xref: /linux/fs/proc/task_mmu.c (revision 527d1470744d338c912f94bc1f4dba08ffdff349)
1 // SPDX-License-Identifier: GPL-2.0
2 #include <linux/mm.h>
3 #include <linux/vmacache.h>
4 #include <linux/hugetlb.h>
5 #include <linux/huge_mm.h>
6 #include <linux/mount.h>
7 #include <linux/seq_file.h>
8 #include <linux/highmem.h>
9 #include <linux/ptrace.h>
10 #include <linux/slab.h>
11 #include <linux/pagemap.h>
12 #include <linux/mempolicy.h>
13 #include <linux/rmap.h>
14 #include <linux/swap.h>
15 #include <linux/sched/mm.h>
16 #include <linux/swapops.h>
17 #include <linux/mmu_notifier.h>
18 #include <linux/page_idle.h>
19 #include <linux/shmem_fs.h>
20 #include <linux/uaccess.h>
21 
22 #include <asm/elf.h>
23 #include <asm/tlb.h>
24 #include <asm/tlbflush.h>
25 #include "internal.h"
26 
27 void task_mem(struct seq_file *m, struct mm_struct *mm)
28 {
29 	unsigned long text, lib, swap, anon, file, shmem;
30 	unsigned long hiwater_vm, total_vm, hiwater_rss, total_rss;
31 
32 	anon = get_mm_counter(mm, MM_ANONPAGES);
33 	file = get_mm_counter(mm, MM_FILEPAGES);
34 	shmem = get_mm_counter(mm, MM_SHMEMPAGES);
35 
36 	/*
37 	 * Note: to minimize their overhead, mm maintains hiwater_vm and
38 	 * hiwater_rss only when about to *lower* total_vm or rss.  Any
39 	 * collector of these hiwater stats must therefore get total_vm
40 	 * and rss too, which will usually be the higher.  Barriers? not
41 	 * worth the effort, such snapshots can always be inconsistent.
42 	 */
43 	hiwater_vm = total_vm = mm->total_vm;
44 	if (hiwater_vm < mm->hiwater_vm)
45 		hiwater_vm = mm->hiwater_vm;
46 	hiwater_rss = total_rss = anon + file + shmem;
47 	if (hiwater_rss < mm->hiwater_rss)
48 		hiwater_rss = mm->hiwater_rss;
49 
50 	text = (PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK)) >> 10;
51 	lib = (mm->exec_vm << (PAGE_SHIFT-10)) - text;
52 	swap = get_mm_counter(mm, MM_SWAPENTS);
53 	seq_printf(m,
54 		"VmPeak:\t%8lu kB\n"
55 		"VmSize:\t%8lu kB\n"
56 		"VmLck:\t%8lu kB\n"
57 		"VmPin:\t%8lu kB\n"
58 		"VmHWM:\t%8lu kB\n"
59 		"VmRSS:\t%8lu kB\n"
60 		"RssAnon:\t%8lu kB\n"
61 		"RssFile:\t%8lu kB\n"
62 		"RssShmem:\t%8lu kB\n"
63 		"VmData:\t%8lu kB\n"
64 		"VmStk:\t%8lu kB\n"
65 		"VmExe:\t%8lu kB\n"
66 		"VmLib:\t%8lu kB\n"
67 		"VmPTE:\t%8lu kB\n"
68 		"VmSwap:\t%8lu kB\n",
69 		hiwater_vm << (PAGE_SHIFT-10),
70 		total_vm << (PAGE_SHIFT-10),
71 		mm->locked_vm << (PAGE_SHIFT-10),
72 		mm->pinned_vm << (PAGE_SHIFT-10),
73 		hiwater_rss << (PAGE_SHIFT-10),
74 		total_rss << (PAGE_SHIFT-10),
75 		anon << (PAGE_SHIFT-10),
76 		file << (PAGE_SHIFT-10),
77 		shmem << (PAGE_SHIFT-10),
78 		mm->data_vm << (PAGE_SHIFT-10),
79 		mm->stack_vm << (PAGE_SHIFT-10), text, lib,
80 		mm_pgtables_bytes(mm) >> 10,
81 		swap << (PAGE_SHIFT-10));
82 	hugetlb_report_usage(m, mm);
83 }
84 
85 unsigned long task_vsize(struct mm_struct *mm)
86 {
87 	return PAGE_SIZE * mm->total_vm;
88 }
89 
90 unsigned long task_statm(struct mm_struct *mm,
91 			 unsigned long *shared, unsigned long *text,
92 			 unsigned long *data, unsigned long *resident)
93 {
94 	*shared = get_mm_counter(mm, MM_FILEPAGES) +
95 			get_mm_counter(mm, MM_SHMEMPAGES);
96 	*text = (PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK))
97 								>> PAGE_SHIFT;
98 	*data = mm->data_vm + mm->stack_vm;
99 	*resident = *shared + get_mm_counter(mm, MM_ANONPAGES);
100 	return mm->total_vm;
101 }
102 
103 #ifdef CONFIG_NUMA
104 /*
105  * Save get_task_policy() for show_numa_map().
106  */
107 static void hold_task_mempolicy(struct proc_maps_private *priv)
108 {
109 	struct task_struct *task = priv->task;
110 
111 	task_lock(task);
112 	priv->task_mempolicy = get_task_policy(task);
113 	mpol_get(priv->task_mempolicy);
114 	task_unlock(task);
115 }
116 static void release_task_mempolicy(struct proc_maps_private *priv)
117 {
118 	mpol_put(priv->task_mempolicy);
119 }
120 #else
121 static void hold_task_mempolicy(struct proc_maps_private *priv)
122 {
123 }
124 static void release_task_mempolicy(struct proc_maps_private *priv)
125 {
126 }
127 #endif
128 
129 static void vma_stop(struct proc_maps_private *priv)
130 {
131 	struct mm_struct *mm = priv->mm;
132 
133 	release_task_mempolicy(priv);
134 	up_read(&mm->mmap_sem);
135 	mmput(mm);
136 }
137 
138 static struct vm_area_struct *
139 m_next_vma(struct proc_maps_private *priv, struct vm_area_struct *vma)
140 {
141 	if (vma == priv->tail_vma)
142 		return NULL;
143 	return vma->vm_next ?: priv->tail_vma;
144 }
145 
146 static void m_cache_vma(struct seq_file *m, struct vm_area_struct *vma)
147 {
148 	if (m->count < m->size)	/* vma is copied successfully */
149 		m->version = m_next_vma(m->private, vma) ? vma->vm_end : -1UL;
150 }
151 
152 static void *m_start(struct seq_file *m, loff_t *ppos)
153 {
154 	struct proc_maps_private *priv = m->private;
155 	unsigned long last_addr = m->version;
156 	struct mm_struct *mm;
157 	struct vm_area_struct *vma;
158 	unsigned int pos = *ppos;
159 
160 	/* See m_cache_vma(). Zero at the start or after lseek. */
161 	if (last_addr == -1UL)
162 		return NULL;
163 
164 	priv->task = get_proc_task(priv->inode);
165 	if (!priv->task)
166 		return ERR_PTR(-ESRCH);
167 
168 	mm = priv->mm;
169 	if (!mm || !mmget_not_zero(mm))
170 		return NULL;
171 
172 	down_read(&mm->mmap_sem);
173 	hold_task_mempolicy(priv);
174 	priv->tail_vma = get_gate_vma(mm);
175 
176 	if (last_addr) {
177 		vma = find_vma(mm, last_addr - 1);
178 		if (vma && vma->vm_start <= last_addr)
179 			vma = m_next_vma(priv, vma);
180 		if (vma)
181 			return vma;
182 	}
183 
184 	m->version = 0;
185 	if (pos < mm->map_count) {
186 		for (vma = mm->mmap; pos; pos--) {
187 			m->version = vma->vm_start;
188 			vma = vma->vm_next;
189 		}
190 		return vma;
191 	}
192 
193 	/* we do not bother to update m->version in this case */
194 	if (pos == mm->map_count && priv->tail_vma)
195 		return priv->tail_vma;
196 
197 	vma_stop(priv);
198 	return NULL;
199 }
200 
201 static void *m_next(struct seq_file *m, void *v, loff_t *pos)
202 {
203 	struct proc_maps_private *priv = m->private;
204 	struct vm_area_struct *next;
205 
206 	(*pos)++;
207 	next = m_next_vma(priv, v);
208 	if (!next)
209 		vma_stop(priv);
210 	return next;
211 }
212 
213 static void m_stop(struct seq_file *m, void *v)
214 {
215 	struct proc_maps_private *priv = m->private;
216 
217 	if (!IS_ERR_OR_NULL(v))
218 		vma_stop(priv);
219 	if (priv->task) {
220 		put_task_struct(priv->task);
221 		priv->task = NULL;
222 	}
223 }
224 
225 static int proc_maps_open(struct inode *inode, struct file *file,
226 			const struct seq_operations *ops, int psize)
227 {
228 	struct proc_maps_private *priv = __seq_open_private(file, ops, psize);
229 
230 	if (!priv)
231 		return -ENOMEM;
232 
233 	priv->inode = inode;
234 	priv->mm = proc_mem_open(inode, PTRACE_MODE_READ);
235 	if (IS_ERR(priv->mm)) {
236 		int err = PTR_ERR(priv->mm);
237 
238 		seq_release_private(inode, file);
239 		return err;
240 	}
241 
242 	return 0;
243 }
244 
245 static int proc_map_release(struct inode *inode, struct file *file)
246 {
247 	struct seq_file *seq = file->private_data;
248 	struct proc_maps_private *priv = seq->private;
249 
250 	if (priv->mm)
251 		mmdrop(priv->mm);
252 
253 	kfree(priv->rollup);
254 	return seq_release_private(inode, file);
255 }
256 
257 static int do_maps_open(struct inode *inode, struct file *file,
258 			const struct seq_operations *ops)
259 {
260 	return proc_maps_open(inode, file, ops,
261 				sizeof(struct proc_maps_private));
262 }
263 
264 /*
265  * Indicate if the VMA is a stack for the given task; for
266  * /proc/PID/maps that is the stack of the main task.
