;
1065 
1066 	if (vma->vm_file && shmem_mapping(vma->vm_file->f_mapping)) {
1067 		/*
1068 		 * For shared or readonly shmem mappings we know that all
1069 		 * swapped out pages belong to the shmem object, and we can
1070 		 * obtain the swap value much more efficiently. For private
1071 		 * writable mappings, we might have COW pages that are
1072 		 * not affected by the parent swapped out pages of the shmem
1073 		 * object, so we have to distinguish them during the page walk.
1074 		 * Unless we know that the shmem object (or the part mapped by
1075 		 * our VMA) has no swapped out pages at all.
1076 		 */
1077 		unsigned long shmem_swapped = shmem_swap_usage(vma);
1078 
1079 		if (!start && (!shmem_swapped || (vma->vm_flags & VM_SHARED) ||
1080 					!(vma->vm_flags & VM_WRITE))) {
1081 			mss->swap += shmem_swapped;
1082 		} else {
1083 			ops = &smaps_shmem_walk_ops;
1084 		}
1085 	}
1086 
1087 	/* mmap_lock is held in m_start */
1088 	if (!start)
1089 		walk_page_vma(vma, ops, mss);
1090 	else
1091 		walk_page_range(vma->vm_mm, start, vma->vm_end, ops, mss);
1092 }
1093 
1094 #define SEQ_PUT_DEC(str, val) \
1095 		seq_put_decimal_ull_width(m, str, (val) >> 10, 8)
1096 
1097 /* Show the contents common for smaps and smaps_rollup */
1098 static void __show_smap(struct seq_file *m, const struct mem_size_stats *mss,
1099 	bool rollup_mode)
1100 {
1101 	SEQ_PUT_DEC("Rss:            ", mss->resident);
1102 	SEQ_PUT_DEC(" kB\nPss:            ", mss->pss >> PSS_SHIFT);
1103 	SEQ_PUT_DEC(" kB\nPss_Dirty:      ", mss->pss_dirty >> PSS_SHIFT);
1104 	if (rollup_mode) {
1105 		/*
1106 		 * These are meaningful only for smaps_rollup, otherwise two of
1107 		 * them are zero, and the other one is the same as Pss.
1108 		 */
1109 		SEQ_PUT_DEC(" kB\nPss_Anon:       ",
1110 			mss->pss_anon >> PSS_SHIFT);
1111 		SEQ_PUT_DEC(" kB\nPss_File:       ",
1112 			mss->pss_file >> PSS_SHIFT);
1113 		SEQ_PUT_DEC(" kB\nPss_Shmem:      ",
1114 			mss->pss_shmem >> PSS_SHIFT);
1115 	}
1116 	SEQ_PUT_DEC(" kB\nShared_Clean:   ", mss->shared_clean);
1117 	SEQ_PUT_DEC(" kB\nShared_Dirty:   ", mss->shared_dirty);
1118 	SEQ_PUT_DEC(" kB\nPrivate_Clean:  ", mss->private_clean);
1119 	SEQ_PUT_DEC(" kB\nPrivate_Dirty:  ", mss->private_dirty);
1120 	SEQ_PUT_DEC(" kB\nReferenced:     ", mss->referenced);
1121 	SEQ_PUT_DEC(" kB\nAnonymous:      ", mss->anonymous);
1122 	SEQ_PUT_DEC(" kB\nKSM:            ", mss->ksm);
1123 	SEQ_PUT_DEC(" kB\nLazyFree:       ", mss->lazyfree);
1124 	SEQ_PUT_DEC(" kB\nAnonHugePages:  ", mss->anonymous_thp);
1125 	SEQ_PUT_DEC(" kB\nShmemPmdMapped: ", mss->shmem_thp);
1126 	SEQ_PUT_DEC(" kB\nFilePmdMapped:  ", mss->file_thp);
1127 	SEQ_PUT_DEC(" kB\nShared_Hugetlb: ", mss->shared_hugetlb);
1128 	seq_put_decimal_ull_width(m, " kB\nPrivate_Hugetlb: ",
1129 				  mss->private_hugetlb >> 10, 7);
1130 	SEQ_PUT_DEC(" kB\nSwap:           ", mss->swap);
1131 	SEQ_PUT_DEC(" kB\nSwapPss:        ",
1132 					mss->swap_pss >> PSS_SHIFT);
1133 	SEQ_PUT_DEC(" kB\nLocked:         ",
1134 					mss->pss_locked >> PSS_SHIFT);
1135 	seq_puts(m, " kB\n");
1136 }
1137 
1138 static int show_smap(struct seq_file *m, void *v)
1139 {
1140 	struct vm_area_struct *vma = v;
1141 	struct mem_size_stats mss = {};
1142 
1143 	smap_gather_stats(vma, &mss, 0);
1144 
1145 	show_map_vma(m, vma);
1146 
1147 	SEQ_PUT_DEC("Size:           ", vma->vm_end - vma->vm_start);
1148 	SEQ_PUT_DEC(" kB\nKernelPageSize: ", vma_kernel_pagesize(vma));
1149 	SEQ_PUT_DEC(" kB\nMMUPageSize:    ", vma_mmu_pagesize(vma));
1150 	seq_puts(m, " kB\n");
1151 
1152 	__show_smap(m, &mss, false);
1153 
1154 	seq_printf(m, "THPeligible:    %8u\n",
1155 		   !!thp_vma_allowable_orders(vma, vma->vm_flags,
1156 			   TVA_SMAPS | TVA_ENFORCE_SYSFS, THP_ORDERS_ALL));
1157 
1158 	if (arch_pkeys_enabled())
1159 		seq_printf(m, "ProtectionKey:  %8u\n", vma_pkey(vma));
1160 	show_smap_vma_flags(m, vma);
1161 
1162 	return 0;
1163 }
1164 
1165 static int show_smaps_rollup(struct seq_file *m, void *v)
1166 {
1167 	struct proc_maps_private *priv = m->private;
1168 	struct mem_size_stats mss = {};
1169 	struct mm_struct *mm = priv->mm;
1170 	struct vm_area_struct *vma;
1171 	unsigned long vma_start = 0, last_vma_end = 0;
1172 	int ret = 0;
1173 	VMA_ITERATOR(vmi, mm, 0);
1174 
1175 	priv->task = get_proc_task(priv->inode);
1176 	if (!priv->task)
1177 		return -ESRCH;
1178 
1179 	if (!mm || !mmget_not_zero(mm)) {
1180 		ret = -ESRCH;
1181 		goto out_put_task;
1182 	}
1183 
1184 	ret = mmap_read_lock_killable(mm);
1185 	if (ret)
1186 		goto out_put_mm;
1187 
1188 	hold_task_mempolicy(priv);
1189 	vma = vma_next(&vmi);
1190 
1191 	if (unlikely(!vma))
1192 		goto empty_set;
1193 
1194 	vma_start = vma->vm_start;
1195 	do {
1196 		smap_gather_stats(vma, &mss, 0);
1197 		last_vma_end = vma->vm_end;
1198 
1199 		/*
1200 		 * Release mmap_lock temporarily if someone wants to
1201 		 * access it for write request.
1202 		 */
1203 		if (mmap_lock_is_contended(mm)) {
1204 			vma_iter_invalidate(&vmi);
1205 			mmap_read_unlock(mm);
1206 			ret = mmap_read_lock_killable(mm);
1207 			if (ret) {
1208 				release_task_mempolicy(priv);
1209 				goto out_put_mm;
1210 			}
1211 
1212 			/*
1213 			 * After dropping the lock, there are four cases to
1214 			 * consider. See the following example for explanation.
1215 			 *
1216 			 *   +------+------+-----------+
1217 			 *   | VMA1 | VMA2 | VMA3      |
1218 			 *   +------+------+-----------+
1219 			 *   |      |      |           |
1220 			 *  4k     8k     16k         400k
1221 			 *
1222 			 * Suppose we drop the lock after reading VMA2 due to
1223 			 * contention, then we get:
1224 			 *
1225 			 *	last_vma_end = 16k
1226 			 *
1227 			 * 1) VMA2 is freed, but VMA3 exists:
1228 			 *
1229 			 *    vma_next(vmi) will return VMA3.
1230 			 *    In this case, just continue from VMA3.
1231 			 *
1232 			 * 2) VMA2 still exists:
1233 			 *
1234 			 *    vma_next(vmi) will return VMA3.
1235 			 *    In this case, just continue from VMA3.
1236 			 *
1237 			 * 3) No more VMAs can be found:
1238 			 *
1239 			 *    vma_next(vmi) will return NULL.
1240 			 *    No more things to do, just break.
1241 			 *
1242 			 * 4) (last_vma_end - 1) is the middle of a vma (VMA'):
1243 			 *
1244 			 *    vma_next(vmi) will return VMA' whose range
1245 			 *    contains last_vma_end.
1246 			 *    Iterate VMA' from last_vma_end.
