1 // SPDX-License-Identifier: GPL-2.0 2 #include <linux/pagewalk.h> 3 #include <linux/mm_inline.h> 4 #include <linux/hugetlb.h> 5 #include <linux/huge_mm.h> 6 #include <linux/mount.h> 7 #include <linux/ksm.h> 8 #include <linux/seq_file.h> 9 #include <linux/highmem.h> 10 #include <linux/ptrace.h> 11 #include <linux/slab.h> 12 #include <linux/pagemap.h> 13 #include <linux/mempolicy.h> 14 #include <linux/rmap.h> 15 #include <linux/swap.h> 16 #include <linux/sched/mm.h> 17 #include <linux/leafops.h> 18 #include <linux/mmu_notifier.h> 19 #include <linux/page_idle.h> 20 #include <linux/shmem_fs.h> 21 #include <linux/uaccess.h> 22 #include <linux/pkeys.h> 23 #include <linux/minmax.h> 24 #include <linux/overflow.h> 25 #include <linux/buildid.h> 26 27 #include <asm/elf.h> 28 #include <asm/tlb.h> 29 #include <asm/tlbflush.h> 30 #include "internal.h" 31 32 #define SENTINEL_VMA_END -1 33 #define SENTINEL_VMA_GATE -2 34 35 #define SEQ_PUT_DEC(str, val) \ 36 seq_put_decimal_ull_width(m, str, (val) << (PAGE_SHIFT-10), 8) 37 void task_mem(struct seq_file *m, struct mm_struct *mm) 38 { 39 unsigned long text, lib, swap, anon, file, shmem; 40 unsigned long hiwater_vm, total_vm, hiwater_rss, total_rss; 41 42 anon = get_mm_counter_sum(mm, MM_ANONPAGES); 43 file = get_mm_counter_sum(mm, MM_FILEPAGES); 44 shmem = get_mm_counter_sum(mm, MM_SHMEMPAGES); 45 46 /* 47 * Note: to minimize their overhead, mm maintains hiwater_vm and 48 * hiwater_rss only when about to *lower* total_vm or rss. Any 49 * collector of these hiwater stats must therefore get total_vm 50 * and rss too, which will usually be the higher. Barriers? not 51 * worth the effort, such snapshots can always be inconsistent. 52 */ 53 hiwater_vm = total_vm = mm->total_vm; 54 if (hiwater_vm < mm->hiwater_vm) 55 hiwater_vm = mm->hiwater_vm; 56 hiwater_rss = total_rss = anon + file + shmem; 57 if (hiwater_rss < mm->hiwater_rss) 58 hiwater_rss = mm->hiwater_rss; 59 60 /* split executable areas between text and lib */ 61 text = PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK); 62 text = min(text, mm->exec_vm << PAGE_SHIFT); 63 lib = (mm->exec_vm << PAGE_SHIFT) - text; 64 65 swap = get_mm_counter_sum(mm, MM_SWAPENTS); 66 SEQ_PUT_DEC("VmPeak:\t", hiwater_vm); 67 SEQ_PUT_DEC(" kB\nVmSize:\t", total_vm); 68 SEQ_PUT_DEC(" kB\nVmLck:\t", mm->locked_vm); 69 SEQ_PUT_DEC(" kB\nVmPin:\t", atomic64_read(&mm->pinned_vm)); 70 SEQ_PUT_DEC(" kB\nVmHWM:\t", hiwater_rss); 71 SEQ_PUT_DEC(" kB\nVmRSS:\t", total_rss); 72 SEQ_PUT_DEC(" kB\nRssAnon:\t", anon); 73 SEQ_PUT_DEC(" kB\nRssFile:\t", file); 74 SEQ_PUT_DEC(" kB\nRssShmem:\t", shmem); 75 SEQ_PUT_DEC(" kB\nVmData:\t", mm->data_vm); 76 SEQ_PUT_DEC(" kB\nVmStk:\t", mm->stack_vm); 77 seq_put_decimal_ull_width(m, 78 " kB\nVmExe:\t", text >> 10, 8); 79 seq_put_decimal_ull_width(m, 80 " kB\nVmLib:\t", lib >> 10, 8); 81 seq_put_decimal_ull_width(m, 82 " kB\nVmPTE:\t", mm_pgtables_bytes(mm) >> 10, 8); 83 SEQ_PUT_DEC(" kB\nVmSwap:\t", swap); 84 seq_puts(m, " kB\n"); 85 hugetlb_report_usage(m, mm); 86 } 87 #undef SEQ_PUT_DEC 88 89 unsigned long task_vsize(struct mm_struct *mm) 90 { 91 return PAGE_SIZE * mm->total_vm; 92 } 93 94 unsigned long task_statm(struct mm_struct *mm, 95 unsigned long *shared, unsigned long *text, 96 unsigned long *data, unsigned long *resident) 97 { 98 *shared = get_mm_counter_sum(mm, MM_FILEPAGES) + 99 get_mm_counter_sum(mm, MM_SHMEMPAGES); 100 *text = (PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK)) 101 >> PAGE_SHIFT; 102 *data = mm->data_vm + mm->stack_vm; 103 *resident = *shared + get_mm_counter_sum(mm, MM_ANONPAGES); 104 return mm->total_vm; 105 } 106 107 #ifdef CONFIG_NUMA 108 /* 109 * Save get_task_policy() for show_numa_map(). 110 */ 111 static void hold_task_mempolicy(struct proc_maps_private *priv) 112 { 113 struct task_struct *task = priv->task; 114 115 task_lock(task); 116 priv->task_mempolicy = get_task_policy(task); 117 mpol_get(priv->task_mempolicy); 118 task_unlock(task); 119 } 120 static void release_task_mempolicy(struct proc_maps_private *priv) 121 { 122 mpol_put(priv->task_mempolicy); 123 } 124 #else 125 static void hold_task_mempolicy(struct proc_maps_private *priv) 126 { 127 } 128 static void release_task_mempolicy(struct proc_maps_private *priv) 129 { 130 } 131 #endif 132 133 #ifdef CONFIG_PER_VMA_LOCK 134 135 static void reset_lock_ctx(struct proc_maps_locking_ctx *lock_ctx) 136 { 137 lock_ctx->locked_vma = NULL; 138 lock_ctx->mmap_locked = false; 139 } 140 141 static void unlock_ctx_vma(struct proc_maps_locking_ctx *lock_ctx) 142 { 143 if (lock_ctx->locked_vma) { 144 vma_end_read(lock_ctx->locked_vma); 145 lock_ctx->locked_vma = NULL; 146 } 147 } 148 149 static const struct seq_operations proc_pid_maps_op; 150 151 static inline bool lock_vma_range(struct seq_file *m, 152 struct proc_maps_locking_ctx *lock_ctx) 153 { 154 /* 155 * smaps and numa_maps perform page table walk, therefore require 156 * mmap_lock but maps can be read with locking just the vma and 157 * walking the vma tree under rcu read protection. 158 */ 159 if (m->op != &proc_pid_maps_op) { 160 if (mmap_read_lock_killable(lock_ctx->mm)) 161 return false; 162 163 lock_ctx->mmap_locked = true; 164 } else { 165 rcu_read_lock(); 166 reset_lock_ctx(lock_ctx); 167 } 168 169 return true; 170 } 171 172 static inline void unlock_vma_range(struct proc_maps_locking_ctx *lock_ctx) 173 { 174 if (lock_ctx->mmap_locked) { 175 mmap_read_unlock(lock_ctx->mm); 176 } else { 177 unlock_ctx_vma(lock_ctx); 178 rcu_read_unlock(); 179 } 180 } 181 182 static struct vm_area_struct *get_next_vma(struct proc_maps_private *priv, 183 loff_t last_pos) 184 { 185 struct proc_maps_locking_ctx *lock_ctx = &priv->lock_ctx; 186 struct vm_area_struct *vma; 187 188 if (lock_ctx->mmap_locked) 189 return vma_next(&priv->iter); 190 191 unlock_ctx_vma(lock_ctx); 192 vma = lock_next_vma(lock_ctx->mm, &priv->iter, last_pos); 193 if (!IS_ERR_OR_NULL(vma)) 194 lock_ctx->locked_vma = vma; 195 196 return vma; 197 } 198 199 static inline bool fallback_to_mmap_lock(struct proc_maps_private *priv, 200 loff_t pos) 201 { 202 struct proc_maps_locking_ctx *lock_ctx = &priv->lock_ctx; 203 204 if (lock_ctx->mmap_locked) 205 return false; 206 207 rcu_read_unlock(); 208 mmap_read_lock(lock_ctx->mm); 209 /* Reinitialize the iterator after taking mmap_lock */ 210 vma_iter_set(&priv->iter, pos); 211 lock_ctx->mmap_locked = true; 212 213 return true; 214 } 215 216 #else /* CONFIG_PER_VMA_LOCK */ 217 218 static inline bool lock_vma_range(struct seq_file *m, 219 struct proc_maps_locking_ctx *lock_ctx) 220 { 221 return mmap_read_lock_killable(lock_ctx->mm) == 0; 222 } 223 224 static inline void unlock_vma_range(struct proc_maps_locking_ctx *lock_ctx) 225 { 226 mmap_read_unlock(lock_ctx->mm); 227 } 228 229 static struct vm_area_struct *get_next_vma(struct proc_maps_private *priv, 230 loff_t last_pos) 231 { 232 return vma_next(&priv->iter); 233 } 234 235 static inline bool fallback_to_mmap_lock(struct proc_maps_private *priv, 236 loff_t pos) 237 { 238 return false; 239 } 240 241 #endif /* CONFIG_PER_VMA_LOCK */ 242 243 static struct vm_area_struct *proc_get_vma(struct seq_file *m, loff_t *ppos) 244 { 245 struct proc_maps_private *priv = m->private; 246 struct vm_area_struct *vma; 247 248 retry: 249 vma = get_next_vma(priv, *ppos); 250 /* EINTR of EAGAIN is possible */ 251 if (IS_ERR(vma)) { 252 if (PTR_ERR(vma) == -EAGAIN && fallback_to_mmap_lock(priv, *ppos)) 253 goto retry; 254 255 return vma; 256 } 257 258 /* Store previous position to be able to restart if needed */ 259 priv->last_pos = *ppos; 260 if (vma) { 261 /* 262 * Track the end of the reported vma to ensure position changes 263 * even if previous vma was merged with the next vma and we 264 * found the extended vma with the same vm_start. 265 */ 266 *ppos = vma->vm_end; 267 } else { 268 *ppos = SENTINEL_VMA_GATE; 269 vma = get_gate_vma(priv->lock_ctx.mm); 270 } 271 272 return vma; 273 } 274 275 static void *m_start(struct seq_file *m, loff_t *ppos) 276 { 277 struct proc_maps_private *priv = m->private; 278 struct proc_maps_locking_ctx *lock_ctx; 279 loff_t last_addr = *ppos; 280 struct mm_struct *mm; 281 282 /* See m_next(). Zero at the start or after lseek. */ 283 if (last_addr == SENTINEL_VMA_END) 284 return NULL; 285 286 priv->task = get_proc_task(priv->inode); 287 if (!priv->task) 288 return ERR_PTR(-ESRCH); 289 290 lock_ctx = &priv->lock_ctx; 291 mm = lock_ctx->mm; 292 if (!mm || !mmget_not_zero(mm)) { 293 put_task_struct(priv->task); 294 priv->task = NULL; 295 return NULL; 296 } 297 298 if (!lock_vma_range(m, lock_ctx)) { 299 mmput(mm); 300 put_task_struct(priv->task); 301 priv->task = NULL; 302 return ERR_PTR(-EINTR); 303 } 304 305 /* 306 * Reset current position if last_addr was set before 307 * and it's not a sentinel. 308 */ 309 if (last_addr > 0) 310 *ppos = last_addr = priv->last_pos; 311 vma_iter_init(&priv->iter, mm, (unsigned long)last_addr); 312 hold_task_mempolicy(priv); 313 if (last_addr == SENTINEL_VMA_GATE) 314 return get_gate_vma(mm); 315 316 return proc_get_vma(m, ppos); 317 } 318 319 static void *m_next(struct seq_file *m, void *v, loff_t *ppos) 320 { 321 if (*ppos == SENTINEL_VMA_GATE) { 322 *ppos = SENTINEL_VMA_END; 323 return NULL; 324 } 325 return proc_get_vma(m, ppos); 326 } 327 328 static void m_stop(struct seq_file *m, void *v) 329 { 330 struct proc_maps_private *priv = m->private; 331 struct mm_struct *mm = priv->lock_ctx.mm; 332 333 if (!priv->task) 334 return; 335 336 release_task_mempolicy(priv); 337 unlock_vma_range(&priv->lock_ctx); 338 mmput(mm); 339 put_task_struct(priv->task); 340 priv->task = NULL; 341 } 342 343 static int proc_maps_open(struct inode *inode, struct file *file, 344 const struct seq_operations *ops, int psize) 345 { 346 struct proc_maps_private *priv = __seq_open_private(file, ops, psize); 347 348 if (!priv) 349 return -ENOMEM; 350 351 priv->inode = inode; 352 priv->lock_ctx.mm = proc_mem_open(inode, PTRACE_MODE_READ); 353 if (IS_ERR(priv->lock_ctx.mm)) { 354 int err = PTR_ERR(priv->lock_ctx.mm); 355 356 seq_release_private(inode, file); 357 return err; 358 } 359 360 return 0; 361 } 362 363 static int proc_map_release(struct inode *inode, struct file *file) 364 { 365 struct seq_file *seq = file->private_data; 366 struct proc_maps_private *priv = seq->private; 367 368 if (priv->lock_ctx.mm) 369 mmdrop(priv->lock_ctx.mm); 370 371 return seq_release_private(inode, file); 372 } 373 374 static int do_maps_open(struct inode *inode, struct file *file, 375 const struct seq_operations *ops) 376 { 377 return proc_maps_open(inode, file, ops, 378 sizeof(struct proc_maps_private)); 379 } 380 381 static void get_vma_name(struct vm_area_struct *vma, 382 const struct path **path, 383 const char **name, 384 const char **name_fmt) 385 { 386 struct anon_vma_name *anon_name = vma->vm_mm ? anon_vma_name(vma) : NULL; 387 388 *name = NULL; 389 *path = NULL; 390 *name_fmt = NULL; 391 392 /* 393 * Print the dentry name for named mappings, and a 394 * special [heap] marker for the heap: 395 */ 396 if (vma->vm_file) { 397 /* 398 * If user named this anon shared memory via 399 * prctl(PR_SET_VMA ..., use the provided name. 400 */ 401 if (anon_name) { 402 *name_fmt = "[anon_shmem:%s]"; 403 *name = anon_name->name; 404 } else { 405 *path = file_user_path(vma->vm_file); 406 } 407 return; 408 } 409 410 if (vma->vm_ops && vma->vm_ops->name) { 411 *name = vma->vm_ops->name(vma); 412 if (*name) 413 return; 414 } 415 416 *name = arch_vma_name(vma); 417 if (*name) 418 return; 419 420 if (!vma->vm_mm) { 421 *name = "[vdso]"; 422 return; 423 } 424 425 if (vma_is_initial_heap(vma)) { 426 *name = "[heap]"; 427 return; 428 } 429 430 if (vma_is_initial_stack(vma)) { 431 *name = "[stack]"; 432 return; 433 } 434 435 if (anon_name) { 436 *name_fmt = "[anon:%s]"; 437 *name = anon_name->name; 438 return; 439 } 440 } 441 442 static void show_vma_header_prefix(struct seq_file *m, 443 unsigned long start, unsigned long end, 444 vm_flags_t flags, unsigned long long pgoff, 445 dev_t dev, unsigned long ino) 446 { 447 seq_setwidth(m, 25 + sizeof(void *) * 6 - 1); 448 seq_put_hex_ll(m, NULL, start, 8); 449 seq_put_hex_ll(m, "-", end, 8); 450 seq_putc(m, ' '); 451 seq_putc(m, flags & VM_READ ? 