xref: /linux/fs/proc/task_mmu.c (revision 413d6ed3eac387a2876893c337174f0c5b99d01d)
1 // SPDX-License-Identifier: GPL-2.0
2 #include <linux/pagewalk.h>
3 #include <linux/vmacache.h>
4 #include <linux/hugetlb.h>
5 #include <linux/huge_mm.h>
6 #include <linux/mount.h>
7 #include <linux/seq_file.h>
8 #include <linux/highmem.h>
9 #include <linux/ptrace.h>
10 #include <linux/slab.h>
11 #include <linux/pagemap.h>
12 #include <linux/mempolicy.h>
13 #include <linux/rmap.h>
14 #include <linux/swap.h>
15 #include <linux/sched/mm.h>
16 #include <linux/swapops.h>
17 #include <linux/mmu_notifier.h>
18 #include <linux/page_idle.h>
19 #include <linux/shmem_fs.h>
20 #include <linux/uaccess.h>
21 #include <linux/pkeys.h>
22 
23 #include <asm/elf.h>
24 #include <asm/tlb.h>
25 #include <asm/tlbflush.h>
26 #include "internal.h"
27 
28 #define SEQ_PUT_DEC(str, val) \
29 		seq_put_decimal_ull_width(m, str, (val) << (PAGE_SHIFT-10), 8)
30 void task_mem(struct seq_file *m, struct mm_struct *mm)
31 {
32 	unsigned long text, lib, swap, anon, file, shmem;
33 	unsigned long hiwater_vm, total_vm, hiwater_rss, total_rss;
34 
35 	anon = get_mm_counter(mm, MM_ANONPAGES);
36 	file = get_mm_counter(mm, MM_FILEPAGES);
37 	shmem = get_mm_counter(mm, MM_SHMEMPAGES);
38 
39 	/*
40 	 * Note: to minimize their overhead, mm maintains hiwater_vm and
41 	 * hiwater_rss only when about to *lower* total_vm or rss.  Any
42 	 * collector of these hiwater stats must therefore get total_vm
43 	 * and rss too, which will usually be the higher.  Barriers? not
44 	 * worth the effort, such snapshots can always be inconsistent.
45 	 */
46 	hiwater_vm = total_vm = mm->total_vm;
47 	if (hiwater_vm < mm->hiwater_vm)
48 		hiwater_vm = mm->hiwater_vm;
49 	hiwater_rss = total_rss = anon + file + shmem;
50 	if (hiwater_rss < mm->hiwater_rss)
51 		hiwater_rss = mm->hiwater_rss;
52 
53 	/* split executable areas between text and lib */
54 	text = PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK);
55 	text = min(text, mm->exec_vm << PAGE_SHIFT);
56 	lib = (mm->exec_vm << PAGE_SHIFT) - text;
57 
58 	swap = get_mm_counter(mm, MM_SWAPENTS);
59 	SEQ_PUT_DEC("VmPeak:\t", hiwater_vm);
60 	SEQ_PUT_DEC(" kB\nVmSize:\t", total_vm);
61 	SEQ_PUT_DEC(" kB\nVmLck:\t", mm->locked_vm);
62 	SEQ_PUT_DEC(" kB\nVmPin:\t", atomic64_read(&mm->pinned_vm));
63 	SEQ_PUT_DEC(" kB\nVmHWM:\t", hiwater_rss);
64 	SEQ_PUT_DEC(" kB\nVmRSS:\t", total_rss);
65 	SEQ_PUT_DEC(" kB\nRssAnon:\t", anon);
66 	SEQ_PUT_DEC(" kB\nRssFile:\t", file);
67 	SEQ_PUT_DEC(" kB\nRssShmem:\t", shmem);
68 	SEQ_PUT_DEC(" kB\nVmData:\t", mm->data_vm);
69 	SEQ_PUT_DEC(" kB\nVmStk:\t", mm->stack_vm);
70 	seq_put_decimal_ull_width(m,
71 		    " kB\nVmExe:\t", text >> 10, 8);
72 	seq_put_decimal_ull_width(m,
73 		    " kB\nVmLib:\t", lib >> 10, 8);
74 	seq_put_decimal_ull_width(m,
75 		    " kB\nVmPTE:\t", mm_pgtables_bytes(mm) >> 10, 8);
76 	SEQ_PUT_DEC(" kB\nVmSwap:\t", swap);
77 	seq_puts(m, " kB\n");
78 	hugetlb_report_usage(m, mm);
79 }
80 #undef SEQ_PUT_DEC
81 
82 unsigned long task_vsize(struct mm_struct *mm)
83 {
84 	return PAGE_SIZE * mm->total_vm;
85 }
86 
87 unsigned long task_statm(struct mm_struct *mm,
88 			 unsigned long *shared, unsigned long *text,
89 			 unsigned long *data, unsigned long *resident)
90 {
91 	*shared = get_mm_counter(mm, MM_FILEPAGES) +
92 			get_mm_counter(mm, MM_SHMEMPAGES);
93 	*text = (PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK))
94 								>> PAGE_SHIFT;
95 	*data = mm->data_vm + mm->stack_vm;
96 	*resident = *shared + get_mm_counter(mm, MM_ANONPAGES);
97 	return mm->total_vm;
98 }
99 
100 #ifdef CONFIG_NUMA
101 /*
102  * Save get_task_policy() for show_numa_map().
103  */
104 static void hold_task_mempolicy(struct proc_maps_private *priv)
105 {
106 	struct task_struct *task = priv->task;
107 
108 	task_lock(task);
109 	priv->task_mempolicy = get_task_policy(task);
110 	mpol_get(priv->task_mempolicy);
111 	task_unlock(task);
112 }
113 static void release_task_mempolicy(struct proc_maps_private *priv)
114 {
115 	mpol_put(priv->task_mempolicy);
116 }
117 #else
118 static void hold_task_mempolicy(struct proc_maps_private *priv)
119 {
120 }
121 static void release_task_mempolicy(struct proc_maps_private *priv)
122 {
123 }
124 #endif
125 
126 static void *m_start(struct seq_file *m, loff_t *ppos)
127 {
128 	struct proc_maps_private *priv = m->private;
129 	unsigned long last_addr = *ppos;
130 	struct mm_struct *mm;
131 	struct vm_area_struct *vma;
132 
133 	/* See m_next(). Zero at the start or after lseek. */
134 	if (last_addr == -1UL)
135 		return NULL;
136 
137 	priv->task = get_proc_task(priv->inode);
138 	if (!priv->task)
139 		return ERR_PTR(-ESRCH);
140 
141 	mm = priv->mm;
142 	if (!mm || !mmget_not_zero(mm)) {
143 		put_task_struct(priv->task);
144 		priv->task = NULL;
145 		return NULL;
146 	}
147 
148 	if (mmap_read_lock_killable(mm)) {
149 		mmput(mm);
150 		put_task_struct(priv->task);
151 		priv->task = NULL;
152 		return ERR_PTR(-EINTR);
153 	}
154 
155 	hold_task_mempolicy(priv);
156 	priv->tail_vma = get_gate_vma(mm);
157 
158 	vma = find_vma(mm, last_addr);
159 	if (vma)
160 		return vma;
161 
162 	return priv->tail_vma;
163 }
164 
165 static void *m_next(struct seq_file *m, void *v, loff_t *ppos)
166 {
167 	struct proc_maps_private *priv = m->private;
168 	struct vm_area_struct *next, *vma = v;
169 
170 	if (vma == priv->tail_vma)
171 		next = NULL;
172 	else if (vma->vm_next)
173 		next = vma->vm_next;
174 	else
175 		next = priv->tail_vma;
176 
177 	*ppos = next ? next->vm_start : -1UL;
178 
179 	return next;
180 }
181 
182 static void m_stop(struct seq_file *m, void *v)
183 {
184 	struct proc_maps_private *priv = m->private;
185 	struct mm_struct *mm = priv->mm;
186 
187 	if (!priv->task)
188 		return;
189 
190 	release_task_mempolicy(priv);
191 	mmap_read_unlock(mm);
192 	mmput(mm);
193 	put_task_struct(priv->task);
194 	priv->task = NULL;
195 }
196 
197 static int proc_maps_open(struct inode *inode, struct file *file,
198 			const struct seq_operations *ops, int psize)
199 {
200 	struct proc_maps_private *priv = __seq_open_private(file, ops, psize);
201 
202 	if (!priv)
203 		return -ENOMEM;
204 
205 	priv->inode = inode;
206 	priv->mm = proc_mem_open(inode, PTRACE_MODE_READ);
207 	if (IS_ERR(priv->mm)) {
208 		int err = PTR_ERR(priv->mm);
209 
210 		seq_release_private(inode, file);
211 		return err;
212 	}
213 
214 	return 0;
215 }
216 
217 static int proc_map_release(struct inode *inode, struct file *file)
218 {
219 	struct seq_file *seq = file->private_data;
220 	struct proc_maps_private *priv = seq->private;
221 
222 	if (priv->mm)
223 		mmdrop(priv->mm);
224 
225 	return seq_release_private(inode, file);
226 }
227 
228 static int do_maps_open(struct inode *inode, struct file *file,
229 			const struct seq_operations *ops)
230 {
231 	return proc_maps_open(inode, file, ops,
232 				sizeof(struct proc_maps_private));
233 }
234 
235 /*
236  * Indicate if the VMA is a stack for the given task; for
237  * /proc/PID/maps that is the stack of the main task.
238  */
239 static int is_stack(struct vm_area_struct *vma)
240 {
241 	/*
242 	 * We make no effort to guess what a given thread considers to be
243 	 * its "stack".  It's not even well-defined for programs written
244 	 * languages like Go.