267  */
268 static int is_stack(struct vm_area_struct *vma)
269 {
270 	/*
271 	 * We make no effort to guess what a given thread considers to be
272 	 * its "stack".  It's not even well-defined for programs written
273 	 * languages like Go.
274 	 */
275 	return vma->vm_start <= vma->vm_mm->start_stack &&
276 		vma->vm_end >= vma->vm_mm->start_stack;
277 }
278 
279 static void show_vma_header_prefix(struct seq_file *m,
280 				   unsigned long start, unsigned long end,
281 				   vm_flags_t flags, unsigned long long pgoff,
282 				   dev_t dev, unsigned long ino)
283 {
284 	seq_setwidth(m, 25 + sizeof(void *) * 6 - 1);
285 	seq_printf(m, "%08lx-%08lx %c%c%c%c %08llx %02x:%02x %lu ",
286 		   start,
287 		   end,
288 		   flags & VM_READ ? 'r' : '-',
289 		   flags & VM_WRITE ? 'w' : '-',
290 		   flags & VM_EXEC ? 'x' : '-',
291 		   flags & VM_MAYSHARE ? 's' : 'p',
292 		   pgoff,
293 		   MAJOR(dev), MINOR(dev), ino);
294 }
295 
296 static void
297 show_map_vma(struct seq_file *m, struct vm_area_struct *vma, int is_pid)
298 {
299 	struct mm_struct *mm = vma->vm_mm;
300 	struct file *file = vma->vm_file;
301 	vm_flags_t flags = vma->vm_flags;
302 	unsigned long ino = 0;
303 	unsigned long long pgoff = 0;
304 	unsigned long start, end;
305 	dev_t dev = 0;
306 	const char *name = NULL;
307 
308 	if (file) {
309 		struct inode *inode = file_inode(vma->vm_file);
310 		dev = inode->i_sb->s_dev;
311 		ino = inode->i_ino;
312 		pgoff = ((loff_t)vma->vm_pgoff) << PAGE_SHIFT;
313 	}
314 
315 	start = vma->vm_start;
316 	end = vma->vm_end;
317 	show_vma_header_prefix(m, start, end, flags, pgoff, dev, ino);
318 
319 	/*
320 	 * Print the dentry name for named mappings, and a
321 	 * special [heap] marker for the heap:
322 	 */
323 	if (file) {
324 		seq_pad(m, ' ');
325 		seq_file_path(m, file, "\n");
326 		goto done;
327 	}
328 
329 	if (vma->vm_ops && vma->vm_ops->name) {
330 		name = vma->vm_ops->name(vma);
331 		if (name)
332 			goto done;
333 	}
334 
335 	name = arch_vma_name(vma);
336 	if (!name) {
337 		if (!mm) {
338 			name = "[vdso]";
339 			goto done;
340 		}
341 
342 		if (vma->vm_start <= mm->brk &&
343 		    vma->vm_end >= mm->start_brk) {
344 			name = "[heap]";
345 			goto done;
346 		}
347 
348 		if (is_stack(vma))
349 			name = "[stack]";
350 	}
351 
352 done:
353 	if (name) {
354 		seq_pad(m, ' ');
355 		seq_puts(m, name);
356 	}
357 	seq_putc(m, '\n');
358 }
359 
360 static int show_map(struct seq_file *m, void *v, int is_pid)
361 {
362 	show_map_vma(m, v, is_pid);
363 	m_cache_vma(m, v);
364 	return 0;
365 }
366 
367 static int show_pid_map(struct seq_file *m, void *v)
368 {
369 	return show_map(m, v, 1);
370 }
371 
372 static int show_tid_map(struct seq_file *m, void *v)
373 {
374 	return show_map(m, v, 0);
375 }
376 
377 static const struct seq_operations proc_pid_maps_op = {
378 	.start	= m_start,
379 	.next	= m_next,
380 	.stop	= m_stop,
381 	.show	= show_pid_map
382 };
383 
384 static const struct seq_operations proc_tid_maps_op = {
385 	.start	= m_start,
386 	.next	= m_next,
387 	.stop	= m_stop,
388 	.show	= show_tid_map
389 };
390 
391 static int pid_maps_open(struct inode *inode, struct file *file)
392 {
393 	return do_maps_open(inode, file, &proc_pid_maps_op);
394 }
395 
396 static int tid_maps_open(struct inode *inode, struct file *file)
397 {
398 	return do_maps_open(inode, file, &proc_tid_maps_op);
399 }
400 
401 const struct file_operations proc_pid_maps_operations = {
402 	.open		= pid_maps_open,
403 	.read		= seq_read,
404 	.llseek		= seq_lseek,
405 	.release	= proc_map_release,
406 };
407 
408 const struct file_operations proc_tid_maps_operations = {
409 	.open		= tid_maps_open,
410 	.read		= seq_read,
411 	.llseek		= seq_lseek,
412 	.release	= proc_map_release,
413 };
414 
415 /*
416  * Proportional Set Size(PSS): my share of RSS.
417  *
418  * PSS of a process is the count of pages it has in memory, where each
419  * page is divided by the number of processes sharing it.  So if a
420  * process has 1000 pages all to itself, and 1000 shared with one other
421  * process, its PSS will be 1500.
422  *
423  * To keep (accumulated) division errors low, we adopt a 64bit
424  * fixed-point pss counter to minimize division errors. So (pss >>
425  * PSS_SHIFT) would be the real byte count.
426  *
427  * A shift of 12 before division means (assuming 4K page size):
428  * 	- 1M 3-user-pages add up to 8KB errors;
429  * 	- supports mapcount up to 2^24, or 16M;
430  * 	- supports PSS up to 2^52 bytes, or 4PB.
431  */
432 #define PSS_SHIFT 12
433 
434 #ifdef CONFIG_PROC_PAGE_MONITOR
435 struct mem_size_stats {
436 	bool first;
437 	unsigned long resident;
438 	unsigned long shared_clean;
439 	unsigned long shared_dirty;
440 	unsigned long private_clean;
441 	unsigned long private_dirty;
442 	unsigned long referenced;
443 	unsigned long anonymous;
444 	unsigned long lazyfree;
445 	unsigned long anonymous_thp;
446 	unsigned long shmem_thp;
447 	unsigned long swap;
448 	unsigned long shared_hugetlb;
449 	unsigned long private_hugetlb;
450 	unsigned long first_vma_start;
451 	u64 pss;
452 	u64 pss_locked;
453 	u64 swap_pss;
454 	bool check_shmem_swap;
455 };
456 
457 static void smaps_account(struct mem_size_stats *mss, struct page *page,
458 		bool compound, bool young, bool dirty)
459 {
460 	int i, nr = compound ? 1 << compound_order(page) : 1;
461 	unsigned long size = nr * PAGE_SIZE;
462 
463 	if (PageAnon(page)) {
464 		mss->anonymous += size;
465 		if (!PageSwapBacked(page) && !dirty && !PageDirty(page))
466 			mss->lazyfree += size;
467 	}
468 
469 	mss->resident += size;
470 	/* Accumulate the size in pages that have been accessed. */
471 	if (young || page_is_young(page) || PageReferenced(page))
472 		mss->referenced += size;
473 
474 	/*
475 	 * page_count(page) == 1 guarantees the page is mapped exactly once.
476 	 * If any subpage of the compound page mapped with PTE it would elevate
477 	 * page_count().