1247 			 */
1248 			vma = vma_next(&vmi);
1249 			/* Case 3 above */
1250 			if (!vma)
1251 				break;
1252 
1253 			/* Case 1 and 2 above */
1254 			if (vma->vm_start >= last_vma_end) {
1255 				smap_gather_stats(vma, &mss, 0);
1256 				last_vma_end = vma->vm_end;
1257 				continue;
1258 			}
1259 
1260 			/* Case 4 above */
1261 			if (vma->vm_end > last_vma_end) {
1262 				smap_gather_stats(vma, &mss, last_vma_end);
1263 				last_vma_end = vma->vm_end;
1264 			}
1265 		}
1266 	} for_each_vma(vmi, vma);
1267 
1268 empty_set:
1269 	show_vma_header_prefix(m, vma_start, last_vma_end, 0, 0, 0, 0);
1270 	seq_pad(m, ' ');
1271 	seq_puts(m, "[rollup]\n");
1272 
1273 	__show_smap(m, &mss, true);
1274 
1275 	release_task_mempolicy(priv);
1276 	mmap_read_unlock(mm);
1277 
1278 out_put_mm:
1279 	mmput(mm);
1280 out_put_task:
1281 	put_task_struct(priv->task);
1282 	priv->task = NULL;
1283 
1284 	return ret;
1285 }
1286 #undef SEQ_PUT_DEC
1287 
1288 static const struct seq_operations proc_pid_smaps_op = {
1289 	.start	= m_start,
1290 	.next	= m_next,
1291 	.stop	= m_stop,
1292 	.show	= show_smap
1293 };
1294 
1295 static int pid_smaps_open(struct inode *inode, struct file *file)
1296 {
1297 	return do_maps_open(inode, file, &proc_pid_smaps_op);
1298 }
1299 
1300 static int smaps_rollup_open(struct inode *inode, struct file *file)
1301 {
1302 	int ret;
1303 	struct proc_maps_private *priv;
1304 
1305 	priv = kzalloc(sizeof(*priv), GFP_KERNEL_ACCOUNT);
1306 	if (!priv)
1307 		return -ENOMEM;
1308 
1309 	ret = single_open(file, show_smaps_rollup, priv);
1310 	if (ret)
1311 		goto out_free;
1312 
1313 	priv->inode = inode;
1314 	priv->mm = proc_mem_open(inode, PTRACE_MODE_READ);
1315 	if (IS_ERR(priv->mm)) {
1316 		ret = PTR_ERR(priv->mm);
1317 
1318 		single_release(inode, file);
1319 		goto out_free;
1320 	}
1321 
1322 	return 0;
1323 
1324 out_free:
1325 	kfree(priv);
1326 	return ret;
1327 }
1328 
1329 static int smaps_rollup_release(struct inode *inode, struct file *file)
1330 {
1331 	struct seq_file *seq = file->private_data;
1332 	struct proc_maps_private *priv = seq->private;
1333 
1334 	if (priv->mm)
1335 		mmdrop(priv->mm);
1336 
1337 	kfree(priv);
1338 	return single_release(inode, file);
1339 }
1340 
1341 const struct file_operations proc_pid_smaps_operations = {
1342 	.open		= pid_smaps_open,
1343 	.read		= seq_read,
1344 	.llseek		= seq_lseek,
1345 	.release	= proc_map_release,
1346 };
1347 
1348 const struct file_operations proc_pid_smaps_rollup_operations = {
1349 	.open		= smaps_rollup_open,
1350 	.read		= seq_read,
1351 	.llseek		= seq_lseek,
1352 	.release	= smaps_rollup_release,
1353 };
1354 
1355 enum clear_refs_types {
1356 	CLEAR_REFS_ALL = 1,
1357 	CLEAR_REFS_ANON,
1358 	CLEAR_REFS_MAPPED,
1359 	CLEAR_REFS_SOFT_DIRTY,
1360 	CLEAR_REFS_MM_HIWATER_RSS,
1361 	CLEAR_REFS_LAST,
1362 };
1363 
1364 struct clear_refs_private {
1365 	enum clear_refs_types type;
1366 };
1367 
1368 #ifdef CONFIG_MEM_SOFT_DIRTY
1369 
1370 static inline bool pte_is_pinned(struct vm_area_struct *vma, unsigned long addr, pte_t pte)
1371 {
1372 	struct folio *folio;
1373 
1374 	if (!pte_write(pte))
1375 		return false;
1376 	if (!is_cow_mapping(vma->vm_flags))
1377 		return false;
1378 	if (likely(!test_bit(MMF_HAS_PINNED, &vma->vm_mm->flags)))
1379 		return false;
1380 	folio = vm_normal_folio(vma, addr, pte);
1381 	if (!folio)
1382 		return false;
1383 	return folio_maybe_dma_pinned(folio);
1384 }
1385 
1386 static inline void clear_soft_dirty(struct vm_area_struct *vma,
1387 		unsigned long addr, pte_t *pte)
1388 {
1389 	/*
1390 	 * The soft-dirty tracker uses #PF-s to catch writes
1391 	 * to pages, so write-protect the pte as well. See the
1392 	 * Documentation/admin-guide/mm/soft-dirty.rst for full description
1393 	 * of how soft-dirty works.
1394 	 */
1395 	pte_t ptent = ptep_get(pte);
1396 
1397 	if (pte_present(ptent)) {
1398 		pte_t old_pte;
1399 
1400 		if (pte_is_pinned(vma, addr, ptent))
1401 			return;
1402 		old_pte = ptep_modify_prot_start(vma, addr, pte);
1403 		ptent = pte_wrprotect(old_pte);
1404 		ptent = pte_clear_soft_dirty(ptent);
1405 		ptep_modify_prot_commit(vma, addr, pte, old_pte, ptent);
1406 	} else if (is_swap_pte(ptent)) {
1407 		ptent = pte_swp_clear_soft_dirty(ptent);
1408 		set_pte_at(vma->vm_mm, addr, pte, ptent);
1409 	}
1410 }
1411 #else
1412 static inline void clear_soft_dirty(struct vm_area_struct *vma,
1413 		unsigned long addr, pte_t *pte)
1414 {
1415 }
1416 #endif
1417 
1418 #if defined(CONFIG_MEM_SOFT_DIRTY) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
1419 static inline void clear_soft_dirty_pmd(struct vm_area_struct *vma,
1420 		unsigned long addr, pmd_t *pmdp)
1421 {
1422 	pmd_t old, pmd = *pmdp;
1423 
1424 	if (pmd_present(pmd)) {
1425 		/* See comment in change_huge_pmd() */
1426 		old = pmdp_invalidate(vma, addr, pmdp);
1427 		if (pmd_dirty(old))
1428 			pmd = pmd_mkdirty(pmd);
1429 		if (pmd_young(old))
1430 			pmd = pmd_mkyoung(pmd);
1431 
1432 		pmd = pmd_wrprotect(pmd);
1433 		pmd = pmd_clear_soft_dirty(pmd);
1434 
1435 		set_pmd_at(vma->vm_mm, addr, pmdp, pmd);
1436 	} else if (is_migration_entry(pmd_to_swp_entry(pmd))) {
1437 		pmd = pmd_swp_clear_soft_dirty(pmd);
1438 		set_pmd_at(vma->vm_mm, addr, pmdp, pmd);
1439 	}
1440 }
1441 #else
1442 static inline void clear_soft_dirty_pmd(struct vm_area_struct *vma,
1443 		unsigned long addr, pmd_t *pmdp)
1444 {
1445 }
1446 #endif
1447 
1448 static int clear_refs_pte_range(pmd_t *pmd, unsigned long addr,
1449 				unsigned long end, struct mm_walk *walk)
1450 {
1451 	struct clear_refs_private *cp = walk->private;
1452 	struct vm_area_struct *vma = walk->vma;
1453 	pte_t *pte, ptent;
1454 	spinlock_t *ptl;
1455 	struct folio *folio;
1456 
1457 	ptl = pmd_trans_huge_lock(pmd, vma);
1458 	if (ptl) {
1459 		if (cp->type == CLEAR_REFS_SOFT_DIRTY) {
1460 			clear_soft_dirty_pmd(vma, addr, pmd);
1461 			goto out;
1462 		}
1463 
1464 		if (!pmd_present(*pmd))
1465 			goto out;
1466 
1467 		folio = pmd_folio(*pmd);
1468 
1469 		/* Clear accessed and referenced bits. */
1470 		pmdp_test_and_clear_young(vma, addr, pmd);
1471 		folio_test_clear_young(folio);
1472 		folio_clear_referenced(folio);
1473 out:
1474 		spin_unlock(ptl);
1475 		return 0;
1476 	}
1477 
1478 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
1479 	if (!pte) {
1480 		walk->action = ACTION_AGAIN;
1481 		return 0;
1482 	}
1483 	for (; addr != end; pte++, addr += PAGE_SIZE) {
1484 		ptent = ptep_get(pte);
1485 
1486 		if (cp->type == CLEAR_REFS_SOFT_DIRTY) {
1487 			clear_soft_dirty(vma, addr, pte);
1488 			continue;
1489 		}
1490 
1491 		if (!pte_present(ptent))
1492 			continue;
1493 
1494 		folio = vm_normal_folio(vma, addr, ptent);
1495 		if (!folio)
1496 			continue;
1497 
1498 		/* Clear accessed and referenced bits. */
1499 		ptep_test_and_clear_young(vma, addr, pte);
1500 		folio_test_clear_young(folio);
1501 		folio_clear_referenced(folio);
1502 	}
1503 	pte_unmap_unlock(pte - 1, ptl);
1504 	cond_resched();
1505 	return 0;
1506 }
1507 
1508 static int clear_refs_test_walk(unsigned long start, unsigned long end,
1509 				struct mm_walk *walk)
1510 {
1511 	struct clear_refs_private *cp = walk->private;
1512 	struct vm_area_struct *vma = walk->vma;
1513 
1514 	if (vma->vm_flags & VM_PFNMAP)
1515 		return 1;
1516 
1517 	/*
1518 	 * Writing 1 to /proc/pid/clear_refs affects all pages.
1519 	 * Writing 2 to /proc/pid/clear_refs only affects anonymous pages.
1520 	 * Writing 3 to /proc/pid/clear_refs only affects file mapped pages.
1521 	 * Writing 4 to /proc/pid/clear_refs affects all pages.
1522 	 */
1523 	if (cp->type == CLEAR_REFS_ANON && vma->vm_file)
1524 		return 1;
1525 	if (cp->type == CLEAR_REFS_MAPPED && !vma->vm_file)
1526 		return 1;
1527 	return 0;
1528 }
1529 
1530 static const struct mm_walk_ops clear_refs_walk_ops = {
1531 	.pmd_entry		= clear_refs_pte_range,
1532 	.test_walk		= clear_refs_test_walk,
1533 	.walk_lock		= PGWALK_WRLOCK,
1534 };
1535 
1536 static ssize_t clear_refs_write(struct file *file, const char __user *buf,
1537 				size_t count, loff_t *ppos)
1538 {
1539 	struct task_struct *task;
1540 	char buffer[PROC_NUMBUF] = {};
1541 	struct mm_struct *mm;
1542 	struct vm_area_struct *vma;
1543 	enum clear_refs_types type;
1544 	int itype;
1545 	int rv;
1546 
1547 	if (count > sizeof(buffer) - 1)
1548 		count = sizeof(buffer) - 1;
1549 	if (copy_from_user(buffer, buf, count))
1550 		return -EFAULT;
1551 	rv = kstrtoint(strstrip(buffer), 10, &itype);
1552 	if (rv < 0)
1553 		return rv;
1554 	type = (enum clear_refs_types)itype;
1555 	if (type < CLEAR_REFS_ALL || type >= CLEAR_REFS_LAST)
1556 		return -EINVAL;
1557 
1558 	task = get_proc_task(file_inode(file));
1559 	if (!task)
1560 		return -ESRCH;
1561 	mm = get_task_mm(task);
1562 	if (mm) {
1563 		VMA_ITERATOR(vmi, mm, 0);
1564 		struct mmu_notifier_range range;
1565 		struct clear_refs_private cp = {
1566 			.type = type,
1567 		};
1568 
1569 		if (mmap_write_lock_killable(mm)) {
1570 			count = -EINTR;
1571 			goto out_mm;
1572 		}
1573 		if (type == CLEAR_REFS_MM_HIWATER_RSS) {
1574 			/*
1575 			 * Writing 5 to /proc/pid/clear_refs resets the peak
1576 			 * resident set size to this mm's current rss value.
