xref: /linux/fs/proc/task_mmu.c (revision 68c402fe5c5e5aa9a04c8bba9d99feb08a68afa7)
1 // SPDX-License-Identifier: GPL-2.0
2 #include <linux/pagewalk.h>
3 #include <linux/mm_inline.h>
4 #include <linux/hugetlb.h>
5 #include <linux/huge_mm.h>
6 #include <linux/mount.h>
7 #include <linux/ksm.h>
8 #include <linux/seq_file.h>
9 #include <linux/highmem.h>
10 #include <linux/ptrace.h>
11 #include <linux/slab.h>
12 #include <linux/pagemap.h>
13 #include <linux/mempolicy.h>
14 #include <linux/rmap.h>
15 #include <linux/swap.h>
16 #include <linux/sched/mm.h>
17 #include <linux/swapops.h>
18 #include <linux/mmu_notifier.h>
19 #include <linux/page_idle.h>
20 #include <linux/shmem_fs.h>
21 #include <linux/uaccess.h>
22 #include <linux/pkeys.h>
23 #include <linux/minmax.h>
24 #include <linux/overflow.h>
25 
26 #include <asm/elf.h>
27 #include <asm/tlb.h>
28 #include <asm/tlbflush.h>
29 #include "internal.h"
30 
31 #define SEQ_PUT_DEC(str, val) \
32 		seq_put_decimal_ull_width(m, str, (val) << (PAGE_SHIFT-10), 8)
33 void task_mem(struct seq_file *m, struct mm_struct *mm)
34 {
35 	unsigned long text, lib, swap, anon, file, shmem;
36 	unsigned long hiwater_vm, total_vm, hiwater_rss, total_rss;
37 
38 	anon = get_mm_counter(mm, MM_ANONPAGES);
39 	file = get_mm_counter(mm, MM_FILEPAGES);
40 	shmem = get_mm_counter(mm, MM_SHMEMPAGES);
41 
42 	/*
43 	 * Note: to minimize their overhead, mm maintains hiwater_vm and
44 	 * hiwater_rss only when about to *lower* total_vm or rss.  Any
45 	 * collector of these hiwater stats must therefore get total_vm
46 	 * and rss too, which will usually be the higher.  Barriers? not
47 	 * worth the effort, such snapshots can always be inconsistent.
48 	 */
49 	hiwater_vm = total_vm = mm->total_vm;
50 	if (hiwater_vm < mm->hiwater_vm)
51 		hiwater_vm = mm->hiwater_vm;
52 	hiwater_rss = total_rss = anon + file + shmem;
53 	if (hiwater_rss < mm->hiwater_rss)
54 		hiwater_rss = mm->hiwater_rss;
55 
56 	/* split executable areas between text and lib */
57 	text = PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK);
58 	text = min(text, mm->exec_vm << PAGE_SHIFT);
59 	lib = (mm->exec_vm << PAGE_SHIFT) - text;
60 
61 	swap = get_mm_counter(mm, MM_SWAPENTS);
62 	SEQ_PUT_DEC("VmPeak:\t", hiwater_vm);
63 	SEQ_PUT_DEC(" kB\nVmSize:\t", total_vm);
64 	SEQ_PUT_DEC(" kB\nVmLck:\t", mm->locked_vm);
65 	SEQ_PUT_DEC(" kB\nVmPin:\t", atomic64_read(&mm->pinned_vm));
66 	SEQ_PUT_DEC(" kB\nVmHWM:\t", hiwater_rss);
67 	SEQ_PUT_DEC(" kB\nVmRSS:\t", total_rss);
68 	SEQ_PUT_DEC(" kB\nRssAnon:\t", anon);
69 	SEQ_PUT_DEC(" kB\nRssFile:\t", file);
70 	SEQ_PUT_DEC(" kB\nRssShmem:\t", shmem);
71 	SEQ_PUT_DEC(" kB\nVmData:\t", mm->data_vm);
72 	SEQ_PUT_DEC(" kB\nVmStk:\t", mm->stack_vm);
73 	seq_put_decimal_ull_width(m,
74 		    " kB\nVmExe:\t", text >> 10, 8);
75 	seq_put_decimal_ull_width(m,
76 		    " kB\nVmLib:\t", lib >> 10, 8);
77 	seq_put_decimal_ull_width(m,
78 		    " kB\nVmPTE:\t", mm_pgtables_bytes(mm) >> 10, 8);
79 	SEQ_PUT_DEC(" kB\nVmSwap:\t", swap);
80 	seq_puts(m, " kB\n");
81 	hugetlb_report_usage(m, mm);
82 }
83 #undef SEQ_PUT_DEC
84 
85 unsigned long task_vsize(struct mm_struct *mm)
86 {
87 	return PAGE_SIZE * mm->total_vm;
88 }
89 
90 unsigned long task_statm(struct mm_struct *mm,
91 			 unsigned long *shared, unsigned long *text,
92 			 unsigned long *data, unsigned long *resident)
93 {
94 	*shared = get_mm_counter(mm, MM_FILEPAGES) +
95 			get_mm_counter(mm, MM_SHMEMPAGES);
96 	*text = (PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK))
97 								>> PAGE_SHIFT;
98 	*data = mm->data_vm + mm->stack_vm;
99 	*resident = *shared + get_mm_counter(mm, MM_ANONPAGES);
100 	return mm->total_vm;
101 }
102 
103 #ifdef CONFIG_NUMA
104 /*
105  * Save get_task_policy() for show_numa_map().
106  */
107 static void hold_task_mempolicy(struct proc_maps_private *priv)
108 {
109 	struct task_struct *task = priv->task;
110 
111 	task_lock(task);
112 	priv->task_mempolicy = get_task_policy(task);
113 	mpol_get(priv->task_mempolicy);
114 	task_unlock(task);
115 }
116 static void release_task_mempolicy(struct proc_maps_private *priv)
117 {
118 	mpol_put(priv->task_mempolicy);
119 }
120 #else
121 static void hold_task_mempolicy(struct proc_maps_private *priv)
122 {
123 }
124 static void release_task_mempolicy(struct proc_maps_private *priv)
125 {
126 }
127 #endif
128 
129 static struct vm_area_struct *proc_get_vma(struct proc_maps_private *priv,
130 						loff_t *ppos)
131 {
132 	struct vm_area_struct *vma = vma_next(&priv->iter);
133 
134 	if (vma) {
135 		*ppos = vma->vm_start;
136 	} else {
137 		*ppos = -2UL;
138 		vma = get_gate_vma(priv->mm);
139 	}
140 
141 	return vma;
142 }
143 
144 static void *m_start(struct seq_file *m, loff_t *ppos)
145 {
146 	struct proc_maps_private *priv = m->private;
147 	unsigned long last_addr = *ppos;
148 	struct mm_struct *mm;
149 
150 	/* See m_next(). Zero at the start or after lseek. */
151 	if (last_addr == -1UL)
152 		return NULL;
153 
154 	priv->task = get_proc_task(priv->inode);
155 	if (!priv->task)
156 		return ERR_PTR(-ESRCH);
157 
158 	mm = priv->mm;
159 	if (!mm || !mmget_not_zero(mm)) {
160 		put_task_struct(priv->task);
161 		priv->task = NULL;
162 		return NULL;
163 	}
164 
165 	if (mmap_read_lock_killable(mm)) {
166 		mmput(mm);
167 		put_task_struct(priv->task);
168 		priv->task = NULL;
169 		return ERR_PTR(-EINTR);
170 	}
171 
172 	vma_iter_init(&priv->iter, mm, last_addr);
173 	hold_task_mempolicy(priv);
174 	if (last_addr == -2UL)
175 		return get_gate_vma(mm);
176 
177 	return proc_get_vma(priv, ppos);
178 }
179 
180 static void *m_next(struct seq_file *m, void *v, loff_t *ppos)
181 {
182 	if (*ppos == -2UL) {
183 		*ppos = -1UL;
184 		return NULL;
185 	}
186 	return proc_get_vma(m->private, ppos);
187 }
188 
189 static void m_stop(struct seq_file *m, void *v)
190 {
191 	struct proc_maps_private *priv = m->private;
192 	struct mm_struct *mm = priv->mm;
193 
194 	if (!priv->task)
195 		return;
196 
197 	release_task_mempolicy(priv);
198 	mmap_read_unlock(mm);
199 	mmput(mm);
200 	put_task_struct(priv->task);
201 	priv->task = NULL;
202 }
203 
204 static int proc_maps_open(struct inode *inode, struct file *file,
205 			const struct seq_operations *ops, int psize)
206 {
207 	struct proc_maps_private *priv = __seq_open_private(file, ops, psize);
208 
209 	if (!priv)
210 		return -ENOMEM;
211 
212 	priv->inode = inode;
213 	priv->mm = proc_mem_open(inode, PTRACE_MODE_READ);
214 	if (IS_ERR(priv->mm)) {
215 		int err = PTR_ERR(priv->mm);
216 
217 		seq_release_private(inode, file);
218 		return err;
219 	}
220 
221 	return 0;
222 }
223 
224 static int proc_map_release(struct inode *inode, struct file *file)
225 {
226 	struct seq_file *seq = file->private_data;
227 	struct proc_maps_private *priv = seq->private;
228 
229 	if (priv->mm)
230 		mmdrop(priv->mm);
231 
232 	return seq_release_private(inode, file);
233 }
234 
235 static int do_maps_open(struct inode *inode, struct file *file,
236 			const struct seq_operations *ops)
237 {
238 	return proc_maps_open(inode, file, ops,
239 				sizeof(struct proc_maps_private));
240 }
241 
242 static void show_vma_header_prefix(struct seq_file *m,
243 				   unsigned long start, unsigned long end,
244 				   vm_flags_t flags, unsigned long long pgoff,
245 				   dev_t dev, unsigned long ino)
246 {
247 	seq_setwidth(m, 25 + sizeof(void *) * 6 - 1);
248 	seq_put_hex_ll(m, NULL, start, 8);
249 	seq_put_hex_ll(m, "-", end, 8);
250 	seq_putc(m, ' ');
251 	seq_putc(m, flags & VM_READ ? 'r' : '-');
252 	seq_putc(m, flags & VM_WRITE ? 'w' : '-');
253 	seq_putc(m, flags & VM_EXEC ? 'x' : '-');
254 	seq_putc(m, flags & VM_MAYSHARE ? 's' : 'p');
255 	seq_put_hex_ll(m, " ", pgoff, 8);
256 	seq_put_hex_ll(m, " ", MAJOR(dev), 2);
257 	seq_put_hex_ll(m, ":", MINOR(dev), 2);
258 	seq_put_decimal_ull(m, " ", ino);
259 	seq_putc(m, ' ');
260 }
261 
262 static void
263 show_map_vma(struct seq_file *m, struct vm_area_struct *vma)
264 {
265 	struct anon_vma_name *anon_name = NULL;
266 	struct mm_struct *mm = vma->vm_mm;
267 	struct file *file = vma->vm_file;
268 	vm_flags_t flags = vma->vm_flags;
269 	unsigned long ino = 0;
270 	unsigned long long pgoff = 0;
271 	unsigned long start, end;
272 	dev_t dev = 0;
273 	const char *name = NULL;
274 
275 	if (file) {
276 		const struct inode *inode = file_user_inode(vma->vm_file);
277 
278 		dev = inode->i_sb->s_dev;
279 		ino = inode->i_ino;
280 		pgoff = ((loff_t)vma->vm_pgoff) << PAGE_SHIFT;
281 	}
282 
283 	start = vma->vm_start;
284 	end = vma->vm_end;
285 	show_vma_header_prefix(m, start, end, flags, pgoff, dev, ino);
286 	if (mm)
287 		anon_name = anon_vma_name(vma);
288 
289 	/*
290 	 * Print the dentry name for named mappings, and a
291 	 * special [heap] marker for the heap:
292 	 */
293 	if (file) {
294 		seq_pad(m, ' ');
295 		/*
296 		 * If user named this anon shared memory via
297 		 * prctl(PR_SET_VMA ..., use the provided name.
298 		 */
299 		if (anon_name)
300 			seq_printf(m, "[anon_shmem:%s]", anon_name->name);
301 		else
302 			seq_path(m, file_user_path(file), "\n");
303 		goto done;
304 	}
305 
306 	if (vma->vm_ops && vma->vm_ops->name) {
307 		name = vma->vm_ops->name(vma);
308 		if (name)
309 			goto done;
310 	}
311 
312 	name = arch_vma_name(vma);
313 	if (!name) {
314 		if (!mm) {
315 			name = "[vdso]";
316 			goto done;
317 		}
318 
319 		if (vma_is_initial_heap(vma)) {
320 			name = "[heap]";
321 			goto done;
322 		}
323 
324 		if (vma_is_initial_stack(vma)) {
325 			name = "[stack]";
326 			goto done;
327 		}
328 
329 		if (anon_name) {
330 			seq_pad(m, ' ');
331 			seq_printf(m, "[anon:%s]", anon_name->name);
332 		}
333 	}
334 
335 done:
336 	if (name) {
337 		seq_pad(m, ' ');
338 		seq_puts(m, name);
339 	}
340 	seq_putc(m, '\n');
341 }
342 
343 static int show_map(struct seq_file *m, void *v)
344 {
345 	show_map_vma(m, v);
346 	return 0;
347 }
348 
349 static const struct seq_operations proc_pid_maps_op = {
350 	.start	= m_start,
351 	.next	= m_next,
352 	.stop	= m_stop,
353 	.show	= show_map
354 };
355 
356 static int pid_maps_open(struct inode *inode, struct file *file)
357 {
358 	return do_maps_open(inode, file, &proc_pid_maps_op);
359 }
360 
361 const struct file_operations proc_pid_maps_operations = {
362 	.open		= pid_maps_open,
363 	.read		= seq_read,
364 	.llseek		= seq_lseek,
365 	.release	= proc_map_release,
366 };
367 
368 /*
369  * Proportional Set Size(PSS): my share of RSS.