478 	 */
479 	if (page_count(page) == 1) {
480 		if (dirty || PageDirty(page))
481 			mss->private_dirty += size;
482 		else
483 			mss->private_clean += size;
484 		mss->pss += (u64)size << PSS_SHIFT;
485 		return;
486 	}
487 
488 	for (i = 0; i < nr; i++, page++) {
489 		int mapcount = page_mapcount(page);
490 
491 		if (mapcount >= 2) {
492 			if (dirty || PageDirty(page))
493 				mss->shared_dirty += PAGE_SIZE;
494 			else
495 				mss->shared_clean += PAGE_SIZE;
496 			mss->pss += (PAGE_SIZE << PSS_SHIFT) / mapcount;
497 		} else {
498 			if (dirty || PageDirty(page))
499 				mss->private_dirty += PAGE_SIZE;
500 			else
501 				mss->private_clean += PAGE_SIZE;
502 			mss->pss += PAGE_SIZE << PSS_SHIFT;
503 		}
504 	}
505 }
506 
507 #ifdef CONFIG_SHMEM
508 static int smaps_pte_hole(unsigned long addr, unsigned long end,
509 		struct mm_walk *walk)
510 {
511 	struct mem_size_stats *mss = walk->private;
512 
513 	mss->swap += shmem_partial_swap_usage(
514 			walk->vma->vm_file->f_mapping, addr, end);
515 
516 	return 0;
517 }
518 #endif
519 
520 static void smaps_pte_entry(pte_t *pte, unsigned long addr,
521 		struct mm_walk *walk)
522 {
523 	struct mem_size_stats *mss = walk->private;
524 	struct vm_area_struct *vma = walk->vma;
525 	struct page *page = NULL;
526 
527 	if (pte_present(*pte)) {
528 		page = vm_normal_page(vma, addr, *pte);
529 	} else if (is_swap_pte(*pte)) {
530 		swp_entry_t swpent = pte_to_swp_entry(*pte);
531 
532 		if (!non_swap_entry(swpent)) {
533 			int mapcount;
534 
535 			mss->swap += PAGE_SIZE;
536 			mapcount = swp_swapcount(swpent);
537 			if (mapcount >= 2) {
538 				u64 pss_delta = (u64)PAGE_SIZE << PSS_SHIFT;
539 
540 				do_div(pss_delta, mapcount);
541 				mss->swap_pss += pss_delta;
542 			} else {
543 				mss->swap_pss += (u64)PAGE_SIZE << PSS_SHIFT;
544 			}
545 		} else if (is_migration_entry(swpent))
546 			page = migration_entry_to_page(swpent);
547 		else if (is_device_private_entry(swpent))
548 			page = device_private_entry_to_page(swpent);
549 	} else if (unlikely(IS_ENABLED(CONFIG_SHMEM) && mss->check_shmem_swap
550 							&& pte_none(*pte))) {
551 		page = find_get_entry(vma->vm_file->f_mapping,
552 						linear_page_index(vma, addr));
553 		if (!page)
554 			return;
555 
556 		if (radix_tree_exceptional_entry(page))
557 			mss->swap += PAGE_SIZE;
558 		else
559 			put_page(page);
560 
561 		return;
562 	}
563 
564 	if (!page)
565 		return;
566 
567 	smaps_account(mss, page, false, pte_young(*pte), pte_dirty(*pte));
568 }
569 
570 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
571 static void smaps_pmd_entry(pmd_t *pmd, unsigned long addr,
572 		struct mm_walk *walk)
573 {
574 	struct mem_size_stats *mss = walk->private;
575 	struct vm_area_struct *vma = walk->vma;
576 	struct page *page;
577 
578 	/* FOLL_DUMP will return -EFAULT on huge zero page */
579 	page = follow_trans_huge_pmd(vma, addr, pmd, FOLL_DUMP);
580 	if (IS_ERR_OR_NULL(page))
581 		return;
582 	if (PageAnon(page))
583 		mss->anonymous_thp += HPAGE_PMD_SIZE;
584 	else if (PageSwapBacked(page))
585 		mss->shmem_thp += HPAGE_PMD_SIZE;
586 	else if (is_zone_device_page(page))
587 		/* pass */;
588 	else
589 		VM_BUG_ON_PAGE(1, page);
590 	smaps_account(mss, page, true, pmd_young(*pmd), pmd_dirty(*pmd));
591 }
592 #else
593 static void smaps_pmd_entry(pmd_t *pmd, unsigned long addr,
594 		struct mm_walk *walk)
595 {
596 }
597 #endif
598 
599 static int smaps_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
600 			   struct mm_walk *walk)
601 {
602 	struct vm_area_struct *vma = walk->vma;
603 	pte_t *pte;
604 	spinlock_t *ptl;
605 
606 	ptl = pmd_trans_huge_lock(pmd, vma);
607 	if (ptl) {
608 		if (pmd_present(*pmd))
609 			smaps_pmd_entry(pmd, addr, walk);
610 		spin_unlock(ptl);
611 		goto out;
612 	}
613 
614 	if (pmd_trans_unstable(pmd))
615 		goto out;
616 	/*
617 	 * The mmap_sem held all the way back in m_start() is what
618 	 * keeps khugepaged out of here and from collapsing things
619 	 * in here.
620 	 */
621 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
622 	for (; addr != end; pte++, addr += PAGE_SIZE)
623 		smaps_pte_entry(pte, addr, walk);
624 	pte_unmap_unlock(pte - 1, ptl);
625 out:
626 	cond_resched();
627 	return 0;
628 }
629 
630 static void show_smap_vma_flags(struct seq_file *m, struct vm_area_struct *vma)
631 {
632 	/*
633 	 * Don't forget to update Documentation/ on changes.
634 	 */
635 	static const char mnemonics[BITS_PER_LONG][2] = {
636 		/*
637 		 * In case if we meet a flag we don't know about.
638 		 */
639 		[0 ... (BITS_PER_LONG-1)] = "??",
640 
641 		[ilog2(VM_READ)]	= "rd",
642 		[ilog2(VM_WRITE)]	= "wr",
643 		[ilog2(VM_EXEC)]	= "ex",
644 		[ilog2(VM_SHARED)]	= "sh",
645 		[ilog2(VM_MAYREAD)]	= "mr",
646 		[ilog2(VM_MAYWRITE)]	= "mw",
647 		[ilog2(VM_MAYEXEC)]	= "me",
648 		[ilog2(VM_MAYSHARE)]	= "ms",
649 		[ilog2(VM_GROWSDOWN)]	= "gd",
650 		[ilog2(VM_PFNMAP)]	= "pf",
651 		[ilog2(VM_DENYWRITE)]	= "dw",
652 #ifdef CONFIG_X86_INTEL_MPX
653 		[ilog2(VM_MPX)]		= "mp",
654 #endif
655 		[ilog2(VM_LOCKED)]	= "lo",
656 		[ilog2(VM_IO)]		= "io",
657 		[ilog2(VM_SEQ_READ)]	= "sr",
658 		[ilog2(VM_RAND_READ)]	= "rr",
659 		[ilog2(VM_DONTCOPY)]	= "dc",
660 		[ilog2(VM_DONTEXPAND)]	= "de",
661 		[ilog2(VM_ACCOUNT)]	= "ac",
662 		[ilog2(VM_NORESERVE)]	= "nr",
663 		[ilog2(VM_HUGETLB)]	= "ht",
664 		[ilog2(VM_ARCH_1)]	= "ar",
665 		[ilog2(VM_WIPEONFORK)]	= "wf",
666 		[ilog2(VM_DONTDUMP)]	= "dd",
667 #ifdef CONFIG_MEM_SOFT_DIRTY
668 		[ilog2(VM_SOFTDIRTY)]	= "sd",
669 #endif
670 		[ilog2(VM_MIXEDMAP)]	= "mm",
671 		[ilog2(VM_HUGEPAGE)]	= "hg",
672 		[ilog2(VM_NOHUGEPAGE)]	= "nh",
673 		[ilog2(VM_MERGEABLE)]	= "mg",
674 		[ilog2(VM_UFFD_MISSING)]= "um",
675 		[ilog2(VM_UFFD_WP)]	= "uw",
676 #ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS
677 		/* These come out via ProtectionKey: */
678 		[ilog2(VM_PKEY_BIT0)]	= "",
679 		[ilog2(VM_PKEY_BIT1)]	= "",
680 		[ilog2(VM_PKEY_BIT2)]	= "",
681 		[ilog2(VM_PKEY_BIT3)]	= "",
682 #endif
683 	};
684 	size_t i;
685 
686 	seq_puts(m, "VmFlags: ");
687 	for (i = 0; i < BITS_PER_LONG; i++) {
688 		if (!mnemonics[i][0])
689 			continue;
690 		if (vma->vm_flags & (1UL << i)) {
691 			seq_printf(m, "%c%c ",
692 				   mnemonics[i][0], mnemonics[i][1]);
693 		}
694 	}
695 	seq_putc(m, '\n');
696 }
697 
698 #ifdef CONFIG_HUGETLB_PAGE
699 static int smaps_hugetlb_range(pte_t *pte, unsigned long hmask,
700 				 unsigned long addr, unsigned long end,
701 				 struct mm_walk *walk)
702 {
703 	struct mem_size_stats *mss = walk->private;
704 	struct vm_area_struct *vma = walk->vma;
705 	struct page *page = NULL;
706 
707 	if (pte_present(*pte)) {
708 		page = vm_normal_page(vma, addr, *pte);
709 	} else if (is_swap_pte(*pte)) {
710 		swp_entry_t swpent = pte_to_swp_entry(*pte);
711 
712 		if (is_migration_entry(swpent))
713 			page = migration_entry_to_page(swpent);
714 		else if (is_device_private_entry(swpent))
715 			page = device_private_entry_to_page(swpent);
716 	}
717 	if (page) {
718 		int mapcount = page_mapcount(page);
719 
720 		if (mapcount >= 2)
721 			mss->shared_hugetlb += huge_page_size(hstate_vma(vma));
722 		else
723 			mss->private_hugetlb += huge_page_size(hstate_vma(vma));
724 	}
725 	return 0;
726 }
727 #endif /* HUGETLB_PAGE */
728 
729 void __weak arch_show_smap(struct seq_file *m, struct vm_area_struct *vma)
730 {
731 }
732 
733 static int show_smap(struct seq_file *m, void *v, int is_pid)
734 {
735 	struct proc_maps_private *priv = m->private;
736 	struct vm_area_struct *vma = v;
737 	struct mem_size_stats mss_stack;
738 	struct mem_size_stats *mss;
739 	struct mm_walk smaps_walk = {
740 		.pmd_entry = smaps_pte_range,
741 #ifdef CONFIG_HUGETLB_PAGE
742 		.hugetlb_entry = smaps_hugetlb_range,
743 #endif
744 		.mm = vma->vm_mm,
745 	};
746 	int ret = 0;
747 	bool rollup_mode;
748 	bool last_vma;
749 
750 	if (priv->rollup) {
751 		rollup_mode = true;
752 		mss = priv->rollup;
753 		if (mss->first) {
754 			mss->first_vma_start = vma->vm_start;
755 			mss->first = false;
756 		}
757 		last_vma = !m_next_vma(priv, vma);
758 	} else {
759 		rollup_mode = false;
760 		memset(&mss_stack, 0, sizeof(mss_stack));
761 		mss = &mss_stack;
762 	}
763 
764 	smaps_walk.private = mss;
765 
766 #ifdef CONFIG_SHMEM
767 	if (vma->vm_file && shmem_mapping(vma->vm_file->f_mapping)) {
768 		/*
769 		 * For shared or readonly shmem mappings we know that all
770 		 * swapped out pages belong to the shmem object, and we can
771 		 * obtain the swap value much more efficiently. For private
772 		 * writable mappings, we might have COW pages that are
773 		 * not affected by the parent swapped out pages of the shmem
774 		 * object, so we have to distinguish them during the page walk.