1577 			 */
1578 			reset_mm_hiwater_rss(mm);
1579 			goto out_unlock;
1580 		}
1581 
1582 		if (type == CLEAR_REFS_SOFT_DIRTY) {
1583 			for_each_vma(vmi, vma) {
1584 				if (!(vma->vm_flags & VM_SOFTDIRTY))
1585 					continue;
1586 				vm_flags_clear(vma, VM_SOFTDIRTY);
1587 				vma_set_page_prot(vma);
1588 			}
1589 
1590 			inc_tlb_flush_pending(mm);
1591 			mmu_notifier_range_init(&range, MMU_NOTIFY_SOFT_DIRTY,
1592 						0, mm, 0, -1UL);
1593 			mmu_notifier_invalidate_range_start(&range);
1594 		}
1595 		walk_page_range(mm, 0, -1, &clear_refs_walk_ops, &cp);
1596 		if (type == CLEAR_REFS_SOFT_DIRTY) {
1597 			mmu_notifier_invalidate_range_end(&range);
1598 			flush_tlb_mm(mm);
1599 			dec_tlb_flush_pending(mm);
1600 		}
1601 out_unlock:
1602 		mmap_write_unlock(mm);
1603 out_mm:
1604 		mmput(mm);
1605 	}
1606 	put_task_struct(task);
1607 
1608 	return count;
1609 }
1610 
1611 const struct file_operations proc_clear_refs_operations = {
1612 	.write		= clear_refs_write,
1613 	.llseek		= noop_llseek,
1614 };
1615 
1616 typedef struct {
1617 	u64 pme;
1618 } pagemap_entry_t;
1619 
1620 struct pagemapread {
1621 	int pos, len;		/* units: PM_ENTRY_BYTES, not bytes */
1622 	pagemap_entry_t *buffer;
1623 	bool show_pfn;
1624 };
1625 
1626 #define PAGEMAP_WALK_SIZE	(PMD_SIZE)
1627 #define PAGEMAP_WALK_MASK	(PMD_MASK)
1628 
1629 #define PM_ENTRY_BYTES		sizeof(pagemap_entry_t)
1630 #define PM_PFRAME_BITS		55
1631 #define PM_PFRAME_MASK		GENMASK_ULL(PM_PFRAME_BITS - 1, 0)
1632 #define PM_SOFT_DIRTY		BIT_ULL(55)
1633 #define PM_MMAP_EXCLUSIVE	BIT_ULL(56)
1634 #define PM_UFFD_WP		BIT_ULL(57)
1635 #define PM_FILE			BIT_ULL(61)
1636 #define PM_SWAP			BIT_ULL(62)
1637 #define PM_PRESENT		BIT_ULL(63)
1638 
1639 #define PM_END_OF_BUFFER    1
1640 
1641 static inline pagemap_entry_t make_pme(u64 frame, u64 flags)
1642 {
1643 	return (pagemap_entry_t) { .pme = (frame & PM_PFRAME_MASK) | flags };
1644 }
1645 
1646 static int add_to_pagemap(pagemap_entry_t *pme, struct pagemapread *pm)
1647 {
1648 	pm->buffer[pm->pos++] = *pme;
1649 	if (pm->pos >= pm->len)
1650 		return PM_END_OF_BUFFER;
1651 	return 0;
1652 }
1653 
1654 static int pagemap_pte_hole(unsigned long start, unsigned long end,
1655 			    __always_unused int depth, struct mm_walk *walk)
1656 {
1657 	struct pagemapread *pm = walk->private;
1658 	unsigned long addr = start;
1659 	int err = 0;
1660 
1661 	while (addr < end) {
1662 		struct vm_area_struct *vma = find_vma(walk->mm, addr);
1663 		pagemap_entry_t pme = make_pme(0, 0);
1664 		/* End of address space hole, which we mark as non-present. */
1665 		unsigned long hole_end;
1666 
1667 		if (vma)
1668 			hole_end = min(end, vma->vm_start);
1669 		else
1670 			hole_end = end;
1671 
1672 		for (; addr < hole_end; addr += PAGE_SIZE) {
1673 			err = add_to_pagemap(&pme, pm);
1674 			if (err)
1675 				goto out;
1676 		}
1677 
1678 		if (!vma)
1679 			break;
1680 
1681 		/* Addresses in the VMA. */
1682 		if (vma->vm_flags & VM_SOFTDIRTY)
1683 			pme = make_pme(0, PM_SOFT_DIRTY);
1684 		for (; addr < min(end, vma->vm_end); addr += PAGE_SIZE) {
1685 			err = add_to_pagemap(&pme, pm);
1686 			if (err)
1687 				goto out;
1688 		}
1689 	}
1690 out:
1691 	return err;
1692 }
1693 
1694 static pagemap_entry_t pte_to_pagemap_entry(struct pagemapread *pm,
1695 		struct vm_area_struct *vma, unsigned long addr, pte_t pte)
1696 {
1697 	u64 frame = 0, flags = 0;
1698 	struct page *page = NULL;
1699 	struct folio *folio;
1700 
1701 	if (pte_present(pte)) {
1702 		if (pm->show_pfn)
1703 			frame = pte_pfn(pte);
1704 		flags |= PM_PRESENT;
1705 		page = vm_normal_page(vma, addr, pte);
1706 		if (pte_soft_dirty(pte))
1707 			flags |= PM_SOFT_DIRTY;
1708 		if (pte_uffd_wp(pte))
1709 			flags |= PM_UFFD_WP;
1710 	} else if (is_swap_pte(pte)) {
1711 		swp_entry_t entry;
1712 		if (pte_swp_soft_dirty(pte))
1713 			flags |= PM_SOFT_DIRTY;
1714 		if (pte_swp_uffd_wp(pte))
1715 			flags |= PM_UFFD_WP;
1716 		entry = pte_to_swp_entry(pte);
1717 		if (pm->show_pfn) {
1718 			pgoff_t offset;
1719 			/*
1720 			 * For PFN swap offsets, keeping the offset field
1721 			 * to be PFN only to be compatible with old smaps.
1722 			 */
1723 			if (is_pfn_swap_entry(entry))
1724 				offset = swp_offset_pfn(entry);
1725 			else
1726 				offset = swp_offset(entry);
1727 			frame = swp_type(entry) |
1728 			    (offset << MAX_SWAPFILES_SHIFT);
1729 		}
1730 		flags |= PM_SWAP;
1731 		if (is_pfn_swap_entry(entry))
1732 			page = pfn_swap_entry_to_page(entry);
1733 		if (pte_marker_entry_uffd_wp(entry))
1734 			flags |= PM_UFFD_WP;
1735 	}
1736 
1737 	if (page) {
1738 		folio = page_folio(page);
1739 		if (!folio_test_anon(folio))
1740 			flags |= PM_FILE;
1741 		if ((flags & PM_PRESENT) &&
1742 		    folio_precise_page_mapcount(folio, page) == 1)
1743 			flags |= PM_MMAP_EXCLUSIVE;
1744 	}
1745 	if (vma->vm_flags & VM_SOFTDIRTY)
1746 		flags |= PM_SOFT_DIRTY;
1747 
1748 	return make_pme(frame, flags);
1749 }
1750 
1751 static int pagemap_pmd_range(pmd_t *pmdp, unsigned long addr, unsigned long end,
1752 			     struct mm_walk *walk)
1753 {
1754 	struct vm_area_struct *vma = walk->vma;
1755 	struct pagemapread *pm = walk->private;
1756 	spinlock_t *ptl;
1757 	pte_t *pte, *orig_pte;
1758 	int err = 0;
1759 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1760 
1761 	ptl = pmd_trans_huge_lock(pmdp, vma);
1762 	if (ptl) {
1763 		unsigned int idx = (addr & ~PMD_MASK) >> PAGE_SHIFT;
1764 		u64 flags = 0, frame = 0;
1765 		pmd_t pmd = *pmdp;
1766 		struct page *page = NULL;
1767 		struct folio *folio = NULL;
1768 
1769 		if (vma->vm_flags & VM_SOFTDIRTY)
1770 			flags |= PM_SOFT_DIRTY;
1771 
1772 		if (pmd_present(pmd)) {
1773 			page = pmd_page(pmd);
1774 
1775 			flags |= PM_PRESENT;
1776 			if (pmd_soft_dirty(pmd))
1777 				flags |= PM_SOFT_DIRTY;
1778 			if (pmd_uffd_wp(pmd))
1779 				flags |= PM_UFFD_WP;
1780 			if (pm->show_pfn)
1781 				frame = pmd_pfn(pmd) + idx;
1782 		}
1783 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1784 		else if (is_swap_pmd(pmd)) {
1785 			swp_entry_t entry = pmd_to_swp_entry(pmd);
1786 			unsigned long offset;
1787 
1788 			if (pm->show_pfn) {
1789 				if (is_pfn_swap_entry(entry))
1790 					offset = swp_offset_pfn(entry) + idx;
1791 				else
1792 					offset = swp_offset(entry) + idx;
1793 				frame = swp_type(entry) |
1794 					(offset << MAX_SWAPFILES_SHIFT);
1795 			}
1796 			flags |= PM_SWAP;
1797 			if (pmd_swp_soft_dirty(pmd))
1798 				flags |= PM_SOFT_DIRTY;
1799 			if (pmd_swp_uffd_wp(pmd))
1800 				flags |= PM_UFFD_WP;
1801 			VM_BUG_ON(!is_pmd_migration_entry(pmd));
1802 			page = pfn_swap_entry_to_page(entry);
1803 		}
1804 #endif
1805 
1806 		if (page) {
1807 			folio = page_folio(page);
1808 			if (!folio_test_anon(folio))
1809 				flags |= PM_FILE;
1810 		}
1811 
1812 		for (; addr != end; addr += PAGE_SIZE, idx++) {
1813 			unsigned long cur_flags = flags;
1814 			pagemap_entry_t pme;
1815 
1816 			if (folio && (flags & PM_PRESENT) &&
1817 			    folio_precise_page_mapcount(folio, page + idx) == 1)
1818 				cur_flags |= PM_MMAP_EXCLUSIVE;
1819 
1820 			pme = make_pme(frame, cur_flags);
1821 			err = add_to_pagemap(&pme, pm);
1822 			if (err)
1823 				break;
1824 			if (pm->show_pfn) {
1825 				if (flags & PM_PRESENT)
1826 					frame++;
1827 				else if (flags & PM_SWAP)
1828 					frame += (1 << MAX_SWAPFILES_SHIFT);
1829 			}
1830 		}
1831 		spin_unlock(ptl);
1832 		return err;
1833 	}
1834 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1835 
1836 	/*
1837 	 * We can assume that @vma always points to a valid one and @end never
1838 	 * goes beyond vma->vm_end.