370  *
371  * PSS of a process is the count of pages it has in memory, where each
372  * page is divided by the number of processes sharing it.  So if a
373  * process has 1000 pages all to itself, and 1000 shared with one other
374  * process, its PSS will be 1500.
375  *
376  * To keep (accumulated) division errors low, we adopt a 64bit
377  * fixed-point pss counter to minimize division errors. So (pss >>
378  * PSS_SHIFT) would be the real byte count.
379  *
380  * A shift of 12 before division means (assuming 4K page size):
381  * 	- 1M 3-user-pages add up to 8KB errors;
382  * 	- supports mapcount up to 2^24, or 16M;
383  * 	- supports PSS up to 2^52 bytes, or 4PB.
384  */
385 #define PSS_SHIFT 12
386 
387 #ifdef CONFIG_PROC_PAGE_MONITOR
388 struct mem_size_stats {
389 	unsigned long resident;
390 	unsigned long shared_clean;
391 	unsigned long shared_dirty;
392 	unsigned long private_clean;
393 	unsigned long private_dirty;
394 	unsigned long referenced;
395 	unsigned long anonymous;
396 	unsigned long lazyfree;
397 	unsigned long anonymous_thp;
398 	unsigned long shmem_thp;
399 	unsigned long file_thp;
400 	unsigned long swap;
401 	unsigned long shared_hugetlb;
402 	unsigned long private_hugetlb;
403 	unsigned long ksm;
404 	u64 pss;
405 	u64 pss_anon;
406 	u64 pss_file;
407 	u64 pss_shmem;
408 	u64 pss_dirty;
409 	u64 pss_locked;
410 	u64 swap_pss;
411 };
412 
413 static void smaps_page_accumulate(struct mem_size_stats *mss,
414 		struct folio *folio, unsigned long size, unsigned long pss,
415 		bool dirty, bool locked, bool private)
416 {
417 	mss->pss += pss;
418 
419 	if (folio_test_anon(folio))
420 		mss->pss_anon += pss;
421 	else if (folio_test_swapbacked(folio))
422 		mss->pss_shmem += pss;
423 	else
424 		mss->pss_file += pss;
425 
426 	if (locked)
427 		mss->pss_locked += pss;
428 
429 	if (dirty || folio_test_dirty(folio)) {
430 		mss->pss_dirty += pss;
431 		if (private)
432 			mss->private_dirty += size;
433 		else
434 			mss->shared_dirty += size;
435 	} else {
436 		if (private)
437 			mss->private_clean += size;
438 		else
439 			mss->shared_clean += size;
440 	}
441 }
442 
443 static void smaps_account(struct mem_size_stats *mss, struct page *page,
444 		bool compound, bool young, bool dirty, bool locked,
445 		bool migration)
446 {
447 	struct folio *folio = page_folio(page);
448 	int i, nr = compound ? compound_nr(page) : 1;
449 	unsigned long size = nr * PAGE_SIZE;
450 
451 	/*
452 	 * First accumulate quantities that depend only on |size| and the type
453 	 * of the compound page.
454 	 */
455 	if (folio_test_anon(folio)) {
456 		mss->anonymous += size;
457 		if (!folio_test_swapbacked(folio) && !dirty &&
458 		    !folio_test_dirty(folio))
459 			mss->lazyfree += size;
460 	}
461 
462 	if (folio_test_ksm(folio))
463 		mss->ksm += size;
464 
465 	mss->resident += size;
466 	/* Accumulate the size in pages that have been accessed. */
467 	if (young || folio_test_young(folio) || folio_test_referenced(folio))
468 		mss->referenced += size;
469 
470 	/*
471 	 * Then accumulate quantities that may depend on sharing, or that may
472 	 * differ page-by-page.
473 	 *
474 	 * refcount == 1 guarantees the page is mapped exactly once.
475 	 * If any subpage of the compound page mapped with PTE it would elevate
476 	 * the refcount.
477 	 *
478 	 * The page_mapcount() is called to get a snapshot of the mapcount.
479 	 * Without holding the page lock this snapshot can be slightly wrong as
480 	 * we cannot always read the mapcount atomically.  It is not safe to
481 	 * call page_mapcount() even with PTL held if the page is not mapped,
482 	 * especially for migration entries.  Treat regular migration entries
483 	 * as mapcount == 1.
484 	 */
485 	if ((folio_ref_count(folio) == 1) || migration) {
486 		smaps_page_accumulate(mss, folio, size, size << PSS_SHIFT,
487 				dirty, locked, true);
488 		return;
489 	}
490 	for (i = 0; i < nr; i++, page++) {
491 		int mapcount = page_mapcount(page);
492 		unsigned long pss = PAGE_SIZE << PSS_SHIFT;
493 		if (mapcount >= 2)
494 			pss /= mapcount;
495 		smaps_page_accumulate(mss, folio, PAGE_SIZE, pss,
496 				dirty, locked, mapcount < 2);
497 	}
498 }
499 
500 #ifdef CONFIG_SHMEM
501 static int smaps_pte_hole(unsigned long addr, unsigned long end,
502 			  __always_unused int depth, struct mm_walk *walk)
503 {
504 	struct mem_size_stats *mss = walk->private;
505 	struct vm_area_struct *vma = walk->vma;
506 
507 	mss->swap += shmem_partial_swap_usage(walk->vma->vm_file->f_mapping,
508 					      linear_page_index(vma, addr),
509 					      linear_page_index(vma, end));
510 
511 	return 0;
512 }
513 #else
514 #define smaps_pte_hole		NULL
515 #endif /* CONFIG_SHMEM */
516 
517 static void smaps_pte_hole_lookup(unsigned long addr, struct mm_walk *walk)
518 {
519 #ifdef CONFIG_SHMEM
520 	if (walk->ops->pte_hole) {
521 		/* depth is not used */
522 		smaps_pte_hole(addr, addr + PAGE_SIZE, 0, walk);
523 	}
524 #endif
525 }
526 
527 static void smaps_pte_entry(pte_t *pte, unsigned long addr,
528 		struct mm_walk *walk)
529 {
530 	struct mem_size_stats *mss = walk->private;
531 	struct vm_area_struct *vma = walk->vma;
532 	bool locked = !!(vma->vm_flags & VM_LOCKED);
533 	struct page *page = NULL;
534 	bool migration = false, young = false, dirty = false;
535 	pte_t ptent = ptep_get(pte);
536 
537 	if (pte_present(ptent)) {
538 		page = vm_normal_page(vma, addr, ptent);
539 		young = pte_young(ptent);
540 		dirty = pte_dirty(ptent);
541 	} else if (is_swap_pte(ptent)) {
542 		swp_entry_t swpent = pte_to_swp_entry(ptent);
543 
544 		if (!non_swap_entry(swpent)) {
545 			int mapcount;
546 
547 			mss->swap += PAGE_SIZE;
548 			mapcount = swp_swapcount(swpent);
549 			if (mapcount >= 2) {
550 				u64 pss_delta = (u64)PAGE_SIZE << PSS_SHIFT;
551 
552 				do_div(pss_delta, mapcount);
553 				mss->swap_pss += pss_delta;
554 			} else {
555 				mss->swap_pss += (u64)PAGE_SIZE << PSS_SHIFT;
556 			}
557 		} else if (is_pfn_swap_entry(swpent)) {
558 			if (is_migration_entry(swpent))
559 				migration = true;
560 			page = pfn_swap_entry_to_page(swpent);
561 		}
562 	} else {
563 		smaps_pte_hole_lookup(addr, walk);
564 		return;
565 	}
566 
567 	if (!page)
568 		return;
569 
570 	smaps_account(mss, page, false, young, dirty, locked, migration);
571 }
572 
573 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
574 static void smaps_pmd_entry(pmd_t *pmd, unsigned long addr,
575 		struct mm_walk *walk)
576 {
577 	struct mem_size_stats *mss = walk->private;
578 	struct vm_area_struct *vma = walk->vma;
579 	bool locked = !!(vma->vm_flags & VM_LOCKED);
580 	struct page *page = NULL;
581 	struct folio *folio;
582 	bool migration = false;
583 
584 	if (pmd_present(*pmd)) {
585 		page = vm_normal_page_pmd(vma, addr, *pmd);
586 	} else if (unlikely(thp_migration_supported() && is_swap_pmd(*pmd))) {
587 		swp_entry_t entry = pmd_to_swp_entry(*pmd);
588 
589 		if (is_migration_entry(entry)) {
590 			migration = true;
591 			page = pfn_swap_entry_to_page(entry);
592 		}
593 	}
594 	if (IS_ERR_OR_NULL(page))
595 		return;
596 	folio = page_folio(page);
597 	if (folio_test_anon(folio))
598 		mss->anonymous_thp += HPAGE_PMD_SIZE;
599 	else if (folio_test_swapbacked(folio))
600 		mss->shmem_thp += HPAGE_PMD_SIZE;
601 	else if (folio_is_zone_device(folio))
602 		/* pass */;
603 	else
604 		mss->file_thp += HPAGE_PMD_SIZE;
605 
606 	smaps_account(mss, page, true, pmd_young(*pmd), pmd_dirty(*pmd),
607 		      locked, migration);
608 }
609 #else
610 static void smaps_pmd_entry(pmd_t *pmd, unsigned long addr,
611 		struct mm_walk *walk)
612 {
613 }
614 #endif
615 
616 static int smaps_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
617 			   struct mm_walk *walk)
618 {
619 	struct vm_area_struct *vma = walk->vma;
620 	pte_t *pte;
621 	spinlock_t *ptl;
622 
623 	ptl = pmd_trans_huge_lock(pmd, vma);
624 	if (ptl) {
625 		smaps_pmd_entry(pmd, addr, walk);
626 		spin_unlock(ptl);
627 		goto out;
628 	}
629 
630 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
631 	if (!pte) {
632 		walk->action = ACTION_AGAIN;
633 		return 0;
634 	}
635 	for (; addr != end; pte++, addr += PAGE_SIZE)
636 		smaps_pte_entry(pte, addr, walk);
637 	pte_unmap_unlock(pte - 1, ptl);
638 out:
639 	cond_resched();
640 	return 0;
641 }
642 
643 static void show_smap_vma_flags(struct seq_file *m, struct vm_area_struct *vma)
644 {
645 	/*
646 	 * Don't forget to update Documentation/ on changes.
647 	 */
648 	static const char mnemonics[BITS_PER_LONG][2] = {
649 		/*
650 		 * In case if we meet a flag we don't know about.
651 		 */
652 		[0 ... (BITS_PER_LONG-1)] = "??",
653 
654 		[ilog2(VM_READ)]	= "rd",
655 		[ilog2(VM_WRITE)]	= "wr",
656 		[ilog2(VM_EXEC)]	= "ex",
657 		[ilog2(VM_SHARED)]	= "sh",
658 		[ilog2(VM_MAYREAD)]	= "mr",
659 		[ilog2(VM_MAYWRITE)]	= "mw",
660 		[ilog2(VM_MAYEXEC)]	= "me",
661 		[ilog2(VM_MAYSHARE)]	= "ms",
662 		[ilog2(VM_GROWSDOWN)]	= "gd",
663 		[ilog2(VM_PFNMAP)]	= "pf",
664 		[ilog2(VM_LOCKED)]	= "lo",
665 		[ilog2(VM_IO)]		= "io",
666 		[ilog2(VM_SEQ_READ)]	= "sr",
667 		[ilog2(VM_RAND_READ)]	= "rr",
668 		[ilog2(VM_DONTCOPY)]	= "dc",
669 		[ilog2(VM_DONTEXPAND)]	= "de",
670 		[ilog2(VM_LOCKONFAULT)]	= "lf",
671 		[ilog2(VM_ACCOUNT)]	= "ac",
672 		[ilog2(VM_NORESERVE)]	= "nr",
673 		[ilog2(VM_HUGETLB)]	= "ht",
674 		[ilog2(VM_SYNC)]	= "sf",
675 		[ilog2(VM_ARCH_1)]	= "ar",
676 		[ilog2(VM_WIPEONFORK)]	= "wf",
677 		[ilog2(VM_DONTDUMP)]	= "dd",
678 #ifdef CONFIG_ARM64_BTI
679 		[ilog2(VM_ARM64_BTI)]	= "bt",
680 #endif
681 #ifdef CONFIG_MEM_SOFT_DIRTY
682 		[ilog2(VM_SOFTDIRTY)]	= "sd",
683 #endif
684 		[ilog2(VM_MIXEDMAP)]	= "mm",
685 		[ilog2(VM_HUGEPAGE)]	= "hg",
686 		[ilog2(VM_NOHUGEPAGE)]	= "nh",
687 		[ilog2(VM_MERGEABLE)]	= "mg",
688 		[ilog2(VM_UFFD_MISSING)]= "um",
689 		[ilog2(VM_UFFD_WP)]	= "uw",
690 #ifdef CONFIG_ARM64_MTE
691 		[ilog2(VM_MTE)]		= "mt",
692 		[ilog2(VM_MTE_ALLOWED)]	= "",
693 #endif
694 #ifdef CONFIG_ARCH_HAS_PKEYS
695 		/* These come out via ProtectionKey: */
696 		[ilog2(VM_PKEY_BIT0)]	= "",
697 		[ilog2(VM_PKEY_BIT1)]	= "",
698 		[ilog2(VM_PKEY_BIT2)]	= "",
699 		[ilog2(VM_PKEY_BIT3)]	= "",
700 #if VM_PKEY_BIT4
701 		[ilog2(VM_PKEY_BIT4)]	= "",
702 #endif
703 #endif /* CONFIG_ARCH_HAS_PKEYS */
704 #ifdef CONFIG_HAVE_ARCH_USERFAULTFD_MINOR
705 		[ilog2(VM_UFFD_MINOR)]	= "ui",
706 #endif /* CONFIG_HAVE_ARCH_USERFAULTFD_MINOR */
707 #ifdef CONFIG_X86_USER_SHADOW_STACK
708 		[ilog2(VM_SHADOW_STACK)] = "ss",
709 #endif
710 	};
711 	size_t i;
712 
713 	seq_puts(m, "VmFlags: ");
714 	for (i = 0; i < BITS_PER_LONG; i++) {
715 		if (!mnemonics[i][0])
716 			continue;
717 		if (vma->vm_flags & (1UL << i)) {
718 			seq_putc(m, mnemonics[i][0]);
719 			seq_putc(m, mnemonics[i][1]);
720 			seq_putc(m, ' ');
721 		}
722 	}
723 	seq_putc(m, '\n');
724 }
725 
726 #ifdef CONFIG_HUGETLB_PAGE
727 static int smaps_hugetlb_range(pte_t *pte, unsigned long hmask,
728 				 unsigned long addr, unsigned long end,
729 				 struct mm_walk *walk)
730 {
731 	struct mem_size_stats *mss = walk->private;
732 	struct vm_area_struct *vma = walk->vma;
733 	pte_t ptent = huge_ptep_get(pte);
734 	struct folio *folio = NULL;
735 
736 	if (pte_present(ptent)) {
737 		folio = page_folio(pte_page(ptent));
738 	} else if (is_swap_pte(ptent)) {
739 		swp_entry_t swpent = pte_to_swp_entry(ptent);
740 
741 		if (is_pfn_swap_entry(swpent))
742 			folio = pfn_swap_entry_folio(swpent);
743 	}
744 	if (folio) {
745 		if (folio_likely_mapped_shared(folio) ||
746 		    hugetlb_pmd_shared(pte))
747 			mss->shared_hugetlb += huge_page_size(hstate_vma(vma));
748 		else
749 			mss->private_hugetlb += huge_page_size(hstate_vma(vma));
750 	}
751 	return 0;
752 }
753 #else
754 #define smaps_hugetlb_range	NULL
755 #endif /* HUGETLB_PAGE */
756 
757 static const struct mm_walk_ops smaps_walk_ops = {
758 	.pmd_entry		= smaps_pte_range,
759 	.hugetlb_entry		= smaps_hugetlb_range,
760 	.walk_lock		= PGWALK_RDLOCK,
761 };
762 
763 static const struct mm_walk_ops smaps_shmem_walk_ops = {
764 	.pmd_entry		= smaps_pte_range,
765 	.hugetlb_entry		= smaps_hugetlb_range,
766 	.pte_hole		= smaps_pte_hole,
767 	.walk_lock		= PGWALK_RDLOCK,
768 };
769 
770 /*
771  * Gather mem stats from @vma with the indicated beginning
772  * address @start, and keep them in @mss.