'r' : '-'); 452 seq_putc(m, flags & VM_WRITE ? 'w' : '-'); 453 seq_putc(m, flags & VM_EXEC ? 'x' : '-'); 454 seq_putc(m, flags & VM_MAYSHARE ? 's' : 'p'); 455 seq_put_hex_ll(m, " ", pgoff, 8); 456 seq_put_hex_ll(m, " ", MAJOR(dev), 2); 457 seq_put_hex_ll(m, ":", MINOR(dev), 2); 458 seq_put_decimal_ull(m, " ", ino); 459 seq_putc(m, ' '); 460 } 461 462 static void 463 show_map_vma(struct seq_file *m, struct vm_area_struct *vma) 464 { 465 const struct path *path; 466 const char *name_fmt, *name; 467 vm_flags_t flags = vma->vm_flags; 468 unsigned long ino = 0; 469 unsigned long long pgoff = 0; 470 unsigned long start, end; 471 dev_t dev = 0; 472 473 if (vma->vm_file) { 474 const struct inode *inode = file_user_inode(vma->vm_file); 475 476 dev = inode->i_sb->s_dev; 477 ino = inode->i_ino; 478 pgoff = ((loff_t)vma->vm_pgoff) << PAGE_SHIFT; 479 } 480 481 start = vma->vm_start; 482 end = vma->vm_end; 483 show_vma_header_prefix(m, start, end, flags, pgoff, dev, ino); 484 485 get_vma_name(vma, &path, &name, &name_fmt); 486 if (path) { 487 seq_pad(m, ' '); 488 seq_path(m, path, "\n"); 489 } else if (name_fmt) { 490 seq_pad(m, ' '); 491 seq_printf(m, name_fmt, name); 492 } else if (name) { 493 seq_pad(m, ' '); 494 seq_puts(m, name); 495 } 496 seq_putc(m, '\n'); 497 } 498 499 static int show_map(struct seq_file *m, void *v) 500 { 501 show_map_vma(m, v); 502 return 0; 503 } 504 505 static const struct seq_operations proc_pid_maps_op = { 506 .start = m_start, 507 .next = m_next, 508 .stop = m_stop, 509 .show = show_map 510 }; 511 512 static int pid_maps_open(struct inode *inode, struct file *file) 513 { 514 return do_maps_open(inode, file, &proc_pid_maps_op); 515 } 516 517 #define PROCMAP_QUERY_VMA_FLAGS ( \ 518 PROCMAP_QUERY_VMA_READABLE | \ 519 PROCMAP_QUERY_VMA_WRITABLE | \ 520 PROCMAP_QUERY_VMA_EXECUTABLE | \ 521 PROCMAP_QUERY_VMA_SHARED \ 522 ) 523 524 #define PROCMAP_QUERY_VALID_FLAGS_MASK ( \ 525 PROCMAP_QUERY_COVERING_OR_NEXT_VMA | \ 526 PROCMAP_QUERY_FILE_BACKED_VMA | \ 527 PROCMAP_QUERY_VMA_FLAGS \ 528 ) 529 530 #ifdef CONFIG_PER_VMA_LOCK 531 532 static int query_vma_setup(struct proc_maps_locking_ctx *lock_ctx) 533 { 534 reset_lock_ctx(lock_ctx); 535 536 return 0; 537 } 538 539 static void query_vma_teardown(struct proc_maps_locking_ctx *lock_ctx) 540 { 541 if (lock_ctx->mmap_locked) { 542 mmap_read_unlock(lock_ctx->mm); 543 lock_ctx->mmap_locked = false; 544 } else { 545 unlock_ctx_vma(lock_ctx); 546 } 547 } 548 549 static struct vm_area_struct *query_vma_find_by_addr(struct proc_maps_locking_ctx *lock_ctx, 550 unsigned long addr) 551 { 552 struct mm_struct *mm = lock_ctx->mm; 553 struct vm_area_struct *vma; 554 struct vma_iterator vmi; 555 556 if (lock_ctx->mmap_locked) 557 return find_vma(mm, addr); 558 559 /* Unlock previously locked VMA and find the next one under RCU */ 560 unlock_ctx_vma(lock_ctx); 561 rcu_read_lock(); 562 vma_iter_init(&vmi, mm, addr); 563 vma = lock_next_vma(mm, &vmi, addr); 564 rcu_read_unlock(); 565 566 if (!vma) 567 return NULL; 568 569 if (!IS_ERR(vma)) { 570 lock_ctx->locked_vma = vma; 571 return vma; 572 } 573 574 if (PTR_ERR(vma) == -EAGAIN) { 575 /* Fallback to mmap_lock on vma->vm_refcnt overflow */ 576 mmap_read_lock(mm); 577 vma = find_vma(mm, addr); 578 lock_ctx->mmap_locked = true; 579 } 580 581 return vma; 582 } 583 584 #else /* CONFIG_PER_VMA_LOCK */ 585 586 static int query_vma_setup(struct proc_maps_locking_ctx *lock_ctx) 587 { 588 return mmap_read_lock_killable(lock_ctx->mm); 589 } 590 591 static void query_vma_teardown(struct proc_maps_locking_ctx *lock_ctx) 592 { 593 mmap_read_unlock(lock_ctx->mm); 594 } 595 596 static struct vm_area_struct *query_vma_find_by_addr(struct proc_maps_locking_ctx *lock_ctx, 597 unsigned long addr) 598 { 599 return find_vma(lock_ctx->mm, addr); 600 } 601 602 #endif /* CONFIG_PER_VMA_LOCK */ 603 604 static struct vm_area_struct *query_matching_vma(struct proc_maps_locking_ctx *lock_ctx, 605 unsigned long addr, u32 flags) 606 { 607 struct vm_area_struct *vma; 608 609 next_vma: 610 vma = query_vma_find_by_addr(lock_ctx, addr); 611 if (IS_ERR(vma)) 612 return vma; 613 614 if (!vma) 615 goto no_vma; 616 617 /* user requested only file-backed VMA, keep iterating */ 618 if ((flags & PROCMAP_QUERY_FILE_BACKED_VMA) && !vma->vm_file) 619 goto skip_vma; 620 621 /* VMA permissions should satisfy query flags */ 622 if (flags & PROCMAP_QUERY_VMA_FLAGS) { 623 u32 perm = 0; 624 625 if (flags & PROCMAP_QUERY_VMA_READABLE) 626 perm |= VM_READ; 627 if (flags & PROCMAP_QUERY_VMA_WRITABLE) 628 perm |= VM_WRITE; 629 if (flags & PROCMAP_QUERY_VMA_EXECUTABLE) 630 perm |= VM_EXEC; 631 if (flags & PROCMAP_QUERY_VMA_SHARED) 632 perm |= VM_MAYSHARE; 633 634 if ((vma->vm_flags & perm) != perm) 635 goto skip_vma; 636 } 637 638 /* found covering VMA or user is OK with the matching next VMA */ 639 if ((flags & PROCMAP_QUERY_COVERING_OR_NEXT_VMA) || vma->vm_start <= addr) 640 return vma; 641 642 skip_vma: 643 /* 644 * If the user needs closest matching VMA, keep iterating. 645 */ 646 addr = vma->vm_end; 647 if (flags & PROCMAP_QUERY_COVERING_OR_NEXT_VMA) 648 goto next_vma; 649 650 no_vma: 651 return ERR_PTR(-ENOENT); 652 } 653 654 static int do_procmap_query(struct mm_struct *mm, void __user *uarg) 655 { 656 struct proc_maps_locking_ctx lock_ctx = { .mm = mm }; 657 struct procmap_query karg; 658 struct vm_area_struct *vma; 659 const char *name = NULL; 660 char build_id_buf[BUILD_ID_SIZE_MAX], *name_buf = NULL; 661 __u64 usize; 662 int err; 663 664 if (copy_from_user(&usize, (void __user *)uarg, sizeof(usize))) 665 return -EFAULT; 666 /* argument struct can never be that large, reject abuse */ 667 if (usize > PAGE_SIZE) 668 return -E2BIG; 669 /* argument struct should have at least query_flags and query_addr fields */ 670 if (usize < offsetofend(struct procmap_query, query_addr)) 671 return -EINVAL; 672 err = copy_struct_from_user(&karg, sizeof(karg), uarg, usize); 673 if (err) 674 return err; 675 676 /* reject unknown flags */ 677 if (karg.query_flags & ~PROCMAP_QUERY_VALID_FLAGS_MASK) 678 return -EINVAL; 679 /* either both buffer address and size are set, or both should be zero */ 680 if (!!karg.vma_name_size != !!karg.vma_name_addr) 681 return -EINVAL; 682 if (!!karg.build_id_size != !!karg.build_id_addr) 683 return -EINVAL; 684 685 if (!mm || !mmget_not_zero(mm)) 686 return -ESRCH; 687 688 err = query_vma_setup(&lock_ctx); 689 if (err) { 690 mmput(mm); 691 return err; 692 } 693 694 vma = query_matching_vma(&lock_ctx, karg.query_addr, karg.query_flags); 695 if (IS_ERR(vma)) { 696 err = PTR_ERR(vma); 697 vma = NULL; 698 goto out; 699 } 700 701 karg.vma_start = vma->vm_start; 702 karg.vma_end = vma->vm_end; 703 704 karg.vma_flags = 0; 705 if (vma->vm_flags & VM_READ) 706 karg.vma_flags |= PROCMAP_QUERY_VMA_READABLE; 707 if (vma->vm_flags & VM_WRITE) 708 karg.vma_flags |= PROCMAP_QUERY_VMA_WRITABLE; 709 if (vma->vm_flags & VM_EXEC) 710 karg.vma_flags |= PROCMAP_QUERY_VMA_EXECUTABLE; 711 if (vma->vm_flags & VM_MAYSHARE) 712 karg.vma_flags |= PROCMAP_QUERY_VMA_SHARED; 713 714 karg.vma_page_size = vma_kernel_pagesize(vma); 715 716 if (vma->vm_file) { 717 const struct inode *inode = file_user_inode(vma->vm_file); 718 719 karg.vma_offset = ((__u64)vma->vm_pgoff) << PAGE_SHIFT; 720 karg.dev_major = MAJOR(inode->i_sb->s_dev); 721 karg.dev_minor = MINOR(inode->i_sb->s_dev); 722 karg.inode = inode->i_ino; 723 } else { 724 karg.vma_offset = 0; 725 karg.dev_major = 0; 726 karg.dev_minor = 0; 727 karg.inode = 0; 728 } 729 730 if (karg.build_id_size) { 731 __u32 build_id_sz; 732 733 err = build_id_parse(vma, build_id_buf, &build_id_sz); 734 if (err) { 735 karg.build_id_size = 0; 736 } else { 737 if (karg.build_id_size < build_id_sz) { 738 err = -ENAMETOOLONG; 739 goto out; 740 } 741 karg.build_id_size = build_id_sz; 742 } 743 } 744 745 if (karg.vma_name_size) { 746 size_t name_buf_sz = min_t(size_t, PATH_MAX, karg.vma_name_size); 747 const struct path *path; 748 const char *name_fmt; 749 size_t name_sz = 0; 750 751 get_vma_name(vma, &path, &name, &name_fmt); 752 753 if (path || name_fmt || name) { 754 name_buf = kmalloc(name_buf_sz, GFP_KERNEL); 755 if (!name_buf) { 756 err = -ENOMEM; 757 goto out; 758 } 759 } 760 if (path) { 761 name = d_path(path, name_buf, name_buf_sz); 762 if (IS_ERR(name)) { 763 err = PTR_ERR(name); 764 goto out; 765 } 766 name_sz = name_buf + name_buf_sz - name; 767 } else if (name || name_fmt) { 768 name_sz = 1 + snprintf(name_buf, name_buf_sz, name_fmt ?: "%s", name); 769 name = name_buf; 770 } 771 if (name_sz > name_buf_sz) { 772 err = -ENAMETOOLONG; 773 goto out; 774 } 775 karg.vma_name_size = name_sz; 776 } 777 778 /* unlock vma or mmap_lock, and put mm_struct before copying data to user */ 779 query_vma_teardown(&lock_ctx); 780 mmput(mm); 781 782 if (karg.vma_name_size && copy_to_user(u64_to_user_ptr(karg.vma_name_addr), 783 name, karg.vma_name_size)) { 784 kfree(name_buf); 785 return -EFAULT; 786 } 787 kfree(name_buf); 788 789 if (karg.build_id_size && copy_to_user(u64_to_user_ptr(karg.build_id_addr), 790 build_id_buf, karg.build_id_size)) 791 return -EFAULT; 792 793 if (copy_to_user(uarg, &karg, min_t(size_t, sizeof(karg), usize))) 794 return -EFAULT; 795 796 return 0; 797 798 out: 799 query_vma_teardown(&lock_ctx); 800 mmput(mm); 801 kfree(name_buf); 802 return err; 803 } 804 805 static long procfs_procmap_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 806 { 807 struct seq_file *seq = file->private_data; 808 struct proc_maps_private *priv = seq->private; 809 810 switch (cmd) { 811 case PROCMAP_QUERY: 812 /* priv->lock_ctx.mm is set during file open operation */ 813 return do_procmap_query(priv->lock_ctx.mm, (void __user *)arg); 814 default: 815 return -ENOIOCTLCMD; 816 } 817 } 818 819 const struct file_operations proc_pid_maps_operations = { 820 .open = pid_maps_open, 821 .read = seq_read, 822 .llseek = seq_lseek, 823 .release = proc_map_release, 824 .unlocked_ioctl = procfs_procmap_ioctl, 825 .compat_ioctl = compat_ptr_ioctl, 826 }; 827 828 /* 829 * Proportional Set Size(PSS): my share of RSS. 830 * 831 * PSS of a process is the count of pages it has in memory, where each 832 * page is divided by the number of processes sharing it. So if a 833 * process has 1000 pages all to itself, and 1000 shared with one other 834 * process, its PSS will be 1500. 835 * 836 * To keep (accumulated) division errors low, we adopt a 64bit 837 * fixed-point pss counter to minimize division errors. So (pss >> 838 * PSS_SHIFT) would be the real byte count. 