245 	 */
246 	return vma->vm_start <= vma->vm_mm->start_stack &&
247 		vma->vm_end >= vma->vm_mm->start_stack;
248 }
249 
250 static void show_vma_header_prefix(struct seq_file *m,
251 				   unsigned long start, unsigned long end,
252 				   vm_flags_t flags, unsigned long long pgoff,
253 				   dev_t dev, unsigned long ino)
254 {
255 	seq_setwidth(m, 25 + sizeof(void *) * 6 - 1);
256 	seq_put_hex_ll(m, NULL, start, 8);
257 	seq_put_hex_ll(m, "-", end, 8);
258 	seq_putc(m, ' ');
259 	seq_putc(m, flags & VM_READ ? 'r' : '-');
260 	seq_putc(m, flags & VM_WRITE ? 'w' : '-');
261 	seq_putc(m, flags & VM_EXEC ? 'x' : '-');
262 	seq_putc(m, flags & VM_MAYSHARE ? 's' : 'p');
263 	seq_put_hex_ll(m, " ", pgoff, 8);
264 	seq_put_hex_ll(m, " ", MAJOR(dev), 2);
265 	seq_put_hex_ll(m, ":", MINOR(dev), 2);
266 	seq_put_decimal_ull(m, " ", ino);
267 	seq_putc(m, ' ');
268 }
269 
270 static void
271 show_map_vma(struct seq_file *m, struct vm_area_struct *vma)
272 {
273 	struct mm_struct *mm = vma->vm_mm;
274 	struct file *file = vma->vm_file;
275 	vm_flags_t flags = vma->vm_flags;
276 	unsigned long ino = 0;
277 	unsigned long long pgoff = 0;
278 	unsigned long start, end;
279 	dev_t dev = 0;
280 	const char *name = NULL;
281 
282 	if (file) {
283 		struct inode *inode = file_inode(vma->vm_file);
284 		dev = inode->i_sb->s_dev;
285 		ino = inode->i_ino;
286 		pgoff = ((loff_t)vma->vm_pgoff) << PAGE_SHIFT;
287 	}
288 
289 	start = vma->vm_start;
290 	end = vma->vm_end;
291 	show_vma_header_prefix(m, start, end, flags, pgoff, dev, ino);
292 
293 	/*
294 	 * Print the dentry name for named mappings, and a
295 	 * special [heap] marker for the heap:
296 	 */
297 	if (file) {
298 		seq_pad(m, ' ');
299 		seq_file_path(m, file, "\n");
300 		goto done;
301 	}
302 
303 	if (vma->vm_ops && vma->vm_ops->name) {
304 		name = vma->vm_ops->name(vma);
305 		if (name)
306 			goto done;
307 	}
308 
309 	name = arch_vma_name(vma);
310 	if (!name) {
311 		if (!mm) {
312 			name = "[vdso]";
313 			goto done;
314 		}
315 
316 		if (vma->vm_start <= mm->brk &&
317 		    vma->vm_end >= mm->start_brk) {
318 			name = "[heap]";
319 			goto done;
320 		}
321 
322 		if (is_stack(vma))
323 			name = "[stack]";
324 	}
325 
326 done:
327 	if (name) {
328 		seq_pad(m, ' ');
329 		seq_puts(m, name);
330 	}
331 	seq_putc(m, '\n');
332 }
333 
334 static int show_map(struct seq_file *m, void *v)
335 {
336 	show_map_vma(m, v);
337 	return 0;
338 }
339 
340 static const struct seq_operations proc_pid_maps_op = {
341 	.start	= m_start,
342 	.next	= m_next,
343 	.stop	= m_stop,
344 	.show	= show_map
345 };
346 
347 static int pid_maps_open(struct inode *inode, struct file *file)
348 {
349 	return do_maps_open(inode, file, &proc_pid_maps_op);
350 }
351 
352 const struct file_operations proc_pid_maps_operations = {
353 	.open		= pid_maps_open,
354 	.read		= seq_read,
355 	.llseek		= seq_lseek,
356 	.release	= proc_map_release,
357 };
358 
359 /*
360  * Proportional Set Size(PSS): my share of RSS.
361  *
362  * PSS of a process is the count of pages it has in memory, where each
363  * page is divided by the number of processes sharing it.  So if a
364  * process has 1000 pages all to itself, and 1000 shared with one other
365  * process, its PSS will be 1500.
366  *
367  * To keep (accumulated) division errors low, we adopt a 64bit
368  * fixed-point pss counter to minimize division errors. So (pss >>
369  * PSS_SHIFT) would be the real byte count.
370  *
371  * A shift of 12 before division means (assuming 4K page size):
372  * 	- 1M 3-user-pages add up to 8KB errors;
373  * 	- supports mapcount up to 2^24, or 16M;
374  * 	- supports PSS up to 2^52 bytes, or 4PB.
375  */
376 #define PSS_SHIFT 12
377 
378 #ifdef CONFIG_PROC_PAGE_MONITOR
379 struct mem_size_stats {
380 	unsigned long resident;
381 	unsigned long shared_clean;
382 	unsigned long shared_dirty;
383 	unsigned long private_clean;
384 	unsigned long private_dirty;
385 	unsigned long referenced;
386 	unsigned long anonymous;
387 	unsigned long lazyfree;
388 	unsigned long anonymous_thp;
389 	unsigned long shmem_thp;
390 	unsigned long file_thp;
391 	unsigned long swap;
392 	unsigned long shared_hugetlb;
393 	unsigned long private_hugetlb;
394 	u64 pss;
395 	u64 pss_anon;
396 	u64 pss_file;
397 	u64 pss_shmem;
398 	u64 pss_locked;
399 	u64 swap_pss;
400 	bool check_shmem_swap;
401 };
402 
403 static void smaps_page_accumulate(struct mem_size_stats *mss,
404 		struct page *page, unsigned long size, unsigned long pss,
405 		bool dirty, bool locked, bool private)
406 {
407 	mss->pss += pss;
408 
409 	if (PageAnon(page))
410 		mss->pss_anon += pss;
411 	else if (PageSwapBacked(page))
412 		mss->pss_shmem += pss;
413 	else
414 		mss->pss_file += pss;
415 
416 	if (locked)
417 		mss->pss_locked += pss;
418 
419 	if (dirty || PageDirty(page)) {
420 		if (private)
421 			mss->private_dirty += size;
422 		else
423 			mss->shared_dirty += size;
424 	} else {
425 		if (private)
426 			mss->private_clean += size;
427 		else
428 			mss->shared_clean += size;
429 	}
430 }
431 
432 static void smaps_account(struct mem_size_stats *mss, struct page *page,
433 		bool compound, bool young, bool dirty, bool locked)
434 {
435 	int i, nr = compound ? compound_nr(page) : 1;
436 	unsigned long size = nr * PAGE_SIZE;
437 
438 	/*
439 	 * First accumulate quantities that depend only on |size| and the type
440 	 * of the compound page.
441 	 */
442 	if (PageAnon(page)) {
443 		mss->anonymous += size;
444 		if (!PageSwapBacked(page) && !dirty && !PageDirty(page))
445 			mss->lazyfree += size;
446 	}
447 
448 	mss->resident += size;
449 	/* Accumulate the size in pages that have been accessed. */
450 	if (young || page_is_young(page) || PageReferenced(page))
451 		mss->referenced += size;
452 
453 	/*
454 	 * Then accumulate quantities that may depend on sharing, or that may
455 	 * differ page-by-page.
456 	 *
457 	 * page_count(page) == 1 guarantees the page is mapped exactly once.
458 	 * If any subpage of the compound page mapped with PTE it would elevate
459 	 * page_count().