773  *
774  * Use vm_start of @vma as the beginning address if @start is 0.
775  */
776 static void smap_gather_stats(struct vm_area_struct *vma,
777 		struct mem_size_stats *mss, unsigned long start)
778 {
779 	const struct mm_walk_ops *ops = &smaps_walk_ops;
780 
781 	/* Invalid start */
782 	if (start >= vma->vm_end)
783 		return;
784 
785 	if (vma->vm_file && shmem_mapping(vma->vm_file->f_mapping)) {
786 		/*
787 		 * For shared or readonly shmem mappings we know that all
788 		 * swapped out pages belong to the shmem object, and we can
789 		 * obtain the swap value much more efficiently. For private
790 		 * writable mappings, we might have COW pages that are
791 		 * not affected by the parent swapped out pages of the shmem
792 		 * object, so we have to distinguish them during the page walk.
793 		 * Unless we know that the shmem object (or the part mapped by
794 		 * our VMA) has no swapped out pages at all.
795 		 */
796 		unsigned long shmem_swapped = shmem_swap_usage(vma);
797 
798 		if (!start && (!shmem_swapped || (vma->vm_flags & VM_SHARED) ||
799 					!(vma->vm_flags & VM_WRITE))) {
800 			mss->swap += shmem_swapped;
801 		} else {
802 			ops = &smaps_shmem_walk_ops;
803 		}
804 	}
805 
806 	/* mmap_lock is held in m_start */
807 	if (!start)
808 		walk_page_vma(vma, ops, mss);
809 	else
810 		walk_page_range(vma->vm_mm, start, vma->vm_end, ops, mss);
811 }
812 
813 #define SEQ_PUT_DEC(str, val) \
814 		seq_put_decimal_ull_width(m, str, (val) >> 10, 8)
815 
816 /* Show the contents common for smaps and smaps_rollup */
817 static void __show_smap(struct seq_file *m, const struct mem_size_stats *mss,
818 	bool rollup_mode)
819 {
820 	SEQ_PUT_DEC("Rss:            ", mss->resident);
821 	SEQ_PUT_DEC(" kB\nPss:            ", mss->pss >> PSS_SHIFT);
822 	SEQ_PUT_DEC(" kB\nPss_Dirty:      ", mss->pss_dirty >> PSS_SHIFT);
823 	if (rollup_mode) {
824 		/*
825 		 * These are meaningful only for smaps_rollup, otherwise two of
826 		 * them are zero, and the other one is the same as Pss.
827 		 */
828 		SEQ_PUT_DEC(" kB\nPss_Anon:       ",
829 			mss->pss_anon >> PSS_SHIFT);
830 		SEQ_PUT_DEC(" kB\nPss_File:       ",
831 			mss->pss_file >> PSS_SHIFT);
832 		SEQ_PUT_DEC(" kB\nPss_Shmem:      ",
833 			mss->pss_shmem >> PSS_SHIFT);
834 	}
835 	SEQ_PUT_DEC(" kB\nShared_Clean:   ", mss->shared_clean);
836 	SEQ_PUT_DEC(" kB\nShared_Dirty:   ", mss->shared_dirty);
837 	SEQ_PUT_DEC(" kB\nPrivate_Clean:  ", mss->private_clean);
838 	SEQ_PUT_DEC(" kB\nPrivate_Dirty:  ", mss->private_dirty);
839 	SEQ_PUT_DEC(" kB\nReferenced:     ", mss->referenced);
840 	SEQ_PUT_DEC(" kB\nAnonymous:      ", mss->anonymous);
841 	SEQ_PUT_DEC(" kB\nKSM:            ", mss->ksm);
842 	SEQ_PUT_DEC(" kB\nLazyFree:       ", mss->lazyfree);
843 	SEQ_PUT_DEC(" kB\nAnonHugePages:  ", mss->anonymous_thp);
844 	SEQ_PUT_DEC(" kB\nShmemPmdMapped: ", mss->shmem_thp);
845 	SEQ_PUT_DEC(" kB\nFilePmdMapped:  ", mss->file_thp);
846 	SEQ_PUT_DEC(" kB\nShared_Hugetlb: ", mss->shared_hugetlb);
847 	seq_put_decimal_ull_width(m, " kB\nPrivate_Hugetlb: ",
848 				  mss->private_hugetlb >> 10, 7);
849 	SEQ_PUT_DEC(" kB\nSwap:           ", mss->swap);
850 	SEQ_PUT_DEC(" kB\nSwapPss:        ",
851 					mss->swap_pss >> PSS_SHIFT);
852 	SEQ_PUT_DEC(" kB\nLocked:         ",
853 					mss->pss_locked >> PSS_SHIFT);
854 	seq_puts(m, " kB\n");
855 }
856 
857 static int show_smap(struct seq_file *m, void *v)
858 {
859 	struct vm_area_struct *vma = v;
860 	struct mem_size_stats mss = {};
861 
862 	smap_gather_stats(vma, &mss, 0);
863 
864 	show_map_vma(m, vma);
865 
866 	SEQ_PUT_DEC("Size:           ", vma->vm_end - vma->vm_start);
867 	SEQ_PUT_DEC(" kB\nKernelPageSize: ", vma_kernel_pagesize(vma));
868 	SEQ_PUT_DEC(" kB\nMMUPageSize:    ", vma_mmu_pagesize(vma));
869 	seq_puts(m, " kB\n");
870 
871 	__show_smap(m, &mss, false);
872 
873 	seq_printf(m, "THPeligible:    %8u\n",
874 		   !!thp_vma_allowable_orders(vma, vma->vm_flags,
875 			   TVA_SMAPS | TVA_ENFORCE_SYSFS, THP_ORDERS_ALL));
876 
877 	if (arch_pkeys_enabled())
878 		seq_printf(m, "ProtectionKey:  %8u\n", vma_pkey(vma));
879 	show_smap_vma_flags(m, vma);
880 
881 	return 0;
882 }
883 
884 static int show_smaps_rollup(struct seq_file *m, void *v)
885 {
886 	struct proc_maps_private *priv = m->private;
887 	struct mem_size_stats mss = {};
888 	struct mm_struct *mm = priv->mm;
889 	struct vm_area_struct *vma;
890 	unsigned long vma_start = 0, last_vma_end = 0;
891 	int ret = 0;
892 	VMA_ITERATOR(vmi, mm, 0);
893 
894 	priv->task = get_proc_task(priv->inode);
895 	if (!priv->task)
896 		return -ESRCH;
897 
898 	if (!mm || !mmget_not_zero(mm)) {
899 		ret = -ESRCH;
900 		goto out_put_task;
901 	}
902 
903 	ret = mmap_read_lock_killable(mm);
904 	if (ret)
905 		goto out_put_mm;
906 
907 	hold_task_mempolicy(priv);
908 	vma = vma_next(&vmi);
909 
910 	if (unlikely(!vma))
911 		goto empty_set;
912 
913 	vma_start = vma->vm_start;
914 	do {
915 		smap_gather_stats(vma, &mss, 0);
916 		last_vma_end = vma->vm_end;
917 
918 		/*
919 		 * Release mmap_lock temporarily if someone wants to
920 		 * access it for write request.
921 		 */
922 		if (mmap_lock_is_contended(mm)) {
923 			vma_iter_invalidate(&vmi);
924 			mmap_read_unlock(mm);
925 			ret = mmap_read_lock_killable(mm);
926 			if (ret) {
927 				release_task_mempolicy(priv);
928 				goto out_put_mm;
929 			}
930 
931 			/*
932 			 * After dropping the lock, there are four cases to
933 			 * consider. See the following example for explanation.
934 			 *
935 			 *   +------+------+-----------+
936 			 *   | VMA1 | VMA2 | VMA3      |
937 			 *   +------+------+-----------+
938 			 *   |      |      |           |
939 			 *  4k     8k     16k         400k
940 			 *
941 			 * Suppose we drop the lock after reading VMA2 due to
942 			 * contention, then we get:
943 			 *
944 			 *	last_vma_end = 16k
945 			 *
946 			 * 1) VMA2 is freed, but VMA3 exists:
947 			 *
948 			 *    vma_next(vmi) will return VMA3.
949 			 *    In this case, just continue from VMA3.
950 			 *
951 			 * 2) VMA2 still exists:
952 			 *
953 			 *    vma_next(vmi) will return VMA3.
954 			 *    In this case, just continue from VMA3.
955 			 *
956 			 * 3) No more VMAs can be found:
957 			 *
958 			 *    vma_next(vmi) will return NULL.
959 			 *    No more things to do, just break.
960 			 *
961 			 * 4) (last_vma_end - 1) is the middle of a vma (VMA'):
962 			 *
963 			 *    vma_next(vmi) will return VMA' whose range
964 			 *    contains last_vma_end.
965 			 *    Iterate VMA' from last_vma_end.
966 			 */
967 			vma = vma_next(&vmi);
968 			/* Case 3 above */
969 			if (!vma)
970 				break;
971 
972 			/* Case 1 and 2 above */
973 			if (vma->vm_start >= last_vma_end) {
974 				smap_gather_stats(vma, &mss, 0);
975 				last_vma_end = vma->vm_end;
976 				continue;
977 			}
978 
979 			/* Case 4 above */
980 			if (vma->vm_end > last_vma_end) {
981 				smap_gather_stats(vma, &mss, last_vma_end);
982 				last_vma_end = vma->vm_end;
983 			}
984 		}
985 	} for_each_vma(vmi, vma);
986 
987 empty_set:
988 	show_vma_header_prefix(m, vma_start, last_vma_end, 0, 0, 0, 0);
989 	seq_pad(m, ' ');
990 	seq_puts(m, "[rollup]\n");
991 
992 	__show_smap(m, &mss, true);
993 
994 	release_task_mempolicy(priv);
995 	mmap_read_unlock(mm);
996 
997 out_put_mm:
998 	mmput(mm);
999 out_put_task:
1000 	put_task_struct(priv->task);
1001 	priv->task = NULL;
1002 
1003 	return ret;
1004 }
1005 #undef SEQ_PUT_DEC
1006 
1007 static const struct seq_operations proc_pid_smaps_op = {
1008 	.start	= m_start,
1009 	.next	= m_next,
1010 	.stop	= m_stop,
1011 	.show	= show_smap
1012 };
1013 
1014 static int pid_smaps_open(struct inode *inode, struct file *file)
1015 {
1016 	return do_maps_open(inode, file, &proc_pid_smaps_op);
1017 }
1018 
1019 static int smaps_rollup_open(struct inode *inode, struct file *file)
1020 {
1021 	int ret;
1022 	struct proc_maps_private *priv;
1023 
1024 	priv = kzalloc(sizeof(*priv), GFP_KERNEL_ACCOUNT);
1025 	if (!priv)
1026 		return -ENOMEM;
1027 
1028 	ret = single_open(file, show_smaps_rollup, priv);
1029 	if (ret)
1030 		goto out_free;
1031 
1032 	priv->inode = inode;
1033 	priv->mm = proc_mem_open(inode, PTRACE_MODE_READ);
1034 	if (IS_ERR(priv->mm)) {
1035 		ret = PTR_ERR(priv->mm);
1036 
1037 		single_release(inode, file);
1038 		goto out_free;
1039 	}
1040 
1041 	return 0;
1042 
1043 out_free:
1044 	kfree(priv);
1045 	return ret;
1046 }
1047 
1048 static int smaps_rollup_release(struct inode *inode, struct file *file)
1049 {
1050 	struct seq_file *seq = file->private_data;
1051 	struct proc_maps_private *priv = seq->private;
1052 
1053 	if (priv->mm)
1054 		mmdrop(priv->mm);
1055 
1056 	kfree(priv);
1057 	return single_release(inode, file);
1058 }
1059 
1060 const struct file_operations proc_pid_smaps_operations = {
1061 	.open		= pid_smaps_open,
1062 	.read		= seq_read,
1063 	.llseek		= seq_lseek,
1064 	.release	= proc_map_release,
1065 };
1066 
1067 const struct file_operations proc_pid_smaps_rollup_operations = {
1068 	.open		= smaps_rollup_open,
1069 	.read		= seq_read,
1070 	.llseek		= seq_lseek,
1071 	.release	= smaps_rollup_release,
1072 };
1073 
1074 enum clear_refs_types {
1075 	CLEAR_REFS_ALL = 1,
1076 	CLEAR_REFS_ANON,
1077 	CLEAR_REFS_MAPPED,
1078 	CLEAR_REFS_SOFT_DIRTY,
1079 	CLEAR_REFS_MM_HIWATER_RSS,
1080 	CLEAR_REFS_LAST,
1081 };
1082 
1083 struct clear_refs_private {
1084 	enum clear_refs_types type;
1085 };
1086 
1087 #ifdef CONFIG_MEM_SOFT_DIRTY
1088 
1089 static inline bool pte_is_pinned(struct vm_area_struct *vma, unsigned long addr, pte_t pte)
1090 {
1091 	struct page *page;
1092 
1093 	if (!pte_write(pte))
1094 		return false;
1095 	if (!is_cow_mapping(vma->vm_flags))
1096 		return false;
1097 	if (likely(!test_bit(MMF_HAS_PINNED, &vma->vm_mm->flags)))
1098 		return false;
1099 	page = vm_normal_page(vma, addr, pte);
1100 	if (!page)
1101 		return false;
1102 	return page_maybe_dma_pinned(page);
1103 }
1104 
1105 static inline void clear_soft_dirty(struct vm_area_struct *vma,
1106 		unsigned long addr, pte_t *pte)
1107 {
1108 	/*
1109 	 * The soft-dirty tracker uses #PF-s to catch writes
1110 	 * to pages, so write-protect the pte as well. See the
1111 	 * Documentation/admin-guide/mm/soft-dirty.rst for full description
1112 	 * of how soft-dirty works.