839 * 840 * A shift of 12 before division means (assuming 4K page size): 841 * - 1M 3-user-pages add up to 8KB errors; 842 * - supports mapcount up to 2^24, or 16M; 843 * - supports PSS up to 2^52 bytes, or 4PB. 844 */ 845 #define PSS_SHIFT 12 846 847 #ifdef CONFIG_PROC_PAGE_MONITOR 848 struct mem_size_stats { 849 unsigned long resident; 850 unsigned long shared_clean; 851 unsigned long shared_dirty; 852 unsigned long private_clean; 853 unsigned long private_dirty; 854 unsigned long referenced; 855 unsigned long anonymous; 856 unsigned long lazyfree; 857 unsigned long anonymous_thp; 858 unsigned long shmem_thp; 859 unsigned long file_thp; 860 unsigned long swap; 861 unsigned long shared_hugetlb; 862 unsigned long private_hugetlb; 863 unsigned long ksm; 864 u64 pss; 865 u64 pss_anon; 866 u64 pss_file; 867 u64 pss_shmem; 868 u64 pss_dirty; 869 u64 pss_locked; 870 u64 swap_pss; 871 }; 872 873 static void smaps_page_accumulate(struct mem_size_stats *mss, 874 struct folio *folio, unsigned long size, unsigned long pss, 875 bool dirty, bool locked, bool private) 876 { 877 mss->pss += pss; 878 879 if (folio_test_anon(folio)) 880 mss->pss_anon += pss; 881 else if (folio_test_swapbacked(folio)) 882 mss->pss_shmem += pss; 883 else 884 mss->pss_file += pss; 885 886 if (locked) 887 mss->pss_locked += pss; 888 889 if (dirty || folio_test_dirty(folio)) { 890 mss->pss_dirty += pss; 891 if (private) 892 mss->private_dirty += size; 893 else 894 mss->shared_dirty += size; 895 } else { 896 if (private) 897 mss->private_clean += size; 898 else 899 mss->shared_clean += size; 900 } 901 } 902 903 static void smaps_account(struct mem_size_stats *mss, struct page *page, 904 bool compound, bool young, bool dirty, bool locked, 905 bool present) 906 { 907 struct folio *folio = page_folio(page); 908 int i, nr = compound ? compound_nr(page) : 1; 909 unsigned long size = nr * PAGE_SIZE; 910 bool exclusive; 911 int mapcount; 912 913 /* 914 * First accumulate quantities that depend only on |size| and the type 915 * of the compound page. 916 */ 917 if (folio_test_anon(folio)) { 918 mss->anonymous += size; 919 if (!folio_test_swapbacked(folio) && !dirty && 920 !folio_test_dirty(folio)) 921 mss->lazyfree += size; 922 } 923 924 if (folio_test_ksm(folio)) 925 mss->ksm += size; 926 927 mss->resident += size; 928 /* Accumulate the size in pages that have been accessed. */ 929 if (young || folio_test_young(folio) || folio_test_referenced(folio)) 930 mss->referenced += size; 931 932 /* 933 * Then accumulate quantities that may depend on sharing, or that may 934 * differ page-by-page. 935 * 936 * refcount == 1 for present entries guarantees that the folio is mapped 937 * exactly once. For large folios this implies that exactly one 938 * PTE/PMD/... maps (a part of) this folio. 939 * 940 * Treat all non-present entries (where relying on the mapcount and 941 * refcount doesn't make sense) as "maybe shared, but not sure how 942 * often". We treat device private entries as being fake-present. 943 * 944 * Note that it would not be safe to read the mapcount especially for 945 * pages referenced by migration entries, even with the PTL held. 946 */ 947 if (folio_ref_count(folio) == 1 || !present) { 948 smaps_page_accumulate(mss, folio, size, size << PSS_SHIFT, 949 dirty, locked, present); 950 return; 951 } 952 953 if (IS_ENABLED(CONFIG_NO_PAGE_MAPCOUNT)) { 954 mapcount = folio_average_page_mapcount(folio); 955 exclusive = !folio_maybe_mapped_shared(folio); 956 } 957 958 /* 959 * We obtain a snapshot of the mapcount. Without holding the folio lock 960 * this snapshot can be slightly wrong as we cannot always read the 961 * mapcount atomically. 962 */ 963 for (i = 0; i < nr; i++, page++) { 964 unsigned long pss = PAGE_SIZE << PSS_SHIFT; 965 966 if (IS_ENABLED(CONFIG_PAGE_MAPCOUNT)) { 967 mapcount = folio_precise_page_mapcount(folio, page); 968 exclusive = mapcount < 2; 969 } 970 971 if (mapcount >= 2) 972 pss /= mapcount; 973 smaps_page_accumulate(mss, folio, PAGE_SIZE, pss, 974 dirty, locked, exclusive); 975 } 976 } 977 978 #ifdef CONFIG_SHMEM 979 static int smaps_pte_hole(unsigned long addr, unsigned long end, 980 __always_unused int depth, struct mm_walk *walk) 981 { 982 struct mem_size_stats *mss = walk->private; 983 struct vm_area_struct *vma = walk->vma; 984 985 mss->swap += shmem_partial_swap_usage(walk->vma->vm_file->f_mapping, 986 linear_page_index(vma, addr), 987 linear_page_index(vma, end)); 988 989 return 0; 990 } 991 #else 992 #define smaps_pte_hole NULL 993 #endif /* CONFIG_SHMEM */ 994 995 static void smaps_pte_hole_lookup(unsigned long addr, struct mm_walk *walk) 996 { 997 #ifdef CONFIG_SHMEM 998 if (walk->ops->pte_hole) { 999 /* depth is not used */ 1000 smaps_pte_hole(addr, addr + PAGE_SIZE, 0, walk); 1001 } 1002 #endif 1003 } 1004 1005 static void smaps_pte_entry(pte_t *pte, unsigned long addr, 1006 struct mm_walk *walk) 1007 { 1008 struct mem_size_stats *mss = walk->private; 1009 struct vm_area_struct *vma = walk->vma; 1010 bool locked = !!(vma->vm_flags & VM_LOCKED); 1011 struct page *page = NULL; 1012 bool present = false, young = false, dirty = false; 1013 pte_t ptent = ptep_get(pte); 1014 1015 if (pte_present(ptent)) { 1016 page = vm_normal_page(vma, addr, ptent); 1017 young = pte_young(ptent); 1018 dirty = pte_dirty(ptent); 1019 present = true; 1020 } else if (pte_none(ptent)) { 1021 smaps_pte_hole_lookup(addr, walk); 1022 } else { 1023 const softleaf_t entry = softleaf_from_pte(ptent); 1024 1025 if (softleaf_is_swap(entry)) { 1026 int mapcount; 1027 1028 mss->swap += PAGE_SIZE; 1029 mapcount = swp_swapcount(entry); 1030 if (mapcount >= 2) { 1031 u64 pss_delta = (u64)PAGE_SIZE << PSS_SHIFT; 1032 1033 do_div(pss_delta, mapcount); 1034 mss->swap_pss += pss_delta; 1035 } else { 1036 mss->swap_pss += (u64)PAGE_SIZE << PSS_SHIFT; 1037 } 1038 } else if (softleaf_has_pfn(entry)) { 1039 if (softleaf_is_device_private(entry)) 1040 present = true; 1041 page = softleaf_to_page(entry); 1042 } 1043 } 1044 1045 if (!page) 1046 return; 1047 1048 smaps_account(mss, page, false, young, dirty, locked, present); 1049 } 1050 1051 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1052 static void smaps_pmd_entry(pmd_t *pmd, unsigned long addr, 1053 struct mm_walk *walk) 1054 { 1055 struct mem_size_stats *mss = walk->private; 1056 struct vm_area_struct *vma = walk->vma; 1057 bool locked = !!(vma->vm_flags & VM_LOCKED); 1058 struct page *page = NULL; 1059 bool present = false; 1060 struct folio *folio; 1061 1062 if (pmd_none(*pmd)) 1063 return; 1064 if (pmd_present(*pmd)) { 1065 page = vm_normal_page_pmd(vma, addr, *pmd); 1066 present = true; 1067 } else if (unlikely(thp_migration_supported())) { 1068 const softleaf_t entry = softleaf_from_pmd(*pmd); 1069 1070 if (softleaf_has_pfn(entry)) 1071 page = softleaf_to_page(entry); 1072 } 1073 if (IS_ERR_OR_NULL(page)) 1074 return; 1075 folio = page_folio(page); 1076 if (folio_test_anon(folio)) 1077 mss->anonymous_thp += HPAGE_PMD_SIZE; 1078 else if (folio_test_swapbacked(folio)) 1079 mss->shmem_thp += HPAGE_PMD_SIZE; 1080 else if (folio_is_zone_device(folio)) 1081 /* pass */; 1082 else 1083 mss->file_thp += HPAGE_PMD_SIZE; 1084 1085 smaps_account(mss, page, true, pmd_young(*pmd), pmd_dirty(*pmd), 1086 locked, present); 1087 } 1088 #else 1089 static void smaps_pmd_entry(pmd_t *pmd, unsigned long addr, 1090 struct mm_walk *walk) 1091 { 1092 } 1093 #endif 1094 1095 static int smaps_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end, 1096 struct mm_walk *walk) 1097 { 1098 struct vm_area_struct *vma = walk->vma; 1099 pte_t *pte; 1100 spinlock_t *ptl; 1101 1102 ptl = pmd_trans_huge_lock(pmd, vma); 1103 if (ptl) { 1104 smaps_pmd_entry(pmd, addr, walk); 1105 spin_unlock(ptl); 1106 goto out; 1107 } 1108 1109 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl); 1110 if (!pte) { 1111 walk->action = ACTION_AGAIN; 1112 return 0; 1113 } 1114 for (; addr != end; pte++, addr += PAGE_SIZE) 1115 smaps_pte_entry(pte, addr, walk); 1116 pte_unmap_unlock(pte - 1, ptl); 1117 out: 1118 cond_resched(); 1119 return 0; 1120 } 1121 1122 static void show_smap_vma_flags(struct seq_file *m, struct vm_area_struct *vma) 1123 { 1124 /* 1125 * Don't forget to update Documentation/ on changes. 1126 * 1127 * The length of the second argument of mnemonics[] 1128 * needs to be 3 instead of previously set 2 1129 * (i.e. from [BITS_PER_LONG][2] to [BITS_PER_LONG][3]) 1130 * to avoid spurious 1131 * -Werror=unterminated-string-initialization warning 1132 * with GCC 15 1133 */ 1134 static const char mnemonics[BITS_PER_LONG][3] = { 1135 /* 1136 * In case if we meet a flag we don't know about. 1137 */ 1138 [0 ... (BITS_PER_LONG-1)] = "??", 1139 1140 [ilog2(VM_READ)] = "rd", 1141 [ilog2(VM_WRITE)] = "wr", 1142 [ilog2(VM_EXEC)] = "ex", 1143 [ilog2(VM_SHARED)] = "sh", 1144 [ilog2(VM_MAYREAD)] = "mr", 1145 [ilog2(VM_MAYWRITE)] = "mw", 1146 [ilog2(VM_MAYEXEC)] = "me", 1147 [ilog2(VM_MAYSHARE)] = "ms", 1148 [ilog2(VM_GROWSDOWN)] = "gd", 1149 [ilog2(VM_PFNMAP)] = "pf", 1150 [ilog2(VM_MAYBE_GUARD)] = "gu", 1151 [ilog2(VM_LOCKED)] = "lo", 1152 [ilog2(VM_IO)] = "io", 1153 [ilog2(VM_SEQ_READ)] = "sr", 1154 [ilog2(VM_RAND_READ)] = "rr", 1155 [ilog2(VM_DONTCOPY)] = "dc", 1156 [ilog2(VM_DONTEXPAND)] = "de", 1157 [ilog2(VM_LOCKONFAULT)] = "lf", 1158 [ilog2(VM_ACCOUNT)] = "ac", 1159 [ilog2(VM_NORESERVE)] = "nr", 1160 [ilog2(VM_HUGETLB)] = "ht", 1161 [ilog2(VM_SYNC)] = "sf", 1162 [ilog2(VM_ARCH_1)] = "ar", 1163 [ilog2(VM_WIPEONFORK)] = "wf", 1164 [ilog2(VM_DONTDUMP)] = "dd", 1165 #ifdef CONFIG_ARM64_BTI 1166 [ilog2(VM_ARM64_BTI)] = "bt", 1167 #endif 1168 #ifdef CONFIG_MEM_SOFT_DIRTY 1169 [ilog2(VM_SOFTDIRTY)] = "sd", 1170 #endif 1171 [ilog2(VM_MIXEDMAP)] = "mm", 1172 [ilog2(VM_HUGEPAGE)] = "hg", 1173 [ilog2(VM_NOHUGEPAGE)] = "nh", 1174 [ilog2(VM_MERGEABLE)] = "mg", 1175 [ilog2(VM_UFFD_MISSING)]= "um", 1176 [ilog2(VM_UFFD_WP)] = "uw", 1177 #ifdef CONFIG_ARM64_MTE 1178 [ilog2(VM_MTE)] = "mt", 1179 [ilog2(VM_MTE_ALLOWED)] = "", 1180 #endif 1181 #ifdef CONFIG_ARCH_HAS_PKEYS 1182 /* These come out via ProtectionKey: */ 1183 [ilog2(VM_PKEY_BIT0)] = "", 1184 [ilog2(VM_PKEY_BIT1)] = "", 1185 [ilog2(VM_PKEY_BIT2)] = "", 1186 #if CONFIG_ARCH_PKEY_BITS > 3 1187 [ilog2(VM_PKEY_BIT3)] = "", 1188 #endif 1189 #if CONFIG_ARCH_PKEY_BITS > 4 1190 [ilog2(VM_PKEY_BIT4)] = "", 1191 #endif 1192 #endif /* CONFIG_ARCH_HAS_PKEYS */ 1193 #ifdef CONFIG_HAVE_ARCH_USERFAULTFD_MINOR 1194 [ilog2(VM_UFFD_MINOR)] = "ui", 1195 #endif /* CONFIG_HAVE_ARCH_USERFAULTFD_MINOR */ 1196 #ifdef CONFIG_ARCH_HAS_USER_SHADOW_STACK 1197 [ilog2(VM_SHADOW_STACK)] = "ss", 1198 #endif 1199 #if defined(CONFIG_64BIT) || defined(CONFIG_PPC32) 1200 [ilog2(VM_DROPPABLE)] = "dp", 1201 #endif 1202 #ifdef CONFIG_64BIT 1203 [ilog2(VM_SEALED)] = "sl", 1204 #endif 1205 }; 1206 size_t i; 1207 1208 seq_puts(m, "VmFlags: "); 1209 for (i = 0; i < BITS_PER_LONG; i++) { 1210 if (!mnemonics[i][0]) 1211 continue; 1212 if (vma->vm_flags & (1UL << i)) 1213 seq_printf(m, "%s ", mnemonics[i]); 1214 } 1215 seq_putc(m, '\n'); 1216 } 1217 1218 #ifdef CONFIG_HUGETLB_PAGE 1219 static int smaps_hugetlb_range(pte_t *pte, unsigned long hmask, 1220 unsigned long addr, unsigned long end, 1221 struct mm_walk *walk) 1222 { 1223 struct mem_size_stats *mss = walk->private; 1224 struct vm_area_struct *vma = walk->vma; 1225 struct folio *folio = NULL; 1226 bool present = false; 1227 spinlock_t *ptl; 1228 pte_t ptent; 1229 1230 ptl = huge_pte_lock(hstate_vma(vma), walk->mm, pte); 1231 ptent = huge_ptep_get(walk->mm, addr, pte); 1232 if (pte_present(ptent)) { 1233 folio = page_folio(pte_page(ptent)); 1234 present = true; 1235 } else { 1236 const softleaf_t entry = softleaf_from_pte(ptent); 1237 1238 if (softleaf_has_pfn(entry)) 1239 folio = softleaf_to_folio(entry); 1240 } 1241 1242 if (folio) { 1243 /* We treat non-present entries as "maybe shared". */ 1244 if (!present || folio_maybe_mapped_shared(folio) || 1245 hugetlb_pmd_shared(pte)) 1246 mss->shared_hugetlb += huge_page_size(hstate_vma(vma)); 1247 else 1248 mss->private_hugetlb += huge_page_size(hstate_vma(vma)); 1249 } 1250 spin_unlock(ptl); 1251 return 0; 1252 } 1253 #else 1254 #define smaps_hugetlb_range NULL 1255 #endif /* HUGETLB_PAGE */ 1256 1257 static const struct mm_walk_ops smaps_walk_ops = { 1258 .pmd_entry = smaps_pte_range, 1259 .hugetlb_entry = smaps_hugetlb_range, 1260 .walk_lock = PGWALK_RDLOCK, 1261 }; 1262 1263 static const struct mm_walk_ops smaps_shmem_walk_ops = { 1264 .pmd_entry = smaps_pte_range, 1265 .hugetlb_entry = smaps_hugetlb_range, 1266 .pte_hole = smaps_pte_hole, 1267 .walk_lock = PGWALK_RDLOCK, 1268 }; 1269 1270 /* 1271 * Gather mem stats from @vma with the indicated beginning 1272 * address @start, and keep them in @mss. 1273 * 1274 * Use vm_start of @vma as the beginning address if @start is 0. 