460 	 */
461 	if (page_count(page) == 1) {
462 		smaps_page_accumulate(mss, page, size, size << PSS_SHIFT, dirty,
463 			locked, true);
464 		return;
465 	}
466 	for (i = 0; i < nr; i++, page++) {
467 		int mapcount = page_mapcount(page);
468 		unsigned long pss = PAGE_SIZE << PSS_SHIFT;
469 		if (mapcount >= 2)
470 			pss /= mapcount;
471 		smaps_page_accumulate(mss, page, PAGE_SIZE, pss, dirty, locked,
472 				      mapcount < 2);
473 	}
474 }
475 
476 #ifdef CONFIG_SHMEM
477 static int smaps_pte_hole(unsigned long addr, unsigned long end,
478 			  __always_unused int depth, struct mm_walk *walk)
479 {
480 	struct mem_size_stats *mss = walk->private;
481 
482 	mss->swap += shmem_partial_swap_usage(
483 			walk->vma->vm_file->f_mapping, addr, end);
484 
485 	return 0;
486 }
487 #else
488 #define smaps_pte_hole		NULL
489 #endif /* CONFIG_SHMEM */
490 
491 static void smaps_pte_entry(pte_t *pte, unsigned long addr,
492 		struct mm_walk *walk)
493 {
494 	struct mem_size_stats *mss = walk->private;
495 	struct vm_area_struct *vma = walk->vma;
496 	bool locked = !!(vma->vm_flags & VM_LOCKED);
497 	struct page *page = NULL;
498 
499 	if (pte_present(*pte)) {
500 		page = vm_normal_page(vma, addr, *pte);
501 	} else if (is_swap_pte(*pte)) {
502 		swp_entry_t swpent = pte_to_swp_entry(*pte);
503 
504 		if (!non_swap_entry(swpent)) {
505 			int mapcount;
506 
507 			mss->swap += PAGE_SIZE;
508 			mapcount = swp_swapcount(swpent);
509 			if (mapcount >= 2) {
510 				u64 pss_delta = (u64)PAGE_SIZE << PSS_SHIFT;
511 
512 				do_div(pss_delta, mapcount);
513 				mss->swap_pss += pss_delta;
514 			} else {
515 				mss->swap_pss += (u64)PAGE_SIZE << PSS_SHIFT;
516 			}
517 		} else if (is_migration_entry(swpent))
518 			page = migration_entry_to_page(swpent);
519 		else if (is_device_private_entry(swpent))
520 			page = device_private_entry_to_page(swpent);
521 	} else if (unlikely(IS_ENABLED(CONFIG_SHMEM) && mss->check_shmem_swap
522 							&& pte_none(*pte))) {
523 		page = xa_load(&vma->vm_file->f_mapping->i_pages,
524 						linear_page_index(vma, addr));
525 		if (xa_is_value(page))
526 			mss->swap += PAGE_SIZE;
527 		return;
528 	}
529 
530 	if (!page)
531 		return;
532 
533 	smaps_account(mss, page, false, pte_young(*pte), pte_dirty(*pte), locked);
534 }
535 
536 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
537 static void smaps_pmd_entry(pmd_t *pmd, unsigned long addr,
538 		struct mm_walk *walk)
539 {
540 	struct mem_size_stats *mss = walk->private;
541 	struct vm_area_struct *vma = walk->vma;
542 	bool locked = !!(vma->vm_flags & VM_LOCKED);
543 	struct page *page = NULL;
544 
545 	if (pmd_present(*pmd)) {
546 		/* FOLL_DUMP will return -EFAULT on huge zero page */
547 		page = follow_trans_huge_pmd(vma, addr, pmd, FOLL_DUMP);
548 	} else if (unlikely(thp_migration_supported() && is_swap_pmd(*pmd))) {
549 		swp_entry_t entry = pmd_to_swp_entry(*pmd);
550 
551 		if (is_migration_entry(entry))
552 			page = migration_entry_to_page(entry);
553 	}
554 	if (IS_ERR_OR_NULL(page))
555 		return;
556 	if (PageAnon(page))
557 		mss->anonymous_thp += HPAGE_PMD_SIZE;
558 	else if (PageSwapBacked(page))
559 		mss->shmem_thp += HPAGE_PMD_SIZE;
560 	else if (is_zone_device_page(page))
561 		/* pass */;
562 	else
563 		mss->file_thp += HPAGE_PMD_SIZE;
564 	smaps_account(mss, page, true, pmd_young(*pmd), pmd_dirty(*pmd), locked);
565 }
566 #else
567 static void smaps_pmd_entry(pmd_t *pmd, unsigned long addr,
568 		struct mm_walk *walk)
569 {
570 }
571 #endif
572 
573 static int smaps_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
574 			   struct mm_walk *walk)
575 {
576 	struct vm_area_struct *vma = walk->vma;
577 	pte_t *pte;
578 	spinlock_t *ptl;
579 
580 	ptl = pmd_trans_huge_lock(pmd, vma);
581 	if (ptl) {
582 		smaps_pmd_entry(pmd, addr, walk);
583 		spin_unlock(ptl);
584 		goto out;
585 	}
586 
587 	if (pmd_trans_unstable(pmd))
588 		goto out;
589 	/*
590 	 * The mmap_lock held all the way back in m_start() is what
591 	 * keeps khugepaged out of here and from collapsing things
592 	 * in here.
593 	 */
594 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
595 	for (; addr != end; pte++, addr += PAGE_SIZE)
596 		smaps_pte_entry(pte, addr, walk);
597 	pte_unmap_unlock(pte - 1, ptl);
598 out:
599 	cond_resched();
600 	return 0;
601 }
602 
603 static void show_smap_vma_flags(struct seq_file *m, struct vm_area_struct *vma)
604 {
605 	/*
606 	 * Don't forget to update Documentation/ on changes.
607 	 */
608 	static const char mnemonics[BITS_PER_LONG][2] = {
609 		/*
610 		 * In case if we meet a flag we don't know about.
611 		 */
612 		[0 ... (BITS_PER_LONG-1)] = "??",
613 
614 		[ilog2(VM_READ)]	= "rd",
615 		[ilog2(VM_WRITE)]	= "wr",
616 		[ilog2(VM_EXEC)]	= "ex",
617 		[ilog2(VM_SHARED)]	= "sh",
618 		[ilog2(VM_MAYREAD)]	= "mr",
619 		[ilog2(VM_MAYWRITE)]	= "mw",
620 		[ilog2(VM_MAYEXEC)]	= "me",
621 		[ilog2(VM_MAYSHARE)]	= "ms",
622 		[ilog2(VM_GROWSDOWN)]	= "gd",
623 		[ilog2(VM_PFNMAP)]	= "pf",
624 		[ilog2(VM_DENYWRITE)]	= "dw",
625 		[ilog2(VM_LOCKED)]	= "lo",
626 		[ilog2(VM_IO)]		= "io",
627 		[ilog2(VM_SEQ_READ)]	= "sr",
628 		[ilog2(VM_RAND_READ)]	= "rr",
629 		[ilog2(VM_DONTCOPY)]	= "dc",
630 		[ilog2(VM_DONTEXPAND)]	= "de",
631 		[ilog2(VM_ACCOUNT)]	= "ac",
632 		[ilog2(VM_NORESERVE)]	= "nr",
633 		[ilog2(VM_HUGETLB)]	= "ht",
634 		[ilog2(VM_SYNC)]	= "sf",
635 		[ilog2(VM_ARCH_1)]	= "ar",
636 		[ilog2(VM_WIPEONFORK)]	= "wf",
637 		[ilog2(VM_DONTDUMP)]	= "dd",
638 #ifdef CONFIG_ARM64_BTI
639 		[ilog2(VM_ARM64_BTI)]	= "bt",
640 #endif
641 #ifdef CONFIG_MEM_SOFT_DIRTY
642 		[ilog2(VM_SOFTDIRTY)]	= "sd",
643 #endif
644 		[ilog2(VM_MIXEDMAP)]	= "mm",
645 		[ilog2(VM_HUGEPAGE)]	= "hg",
646 		[ilog2(VM_NOHUGEPAGE)]	= "nh",
647 		[ilog2(VM_MERGEABLE)]	= "mg",
648 		[ilog2(VM_UFFD_MISSING)]= "um",
649 		[ilog2(VM_UFFD_WP)]	= "uw",
650 #ifdef CONFIG_ARM64_MTE
651 		[ilog2(VM_MTE)]		= "mt",
652 		[ilog2(VM_MTE_ALLOWED)]	= "",
653 #endif
654 #ifdef CONFIG_ARCH_HAS_PKEYS
655 		/* These come out via ProtectionKey: */
656 		[ilog2(VM_PKEY_BIT0)]	= "",
657 		[ilog2(VM_PKEY_BIT1)]	= "",
658 		[ilog2(VM_PKEY_BIT2)]	= "",
659 		[ilog2(VM_PKEY_BIT3)]	= "",
660 #if VM_PKEY_BIT4
661 		[ilog2(VM_PKEY_BIT4)]	= "",
662 #endif
663 #endif /* CONFIG_ARCH_HAS_PKEYS */
664 #ifdef CONFIG_HAVE_ARCH_USERFAULTFD_MINOR
665 		[ilog2(VM_UFFD_MINOR)]	= "ui",
666 #endif /* CONFIG_HAVE_ARCH_USERFAULTFD_MINOR */
667 	};
668 	size_t i;
669 
670 	seq_puts(m, "VmFlags: ");
671 	for (i = 0; i < BITS_PER_LONG; i++) {
672 		if (!mnemonics[i][0])
673 			continue;
674 		if (vma->vm_flags & (1UL << i)) {
675 			seq_putc(m, mnemonics[i][0]);
676 			seq_putc(m, mnemonics[i][1]);
677 			seq_putc(m, ' ');
678 		}
679 	}
680 	seq_putc(m, '\n');
681 }
682 
683 #ifdef CONFIG_HUGETLB_PAGE
684 static int smaps_hugetlb_range(pte_t *pte, unsigned long hmask,
685 				 unsigned long addr, unsigned long end,
686 				 struct mm_walk *walk)
687 {
688 	struct mem_size_stats *mss = walk->private;
689 	struct vm_area_struct *vma = walk->vma;
690 	struct page *page = NULL;
691 
692 	if (pte_present(*pte)) {
693 		page = vm_normal_page(vma, addr, *pte);
694 	} else if (is_swap_pte(*pte)) {
695 		swp_entry_t swpent = pte_to_swp_entry(*pte);
696 
697 		if (is_migration_entry(swpent))
698 			page = migration_entry_to_page(swpent);
699 		else if (is_device_private_entry(swpent))
700 			page = device_private_entry_to_page(swpent);
701 	}
702 	if (page) {
703 		int mapcount = page_mapcount(page);
704 
705 		if (mapcount >= 2)
706 			mss->shared_hugetlb += huge_page_size(hstate_vma(vma));
707 		else
708 			mss->private_hugetlb += huge_page_size(hstate_vma(vma));
709 	}
710 	return 0;
711 }
712 #else
713 #define smaps_hugetlb_range	NULL
714 #endif /* HUGETLB_PAGE */
715 
716 static const struct mm_walk_ops smaps_walk_ops = {
717 	.pmd_entry		= smaps_pte_range,
718 	.hugetlb_entry		= smaps_hugetlb_range,
719 };
720 
721 static const struct mm_walk_ops smaps_shmem_walk_ops = {
722 	.pmd_entry		= smaps_pte_range,
723 	.hugetlb_entry		= smaps_hugetlb_range,
724 	.pte_hole		= smaps_pte_hole,
725 };
726 
727 /*
728  * Gather mem stats from @vma with the indicated beginning
729  * address @start, and keep them in @mss.