775 		 * Unless we know that the shmem object (or the part mapped by
776 		 * our VMA) has no swapped out pages at all.
777 		 */
778 		unsigned long shmem_swapped = shmem_swap_usage(vma);
779 
780 		if (!shmem_swapped || (vma->vm_flags & VM_SHARED) ||
781 					!(vma->vm_flags & VM_WRITE)) {
782 			mss->swap = shmem_swapped;
783 		} else {
784 			mss->check_shmem_swap = true;
785 			smaps_walk.pte_hole = smaps_pte_hole;
786 		}
787 	}
788 #endif
789 
790 	/* mmap_sem is held in m_start */
791 	walk_page_vma(vma, &smaps_walk);
792 	if (vma->vm_flags & VM_LOCKED)
793 		mss->pss_locked += mss->pss;
794 
795 	if (!rollup_mode) {
796 		show_map_vma(m, vma, is_pid);
797 	} else if (last_vma) {
798 		show_vma_header_prefix(
799 			m, mss->first_vma_start, vma->vm_end, 0, 0, 0, 0);
800 		seq_pad(m, ' ');
801 		seq_puts(m, "[rollup]\n");
802 	} else {
803 		ret = SEQ_SKIP;
804 	}
805 
806 	if (!rollup_mode)
807 		seq_printf(m,
808 			   "Size:           %8lu kB\n"
809 			   "KernelPageSize: %8lu kB\n"
810 			   "MMUPageSize:    %8lu kB\n",
811 			   (vma->vm_end - vma->vm_start) >> 10,
812 			   vma_kernel_pagesize(vma) >> 10,
813 			   vma_mmu_pagesize(vma) >> 10);
814 
815 
816 	if (!rollup_mode || last_vma)
817 		seq_printf(m,
818 			   "Rss:            %8lu kB\n"
819 			   "Pss:            %8lu kB\n"
820 			   "Shared_Clean:   %8lu kB\n"
821 			   "Shared_Dirty:   %8lu kB\n"
822 			   "Private_Clean:  %8lu kB\n"
823 			   "Private_Dirty:  %8lu kB\n"
824 			   "Referenced:     %8lu kB\n"
825 			   "Anonymous:      %8lu kB\n"
826 			   "LazyFree:       %8lu kB\n"
827 			   "AnonHugePages:  %8lu kB\n"
828 			   "ShmemPmdMapped: %8lu kB\n"
829 			   "Shared_Hugetlb: %8lu kB\n"
830 			   "Private_Hugetlb: %7lu kB\n"
831 			   "Swap:           %8lu kB\n"
832 			   "SwapPss:        %8lu kB\n"
833 			   "Locked:         %8lu kB\n",
834 			   mss->resident >> 10,
835 			   (unsigned long)(mss->pss >> (10 + PSS_SHIFT)),
836 			   mss->shared_clean  >> 10,
837 			   mss->shared_dirty  >> 10,
838 			   mss->private_clean >> 10,
839 			   mss->private_dirty >> 10,
840 			   mss->referenced >> 10,
841 			   mss->anonymous >> 10,
842 			   mss->lazyfree >> 10,
843 			   mss->anonymous_thp >> 10,
844 			   mss->shmem_thp >> 10,
845 			   mss->shared_hugetlb >> 10,
846 			   mss->private_hugetlb >> 10,
847 			   mss->swap >> 10,
848 			   (unsigned long)(mss->swap_pss >> (10 + PSS_SHIFT)),
849 			   (unsigned long)(mss->pss >> (10 + PSS_SHIFT)));
850 
851 	if (!rollup_mode) {
852 		arch_show_smap(m, vma);
853 		show_smap_vma_flags(m, vma);
854 	}
855 	m_cache_vma(m, vma);
856 	return ret;
857 }
858 
859 static int show_pid_smap(struct seq_file *m, void *v)
860 {
861 	return show_smap(m, v, 1);
862 }
863 
864 static int show_tid_smap(struct seq_file *m, void *v)
865 {
866 	return show_smap(m, v, 0);
867 }
868 
869 static const struct seq_operations proc_pid_smaps_op = {
870 	.start	= m_start,
871 	.next	= m_next,
872 	.stop	= m_stop,
873 	.show	= show_pid_smap
874 };
875 
876 static const struct seq_operations proc_tid_smaps_op = {
877 	.start	= m_start,
878 	.next	= m_next,
879 	.stop	= m_stop,
880 	.show	= show_tid_smap
881 };
882 
883 static int pid_smaps_open(struct inode *inode, struct file *file)
884 {
885 	return do_maps_open(inode, file, &proc_pid_smaps_op);
886 }
887 
888 static int pid_smaps_rollup_open(struct inode *inode, struct file *file)
889 {
890 	struct seq_file *seq;
891 	struct proc_maps_private *priv;
892 	int ret = do_maps_open(inode, file, &proc_pid_smaps_op);
893 
894 	if (ret < 0)
895 		return ret;
896 	seq = file->private_data;
897 	priv = seq->private;
898 	priv->rollup = kzalloc(sizeof(*priv->rollup), GFP_KERNEL);
899 	if (!priv->rollup) {
900 		proc_map_release(inode, file);
901 		return -ENOMEM;
902 	}
903 	priv->rollup->first = true;
904 	return 0;
905 }
906 
907 static int tid_smaps_open(struct inode *inode, struct file *file)
908 {
909 	return do_maps_open(inode, file, &proc_tid_smaps_op);
910 }
911 
912 const struct file_operations proc_pid_smaps_operations = {
913 	.open		= pid_smaps_open,
914 	.read		= seq_read,
915 	.llseek		= seq_lseek,
916 	.release	= proc_map_release,
917 };
918 
919 const struct file_operations proc_pid_smaps_rollup_operations = {
920 	.open		= pid_smaps_rollup_open,
921 	.read		= seq_read,
922 	.llseek		= seq_lseek,
923 	.release	= proc_map_release,
924 };
925 
926 const struct file_operations proc_tid_smaps_operations = {
927 	.open		= tid_smaps_open,
928 	.read		= seq_read,
929 	.llseek		= seq_lseek,
930 	.release	= proc_map_release,
931 };
932 
933 enum clear_refs_types {
934 	CLEAR_REFS_ALL = 1,
935 	CLEAR_REFS_ANON,
936 	CLEAR_REFS_MAPPED,
937 	CLEAR_REFS_SOFT_DIRTY,
938 	CLEAR_REFS_MM_HIWATER_RSS,
939 	CLEAR_REFS_LAST,
940 };
941 
942 struct clear_refs_private {
943 	enum clear_refs_types type;
944 };
945 
946 #ifdef CONFIG_MEM_SOFT_DIRTY
947 static inline void clear_soft_dirty(struct vm_area_struct *vma,
948 		unsigned long addr, pte_t *pte)
949 {
950 	/*
951 	 * The soft-dirty tracker uses #PF-s to catch writes
952 	 * to pages, so write-protect the pte as well. See the
953 	 * Documentation/vm/soft-dirty.txt for full description
954 	 * of how soft-dirty works.