1839 	 */
1840 	orig_pte = pte = pte_offset_map_lock(walk->mm, pmdp, addr, &ptl);
1841 	if (!pte) {
1842 		walk->action = ACTION_AGAIN;
1843 		return err;
1844 	}
1845 	for (; addr < end; pte++, addr += PAGE_SIZE) {
1846 		pagemap_entry_t pme;
1847 
1848 		pme = pte_to_pagemap_entry(pm, vma, addr, ptep_get(pte));
1849 		err = add_to_pagemap(&pme, pm);
1850 		if (err)
1851 			break;
1852 	}
1853 	pte_unmap_unlock(orig_pte, ptl);
1854 
1855 	cond_resched();
1856 
1857 	return err;
1858 }
1859 
1860 #ifdef CONFIG_HUGETLB_PAGE
1861 /* This function walks within one hugetlb entry in the single call */
1862 static int pagemap_hugetlb_range(pte_t *ptep, unsigned long hmask,
1863 				 unsigned long addr, unsigned long end,
1864 				 struct mm_walk *walk)
1865 {
1866 	struct pagemapread *pm = walk->private;
1867 	struct vm_area_struct *vma = walk->vma;
1868 	u64 flags = 0, frame = 0;
1869 	int err = 0;
1870 	pte_t pte;
1871 
1872 	if (vma->vm_flags & VM_SOFTDIRTY)
1873 		flags |= PM_SOFT_DIRTY;
1874 
1875 	pte = huge_ptep_get(walk->mm, addr, ptep);
1876 	if (pte_present(pte)) {
1877 		struct folio *folio = page_folio(pte_page(pte));
1878 
1879 		if (!folio_test_anon(folio))
1880 			flags |= PM_FILE;
1881 
1882 		if (!folio_likely_mapped_shared(folio) &&
1883 		    !hugetlb_pmd_shared(ptep))
1884 			flags |= PM_MMAP_EXCLUSIVE;
1885 
1886 		if (huge_pte_uffd_wp(pte))
1887 			flags |= PM_UFFD_WP;
1888 
1889 		flags |= PM_PRESENT;
1890 		if (pm->show_pfn)
1891 			frame = pte_pfn(pte) +
1892 				((addr & ~hmask) >> PAGE_SHIFT);
1893 	} else if (pte_swp_uffd_wp_any(pte)) {
1894 		flags |= PM_UFFD_WP;
1895 	}
1896 
1897 	for (; addr != end; addr += PAGE_SIZE) {
1898 		pagemap_entry_t pme = make_pme(frame, flags);
1899 
1900 		err = add_to_pagemap(&pme, pm);
1901 		if (err)
1902 			return err;
1903 		if (pm->show_pfn && (flags & PM_PRESENT))
1904 			frame++;
1905 	}
1906 
1907 	cond_resched();
1908 
1909 	return err;
1910 }
1911 #else
1912 #define pagemap_hugetlb_range	NULL
1913 #endif /* HUGETLB_PAGE */
1914 
1915 static const struct mm_walk_ops pagemap_ops = {
1916 	.pmd_entry	= pagemap_pmd_range,
1917 	.pte_hole	= pagemap_pte_hole,
1918 	.hugetlb_entry	= pagemap_hugetlb_range,
1919 	.walk_lock	= PGWALK_RDLOCK,
1920 };
1921 
1922 /*
1923  * /proc/pid/pagemap - an array mapping virtual pages to pfns
1924  *
1925  * For each page in the address space, this file contains one 64-bit entry
1926  * consisting of the following:
1927  *
1928  * Bits 0-54  page frame number (PFN) if present
1929  * Bits 0-4   swap type if swapped
1930  * Bits 5-54  swap offset if swapped
1931  * Bit  55    pte is soft-dirty (see Documentation/admin-guide/mm/soft-dirty.rst)
1932  * Bit  56    page exclusively mapped
1933  * Bit  57    pte is uffd-wp write-protected
1934  * Bits 58-60 zero
1935  * Bit  61    page is file-page or shared-anon
1936  * Bit  62    page swapped
1937  * Bit  63    page present
1938  *
1939  * If the page is not present but in swap, then the PFN contains an
1940  * encoding of the swap file number and the page's offset into the
1941  * swap. Unmapped pages return a null PFN. This allows determining
1942  * precisely which pages are mapped (or in swap) and comparing mapped
1943  * pages between processes.
1944  *
1945  * Efficient users of this interface will use /proc/pid/maps to
1946  * determine which areas of memory are actually mapped and llseek to
1947  * skip over unmapped regions.
1948  */
1949 static ssize_t pagemap_read(struct file *file, char __user *buf,
1950 			    size_t count, loff_t *ppos)
1951 {
1952 	struct mm_struct *mm = file->private_data;
1953 	struct pagemapread pm;
1954 	unsigned long src;
1955 	unsigned long svpfn;
1956 	unsigned long start_vaddr;
1957 	unsigned long end_vaddr;
1958 	int ret = 0, copied = 0;
1959 
1960 	if (!mm || !mmget_not_zero(mm))
1961 		goto out;
1962 
1963 	ret = -EINVAL;
1964 	/* file position must be aligned */
1965 	if ((*ppos % PM_ENTRY_BYTES) || (count % PM_ENTRY_BYTES))
1966 		goto out_mm;
1967 
1968 	ret = 0;
1969 	if (!count)
1970 		goto out_mm;
1971 
1972 	/* do not disclose physical addresses: attack vector */
1973 	pm.show_pfn = file_ns_capable(file, &init_user_ns, CAP_SYS_ADMIN);
1974 
1975 	pm.len = (PAGEMAP_WALK_SIZE >> PAGE_SHIFT);
1976 	pm.buffer = kmalloc_array(pm.len, PM_ENTRY_BYTES, GFP_KERNEL);
1977 	ret = -ENOMEM;
1978 	if (!pm.buffer)
1979 		goto out_mm;
1980 
1981 	src = *ppos;
1982 	svpfn = src / PM_ENTRY_BYTES;
1983 	end_vaddr = mm->task_size;
1984 
1985 	/* watch out for wraparound */
1986 	start_vaddr = end_vaddr;
1987 	if (svpfn <= (ULONG_MAX >> PAGE_SHIFT)) {
1988 		unsigned long end;
1989 
1990 		ret = mmap_read_lock_killable(mm);
1991 		if (ret)
1992 			goto out_free;
1993 		start_vaddr = untagged_addr_remote(mm, svpfn << PAGE_SHIFT);
1994 		mmap_read_unlock(mm);
1995 
1996 		end = start_vaddr + ((count / PM_ENTRY_BYTES) << PAGE_SHIFT);
1997 		if (end >= start_vaddr && end < mm->task_size)
1998 			end_vaddr = end;
1999 	}
2000 
2001 	/* Ensure the address is inside the task */
2002 	if (start_vaddr > mm->task_size)
2003 		start_vaddr = end_vaddr;
2004 
2005 	ret = 0;
2006 	while (count && (start_vaddr < end_vaddr)) {
2007 		int len;
2008 		unsigned long end;
2009 
2010 		pm.pos = 0;
2011 		end = (start_vaddr + PAGEMAP_WALK_SIZE) & PAGEMAP_WALK_MASK;
2012 		/* overflow ? */
2013 		if (end < start_vaddr || end > end_vaddr)
2014 			end = end_vaddr;
2015 		ret = mmap_read_lock_killable(mm);
2016 		if (ret)
2017 			goto out_free;
2018 		ret = walk_page_range(mm, start_vaddr, end, &pagemap_ops, &pm);
2019 		mmap_read_unlock(mm);
2020 		start_vaddr = end;
2021 
2022 		len = min(count, PM_ENTRY_BYTES * pm.pos);
2023 		if (copy_to_user(buf, pm.buffer, len)) {
2024 			ret = -EFAULT;
2025 			goto out_free;
2026 		}
2027 		copied += len;
2028 		buf += len;
2029 		count -= len;
2030 	}
2031 	*ppos += copied;
2032 	if (!ret || ret == PM_END_OF_BUFFER)
2033 		ret = copied;
2034 
2035 out_free:
2036 	kfree(pm.buffer);
2037 out_mm:
2038 	mmput(mm);
2039 out:
2040 	return ret;
2041 }
2042 
2043 static int pagemap_open(struct inode *inode, struct file *file)
2044 {
2045 	struct mm_struct *mm;
2046 
2047 	mm = proc_mem_open(inode, PTRACE_MODE_READ);
2048 	if (IS_ERR(mm))
2049 		return PTR_ERR(mm);
2050 	file->private_data = mm;
2051 	return 0;
2052 }
2053 
2054 static int pagemap_release(struct inode *inode, struct file *file)
2055 {
2056 	struct mm_struct *mm = file->private_data;
2057 
2058 	if (mm)
2059 		mmdrop(mm);
2060 	return 0;
2061 }
2062 
2063 #define PM_SCAN_CATEGORIES	(PAGE_IS_WPALLOWED | PAGE_IS_WRITTEN |	\
2064 				 PAGE_IS_FILE |	PAGE_IS_PRESENT |	\
2065 				 PAGE_IS_SWAPPED | PAGE_IS_PFNZERO |	\
2066 				 PAGE_IS_HUGE | PAGE_IS_SOFT_DIRTY)
2067 #define PM_SCAN_FLAGS		(PM_SCAN_WP_MATCHING | PM_SCAN_CHECK_WPASYNC)
2068 
2069 struct pagemap_scan_private {
2070 	struct pm_scan_arg arg;
2071 	unsigned long masks_of_interest, cur_vma_category;
2072 	struct page_region *vec_buf;
2073 	unsigned long vec_buf_len, vec_buf_index, found_pages;
2074 	struct page_region __user *vec_out;
2075 };
2076 
2077 static unsigned long pagemap_page_category(struct pagemap_scan_private *p,
2078 					   struct vm_area_struct *vma,
2079 					   unsigned long addr, pte_t pte)