730  *
731  * Use vm_start of @vma as the beginning address if @start is 0.
732  */
733 static void smap_gather_stats(struct vm_area_struct *vma,
734 		struct mem_size_stats *mss, unsigned long start)
735 {
736 	const struct mm_walk_ops *ops = &smaps_walk_ops;
737 
738 	/* Invalid start */
739 	if (start >= vma->vm_end)
740 		return;
741 
742 #ifdef CONFIG_SHMEM
743 	/* In case of smaps_rollup, reset the value from previous vma */
744 	mss->check_shmem_swap = false;
745 	if (vma->vm_file && shmem_mapping(vma->vm_file->f_mapping)) {
746 		/*
747 		 * For shared or readonly shmem mappings we know that all
748 		 * swapped out pages belong to the shmem object, and we can
749 		 * obtain the swap value much more efficiently. For private
750 		 * writable mappings, we might have COW pages that are
751 		 * not affected by the parent swapped out pages of the shmem
752 		 * object, so we have to distinguish them during the page walk.
753 		 * Unless we know that the shmem object (or the part mapped by
754 		 * our VMA) has no swapped out pages at all.
755 		 */
756 		unsigned long shmem_swapped = shmem_swap_usage(vma);
757 
758 		if (!start && (!shmem_swapped || (vma->vm_flags & VM_SHARED) ||
759 					!(vma->vm_flags & VM_WRITE))) {
760 			mss->swap += shmem_swapped;
761 		} else {
762 			mss->check_shmem_swap = true;
763 			ops = &smaps_shmem_walk_ops;
764 		}
765 	}
766 #endif
767 	/* mmap_lock is held in m_start */
768 	if (!start)
769 		walk_page_vma(vma, ops, mss);
770 	else
771 		walk_page_range(vma->vm_mm, start, vma->vm_end, ops, mss);
772 }
773 
774 #define SEQ_PUT_DEC(str, val) \
775 		seq_put_decimal_ull_width(m, str, (val) >> 10, 8)
776 
777 /* Show the contents common for smaps and smaps_rollup */
778 static void __show_smap(struct seq_file *m, const struct mem_size_stats *mss,
779 	bool rollup_mode)
780 {
781 	SEQ_PUT_DEC("Rss:            ", mss->resident);
782 	SEQ_PUT_DEC(" kB\nPss:            ", mss->pss >> PSS_SHIFT);
783 	if (rollup_mode) {
784 		/*
785 		 * These are meaningful only for smaps_rollup, otherwise two of
786 		 * them are zero, and the other one is the same as Pss.
787 		 */
788 		SEQ_PUT_DEC(" kB\nPss_Anon:       ",
789 			mss->pss_anon >> PSS_SHIFT);
790 		SEQ_PUT_DEC(" kB\nPss_File:       ",
791 			mss->pss_file >> PSS_SHIFT);
792 		SEQ_PUT_DEC(" kB\nPss_Shmem:      ",
793 			mss->pss_shmem >> PSS_SHIFT);
794 	}
795 	SEQ_PUT_DEC(" kB\nShared_Clean:   ", mss->shared_clean);
796 	SEQ_PUT_DEC(" kB\nShared_Dirty:   ", mss->shared_dirty);
797 	SEQ_PUT_DEC(" kB\nPrivate_Clean:  ", mss->private_clean);
798 	SEQ_PUT_DEC(" kB\nPrivate_Dirty:  ", mss->private_dirty);
799 	SEQ_PUT_DEC(" kB\nReferenced:     ", mss->referenced);
800 	SEQ_PUT_DEC(" kB\nAnonymous:      ", mss->anonymous);
801 	SEQ_PUT_DEC(" kB\nLazyFree:       ", mss->lazyfree);
802 	SEQ_PUT_DEC(" kB\nAnonHugePages:  ", mss->anonymous_thp);
803 	SEQ_PUT_DEC(" kB\nShmemPmdMapped: ", mss->shmem_thp);
804 	SEQ_PUT_DEC(" kB\nFilePmdMapped:  ", mss->file_thp);
805 	SEQ_PUT_DEC(" kB\nShared_Hugetlb: ", mss->shared_hugetlb);
806 	seq_put_decimal_ull_width(m, " kB\nPrivate_Hugetlb: ",
807 				  mss->private_hugetlb >> 10, 7);
808 	SEQ_PUT_DEC(" kB\nSwap:           ", mss->swap);
809 	SEQ_PUT_DEC(" kB\nSwapPss:        ",
810 					mss->swap_pss >> PSS_SHIFT);
811 	SEQ_PUT_DEC(" kB\nLocked:         ",
812 					mss->pss_locked >> PSS_SHIFT);
813 	seq_puts(m, " kB\n");
814 }
815 
816 static int show_smap(struct seq_file *m, void *v)
817 {
818 	struct vm_area_struct *vma = v;
819 	struct mem_size_stats mss;
820 
821 	memset(&mss, 0, sizeof(mss));
822 
823 	smap_gather_stats(vma, &mss, 0);
824 
825 	show_map_vma(m, vma);
826 
827 	SEQ_PUT_DEC("Size:           ", vma->vm_end - vma->vm_start);
828 	SEQ_PUT_DEC(" kB\nKernelPageSize: ", vma_kernel_pagesize(vma));
829 	SEQ_PUT_DEC(" kB\nMMUPageSize:    ", vma_mmu_pagesize(vma));
830 	seq_puts(m, " kB\n");
831 
832 	__show_smap(m, &mss, false);
833 
834 	seq_printf(m, "THPeligible:    %d\n",
835 		   transparent_hugepage_enabled(vma));
836 
837 	if (arch_pkeys_enabled())
838 		seq_printf(m, "ProtectionKey:  %8u\n", vma_pkey(vma));
839 	show_smap_vma_flags(m, vma);
840 
841 	return 0;
842 }
843 
844 static int show_smaps_rollup(struct seq_file *m, void *v)
845 {
846 	struct proc_maps_private *priv = m->private;
847 	struct mem_size_stats mss;
848 	struct mm_struct *mm;
849 	struct vm_area_struct *vma;
850 	unsigned long last_vma_end = 0;
851 	int ret = 0;
852 
853 	priv->task = get_proc_task(priv->inode);
854 	if (!priv->task)
855 		return -ESRCH;
856 
857 	mm = priv->mm;
858 	if (!mm || !mmget_not_zero(mm)) {
859 		ret = -ESRCH;
860 		goto out_put_task;
861 	}
862 
863 	memset(&mss, 0, sizeof(mss));
864 
865 	ret = mmap_read_lock_killable(mm);
866 	if (ret)
867 		goto out_put_mm;
868 
869 	hold_task_mempolicy(priv);
870 
871 	for (vma = priv->mm->mmap; vma;) {
872 		smap_gather_stats(vma, &mss, 0);
873 		last_vma_end = vma->vm_end;
874 
875 		/*
876 		 * Release mmap_lock temporarily if someone wants to
877 		 * access it for write request.
878 		 */
879 		if (mmap_lock_is_contended(mm)) {
880 			mmap_read_unlock(mm);
881 			ret = mmap_read_lock_killable(mm);
882 			if (ret) {
883 				release_task_mempolicy(priv);
884 				goto out_put_mm;
885 			}
886 
887 			/*
888 			 * After dropping the lock, there are four cases to
889 			 * consider. See the following example for explanation.
890 			 *
891 			 *   +------+------+-----------+
892 			 *   | VMA1 | VMA2 | VMA3      |
893 			 *   +------+------+-----------+
894 			 *   |      |      |           |
895 			 *  4k     8k     16k         400k
896 			 *
897 			 * Suppose we drop the lock after reading VMA2 due to
898 			 * contention, then we get:
899 			 *
900 			 *	last_vma_end = 16k
901 			 *
902 			 * 1) VMA2 is freed, but VMA3 exists:
903 			 *
904 			 *    find_vma(mm, 16k - 1) will return VMA3.
905 			 *    In this case, just continue from VMA3.
906 			 *
907 			 * 2) VMA2 still exists:
908 			 *
909 			 *    find_vma(mm, 16k - 1) will return VMA2.
910 			 *    Iterate the loop like the original one.
911 			 *
912 			 * 3) No more VMAs can be found:
913 			 *
914 			 *    find_vma(mm, 16k - 1) will return NULL.
915 			 *    No more things to do, just break.
916 			 *
917 			 * 4) (last_vma_end - 1) is the middle of a vma (VMA'):
918 			 *
919 			 *    find_vma(mm, 16k - 1) will return VMA' whose range
920 			 *    contains last_vma_end.
921 			 *    Iterate VMA' from last_vma_end.