955 	 */
956 	pte_t ptent = *pte;
957 
958 	if (pte_present(ptent)) {
959 		ptent = ptep_modify_prot_start(vma->vm_mm, addr, pte);
960 		ptent = pte_wrprotect(ptent);
961 		ptent = pte_clear_soft_dirty(ptent);
962 		ptep_modify_prot_commit(vma->vm_mm, addr, pte, ptent);
963 	} else if (is_swap_pte(ptent)) {
964 		ptent = pte_swp_clear_soft_dirty(ptent);
965 		set_pte_at(vma->vm_mm, addr, pte, ptent);
966 	}
967 }
968 #else
969 static inline void clear_soft_dirty(struct vm_area_struct *vma,
970 		unsigned long addr, pte_t *pte)
971 {
972 }
973 #endif
974 
975 #if defined(CONFIG_MEM_SOFT_DIRTY) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
976 static inline void clear_soft_dirty_pmd(struct vm_area_struct *vma,
977 		unsigned long addr, pmd_t *pmdp)
978 {
979 	pmd_t pmd = *pmdp;
980 
981 	if (pmd_present(pmd)) {
982 		/* See comment in change_huge_pmd() */
983 		pmdp_invalidate(vma, addr, pmdp);
984 		if (pmd_dirty(*pmdp))
985 			pmd = pmd_mkdirty(pmd);
986 		if (pmd_young(*pmdp))
987 			pmd = pmd_mkyoung(pmd);
988 
989 		pmd = pmd_wrprotect(pmd);
990 		pmd = pmd_clear_soft_dirty(pmd);
991 
992 		set_pmd_at(vma->vm_mm, addr, pmdp, pmd);
993 	} else if (is_migration_entry(pmd_to_swp_entry(pmd))) {
994 		pmd = pmd_swp_clear_soft_dirty(pmd);
995 		set_pmd_at(vma->vm_mm, addr, pmdp, pmd);
996 	}
997 }
998 #else
999 static inline void clear_soft_dirty_pmd(struct vm_area_struct *vma,
1000 		unsigned long addr, pmd_t *pmdp)
1001 {
1002 }
1003 #endif
1004 
1005 static int clear_refs_pte_range(pmd_t *pmd, unsigned long addr,
1006 				unsigned long end, struct mm_walk *walk)
1007 {
1008 	struct clear_refs_private *cp = walk->private;
1009 	struct vm_area_struct *vma = walk->vma;
1010 	pte_t *pte, ptent;
1011 	spinlock_t *ptl;
1012 	struct page *page;
1013 
1014 	ptl = pmd_trans_huge_lock(pmd, vma);
1015 	if (ptl) {
1016 		if (cp->type == CLEAR_REFS_SOFT_DIRTY) {
1017 			clear_soft_dirty_pmd(vma, addr, pmd);
1018 			goto out;
1019 		}
1020 
1021 		if (!pmd_present(*pmd))
1022 			goto out;
1023 
1024 		page = pmd_page(*pmd);
1025 
1026 		/* Clear accessed and referenced bits. */
1027 		pmdp_test_and_clear_young(vma, addr, pmd);
1028 		test_and_clear_page_young(page);
1029 		ClearPageReferenced(page);
1030 out:
1031 		spin_unlock(ptl);
1032 		return 0;
1033 	}
1034 
1035 	if (pmd_trans_unstable(pmd))
1036 		return 0;
1037 
1038 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
1039 	for (; addr != end; pte++, addr += PAGE_SIZE) {
1040 		ptent = *pte;
1041 
1042 		if (cp->type == CLEAR_REFS_SOFT_DIRTY) {
1043 			clear_soft_dirty(vma, addr, pte);
1044 			continue;
1045 		}
1046 
1047 		if (!pte_present(ptent))
1048 			continue;
1049 
1050 		page = vm_normal_page(vma, addr, ptent);
1051 		if (!page)
1052 			continue;
1053 
1054 		/* Clear accessed and referenced bits. */
1055 		ptep_test_and_clear_young(vma, addr, pte);
1056 		test_and_clear_page_young(page);
1057 		ClearPageReferenced(page);
1058 	}
1059 	pte_unmap_unlock(pte - 1, ptl);
1060 	cond_resched();
1061 	return 0;
1062 }
1063 
1064 static int clear_refs_test_walk(unsigned long start, unsigned long end,
1065 				struct mm_walk *walk)
1066 {
1067 	struct clear_refs_private *cp = walk->private;
1068 	struct vm_area_struct *vma = walk->vma;
1069 
1070 	if (vma->vm_flags & VM_PFNMAP)
1071 		return 1;
1072 
1073 	/*
1074 	 * Writing 1 to /proc/pid/clear_refs affects all pages.
1075 	 * Writing 2 to /proc/pid/clear_refs only affects anonymous pages.
1076 	 * Writing 3 to /proc/pid/clear_refs only affects file mapped pages.
1077 	 * Writing 4 to /proc/pid/clear_refs affects all pages.
1078 	 */
1079 	if (cp->type == CLEAR_REFS_ANON && vma->vm_file)
1080 		return 1;
1081 	if (cp->type == CLEAR_REFS_MAPPED && !vma->vm_file)
1082 		return 1;
1083 	return 0;
1084 }
1085 
1086 static ssize_t clear_refs_write(struct file *file, const char __user *buf,
1087 				size_t count, loff_t *ppos)
1088 {
1089 	struct task_struct *task;
1090 	char buffer[PROC_NUMBUF];
1091 	struct mm_struct *mm;
1092 	struct vm_area_struct *vma;
1093 	enum clear_refs_types type;
1094 	struct mmu_gather tlb;
1095 	int itype;
1096 	int rv;
1097 
1098 	memset(buffer, 0, sizeof(buffer));
1099 	if (count > sizeof(buffer) - 1)
1100 		count = sizeof(buffer) - 1;
1101 	if (copy_from_user(buffer, buf, count))
1102 		return -EFAULT;
1103 	rv = kstrtoint(strstrip(buffer), 10, &itype);
1104 	if (rv < 0)
1105 		return rv;
1106 	type = (enum clear_refs_types)itype;
1107 	if (type < CLEAR_REFS_ALL || type >= CLEAR_REFS_LAST)
1108 		return -EINVAL;
1109 
1110 	task = get_proc_task(file_inode(file));
1111 	if (!task)
1112 		return -ESRCH;
1113 	mm = get_task_mm(task);
1114 	if (mm) {
1115 		struct clear_refs_private cp = {
1116 			.type = type,
1117 		};
1118 		struct mm_walk clear_refs_walk = {
1119 			.pmd_entry = clear_refs_pte_range,
1120 			.test_walk = clear_refs_test_walk,
1121 			.mm = mm,
1122 			.private = &cp,
1123 		};
1124 
1125 		if (type == CLEAR_REFS_MM_HIWATER_RSS) {
1126 			if (down_write_killable(&mm->mmap_sem)) {
1127 				count = -EINTR;
1128 				goto out_mm;
1129 			}
1130 
1131 			/*
1132 			 * Writing 5 to /proc/pid/clear_refs resets the peak
1133 			 * resident set size to this mm's current rss value.