1275 */ 1276 static void smap_gather_stats(struct vm_area_struct *vma, 1277 struct mem_size_stats *mss, unsigned long start) 1278 { 1279 const struct mm_walk_ops *ops = &smaps_walk_ops; 1280 1281 /* Invalid start */ 1282 if (start >= vma->vm_end) 1283 return; 1284 1285 if (vma->vm_file && shmem_mapping(vma->vm_file->f_mapping)) { 1286 /* 1287 * For shared or readonly shmem mappings we know that all 1288 * swapped out pages belong to the shmem object, and we can 1289 * obtain the swap value much more efficiently. For private 1290 * writable mappings, we might have COW pages that are 1291 * not affected by the parent swapped out pages of the shmem 1292 * object, so we have to distinguish them during the page walk. 1293 * Unless we know that the shmem object (or the part mapped by 1294 * our VMA) has no swapped out pages at all. 1295 */ 1296 unsigned long shmem_swapped = shmem_swap_usage(vma); 1297 1298 if (!start && (!shmem_swapped || (vma->vm_flags & VM_SHARED) || 1299 !(vma->vm_flags & VM_WRITE))) { 1300 mss->swap += shmem_swapped; 1301 } else { 1302 ops = &smaps_shmem_walk_ops; 1303 } 1304 } 1305 1306 /* mmap_lock is held in m_start */ 1307 if (!start) 1308 walk_page_vma(vma, ops, mss); 1309 else 1310 walk_page_range(vma->vm_mm, start, vma->vm_end, ops, mss); 1311 } 1312 1313 #define SEQ_PUT_DEC(str, val) \ 1314 seq_put_decimal_ull_width(m, str, (val) >> 10, 8) 1315 1316 /* Show the contents common for smaps and smaps_rollup */ 1317 static void __show_smap(struct seq_file *m, const struct mem_size_stats *mss, 1318 bool rollup_mode) 1319 { 1320 SEQ_PUT_DEC("Rss: ", mss->resident); 1321 SEQ_PUT_DEC(" kB\nPss: ", mss->pss >> PSS_SHIFT); 1322 SEQ_PUT_DEC(" kB\nPss_Dirty: ", mss->pss_dirty >> PSS_SHIFT); 1323 if (rollup_mode) { 1324 /* 1325 * These are meaningful only for smaps_rollup, otherwise two of 1326 * them are zero, and the other one is the same as Pss. 1327 */ 1328 SEQ_PUT_DEC(" kB\nPss_Anon: ", 1329 mss->pss_anon >> PSS_SHIFT); 1330 SEQ_PUT_DEC(" kB\nPss_File: ", 1331 mss->pss_file >> PSS_SHIFT); 1332 SEQ_PUT_DEC(" kB\nPss_Shmem: ", 1333 mss->pss_shmem >> PSS_SHIFT); 1334 } 1335 SEQ_PUT_DEC(" kB\nShared_Clean: ", mss->shared_clean); 1336 SEQ_PUT_DEC(" kB\nShared_Dirty: ", mss->shared_dirty); 1337 SEQ_PUT_DEC(" kB\nPrivate_Clean: ", mss->private_clean); 1338 SEQ_PUT_DEC(" kB\nPrivate_Dirty: ", mss->private_dirty); 1339 SEQ_PUT_DEC(" kB\nReferenced: ", mss->referenced); 1340 SEQ_PUT_DEC(" kB\nAnonymous: ", mss->anonymous); 1341 SEQ_PUT_DEC(" kB\nKSM: ", mss->ksm); 1342 SEQ_PUT_DEC(" kB\nLazyFree: ", mss->lazyfree); 1343 SEQ_PUT_DEC(" kB\nAnonHugePages: ", mss->anonymous_thp); 1344 SEQ_PUT_DEC(" kB\nShmemPmdMapped: ", mss->shmem_thp); 1345 SEQ_PUT_DEC(" kB\nFilePmdMapped: ", mss->file_thp); 1346 SEQ_PUT_DEC(" kB\nShared_Hugetlb: ", mss->shared_hugetlb); 1347 seq_put_decimal_ull_width(m, " kB\nPrivate_Hugetlb: ", 1348 mss->private_hugetlb >> 10, 7); 1349 SEQ_PUT_DEC(" kB\nSwap: ", mss->swap); 1350 SEQ_PUT_DEC(" kB\nSwapPss: ", 1351 mss->swap_pss >> PSS_SHIFT); 1352 SEQ_PUT_DEC(" kB\nLocked: ", 1353 mss->pss_locked >> PSS_SHIFT); 1354 seq_puts(m, " kB\n"); 1355 } 1356 1357 static int show_smap(struct seq_file *m, void *v) 1358 { 1359 struct vm_area_struct *vma = v; 1360 struct mem_size_stats mss = {}; 1361 1362 smap_gather_stats(vma, &mss, 0); 1363 1364 show_map_vma(m, vma); 1365 1366 SEQ_PUT_DEC("Size: ", vma->vm_end - vma->vm_start); 1367 SEQ_PUT_DEC(" kB\nKernelPageSize: ", vma_kernel_pagesize(vma)); 1368 SEQ_PUT_DEC(" kB\nMMUPageSize: ", vma_mmu_pagesize(vma)); 1369 seq_puts(m, " kB\n"); 1370 1371 __show_smap(m, &mss, false); 1372 1373 seq_printf(m, "THPeligible: %8u\n", 1374 !!thp_vma_allowable_orders(vma, vma->vm_flags, TVA_SMAPS, 1375 THP_ORDERS_ALL)); 1376 1377 if (arch_pkeys_enabled()) 1378 seq_printf(m, "ProtectionKey: %8u\n", vma_pkey(vma)); 1379 show_smap_vma_flags(m, vma); 1380 1381 return 0; 1382 } 1383 1384 static int show_smaps_rollup(struct seq_file *m, void *v) 1385 { 1386 struct proc_maps_private *priv = m->private; 1387 struct mem_size_stats mss = {}; 1388 struct mm_struct *mm = priv->lock_ctx.mm; 1389 struct vm_area_struct *vma; 1390 unsigned long vma_start = 0, last_vma_end = 0; 1391 int ret = 0; 1392 VMA_ITERATOR(vmi, mm, 0); 1393 1394 priv->task = get_proc_task(priv->inode); 1395 if (!priv->task) 1396 return -ESRCH; 1397 1398 if (!mm || !mmget_not_zero(mm)) { 1399 ret = -ESRCH; 1400 goto out_put_task; 1401 } 1402 1403 ret = mmap_read_lock_killable(mm); 1404 if (ret) 1405 goto out_put_mm; 1406 1407 hold_task_mempolicy(priv); 1408 vma = vma_next(&vmi); 1409 1410 if (unlikely(!vma)) 1411 goto empty_set; 1412 1413 vma_start = vma->vm_start; 1414 do { 1415 smap_gather_stats(vma, &mss, 0); 1416 last_vma_end = vma->vm_end; 1417 1418 /* 1419 * Release mmap_lock temporarily if someone wants to 1420 * access it for write request. 1421 */ 1422 if (mmap_lock_is_contended(mm)) { 1423 vma_iter_invalidate(&vmi); 1424 mmap_read_unlock(mm); 1425 ret = mmap_read_lock_killable(mm); 1426 if (ret) { 1427 release_task_mempolicy(priv); 1428 goto out_put_mm; 1429 } 1430 1431 /* 1432 * After dropping the lock, there are four cases to 1433 * consider. See the following example for explanation. 1434 * 1435 * +------+------+-----------+ 1436 * | VMA1 | VMA2 | VMA3 | 1437 * +------+------+-----------+ 1438 * | | | | 1439 * 4k 8k 16k 400k 1440 * 1441 * Suppose we drop the lock after reading VMA2 due to 1442 * contention, then we get: 1443 * 1444 * last_vma_end = 16k 1445 * 1446 * 1) VMA2 is freed, but VMA3 exists: 1447 * 1448 * vma_next(vmi) will return VMA3. 1449 * In this case, just continue from VMA3. 1450 * 1451 * 2) VMA2 still exists: 1452 * 1453 * vma_next(vmi) will return VMA3. 1454 * In this case, just continue from VMA3. 1455 * 1456 * 3) No more VMAs can be found: 1457 * 1458 * vma_next(vmi) will return NULL. 1459 * No more things to do, just break. 1460 * 1461 * 4) (last_vma_end - 1) is the middle of a vma (VMA'): 1462 * 1463 * vma_next(vmi) will return VMA' whose range 1464 * contains last_vma_end. 1465 * Iterate VMA' from last_vma_end. 1466 */ 1467 vma = vma_next(&vmi); 1468 /* Case 3 above */ 1469 if (!vma) 1470 break; 1471 1472 /* Case 1 and 2 above */ 1473 if (vma->vm_start >= last_vma_end) { 1474 smap_gather_stats(vma, &mss, 0); 1475 last_vma_end = vma->vm_end; 1476 continue; 1477 } 1478 1479 /* Case 4 above */ 1480 if (vma->vm_end > last_vma_end) { 1481 smap_gather_stats(vma, &mss, last_vma_end); 1482 last_vma_end = vma->vm_end; 1483 } 1484 } 1485 } for_each_vma(vmi, vma); 1486 1487 empty_set: 1488 show_vma_header_prefix(m, vma_start, last_vma_end, 0, 0, 0, 0); 1489 seq_pad(m, ' '); 1490 seq_puts(m, "[rollup]\n"); 1491 1492 __show_smap(m, &mss, true); 1493 1494 release_task_mempolicy(priv); 1495 mmap_read_unlock(mm); 1496 1497 out_put_mm: 1498 mmput(mm); 1499 out_put_task: 1500 put_task_struct(priv->task); 1501 priv->task = NULL; 1502 1503 return ret; 1504 } 1505 #undef SEQ_PUT_DEC 1506 1507 static const struct seq_operations proc_pid_smaps_op = { 1508 .start = m_start, 1509 .next = m_next, 1510 .stop = m_stop, 1511 .show = show_smap 1512 }; 1513 1514 static int pid_smaps_open(struct inode *inode, struct file *file) 1515 { 1516 return do_maps_open(inode, file, &proc_pid_smaps_op); 1517 } 1518 1519 static int smaps_rollup_open(struct inode *inode, struct file *file) 1520 { 1521 int ret; 1522 struct proc_maps_private *priv; 1523 1524 priv = kzalloc(sizeof(*priv), GFP_KERNEL_ACCOUNT); 1525 if (!priv) 1526 return -ENOMEM; 1527 1528 ret = single_open(file, show_smaps_rollup, priv); 1529 if (ret) 1530 goto out_free; 1531 1532 priv->inode = inode; 1533 priv->lock_ctx.mm = proc_mem_open(inode, PTRACE_MODE_READ); 1534 if (IS_ERR_OR_NULL(priv->lock_ctx.mm)) { 1535 ret = priv->lock_ctx.mm ? PTR_ERR(priv->lock_ctx.mm) : -ESRCH; 1536 1537 single_release(inode, file); 1538 goto out_free; 1539 } 1540 1541 return 0; 1542 1543 out_free: 1544 kfree(priv); 1545 return ret; 1546 } 1547 1548 static int smaps_rollup_release(struct inode *inode, struct file *file) 1549 { 1550 struct seq_file *seq = file->private_data; 1551 struct proc_maps_private *priv = seq->private; 1552 1553 if (priv->lock_ctx.mm) 1554 mmdrop(priv->lock_ctx.mm); 1555 1556 kfree(priv); 1557 return single_release(inode, file); 1558 } 1559 1560 const struct file_operations proc_pid_smaps_operations = { 1561 .open = pid_smaps_open, 1562 .read = seq_read, 1563 .llseek = seq_lseek, 1564 .release = proc_map_release, 1565 }; 1566 1567 const struct file_operations proc_pid_smaps_rollup_operations = { 1568 .open = smaps_rollup_open, 1569 .read = seq_read, 1570 .llseek = seq_lseek, 1571 .release = smaps_rollup_release, 1572 }; 1573 1574 enum clear_refs_types { 1575 CLEAR_REFS_ALL = 1, 1576 CLEAR_REFS_ANON, 1577 CLEAR_REFS_MAPPED, 1578 CLEAR_REFS_SOFT_DIRTY, 1579 CLEAR_REFS_MM_HIWATER_RSS, 1580 CLEAR_REFS_LAST, 1581 }; 1582 1583 struct clear_refs_private { 1584 enum clear_refs_types type; 1585 }; 1586 1587 static inline bool pte_is_pinned(struct vm_area_struct *vma, unsigned long addr, pte_t pte) 1588 { 1589 struct folio *folio; 1590 1591 if (!pte_write(pte)) 1592 return false; 1593 if (!is_cow_mapping(vma->vm_flags)) 1594 return false; 1595 if (likely(!mm_flags_test(MMF_HAS_PINNED, vma->vm_mm))) 1596 return false; 1597 folio = vm_normal_folio(vma, addr, pte); 1598 if (!folio) 1599 return false; 1600 return folio_maybe_dma_pinned(folio); 1601 } 1602 1603 static inline void clear_soft_dirty(struct vm_area_struct *vma, 1604 unsigned long addr, pte_t *pte) 1605 { 1606 if (!pgtable_supports_soft_dirty()) 1607 return; 1608 /* 1609 * The soft-dirty tracker uses #PF-s to catch writes 1610 * to pages, so write-protect the pte as well. See the 1611 * Documentation/admin-guide/mm/soft-dirty.rst for full description 1612 * of how soft-dirty works. 1613 */ 1614 pte_t ptent = ptep_get(pte); 1615 1616 if (pte_none(ptent)) 1617 return; 1618 1619 if (pte_present(ptent)) { 1620 pte_t old_pte; 1621 1622 if (pte_is_pinned(vma, addr, ptent)) 1623 return; 1624 old_pte = ptep_modify_prot_start(vma, addr, pte); 1625 ptent = pte_wrprotect(old_pte); 1626 ptent = pte_clear_soft_dirty(ptent); 1627 ptep_modify_prot_commit(vma, addr, pte, old_pte, ptent); 1628 } else { 1629 ptent = pte_swp_clear_soft_dirty(ptent); 1630 set_pte_at(vma->vm_mm, addr, pte, ptent); 1631 } 1632 } 1633 1634 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) 1635 static inline void clear_soft_dirty_pmd(struct vm_area_struct *vma, 1636 unsigned long addr, pmd_t *pmdp) 1637 { 1638 pmd_t old, pmd = *pmdp; 1639 1640 if (!pgtable_supports_soft_dirty()) 1641 return; 1642 1643 if (pmd_present(pmd)) { 1644 /* See comment in change_huge_pmd() */ 1645 old = pmdp_invalidate(vma, addr, pmdp); 1646 if (pmd_dirty(old)) 1647 pmd = pmd_mkdirty(pmd); 1648 if (pmd_young(old)) 1649 pmd = pmd_mkyoung(pmd); 1650 1651 pmd = pmd_wrprotect(pmd); 1652 pmd = pmd_clear_soft_dirty(pmd); 1653 1654 set_pmd_at(vma->vm_mm, addr, pmdp, pmd); 1655 } else if (pmd_is_migration_entry(pmd)) { 1656 pmd = pmd_swp_clear_soft_dirty(pmd); 1657 set_pmd_at(vma->vm_mm, addr, pmdp, pmd); 1658 } 1659 } 1660 #else 1661 static inline void clear_soft_dirty_pmd(struct vm_area_struct *vma, 1662 unsigned long addr, pmd_t *pmdp) 1663 { 1664 } 1665 #endif 1666 1667 static int clear_refs_pte_range(pmd_t *pmd, unsigned long addr, 1668 unsigned long end, struct mm_walk *walk) 1669 { 1670 struct clear_refs_private *cp = walk->private; 1671 struct vm_area_struct *vma = walk->vma; 1672 pte_t *pte, ptent; 1673 spinlock_t *ptl; 1674 struct folio *folio; 1675 1676 ptl = pmd_trans_huge_lock(pmd, vma); 1677 if (ptl) { 1678 if (cp->type == CLEAR_REFS_SOFT_DIRTY) { 1679 clear_soft_dirty_pmd(vma, addr, pmd); 1680 goto out; 1681 } 1682 1683 if (!pmd_present(*pmd)) 1684 goto out; 1685 1686 folio = pmd_folio(*pmd); 1687 1688 /* Clear accessed and referenced bits. */ 1689 pmdp_test_and_clear_young(vma, addr, pmd); 1690 folio_test_clear_young(folio); 1691 folio_clear_referenced(folio); 1692 out: 1693 spin_unlock(ptl); 1694 return 0; 1695 } 1696 1697 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl); 1698 if (!pte) { 1699 walk->action = ACTION_AGAIN; 1700 return 0; 1701 } 1702 for (; addr != end; pte++, addr += PAGE_SIZE) { 1703 ptent = ptep_get(pte); 1704 1705 if (cp->type == CLEAR_REFS_SOFT_DIRTY) { 1706 clear_soft_dirty(vma, addr, pte); 1707 continue; 1708 } 1709 1710 if (!pte_present(ptent)) 1711 continue; 1712 1713 folio = vm_normal_folio(vma, addr, ptent); 1714 if (!folio) 1715 continue; 1716 1717 /* Clear accessed and referenced bits. */ 1718 ptep_test_and_clear_young(vma, addr, pte); 1719 folio_test_clear_young(folio); 1720 folio_clear_referenced(folio); 1721 } 1722 pte_unmap_unlock(pte - 1, ptl); 1723 cond_resched(); 1724 return 0; 1725 } 1726 1727 static int clear_refs_test_walk(unsigned long start, unsigned long end, 1728 struct mm_walk *walk) 1729 { 1730 struct clear_refs_private *cp = walk->private; 1731 struct vm_area_struct *vma = walk->vma; 1732 1733 if (vma->vm_flags & VM_PFNMAP) 1734 return 1; 1735 1736 /* 1737 * Writing 1 to /proc/pid/clear_refs affects all pages. 