1113 	 */
1114 	pte_t ptent = ptep_get(pte);
1115 
1116 	if (pte_present(ptent)) {
1117 		pte_t old_pte;
1118 
1119 		if (pte_is_pinned(vma, addr, ptent))
1120 			return;
1121 		old_pte = ptep_modify_prot_start(vma, addr, pte);
1122 		ptent = pte_wrprotect(old_pte);
1123 		ptent = pte_clear_soft_dirty(ptent);
1124 		ptep_modify_prot_commit(vma, addr, pte, old_pte, ptent);
1125 	} else if (is_swap_pte(ptent)) {
1126 		ptent = pte_swp_clear_soft_dirty(ptent);
1127 		set_pte_at(vma->vm_mm, addr, pte, ptent);
1128 	}
1129 }
1130 #else
1131 static inline void clear_soft_dirty(struct vm_area_struct *vma,
1132 		unsigned long addr, pte_t *pte)
1133 {
1134 }
1135 #endif
1136 
1137 #if defined(CONFIG_MEM_SOFT_DIRTY) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
1138 static inline void clear_soft_dirty_pmd(struct vm_area_struct *vma,
1139 		unsigned long addr, pmd_t *pmdp)
1140 {
1141 	pmd_t old, pmd = *pmdp;
1142 
1143 	if (pmd_present(pmd)) {
1144 		/* See comment in change_huge_pmd() */
1145 		old = pmdp_invalidate(vma, addr, pmdp);
1146 		if (pmd_dirty(old))
1147 			pmd = pmd_mkdirty(pmd);
1148 		if (pmd_young(old))
1149 			pmd = pmd_mkyoung(pmd);
1150 
1151 		pmd = pmd_wrprotect(pmd);
1152 		pmd = pmd_clear_soft_dirty(pmd);
1153 
1154 		set_pmd_at(vma->vm_mm, addr, pmdp, pmd);
1155 	} else if (is_migration_entry(pmd_to_swp_entry(pmd))) {
1156 		pmd = pmd_swp_clear_soft_dirty(pmd);
1157 		set_pmd_at(vma->vm_mm, addr, pmdp, pmd);
1158 	}
1159 }
1160 #else
1161 static inline void clear_soft_dirty_pmd(struct vm_area_struct *vma,
1162 		unsigned long addr, pmd_t *pmdp)
1163 {
1164 }
1165 #endif
1166 
1167 static int clear_refs_pte_range(pmd_t *pmd, unsigned long addr,
1168 				unsigned long end, struct mm_walk *walk)
1169 {
1170 	struct clear_refs_private *cp = walk->private;
1171 	struct vm_area_struct *vma = walk->vma;
1172 	pte_t *pte, ptent;
1173 	spinlock_t *ptl;
1174 	struct folio *folio;
1175 
1176 	ptl = pmd_trans_huge_lock(pmd, vma);
1177 	if (ptl) {
1178 		if (cp->type == CLEAR_REFS_SOFT_DIRTY) {
1179 			clear_soft_dirty_pmd(vma, addr, pmd);
1180 			goto out;
1181 		}
1182 
1183 		if (!pmd_present(*pmd))
1184 			goto out;
1185 
1186 		folio = pmd_folio(*pmd);
1187 
1188 		/* Clear accessed and referenced bits. */
1189 		pmdp_test_and_clear_young(vma, addr, pmd);
1190 		folio_test_clear_young(folio);
1191 		folio_clear_referenced(folio);
1192 out:
1193 		spin_unlock(ptl);
1194 		return 0;
1195 	}
1196 
1197 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
1198 	if (!pte) {
1199 		walk->action = ACTION_AGAIN;
1200 		return 0;
1201 	}
1202 	for (; addr != end; pte++, addr += PAGE_SIZE) {
1203 		ptent = ptep_get(pte);
1204 
1205 		if (cp->type == CLEAR_REFS_SOFT_DIRTY) {
1206 			clear_soft_dirty(vma, addr, pte);
1207 			continue;
1208 		}
1209 
1210 		if (!pte_present(ptent))
1211 			continue;
1212 
1213 		folio = vm_normal_folio(vma, addr, ptent);
1214 		if (!folio)
1215 			continue;
1216 
1217 		/* Clear accessed and referenced bits. */
1218 		ptep_test_and_clear_young(vma, addr, pte);
1219 		folio_test_clear_young(folio);
1220 		folio_clear_referenced(folio);
1221 	}
1222 	pte_unmap_unlock(pte - 1, ptl);
1223 	cond_resched();
1224 	return 0;
1225 }
1226 
1227 static int clear_refs_test_walk(unsigned long start, unsigned long end,
1228 				struct mm_walk *walk)
1229 {
1230 	struct clear_refs_private *cp = walk->private;
1231 	struct vm_area_struct *vma = walk->vma;
1232 
1233 	if (vma->vm_flags & VM_PFNMAP)
1234 		return 1;
1235 
1236 	/*
1237 	 * Writing 1 to /proc/pid/clear_refs affects all pages.
1238 	 * Writing 2 to /proc/pid/clear_refs only affects anonymous pages.
1239 	 * Writing 3 to /proc/pid/clear_refs only affects file mapped pages.
1240 	 * Writing 4 to /proc/pid/clear_refs affects all pages.
1241 	 */
1242 	if (cp->type == CLEAR_REFS_ANON && vma->vm_file)
1243 		return 1;
1244 	if (cp->type == CLEAR_REFS_MAPPED && !vma->vm_file)
1245 		return 1;
1246 	return 0;
1247 }
1248 
1249 static const struct mm_walk_ops clear_refs_walk_ops = {
1250 	.pmd_entry		= clear_refs_pte_range,
1251 	.test_walk		= clear_refs_test_walk,
1252 	.walk_lock		= PGWALK_WRLOCK,
1253 };
1254 
1255 static ssize_t clear_refs_write(struct file *file, const char __user *buf,
1256 				size_t count, loff_t *ppos)
1257 {
1258 	struct task_struct *task;
1259 	char buffer[PROC_NUMBUF] = {};
1260 	struct mm_struct *mm;
1261 	struct vm_area_struct *vma;
1262 	enum clear_refs_types type;
1263 	int itype;
1264 	int rv;
1265 
1266 	if (count > sizeof(buffer) - 1)
1267 		count = sizeof(buffer) - 1;
1268 	if (copy_from_user(buffer, buf, count))
1269 		return -EFAULT;
1270 	rv = kstrtoint(strstrip(buffer), 10, &itype);
1271 	if (rv < 0)
1272 		return rv;
1273 	type = (enum clear_refs_types)itype;
1274 	if (type < CLEAR_REFS_ALL || type >= CLEAR_REFS_LAST)
1275 		return -EINVAL;
1276 
1277 	task = get_proc_task(file_inode(file));
1278 	if (!task)
1279 		return -ESRCH;
1280 	mm = get_task_mm(task);
1281 	if (mm) {
1282 		VMA_ITERATOR(vmi, mm, 0);
1283 		struct mmu_notifier_range range;
1284 		struct clear_refs_private cp = {
1285 			.type = type,
1286 		};
1287 
1288 		if (mmap_write_lock_killable(mm)) {
1289 			count = -EINTR;
1290 			goto out_mm;
1291 		}
1292 		if (type == CLEAR_REFS_MM_HIWATER_RSS) {
1293 			/*
1294 			 * Writing 5 to /proc/pid/clear_refs resets the peak
1295 			 * resident set size to this mm's current rss value.
1296 			 */
1297 			reset_mm_hiwater_rss(mm);
1298 			goto out_unlock;
1299 		}
1300 
1301 		if (type == CLEAR_REFS_SOFT_DIRTY) {
1302 			for_each_vma(vmi, vma) {
1303 				if (!(vma->vm_flags & VM_SOFTDIRTY))
1304 					continue;
1305 				vm_flags_clear(vma, VM_SOFTDIRTY);
1306 				vma_set_page_prot(vma);
1307 			}
1308 
1309 			inc_tlb_flush_pending(mm);
1310 			mmu_notifier_range_init(&range, MMU_NOTIFY_SOFT_DIRTY,
1311 						0, mm, 0, -1UL);
1312 			mmu_notifier_invalidate_range_start(&range);
1313 		}
1314 		walk_page_range(mm, 0, -1, &clear_refs_walk_ops, &cp);
1315 		if (type == CLEAR_REFS_SOFT_DIRTY) {
1316 			mmu_notifier_invalidate_range_end(&range);
1317 			flush_tlb_mm(mm);
1318 			dec_tlb_flush_pending(mm);
1319 		}
1320 out_unlock:
1321 		mmap_write_unlock(mm);
1322 out_mm:
1323 		mmput(mm);
1324 	}
1325 	put_task_struct(task);
1326 
1327 	return count;
1328 }
1329 
1330 const struct file_operations proc_clear_refs_operations = {
1331 	.write		= clear_refs_write,
1332 	.llseek		= noop_llseek,
1333 };
1334 
1335 typedef struct {
1336 	u64 pme;
1337 } pagemap_entry_t;
1338 
1339 struct pagemapread {
1340 	int pos, len;		/* units: PM_ENTRY_BYTES, not bytes */
1341 	pagemap_entry_t *buffer;
1342 	bool show_pfn;
1343 };
1344 
1345 #define PAGEMAP_WALK_SIZE	(PMD_SIZE)
1346 #define PAGEMAP_WALK_MASK	(PMD_MASK)
1347 
1348 #define PM_ENTRY_BYTES		sizeof(pagemap_entry_t)
1349 #define PM_PFRAME_BITS		55
1350 #define PM_PFRAME_MASK		GENMASK_ULL(PM_PFRAME_BITS - 1, 0)
1351 #define PM_SOFT_DIRTY		BIT_ULL(55)
1352 #define PM_MMAP_EXCLUSIVE	BIT_ULL(56)
1353 #define PM_UFFD_WP		BIT_ULL(57)
1354 #define PM_FILE			BIT_ULL(61)
1355 #define PM_SWAP			BIT_ULL(62)
1356 #define PM_PRESENT		BIT_ULL(63)
1357 
1358 #define PM_END_OF_BUFFER    1
1359 
1360 static inline pagemap_entry_t make_pme(u64 frame, u64 flags)
1361 {
1362 	return (pagemap_entry_t) { .pme = (frame & PM_PFRAME_MASK) | flags };
1363 }
1364 
1365 static int add_to_pagemap(pagemap_entry_t *pme, struct pagemapread *pm)
1366 {
1367 	pm->buffer[pm->pos++] = *pme;
1368 	if (pm->pos >= pm->len)
1369 		return PM_END_OF_BUFFER;
1370 	return 0;
1371 }
1372 
1373 static int pagemap_pte_hole(unsigned long start, unsigned long end,
1374 			    __always_unused int depth, struct mm_walk *walk)
1375 {
1376 	struct pagemapread *pm = walk->private;
1377 	unsigned long addr = start;
1378 	int err = 0;
1379 
1380 	while (addr < end) {
1381 		struct vm_area_struct *vma = find_vma(walk->mm, addr);
1382 		pagemap_entry_t pme = make_pme(0, 0);
1383 		/* End of address space hole, which we mark as non-present. */
1384 		unsigned long hole_end;
1385 
1386 		if (vma)
1387 			hole_end = min(end, vma->vm_start);
1388 		else
1389 			hole_end = end;
1390 
1391 		for (; addr < hole_end; addr += PAGE_SIZE) {
1392 			err = add_to_pagemap(&pme, pm);
1393 			if (err)
1394 				goto out;
1395 		}
1396 
1397 		if (!vma)
1398 			break;
1399 
1400 		/* Addresses in the VMA. */
1401 		if (vma->vm_flags & VM_SOFTDIRTY)
1402 			pme = make_pme(0, PM_SOFT_DIRTY);
1403 		for (; addr < min(end, vma->vm_end); addr += PAGE_SIZE) {
1404 			err = add_to_pagemap(&pme, pm);
1405 			if (err)
1406 				goto out;
1407 		}
1408 	}
1409 out:
1410 	return err;
1411 }
1412 
1413 static pagemap_entry_t pte_to_pagemap_entry(struct pagemapread *pm,
1414 		struct vm_area_struct *vma, unsigned long addr, pte_t pte)
1415 {
1416 	u64 frame = 0, flags = 0;
1417 	struct page *page = NULL;
1418 	bool migration = false;
1419 
1420 	if (pte_present(pte)) {
1421 		if (pm->show_pfn)
1422 			frame = pte_pfn(pte);
1423 		flags |= PM_PRESENT;
1424 		page = vm_normal_page(vma, addr, pte);
1425 		if (pte_soft_dirty(pte))
1426 			flags |= PM_SOFT_DIRTY;
1427 		if (pte_uffd_wp(pte))
1428 			flags |= PM_UFFD_WP;
1429 	} else if (is_swap_pte(pte)) {
1430 		swp_entry_t entry;
1431 		if (pte_swp_soft_dirty(pte))
1432 			flags |= PM_SOFT_DIRTY;
1433 		if (pte_swp_uffd_wp(pte))
1434 			flags |= PM_UFFD_WP;
1435 		entry = pte_to_swp_entry(pte);
1436 		if (pm->show_pfn) {
1437 			pgoff_t offset;
1438 			/*
1439 			 * For PFN swap offsets, keeping the offset field
1440 			 * to be PFN only to be compatible with old smaps.