1134 			 */
1135 			reset_mm_hiwater_rss(mm);
1136 			up_write(&mm->mmap_sem);
1137 			goto out_mm;
1138 		}
1139 
1140 		down_read(&mm->mmap_sem);
1141 		tlb_gather_mmu(&tlb, mm, 0, -1);
1142 		if (type == CLEAR_REFS_SOFT_DIRTY) {
1143 			for (vma = mm->mmap; vma; vma = vma->vm_next) {
1144 				if (!(vma->vm_flags & VM_SOFTDIRTY))
1145 					continue;
1146 				up_read(&mm->mmap_sem);
1147 				if (down_write_killable(&mm->mmap_sem)) {
1148 					count = -EINTR;
1149 					goto out_mm;
1150 				}
1151 				for (vma = mm->mmap; vma; vma = vma->vm_next) {
1152 					vma->vm_flags &= ~VM_SOFTDIRTY;
1153 					vma_set_page_prot(vma);
1154 				}
1155 				downgrade_write(&mm->mmap_sem);
1156 				break;
1157 			}
1158 			mmu_notifier_invalidate_range_start(mm, 0, -1);
1159 		}
1160 		walk_page_range(0, mm->highest_vm_end, &clear_refs_walk);
1161 		if (type == CLEAR_REFS_SOFT_DIRTY)
1162 			mmu_notifier_invalidate_range_end(mm, 0, -1);
1163 		tlb_finish_mmu(&tlb, 0, -1);
1164 		up_read(&mm->mmap_sem);
1165 out_mm:
1166 		mmput(mm);
1167 	}
1168 	put_task_struct(task);
1169 
1170 	return count;
1171 }
1172 
1173 const struct file_operations proc_clear_refs_operations = {
1174 	.write		= clear_refs_write,
1175 	.llseek		= noop_llseek,
1176 };
1177 
1178 typedef struct {
1179 	u64 pme;
1180 } pagemap_entry_t;
1181 
1182 struct pagemapread {
1183 	int pos, len;		/* units: PM_ENTRY_BYTES, not bytes */
1184 	pagemap_entry_t *buffer;
1185 	bool show_pfn;
1186 };
1187 
1188 #define PAGEMAP_WALK_SIZE	(PMD_SIZE)
1189 #define PAGEMAP_WALK_MASK	(PMD_MASK)
1190 
1191 #define PM_ENTRY_BYTES		sizeof(pagemap_entry_t)
1192 #define PM_PFRAME_BITS		55
1193 #define PM_PFRAME_MASK		GENMASK_ULL(PM_PFRAME_BITS - 1, 0)
1194 #define PM_SOFT_DIRTY		BIT_ULL(55)
1195 #define PM_MMAP_EXCLUSIVE	BIT_ULL(56)
1196 #define PM_FILE			BIT_ULL(61)
1197 #define PM_SWAP			BIT_ULL(62)
1198 #define PM_PRESENT		BIT_ULL(63)
1199 
1200 #define PM_END_OF_BUFFER    1
1201 
1202 static inline pagemap_entry_t make_pme(u64 frame, u64 flags)
1203 {
1204 	return (pagemap_entry_t) { .pme = (frame & PM_PFRAME_MASK) | flags };
1205 }
1206 
1207 static int add_to_pagemap(unsigned long addr, pagemap_entry_t *pme,
1208 			  struct pagemapread *pm)
1209 {
1210 	pm->buffer[pm->pos++] = *pme;
1211 	if (pm->pos >= pm->len)
1212 		return PM_END_OF_BUFFER;
1213 	return 0;
1214 }
1215 
1216 static int pagemap_pte_hole(unsigned long start, unsigned long end,
1217 				struct mm_walk *walk)
1218 {
1219 	struct pagemapread *pm = walk->private;
1220 	unsigned long addr = start;
1221 	int err = 0;
1222 
1223 	while (addr < end) {
1224 		struct vm_area_struct *vma = find_vma(walk->mm, addr);
1225 		pagemap_entry_t pme = make_pme(0, 0);
1226 		/* End of address space hole, which we mark as non-present. */
1227 		unsigned long hole_end;
1228 
1229 		if (vma)
1230 			hole_end = min(end, vma->vm_start);
1231 		else
1232 			hole_end = end;
1233 
1234 		for (; addr < hole_end; addr += PAGE_SIZE) {
1235 			err = add_to_pagemap(addr, &pme, pm);
1236 			if (err)
1237 				goto out;
1238 		}
1239 
1240 		if (!vma)
1241 			break;
1242 
1243 		/* Addresses in the VMA. */
1244 		if (vma->vm_flags & VM_SOFTDIRTY)
1245 			pme = make_pme(0, PM_SOFT_DIRTY);
1246 		for (; addr < min(end, vma->vm_end); addr += PAGE_SIZE) {
1247 			err = add_to_pagemap(addr, &pme, pm);
1248 			if (err)
1249 				goto out;
1250 		}
1251 	}
1252 out:
1253 	return err;
1254 }
1255 
1256 static pagemap_entry_t pte_to_pagemap_entry(struct pagemapread *pm,
1257 		struct vm_area_struct *vma, unsigned long addr, pte_t pte)
1258 {
1259 	u64 frame = 0, flags = 0;
1260 	struct page *page = NULL;
1261 
1262 	if (pte_present(pte)) {
1263 		if (pm->show_pfn)
1264 			frame = pte_pfn(pte);
1265 		flags |= PM_PRESENT;
1266 		page = _vm_normal_page(vma, addr, pte, true);
1267 		if (pte_soft_dirty(pte))
1268 			flags |= PM_SOFT_DIRTY;
1269 	} else if (is_swap_pte(pte)) {
1270 		swp_entry_t entry;
1271 		if (pte_swp_soft_dirty(pte))
1272 			flags |= PM_SOFT_DIRTY;
1273 		entry = pte_to_swp_entry(pte);
1274 		frame = swp_type(entry) |
1275 			(swp_offset(entry) << MAX_SWAPFILES_SHIFT);
1276 		flags |= PM_SWAP;
1277 		if (is_migration_entry(entry))
1278 			page = migration_entry_to_page(entry);
1279 
1280 		if (is_device_private_entry(entry))
1281 			page = device_private_entry_to_page(entry);
1282 	}
1283 
1284 	if (page && !PageAnon(page))
1285 		flags |= PM_FILE;
1286 	if (page && page_mapcount(page) == 1)
1287 		flags |= PM_MMAP_EXCLUSIVE;
1288 	if (vma->vm_flags & VM_SOFTDIRTY)
1289 		flags |= PM_SOFT_DIRTY;
1290 
1291 	return make_pme(frame, flags);
1292 }
1293 
1294 static int pagemap_pmd_range(pmd_t *pmdp, unsigned long addr, unsigned long end,
1295 			     struct mm_walk *walk)
1296 {
1297 	struct vm_area_struct *vma = walk->vma;
1298 	struct pagemapread *pm = walk->private;
1299 	spinlock_t *ptl;
1300 	pte_t *pte, *orig_pte;
1301 	int err = 0;
1302 
1303 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1304 	ptl = pmd_trans_huge_lock(pmdp, vma);
1305 	if (ptl) {
1306 		u64 flags = 0, frame = 0;
1307 		pmd_t pmd = *pmdp;
1308 		struct page *page = NULL;
1309 
1310 		if (vma->vm_flags & VM_SOFTDIRTY)
1311 			flags |= PM_SOFT_DIRTY;
1312 
1313 		if (pmd_present(pmd)) {
1314 			page = pmd_page(pmd);
1315 
1316 			flags |= PM_PRESENT;
1317 			if (pmd_soft_dirty(pmd))
1318 				flags |= PM_SOFT_DIRTY;
1319 			if (pm->show_pfn)
1320 				frame = pmd_pfn(pmd) +
1321 					((addr & ~PMD_MASK) >> PAGE_SHIFT);
1322 		}
1323 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1324 		else if (is_swap_pmd(pmd)) {
1325 			swp_entry_t entry = pmd_to_swp_entry(pmd);
1326 
1327 			frame = swp_type(entry) |
1328 				(swp_offset(entry) << MAX_SWAPFILES_SHIFT);
1329 			flags |= PM_SWAP;
1330 			if (pmd_swp_soft_dirty(pmd))
1331 				flags |= PM_SOFT_DIRTY;
1332 			VM_BUG_ON(!is_pmd_migration_entry(pmd));
1333 			page = migration_entry_to_page(entry);
1334 		}
1335 #endif
1336 
1337 		if (page && page_mapcount(page) == 1)
1338 			flags |= PM_MMAP_EXCLUSIVE;
1339 
1340 		for (; addr != end; addr += PAGE_SIZE) {
1341 			pagemap_entry_t pme = make_pme(frame, flags);
1342 
1343 			err = add_to_pagemap(addr, &pme, pm);
1344 			if (err)
1345 				break;
1346 			if (pm->show_pfn && (flags & PM_PRESENT))
1347 				frame++;
1348 		}
1349 		spin_unlock(ptl);
1350 		return err;
1351 	}
1352 
1353 	if (pmd_trans_unstable(pmdp))
1354 		return 0;
1355 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1356 
1357 	/*
1358 	 * We can assume that @vma always points to a valid one and @end never
1359 	 * goes beyond vma->vm_end.