2080 {
2081 	unsigned long categories = 0;
2082 
2083 	if (pte_present(pte)) {
2084 		struct page *page;
2085 
2086 		categories |= PAGE_IS_PRESENT;
2087 		if (!pte_uffd_wp(pte))
2088 			categories |= PAGE_IS_WRITTEN;
2089 
2090 		if (p->masks_of_interest & PAGE_IS_FILE) {
2091 			page = vm_normal_page(vma, addr, pte);
2092 			if (page && !PageAnon(page))
2093 				categories |= PAGE_IS_FILE;
2094 		}
2095 
2096 		if (is_zero_pfn(pte_pfn(pte)))
2097 			categories |= PAGE_IS_PFNZERO;
2098 		if (pte_soft_dirty(pte))
2099 			categories |= PAGE_IS_SOFT_DIRTY;
2100 	} else if (is_swap_pte(pte)) {
2101 		swp_entry_t swp;
2102 
2103 		categories |= PAGE_IS_SWAPPED;
2104 		if (!pte_swp_uffd_wp_any(pte))
2105 			categories |= PAGE_IS_WRITTEN;
2106 
2107 		if (p->masks_of_interest & PAGE_IS_FILE) {
2108 			swp = pte_to_swp_entry(pte);
2109 			if (is_pfn_swap_entry(swp) &&
2110 			    !folio_test_anon(pfn_swap_entry_folio(swp)))
2111 				categories |= PAGE_IS_FILE;
2112 		}
2113 		if (pte_swp_soft_dirty(pte))
2114 			categories |= PAGE_IS_SOFT_DIRTY;
2115 	}
2116 
2117 	return categories;
2118 }
2119 
2120 static void make_uffd_wp_pte(struct vm_area_struct *vma,
2121 			     unsigned long addr, pte_t *pte, pte_t ptent)
2122 {
2123 	if (pte_present(ptent)) {
2124 		pte_t old_pte;
2125 
2126 		old_pte = ptep_modify_prot_start(vma, addr, pte);
2127 		ptent = pte_mkuffd_wp(old_pte);
2128 		ptep_modify_prot_commit(vma, addr, pte, old_pte, ptent);
2129 	} else if (is_swap_pte(ptent)) {
2130 		ptent = pte_swp_mkuffd_wp(ptent);
2131 		set_pte_at(vma->vm_mm, addr, pte, ptent);
2132 	} else {
2133 		set_pte_at(vma->vm_mm, addr, pte,
2134 			   make_pte_marker(PTE_MARKER_UFFD_WP));
2135 	}
2136 }
2137 
2138 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2139 static unsigned long pagemap_thp_category(struct pagemap_scan_private *p,
2140 					  struct vm_area_struct *vma,
2141 					  unsigned long addr, pmd_t pmd)
2142 {
2143 	unsigned long categories = PAGE_IS_HUGE;
2144 
2145 	if (pmd_present(pmd)) {
2146 		struct page *page;
2147 
2148 		categories |= PAGE_IS_PRESENT;
2149 		if (!pmd_uffd_wp(pmd))
2150 			categories |= PAGE_IS_WRITTEN;
2151 
2152 		if (p->masks_of_interest & PAGE_IS_FILE) {
2153 			page = vm_normal_page_pmd(vma, addr, pmd);
2154 			if (page && !PageAnon(page))
2155 				categories |= PAGE_IS_FILE;
2156 		}
2157 
2158 		if (is_zero_pfn(pmd_pfn(pmd)))
2159 			categories |= PAGE_IS_PFNZERO;
2160 		if (pmd_soft_dirty(pmd))
2161 			categories |= PAGE_IS_SOFT_DIRTY;
2162 	} else if (is_swap_pmd(pmd)) {
2163 		swp_entry_t swp;
2164 
2165 		categories |= PAGE_IS_SWAPPED;
2166 		if (!pmd_swp_uffd_wp(pmd))
2167 			categories |= PAGE_IS_WRITTEN;
2168 		if (pmd_swp_soft_dirty(pmd))
2169 			categories |= PAGE_IS_SOFT_DIRTY;
2170 
2171 		if (p->masks_of_interest & PAGE_IS_FILE) {
2172 			swp = pmd_to_swp_entry(pmd);
2173 			if (is_pfn_swap_entry(swp) &&
2174 			    !folio_test_anon(pfn_swap_entry_folio(swp)))
2175 				categories |= PAGE_IS_FILE;
2176 		}
2177 	}
2178 
2179 	return categories;
2180 }
2181 
2182 static void make_uffd_wp_pmd(struct vm_area_struct *vma,
2183 			     unsigned long addr, pmd_t *pmdp)
2184 {
2185 	pmd_t old, pmd = *pmdp;
2186 
2187 	if (pmd_present(pmd)) {
2188 		old = pmdp_invalidate_ad(vma, addr, pmdp);
2189 		pmd = pmd_mkuffd_wp(old);
2190 		set_pmd_at(vma->vm_mm, addr, pmdp, pmd);
2191 	} else if (is_migration_entry(pmd_to_swp_entry(pmd))) {
2192 		pmd = pmd_swp_mkuffd_wp(pmd);
2193 		set_pmd_at(vma->vm_mm, addr, pmdp, pmd);
2194 	}
2195 }
2196 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2197 
2198 #ifdef CONFIG_HUGETLB_PAGE
2199 static unsigned long pagemap_hugetlb_category(pte_t pte)
2200 {
2201 	unsigned long categories = PAGE_IS_HUGE;
2202 
2203 	/*
2204 	 * According to pagemap_hugetlb_range(), file-backed HugeTLB
2205 	 * page cannot be swapped. So PAGE_IS_FILE is not checked for
2206 	 * swapped pages.
2207 	 */
2208 	if (pte_present(pte)) {
2209 		categories |= PAGE_IS_PRESENT;
2210 		if (!huge_pte_uffd_wp(pte))
2211 			categories |= PAGE_IS_WRITTEN;
2212 		if (!PageAnon(pte_page(pte)))
2213 			categories |= PAGE_IS_FILE;
2214 		if (is_zero_pfn(pte_pfn(pte)))
2215 			categories |= PAGE_IS_PFNZERO;
2216 		if (pte_soft_dirty(pte))
2217 			categories |= PAGE_IS_SOFT_DIRTY;
2218 	} else if (is_swap_pte(pte)) {
2219 		categories |= PAGE_IS_SWAPPED;
2220 		if (!pte_swp_uffd_wp_any(pte))
2221 			categories |= PAGE_IS_WRITTEN;
2222 		if (pte_swp_soft_dirty(pte))
2223 			categories |= PAGE_IS_SOFT_DIRTY;
2224 	}
2225 
2226 	return categories;
2227 }
2228 
2229 static void make_uffd_wp_huge_pte(struct vm_area_struct *vma,
2230 				  unsigned long addr, pte_t *ptep,
2231 				  pte_t ptent)
2232 {
2233 	unsigned long psize;
2234 
2235 	if (is_hugetlb_entry_hwpoisoned(ptent) || is_pte_marker(ptent))
2236 		return;
2237 
2238 	psize = huge_page_size(hstate_vma(vma));
2239 
2240 	if (is_hugetlb_entry_migration(ptent))
2241 		set_huge_pte_at(vma->vm_mm, addr, ptep,
2242 				pte_swp_mkuffd_wp(ptent), psize);
2243 	else if (!huge_pte_none(ptent))
2244 		huge_ptep_modify_prot_commit(vma, addr, ptep, ptent,
2245 					     huge_pte_mkuffd_wp(ptent));
2246 	else
2247 		set_huge_pte_at(vma->vm_mm, addr, ptep,
2248 				make_pte_marker(PTE_MARKER_UFFD_WP), psize);
2249 }
2250 #endif /* CONFIG_HUGETLB_PAGE */
2251 
2252 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLB_PAGE)
2253 static void pagemap_scan_backout_range(struct pagemap_scan_private *p,
2254 				       unsigned long addr, unsigned long end)
2255 {
2256 	struct page_region *cur_buf = &p->vec_buf[p->vec_buf_index];
2257 
2258 	if (cur_buf->start != addr)
2259 		cur_buf->end = addr;
2260 	else
2261 		cur_buf->start = cur_buf->end = 0;
2262 
2263 	p->found_pages -= (end - addr) / PAGE_SIZE;
2264 }
2265 #endif
2266 
2267 static bool pagemap_scan_is_interesting_page(unsigned long categories,
2268 					     const struct pagemap_scan_private *p)
2269 {
2270 	categories ^= p->arg.category_inverted;
2271 	if ((categories & p->arg.category_mask) != p->arg.category_mask)
2272 		return false;
2273 	if (p->arg.category_anyof_mask && !(categories & p->arg.category_anyof_mask))
2274 		return false;
2275 
2276 	return true;
2277 }
2278 
2279 static bool pagemap_scan_is_interesting_vma(unsigned long categories,
2280 					    const struct pagemap_scan_private *p)
2281 {
2282 	unsigned long required = p->arg.category_mask & PAGE_IS_WPALLOWED;
2283 
2284 	categories ^= p->arg.category_inverted;
2285 	if ((categories & required) != required)
2286 		return false;
2287 
2288 	return true;
2289 }
2290 
2291 static int pagemap_scan_test_walk(unsigned long start, unsigned long end,
2292 				  struct mm_walk *walk)
2293 {
2294 	struct pagemap_scan_private *p = walk->private;
2295 	struct vm_area_struct *vma = walk->vma;
2296 	unsigned long vma_category = 0;
2297 	bool wp_allowed = userfaultfd_wp_async(vma) &&
2298 	    userfaultfd_wp_use_markers(vma);
2299 
2300 	if (!wp_allowed) {
2301 		/* User requested explicit failure over wp-async capability */
2302 		if (p->arg.flags & PM_SCAN_CHECK_WPASYNC)
2303 			return -EPERM;
2304 		/*
2305 		 * User requires wr-protect, and allows silently skipping
2306 		 * unsupported vmas.