1441 			 */
1442 			if (is_pfn_swap_entry(entry))
1443 				offset = swp_offset_pfn(entry);
1444 			else
1445 				offset = swp_offset(entry);
1446 			frame = swp_type(entry) |
1447 			    (offset << MAX_SWAPFILES_SHIFT);
1448 		}
1449 		flags |= PM_SWAP;
1450 		migration = is_migration_entry(entry);
1451 		if (is_pfn_swap_entry(entry))
1452 			page = pfn_swap_entry_to_page(entry);
1453 		if (pte_marker_entry_uffd_wp(entry))
1454 			flags |= PM_UFFD_WP;
1455 	}
1456 
1457 	if (page && !PageAnon(page))
1458 		flags |= PM_FILE;
1459 	if (page && !migration && page_mapcount(page) == 1)
1460 		flags |= PM_MMAP_EXCLUSIVE;
1461 	if (vma->vm_flags & VM_SOFTDIRTY)
1462 		flags |= PM_SOFT_DIRTY;
1463 
1464 	return make_pme(frame, flags);
1465 }
1466 
1467 static int pagemap_pmd_range(pmd_t *pmdp, unsigned long addr, unsigned long end,
1468 			     struct mm_walk *walk)
1469 {
1470 	struct vm_area_struct *vma = walk->vma;
1471 	struct pagemapread *pm = walk->private;
1472 	spinlock_t *ptl;
1473 	pte_t *pte, *orig_pte;
1474 	int err = 0;
1475 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1476 	bool migration = false;
1477 
1478 	ptl = pmd_trans_huge_lock(pmdp, vma);
1479 	if (ptl) {
1480 		u64 flags = 0, frame = 0;
1481 		pmd_t pmd = *pmdp;
1482 		struct page *page = NULL;
1483 
1484 		if (vma->vm_flags & VM_SOFTDIRTY)
1485 			flags |= PM_SOFT_DIRTY;
1486 
1487 		if (pmd_present(pmd)) {
1488 			page = pmd_page(pmd);
1489 
1490 			flags |= PM_PRESENT;
1491 			if (pmd_soft_dirty(pmd))
1492 				flags |= PM_SOFT_DIRTY;
1493 			if (pmd_uffd_wp(pmd))
1494 				flags |= PM_UFFD_WP;
1495 			if (pm->show_pfn)
1496 				frame = pmd_pfn(pmd) +
1497 					((addr & ~PMD_MASK) >> PAGE_SHIFT);
1498 		}
1499 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1500 		else if (is_swap_pmd(pmd)) {
1501 			swp_entry_t entry = pmd_to_swp_entry(pmd);
1502 			unsigned long offset;
1503 
1504 			if (pm->show_pfn) {
1505 				if (is_pfn_swap_entry(entry))
1506 					offset = swp_offset_pfn(entry);
1507 				else
1508 					offset = swp_offset(entry);
1509 				offset = offset +
1510 					((addr & ~PMD_MASK) >> PAGE_SHIFT);
1511 				frame = swp_type(entry) |
1512 					(offset << MAX_SWAPFILES_SHIFT);
1513 			}
1514 			flags |= PM_SWAP;
1515 			if (pmd_swp_soft_dirty(pmd))
1516 				flags |= PM_SOFT_DIRTY;
1517 			if (pmd_swp_uffd_wp(pmd))
1518 				flags |= PM_UFFD_WP;
1519 			VM_BUG_ON(!is_pmd_migration_entry(pmd));
1520 			migration = is_migration_entry(entry);
1521 			page = pfn_swap_entry_to_page(entry);
1522 		}
1523 #endif
1524 
1525 		if (page && !migration && page_mapcount(page) == 1)
1526 			flags |= PM_MMAP_EXCLUSIVE;
1527 
1528 		for (; addr != end; addr += PAGE_SIZE) {
1529 			pagemap_entry_t pme = make_pme(frame, flags);
1530 
1531 			err = add_to_pagemap(&pme, pm);
1532 			if (err)
1533 				break;
1534 			if (pm->show_pfn) {
1535 				if (flags & PM_PRESENT)
1536 					frame++;
1537 				else if (flags & PM_SWAP)
1538 					frame += (1 << MAX_SWAPFILES_SHIFT);
1539 			}
1540 		}
1541 		spin_unlock(ptl);
1542 		return err;
1543 	}
1544 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1545 
1546 	/*
1547 	 * We can assume that @vma always points to a valid one and @end never
1548 	 * goes beyond vma->vm_end.
1549 	 */
1550 	orig_pte = pte = pte_offset_map_lock(walk->mm, pmdp, addr, &ptl);
1551 	if (!pte) {
1552 		walk->action = ACTION_AGAIN;
1553 		return err;
1554 	}
1555 	for (; addr < end; pte++, addr += PAGE_SIZE) {
1556 		pagemap_entry_t pme;
1557 
1558 		pme = pte_to_pagemap_entry(pm, vma, addr, ptep_get(pte));
1559 		err = add_to_pagemap(&pme, pm);
1560 		if (err)
1561 			break;
1562 	}
1563 	pte_unmap_unlock(orig_pte, ptl);
1564 
1565 	cond_resched();
1566 
1567 	return err;
1568 }
1569 
1570 #ifdef CONFIG_HUGETLB_PAGE
1571 /* This function walks within one hugetlb entry in the single call */
1572 static int pagemap_hugetlb_range(pte_t *ptep, unsigned long hmask,
1573 				 unsigned long addr, unsigned long end,
1574 				 struct mm_walk *walk)
1575 {
1576 	struct pagemapread *pm = walk->private;
1577 	struct vm_area_struct *vma = walk->vma;
1578 	u64 flags = 0, frame = 0;
1579 	int err = 0;
1580 	pte_t pte;
1581 
1582 	if (vma->vm_flags & VM_SOFTDIRTY)
1583 		flags |= PM_SOFT_DIRTY;
1584 
1585 	pte = huge_ptep_get(ptep);
1586 	if (pte_present(pte)) {
1587 		struct folio *folio = page_folio(pte_page(pte));
1588 
1589 		if (!folio_test_anon(folio))
1590 			flags |= PM_FILE;
1591 
1592 		if (!folio_likely_mapped_shared(folio) &&
1593 		    !hugetlb_pmd_shared(ptep))
1594 			flags |= PM_MMAP_EXCLUSIVE;
1595 
1596 		if (huge_pte_uffd_wp(pte))
1597 			flags |= PM_UFFD_WP;
1598 
1599 		flags |= PM_PRESENT;
1600 		if (pm->show_pfn)
1601 			frame = pte_pfn(pte) +
1602 				((addr & ~hmask) >> PAGE_SHIFT);
1603 	} else if (pte_swp_uffd_wp_any(pte)) {
1604 		flags |= PM_UFFD_WP;
1605 	}
1606 
1607 	for (; addr != end; addr += PAGE_SIZE) {
1608 		pagemap_entry_t pme = make_pme(frame, flags);
1609 
1610 		err = add_to_pagemap(&pme, pm);
1611 		if (err)
1612 			return err;
1613 		if (pm->show_pfn && (flags & PM_PRESENT))
1614 			frame++;
1615 	}
1616 
1617 	cond_resched();
1618 
1619 	return err;
1620 }
1621 #else
1622 #define pagemap_hugetlb_range	NULL
1623 #endif /* HUGETLB_PAGE */
1624 
1625 static const struct mm_walk_ops pagemap_ops = {
1626 	.pmd_entry	= pagemap_pmd_range,
1627 	.pte_hole	= pagemap_pte_hole,
1628 	.hugetlb_entry	= pagemap_hugetlb_range,
1629 	.walk_lock	= PGWALK_RDLOCK,
1630 };
1631 
1632 /*
1633  * /proc/pid/pagemap - an array mapping virtual pages to pfns
1634  *
1635  * For each page in the address space, this file contains one 64-bit entry
1636  * consisting of the following:
1637  *
1638  * Bits 0-54  page frame number (PFN) if present
1639  * Bits 0-4   swap type if swapped
1640  * Bits 5-54  swap offset if swapped
1641  * Bit  55    pte is soft-dirty (see Documentation/admin-guide/mm/soft-dirty.rst)
1642  * Bit  56    page exclusively mapped
1643  * Bit  57    pte is uffd-wp write-protected
1644  * Bits 58-60 zero
1645  * Bit  61    page is file-page or shared-anon
1646  * Bit  62    page swapped
1647  * Bit  63    page present
1648  *
1649  * If the page is not present but in swap, then the PFN contains an
1650  * encoding of the swap file number and the page's offset into the
1651  * swap. Unmapped pages return a null PFN. This allows determining
1652  * precisely which pages are mapped (or in swap) and comparing mapped
1653  * pages between processes.
1654  *
1655  * Efficient users of this interface will use /proc/pid/maps to
1656  * determine which areas of memory are actually mapped and llseek to
1657  * skip over unmapped regions.