922 			 */
923 			vma = find_vma(mm, last_vma_end - 1);
924 			/* Case 3 above */
925 			if (!vma)
926 				break;
927 
928 			/* Case 1 above */
929 			if (vma->vm_start >= last_vma_end)
930 				continue;
931 
932 			/* Case 4 above */
933 			if (vma->vm_end > last_vma_end)
934 				smap_gather_stats(vma, &mss, last_vma_end);
935 		}
936 		/* Case 2 above */
937 		vma = vma->vm_next;
938 	}
939 
940 	show_vma_header_prefix(m, priv->mm->mmap->vm_start,
941 			       last_vma_end, 0, 0, 0, 0);
942 	seq_pad(m, ' ');
943 	seq_puts(m, "[rollup]\n");
944 
945 	__show_smap(m, &mss, true);
946 
947 	release_task_mempolicy(priv);
948 	mmap_read_unlock(mm);
949 
950 out_put_mm:
951 	mmput(mm);
952 out_put_task:
953 	put_task_struct(priv->task);
954 	priv->task = NULL;
955 
956 	return ret;
957 }
958 #undef SEQ_PUT_DEC
959 
960 static const struct seq_operations proc_pid_smaps_op = {
961 	.start	= m_start,
962 	.next	= m_next,
963 	.stop	= m_stop,
964 	.show	= show_smap
965 };
966 
967 static int pid_smaps_open(struct inode *inode, struct file *file)
968 {
969 	return do_maps_open(inode, file, &proc_pid_smaps_op);
970 }
971 
972 static int smaps_rollup_open(struct inode *inode, struct file *file)
973 {
974 	int ret;
975 	struct proc_maps_private *priv;
976 
977 	priv = kzalloc(sizeof(*priv), GFP_KERNEL_ACCOUNT);
978 	if (!priv)
979 		return -ENOMEM;
980 
981 	ret = single_open(file, show_smaps_rollup, priv);
982 	if (ret)
983 		goto out_free;
984 
985 	priv->inode = inode;
986 	priv->mm = proc_mem_open(inode, PTRACE_MODE_READ);
987 	if (IS_ERR(priv->mm)) {
988 		ret = PTR_ERR(priv->mm);
989 
990 		single_release(inode, file);
991 		goto out_free;
992 	}
993 
994 	return 0;
995 
996 out_free:
997 	kfree(priv);
998 	return ret;
999 }
1000 
1001 static int smaps_rollup_release(struct inode *inode, struct file *file)
1002 {
1003 	struct seq_file *seq = file->private_data;
1004 	struct proc_maps_private *priv = seq->private;
1005 
1006 	if (priv->mm)
1007 		mmdrop(priv->mm);
1008 
1009 	kfree(priv);
1010 	return single_release(inode, file);
1011 }
1012 
1013 const struct file_operations proc_pid_smaps_operations = {
1014 	.open		= pid_smaps_open,
1015 	.read		= seq_read,
1016 	.llseek		= seq_lseek,
1017 	.release	= proc_map_release,
1018 };
1019 
1020 const struct file_operations proc_pid_smaps_rollup_operations = {
1021 	.open		= smaps_rollup_open,
1022 	.read		= seq_read,
1023 	.llseek		= seq_lseek,
1024 	.release	= smaps_rollup_release,
1025 };
1026 
1027 enum clear_refs_types {
1028 	CLEAR_REFS_ALL = 1,
1029 	CLEAR_REFS_ANON,
1030 	CLEAR_REFS_MAPPED,
1031 	CLEAR_REFS_SOFT_DIRTY,
1032 	CLEAR_REFS_MM_HIWATER_RSS,
1033 	CLEAR_REFS_LAST,
1034 };
1035 
1036 struct clear_refs_private {
1037 	enum clear_refs_types type;
1038 };
1039 
1040 #ifdef CONFIG_MEM_SOFT_DIRTY
1041 
1042 static inline bool pte_is_pinned(struct vm_area_struct *vma, unsigned long addr, pte_t pte)
1043 {
1044 	struct page *page;
1045 
1046 	if (!pte_write(pte))
1047 		return false;
1048 	if (!is_cow_mapping(vma->vm_flags))
1049 		return false;
1050 	if (likely(!atomic_read(&vma->vm_mm->has_pinned)))
1051 		return false;
1052 	page = vm_normal_page(vma, addr, pte);
1053 	if (!page)
1054 		return false;
1055 	return page_maybe_dma_pinned(page);
1056 }
1057 
1058 static inline void clear_soft_dirty(struct vm_area_struct *vma,
1059 		unsigned long addr, pte_t *pte)
1060 {
1061 	/*
1062 	 * The soft-dirty tracker uses #PF-s to catch writes
1063 	 * to pages, so write-protect the pte as well. See the
1064 	 * Documentation/admin-guide/mm/soft-dirty.rst for full description
1065 	 * of how soft-dirty works.
1066 	 */
1067 	pte_t ptent = *pte;
1068 
1069 	if (pte_present(ptent)) {
1070 		pte_t old_pte;
1071 
1072 		if (pte_is_pinned(vma, addr, ptent))
1073 			return;
1074 		old_pte = ptep_modify_prot_start(vma, addr, pte);
1075 		ptent = pte_wrprotect(old_pte);
1076 		ptent = pte_clear_soft_dirty(ptent);
1077 		ptep_modify_prot_commit(vma, addr, pte, old_pte, ptent);
1078 	} else if (is_swap_pte(ptent)) {
1079 		ptent = pte_swp_clear_soft_dirty(ptent);
1080 		set_pte_at(vma->vm_mm, addr, pte, ptent);
1081 	}
1082 }
1083 #else
1084 static inline void clear_soft_dirty(struct vm_area_struct *vma,
1085 		unsigned long addr, pte_t *pte)
1086 {
1087 }
1088 #endif
1089 
1090 #if defined(CONFIG_MEM_SOFT_DIRTY) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
1091 static inline void clear_soft_dirty_pmd(struct vm_area_struct *vma,
1092 		unsigned long addr, pmd_t *pmdp)
1093 {
1094 	pmd_t old, pmd = *pmdp;
1095 
1096 	if (pmd_present(pmd)) {
1097 		/* See comment in change_huge_pmd() */
1098 		old = pmdp_invalidate(vma, addr, pmdp);
1099 		if (pmd_dirty(old))
1100 			pmd = pmd_mkdirty(pmd);
1101 		if (pmd_young(old))
1102 			pmd = pmd_mkyoung(pmd);
1103 
1104 		pmd = pmd_wrprotect(pmd);
1105 		pmd = pmd_clear_soft_dirty(pmd);
1106 
1107 		set_pmd_at(vma->vm_mm, addr, pmdp, pmd);
1108 	} else if (is_migration_entry(pmd_to_swp_entry(pmd))) {
1109 		pmd = pmd_swp_clear_soft_dirty(pmd);
1110 		set_pmd_at(vma->vm_mm, addr, pmdp, pmd);
1111 	}
1112 }
1113 #else
1114 static inline void clear_soft_dirty_pmd(struct vm_area_struct *vma,
1115 		unsigned long addr, pmd_t *pmdp)
1116 {
1117 }
1118 #endif
1119 
1120 static int clear_refs_pte_range(pmd_t *pmd, unsigned long addr,
1121 				unsigned long end, struct mm_walk *walk)
1122 {
1123 	struct clear_refs_private *cp = walk->private;
1124 	struct vm_area_struct *vma = walk->vma;
1125 	pte_t *pte, ptent;
1126 	spinlock_t *ptl;
1127 	struct page *page;
1128 
1129 	ptl = pmd_trans_huge_lock(pmd, vma);
1130 	if (ptl) {
1131 		if (cp->type == CLEAR_REFS_SOFT_DIRTY) {
1132 			clear_soft_dirty_pmd(vma, addr, pmd);
1133 			goto out;
1134 		}
1135 
1136 		if (!pmd_present(*pmd))
1137 			goto out;
1138 
1139 		page = pmd_page(*pmd);
1140 
1141 		/* Clear accessed and referenced bits. */
1142 		pmdp_test_and_clear_young(vma, addr, pmd);
1143 		test_and_clear_page_young(page);
1144 		ClearPageReferenced(page);
1145 out:
1146 		spin_unlock(ptl);
1147 		return 0;
1148 	}
1149 
1150 	if (pmd_trans_unstable(pmd))
1151 		return 0;
1152 
1153 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
1154 	for (; addr != end; pte++, addr += PAGE_SIZE) {
1155 		ptent = *pte;
1156 
1157 		if (cp->type == CLEAR_REFS_SOFT_DIRTY) {
1158 			clear_soft_dirty(vma, addr, pte);
1159 			continue;
1160 		}
1161 
1162 		if (!pte_present(ptent))
1163 			continue;
1164 
1165 		page = vm_normal_page(vma, addr, ptent);
1166 		if (!page)
1167 			continue;
1168 
1169 		/* Clear accessed and referenced bits. */
1170 		ptep_test_and_clear_young(vma, addr, pte);
1171 		test_and_clear_page_young(page);
1172 		ClearPageReferenced(page);
1173 	}
1174 	pte_unmap_unlock(pte - 1, ptl);
1175 	cond_resched();
1176 	return 0;
1177 }
1178 
1179 static int clear_refs_test_walk(unsigned long start, unsigned long end,
1180 				struct mm_walk *walk)
1181 {
1182 	struct clear_refs_private *cp = walk->private;
1183 	struct vm_area_struct *vma = walk->vma;
1184 
1185 	if (vma->vm_flags & VM_PFNMAP)
1186 		return 1;
1187 
1188 	/*
1189 	 * Writing 1 to /proc/pid/clear_refs affects all pages.
1190 	 * Writing 2 to /proc/pid/clear_refs only affects anonymous pages.
1191 	 * Writing 3 to /proc/pid/clear_refs only affects file mapped pages.
1192 	 * Writing 4 to /proc/pid/clear_refs affects all pages.