2307 		 */
2308 		if (p->arg.flags & PM_SCAN_WP_MATCHING)
2309 			return 1;
2310 		/*
2311 		 * Then the request doesn't involve wr-protects at all,
2312 		 * fall through to the rest checks, and allow vma walk.
2313 		 */
2314 	}
2315 
2316 	if (vma->vm_flags & VM_PFNMAP)
2317 		return 1;
2318 
2319 	if (wp_allowed)
2320 		vma_category |= PAGE_IS_WPALLOWED;
2321 
2322 	if (vma->vm_flags & VM_SOFTDIRTY)
2323 		vma_category |= PAGE_IS_SOFT_DIRTY;
2324 
2325 	if (!pagemap_scan_is_interesting_vma(vma_category, p))
2326 		return 1;
2327 
2328 	p->cur_vma_category = vma_category;
2329 
2330 	return 0;
2331 }
2332 
2333 static bool pagemap_scan_push_range(unsigned long categories,
2334 				    struct pagemap_scan_private *p,
2335 				    unsigned long addr, unsigned long end)
2336 {
2337 	struct page_region *cur_buf = &p->vec_buf[p->vec_buf_index];
2338 
2339 	/*
2340 	 * When there is no output buffer provided at all, the sentinel values
2341 	 * won't match here. There is no other way for `cur_buf->end` to be
2342 	 * non-zero other than it being non-empty.
2343 	 */
2344 	if (addr == cur_buf->end && categories == cur_buf->categories) {
2345 		cur_buf->end = end;
2346 		return true;
2347 	}
2348 
2349 	if (cur_buf->end) {
2350 		if (p->vec_buf_index >= p->vec_buf_len - 1)
2351 			return false;
2352 
2353 		cur_buf = &p->vec_buf[++p->vec_buf_index];
2354 	}
2355 
2356 	cur_buf->start = addr;
2357 	cur_buf->end = end;
2358 	cur_buf->categories = categories;
2359 
2360 	return true;
2361 }
2362 
2363 static int pagemap_scan_output(unsigned long categories,
2364 			       struct pagemap_scan_private *p,
2365 			       unsigned long addr, unsigned long *end)
2366 {
2367 	unsigned long n_pages, total_pages;
2368 	int ret = 0;
2369 
2370 	if (!p->vec_buf)
2371 		return 0;
2372 
2373 	categories &= p->arg.return_mask;
2374 
2375 	n_pages = (*end - addr) / PAGE_SIZE;
2376 	if (check_add_overflow(p->found_pages, n_pages, &total_pages) ||
2377 	    total_pages > p->arg.max_pages) {
2378 		size_t n_too_much = total_pages - p->arg.max_pages;
2379 		*end -= n_too_much * PAGE_SIZE;
2380 		n_pages -= n_too_much;
2381 		ret = -ENOSPC;
2382 	}
2383 
2384 	if (!pagemap_scan_push_range(categories, p, addr, *end)) {
2385 		*end = addr;
2386 		n_pages = 0;
2387 		ret = -ENOSPC;
2388 	}
2389 
2390 	p->found_pages += n_pages;
2391 	if (ret)
2392 		p->arg.walk_end = *end;
2393 
2394 	return ret;
2395 }
2396 
2397 static int pagemap_scan_thp_entry(pmd_t *pmd, unsigned long start,
2398 				  unsigned long end, struct mm_walk *walk)
2399 {
2400 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2401 	struct pagemap_scan_private *p = walk->private;
2402 	struct vm_area_struct *vma = walk->vma;
2403 	unsigned long categories;
2404 	spinlock_t *ptl;
2405 	int ret = 0;
2406 
2407 	ptl = pmd_trans_huge_lock(pmd, vma);
2408 	if (!ptl)
2409 		return -ENOENT;
2410 
2411 	categories = p->cur_vma_category |
2412 		     pagemap_thp_category(p, vma, start, *pmd);
2413 
2414 	if (!pagemap_scan_is_interesting_page(categories, p))
2415 		goto out_unlock;
2416 
2417 	ret = pagemap_scan_output(categories, p, start, &end);
2418 	if (start == end)
2419 		goto out_unlock;
2420 
2421 	if (~p->arg.flags & PM_SCAN_WP_MATCHING)
2422 		goto out_unlock;
2423 	if (~categories & PAGE_IS_WRITTEN)
2424 		goto out_unlock;
2425 
2426 	/*
2427 	 * Break huge page into small pages if the WP operation
2428 	 * needs to be performed on a portion of the huge page.
2429 	 */
2430 	if (end != start + HPAGE_SIZE) {
2431 		spin_unlock(ptl);
2432 		split_huge_pmd(vma, pmd, start);
2433 		pagemap_scan_backout_range(p, start, end);
2434 		/* Report as if there was no THP */
2435 		return -ENOENT;
2436 	}
2437 
2438 	make_uffd_wp_pmd(vma, start, pmd);
2439 	flush_tlb_range(vma, start, end);
2440 out_unlock:
2441 	spin_unlock(ptl);
2442 	return ret;
2443 #else /* !CONFIG_TRANSPARENT_HUGEPAGE */
2444 	return -ENOENT;
2445 #endif
2446 }
2447 
2448 static int pagemap_scan_pmd_entry(pmd_t *pmd, unsigned long start,
2449 				  unsigned long end, struct mm_walk *walk)
2450 {
2451 	struct pagemap_scan_private *p = walk->private;
2452 	struct vm_area_struct *vma = walk->vma;
2453 	unsigned long addr, flush_end = 0;
2454 	pte_t *pte, *start_pte;
2455 	spinlock_t *ptl;
2456 	int ret;
2457 
2458 	arch_enter_lazy_mmu_mode();
2459 
2460 	ret = pagemap_scan_thp_entry(pmd, start, end, walk);
2461 	if (ret != -ENOENT) {
2462 		arch_leave_lazy_mmu_mode();
2463 		return ret;
2464 	}
2465 
2466 	ret = 0;
2467 	start_pte = pte = pte_offset_map_lock(vma->vm_mm, pmd, start, &ptl);
2468 	if (!pte) {
2469 		arch_leave_lazy_mmu_mode();
2470 		walk->action = ACTION_AGAIN;
2471 		return 0;
2472 	}
2473 
2474 	if ((p->arg.flags & PM_SCAN_WP_MATCHING) && !p->vec_out) {
2475 		/* Fast path for performing exclusive WP */
2476 		for (addr = start; addr != end; pte++, addr += PAGE_SIZE) {
2477 			pte_t ptent = ptep_get(pte);
2478 
2479 			if ((pte_present(ptent) && pte_uffd_wp(ptent)) ||
2480 			    pte_swp_uffd_wp_any(ptent))
2481 				continue;
2482 			make_uffd_wp_pte(vma, addr, pte, ptent);
2483 			if (!flush_end)
2484 				start = addr;
2485 			flush_end = addr + PAGE_SIZE;
2486 		}
2487 		goto flush_and_return;
2488 	}
2489 
2490 	if (!p->arg.category_anyof_mask && !p->arg.category_inverted &&
2491 	    p->arg.category_mask == PAGE_IS_WRITTEN &&
2492 	    p->arg.return_mask == PAGE_IS_WRITTEN) {
2493 		for (addr = start; addr < end; pte++, addr += PAGE_SIZE) {
2494 			unsigned long next = addr + PAGE_SIZE;
2495 			pte_t ptent = ptep_get(pte);
2496 
2497 			if ((pte_present(ptent) && pte_uffd_wp(ptent)) ||
2498 			    pte_swp_uffd_wp_any(ptent))
2499 				continue;
2500 			ret = pagemap_scan_output(p->cur_vma_category | PAGE_IS_WRITTEN,
2501 						  p, addr, &next);
2502 			if (next == addr)
2503 				break;
2504 			if (~p->arg.flags & PM_SCAN_WP_MATCHING)
2505 				continue;
2506 			make_uffd_wp_pte(vma, addr, pte, ptent);
2507 			if (!flush_end)
2508 				start = addr;
2509 			flush_end = next;
2510 		}
2511 		goto flush_and_return;
2512 	}
2513 
2514 	for (addr = start; addr != end; pte++, addr += PAGE_SIZE) {
2515 		pte_t ptent = ptep_get(pte);
2516 		unsigned long categories = p->cur_vma_category |
2517 					   pagemap_page_category(p, vma, addr, ptent);
2518 		unsigned long next = addr + PAGE_SIZE;
2519 
2520 		if (!pagemap_scan_is_interesting_page(categories, p))
2521 			continue;
2522 
2523 		ret = pagemap_scan_output(categories, p, addr, &next);
2524 		if (next == addr)
2525 			break;
2526 
2527 		if (~p->arg.flags & PM_SCAN_WP_MATCHING)
2528 			continue;
2529 		if (~categories & PAGE_IS_WRITTEN)
2530 			continue;
2531 
2532 		make_uffd_wp_pte(vma, addr, pte, ptent);
2533 		if (!flush_end)
2534 			start = addr;
2535 		flush_end = next;
2536 	}
2537 
2538 flush_and_return:
2539 	if (flush_end)
2540 		flush_tlb_range(vma, start, addr);
2541 
2542 	pte_unmap_unlock(start_pte, ptl);
2543 	arch_leave_lazy_mmu_mode();
2544 
2545 	cond_resched();
2546 	return ret;
2547 }
2548 
2549 #ifdef CONFIG_HUGETLB_PAGE
2550 static int pagemap_scan_hugetlb_entry(pte_t *ptep, unsigned long hmask,
2551 				      unsigned long start, unsigned long end,
2552 				      struct mm_walk *walk)
2553 {
2554 	struct pagemap_scan_private *p = walk->private;
2555 	struct vm_area_struct *vma = walk->vma;
2556 	unsigned long categories;
2557 	spinlock_t *ptl;
2558 	int ret = 0;
2559 	pte_t pte;
2560 
2561 	if (~p->arg.flags & PM_SCAN_WP_MATCHING) {
2562 		/* Go the short route when not write-protecting pages. */
2563 
2564 		pte = huge_ptep_get(walk->mm, start, ptep);