1658  */
1659 static ssize_t pagemap_read(struct file *file, char __user *buf,
1660 			    size_t count, loff_t *ppos)
1661 {
1662 	struct mm_struct *mm = file->private_data;
1663 	struct pagemapread pm;
1664 	unsigned long src;
1665 	unsigned long svpfn;
1666 	unsigned long start_vaddr;
1667 	unsigned long end_vaddr;
1668 	int ret = 0, copied = 0;
1669 
1670 	if (!mm || !mmget_not_zero(mm))
1671 		goto out;
1672 
1673 	ret = -EINVAL;
1674 	/* file position must be aligned */
1675 	if ((*ppos % PM_ENTRY_BYTES) || (count % PM_ENTRY_BYTES))
1676 		goto out_mm;
1677 
1678 	ret = 0;
1679 	if (!count)
1680 		goto out_mm;
1681 
1682 	/* do not disclose physical addresses: attack vector */
1683 	pm.show_pfn = file_ns_capable(file, &init_user_ns, CAP_SYS_ADMIN);
1684 
1685 	pm.len = (PAGEMAP_WALK_SIZE >> PAGE_SHIFT);
1686 	pm.buffer = kmalloc_array(pm.len, PM_ENTRY_BYTES, GFP_KERNEL);
1687 	ret = -ENOMEM;
1688 	if (!pm.buffer)
1689 		goto out_mm;
1690 
1691 	src = *ppos;
1692 	svpfn = src / PM_ENTRY_BYTES;
1693 	end_vaddr = mm->task_size;
1694 
1695 	/* watch out for wraparound */
1696 	start_vaddr = end_vaddr;
1697 	if (svpfn <= (ULONG_MAX >> PAGE_SHIFT)) {
1698 		unsigned long end;
1699 
1700 		ret = mmap_read_lock_killable(mm);
1701 		if (ret)
1702 			goto out_free;
1703 		start_vaddr = untagged_addr_remote(mm, svpfn << PAGE_SHIFT);
1704 		mmap_read_unlock(mm);
1705 
1706 		end = start_vaddr + ((count / PM_ENTRY_BYTES) << PAGE_SHIFT);
1707 		if (end >= start_vaddr && end < mm->task_size)
1708 			end_vaddr = end;
1709 	}
1710 
1711 	/* Ensure the address is inside the task */
1712 	if (start_vaddr > mm->task_size)
1713 		start_vaddr = end_vaddr;
1714 
1715 	ret = 0;
1716 	while (count && (start_vaddr < end_vaddr)) {
1717 		int len;
1718 		unsigned long end;
1719 
1720 		pm.pos = 0;
1721 		end = (start_vaddr + PAGEMAP_WALK_SIZE) & PAGEMAP_WALK_MASK;
1722 		/* overflow ? */
1723 		if (end < start_vaddr || end > end_vaddr)
1724 			end = end_vaddr;
1725 		ret = mmap_read_lock_killable(mm);
1726 		if (ret)
1727 			goto out_free;
1728 		ret = walk_page_range(mm, start_vaddr, end, &pagemap_ops, &pm);
1729 		mmap_read_unlock(mm);
1730 		start_vaddr = end;
1731 
1732 		len = min(count, PM_ENTRY_BYTES * pm.pos);
1733 		if (copy_to_user(buf, pm.buffer, len)) {
1734 			ret = -EFAULT;
1735 			goto out_free;
1736 		}
1737 		copied += len;
1738 		buf += len;
1739 		count -= len;
1740 	}
1741 	*ppos += copied;
1742 	if (!ret || ret == PM_END_OF_BUFFER)
1743 		ret = copied;
1744 
1745 out_free:
1746 	kfree(pm.buffer);
1747 out_mm:
1748 	mmput(mm);
1749 out:
1750 	return ret;
1751 }
1752 
1753 static int pagemap_open(struct inode *inode, struct file *file)
1754 {
1755 	struct mm_struct *mm;
1756 
1757 	mm = proc_mem_open(inode, PTRACE_MODE_READ);
1758 	if (IS_ERR(mm))
1759 		return PTR_ERR(mm);
1760 	file->private_data = mm;
1761 	return 0;
1762 }
1763 
1764 static int pagemap_release(struct inode *inode, struct file *file)
1765 {
1766 	struct mm_struct *mm = file->private_data;
1767 
1768 	if (mm)
1769 		mmdrop(mm);
1770 	return 0;
1771 }
1772 
1773 #define PM_SCAN_CATEGORIES	(PAGE_IS_WPALLOWED | PAGE_IS_WRITTEN |	\
1774 				 PAGE_IS_FILE |	PAGE_IS_PRESENT |	\
1775 				 PAGE_IS_SWAPPED | PAGE_IS_PFNZERO |	\
1776 				 PAGE_IS_HUGE | PAGE_IS_SOFT_DIRTY)
1777 #define PM_SCAN_FLAGS		(PM_SCAN_WP_MATCHING | PM_SCAN_CHECK_WPASYNC)
1778 
1779 struct pagemap_scan_private {
1780 	struct pm_scan_arg arg;
1781 	unsigned long masks_of_interest, cur_vma_category;
1782 	struct page_region *vec_buf;
1783 	unsigned long vec_buf_len, vec_buf_index, found_pages;
1784 	struct page_region __user *vec_out;
1785 };
1786 
1787 static unsigned long pagemap_page_category(struct pagemap_scan_private *p,
1788 					   struct vm_area_struct *vma,
1789 					   unsigned long addr, pte_t pte)
1790 {
1791 	unsigned long categories = 0;
1792 
1793 	if (pte_present(pte)) {
1794 		struct page *page;
1795 
1796 		categories |= PAGE_IS_PRESENT;
1797 		if (!pte_uffd_wp(pte))
1798 			categories |= PAGE_IS_WRITTEN;
1799 
1800 		if (p->masks_of_interest & PAGE_IS_FILE) {
1801 			page = vm_normal_page(vma, addr, pte);
1802 			if (page && !PageAnon(page))
1803 				categories |= PAGE_IS_FILE;
1804 		}
1805 
1806 		if (is_zero_pfn(pte_pfn(pte)))
1807 			categories |= PAGE_IS_PFNZERO;
1808 		if (pte_soft_dirty(pte))
1809 			categories |= PAGE_IS_SOFT_DIRTY;
1810 	} else if (is_swap_pte(pte)) {
1811 		swp_entry_t swp;
1812 
1813 		categories |= PAGE_IS_SWAPPED;
1814 		if (!pte_swp_uffd_wp_any(pte))
1815 			categories |= PAGE_IS_WRITTEN;
1816 
1817 		if (p->masks_of_interest & PAGE_IS_FILE) {
1818 			swp = pte_to_swp_entry(pte);
1819 			if (is_pfn_swap_entry(swp) &&
1820 			    !folio_test_anon(pfn_swap_entry_folio(swp)))
1821 				categories |= PAGE_IS_FILE;
1822 		}
1823 		if (pte_swp_soft_dirty(pte))
1824 			categories |= PAGE_IS_SOFT_DIRTY;
1825 	}
1826 
1827 	return categories;
1828 }
1829 
1830 static void make_uffd_wp_pte(struct vm_area_struct *vma,
1831 			     unsigned long addr, pte_t *pte, pte_t ptent)
1832 {
1833 	if (pte_present(ptent)) {
1834 		pte_t old_pte;
1835 
1836 		old_pte = ptep_modify_prot_start(vma, addr, pte);
1837 		ptent = pte_mkuffd_wp(old_pte);
1838 		ptep_modify_prot_commit(vma, addr, pte, old_pte, ptent);
1839 	} else if (is_swap_pte(ptent)) {
1840 		ptent = pte_swp_mkuffd_wp(ptent);
1841 		set_pte_at(vma->vm_mm, addr, pte, ptent);
1842 	} else {
1843 		set_pte_at(vma->vm_mm, addr, pte,
1844 			   make_pte_marker(PTE_MARKER_UFFD_WP));
1845 	}
1846 }
1847 
1848 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1849 static unsigned long pagemap_thp_category(struct pagemap_scan_private *p,
1850 					  struct vm_area_struct *vma,
1851 					  unsigned long addr, pmd_t pmd)
1852 {
1853 	unsigned long categories = PAGE_IS_HUGE;
1854 
1855 	if (pmd_present(pmd)) {
1856 		struct page *page;
1857 
1858 		categories |= PAGE_IS_PRESENT;
1859 		if (!pmd_uffd_wp(pmd))
1860 			categories |= PAGE_IS_WRITTEN;
1861 
1862 		if (p->masks_of_interest & PAGE_IS_FILE) {
1863 			page = vm_normal_page_pmd(vma, addr, pmd);
1864 			if (page && !PageAnon(page))
1865 				categories |= PAGE_IS_FILE;
1866 		}
1867 
1868 		if (is_zero_pfn(pmd_pfn(pmd)))
1869 			categories |= PAGE_IS_PFNZERO;
1870 		if (pmd_soft_dirty(pmd))
1871 			categories |= PAGE_IS_SOFT_DIRTY;
1872 	} else if (is_swap_pmd(pmd)) {
1873 		swp_entry_t swp;
1874 
1875 		categories |= PAGE_IS_SWAPPED;
1876 		if (!pmd_swp_uffd_wp(pmd))
1877 			categories |= PAGE_IS_WRITTEN;
1878 		if (pmd_swp_soft_dirty(pmd))
1879 			categories |= PAGE_IS_SOFT_DIRTY;
1880 
1881 		if (p->masks_of_interest & PAGE_IS_FILE) {
1882 			swp = pmd_to_swp_entry(pmd);
1883 			if (is_pfn_swap_entry(swp) &&
1884 			    !folio_test_anon(pfn_swap_entry_folio(swp)))
1885 				categories |= PAGE_IS_FILE;
1886 		}
1887 	}
1888 
1889 	return categories;
1890 }
1891 
1892 static void make_uffd_wp_pmd(struct vm_area_struct *vma,
1893 			     unsigned long addr, pmd_t *pmdp)
1894 {
1895 	pmd_t old, pmd = *pmdp;
1896 
1897 	if (pmd_present(pmd)) {
1898 		old = pmdp_invalidate_ad(vma, addr, pmdp);
1899 		pmd = pmd_mkuffd_wp(old);
1900 		set_pmd_at(vma->vm_mm, addr, pmdp, pmd);
1901 	} else if (is_migration_entry(pmd_to_swp_entry(pmd))) {
1902 		pmd = pmd_swp_mkuffd_wp(pmd);
1903 		set_pmd_at(vma->vm_mm, addr, pmdp, pmd);
1904 	}
1905 }
1906 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1907 
1908 #ifdef CONFIG_HUGETLB_PAGE
1909 static unsigned long pagemap_hugetlb_category(pte_t pte)
1910 {
1911 	unsigned long categories = PAGE_IS_HUGE;
1912 
1913 	/*
1914 	 * According to pagemap_hugetlb_range(), file-backed HugeTLB
1915 	 * page cannot be swapped. So PAGE_IS_FILE is not checked for
1916 	 * swapped pages.
1917 	 */
1918 	if (pte_present(pte)) {
1919 		categories |= PAGE_IS_PRESENT;
1920 		if (!huge_pte_uffd_wp(pte))
1921 			categories |= PAGE_IS_WRITTEN;
1922 		if (!PageAnon(pte_page(pte)))
1923 			categories |= PAGE_IS_FILE;
1924 		if (is_zero_pfn(pte_pfn(pte)))
1925 			categories |= PAGE_IS_PFNZERO;
1926 		if (pte_soft_dirty(pte))
1927 			categories |= PAGE_IS_SOFT_DIRTY;
1928 	} else if (is_swap_pte(pte)) {
1929 		categories |= PAGE_IS_SWAPPED;
1930 		if (!pte_swp_uffd_wp_any(pte))
1931 			categories |= PAGE_IS_WRITTEN;
1932 		if (pte_swp_soft_dirty(pte))
1933 			categories |= PAGE_IS_SOFT_DIRTY;
1934 	}
1935 
1936 	return categories;
1937 }
1938 
1939 static void make_uffd_wp_huge_pte(struct vm_area_struct *vma,
1940 				  unsigned long addr, pte_t *ptep,
1941 				  pte_t ptent)
1942 {
1943 	unsigned long psize;
1944 
1945 	if (is_hugetlb_entry_hwpoisoned(ptent) || is_pte_marker(ptent))
1946 		return;
1947 
1948 	psize = huge_page_size(hstate_vma(vma));
1949 
1950 	if (is_hugetlb_entry_migration(ptent))
1951 		set_huge_pte_at(vma->vm_mm, addr, ptep,
1952 				pte_swp_mkuffd_wp(ptent), psize);
1953 	else if (!huge_pte_none(ptent))
1954 		huge_ptep_modify_prot_commit(vma, addr, ptep, ptent,
1955 					     huge_pte_mkuffd_wp(ptent));
1956 	else
1957 		set_huge_pte_at(vma->vm_mm, addr, ptep,
1958 				make_pte_marker(PTE_MARKER_UFFD_WP), psize);
1959 }
1960 #endif /* CONFIG_HUGETLB_PAGE */
1961 
1962 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLB_PAGE)
1963 static void pagemap_scan_backout_range(struct pagemap_scan_private *p,
1964 				       unsigned long addr, unsigned long end)
1965 {
1966 	struct page_region *cur_buf = &p->vec_buf[p->vec_buf_index];
1967 
1968 	if (cur_buf->start != addr)
1969 		cur_buf->end = addr;
1970 	else
1971 		cur_buf->start = cur_buf->end = 0;
1972 
1973 	p->found_pages -= (end - addr) / PAGE_SIZE;
1974 }
1975 #endif
1976 
1977 static bool pagemap_scan_is_interesting_page(unsigned long categories,
1978 					     const struct pagemap_scan_private *p)
1979 {
1980 	categories ^= p->arg.category_inverted;
1981 	if ((categories & p->arg.category_mask) != p->arg.category_mask)
1982 		return false;
1983 	if (p->arg.category_anyof_mask && !(categories & p->arg.category_anyof_mask))
1984 		return false;
1985 
1986 	return true;
1987 }
1988 
1989 static bool pagemap_scan_is_interesting_vma(unsigned long categories,
1990 					    const struct pagemap_scan_private *p)
1991 {
1992 	unsigned long required = p->arg.category_mask & PAGE_IS_WPALLOWED;
1993 
1994 	categories ^= p->arg.category_inverted;
1995 	if ((categories & required) != required)
1996 		return false;
1997 
1998 	return true;
1999 }
2000 
2001 static int pagemap_scan_test_walk(unsigned long start, unsigned long end,
2002 				  struct mm_walk *walk)
2003 {
2004 	struct pagemap_scan_private *p = walk->private;
2005 	struct vm_area_struct *vma = walk->vma;
2006 	unsigned long vma_category = 0;
2007 	bool wp_allowed = userfaultfd_wp_async(vma) &&
2008 	    userfaultfd_wp_use_markers(vma);
2009 
2010 	if (!wp_allowed) {
2011 		/* User requested explicit failure over wp-async capability */
2012 		if (p->arg.flags & PM_SCAN_CHECK_WPASYNC)
2013 			return -EPERM;
2014 		/*
2015 		 * User requires wr-protect, and allows silently skipping
2016 		 * unsupported vmas.
2017 		 */
2018 		if (p->arg.flags & PM_SCAN_WP_MATCHING)
2019 			return 1;
2020 		/*
2021 		 * Then the request doesn't involve wr-protects at all,
2022 		 * fall through to the rest checks, and allow vma walk.
2023 		 */
2024 	}
2025 
2026 	if (vma->vm_flags & VM_PFNMAP)
2027 		return 1;
2028 
2029 	if (wp_allowed)
2030 		vma_category |= PAGE_IS_WPALLOWED;
2031 
2032 	if (vma->vm_flags & VM_SOFTDIRTY)
2033 		vma_category |= PAGE_IS_SOFT_DIRTY;
2034 
2035 	if (!pagemap_scan_is_interesting_vma(vma_category, p))
2036 		return 1;
2037 
2038 	p->cur_vma_category = vma_category;
2039 
2040 	return 0;
2041 }
2042 
2043 static bool pagemap_scan_push_range(unsigned long categories,
2044 				    struct pagemap_scan_private *p,
2045 				    unsigned long addr, unsigned long end)
2046 {
2047 	struct page_region *cur_buf = &p->vec_buf[p->vec_buf_index];
2048 
2049 	/*
2050 	 * When there is no output buffer provided at all, the sentinel values
2051 	 * won't match here. There is no other way for `cur_buf->end` to be
2052 	 * non-zero other than it being non-empty.