1738 * Writing 2 to /proc/pid/clear_refs only affects anonymous pages. 1739 * Writing 3 to /proc/pid/clear_refs only affects file mapped pages. 1740 * Writing 4 to /proc/pid/clear_refs affects all pages. 1741 */ 1742 if (cp->type == CLEAR_REFS_ANON && vma->vm_file) 1743 return 1; 1744 if (cp->type == CLEAR_REFS_MAPPED && !vma->vm_file) 1745 return 1; 1746 return 0; 1747 } 1748 1749 static const struct mm_walk_ops clear_refs_walk_ops = { 1750 .pmd_entry = clear_refs_pte_range, 1751 .test_walk = clear_refs_test_walk, 1752 .walk_lock = PGWALK_WRLOCK, 1753 }; 1754 1755 static ssize_t clear_refs_write(struct file *file, const char __user *buf, 1756 size_t count, loff_t *ppos) 1757 { 1758 struct task_struct *task; 1759 char buffer[PROC_NUMBUF] = {}; 1760 struct mm_struct *mm; 1761 struct vm_area_struct *vma; 1762 enum clear_refs_types type; 1763 int itype; 1764 int rv; 1765 1766 if (count > sizeof(buffer) - 1) 1767 count = sizeof(buffer) - 1; 1768 if (copy_from_user(buffer, buf, count)) 1769 return -EFAULT; 1770 rv = kstrtoint(strstrip(buffer), 10, &itype); 1771 if (rv < 0) 1772 return rv; 1773 type = (enum clear_refs_types)itype; 1774 if (type < CLEAR_REFS_ALL || type >= CLEAR_REFS_LAST) 1775 return -EINVAL; 1776 1777 task = get_proc_task(file_inode(file)); 1778 if (!task) 1779 return -ESRCH; 1780 mm = get_task_mm(task); 1781 if (mm) { 1782 VMA_ITERATOR(vmi, mm, 0); 1783 struct mmu_notifier_range range; 1784 struct clear_refs_private cp = { 1785 .type = type, 1786 }; 1787 1788 if (mmap_write_lock_killable(mm)) { 1789 count = -EINTR; 1790 goto out_mm; 1791 } 1792 if (type == CLEAR_REFS_MM_HIWATER_RSS) { 1793 /* 1794 * Writing 5 to /proc/pid/clear_refs resets the peak 1795 * resident set size to this mm's current rss value. 1796 */ 1797 reset_mm_hiwater_rss(mm); 1798 goto out_unlock; 1799 } 1800 1801 if (type == CLEAR_REFS_SOFT_DIRTY) { 1802 for_each_vma(vmi, vma) { 1803 if (!(vma->vm_flags & VM_SOFTDIRTY)) 1804 continue; 1805 vm_flags_clear(vma, VM_SOFTDIRTY); 1806 vma_set_page_prot(vma); 1807 } 1808 1809 inc_tlb_flush_pending(mm); 1810 mmu_notifier_range_init(&range, MMU_NOTIFY_SOFT_DIRTY, 1811 0, mm, 0, -1UL); 1812 mmu_notifier_invalidate_range_start(&range); 1813 } 1814 walk_page_range(mm, 0, -1, &clear_refs_walk_ops, &cp); 1815 if (type == CLEAR_REFS_SOFT_DIRTY) { 1816 mmu_notifier_invalidate_range_end(&range); 1817 flush_tlb_mm(mm); 1818 dec_tlb_flush_pending(mm); 1819 } 1820 out_unlock: 1821 mmap_write_unlock(mm); 1822 out_mm: 1823 mmput(mm); 1824 } 1825 put_task_struct(task); 1826 1827 return count; 1828 } 1829 1830 const struct file_operations proc_clear_refs_operations = { 1831 .write = clear_refs_write, 1832 .llseek = noop_llseek, 1833 }; 1834 1835 typedef struct { 1836 u64 pme; 1837 } pagemap_entry_t; 1838 1839 struct pagemapread { 1840 int pos, len; /* units: PM_ENTRY_BYTES, not bytes */ 1841 pagemap_entry_t *buffer; 1842 bool show_pfn; 1843 }; 1844 1845 #define PAGEMAP_WALK_SIZE (PMD_SIZE) 1846 #define PAGEMAP_WALK_MASK (PMD_MASK) 1847 1848 #define PM_ENTRY_BYTES sizeof(pagemap_entry_t) 1849 #define PM_PFRAME_BITS 55 1850 #define PM_PFRAME_MASK GENMASK_ULL(PM_PFRAME_BITS - 1, 0) 1851 #define PM_SOFT_DIRTY BIT_ULL(55) 1852 #define PM_MMAP_EXCLUSIVE BIT_ULL(56) 1853 #define PM_UFFD_WP BIT_ULL(57) 1854 #define PM_GUARD_REGION BIT_ULL(58) 1855 #define PM_FILE BIT_ULL(61) 1856 #define PM_SWAP BIT_ULL(62) 1857 #define PM_PRESENT BIT_ULL(63) 1858 1859 #define PM_END_OF_BUFFER 1 1860 1861 static inline pagemap_entry_t make_pme(u64 frame, u64 flags) 1862 { 1863 return (pagemap_entry_t) { .pme = (frame & PM_PFRAME_MASK) | flags }; 1864 } 1865 1866 static int add_to_pagemap(pagemap_entry_t *pme, struct pagemapread *pm) 1867 { 1868 pm->buffer[pm->pos++] = *pme; 1869 if (pm->pos >= pm->len) 1870 return PM_END_OF_BUFFER; 1871 return 0; 1872 } 1873 1874 static bool __folio_page_mapped_exclusively(struct folio *folio, struct page *page) 1875 { 1876 if (IS_ENABLED(CONFIG_PAGE_MAPCOUNT)) 1877 return folio_precise_page_mapcount(folio, page) == 1; 1878 return !folio_maybe_mapped_shared(folio); 1879 } 1880 1881 static int pagemap_pte_hole(unsigned long start, unsigned long end, 1882 __always_unused int depth, struct mm_walk *walk) 1883 { 1884 struct pagemapread *pm = walk->private; 1885 unsigned long addr = start; 1886 int err = 0; 1887 1888 while (addr < end) { 1889 struct vm_area_struct *vma = find_vma(walk->mm, addr); 1890 pagemap_entry_t pme = make_pme(0, 0); 1891 /* End of address space hole, which we mark as non-present. */ 1892 unsigned long hole_end; 1893 1894 if (vma) 1895 hole_end = min(end, vma->vm_start); 1896 else 1897 hole_end = end; 1898 1899 for (; addr < hole_end; addr += PAGE_SIZE) { 1900 err = add_to_pagemap(&pme, pm); 1901 if (err) 1902 goto out; 1903 } 1904 1905 if (!vma) 1906 break; 1907 1908 /* Addresses in the VMA. */ 1909 if (vma->vm_flags & VM_SOFTDIRTY) 1910 pme = make_pme(0, PM_SOFT_DIRTY); 1911 for (; addr < min(end, vma->vm_end); addr += PAGE_SIZE) { 1912 err = add_to_pagemap(&pme, pm); 1913 if (err) 1914 goto out; 1915 } 1916 } 1917 out: 1918 return err; 1919 } 1920 1921 static pagemap_entry_t pte_to_pagemap_entry(struct pagemapread *pm, 1922 struct vm_area_struct *vma, unsigned long addr, pte_t pte) 1923 { 1924 u64 frame = 0, flags = 0; 1925 struct page *page = NULL; 1926 struct folio *folio; 1927 1928 if (pte_none(pte)) 1929 goto out; 1930 1931 if (pte_present(pte)) { 1932 if (pm->show_pfn) 1933 frame = pte_pfn(pte); 1934 flags |= PM_PRESENT; 1935 page = vm_normal_page(vma, addr, pte); 1936 if (pte_soft_dirty(pte)) 1937 flags |= PM_SOFT_DIRTY; 1938 if (pte_uffd_wp(pte)) 1939 flags |= PM_UFFD_WP; 1940 } else { 1941 softleaf_t entry; 1942 1943 if (pte_swp_soft_dirty(pte)) 1944 flags |= PM_SOFT_DIRTY; 1945 if (pte_swp_uffd_wp(pte)) 1946 flags |= PM_UFFD_WP; 1947 entry = softleaf_from_pte(pte); 1948 if (pm->show_pfn) { 1949 pgoff_t offset; 1950 1951 /* 1952 * For PFN swap offsets, keeping the offset field 1953 * to be PFN only to be compatible with old smaps. 1954 */ 1955 if (softleaf_has_pfn(entry)) 1956 offset = softleaf_to_pfn(entry); 1957 else 1958 offset = swp_offset(entry); 1959 frame = swp_type(entry) | 1960 (offset << MAX_SWAPFILES_SHIFT); 1961 } 1962 flags |= PM_SWAP; 1963 if (softleaf_has_pfn(entry)) 1964 page = softleaf_to_page(entry); 1965 if (softleaf_is_uffd_wp_marker(entry)) 1966 flags |= PM_UFFD_WP; 1967 if (softleaf_is_guard_marker(entry)) 1968 flags |= PM_GUARD_REGION; 1969 } 1970 1971 if (page) { 1972 folio = page_folio(page); 1973 if (!folio_test_anon(folio)) 1974 flags |= PM_FILE; 1975 if ((flags & PM_PRESENT) && 1976 __folio_page_mapped_exclusively(folio, page)) 1977 flags |= PM_MMAP_EXCLUSIVE; 1978 } 1979 1980 out: 1981 if (vma->vm_flags & VM_SOFTDIRTY) 1982 flags |= PM_SOFT_DIRTY; 1983 1984 return make_pme(frame, flags); 1985 } 1986 1987 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1988 static int pagemap_pmd_range_thp(pmd_t *pmdp, unsigned long addr, 1989 unsigned long end, struct vm_area_struct *vma, 1990 struct pagemapread *pm) 1991 { 1992 unsigned int idx = (addr & ~PMD_MASK) >> PAGE_SHIFT; 1993 u64 flags = 0, frame = 0; 1994 pmd_t pmd = *pmdp; 1995 struct page *page = NULL; 1996 struct folio *folio = NULL; 1997 int err = 0; 1998 1999 if (vma->vm_flags & VM_SOFTDIRTY) 2000 flags |= PM_SOFT_DIRTY; 2001 2002 if (pmd_none(pmd)) 2003 goto populate_pagemap; 2004 2005 if (pmd_present(pmd)) { 2006 page = pmd_page(pmd); 2007 2008 flags |= PM_PRESENT; 2009 if (pmd_soft_dirty(pmd)) 2010 flags |= PM_SOFT_DIRTY; 2011 if (pmd_uffd_wp(pmd)) 2012 flags |= PM_UFFD_WP; 2013 if (pm->show_pfn) 2014 frame = pmd_pfn(pmd) + idx; 2015 } else if (thp_migration_supported()) { 2016 const softleaf_t entry = softleaf_from_pmd(pmd); 2017 unsigned long offset; 2018 2019 if (pm->show_pfn) { 2020 if (softleaf_has_pfn(entry)) 2021 offset = softleaf_to_pfn(entry) + idx; 2022 else 2023 offset = swp_offset(entry) + idx; 2024 frame = swp_type(entry) | 2025 (offset << MAX_SWAPFILES_SHIFT); 2026 } 2027 flags |= PM_SWAP; 2028 if (pmd_swp_soft_dirty(pmd)) 2029 flags |= PM_SOFT_DIRTY; 2030 if (pmd_swp_uffd_wp(pmd)) 2031 flags |= PM_UFFD_WP; 2032 VM_WARN_ON_ONCE(!pmd_is_migration_entry(pmd)); 2033 page = softleaf_to_page(entry); 2034 } 2035 2036 if (page) { 2037 folio = page_folio(page); 2038 if (!folio_test_anon(folio)) 2039 flags |= PM_FILE; 2040 } 2041 2042 populate_pagemap: 2043 for (; addr != end; addr += PAGE_SIZE, idx++) { 2044 u64 cur_flags = flags; 2045 pagemap_entry_t pme; 2046 2047 if (folio && (flags & PM_PRESENT) && 2048 __folio_page_mapped_exclusively(folio, page)) 2049 cur_flags |= PM_MMAP_EXCLUSIVE; 2050 2051 pme = make_pme(frame, cur_flags); 2052 err = add_to_pagemap(&pme, pm); 2053 if (err) 2054 break; 2055 if (pm->show_pfn) { 2056 if (flags & PM_PRESENT) 2057 frame++; 2058 else if (flags & PM_SWAP) 2059 frame += (1 << MAX_SWAPFILES_SHIFT); 2060 } 2061 } 2062 return err; 2063 } 2064 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 2065 2066 static int pagemap_pmd_range(pmd_t *pmdp, unsigned long addr, unsigned long end, 2067 struct mm_walk *walk) 2068 { 2069 struct vm_area_struct *vma = walk->vma; 2070 struct pagemapread *pm = walk->private; 2071 spinlock_t *ptl; 2072 pte_t *pte, *orig_pte; 2073 int err = 0; 2074 2075 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 2076 ptl = pmd_trans_huge_lock(pmdp, vma); 2077 if (ptl) { 2078 err = pagemap_pmd_range_thp(pmdp, addr, end, vma, pm); 2079 spin_unlock(ptl); 2080 return err; 2081 } 2082 #endif 2083 2084 /* 2085 * We can assume that @vma always points to a valid one and @end never 2086 * goes beyond vma->vm_end. 2087 */ 2088 orig_pte = pte = pte_offset_map_lock(walk->mm, pmdp, addr, &ptl); 2089 if (!pte) { 2090 walk->action = ACTION_AGAIN; 2091 return err; 2092 } 2093 for (; addr < end; pte++, addr += PAGE_SIZE) { 2094 pagemap_entry_t pme; 2095 2096 pme = pte_to_pagemap_entry(pm, vma, addr, ptep_get(pte)); 2097 err = add_to_pagemap(&pme, pm); 2098 if (err) 2099 break; 2100 } 2101 pte_unmap_unlock(orig_pte, ptl); 2102 2103 cond_resched(); 2104 2105 return err; 2106 } 2107 2108 #ifdef CONFIG_HUGETLB_PAGE 2109 /* This function walks within one hugetlb entry in the single call */ 2110 static int pagemap_hugetlb_range(pte_t *ptep, unsigned long hmask, 2111 