1360 	 */
1361 	orig_pte = pte = pte_offset_map_lock(walk->mm, pmdp, addr, &ptl);
1362 	for (; addr < end; pte++, addr += PAGE_SIZE) {
1363 		pagemap_entry_t pme;
1364 
1365 		pme = pte_to_pagemap_entry(pm, vma, addr, *pte);
1366 		err = add_to_pagemap(addr, &pme, pm);
1367 		if (err)
1368 			break;
1369 	}
1370 	pte_unmap_unlock(orig_pte, ptl);
1371 
1372 	cond_resched();
1373 
1374 	return err;
1375 }
1376 
1377 #ifdef CONFIG_HUGETLB_PAGE
1378 /* This function walks within one hugetlb entry in the single call */
1379 static int pagemap_hugetlb_range(pte_t *ptep, unsigned long hmask,
1380 				 unsigned long addr, unsigned long end,
1381 				 struct mm_walk *walk)
1382 {
1383 	struct pagemapread *pm = walk->private;
1384 	struct vm_area_struct *vma = walk->vma;
1385 	u64 flags = 0, frame = 0;
1386 	int err = 0;
1387 	pte_t pte;
1388 
1389 	if (vma->vm_flags & VM_SOFTDIRTY)
1390 		flags |= PM_SOFT_DIRTY;
1391 
1392 	pte = huge_ptep_get(ptep);
1393 	if (pte_present(pte)) {
1394 		struct page *page = pte_page(pte);
1395 
1396 		if (!PageAnon(page))
1397 			flags |= PM_FILE;
1398 
1399 		if (page_mapcount(page) == 1)
1400 			flags |= PM_MMAP_EXCLUSIVE;
1401 
1402 		flags |= PM_PRESENT;
1403 		if (pm->show_pfn)
1404 			frame = pte_pfn(pte) +
1405 				((addr & ~hmask) >> PAGE_SHIFT);
1406 	}
1407 
1408 	for (; addr != end; addr += PAGE_SIZE) {
1409 		pagemap_entry_t pme = make_pme(frame, flags);
1410 
1411 		err = add_to_pagemap(addr, &pme, pm);
1412 		if (err)
1413 			return err;
1414 		if (pm->show_pfn && (flags & PM_PRESENT))
1415 			frame++;
1416 	}
1417 
1418 	cond_resched();
1419 
1420 	return err;
1421 }
1422 #endif /* HUGETLB_PAGE */
1423 
1424 /*
1425  * /proc/pid/pagemap - an array mapping virtual pages to pfns
1426  *
1427  * For each page in the address space, this file contains one 64-bit entry
1428  * consisting of the following:
1429  *
1430  * Bits 0-54  page frame number (PFN) if present
1431  * Bits 0-4   swap type if swapped
1432  * Bits 5-54  swap offset if swapped
1433  * Bit  55    pte is soft-dirty (see Documentation/vm/soft-dirty.txt)
1434  * Bit  56    page exclusively mapped
1435  * Bits 57-60 zero
1436  * Bit  61    page is file-page or shared-anon
1437  * Bit  62    page swapped
1438  * Bit  63    page present
1439  *
1440  * If the page is not present but in swap, then the PFN contains an
1441  * encoding of the swap file number and the page's offset into the
1442  * swap. Unmapped pages return a null PFN. This allows determining
1443  * precisely which pages are mapped (or in swap) and comparing mapped
1444  * pages between processes.
1445  *
1446  * Efficient users of this interface will use /proc/pid/maps to
1447  * determine which areas of memory are actually mapped and llseek to
1448  * skip over unmapped regions.
1449  */
1450 static ssize_t pagemap_read(struct file *file, char __user *buf,
1451 			    size_t count, loff_t *ppos)
1452 {
1453 	struct mm_struct *mm = file->private_data;
1454 	struct pagemapread pm;
1455 	struct mm_walk pagemap_walk = {};
1456 	unsigned long src;
1457 	unsigned long svpfn;
1458 	unsigned long start_vaddr;
1459 	unsigned long end_vaddr;
1460 	int ret = 0, copied = 0;
1461 
1462 	if (!mm || !mmget_not_zero(mm))
1463 		goto out;
1464 
1465 	ret = -EINVAL;
1466 	/* file position must be aligned */
1467 	if ((*ppos % PM_ENTRY_BYTES) || (count % PM_ENTRY_BYTES))
1468 		goto out_mm;
1469 
1470 	ret = 0;
1471 	if (!count)
1472 		goto out_mm;
1473 
1474 	/* do not disclose physical addresses: attack vector */
1475 	pm.show_pfn = file_ns_capable(file, &init_user_ns, CAP_SYS_ADMIN);
1476 
1477 	pm.len = (PAGEMAP_WALK_SIZE >> PAGE_SHIFT);
1478 	pm.buffer = kmalloc(pm.len * PM_ENTRY_BYTES, GFP_KERNEL);
1479 	ret = -ENOMEM;
1480 	if (!pm.buffer)
1481 		goto out_mm;
1482 
1483 	pagemap_walk.pmd_entry = pagemap_pmd_range;
1484 	pagemap_walk.pte_hole = pagemap_pte_hole;
1485 #ifdef CONFIG_HUGETLB_PAGE
1486 	pagemap_walk.hugetlb_entry = pagemap_hugetlb_range;
1487 #endif
1488 	pagemap_walk.mm = mm;
1489 	pagemap_walk.private = &pm;
1490 
1491 	src = *ppos;
1492 	svpfn = src / PM_ENTRY_BYTES;
1493 	start_vaddr = svpfn << PAGE_SHIFT;
1494 	end_vaddr = mm->task_size;
1495 
1496 	/* watch out for wraparound */
1497 	if (svpfn > mm->task_size >> PAGE_SHIFT)
1498 		start_vaddr = end_vaddr;
1499 
1500 	/*
1501 	 * The odds are that this will stop walking way
1502 	 * before end_vaddr, because the length of the
1503 	 * user buffer is tracked in "pm", and the walk
1504 	 * will stop when we hit the end of the buffer.
1505 	 */
1506 	ret = 0;
1507 	while (count && (start_vaddr < end_vaddr)) {
1508 		int len;
1509 		unsigned long end;
1510 
1511 		pm.pos = 0;
1512 		end = (start_vaddr + PAGEMAP_WALK_SIZE) & PAGEMAP_WALK_MASK;
1513 		/* overflow ? */
1514 		if (end < start_vaddr || end > end_vaddr)
1515 			end = end_vaddr;
1516 		down_read(&mm->mmap_sem);
1517 		ret = walk_page_range(start_vaddr, end, &pagemap_walk);
1518 		up_read(&mm->mmap_sem);
1519 		start_vaddr = end;
1520 
1521 		len = min(count, PM_ENTRY_BYTES * pm.pos);
1522 		if (copy_to_user(buf, pm.buffer, len)) {
1523 			ret = -EFAULT;
1524 			goto out_free;
1525 		}
1526 		copied += len;
1527 		buf += len;
1528 		count -= len;
1529 	}
1530 	*ppos += copied;
1531 	if (!ret || ret == PM_END_OF_BUFFER)
1532 		ret = copied;
1533 
1534 out_free:
1535 	kfree(pm.buffer);
1536 out_mm:
1537 	mmput(mm);
1538 out:
1539 	return ret;
1540 }
1541 
1542 static int pagemap_open(struct inode *inode, struct file *file)
1543 {
1544 	struct mm_struct *mm;
1545 
1546 	mm = proc_mem_open(inode, PTRACE_MODE_READ);
1547 	if (IS_ERR(mm))
1548 		return PTR_ERR(mm);
1549 	file->private_data = mm;
1550 	return 0;
1551 }
1552 
1553 static int pagemap_release(struct inode *inode, struct file *file)
1554 {
1555 	struct mm_struct *mm = file->private_data;
1556 
1557 	if (mm)
1558 		mmdrop(mm);
1559 	return 0;
1560 }
1561 
1562 const struct file_operations proc_pagemap_operations = {
1563 	.llseek		= mem_lseek, /* borrow this */
1564 	.read		= pagemap_read,
1565 	.open		= pagemap_open,
1566 	.release	= pagemap_release,
1567 };
1568 #endif /* CONFIG_PROC_PAGE_MONITOR */
1569 
1570 #ifdef CONFIG_NUMA
1571 
1572 struct numa_maps {
1573 	unsigned long pages;
1574 	unsigned long anon;
1575 	unsigned long active;
1576 	unsigned long writeback;
1577 	unsigned long mapcount_max;
1578 	unsigned long dirty;
1579 	unsigned long swapcache;
1580 	unsigned long node[MAX_NUMNODES];
1581 };
1582 
1583 struct numa_maps_private {
1584 	struct proc_maps_private proc_maps;
1585 	struct numa_maps md;
1586 };
1587 
1588 static void gather_stats(struct page *page, struct numa_maps *md, int pte_dirty,
1589 			unsigned long nr_pages)
1590 {
1591 	int count = page_mapcount(page);
1592 
1593 	md->pages += nr_pages;
1594 	if (pte_dirty || PageDirty(page))
1595 		md->dirty += nr_pages;
1596 
1597 	if (PageSwapCache(page))
1598 		md->swapcache += nr_pages;
1599 
1600 	if (PageActive(page) || PageUnevictable(page))
1601 		md->active += nr_pages;
1602 
1603 	if (PageWriteback(page))
1604 		md->writeback += nr_pages;
1605 
1606 	if (PageAnon(page))
1607 		md->anon += nr_pages;
1608 
1609 	if (count > md->mapcount_max)