2053 	 */
2054 	if (addr == cur_buf->end && categories == cur_buf->categories) {
2055 		cur_buf->end = end;
2056 		return true;
2057 	}
2058 
2059 	if (cur_buf->end) {
2060 		if (p->vec_buf_index >= p->vec_buf_len - 1)
2061 			return false;
2062 
2063 		cur_buf = &p->vec_buf[++p->vec_buf_index];
2064 	}
2065 
2066 	cur_buf->start = addr;
2067 	cur_buf->end = end;
2068 	cur_buf->categories = categories;
2069 
2070 	return true;
2071 }
2072 
2073 static int pagemap_scan_output(unsigned long categories,
2074 			       struct pagemap_scan_private *p,
2075 			       unsigned long addr, unsigned long *end)
2076 {
2077 	unsigned long n_pages, total_pages;
2078 	int ret = 0;
2079 
2080 	if (!p->vec_buf)
2081 		return 0;
2082 
2083 	categories &= p->arg.return_mask;
2084 
2085 	n_pages = (*end - addr) / PAGE_SIZE;
2086 	if (check_add_overflow(p->found_pages, n_pages, &total_pages) ||
2087 	    total_pages > p->arg.max_pages) {
2088 		size_t n_too_much = total_pages - p->arg.max_pages;
2089 		*end -= n_too_much * PAGE_SIZE;
2090 		n_pages -= n_too_much;
2091 		ret = -ENOSPC;
2092 	}
2093 
2094 	if (!pagemap_scan_push_range(categories, p, addr, *end)) {
2095 		*end = addr;
2096 		n_pages = 0;
2097 		ret = -ENOSPC;
2098 	}
2099 
2100 	p->found_pages += n_pages;
2101 	if (ret)
2102 		p->arg.walk_end = *end;
2103 
2104 	return ret;
2105 }
2106 
2107 static int pagemap_scan_thp_entry(pmd_t *pmd, unsigned long start,
2108 				  unsigned long end, struct mm_walk *walk)
2109 {
2110 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2111 	struct pagemap_scan_private *p = walk->private;
2112 	struct vm_area_struct *vma = walk->vma;
2113 	unsigned long categories;
2114 	spinlock_t *ptl;
2115 	int ret = 0;
2116 
2117 	ptl = pmd_trans_huge_lock(pmd, vma);
2118 	if (!ptl)
2119 		return -ENOENT;
2120 
2121 	categories = p->cur_vma_category |
2122 		     pagemap_thp_category(p, vma, start, *pmd);
2123 
2124 	if (!pagemap_scan_is_interesting_page(categories, p))
2125 		goto out_unlock;
2126 
2127 	ret = pagemap_scan_output(categories, p, start, &end);
2128 	if (start == end)
2129 		goto out_unlock;
2130 
2131 	if (~p->arg.flags & PM_SCAN_WP_MATCHING)
2132 		goto out_unlock;
2133 	if (~categories & PAGE_IS_WRITTEN)
2134 		goto out_unlock;
2135 
2136 	/*
2137 	 * Break huge page into small pages if the WP operation
2138 	 * needs to be performed on a portion of the huge page.
2139 	 */
2140 	if (end != start + HPAGE_SIZE) {
2141 		spin_unlock(ptl);
2142 		split_huge_pmd(vma, pmd, start);
2143 		pagemap_scan_backout_range(p, start, end);
2144 		/* Report as if there was no THP */
2145 		return -ENOENT;
2146 	}
2147 
2148 	make_uffd_wp_pmd(vma, start, pmd);
2149 	flush_tlb_range(vma, start, end);
2150 out_unlock:
2151 	spin_unlock(ptl);
2152 	return ret;
2153 #else /* !CONFIG_TRANSPARENT_HUGEPAGE */
2154 	return -ENOENT;
2155 #endif
2156 }
2157 
2158 static int pagemap_scan_pmd_entry(pmd_t *pmd, unsigned long start,
2159 				  unsigned long end, struct mm_walk *walk)
2160 {
2161 	struct pagemap_scan_private *p = walk->private;
2162 	struct vm_area_struct *vma = walk->vma;
2163 	unsigned long addr, flush_end = 0;
2164 	pte_t *pte, *start_pte;
2165 	spinlock_t *ptl;
2166 	int ret;
2167 
2168 	arch_enter_lazy_mmu_mode();
2169 
2170 	ret = pagemap_scan_thp_entry(pmd, start, end, walk);
2171 	if (ret != -ENOENT) {
2172 		arch_leave_lazy_mmu_mode();
2173 		return ret;
2174 	}
2175 
2176 	ret = 0;
2177 	start_pte = pte = pte_offset_map_lock(vma->vm_mm, pmd, start, &ptl);
2178 	if (!pte) {
2179 		arch_leave_lazy_mmu_mode();
2180 		walk->action = ACTION_AGAIN;
2181 		return 0;
2182 	}
2183 
2184 	if ((p->arg.flags & PM_SCAN_WP_MATCHING) && !p->vec_out) {
2185 		/* Fast path for performing exclusive WP */
2186 		for (addr = start; addr != end; pte++, addr += PAGE_SIZE) {
2187 			pte_t ptent = ptep_get(pte);
2188 
2189 			if ((pte_present(ptent) && pte_uffd_wp(ptent)) ||
2190 			    pte_swp_uffd_wp_any(ptent))
2191 				continue;
2192 			make_uffd_wp_pte(vma, addr, pte, ptent);
2193 			if (!flush_end)
2194 				start = addr;
2195 			flush_end = addr + PAGE_SIZE;
2196 		}
2197 		goto flush_and_return;
2198 	}
2199 
2200 	if (!p->arg.category_anyof_mask && !p->arg.category_inverted &&
2201 	    p->arg.category_mask == PAGE_IS_WRITTEN &&
2202 	    p->arg.return_mask == PAGE_IS_WRITTEN) {
2203 		for (addr = start; addr < end; pte++, addr += PAGE_SIZE) {
2204 			unsigned long next = addr + PAGE_SIZE;
2205 			pte_t ptent = ptep_get(pte);
2206 
2207 			if ((pte_present(ptent) && pte_uffd_wp(ptent)) ||
2208 			    pte_swp_uffd_wp_any(ptent))
2209 				continue;
2210 			ret = pagemap_scan_output(p->cur_vma_category | PAGE_IS_WRITTEN,
2211 						  p, addr, &next);
2212 			if (next == addr)
2213 				break;
2214 			if (~p->arg.flags & PM_SCAN_WP_MATCHING)
2215 				continue;
2216 			make_uffd_wp_pte(vma, addr, pte, ptent);
2217 			if (!flush_end)
2218 				start = addr;
2219 			flush_end = next;
2220 		}
2221 		goto flush_and_return;
2222 	}
2223 
2224 	for (addr = start; addr != end; pte++, addr += PAGE_SIZE) {
2225 		pte_t ptent = ptep_get(pte);
2226 		unsigned long categories = p->cur_vma_category |
2227 					   pagemap_page_category(p, vma, addr, ptent);
2228 		unsigned long next = addr + PAGE_SIZE;
2229 
2230 		if (!pagemap_scan_is_interesting_page(categories, p))
2231 			continue;
2232 
2233 		ret = pagemap_scan_output(categories, p, addr, &next);
2234 		if (next == addr)
2235 			break;
2236 
2237 		if (~p->arg.flags & PM_SCAN_WP_MATCHING)
2238 			continue;
2239 		if (~categories & PAGE_IS_WRITTEN)
2240 			continue;
2241 
2242 		make_uffd_wp_pte(vma, addr, pte, ptent);
2243 		if (!flush_end)
2244 			start = addr;
2245 		flush_end = next;
2246 	}
2247 
2248 flush_and_return:
2249 	if (flush_end)
2250 		flush_tlb_range(vma, start, addr);
2251 
2252 	pte_unmap_unlock(start_pte, ptl);
2253 	arch_leave_lazy_mmu_mode();
2254 
2255 	cond_resched();
2256 	return ret;
2257 }
2258 
2259 #ifdef CONFIG_HUGETLB_PAGE
2260 static int pagemap_scan_hugetlb_entry(pte_t *ptep, unsigned long hmask,
2261 				      unsigned long start, unsigned long end,
2262 				      struct mm_walk *walk)
2263 {
2264 	struct pagemap_scan_private *p = walk->private;
2265 	struct vm_area_struct *vma = walk->vma;
2266 	unsigned long categories;
2267 	spinlock_t *ptl;
2268 	int ret = 0;
2269 	pte_t pte;
2270 
2271 	if (~p->arg.flags & PM_SCAN_WP_MATCHING) {
2272 		/* Go the short route when not write-protecting pages. */
2273 
2274 		pte = huge_ptep_get(ptep);
2275 		categories = p->cur_vma_category | pagemap_hugetlb_category(pte);
2276 
2277 		if (!pagemap_scan_is_interesting_page(categories, p))
2278 			return 0;
2279 
2280 		return pagemap_scan_output(categories, p, start, &end);
2281 	}
2282 
2283 	i_mmap_lock_write(vma->vm_file->f_mapping);
2284 	ptl = huge_pte_lock(hstate_vma(vma), vma->vm_mm, ptep);
2285 
2286 	pte = huge_ptep_get(ptep);
2287 	categories = p->cur_vma_category | pagemap_hugetlb_category(pte);
2288 
2289 	if (!pagemap_scan_is_interesting_page(categories, p))
2290 		goto out_unlock;
2291 
2292 	ret = pagemap_scan_output(categories, p, start, &end);
2293 	if (start == end)
2294 		goto out_unlock;
2295 
2296 	if (~categories & PAGE_IS_WRITTEN)
2297 		goto out_unlock;
2298 
2299 	if (end != start + HPAGE_SIZE) {
2300 		/* Partial HugeTLB page WP isn't possible. */
2301 		pagemap_scan_backout_range(p, start, end);
2302 		p->arg.walk_end = start;
2303 		ret = 0;
2304 		goto out_unlock;
2305 	}
2306 
2307 	make_uffd_wp_huge_pte(vma, start, ptep, pte);
2308 	flush_hugetlb_tlb_range(vma, start, end);
2309 
2310 out_unlock:
2311 	spin_unlock(ptl);
2312 	i_mmap_unlock_write(vma->vm_file->f_mapping);
2313 
2314 	return ret;
2315 }
2316 #else
2317 #define pagemap_scan_hugetlb_entry NULL
2318 #endif
2319 
2320 static int pagemap_scan_pte_hole(unsigned long addr, unsigned long end,
2321 				 int depth, struct mm_walk *walk)
2322 {
2323 	struct pagemap_scan_private *p = walk->private;
2324 	struct vm_area_struct *vma = walk->vma;
2325 	int ret, err;
2326 
2327 	if (!vma || !pagemap_scan_is_interesting_page(p->cur_vma_category, p))
2328 		return 0;
2329 
2330 	ret = pagemap_scan_output(p->cur_vma_category, p, addr, &end);
2331 	if (addr == end)
2332 		return ret;
2333 
2334 	if (~p->arg.flags & PM_SCAN_WP_MATCHING)
2335 		return ret;
2336 
2337 	err = uffd_wp_range(vma, addr, end - addr, true);
2338 	if (err < 0)
2339 		ret = err;
2340 
2341 	return ret;
2342 }
2343 
2344 static const struct mm_walk_ops pagemap_scan_ops = {
2345 	.test_walk = pagemap_scan_test_walk,
2346 	.pmd_entry = pagemap_scan_pmd_entry,
2347 	.pte_hole = pagemap_scan_pte_hole,
2348 	.hugetlb_entry = pagemap_scan_hugetlb_entry,
2349 };
2350 
2351 static int pagemap_scan_get_args(struct pm_scan_arg *arg,
2352 				 unsigned long uarg)
2353 {
2354 	if (copy_from_user(arg, (void __user *)uarg, sizeof(*arg)))
2355 		return -EFAULT;
2356 
2357 	if (arg->size != sizeof(struct pm_scan_arg))
2358 		return -EINVAL;
2359 
2360 	/* Validate requested features */
2361 	if (arg->flags & ~PM_SCAN_FLAGS)
2362 		return -EINVAL;
2363 	if ((arg->category_inverted | arg->category_mask |
2364 	     arg->category_anyof_mask | arg->return_mask) & ~PM_SCAN_CATEGORIES)
2365 		return -EINVAL;
2366 
2367 	arg->start = untagged_addr((unsigned long)arg->start);
2368 	arg->end = untagged_addr((unsigned long)arg->end);
2369 	arg->vec = untagged_addr((unsigned long)arg->vec);
2370 
2371 	/* Validate memory pointers */
2372 	if (!IS_ALIGNED(arg->start, PAGE_SIZE))
2373 		return -EINVAL;
2374 	if (!access_ok((void __user *)(long)arg->start, arg->end - arg->start))
2375 		return -EFAULT;
2376 	if (!arg->vec && arg->vec_len)
2377 		return -EINVAL;
2378 	if (arg->vec && !access_ok((void __user *)(long)arg->vec,
2379 			      arg->vec_len * sizeof(struct page_region)))
2380 		return -EFAULT;
2381 
2382 	/* Fixup default values */
2383 	arg->end = ALIGN(arg->end, PAGE_SIZE);
2384 	arg->walk_end = 0;
2385 	if (!arg->max_pages)
2386 		arg->max_pages = ULONG_MAX;
2387 
2388 	return 0;
2389 }
2390 
2391 static int pagemap_scan_writeback_args(struct pm_scan_arg *arg,
2392 				       unsigned long uargl)
2393 {
2394 	struct pm_scan_arg __user *uarg	= (void __user *)uargl;
2395 
2396 	if (copy_to_user(&uarg->walk_end, &arg->walk_end, sizeof(arg->walk_end)))
2397 		return -EFAULT;
2398 
2399 	return 0;
2400 }
2401 
2402 static int pagemap_scan_init_bounce_buffer(struct pagemap_scan_private *p)
2403 {
2404 	if (!p->arg.vec_len)
2405 		return 0;
2406 
2407 	p->vec_buf_len = min_t(size_t, PAGEMAP_WALK_SIZE >> PAGE_SHIFT,
2408 			       p->arg.vec_len);
2409 	p->vec_buf = kmalloc_array(p->vec_buf_len, sizeof(*p->vec_buf),
2410 				   GFP_KERNEL);
2411 	if (!p->vec_buf)
2412 		return -ENOMEM;
2413 
2414 	p->vec_buf->start = p->vec_buf->end = 0;