unsigned long addr, unsigned long end, 2112 struct mm_walk *walk) 2113 { 2114 struct pagemapread *pm = walk->private; 2115 struct vm_area_struct *vma = walk->vma; 2116 u64 flags = 0, frame = 0; 2117 spinlock_t *ptl; 2118 int err = 0; 2119 pte_t pte; 2120 2121 if (vma->vm_flags & VM_SOFTDIRTY) 2122 flags |= PM_SOFT_DIRTY; 2123 2124 ptl = huge_pte_lock(hstate_vma(vma), walk->mm, ptep); 2125 pte = huge_ptep_get(walk->mm, addr, ptep); 2126 if (pte_present(pte)) { 2127 struct folio *folio = page_folio(pte_page(pte)); 2128 2129 if (!folio_test_anon(folio)) 2130 flags |= PM_FILE; 2131 2132 if (!folio_maybe_mapped_shared(folio) && 2133 !hugetlb_pmd_shared(ptep)) 2134 flags |= PM_MMAP_EXCLUSIVE; 2135 2136 if (huge_pte_uffd_wp(pte)) 2137 flags |= PM_UFFD_WP; 2138 2139 flags |= PM_PRESENT; 2140 if (pm->show_pfn) 2141 frame = pte_pfn(pte) + 2142 ((addr & ~hmask) >> PAGE_SHIFT); 2143 } else if (pte_swp_uffd_wp_any(pte)) { 2144 flags |= PM_UFFD_WP; 2145 } 2146 2147 for (; addr != end; addr += PAGE_SIZE) { 2148 pagemap_entry_t pme = make_pme(frame, flags); 2149 2150 err = add_to_pagemap(&pme, pm); 2151 if (err) 2152 break; 2153 if (pm->show_pfn && (flags & PM_PRESENT)) 2154 frame++; 2155 } 2156 2157 spin_unlock(ptl); 2158 cond_resched(); 2159 2160 return err; 2161 } 2162 #else 2163 #define pagemap_hugetlb_range NULL 2164 #endif /* HUGETLB_PAGE */ 2165 2166 static const struct mm_walk_ops pagemap_ops = { 2167 .pmd_entry = pagemap_pmd_range, 2168 .pte_hole = pagemap_pte_hole, 2169 .hugetlb_entry = pagemap_hugetlb_range, 2170 .walk_lock = PGWALK_RDLOCK, 2171 }; 2172 2173 /* 2174 * /proc/pid/pagemap - an array mapping virtual pages to pfns 2175 * 2176 * For each page in the address space, this file contains one 64-bit entry 2177 * consisting of the following: 2178 * 2179 * Bits 0-54 page frame number (PFN) if present 2180 * Bits 0-4 swap type if swapped 2181 * Bits 5-54 swap offset if swapped 2182 * Bit 55 pte is soft-dirty (see Documentation/admin-guide/mm/soft-dirty.rst) 2183 * Bit 56 page exclusively mapped 2184 * Bit 57 pte is uffd-wp write-protected 2185 * Bit 58 pte is a guard region 2186 * Bits 59-60 zero 2187 * Bit 61 page is file-page or shared-anon 2188 * Bit 62 page swapped 2189 * Bit 63 page present 2190 * 2191 * If the page is not present but in swap, then the PFN contains an 2192 * encoding of the swap file number and the page's offset into the 2193 * swap. Unmapped pages return a null PFN. This allows determining 2194 * precisely which pages are mapped (or in swap) and comparing mapped 2195 * pages between processes. 2196 * 2197 * Efficient users of this interface will use /proc/pid/maps to 2198 * determine which areas of memory are actually mapped and llseek to 2199 * skip over unmapped regions. 2200 */ 2201 static ssize_t pagemap_read(struct file *file, char __user *buf, 2202 size_t count, loff_t *ppos) 2203 { 2204 struct mm_struct *mm = file->private_data; 2205 struct pagemapread pm; 2206 unsigned long src; 2207 unsigned long svpfn; 2208 unsigned long start_vaddr; 2209 unsigned long end_vaddr; 2210 int ret = 0, copied = 0; 2211 2212 if (!mm || !mmget_not_zero(mm)) 2213 goto out; 2214 2215 ret = -EINVAL; 2216 /* file position must be aligned */ 2217 if ((*ppos % PM_ENTRY_BYTES) || (count % PM_ENTRY_BYTES)) 2218 goto out_mm; 2219 2220 ret = 0; 2221 if (!count) 2222 goto out_mm; 2223 2224 /* do not disclose physical addresses: attack vector */ 2225 pm.show_pfn = file_ns_capable(file, &init_user_ns, CAP_SYS_ADMIN); 2226 2227 pm.len = (PAGEMAP_WALK_SIZE >> PAGE_SHIFT); 2228 pm.buffer = kmalloc_array(pm.len, PM_ENTRY_BYTES, GFP_KERNEL); 2229 ret = -ENOMEM; 2230 if (!pm.buffer) 2231 goto out_mm; 2232 2233 src = *ppos; 2234 svpfn = src / PM_ENTRY_BYTES; 2235 end_vaddr = mm->task_size; 2236 2237 /* watch out for wraparound */ 2238 start_vaddr = end_vaddr; 2239 if (svpfn <= (ULONG_MAX >> PAGE_SHIFT)) { 2240 unsigned long end; 2241 2242 ret = mmap_read_lock_killable(mm); 2243 if (ret) 2244 goto out_free; 2245 start_vaddr = untagged_addr_remote(mm, svpfn << PAGE_SHIFT); 2246 mmap_read_unlock(mm); 2247 2248 end = start_vaddr + ((count / PM_ENTRY_BYTES) << PAGE_SHIFT); 2249 if (end >= start_vaddr && end < mm->task_size) 2250 end_vaddr = end; 2251 } 2252 2253 /* Ensure the address is inside the task */ 2254 if (start_vaddr > mm->task_size) 2255 start_vaddr = end_vaddr; 2256 2257 ret = 0; 2258 while (count && (start_vaddr < end_vaddr)) { 2259 int len; 2260 unsigned long end; 2261 2262 pm.pos = 0; 2263 end = (start_vaddr + PAGEMAP_WALK_SIZE) & PAGEMAP_WALK_MASK; 2264 /* overflow ? */ 2265 if (end < start_vaddr || end > end_vaddr) 2266 end = end_vaddr; 2267 ret = mmap_read_lock_killable(mm); 2268 if (ret) 2269 goto out_free; 2270 ret = walk_page_range(mm, start_vaddr, end, &pagemap_ops, &pm); 2271 mmap_read_unlock(mm); 2272 start_vaddr = end; 2273 2274 len = min(count, PM_ENTRY_BYTES * pm.pos); 2275 if (copy_to_user(buf, pm.buffer, len)) { 2276 ret = -EFAULT; 2277 goto out_free; 2278 } 2279 copied += len; 2280 buf += len; 2281 count -= len; 2282 } 2283 *ppos += copied; 2284 if (!ret || ret == PM_END_OF_BUFFER) 2285 ret = copied; 2286 2287 out_free: 2288 kfree(pm.buffer); 2289 out_mm: 2290 mmput(mm); 2291 out: 2292 return ret; 2293 } 2294 2295 static int pagemap_open(struct inode *inode, struct file *file) 2296 { 2297 struct mm_struct *mm; 2298 2299 mm = proc_mem_open(inode, PTRACE_MODE_READ); 2300 if (IS_ERR_OR_NULL(mm)) 2301 return mm ? PTR_ERR(mm) : -ESRCH; 2302 file->private_data = mm; 2303 return 0; 2304 } 2305 2306 static int pagemap_release(struct inode *inode, struct file *file) 2307 { 2308 struct mm_struct *mm = file->private_data; 2309 2310 if (mm) 2311 mmdrop(mm); 2312 return 0; 2313 } 2314 2315 #define PM_SCAN_CATEGORIES (PAGE_IS_WPALLOWED | PAGE_IS_WRITTEN | \ 2316 PAGE_IS_FILE | PAGE_IS_PRESENT | \ 2317 PAGE_IS_SWAPPED | PAGE_IS_PFNZERO | \ 2318 PAGE_IS_HUGE | PAGE_IS_SOFT_DIRTY | \ 2319 PAGE_IS_GUARD) 2320 #define PM_SCAN_FLAGS (PM_SCAN_WP_MATCHING | PM_SCAN_CHECK_WPASYNC) 2321 2322 struct pagemap_scan_private { 2323 struct pm_scan_arg arg; 2324 unsigned long masks_of_interest, cur_vma_category; 2325 struct page_region *vec_buf; 2326 unsigned long vec_buf_len, vec_buf_index, found_pages; 2327 struct page_region __user *vec_out; 2328 }; 2329 2330 static unsigned long pagemap_page_category(struct pagemap_scan_private *p, 2331 struct vm_area_struct *vma, 2332 unsigned long addr, pte_t pte) 2333 { 2334 unsigned long categories; 2335 2336 if (pte_none(pte)) 2337 return 0; 2338 2339 if (pte_present(pte)) { 2340 struct page *page; 2341 2342 categories = PAGE_IS_PRESENT; 2343 2344 if (!pte_uffd_wp(pte)) 2345 categories |= PAGE_IS_WRITTEN; 2346 2347 if (p->masks_of_interest & PAGE_IS_FILE) { 2348 page = vm_normal_page(vma, addr, pte); 2349 if (page && !PageAnon(page)) 2350 categories |= PAGE_IS_FILE; 2351 } 2352 2353 if (is_zero_pfn(pte_pfn(pte))) 2354 categories |= PAGE_IS_PFNZERO; 2355 if (pte_soft_dirty(pte)) 2356 categories |= PAGE_IS_SOFT_DIRTY; 2357 } else { 2358 softleaf_t entry; 2359 2360 categories = PAGE_IS_SWAPPED; 2361 2362 if (!pte_swp_uffd_wp_any(pte)) 2363 categories |= PAGE_IS_WRITTEN; 2364 2365 entry = softleaf_from_pte(pte); 2366 if (softleaf_is_guard_marker(entry)) 2367 categories |= PAGE_IS_GUARD; 2368 else if ((p->masks_of_interest & PAGE_IS_FILE) && 2369 softleaf_has_pfn(entry) && 2370 !folio_test_anon(softleaf_to_folio(entry))) 2371 categories |= PAGE_IS_FILE; 2372 2373 if (pte_swp_soft_dirty(pte)) 2374 categories |= PAGE_IS_SOFT_DIRTY; 2375 } 2376 2377 return categories; 2378 } 2379 2380 static void make_uffd_wp_pte(struct vm_area_struct *vma, 2381 unsigned long addr, pte_t *pte, pte_t ptent) 2382 { 2383 if (pte_present(ptent)) { 2384 pte_t old_pte; 2385 2386 old_pte = ptep_modify_prot_start(vma, addr, pte); 2387 ptent = pte_mkuffd_wp(old_pte); 2388 ptep_modify_prot_commit(vma, addr, pte, old_pte, ptent); 2389 } else if (pte_none(ptent)) { 2390 set_pte_at(vma->vm_mm, addr, pte, 2391 make_pte_marker(PTE_MARKER_UFFD_WP)); 2392 } else { 2393 ptent = pte_swp_mkuffd_wp(ptent); 2394 set_pte_at(vma->vm_mm, addr, pte, ptent); 2395 } 2396 } 2397 2398 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 2399 static unsigned long pagemap_thp_category(struct pagemap_scan_private *p, 2400 struct vm_area_struct *vma, 2401 unsigned long addr, pmd_t pmd) 2402 { 2403 unsigned long categories = PAGE_IS_HUGE; 2404 2405 if (pmd_none(pmd)) 2406 return categories; 2407 2408 if (pmd_present(pmd)) { 2409 struct page *page; 2410 2411 categories |= PAGE_IS_PRESENT; 2412 if (!pmd_uffd_wp(pmd)) 2413 categories |= PAGE_IS_WRITTEN; 2414 2415 if (p->masks_of_interest & PAGE_IS_FILE) { 2416 page = vm_normal_page_pmd(vma, addr, pmd); 2417 if (page && !PageAnon(page)) 2418 categories |= PAGE_IS_FILE; 2419 } 2420 2421 if (is_huge_zero_pmd(pmd)) 2422 categories |= PAGE_IS_PFNZERO; 2423 if (pmd_soft_dirty(pmd)) 2424 categories |= PAGE_IS_SOFT_DIRTY; 2425 } else { 2426 categories |= PAGE_IS_SWAPPED; 2427 if (!pmd_swp_uffd_wp(pmd)) 2428 categories |= PAGE_IS_WRITTEN; 2429 if (pmd_swp_soft_dirty(pmd)) 2430 categories |= PAGE_IS_SOFT_DIRTY; 2431 2432 if (p->masks_of_interest & PAGE_IS_FILE) { 2433 const softleaf_t entry = softleaf_from_pmd(pmd); 2434 2435 if (softleaf_has_pfn(entry) && 2436 !folio_test_anon(softleaf_to_folio(entry))) 2437 categories |= PAGE_IS_FILE; 2438 } 2439 } 2440 2441 return categories; 2442 } 2443 2444 static void make_uffd_wp_pmd(struct vm_area_struct *vma, 2445 unsigned long addr, pmd_t *pmdp) 2446 { 2447 pmd_t old, pmd = *pmdp; 2448 2449 if (pmd_present(pmd)) { 2450 old = pmdp_invalidate_ad(vma, addr, pmdp); 2451 pmd = pmd_mkuffd_wp(old); 2452 set_pmd_at(vma->vm_mm, addr, pmdp, pmd); 2453 } else if (pmd_is_migration_entry(pmd)) { 2454 pmd = pmd_swp_mkuffd_wp(pmd); 2455 set_pmd_at(vma->vm_mm, addr, pmdp, pmd); 2456 } 2457 } 2458 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 2459 2460 #ifdef CONFIG_HUGETLB_PAGE 2461 static unsigned long pagemap_hugetlb_category(pte_t pte) 2462 { 2463 unsigned long categories = PAGE_IS_HUGE; 2464 2465 if (pte_none(pte)) 2466 return categories; 2467 2468 /* 2469 * According to pagemap_hugetlb_range(), file-backed HugeTLB 2470 * page cannot be swapped. So PAGE_IS_FILE is not checked for 2471 * swapped pages. 2472 */ 2473 if (pte_present(pte)) { 2474 categories |= PAGE_IS_PRESENT; 2475 2476 if (!huge_pte_uffd_wp(pte)) 2477 categories |= PAGE_IS_WRITTEN; 2478 if (!PageAnon(pte_page(pte))) 2479 categories |= PAGE_IS_FILE; 2480 if (is_zero_pfn(pte_pfn(pte))) 2481 categories |= PAGE_IS_PFNZERO; 2482 if (pte_soft_dirty(pte)) 2483 categories |= PAGE_IS_SOFT_DIRTY; 2484 } else { 2485 categories |= PAGE_IS_SWAPPED; 2486 2487 if (!pte_swp_uffd_wp_any(pte)) 2488 categories |= PAGE_IS_WRITTEN; 2489 if (pte_swp_soft_dirty(pte)) 2490 categories |= PAGE_IS_SOFT_DIRTY; 2491 } 2492 2493 return categories; 2494 } 2495 2496 static void make_uffd_wp_huge_pte(struct vm_area_struct *vma, 2497 unsigned long addr, pte_t *ptep, 2498 pte_t ptent) 2499 { 2500 const unsigned long psize = huge_page_size(hstate_vma(vma)); 2501 softleaf_t entry; 2502 2503 if (huge_pte_none(ptent)) { 2504 set_huge_pte_at(vma->vm_mm, addr, ptep, 2505 make_pte_marker(PTE_MARKER_UFFD_WP), psize); 2506 return; 2507 } 2508 2509 entry = softleaf_from_pte(ptent); 2510 if (softleaf_is_hwpoison(entry) || softleaf_is_marker(entry)) 2511 return; 2512 2513 if (softleaf_is_migration(entry)) 2514 set_huge_pte_at(vma->vm_mm, addr, ptep, 2515 pte_swp_mkuffd_wp(ptent), psize); 2516 else 2517 huge_ptep_modify_prot_commit(vma, addr, ptep, ptent, 2518 huge_pte_mkuffd_wp(ptent)); 2519 } 2520 #endif /* CONFIG_HUGETLB_PAGE */ 2521 2522 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLB_PAGE) 2523 static void pagemap_scan_backout_range(struct pagemap_scan_private *p, 2524 unsigned long addr, unsigned long end) 2525 { 2526 struct page_region *cur_buf = &p->vec_buf[p->vec_buf_index]; 2527 2528 if (!p->vec_buf) 2529 return; 2530 2531 if (cur_buf->start != addr) 2532 cur_buf->end = addr; 2533 else 2534 cur_buf->start = cur_buf->end = 0; 2535 2536 p->found_pages -= (end - addr) / PAGE_SIZE; 2537 } 2538 #endif 2539 2540 static bool pagemap_scan_is_interesting_page(unsigned long categories, 2541 const struct pagemap_scan_private *p) 2542 { 2543 categories ^= p->arg.category_inverted; 2544 if ((categories & p->arg.category_mask) != p->arg.category_mask) 2545 return false; 2546 if (p->arg.category_anyof_mask && !