1193 	 */
1194 	if (cp->type == CLEAR_REFS_ANON && vma->vm_file)
1195 		return 1;
1196 	if (cp->type == CLEAR_REFS_MAPPED && !vma->vm_file)
1197 		return 1;
1198 	return 0;
1199 }
1200 
1201 static const struct mm_walk_ops clear_refs_walk_ops = {
1202 	.pmd_entry		= clear_refs_pte_range,
1203 	.test_walk		= clear_refs_test_walk,
1204 };
1205 
1206 static ssize_t clear_refs_write(struct file *file, const char __user *buf,
1207 				size_t count, loff_t *ppos)
1208 {
1209 	struct task_struct *task;
1210 	char buffer[PROC_NUMBUF];
1211 	struct mm_struct *mm;
1212 	struct vm_area_struct *vma;
1213 	enum clear_refs_types type;
1214 	int itype;
1215 	int rv;
1216 
1217 	memset(buffer, 0, sizeof(buffer));
1218 	if (count > sizeof(buffer) - 1)
1219 		count = sizeof(buffer) - 1;
1220 	if (copy_from_user(buffer, buf, count))
1221 		return -EFAULT;
1222 	rv = kstrtoint(strstrip(buffer), 10, &itype);
1223 	if (rv < 0)
1224 		return rv;
1225 	type = (enum clear_refs_types)itype;
1226 	if (type < CLEAR_REFS_ALL || type >= CLEAR_REFS_LAST)
1227 		return -EINVAL;
1228 
1229 	task = get_proc_task(file_inode(file));
1230 	if (!task)
1231 		return -ESRCH;
1232 	mm = get_task_mm(task);
1233 	if (mm) {
1234 		struct mmu_notifier_range range;
1235 		struct clear_refs_private cp = {
1236 			.type = type,
1237 		};
1238 
1239 		if (mmap_write_lock_killable(mm)) {
1240 			count = -EINTR;
1241 			goto out_mm;
1242 		}
1243 		if (type == CLEAR_REFS_MM_HIWATER_RSS) {
1244 			/*
1245 			 * Writing 5 to /proc/pid/clear_refs resets the peak
1246 			 * resident set size to this mm's current rss value.
1247 			 */
1248 			reset_mm_hiwater_rss(mm);
1249 			goto out_unlock;
1250 		}
1251 
1252 		if (type == CLEAR_REFS_SOFT_DIRTY) {
1253 			for (vma = mm->mmap; vma; vma = vma->vm_next) {
1254 				if (!(vma->vm_flags & VM_SOFTDIRTY))
1255 					continue;
1256 				vma->vm_flags &= ~VM_SOFTDIRTY;
1257 				vma_set_page_prot(vma);
1258 			}
1259 
1260 			inc_tlb_flush_pending(mm);
1261 			mmu_notifier_range_init(&range, MMU_NOTIFY_SOFT_DIRTY,
1262 						0, NULL, mm, 0, -1UL);
1263 			mmu_notifier_invalidate_range_start(&range);
1264 		}
1265 		walk_page_range(mm, 0, mm->highest_vm_end, &clear_refs_walk_ops,
1266 				&cp);
1267 		if (type == CLEAR_REFS_SOFT_DIRTY) {
1268 			mmu_notifier_invalidate_range_end(&range);
1269 			flush_tlb_mm(mm);
1270 			dec_tlb_flush_pending(mm);
1271 		}
1272 out_unlock:
1273 		mmap_write_unlock(mm);
1274 out_mm:
1275 		mmput(mm);
1276 	}
1277 	put_task_struct(task);
1278 
1279 	return count;
1280 }
1281 
1282 const struct file_operations proc_clear_refs_operations = {
1283 	.write		= clear_refs_write,
1284 	.llseek		= noop_llseek,
1285 };
1286 
1287 typedef struct {
1288 	u64 pme;
1289 } pagemap_entry_t;
1290 
1291 struct pagemapread {
1292 	int pos, len;		/* units: PM_ENTRY_BYTES, not bytes */
1293 	pagemap_entry_t *buffer;
1294 	bool show_pfn;
1295 };
1296 
1297 #define PAGEMAP_WALK_SIZE	(PMD_SIZE)
1298 #define PAGEMAP_WALK_MASK	(PMD_MASK)
1299 
1300 #define PM_ENTRY_BYTES		sizeof(pagemap_entry_t)
1301 #define PM_PFRAME_BITS		55
1302 #define PM_PFRAME_MASK		GENMASK_ULL(PM_PFRAME_BITS - 1, 0)
1303 #define PM_SOFT_DIRTY		BIT_ULL(55)
1304 #define PM_MMAP_EXCLUSIVE	BIT_ULL(56)
1305 #define PM_FILE			BIT_ULL(61)
1306 #define PM_SWAP			BIT_ULL(62)
1307 #define PM_PRESENT		BIT_ULL(63)
1308 
1309 #define PM_END_OF_BUFFER    1
1310 
1311 static inline pagemap_entry_t make_pme(u64 frame, u64 flags)
1312 {
1313 	return (pagemap_entry_t) { .pme = (frame & PM_PFRAME_MASK) | flags };
1314 }
1315 
1316 static int add_to_pagemap(unsigned long addr, pagemap_entry_t *pme,
1317 			  struct pagemapread *pm)
1318 {
1319 	pm->buffer[pm->pos++] = *pme;
1320 	if (pm->pos >= pm->len)
1321 		return PM_END_OF_BUFFER;
1322 	return 0;
1323 }
1324 
1325 static int pagemap_pte_hole(unsigned long start, unsigned long end,
1326 			    __always_unused int depth, struct mm_walk *walk)
1327 {
1328 	struct pagemapread *pm = walk->private;
1329 	unsigned long addr = start;
1330 	int err = 0;
1331 
1332 	while (addr < end) {
1333 		struct vm_area_struct *vma = find_vma(walk->mm, addr);
1334 		pagemap_entry_t pme = make_pme(0, 0);
1335 		/* End of address space hole, which we mark as non-present. */
1336 		unsigned long hole_end;
1337 
1338 		if (vma)
1339 			hole_end = min(end, vma->vm_start);
1340 		else
1341 			hole_end = end;
1342 
1343 		for (; addr < hole_end; addr += PAGE_SIZE) {
1344 			err = add_to_pagemap(addr, &pme, pm);
1345 			if (err)
1346 				goto out;
1347 		}
1348 
1349 		if (!vma)
1350 			break;
1351 
1352 		/* Addresses in the VMA. */
1353 		if (vma->vm_flags & VM_SOFTDIRTY)
1354 			pme = make_pme(0, PM_SOFT_DIRTY);
1355 		for (; addr < min(end, vma->vm_end); addr += PAGE_SIZE) {
1356 			err = add_to_pagemap(addr, &pme, pm);
1357 			if (err)
1358 				goto out;
1359 		}
1360 	}
1361 out:
1362 	return err;
1363 }
1364 
1365 static pagemap_entry_t pte_to_pagemap_entry(struct pagemapread *pm,
1366 		struct vm_area_struct *vma, unsigned long addr, pte_t pte)
1367 {
1368 	u64 frame = 0, flags = 0;
1369 	struct page *page = NULL;
1370 
1371 	if (pte_present(pte)) {
1372 		if (pm->show_pfn)
1373 			frame = pte_pfn(pte);
1374 		flags |= PM_PRESENT;
1375 		page = vm_normal_page(vma, addr, pte);
1376 		if (pte_soft_dirty(pte))
1377 			flags |= PM_SOFT_DIRTY;
1378 	} else if (is_swap_pte(pte)) {
1379 		swp_entry_t entry;
1380 		if (pte_swp_soft_dirty(pte))
1381 			flags |= PM_SOFT_DIRTY;
1382 		entry = pte_to_swp_entry(pte);
1383 		if (pm->show_pfn)
1384 			frame = swp_type(entry) |
1385 				(swp_offset(entry) << MAX_SWAPFILES_SHIFT);
1386 		flags |= PM_SWAP;
1387 		if (is_migration_entry(entry))
1388 			page = migration_entry_to_page(entry);
1389 
1390 		if (is_device_private_entry(entry))
1391 			page = device_private_entry_to_page(entry);
1392 	}
1393 
1394 	if (page && !PageAnon(page))
1395 		flags |= PM_FILE;
1396 	if (page && page_mapcount(page) == 1)
1397 		flags |= PM_MMAP_EXCLUSIVE;
1398 	if (vma->vm_flags & VM_SOFTDIRTY)
1399 		flags |= PM_SOFT_DIRTY;
1400 
1401 	return make_pme(frame, flags);
1402 }
1403 
1404 static int pagemap_pmd_range(pmd_t *pmdp, unsigned long addr, unsigned long end,
1405 			     struct mm_walk *walk)
1406 {
1407 	struct vm_area_struct *vma = walk->vma;
1408 	struct pagemapread *pm = walk->private;
1409 	spinlock_t *ptl;
1410 	pte_t *pte, *orig_pte;
1411 	int err = 0;
1412 
1413 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1414 	ptl = pmd_trans_huge_lock(pmdp, vma);
1415 	if (ptl) {
1416 		u64 flags = 0, frame = 0;
1417 		pmd_t pmd = *pmdp;
1418 		struct page *page = NULL;
1419 
1420 		if (vma->vm_flags & VM_SOFTDIRTY)
1421 			flags |= PM_SOFT_DIRTY;
1422 
1423 		if (pmd_present(pmd)) {
1424 			page = pmd_page(pmd);
1425 
1426 			flags |= PM_PRESENT;
1427 			if (pmd_soft_dirty(pmd))
1428 				flags |= PM_SOFT_DIRTY;
1429 			if (pm->show_pfn)
1430 				frame = pmd_pfn(pmd) +
1431 					((addr & ~PMD_MASK) >> PAGE_SHIFT);
1432 		}
1433 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1434 		else if (is_swap_pmd(pmd)) {
1435 			swp_entry_t entry = pmd_to_swp_entry(pmd);
1436 			unsigned long offset;
1437 
1438 			if (pm->show_pfn) {
1439 				offset = swp_offset(entry) +
1440 					((addr & ~PMD_MASK) >> PAGE_SHIFT);
1441 				frame = swp_type(entry) |
1442 					(offset << MAX_SWAPFILES_SHIFT);
1443 			}
1444 			flags |= PM_SWAP;
1445 			if (pmd_swp_soft_dirty(pmd))
1446 				flags |= PM_SOFT_DIRTY;
1447 			VM_BUG_ON(!is_pmd_migration_entry(pmd));
1448 			page = migration_entry_to_page(entry);
1449 		}
1450 #endif
1451 
1452 		if (page && page_mapcount(page) == 1)
1453 			flags |= PM_MMAP_EXCLUSIVE;
1454 
1455 		for (; addr != end; addr += PAGE_SIZE) {
1456 			pagemap_entry_t pme = make_pme(frame, flags);
1457 
1458 			err = add_to_pagemap(addr, &pme, pm);
1459 			if (err)
1460 				break;
1461 			if (pm->show_pfn) {
1462 				if (flags & PM_PRESENT)
1463 					frame++;
1464 				else if (flags & PM_SWAP)
1465 					frame += (1 << MAX_SWAPFILES_SHIFT);
1466 			}
1467 		}
1468 		spin_unlock(ptl);
1469 		return err;
1470 	}
1471 
1472 	if (pmd_trans_unstable(pmdp))
1473 		return 0;
1474 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1475 
1476 	/*
1477 	 * We can assume that @vma always points to a valid one and @end never
1478 	 * goes beyond vma->vm_end.