2415 	p->vec_out = (struct page_region __user *)(long)p->arg.vec;
2416 
2417 	return 0;
2418 }
2419 
2420 static long pagemap_scan_flush_buffer(struct pagemap_scan_private *p)
2421 {
2422 	const struct page_region *buf = p->vec_buf;
2423 	long n = p->vec_buf_index;
2424 
2425 	if (!p->vec_buf)
2426 		return 0;
2427 
2428 	if (buf[n].end != buf[n].start)
2429 		n++;
2430 
2431 	if (!n)
2432 		return 0;
2433 
2434 	if (copy_to_user(p->vec_out, buf, n * sizeof(*buf)))
2435 		return -EFAULT;
2436 
2437 	p->arg.vec_len -= n;
2438 	p->vec_out += n;
2439 
2440 	p->vec_buf_index = 0;
2441 	p->vec_buf_len = min_t(size_t, p->vec_buf_len, p->arg.vec_len);
2442 	p->vec_buf->start = p->vec_buf->end = 0;
2443 
2444 	return n;
2445 }
2446 
2447 static long do_pagemap_scan(struct mm_struct *mm, unsigned long uarg)
2448 {
2449 	struct pagemap_scan_private p = {0};
2450 	unsigned long walk_start;
2451 	size_t n_ranges_out = 0;
2452 	int ret;
2453 
2454 	ret = pagemap_scan_get_args(&p.arg, uarg);
2455 	if (ret)
2456 		return ret;
2457 
2458 	p.masks_of_interest = p.arg.category_mask | p.arg.category_anyof_mask |
2459 			      p.arg.return_mask;
2460 	ret = pagemap_scan_init_bounce_buffer(&p);
2461 	if (ret)
2462 		return ret;
2463 
2464 	for (walk_start = p.arg.start; walk_start < p.arg.end;
2465 			walk_start = p.arg.walk_end) {
2466 		struct mmu_notifier_range range;
2467 		long n_out;
2468 
2469 		if (fatal_signal_pending(current)) {
2470 			ret = -EINTR;
2471 			break;
2472 		}
2473 
2474 		ret = mmap_read_lock_killable(mm);
2475 		if (ret)
2476 			break;
2477 
2478 		/* Protection change for the range is going to happen. */
2479 		if (p.arg.flags & PM_SCAN_WP_MATCHING) {
2480 			mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_VMA, 0,
2481 						mm, walk_start, p.arg.end);
2482 			mmu_notifier_invalidate_range_start(&range);
2483 		}
2484 
2485 		ret = walk_page_range(mm, walk_start, p.arg.end,
2486 				      &pagemap_scan_ops, &p);
2487 
2488 		if (p.arg.flags & PM_SCAN_WP_MATCHING)
2489 			mmu_notifier_invalidate_range_end(&range);
2490 
2491 		mmap_read_unlock(mm);
2492 
2493 		n_out = pagemap_scan_flush_buffer(&p);
2494 		if (n_out < 0)
2495 			ret = n_out;
2496 		else
2497 			n_ranges_out += n_out;
2498 
2499 		if (ret != -ENOSPC)
2500 			break;
2501 
2502 		if (p.arg.vec_len == 0 || p.found_pages == p.arg.max_pages)
2503 			break;
2504 	}
2505 
2506 	/* ENOSPC signifies early stop (buffer full) from the walk. */
2507 	if (!ret || ret == -ENOSPC)
2508 		ret = n_ranges_out;
2509 
2510 	/* The walk_end isn't set when ret is zero */
2511 	if (!p.arg.walk_end)
2512 		p.arg.walk_end = p.arg.end;
2513 	if (pagemap_scan_writeback_args(&p.arg, uarg))
2514 		ret = -EFAULT;
2515 
2516 	kfree(p.vec_buf);
2517 	return ret;
2518 }
2519 
2520 static long do_pagemap_cmd(struct file *file, unsigned int cmd,
2521 			   unsigned long arg)
2522 {
2523 	struct mm_struct *mm = file->private_data;
2524 
2525 	switch (cmd) {
2526 	case PAGEMAP_SCAN:
2527 		return do_pagemap_scan(mm, arg);
2528 
2529 	default:
2530 		return -EINVAL;
2531 	}
2532 }
2533 
2534 const struct file_operations proc_pagemap_operations = {
2535 	.llseek		= mem_lseek, /* borrow this */
2536 	.read		= pagemap_read,
2537 	.open		= pagemap_open,
2538 	.release	= pagemap_release,
2539 	.unlocked_ioctl = do_pagemap_cmd,
2540 	.compat_ioctl	= do_pagemap_cmd,
2541 };
2542 #endif /* CONFIG_PROC_PAGE_MONITOR */
2543 
2544 #ifdef CONFIG_NUMA
2545 
2546 struct numa_maps {
2547 	unsigned long pages;
2548 	unsigned long anon;
2549 	unsigned long active;
2550 	unsigned long writeback;
2551 	unsigned long mapcount_max;
2552 	unsigned long dirty;
2553 	unsigned long swapcache;
2554 	unsigned long node[MAX_NUMNODES];
2555 };
2556 
2557 struct numa_maps_private {
2558 	struct proc_maps_private proc_maps;
2559 	struct numa_maps md;
2560 };
2561 
2562 static void gather_stats(struct page *page, struct numa_maps *md, int pte_dirty,
2563 			unsigned long nr_pages)
2564 {
2565 	struct folio *folio = page_folio(page);
2566 	int count = page_mapcount(page);
2567 
2568 	md->pages += nr_pages;
2569 	if (pte_dirty || folio_test_dirty(folio))
2570 		md->dirty += nr_pages;
2571 
2572 	if (folio_test_swapcache(folio))
2573 		md->swapcache += nr_pages;
2574 
2575 	if (folio_test_active(folio) || folio_test_unevictable(folio))
2576 		md->active += nr_pages;
2577 
2578 	if (folio_test_writeback(folio))
2579 		md->writeback += nr_pages;
2580 
2581 	if (folio_test_anon(folio))
2582 		md->anon += nr_pages;
2583 
2584 	if (count > md->mapcount_max)
2585 		md->mapcount_max = count;
2586 
2587 	md->node[folio_nid(folio)] += nr_pages;
2588 }
2589 
2590 static struct page *can_gather_numa_stats(pte_t pte, struct vm_area_struct *vma,
2591 		unsigned long addr)
2592 {
2593 	struct page *page;
2594 	int nid;
2595 
2596 	if (!pte_present(pte))
2597 		return NULL;
2598 
2599 	page = vm_normal_page(vma, addr, pte);
2600 	if (!page || is_zone_device_page(page))
2601 		return NULL;
2602 
2603 	if (PageReserved(page))
2604 		return NULL;
2605 
2606 	nid = page_to_nid(page);
2607 	if (!node_isset(nid, node_states[N_MEMORY]))
2608 		return NULL;
2609 
2610 	return page;
2611 }
2612 
2613 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2614 static struct page *can_gather_numa_stats_pmd(pmd_t pmd,
2615 					      struct vm_area_struct *vma,
2616 					      unsigned long addr)
2617 {
2618 	struct page *page;
2619 	int nid;
2620 
2621 	if (!pmd_present(pmd))
2622 		return NULL;
2623 
2624 	page = vm_normal_page_pmd(vma, addr, pmd);
2625 	if (!page)
2626 		return NULL;
2627 
2628 	if (PageReserved(page))
2629 		return NULL;
2630 
2631 	nid = page_to_nid(page);
2632 	if (!node_isset(nid, node_states[N_MEMORY]))
2633 		return NULL;
2634 
2635 	return page;
2636 }
2637 #endif
2638 
2639 static int gather_pte_stats(pmd_t *pmd, unsigned long addr,
2640 		unsigned long end, struct mm_walk *walk)
2641 {
2642 	struct numa_maps *md = walk->private;
2643 	struct vm_area_struct *vma = walk->vma;
2644 	spinlock_t *ptl;
2645 	pte_t *orig_pte;
2646 	pte_t *pte;
2647 
2648 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2649 	ptl = pmd_trans_huge_lock(pmd, vma);
2650 	if (ptl) {
2651 		struct page *page;
2652 
2653 		page = can_gather_numa_stats_pmd(*pmd, vma, addr);
2654 		if (page)
2655 			gather_stats(page, md, pmd_dirty(*pmd),
2656 				     HPAGE_PMD_SIZE/PAGE_SIZE);
2657 		spin_unlock(ptl);
2658 		return 0;
2659 	}
2660 #endif
2661 	orig_pte = pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
2662 	if (!pte) {
2663 		walk->action = ACTION_AGAIN;
2664 		return 0;
2665 	}
2666 	do {
2667 		pte_t ptent = ptep_get(pte);
2668 		struct page *page = can_gather_numa_stats(ptent, vma, addr);
2669 		if (!page)
2670 			continue;
2671 		gather_stats(page, md, pte_dirty(ptent), 1);
2672 
2673 	} while (pte++, addr += PAGE_SIZE, addr != end);
2674 	pte_unmap_unlock(orig_pte, ptl);
2675 	cond_resched();
2676 	return 0;
2677 }
2678 #ifdef CONFIG_HUGETLB_PAGE
2679 static int gather_hugetlb_stats(pte_t *pte, unsigned long hmask,
2680 		unsigned long addr, unsigned long end, struct mm_walk *walk)
2681 {
2682 	pte_t huge_pte = huge_ptep_get(pte);
2683 	struct numa_maps *md;
2684 	struct page *page;
2685 
2686 	if (!pte_present(huge_pte))
2687 		return 0;
2688 
2689 	page = pte_page(huge_pte);
2690 
2691 	md = walk->private;
2692 	gather_stats(page, md, pte_dirty(huge_pte), 1);
2693 	return 0;
2694 }
2695 
2696 #else
2697 static int gather_hugetlb_stats(pte_t *pte, unsigned long hmask,
2698 		unsigned long addr, unsigned long end, struct mm_walk *walk)
2699 {
2700 	return 0;
2701 }
2702 #endif
2703 
2704 static const struct mm_walk_ops show_numa_ops = {
2705 	.hugetlb_entry = gather_hugetlb_stats,
2706 	.pmd_entry = gather_pte_stats,
2707 	.walk_lock = PGWALK_RDLOCK,
2708 };
2709 
2710 /*
2711  * Display pages allocated per node and memory policy via /proc.
2712  */
2713 static int show_numa_map(struct seq_file *m, void *v)
2714 {
2715 	struct numa_maps_private *numa_priv = m->private;
2716 	struct proc_maps_private *proc_priv = &numa_priv->proc_maps;
2717 	struct vm_area_struct *vma = v;
2718 	struct numa_maps *md = &numa_priv->md;
2719 	struct file *file = vma->vm_file;
2720 	struct mm_struct *mm = vma->vm_mm;
2721 	char buffer[64];
2722 	struct mempolicy *pol;
2723 	pgoff_t ilx;
2724 	int nid;
2725 
2726 	if (!mm)
2727 		return 0;
2728 
2729 	/* Ensure we start with an empty set of numa_maps statistics. */
2730 	memset(md, 0, sizeof(*md));
2731 
2732 	pol = __get_vma_policy(vma, vma->vm_start, &ilx);
2733 	if (pol) {
2734 		mpol_to_str(buffer, sizeof(buffer), pol);
2735 		mpol_cond_put(pol);
2736 	} else {
2737 		mpol_to_str(buffer, sizeof(buffer), proc_priv->task_mempolicy);
2738 	}
2739 
2740 	seq_printf(m, "%08lx %s", vma->vm_start, buffer);
2741 
2742 	if (file) {
2743 		seq_puts(m, " file=");
2744 		seq_path(m, file_user_path(file), "\n\t= ");
2745 	} else if (vma_is_initial_heap(vma)) {
2746 		seq_puts(m, " heap");
2747 	} else if (vma_is_initial_stack(vma)) {
2748 		seq_puts(m, " stack");
2749 	}
2750 
2751 	if (is_vm_hugetlb_page(vma))
2752 		seq_puts(m, " huge");
2753 
2754 	/* mmap_lock is held by m_start */
2755 	walk_page_vma(vma, &show_numa_ops, md);
2756 
2757 	if (!md->pages)
2758 		goto out;
2759 
2760 	if (md->anon)
2761 		seq_printf(m, " anon=%lu", md->anon);
2762 
2763 	if (md->dirty)
2764 		seq_printf(m, " dirty=%lu", md->dirty);
2765 
2766 	if (md->pages != md->anon && md->pages != md->dirty)
2767 		seq_printf(m, " mapped=%lu", md->pages);
2768 
2769 	if (md->mapcount_max > 1)
2770 		seq_printf(m, " mapmax=%lu", md->mapcount_max);
2771 
2772 	if (md->swapcache)
2773 		seq_printf(m, " swapcache=%lu", md->swapcache);
2774 
2775 	if (md->active < md->pages && !is_vm_hugetlb_page(vma))
2776 		seq_printf(m, " active=%lu", md->active);
2777 
2778 	if (md->writeback)
2779 		seq_printf(m, " writeback=%lu", md->writeback);
2780 
2781 	for_each_node_state(nid, N_MEMORY)
2782 		if (md->node[nid])
2783 			seq_printf(m, " N%d=%lu", nid, md->node[nid]);
2784 
2785 	seq_printf(m, " kernelpagesize_kB=%lu", vma_kernel_pagesize(vma) >> 10);
2786 out:
2787 	seq_putc(m, '\n');
2788 	return 0;
2789 }
2790 
2791 static const struct seq_operations proc_pid_numa_maps_op = {
2792 	.start  = m_start,
2793 	.next   = m_next,
2794 	.stop   = m_stop,
2795 	.show   = show_numa_map,
2796 };
2797 
2798 static int pid_numa_maps_open(struct inode *inode, struct file *file)
2799 {
2800 	return proc_maps_open(inode, file, &proc_pid_numa_maps_op,
2801 				sizeof(struct numa_maps_private));
2802 }
2803 
2804 const struct file_operations proc_pid_numa_maps_operations = {
2805 	.open		= pid_numa_maps_open,
2806 	.read		= seq_read,
2807 	.llseek		= seq_lseek,
2808 	.release	= proc_map_release,
2809 };
2810 
2811 #endif /* CONFIG_NUMA */
2812