(categories & p->arg.category_anyof_mask)) 2547 return false; 2548 2549 return true; 2550 } 2551 2552 static bool pagemap_scan_is_interesting_vma(unsigned long categories, 2553 const struct pagemap_scan_private *p) 2554 { 2555 unsigned long required = p->arg.category_mask & PAGE_IS_WPALLOWED; 2556 2557 categories ^= p->arg.category_inverted; 2558 if ((categories & required) != required) 2559 return false; 2560 2561 return true; 2562 } 2563 2564 static int pagemap_scan_test_walk(unsigned long start, unsigned long end, 2565 struct mm_walk *walk) 2566 { 2567 struct pagemap_scan_private *p = walk->private; 2568 struct vm_area_struct *vma = walk->vma; 2569 unsigned long vma_category = 0; 2570 bool wp_allowed = userfaultfd_wp_async(vma) && 2571 userfaultfd_wp_use_markers(vma); 2572 2573 if (!wp_allowed) { 2574 /* User requested explicit failure over wp-async capability */ 2575 if (p->arg.flags & PM_SCAN_CHECK_WPASYNC) 2576 return -EPERM; 2577 /* 2578 * User requires wr-protect, and allows silently skipping 2579 * unsupported vmas. 2580 */ 2581 if (p->arg.flags & PM_SCAN_WP_MATCHING) 2582 return 1; 2583 /* 2584 * Then the request doesn't involve wr-protects at all, 2585 * fall through to the rest checks, and allow vma walk. 2586 */ 2587 } 2588 2589 if (vma->vm_flags & VM_PFNMAP) 2590 return 1; 2591 2592 if (wp_allowed) 2593 vma_category |= PAGE_IS_WPALLOWED; 2594 2595 if (vma->vm_flags & VM_SOFTDIRTY) 2596 vma_category |= PAGE_IS_SOFT_DIRTY; 2597 2598 if (!pagemap_scan_is_interesting_vma(vma_category, p)) 2599 return 1; 2600 2601 p->cur_vma_category = vma_category; 2602 2603 return 0; 2604 } 2605 2606 static bool pagemap_scan_push_range(unsigned long categories, 2607 struct pagemap_scan_private *p, 2608 unsigned long addr, unsigned long end) 2609 { 2610 struct page_region *cur_buf = &p->vec_buf[p->vec_buf_index]; 2611 2612 /* 2613 * When there is no output buffer provided at all, the sentinel values 2614 * won't match here. There is no other way for `cur_buf->end` to be 2615 * non-zero other than it being non-empty. 2616 */ 2617 if (addr == cur_buf->end && categories == cur_buf->categories) { 2618 cur_buf->end = end; 2619 return true; 2620 } 2621 2622 if (cur_buf->end) { 2623 if (p->vec_buf_index >= p->vec_buf_len - 1) 2624 return false; 2625 2626 cur_buf = &p->vec_buf[++p->vec_buf_index]; 2627 } 2628 2629 cur_buf->start = addr; 2630 cur_buf->end = end; 2631 cur_buf->categories = categories; 2632 2633 return true; 2634 } 2635 2636 static int pagemap_scan_output(unsigned long categories, 2637 struct pagemap_scan_private *p, 2638 unsigned long addr, unsigned long *end) 2639 { 2640 unsigned long n_pages, total_pages; 2641 int ret = 0; 2642 2643 if (!p->vec_buf) 2644 return 0; 2645 2646 categories &= p->arg.return_mask; 2647 2648 n_pages = (*end - addr) / PAGE_SIZE; 2649 if (check_add_overflow(p->found_pages, n_pages, &total_pages) || 2650 total_pages > p->arg.max_pages) { 2651 size_t n_too_much = total_pages - p->arg.max_pages; 2652 *end -= n_too_much * PAGE_SIZE; 2653 n_pages -= n_too_much; 2654 ret = -ENOSPC; 2655 } 2656 2657 if (!pagemap_scan_push_range(categories, p, addr, *end)) { 2658 *end = addr; 2659 n_pages = 0; 2660 ret = -ENOSPC; 2661 } 2662 2663 p->found_pages += n_pages; 2664 if (ret) 2665 p->arg.walk_end = *end; 2666 2667 return ret; 2668 } 2669 2670 static int pagemap_scan_thp_entry(pmd_t *pmd, unsigned long start, 2671 unsigned long end, struct mm_walk *walk) 2672 { 2673 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 2674 struct pagemap_scan_private *p = walk->private; 2675 struct vm_area_struct *vma = walk->vma; 2676 unsigned long categories; 2677 spinlock_t *ptl; 2678 int ret = 0; 2679 2680 ptl = pmd_trans_huge_lock(pmd, vma); 2681 if (!ptl) 2682 return -ENOENT; 2683 2684 categories = p->cur_vma_category | 2685 pagemap_thp_category(p, vma, start, *pmd); 2686 2687 if (!pagemap_scan_is_interesting_page(categories, p)) 2688 goto out_unlock; 2689 2690 ret = pagemap_scan_output(categories, p, start, &end); 2691 if (start == end) 2692 goto out_unlock; 2693 2694 if (~p->arg.flags & PM_SCAN_WP_MATCHING) 2695 goto out_unlock; 2696 if (~categories & PAGE_IS_WRITTEN) 2697 goto out_unlock; 2698 2699 /* 2700 * Break huge page into small pages if the WP operation 2701 * needs to be performed on a portion of the huge page. 2702 */ 2703 if (end != start + HPAGE_SIZE) { 2704 spin_unlock(ptl); 2705 split_huge_pmd(vma, pmd, start); 2706 pagemap_scan_backout_range(p, start, end); 2707 /* Report as if there was no THP */ 2708 return -ENOENT; 2709 } 2710 2711 make_uffd_wp_pmd(vma, start, pmd); 2712 flush_tlb_range(vma, start, end); 2713 out_unlock: 2714 spin_unlock(ptl); 2715 return ret; 2716 #else /* !CONFIG_TRANSPARENT_HUGEPAGE */ 2717 return -ENOENT; 2718 #endif 2719 } 2720 2721 static int pagemap_scan_pmd_entry(pmd_t *pmd, unsigned long start, 2722 unsigned long end, struct mm_walk *walk) 2723 { 2724 struct pagemap_scan_private *p = walk->private; 2725 struct vm_area_struct *vma = walk->vma; 2726 unsigned long addr, flush_end = 0; 2727 pte_t *pte, *start_pte; 2728 spinlock_t *ptl; 2729 int ret; 2730 2731 ret = pagemap_scan_thp_entry(pmd, start, end, walk); 2732 if (ret != -ENOENT) 2733 return ret; 2734 2735 ret = 0; 2736 start_pte = pte = pte_offset_map_lock(vma->vm_mm, pmd, start, &ptl); 2737 if (!pte) { 2738 walk->action = ACTION_AGAIN; 2739 return 0; 2740 } 2741 2742 arch_enter_lazy_mmu_mode(); 2743 2744 if ((p->arg.flags & PM_SCAN_WP_MATCHING) && !p->vec_out) { 2745 /* Fast path for performing exclusive WP */ 2746 for (addr = start; addr != end; pte++, addr += PAGE_SIZE) { 2747 pte_t ptent = ptep_get(pte); 2748 2749 if ((pte_present(ptent) && pte_uffd_wp(ptent)) || 2750 pte_swp_uffd_wp_any(ptent)) 2751 continue; 2752 make_uffd_wp_pte(vma, addr, pte, ptent); 2753 if (!flush_end) 2754 start = addr; 2755 flush_end = addr + PAGE_SIZE; 2756 } 2757 goto flush_and_return; 2758 } 2759 2760 if (!p->arg.category_anyof_mask && !p->arg.category_inverted && 2761 p->arg.category_mask == PAGE_IS_WRITTEN && 2762 p->arg.return_mask == PAGE_IS_WRITTEN) { 2763 for (addr = start; addr < end; pte++, addr += PAGE_SIZE) { 2764 unsigned long next = addr + PAGE_SIZE; 2765 pte_t ptent = ptep_get(pte); 2766 2767 if ((pte_present(ptent) && pte_uffd_wp(ptent)) || 2768 pte_swp_uffd_wp_any(ptent)) 2769 continue; 2770 ret = pagemap_scan_output(p->cur_vma_category | PAGE_IS_WRITTEN, 2771 p, addr, &next); 2772 if (next == addr) 2773 break; 2774 if (~p->arg.flags & PM_SCAN_WP_MATCHING) 2775 continue; 2776 make_uffd_wp_pte(vma, addr, pte, ptent); 2777 if (!flush_end) 2778 start = addr; 2779 flush_end = next; 2780 } 2781 goto flush_and_return; 2782 } 2783 2784 for (addr = start; addr != end; pte++, addr += PAGE_SIZE) { 2785 pte_t ptent = ptep_get(pte); 2786 unsigned long categories = p->cur_vma_category | 2787 pagemap_page_category(p, vma, addr, ptent); 2788 unsigned long next = addr + PAGE_SIZE; 2789 2790 if (!pagemap_scan_is_interesting_page(categories, p)) 2791 continue; 2792 2793 ret = pagemap_scan_output(categories, p, addr, &next); 2794 if (next == addr) 2795 break; 2796 2797 if (~p->arg.flags & PM_SCAN_WP_MATCHING) 2798 continue; 2799 if (~categories & PAGE_IS_WRITTEN) 2800 continue; 2801 2802 make_uffd_wp_pte(vma, addr, pte, ptent); 2803 if (!flush_end) 2804 start = addr; 2805 flush_end = next; 2806 } 2807 2808 flush_and_return: 2809 if (flush_end) 2810 flush_tlb_range(vma, start, addr); 2811 2812 arch_leave_lazy_mmu_mode(); 2813 pte_unmap_unlock(start_pte, ptl); 2814 2815 cond_resched(); 2816 return ret; 2817 } 2818 2819 #ifdef CONFIG_HUGETLB_PAGE 2820 static int pagemap_scan_hugetlb_entry(pte_t *ptep, unsigned long hmask, 2821 unsigned long start, unsigned long end, 2822 struct mm_walk *walk) 2823 { 2824 struct pagemap_scan_private *p = walk->private; 2825 struct vm_area_struct *vma = walk->vma; 2826 unsigned long categories; 2827 spinlock_t *ptl; 2828 int ret = 0; 2829 pte_t pte; 2830 2831 if (~p->arg.flags & PM_SCAN_WP_MATCHING) { 2832 /* Go the short route when not write-protecting pages. */ 2833 2834 pte = huge_ptep_get(walk->mm, start, ptep); 2835 categories = p->cur_vma_category | pagemap_hugetlb_category(pte); 2836 2837 if (!pagemap_scan_is_interesting_page(categories, p)) 2838 return 0; 2839 2840 return pagemap_scan_output(categories, p, start, &end); 2841 } 2842 2843 i_mmap_lock_write(vma->vm_file->f_mapping); 2844 ptl = huge_pte_lock(hstate_vma(vma), vma->vm_mm, ptep); 2845 2846 pte = huge_ptep_get(walk->mm, start, ptep); 2847 categories = p->cur_vma_category | pagemap_hugetlb_category(pte); 2848 2849 if (!pagemap_scan_is_interesting_page(categories, p)) 2850 goto out_unlock; 2851 2852 ret = pagemap_scan_output(categories, p, start, &end); 2853 if (start == end) 2854 goto out_unlock; 2855 2856 if (~categories & PAGE_IS_WRITTEN) 2857 goto out_unlock; 2858 2859 if (end != start + HPAGE_SIZE) { 2860 /* Partial HugeTLB page WP isn't possible. */ 2861 pagemap_scan_backout_range(p, start, end); 2862 p->arg.walk_end = start; 2863 ret = 0; 2864 goto out_unlock; 2865 } 2866 2867 make_uffd_wp_huge_pte(vma, start, ptep, pte); 2868 flush_hugetlb_tlb_range(vma, start, end); 2869 2870 out_unlock: 2871 spin_unlock(ptl); 2872 i_mmap_unlock_write(vma->vm_file->f_mapping); 2873 2874 return ret; 2875 } 2876 #else 2877 #define pagemap_scan_hugetlb_entry NULL 2878 #endif 2879 2880 static int pagemap_scan_pte_hole(unsigned long addr, unsigned long end, 2881 int depth, struct mm_walk *walk) 2882 { 2883 struct pagemap_scan_private *p = walk->private; 2884 struct vm_area_struct *vma = walk->vma; 2885 int ret, err; 2886 2887 if (!vma || !pagemap_scan_is_interesting_page(p->cur_vma_category, p)) 2888 return 0; 2889 2890 ret = pagemap_scan_output(p->cur_vma_category, p, addr, &end); 2891 if (addr == end) 2892 return ret; 2893 2894 if (~p->arg.flags & PM_SCAN_WP_MATCHING) 2895 return ret; 2896 2897 err = uffd_wp_range(vma, addr, end - addr, true); 2898 if (err < 0) 2899 ret = err; 2900 2901 return ret; 2902 } 2903 2904 static const struct mm_walk_ops pagemap_scan_ops = { 2905 .test_walk = pagemap_scan_test_walk, 2906 .pmd_entry = pagemap_scan_pmd_entry, 2907 .pte_hole = pagemap_scan_pte_hole, 2908 .hugetlb_entry = pagemap_scan_hugetlb_entry, 2909 }; 2910 2911 static int pagemap_scan_get_args(struct pm_scan_arg *arg, 2912 unsigned long uarg) 2913 { 2914 if (copy_from_user(arg, (void __user *)uarg, sizeof(*arg))) 2915 return -EFAULT; 2916 2917 if (arg->size != sizeof(struct pm_scan_arg)) 2918 return -EINVAL; 2919 2920 /* Validate requested features */ 2921 if (arg->flags & ~PM_SCAN_FLAGS) 2922 return -EINVAL; 2923 if ((arg->category_inverted | arg->category_mask | 2924 arg->category_anyof_mask | arg->return_mask) & ~PM_SCAN_CATEGORIES) 2925 return -EINVAL; 2926 2927 arg->start = untagged_addr((unsigned long)arg->start); 2928 arg->end = untagged_addr((unsigned long)arg->end); 2929 arg->vec = untagged_addr((unsigned long)arg->vec); 2930 2931 /* Validate memory pointers */ 2932 if (!IS_ALIGNED(arg->start, PAGE_SIZE)) 2933 return -EINVAL; 2934 if (!access_ok((void __user *)(long)arg->start, arg->end - arg->start)) 2935 return -EFAULT; 2936 if (!arg->vec && arg->vec_len) 2937 return -EINVAL; 2938 if (UINT_MAX == SIZE_MAX && arg->vec_len > SIZE_MAX) 2939 return -EINVAL; 2940 if (arg->vec && !access_ok((void __user *)(long)arg->vec, 2941 size_mul(arg->vec_len, sizeof(struct page_region)))) 2942 return -EFAULT; 2943 2944 /* Fixup default values */ 2945 arg->end = ALIGN(arg->end, PAGE_SIZE); 2946 arg->walk_end = 0; 2947 if (!arg->max_pages) 2948 arg->max_pages = ULONG_MAX; 2949 2950 return 0; 2951 } 2952 2953 static int pagemap_scan_writeback_args(struct pm_scan_arg *arg, 2954 unsigned long uargl) 2955 { 2956 struct pm_scan_arg __user *uarg = (void __user *)uargl; 2957 2958 if (copy_to_user(&uarg->walk_end, &arg->walk_end, sizeof(arg->walk_end))) 2959 return -EFAULT; 2960 2961 return 0; 2962 } 2963 2964 static int pagemap_scan_init_bounce_buffer(struct pagemap_scan_private *p) 2965 { 2966 if (!p->arg.vec_len) 2967 return 0; 2968 2969 p->vec_buf_len = min_t(size_t, PAGEMAP_WALK_SIZE >> PAGE_SHIFT, 2970 p->arg.vec_len); 2971 p->vec_buf = kmalloc_array(p->vec_buf_len, sizeof(*p->vec_buf), 2972 GFP_KERNEL); 2973 if (!p->vec_buf) 2974 return -ENOMEM; 2975 2976 p->vec_buf->start = p->vec_buf->end = 0; 2977 p->vec_out = (struct page_region __user *)(long)p->arg.vec; 2978 2979 return 0; 2980 } 2981 2982 static long pagemap_scan_flush_buffer(struct pagemap_scan_private *p) 2983 { 2984 const struct page_region *buf = p->vec_buf; 2985 long n = p->vec_buf_index; 2986 2987 if (!p->vec_buf) 2988 return 0; 2989 2990 if (buf[n].end != buf[n].start) 2991 n++; 2992 2993 if (!n) 2994 return 0; 2995 2996 if (copy_to_user(p->vec_out, buf, n * sizeof(*buf))) 2997 return -EFAULT; 2998 2999 p->arg.vec_len -= n; 3000 p->vec_out += n; 3001 3002 p->vec_buf_index = 0; 3003 p->vec_buf_len = min_t(size_t, p->vec_buf_len, p->arg.vec_len); 3004 p->vec_buf->start = p->vec_buf->end = 0; 3005 3006 return n; 3007 } 3008 3009 static long do_pagemap_scan(struct mm_struct *mm, unsigned long uarg) 3010 { 3011 struct pagemap_scan_private p = {0}; 3012 unsigned long walk_start; 3013 size_t n_ranges_out = 0; 3014 int ret; 3015 3016 ret = pagemap_scan_get_args(&p.arg, uarg); 3017 if (ret) 3018 return ret; 3019 3020 p.masks_of_interest = p.arg.category_mask | p.arg.category_anyof_mask | 3021 p.arg.return_mask; 3022 ret = pagemap_scan_init_bounce_buffer(&p); 3023 if (ret) 3024 return ret; 3025 3026 for (walk_start = p.arg.start; walk_start < p.arg.end; 3027 walk_start = p.arg.walk_end) { 3028 struct mmu_notifier_range range; 3029 long n_out; 3030 3031 if (fatal_signal_pending(current)) { 3032 ret = -EINTR; 3033 break; 3034 } 3035 3036 ret = mmap_read_lock_killable(mm); 3037 if (ret) 3038 break; 3039 3040 /* Protection change for the range is going to happen. */ 3041 if (p.arg.flags & PM_SCAN_WP_MATCHING) { 3042 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_VMA, 0, 3043 mm, walk_start, p.arg.end); 3044 mmu_notifier_invalidate_range_start(&range); 3045 } 3046 3047 ret = walk_page_range(mm, walk_start, p.arg.end, 3048 &pagemap_scan_ops, &p); 3049 3050 if (p.arg.flags & PM_SCAN_WP_MATCHING) 3051 mmu_notifier_invalidate_range_end(&range); 3052 3053 mmap_read_unlock(mm); 3054 3055 n_out = pagemap_scan_flush_buffer(&p); 3056 if (n_out < 0) 3057 ret = n_out; 3058 else 3059 n_ranges_out += n_out; 3060 3061 if (ret != -ENOSPC) 3062 break; 3063 3064 if (p.arg.vec_len == 0 || p.found_pages == p.arg.max_pages) 3065 break; 3066 } 3067 3068 /* ENOSPC signifies early stop (buffer full) from the walk. */ 3069 if (!ret || ret == -ENOSPC) 3070 ret = n_ranges_out; 3071 3072 /* The walk_end isn't set when ret is zero */ 3073 if (!p.arg.walk_end) 3074 p.arg.walk_end = p.arg.end; 3075 if (pagemap_scan_writeback_args(&p.arg, uarg)) 3076 ret = -EFAULT; 3077 3078 kfree(p.vec_buf); 3079 return ret; 3080 } 3081 3082 static long do_pagemap_cmd(struct file *file, unsigned int cmd, 3083 unsigned long arg) 3084 { 3085 struct mm_struct *mm = file->private_data; 3086 3087 switch (cmd) { 3088 case PAGEMAP_SCAN: 3089 return do_pagemap_scan(mm, arg); 3090 3091 default: 3092 return -EINVAL; 3093 } 3094 } 3095 3096 const struct file_operations proc_pagemap_operations = { 3097 .llseek = mem_lseek, /* borrow this */ 3098 .read = pagemap_read, 3099 .open = pagemap_open, 3100 .release = pagemap_release, 3101 .unlocked_ioctl = do_pagemap_cmd, 3102 .compat_ioctl = do_pagemap_cmd, 3103 }; 3104 #endif /* CONFIG_PROC_PAGE_MONITOR */ 3105 3106 #ifdef CONFIG_NUMA 3107 3108 struct numa_maps { 3109 unsigned long pages; 3110 unsigned long anon; 3111 unsigned long active; 3112 unsigned long writeback; 3113 unsigned long mapcount_max; 3114 unsigned long dirty; 3115 unsigned long swapcache; 3116 unsigned long node[MAX_NUMNODES]; 3117 }; 3118 3119 struct numa_maps_private { 3120 struct proc_maps_private proc_maps; 3121 struct numa_maps md; 3122 }; 3123 3124 static void gather_stats(struct page *page, struct numa_maps *md, int pte_dirty, 3125 unsigned long nr_pages) 3126 { 3127 struct folio *folio = page_folio(page); 3128 int count; 3129 3130 if (IS_ENABLED(CONFIG_PAGE_MAPCOUNT)) 3131 count = folio_precise_page_mapcount(folio, page); 3132 else 3133 count = folio_average_page_mapcount(folio); 3134 3135 md->pages += nr_pages; 3136 if (pte_dirty || folio_test_dirty(folio)) 3137 md->dirty += nr_pages; 3138 3139 if (folio_test_swapcache(folio)) 3140 md->swapcache += nr_pages; 3141 3142 if (folio_test_active(folio) || folio_test_unevictable(folio)) 3143 md->active += nr_pages; 3144 3145 if (folio_test_writeback(folio)) 3146 md->writeback += nr_pages; 3147 3148 if (folio_test_anon(folio)) 3149 md->anon += nr_pages; 3150 3151 if (count > md->mapcount_max) 3152 md->mapcount_max = count; 3153 3154 md->node[folio_nid(folio)] += nr_pages; 3155 } 3156 3157 static struct page *can_gather_numa_stats(pte_t pte, struct vm_area_struct *vma, 3158 unsigned long addr) 3159 { 3160 struct page *page; 3161 int nid; 3162 3163 if (!pte_present(pte)) 3164 return NULL; 3165 3166 page = vm_normal_page(vma, addr, pte); 3167 if (!page || is_zone_device_page(page)) 3168 return NULL; 3169 3170 if (PageReserved(page)) 3171 return NULL; 3172 3173 nid = page_to_nid(page); 3174 if (!node_isset(nid, node_states[N_MEMORY])) 3175 return NULL; 3176 3177 return page; 3178 } 3179 3180 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 3181 static struct page *can_gather_numa_stats_pmd(pmd_t pmd, 3182 struct vm_area_struct *vma, 3183 unsigned long addr) 3184 { 3185 struct page *page; 3186 int nid; 3187 3188 if (!pmd_present(pmd)) 3189 return NULL; 3190 3191 page = vm_normal_page_pmd(vma, addr, pmd); 3192 if (!page) 3193 return NULL; 3194 3195 if (PageReserved(page)) 3196 return NULL; 3197 3198 nid = page_to_nid(page); 3199 if (!node_isset(nid, node_states[N_MEMORY])) 3200 return NULL; 3201 3202 return page; 3203 } 3204 #endif 3205 3206 static int gather_pte_stats(pmd_t *pmd, unsigned long addr, 3207 unsigned long end, struct mm_walk *walk) 3208 { 3209 struct numa_maps *md = walk->private; 3210 struct vm_area_struct *vma = walk->vma; 3211 spinlock_t *ptl; 3212 pte_t *orig_pte; 3213 pte_t *pte; 3214 3215 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 3216 ptl = pmd_trans_huge_lock(pmd, vma); 3217 if (ptl) { 3218 struct page *page; 3219 3220 page = can_gather_numa_stats_pmd(*pmd, vma, addr); 3221 if (page) 3222 gather_stats(page, md, pmd_dirty(*pmd), 3223 HPAGE_PMD_SIZE/PAGE_SIZE); 3224 spin_unlock(ptl); 3225 return 0; 3226 } 3227 #endif 3228 orig_pte = pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl); 3229 if (!pte) { 3230 walk->action = ACTION_AGAIN; 3231 return 0; 3232 } 3233 do { 3234 pte_t ptent = ptep_get(pte); 3235 struct page *page = can_gather_numa_stats(ptent, vma, addr); 3236 if (!page) 3237 continue; 3238 gather_stats(page, md, pte_dirty(ptent), 1); 3239 3240 } while (pte++, addr += PAGE_SIZE, addr != end); 3241 pte_unmap_unlock(orig_pte, ptl); 3242 cond_resched(); 3243 return 0; 3244 } 3245 #ifdef CONFIG_HUGETLB_PAGE 3246 static int gather_hugetlb_stats(pte_t *pte, unsigned long hmask, 3247 unsigned long addr, unsigned long end, struct mm_walk *walk) 3248 { 3249 pte_t huge_pte; 3250 struct numa_maps *md; 3251 struct page *page; 3252 spinlock_t *ptl; 3253 3254 ptl = huge_pte_lock(hstate_vma(walk->vma), walk->mm, pte); 3255 huge_pte = huge_ptep_get(walk->mm, addr, pte); 3256 if (!pte_present(huge_pte)) 3257 goto out; 3258 3259 page = pte_page(huge_pte); 3260 3261 md = walk->private; 3262 gather_stats(page, md, pte_dirty(huge_pte), 1); 3263 out: 3264 spin_unlock(ptl); 3265 return 0; 3266 } 3267 3268 #else 3269 static int gather_hugetlb_stats(pte_t *pte, unsigned long hmask, 3270 unsigned long addr, unsigned long end, struct mm_walk *walk) 3271 { 3272 return 0; 3273 } 3274 #endif 3275 3276 static const struct mm_walk_ops show_numa_ops = { 3277 .hugetlb_entry = gather_hugetlb_stats, 3278 .pmd_entry = gather_pte_stats, 3279 .walk_lock = PGWALK_RDLOCK, 3280 }; 3281 3282 /* 3283 * Display pages allocated per node and memory policy via /proc. 3284 */ 3285 static int show_numa_map(struct seq_file *m, void *v) 3286 { 3287 struct numa_maps_private *numa_priv = m->private; 3288 struct proc_maps_private *proc_priv = &numa_priv->proc_maps; 3289 struct vm_area_struct *vma = v; 3290 struct numa_maps *md = &numa_priv->md; 3291 struct file *file = vma->vm_file; 3292 struct mm_struct *mm = vma->vm_mm; 3293 char buffer[64]; 3294 struct mempolicy *pol; 3295 pgoff_t ilx; 3296 int nid; 3297 3298 if (!mm) 3299 return 0; 3300 3301 /* Ensure we start with an empty set of numa_maps statistics. */ 3302 memset(md, 0, sizeof(*md)); 3303 3304 pol = __get_vma_policy(vma, vma->vm_start, &ilx); 3305 if (pol) { 3306 mpol_to_str(buffer, sizeof(buffer), pol); 3307 mpol_cond_put(pol); 3308 } else { 3309 mpol_to_str(buffer, sizeof(buffer), proc_priv->task_mempolicy); 3310 } 3311 3312 seq_printf(m, "%08lx %s", vma->vm_start, buffer); 3313 3314 if (file) { 3315 seq_puts(m, " file="); 3316 seq_path(m, file_user_path(file), "\n\t= "); 3317 } else if (vma_is_initial_heap(vma)) { 3318 seq_puts(m, " heap"); 3319 } else if (vma_is_initial_stack(vma)) { 3320 seq_puts(m, " stack"); 3321 } 3322 3323 if (is_vm_hugetlb_page(vma)) 3324 seq_puts(m, " huge"); 3325 3326 /* mmap_lock is held by m_start */ 3327 walk_page_vma(vma, &show_numa_ops, md); 3328 3329 if (!md->pages) 3330 goto out; 3331 3332 if (md->anon) 3333 seq_printf(m, " anon=%lu", md->anon); 3334 3335 if (md->dirty) 3336 seq_printf(m, " dirty=%lu", md->dirty); 3337 3338 if (md->pages != md->anon && md->pages != md->dirty) 3339 seq_printf(m, " mapped=%lu", md->pages); 3340 3341 if (md->mapcount_max > 1) 3342 seq_printf(m, " mapmax=%lu", md->mapcount_max); 3343 3344 if (md->swapcache) 3345 seq_printf(m, " swapcache=%lu", md->swapcache); 3346 3347 if (md->active < md->pages && !is_vm_hugetlb_page(vma)) 3348 seq_printf(m, " active=%lu", md->active); 3349 3350 if (md->writeback) 3351 seq_printf(m, " writeback=%lu", md->writeback); 3352 3353 for_each_node_state(nid, N_MEMORY) 3354 if (md->node[nid]) 3355 seq_printf(m, " N%d=%lu", nid, md->node[nid]); 3356 3357 seq_printf(m, " kernelpagesize_kB=%lu", vma_kernel_pagesize(vma) >> 10); 3358 out: 3359 seq_putc(m, '\n'); 3360 return 0; 3361 } 3362 3363 static const struct seq_operations proc_pid_numa_maps_op = { 3364 .start = m_start, 3365 .next = m_next, 3366 .stop = m_stop, 3367 .show = show_numa_map, 3368 }; 3369 3370 static int pid_numa_maps_open(struct inode *inode, struct file *file) 3371 { 3372 return proc_maps_open(inode, file, &proc_pid_numa_maps_op, 3373 sizeof(struct numa_maps_private)); 3374 } 3375 3376 const struct file_operations proc_pid_numa_maps_operations = { 3377 .open = pid_numa_maps_open, 3378 .read = seq_read, 3379 .llseek = seq_lseek, 3380 .release = proc_map_release, 3381 }; 3382 3383 #endif /* CONFIG_NUMA */ 3384