1479 	 */
1480 	orig_pte = pte = pte_offset_map_lock(walk->mm, pmdp, addr, &ptl);
1481 	for (; addr < end; pte++, addr += PAGE_SIZE) {
1482 		pagemap_entry_t pme;
1483 
1484 		pme = pte_to_pagemap_entry(pm, vma, addr, *pte);
1485 		err = add_to_pagemap(addr, &pme, pm);
1486 		if (err)
1487 			break;
1488 	}
1489 	pte_unmap_unlock(orig_pte, ptl);
1490 
1491 	cond_resched();
1492 
1493 	return err;
1494 }
1495 
1496 #ifdef CONFIG_HUGETLB_PAGE
1497 /* This function walks within one hugetlb entry in the single call */
1498 static int pagemap_hugetlb_range(pte_t *ptep, unsigned long hmask,
1499 				 unsigned long addr, unsigned long end,
1500 				 struct mm_walk *walk)
1501 {
1502 	struct pagemapread *pm = walk->private;
1503 	struct vm_area_struct *vma = walk->vma;
1504 	u64 flags = 0, frame = 0;
1505 	int err = 0;
1506 	pte_t pte;
1507 
1508 	if (vma->vm_flags & VM_SOFTDIRTY)
1509 		flags |= PM_SOFT_DIRTY;
1510 
1511 	pte = huge_ptep_get(ptep);
1512 	if (pte_present(pte)) {
1513 		struct page *page = pte_page(pte);
1514 
1515 		if (!PageAnon(page))
1516 			flags |= PM_FILE;
1517 
1518 		if (page_mapcount(page) == 1)
1519 			flags |= PM_MMAP_EXCLUSIVE;
1520 
1521 		flags |= PM_PRESENT;
1522 		if (pm->show_pfn)
1523 			frame = pte_pfn(pte) +
1524 				((addr & ~hmask) >> PAGE_SHIFT);
1525 	}
1526 
1527 	for (; addr != end; addr += PAGE_SIZE) {
1528 		pagemap_entry_t pme = make_pme(frame, flags);
1529 
1530 		err = add_to_pagemap(addr, &pme, pm);
1531 		if (err)
1532 			return err;
1533 		if (pm->show_pfn && (flags & PM_PRESENT))
1534 			frame++;
1535 	}
1536 
1537 	cond_resched();
1538 
1539 	return err;
1540 }
1541 #else
1542 #define pagemap_hugetlb_range	NULL
1543 #endif /* HUGETLB_PAGE */
1544 
1545 static const struct mm_walk_ops pagemap_ops = {
1546 	.pmd_entry	= pagemap_pmd_range,
1547 	.pte_hole	= pagemap_pte_hole,
1548 	.hugetlb_entry	= pagemap_hugetlb_range,
1549 };
1550 
1551 /*
1552  * /proc/pid/pagemap - an array mapping virtual pages to pfns
1553  *
1554  * For each page in the address space, this file contains one 64-bit entry
1555  * consisting of the following:
1556  *
1557  * Bits 0-54  page frame number (PFN) if present
1558  * Bits 0-4   swap type if swapped
1559  * Bits 5-54  swap offset if swapped
1560  * Bit  55    pte is soft-dirty (see Documentation/admin-guide/mm/soft-dirty.rst)
1561  * Bit  56    page exclusively mapped
1562  * Bits 57-60 zero
1563  * Bit  61    page is file-page or shared-anon
1564  * Bit  62    page swapped
1565  * Bit  63    page present
1566  *
1567  * If the page is not present but in swap, then the PFN contains an
1568  * encoding of the swap file number and the page's offset into the
1569  * swap. Unmapped pages return a null PFN. This allows determining
1570  * precisely which pages are mapped (or in swap) and comparing mapped
1571  * pages between processes.
1572  *
1573  * Efficient users of this interface will use /proc/pid/maps to
1574  * determine which areas of memory are actually mapped and llseek to
1575  * skip over unmapped regions.
1576  */
1577 static ssize_t pagemap_read(struct file *file, char __user *buf,
1578 			    size_t count, loff_t *ppos)
1579 {
1580 	struct mm_struct *mm = file->private_data;
1581 	struct pagemapread pm;
1582 	unsigned long src;
1583 	unsigned long svpfn;
1584 	unsigned long start_vaddr;
1585 	unsigned long end_vaddr;
1586 	int ret = 0, copied = 0;
1587 
1588 	if (!mm || !mmget_not_zero(mm))
1589 		goto out;
1590 
1591 	ret = -EINVAL;
1592 	/* file position must be aligned */
1593 	if ((*ppos % PM_ENTRY_BYTES) || (count % PM_ENTRY_BYTES))
1594 		goto out_mm;
1595 
1596 	ret = 0;
1597 	if (!count)
1598 		goto out_mm;
1599 
1600 	/* do not disclose physical addresses: attack vector */
1601 	pm.show_pfn = file_ns_capable(file, &init_user_ns, CAP_SYS_ADMIN);
1602 
1603 	pm.len = (PAGEMAP_WALK_SIZE >> PAGE_SHIFT);
1604 	pm.buffer = kmalloc_array(pm.len, PM_ENTRY_BYTES, GFP_KERNEL);
1605 	ret = -ENOMEM;
1606 	if (!pm.buffer)
1607 		goto out_mm;
1608 
1609 	src = *ppos;
1610 	svpfn = src / PM_ENTRY_BYTES;
1611 	end_vaddr = mm->task_size;
1612 
1613 	/* watch out for wraparound */
1614 	start_vaddr = end_vaddr;
1615 	if (svpfn <= (ULONG_MAX >> PAGE_SHIFT))
1616 		start_vaddr = untagged_addr(svpfn << PAGE_SHIFT);
1617 
1618 	/* Ensure the address is inside the task */
1619 	if (start_vaddr > mm->task_size)
1620 		start_vaddr = end_vaddr;
1621 
1622 	/*
1623 	 * The odds are that this will stop walking way
1624 	 * before end_vaddr, because the length of the
1625 	 * user buffer is tracked in "pm", and the walk
1626 	 * will stop when we hit the end of the buffer.