1610 		md->mapcount_max = count;
1611 
1612 	md->node[page_to_nid(page)] += nr_pages;
1613 }
1614 
1615 static struct page *can_gather_numa_stats(pte_t pte, struct vm_area_struct *vma,
1616 		unsigned long addr)
1617 {
1618 	struct page *page;
1619 	int nid;
1620 
1621 	if (!pte_present(pte))
1622 		return NULL;
1623 
1624 	page = vm_normal_page(vma, addr, pte);
1625 	if (!page)
1626 		return NULL;
1627 
1628 	if (PageReserved(page))
1629 		return NULL;
1630 
1631 	nid = page_to_nid(page);
1632 	if (!node_isset(nid, node_states[N_MEMORY]))
1633 		return NULL;
1634 
1635 	return page;
1636 }
1637 
1638 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1639 static struct page *can_gather_numa_stats_pmd(pmd_t pmd,
1640 					      struct vm_area_struct *vma,
1641 					      unsigned long addr)
1642 {
1643 	struct page *page;
1644 	int nid;
1645 
1646 	if (!pmd_present(pmd))
1647 		return NULL;
1648 
1649 	page = vm_normal_page_pmd(vma, addr, pmd);
1650 	if (!page)
1651 		return NULL;
1652 
1653 	if (PageReserved(page))
1654 		return NULL;
1655 
1656 	nid = page_to_nid(page);
1657 	if (!node_isset(nid, node_states[N_MEMORY]))
1658 		return NULL;
1659 
1660 	return page;
1661 }
1662 #endif
1663 
1664 static int gather_pte_stats(pmd_t *pmd, unsigned long addr,
1665 		unsigned long end, struct mm_walk *walk)
1666 {
1667 	struct numa_maps *md = walk->private;
1668 	struct vm_area_struct *vma = walk->vma;
1669 	spinlock_t *ptl;
1670 	pte_t *orig_pte;
1671 	pte_t *pte;
1672 
1673 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1674 	ptl = pmd_trans_huge_lock(pmd, vma);
1675 	if (ptl) {
1676 		struct page *page;
1677 
1678 		page = can_gather_numa_stats_pmd(*pmd, vma, addr);
1679 		if (page)
1680 			gather_stats(page, md, pmd_dirty(*pmd),
1681 				     HPAGE_PMD_SIZE/PAGE_SIZE);
1682 		spin_unlock(ptl);
1683 		return 0;
1684 	}
1685 
1686 	if (pmd_trans_unstable(pmd))
1687 		return 0;
1688 #endif
1689 	orig_pte = pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
1690 	do {
1691 		struct page *page = can_gather_numa_stats(*pte, vma, addr);
1692 		if (!page)
1693 			continue;
1694 		gather_stats(page, md, pte_dirty(*pte), 1);
1695 
1696 	} while (pte++, addr += PAGE_SIZE, addr != end);
1697 	pte_unmap_unlock(orig_pte, ptl);
1698 	cond_resched();
1699 	return 0;
1700 }
1701 #ifdef CONFIG_HUGETLB_PAGE
1702 static int gather_hugetlb_stats(pte_t *pte, unsigned long hmask,
1703 		unsigned long addr, unsigned long end, struct mm_walk *walk)
1704 {
1705 	pte_t huge_pte = huge_ptep_get(pte);
1706 	struct numa_maps *md;
1707 	struct page *page;
1708 
1709 	if (!pte_present(huge_pte))
1710 		return 0;
1711 
1712 	page = pte_page(huge_pte);
1713 	if (!page)
1714 		return 0;
1715 
1716 	md = walk->private;
1717 	gather_stats(page, md, pte_dirty(huge_pte), 1);
1718 	return 0;
1719 }
1720 
1721 #else
1722 static int gather_hugetlb_stats(pte_t *pte, unsigned long hmask,
1723 		unsigned long addr, unsigned long end, struct mm_walk *walk)
1724 {
1725 	return 0;
1726 }
1727 #endif
1728 
1729 /*
1730  * Display pages allocated per node and memory policy via /proc.
1731  */
1732 static int show_numa_map(struct seq_file *m, void *v, int is_pid)
1733 {
1734 	struct numa_maps_private *numa_priv = m->private;
1735 	struct proc_maps_private *proc_priv = &numa_priv->proc_maps;
1736 	struct vm_area_struct *vma = v;
1737 	struct numa_maps *md = &numa_priv->md;
1738 	struct file *file = vma->vm_file;
1739 	struct mm_struct *mm = vma->vm_mm;
1740 	struct mm_walk walk = {
1741 		.hugetlb_entry = gather_hugetlb_stats,
1742 		.pmd_entry = gather_pte_stats,
1743 		.private = md,
1744 		.mm = mm,
1745 	};
1746 	struct mempolicy *pol;
1747 	char buffer[64];
1748 	int nid;
1749 
1750 	if (!mm)
1751 		return 0;
1752 
1753 	/* Ensure we start with an empty set of numa_maps statistics. */
1754 	memset(md, 0, sizeof(*md));
1755 
1756 	pol = __get_vma_policy(vma, vma->vm_start);
1757 	if (pol) {
1758 		mpol_to_str(buffer, sizeof(buffer), pol);
1759 		mpol_cond_put(pol);
1760 	} else {
1761 		mpol_to_str(buffer, sizeof(buffer), proc_priv->task_mempolicy);
1762 	}
1763 
1764 	seq_printf(m, "%08lx %s", vma->vm_start, buffer);
1765 
1766 	if (file) {
1767 		seq_puts(m, " file=");
1768 		seq_file_path(m, file, "\n\t= ");
1769 	} else if (vma->vm_start <= mm->brk && vma->vm_end >= mm->start_brk) {
1770 		seq_puts(m, " heap");
1771 	} else if (is_stack(vma)) {
1772 		seq_puts(m, " stack");
1773 	}
1774 
1775 	if (is_vm_hugetlb_page(vma))
1776 		seq_puts(m, " huge");
1777 
1778 	/* mmap_sem is held by m_start */
1779 	walk_page_vma(vma, &walk);
1780 
1781 	if (!md->pages)
1782 		goto out;
1783 
1784 	if (md->anon)
1785 		seq_printf(m, " anon=%lu", md->anon);
1786 
1787 	if (md->dirty)
1788 		seq_printf(m, " dirty=%lu", md->dirty);
1789 
1790 	if (md->pages != md->anon && md->pages != md->dirty)
1791 		seq_printf(m, " mapped=%lu", md->pages);
1792 
1793 	if (md->mapcount_max > 1)
1794 		seq_printf(m, " mapmax=%lu", md->mapcount_max);
1795 
1796 	if (md->swapcache)
1797 		seq_printf(m, " swapcache=%lu", md->swapcache);
1798 
1799 	if (md->active < md->pages && !is_vm_hugetlb_page(vma))
1800 		seq_printf(m, " active=%lu", md->active);
1801 
1802 	if (md->writeback)
1803 		seq_printf(m, " writeback=%lu", md->writeback);
1804 
1805 	for_each_node_state(nid, N_MEMORY)
1806 		if (md->node[nid])
1807 			seq_printf(m, " N%d=%lu", nid, md->node[nid]);
1808 
1809 	seq_printf(m, " kernelpagesize_kB=%lu", vma_kernel_pagesize(vma) >> 10);
1810 out:
1811 	seq_putc(m, '\n');
1812 	m_cache_vma(m, vma);
1813 	return 0;
1814 }
1815 
1816 static int show_pid_numa_map(struct seq_file *m, void *v)
1817 {
1818 	return show_numa_map(m, v, 1);
1819 }
1820 
1821 static int show_tid_numa_map(struct seq_file *m, void *v)
1822 {
1823 	return show_numa_map(m, v, 0);
1824 }
1825 
1826 static const struct seq_operations proc_pid_numa_maps_op = {
1827 	.start  = m_start,
1828 	.next   = m_next,
1829 	.stop   = m_stop,
1830 	.show   = show_pid_numa_map,
1831 };
1832 
1833 static const struct seq_operations proc_tid_numa_maps_op = {
1834 	.start  = m_start,
1835 	.next   = m_next,
1836 	.stop   = m_stop,
1837 	.show   = show_tid_numa_map,
1838 };
1839 
1840 static int numa_maps_open(struct inode *inode, struct file *file,
1841 			  const struct seq_operations *ops)
1842 {
1843 	return proc_maps_open(inode, file, ops,
1844 				sizeof(struct numa_maps_private));
1845 }
1846 
1847 static int pid_numa_maps_open(struct inode *inode, struct file *file)
1848 {
1849 	return numa_maps_open(inode, file, &proc_pid_numa_maps_op);
1850 }
1851 
1852 static int tid_numa_maps_open(struct inode *inode, struct file *file)
1853 {
1854 	return numa_maps_open(inode, file, &proc_tid_numa_maps_op);
1855 }
1856 
1857 const struct file_operations proc_pid_numa_maps_operations = {
1858 	.open		= pid_numa_maps_open,
1859 	.read		= seq_read,
1860 	.llseek		= seq_lseek,
1861 	.release	= proc_map_release,
1862 };
1863 
1864 const struct file_operations proc_tid_numa_maps_operations = {
1865 	.open		= tid_numa_maps_open,
1866 	.read		= seq_read,
1867 	.llseek		= seq_lseek,
1868 	.release	= proc_map_release,
1869 };
1870 #endif /* CONFIG_NUMA */
1871