2565 		categories = p->cur_vma_category | pagemap_hugetlb_category(pte);
2566 
2567 		if (!pagemap_scan_is_interesting_page(categories, p))
2568 			return 0;
2569 
2570 		return pagemap_scan_output(categories, p, start, &end);
2571 	}
2572 
2573 	i_mmap_lock_write(vma->vm_file->f_mapping);
2574 	ptl = huge_pte_lock(hstate_vma(vma), vma->vm_mm, ptep);
2575 
2576 	pte = huge_ptep_get(walk->mm, start, ptep);
2577 	categories = p->cur_vma_category | pagemap_hugetlb_category(pte);
2578 
2579 	if (!pagemap_scan_is_interesting_page(categories, p))
2580 		goto out_unlock;
2581 
2582 	ret = pagemap_scan_output(categories, p, start, &end);
2583 	if (start == end)
2584 		goto out_unlock;
2585 
2586 	if (~categories & PAGE_IS_WRITTEN)
2587 		goto out_unlock;
2588 
2589 	if (end != start + HPAGE_SIZE) {
2590 		/* Partial HugeTLB page WP isn't possible. */
2591 		pagemap_scan_backout_range(p, start, end);
2592 		p->arg.walk_end = start;
2593 		ret = 0;
2594 		goto out_unlock;
2595 	}
2596 
2597 	make_uffd_wp_huge_pte(vma, start, ptep, pte);
2598 	flush_hugetlb_tlb_range(vma, start, end);
2599 
2600 out_unlock:
2601 	spin_unlock(ptl);
2602 	i_mmap_unlock_write(vma->vm_file->f_mapping);
2603 
2604 	return ret;
2605 }
2606 #else
2607 #define pagemap_scan_hugetlb_entry NULL
2608 #endif
2609 
2610 static int pagemap_scan_pte_hole(unsigned long addr, unsigned long end,
2611 				 int depth, struct mm_walk *walk)
2612 {
2613 	struct pagemap_scan_private *p = walk->private;
2614 	struct vm_area_struct *vma = walk->vma;
2615 	int ret, err;
2616 
2617 	if (!vma || !pagemap_scan_is_interesting_page(p->cur_vma_category, p))
2618 		return 0;
2619 
2620 	ret = pagemap_scan_output(p->cur_vma_category, p, addr, &end);
2621 	if (addr == end)
2622 		return ret;
2623 
2624 	if (~p->arg.flags & PM_SCAN_WP_MATCHING)
2625 		return ret;
2626 
2627 	err = uffd_wp_range(vma, addr, end - addr, true);
2628 	if (err < 0)
2629 		ret = err;
2630 
2631 	return ret;
2632 }
2633 
2634 static const struct mm_walk_ops pagemap_scan_ops = {
2635 	.test_walk = pagemap_scan_test_walk,
2636 	.pmd_entry = pagemap_scan_pmd_entry,
2637 	.pte_hole = pagemap_scan_pte_hole,
2638 	.hugetlb_entry = pagemap_scan_hugetlb_entry,
2639 };
2640 
2641 static int pagemap_scan_get_args(struct pm_scan_arg *arg,
2642 				 unsigned long uarg)
2643 {
2644 	if (copy_from_user(arg, (void __user *)uarg, sizeof(*arg)))
2645 		return -EFAULT;
2646 
2647 	if (arg->size != sizeof(struct pm_scan_arg))
2648 		return -EINVAL;
2649 
2650 	/* Validate requested features */
2651 	if (arg->flags & ~PM_SCAN_FLAGS)
2652 		return -EINVAL;
2653 	if ((arg->category_inverted | arg->category_mask |
2654 	     arg->category_anyof_mask | arg->return_mask) & ~PM_SCAN_CATEGORIES)
2655 		return -EINVAL;
2656 
2657 	arg->start = untagged_addr((unsigned long)arg->start);
2658 	arg->end = untagged_addr((unsigned long)arg->end);
2659 	arg->vec = untagged_addr((unsigned long)arg->vec);
2660 
2661 	/* Validate memory pointers */
2662 	if (!IS_ALIGNED(arg->start, PAGE_SIZE))
2663 		return -EINVAL;
2664 	if (!access_ok((void __user *)(long)arg->start, arg->end - arg->start))
2665 		return -EFAULT;
2666 	if (!arg->vec && arg->vec_len)
2667 		return -EINVAL;
2668 	if (UINT_MAX == SIZE_MAX && arg->vec_len > SIZE_MAX)
2669 		return -EINVAL;
2670 	if (arg->vec && !access_ok((void __user *)(long)arg->vec,
2671 				   size_mul(arg->vec_len, sizeof(struct page_region))))
2672 		return -EFAULT;
2673 
2674 	/* Fixup default values */
2675 	arg->end = ALIGN(arg->end, PAGE_SIZE);
2676 	arg->walk_end = 0;
2677 	if (!arg->max_pages)
2678 		arg->max_pages = ULONG_MAX;
2679 
2680 	return 0;
2681 }
2682 
2683 static int pagemap_scan_writeback_args(struct pm_scan_arg *arg,
2684 				       unsigned long uargl)
2685 {
2686 	struct pm_scan_arg __user *uarg	= (void __user *)uargl;
2687 
2688 	if (copy_to_user(&uarg->walk_end, &arg->walk_end, sizeof(arg->walk_end)))
2689 		return -EFAULT;
2690 
2691 	return 0;
2692 }
2693 
2694 static int pagemap_scan_init_bounce_buffer(struct pagemap_scan_private *p)
2695 {
2696 	if (!p->arg.vec_len)
2697 		return 0;
2698 
2699 	p->vec_buf_len = min_t(size_t, PAGEMAP_WALK_SIZE >> PAGE_SHIFT,
2700 			       p->arg.vec_len);
2701 	p->vec_buf = kmalloc_array(p->vec_buf_len, sizeof(*p->vec_buf),
2702 				   GFP_KERNEL);
2703 	if (!p->vec_buf)
2704 		return -ENOMEM;
2705 
2706 	p->vec_buf->start = p->vec_buf->end = 0;
2707 	p->vec_out = (struct page_region __user *)(long)p->arg.vec;
2708 
2709 	return 0;
2710 }
2711 
2712 static long pagemap_scan_flush_buffer(struct pagemap_scan_private *p)
2713 {
2714 	const struct page_region *buf = p->vec_buf;
2715 	long n = p->vec_buf_index;
2716 
2717 	if (!p->vec_buf)
2718 		return 0;
2719 
2720 	if (buf[n].end != buf[n].start)
2721 		n++;
2722 
2723 	if (!n)
2724 		return 0;
2725 
2726 	if (copy_to_user(p->vec_out, buf, n * sizeof(*buf)))
2727 		return -EFAULT;
2728 
2729 	p->arg.vec_len -= n;
2730 	p->vec_out += n;
2731 
2732 	p->vec_buf_index = 0;
2733 	p->vec_buf_len = min_t(size_t, p->vec_buf_len, p->arg.vec_len);
2734 	p->vec_buf->start = p->vec_buf->end = 0;
2735 
2736 	return n;
2737 }
2738 
2739 static long do_pagemap_scan(struct mm_struct *mm, unsigned long uarg)
2740 {
2741 	struct pagemap_scan_private p = {0};
2742 	unsigned long walk_start;
2743 	size_t n_ranges_out = 0;
2744 	int ret;
2745 
2746 	ret = pagemap_scan_get_args(&p.arg, uarg);
2747 	if (ret)
2748 		return ret;
2749 
2750 	p.masks_of_interest = p.arg.category_mask | p.arg.category_anyof_mask |
2751 			      p.arg.return_mask;
2752 	ret = pagemap_scan_init_bounce_buffer(&p);
2753 	if (ret)
2754 		return ret;
2755 
2756 	for (walk_start = p.arg.start; walk_start < p.arg.end;
2757 			walk_start = p.arg.walk_end) {
2758 		struct mmu_notifier_range range;
2759 		long n_out;
2760 
2761 		if (fatal_signal_pending(current)) {
2762 			ret = -EINTR;
2763 			break;
2764 		}
2765 
2766 		ret = mmap_read_lock_killable(mm);
2767 		if (ret)
2768 			break;
2769 
2770 		/* Protection change for the range is going to happen. */
2771 		if (p.arg.flags & PM_SCAN_WP_MATCHING) {
2772 			mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_VMA, 0,
2773 						mm, walk_start, p.arg.end);
2774 			mmu_notifier_invalidate_range_start(&range);
2775 		}
2776 
2777 		ret = walk_page_range(mm, walk_start, p.arg.end,
2778 				      &pagemap_scan_ops, &p);
2779 
2780 		if (p.arg.flags & PM_SCAN_WP_MATCHING)
2781 			mmu_notifier_invalidate_range_end(&range);
2782 
2783 		mmap_read_unlock(mm);
2784 
2785 		n_out = pagemap_scan_flush_buffer(&p);
2786 		if (n_out < 0)
2787 			ret = n_out;
2788 		else
2789 			n_ranges_out += n_out;
2790 
2791 		if (ret != -ENOSPC)
2792 			break;
2793 
2794 		if (p.arg.vec_len == 0 || p.found_pages == p.arg.max_pages)
2795 			break;
2796 	}
2797 
2798 	/* ENOSPC signifies early stop (buffer full) from the walk. */
2799 	if (!ret || ret == -ENOSPC)
2800 		ret = n_ranges_out;
2801 
2802 	/* The walk_end isn't set when ret is zero */
2803 	if (!p.arg.walk_end)
2804 		p.arg.walk_end = p.arg.end;
2805 	if (pagemap_scan_writeback_args(&p.arg, uarg))
2806 		ret = -EFAULT;
2807 
2808 	kfree(p.vec_buf);
2809 	return ret;
2810 }
2811 
2812 static long do_pagemap_cmd(struct file *file, unsigned int cmd,
2813 			   unsigned long arg)
2814 {
2815 	struct mm_struct *mm = file->private_data;
2816 
2817 	switch (cmd) {
2818 	case PAGEMAP_SCAN:
2819 		return do_pagemap_scan(mm, arg);
2820 
2821 	default:
2822 		return -EINVAL;
2823 	}
2824 }
2825 
2826 const struct file_operations proc_pagemap_operations = {
2827 	.llseek		= mem_lseek, /* borrow this */
2828 	.read		= pagemap_read,
2829 	.open		= pagemap_open,