1627 	 */
1628 	ret = 0;
1629 	while (count && (start_vaddr < end_vaddr)) {
1630 		int len;
1631 		unsigned long end;
1632 
1633 		pm.pos = 0;
1634 		end = (start_vaddr + PAGEMAP_WALK_SIZE) & PAGEMAP_WALK_MASK;
1635 		/* overflow ? */
1636 		if (end < start_vaddr || end > end_vaddr)
1637 			end = end_vaddr;
1638 		ret = mmap_read_lock_killable(mm);
1639 		if (ret)
1640 			goto out_free;
1641 		ret = walk_page_range(mm, start_vaddr, end, &pagemap_ops, &pm);
1642 		mmap_read_unlock(mm);
1643 		start_vaddr = end;
1644 
1645 		len = min(count, PM_ENTRY_BYTES * pm.pos);
1646 		if (copy_to_user(buf, pm.buffer, len)) {
1647 			ret = -EFAULT;
1648 			goto out_free;
1649 		}
1650 		copied += len;
1651 		buf += len;
1652 		count -= len;
1653 	}
1654 	*ppos += copied;
1655 	if (!ret || ret == PM_END_OF_BUFFER)
1656 		ret = copied;
1657 
1658 out_free:
1659 	kfree(pm.buffer);
1660 out_mm:
1661 	mmput(mm);
1662 out:
1663 	return ret;
1664 }
1665 
1666 static int pagemap_open(struct inode *inode, struct file *file)
1667 {
1668 	struct mm_struct *mm;
1669 
1670 	mm = proc_mem_open(inode, PTRACE_MODE_READ);
1671 	if (IS_ERR(mm))
1672 		return PTR_ERR(mm);
1673 	file->private_data = mm;
1674 	return 0;
1675 }
1676 
1677 static int pagemap_release(struct inode *inode, struct file *file)
1678 {
1679 	struct mm_struct *mm = file->private_data;
1680 
1681 	if (mm)
1682 		mmdrop(mm);
1683 	return 0;
1684 }
1685 
1686 const struct file_operations proc_pagemap_operations = {
1687 	.llseek		= mem_lseek, /* borrow this */
1688 	.read		= pagemap_read,
1689 	.open		= pagemap_open,
1690 	.release	= pagemap_release,
1691 };
1692 #endif /* CONFIG_PROC_PAGE_MONITOR */
1693 
1694 #ifdef CONFIG_NUMA
1695 
1696 struct numa_maps {
1697 	unsigned long pages;
1698 	unsigned long anon;
1699 	unsigned long active;
1700 	unsigned long writeback;
1701 	unsigned long mapcount_max;
1702 	unsigned long dirty;
1703 	unsigned long swapcache;
1704 	unsigned long node[MAX_NUMNODES];
1705 };
1706 
1707 struct numa_maps_private {
1708 	struct proc_maps_private proc_maps;
1709 	struct numa_maps md;
1710 };
1711 
1712 static void gather_stats(struct page *page, struct numa_maps *md, int pte_dirty,
1713 			unsigned long nr_pages)
1714 {
1715 	int count = page_mapcount(page);
1716 
1717 	md->pages += nr_pages;
1718 	if (pte_dirty || PageDirty(page))
1719 		md->dirty += nr_pages;
1720 
1721 	if (PageSwapCache(page))
1722 		md->swapcache += nr_pages;
1723 
1724 	if (PageActive(page) || PageUnevictable(page))
1725 		md->active += nr_pages;
1726 
1727 	if (PageWriteback(page))
1728 		md->writeback += nr_pages;
1729 
1730 	if (PageAnon(page))
1731 		md->anon += nr_pages;
1732 
1733 	if (count > md->mapcount_max)
1734 		md->mapcount_max = count;
1735 
1736 	md->node[page_to_nid(page)] += nr_pages;
1737 }
1738 
1739 static struct page *can_gather_numa_stats(pte_t pte, struct vm_area_struct *vma,
1740 		unsigned long addr)
1741 {
1742 	struct page *page;
1743 	int nid;
1744 
1745 	if (!pte_present(pte))
1746 		return NULL;
1747 
1748 	page = vm_normal_page(vma, addr, pte);
1749 	if (!page)
1750 		return NULL;
1751 
1752 	if (PageReserved(page))
1753 		return NULL;
1754 
1755 	nid = page_to_nid(page);
1756 	if (!node_isset(nid, node_states[N_MEMORY]))
1757 		return NULL;
1758 
1759 	return page;
1760 }
1761 
1762 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1763 static struct page *can_gather_numa_stats_pmd(pmd_t pmd,
1764 					      struct vm_area_struct *vma,
1765 					      unsigned long addr)
1766 {
1767 	struct page *page;
1768 	int nid;
1769 
1770 	if (!pmd_present(pmd))
1771 		return NULL;
1772 
1773 	page = vm_normal_page_pmd(vma, addr, pmd);
1774 	if (!page)
1775 		return NULL;
1776 
1777 	if (PageReserved(page))
1778 		return NULL;
1779 
1780 	nid = page_to_nid(page);
1781 	if (!node_isset(nid, node_states[N_MEMORY]))
1782 		return NULL;
1783 
1784 	return page;
1785 }
1786 #endif
1787 
1788 static int gather_pte_stats(pmd_t *pmd, unsigned long addr,
1789 		unsigned long end, struct mm_walk *walk)
1790 {
1791 	struct numa_maps *md = walk->private;
1792 	struct vm_area_struct *vma = walk->vma;
1793 	spinlock_t *ptl;
1794 	pte_t *orig_pte;
1795 	pte_t *pte;
1796 
1797 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1798 	ptl = pmd_trans_huge_lock(pmd, vma);
1799 	if (ptl) {
1800 		struct page *page;
1801 
1802 		page = can_gather_numa_stats_pmd(*pmd, vma, addr);
1803 		if (page)
1804 			gather_stats(page, md, pmd_dirty(*pmd),
1805 				     HPAGE_PMD_SIZE/PAGE_SIZE);
1806 		spin_unlock(ptl);
1807 		return 0;
1808 	}
1809 
1810 	if (pmd_trans_unstable(pmd))
1811 		return 0;
1812 #endif
1813 	orig_pte = pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
1814 	do {
1815 		struct page *page = can_gather_numa_stats(*pte, vma, addr);
1816 		if (!page)
1817 			continue;
1818 		gather_stats(page, md, pte_dirty(*pte), 1);
1819 
1820 	} while (pte++, addr += PAGE_SIZE, addr != end);
1821 	pte_unmap_unlock(orig_pte, ptl);
1822 	cond_resched();
1823 	return 0;
1824 }
1825 #ifdef CONFIG_HUGETLB_PAGE
1826 static int gather_hugetlb_stats(pte_t *pte, unsigned long hmask,
1827 		unsigned long addr, unsigned long end, struct mm_walk *walk)
1828 {
1829 	pte_t huge_pte = huge_ptep_get(pte);
1830 	struct numa_maps *md;
1831 	struct page *page;
1832 
1833 	if (!pte_present(huge_pte))
1834 		return 0;
1835 
1836 	page = pte_page(huge_pte);
1837 	if (!page)
1838 		return 0;
1839 
1840 	md = walk->private;
1841 	gather_stats(page, md, pte_dirty(huge_pte), 1);
1842 	return 0;
1843 }
1844 
1845 #else
1846 static int gather_hugetlb_stats(pte_t *pte, unsigned long hmask,
1847 		unsigned long addr, unsigned long end, struct mm_walk *walk)
1848 {
1849 	return 0;
1850 }
1851 #endif
1852 
1853 static const struct mm_walk_ops show_numa_ops = {
1854 	.hugetlb_entry = gather_hugetlb_stats,
1855 	.pmd_entry = gather_pte_stats,
1856 };
1857 
1858 /*
1859  * Display pages allocated per node and memory policy via /proc.
1860  */
1861 static int show_numa_map(struct seq_file *m, void *v)
1862 {
1863 	struct numa_maps_private *numa_priv = m->private;
1864 	struct proc_maps_private *proc_priv = &numa_priv->proc_maps;
1865 	struct vm_area_struct *vma = v;
1866 	struct numa_maps *md = &numa_priv->md;
1867 	struct file *file = vma->vm_file;
1868 	struct mm_struct *mm = vma->vm_mm;
1869 	struct mempolicy *pol;
1870 	char buffer[64];
1871 	int nid;
1872 
1873 	if (!mm)
1874 		return 0;
1875 
1876 	/* Ensure we start with an empty set of numa_maps statistics. */
1877 	memset(md, 0, sizeof(*md));
1878 
1879 	pol = __get_vma_policy(vma, vma->vm_start);
1880 	if (pol) {
1881 		mpol_to_str(buffer, sizeof(buffer), pol);
1882 		mpol_cond_put(pol);
1883 	} else {
1884 		mpol_to_str(buffer, sizeof(buffer), proc_priv->task_mempolicy);
1885 	}
1886 
1887 	seq_printf(m, "%08lx %s", vma->vm_start, buffer);
1888 
1889 	if (file) {
1890 		seq_puts(m, " file=");
1891 		seq_file_path(m, file, "\n\t= ");
1892 	} else if (vma->vm_start <= mm->brk && vma->vm_end >= mm->start_brk) {
1893 		seq_puts(m, " heap");
1894 	} else if (is_stack(vma)) {
1895 		seq_puts(m, " stack");
1896 	}
1897 
1898 	if (is_vm_hugetlb_page(vma))
1899 		seq_puts(m, " huge");
1900 
1901 	/* mmap_lock is held by m_start */
1902 	walk_page_vma(vma, &show_numa_ops, md);
1903 
1904 	if (!md->pages)
1905 		goto out;
1906 
1907 	if (md->anon)
1908 		seq_printf(m, " anon=%lu", md->anon);
1909 
1910 	if (md->dirty)
1911 		seq_printf(m, " dirty=%lu", md->dirty);
1912 
1913 	if (md->pages != md->anon && md->pages != md->dirty)
1914 		seq_printf(m, " mapped=%lu", md->pages);
1915 
1916 	if (md->mapcount_max > 1)
1917 		seq_printf(m, " mapmax=%lu", md->mapcount_max);
1918 
1919 	if (md->swapcache)
1920 		seq_printf(m, " swapcache=%lu", md->swapcache);
1921 
1922 	if (md->active < md->pages && !is_vm_hugetlb_page(vma))
1923 		seq_printf(m, " active=%lu", md->active);
1924 
1925 	if (md->writeback)
1926 		seq_printf(m, " writeback=%lu", md->writeback);
1927 
1928 	for_each_node_state(nid, N_MEMORY)
1929 		if (md->node[nid])
1930 			seq_printf(m, " N%d=%lu", nid, md->node[nid]);
1931 
1932 	seq_printf(m, " kernelpagesize_kB=%lu", vma_kernel_pagesize(vma) >> 10);
1933 out:
1934 	seq_putc(m, '\n');
1935 	return 0;
1936 }
1937 
1938 static const struct seq_operations proc_pid_numa_maps_op = {
1939 	.start  = m_start,
1940 	.next   = m_next,
1941 	.stop   = m_stop,
1942 	.show   = show_numa_map,
1943 };
1944 
1945 static int pid_numa_maps_open(struct inode *inode, struct file *file)
1946 {
1947 	return proc_maps_open(inode, file, &proc_pid_numa_maps_op,
1948 				sizeof(struct numa_maps_private));
1949 }
1950 
1951 const struct file_operations proc_pid_numa_maps_operations = {
1952 	.open		= pid_numa_maps_open,
1953 	.read		= seq_read,
1954 	.llseek		= seq_lseek,
1955 	.release	= proc_map_release,
1956 };
1957 
1958 #endif /* CONFIG_NUMA */
1959