2830 	.release	= pagemap_release,
2831 	.unlocked_ioctl = do_pagemap_cmd,
2832 	.compat_ioctl	= do_pagemap_cmd,
2833 };
2834 #endif /* CONFIG_PROC_PAGE_MONITOR */
2835 
2836 #ifdef CONFIG_NUMA
2837 
2838 struct numa_maps {
2839 	unsigned long pages;
2840 	unsigned long anon;
2841 	unsigned long active;
2842 	unsigned long writeback;
2843 	unsigned long mapcount_max;
2844 	unsigned long dirty;
2845 	unsigned long swapcache;
2846 	unsigned long node[MAX_NUMNODES];
2847 };
2848 
2849 struct numa_maps_private {
2850 	struct proc_maps_private proc_maps;
2851 	struct numa_maps md;
2852 };
2853 
2854 static void gather_stats(struct page *page, struct numa_maps *md, int pte_dirty,
2855 			unsigned long nr_pages)
2856 {
2857 	struct folio *folio = page_folio(page);
2858 	int count = folio_precise_page_mapcount(folio, page);
2859 
2860 	md->pages += nr_pages;
2861 	if (pte_dirty || folio_test_dirty(folio))
2862 		md->dirty += nr_pages;
2863 
2864 	if (folio_test_swapcache(folio))
2865 		md->swapcache += nr_pages;
2866 
2867 	if (folio_test_active(folio) || folio_test_unevictable(folio))
2868 		md->active += nr_pages;
2869 
2870 	if (folio_test_writeback(folio))
2871 		md->writeback += nr_pages;
2872 
2873 	if (folio_test_anon(folio))
2874 		md->anon += nr_pages;
2875 
2876 	if (count > md->mapcount_max)
2877 		md->mapcount_max = count;
2878 
2879 	md->node[folio_nid(folio)] += nr_pages;
2880 }
2881 
2882 static struct page *can_gather_numa_stats(pte_t pte, struct vm_area_struct *vma,
2883 		unsigned long addr)
2884 {
2885 	struct page *page;
2886 	int nid;
2887 
2888 	if (!pte_present(pte))
2889 		return NULL;
2890 
2891 	page = vm_normal_page(vma, addr, pte);
2892 	if (!page || is_zone_device_page(page))
2893 		return NULL;
2894 
2895 	if (PageReserved(page))
2896 		return NULL;
2897 
2898 	nid = page_to_nid(page);
2899 	if (!node_isset(nid, node_states[N_MEMORY]))
2900 		return NULL;
2901 
2902 	return page;
2903 }
2904 
2905 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2906 static struct page *can_gather_numa_stats_pmd(pmd_t pmd,
2907 					      struct vm_area_struct *vma,
2908 					      unsigned long addr)
2909 {
2910 	struct page *page;
2911 	int nid;
2912 
2913 	if (!pmd_present(pmd))
2914 		return NULL;
2915 
2916 	page = vm_normal_page_pmd(vma, addr, pmd);
2917 	if (!page)
2918 		return NULL;
2919 
2920 	if (PageReserved(page))
2921 		return NULL;
2922 
2923 	nid = page_to_nid(page);
2924 	if (!node_isset(nid, node_states[N_MEMORY]))
2925 		return NULL;
2926 
2927 	return page;
2928 }
2929 #endif
2930 
2931 static int gather_pte_stats(pmd_t *pmd, unsigned long addr,
2932 		unsigned long end, struct mm_walk *walk)
2933 {
2934 	struct numa_maps *md = walk->private;
2935 	struct vm_area_struct *vma = walk->vma;
2936 	spinlock_t *ptl;
2937 	pte_t *orig_pte;
2938 	pte_t *pte;
2939 
2940 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2941 	ptl = pmd_trans_huge_lock(pmd, vma);
2942 	if (ptl) {
2943 		struct page *page;
2944 
2945 		page = can_gather_numa_stats_pmd(*pmd, vma, addr);
2946 		if (page)
2947 			gather_stats(page, md, pmd_dirty(*pmd),
2948 				     HPAGE_PMD_SIZE/PAGE_SIZE);
2949 		spin_unlock(ptl);
2950 		return 0;
2951 	}
2952 #endif
2953 	orig_pte = pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
2954 	if (!pte) {
2955 		walk->action = ACTION_AGAIN;
2956 		return 0;
2957 	}
2958 	do {
2959 		pte_t ptent = ptep_get(pte);
2960 		struct page *page = can_gather_numa_stats(ptent, vma, addr);
2961 		if (!page)
2962 			continue;
2963 		gather_stats(page, md, pte_dirty(ptent), 1);
2964 
2965 	} while (pte++, addr += PAGE_SIZE, addr != end);
2966 	pte_unmap_unlock(orig_pte, ptl);
2967 	cond_resched();
2968 	return 0;
2969 }
2970 #ifdef CONFIG_HUGETLB_PAGE
2971 static int gather_hugetlb_stats(pte_t *pte, unsigned long hmask,
2972 		unsigned long addr, unsigned long end, struct mm_walk *walk)
2973 {
2974 	pte_t huge_pte = huge_ptep_get(walk->mm, addr, pte);
2975 	struct numa_maps *md;
2976 	struct page *page;
2977 
2978 	if (!pte_present(huge_pte))
2979 		return 0;
2980 
2981 	page = pte_page(huge_pte);
2982 
2983 	md = walk->private;
2984 	gather_stats(page, md, pte_dirty(huge_pte), 1);
2985 	return 0;
2986 }
2987 
2988 #else
2989 static int gather_hugetlb_stats(pte_t *pte, unsigned long hmask,
2990 		unsigned long addr, unsigned long end, struct mm_walk *walk)
2991 {
2992 	return 0;
2993 }
2994 #endif
2995 
2996 static const struct mm_walk_ops show_numa_ops = {
2997 	.hugetlb_entry = gather_hugetlb_stats,
2998 	.pmd_entry = gather_pte_stats,
2999 	.walk_lock = PGWALK_RDLOCK,
3000 };
3001 
3002 /*
3003  * Display pages allocated per node and memory policy via /proc.
3004  */
3005 static int show_numa_map(struct seq_file *m, void *v)
3006 {
3007 	struct numa_maps_private *numa_priv = m->private;
3008 	struct proc_maps_private *proc_priv = &numa_priv->proc_maps;
3009 	struct vm_area_struct *vma = v;
3010 	struct numa_maps *md = &numa_priv->md;
3011 	struct file *file = vma->vm_file;
3012 	struct mm_struct *mm = vma->vm_mm;
3013 	char buffer[64];
3014 	struct mempolicy *pol;
3015 	pgoff_t ilx;
3016 	int nid;
3017 
3018 	if (!mm)
3019 		return 0;
3020 
3021 	/* Ensure we start with an empty set of numa_maps statistics. */
3022 	memset(md, 0, sizeof(*md));
3023 
3024 	pol = __get_vma_policy(vma, vma->vm_start, &ilx);
3025 	if (pol) {
3026 		mpol_to_str(buffer, sizeof(buffer), pol);
3027 		mpol_cond_put(pol);
3028 	} else {
3029 		mpol_to_str(buffer, sizeof(buffer), proc_priv->task_mempolicy);
3030 	}
3031 
3032 	seq_printf(m, "%08lx %s", vma->vm_start, buffer);
3033 
3034 	if (file) {
3035 		seq_puts(m, " file=");
3036 		seq_path(m, file_user_path(file), "\n\t= ");
3037 	} else if (vma_is_initial_heap(vma)) {
3038 		seq_puts(m, " heap");
3039 	} else if (vma_is_initial_stack(vma)) {
3040 		seq_puts(m, " stack");
3041 	}
3042 
3043 	if (is_vm_hugetlb_page(vma))
3044 		seq_puts(m, " huge");
3045 
3046 	/* mmap_lock is held by m_start */
3047 	walk_page_vma(vma, &show_numa_ops, md);
3048 
3049 	if (!md->pages)
3050 		goto out;
3051 
3052 	if (md->anon)
3053 		seq_printf(m, " anon=%lu", md->anon);
3054 
3055 	if (md->dirty)
3056 		seq_printf(m, " dirty=%lu", md->dirty);
3057 
3058 	if (md->pages != md->anon && md->pages != md->dirty)
3059 		seq_printf(m, " mapped=%lu", md->pages);
3060 
3061 	if (md->mapcount_max > 1)
3062 		seq_printf(m, " mapmax=%lu", md->mapcount_max);
3063 
3064 	if (md->swapcache)
3065 		seq_printf(m, " swapcache=%lu", md->swapcache);
3066 
3067 	if (md->active < md->pages && !is_vm_hugetlb_page(vma))
3068 		seq_printf(m, " active=%lu", md->active);
3069 
3070 	if (md->writeback)
3071 		seq_printf(m, " writeback=%lu", md->writeback);
3072 
3073 	for_each_node_state(nid, N_MEMORY)
3074 		if (md->node[nid])
3075 			seq_printf(m, " N%d=%lu", nid, md->node[nid]);
3076 
3077 	seq_printf(m, " kernelpagesize_kB=%lu", vma_kernel_pagesize(vma) >> 10);
3078 out:
3079 	seq_putc(m, '\n');
3080 	return 0;
3081 }
3082 
3083 static const struct seq_operations proc_pid_numa_maps_op = {
3084 	.start  = m_start,
3085 	.next   = m_next,
3086 	.stop   = m_stop,
3087 	.show   = show_numa_map,
3088 };
3089 
3090 static int pid_numa_maps_open(struct inode *inode, struct file *file)
3091 {
3092 	return proc_maps_open(inode, file, &proc_pid_numa_maps_op,
3093 				sizeof(struct numa_maps_private));
3094 }
3095 
3096 const struct file_operations proc_pid_numa_maps_operations = {
3097 	.open		= pid_numa_maps_open,
3098 	.read		= seq_read,
3099 	.llseek		= seq_lseek,
3100 	.release	= proc_map_release,
3101 };
3102 
3103 #endif /* CONFIG_NUMA */
3104