xref: /linux/fs/proc/task_mmu.c (revision 3e7819886281e077e82006fe4804b0d6b0f5643b)
1 // SPDX-License-Identifier: GPL-2.0
2 #include <linux/pagewalk.h>
3 #include <linux/mm_inline.h>
4 #include <linux/hugetlb.h>
5 #include <linux/huge_mm.h>
6 #include <linux/mount.h>
7 #include <linux/ksm.h>
8 #include <linux/seq_file.h>
9 #include <linux/highmem.h>
10 #include <linux/ptrace.h>
11 #include <linux/slab.h>
12 #include <linux/pagemap.h>
13 #include <linux/mempolicy.h>
14 #include <linux/rmap.h>
15 #include <linux/swap.h>
16 #include <linux/sched/mm.h>
17 #include <linux/swapops.h>
18 #include <linux/mmu_notifier.h>
19 #include <linux/page_idle.h>
20 #include <linux/shmem_fs.h>
21 #include <linux/uaccess.h>
22 #include <linux/pkeys.h>
23 #include <linux/minmax.h>
24 #include <linux/overflow.h>
25 
26 #include <asm/elf.h>
27 #include <asm/tlb.h>
28 #include <asm/tlbflush.h>
29 #include "internal.h"
30 
31 #define SEQ_PUT_DEC(str, val) \
32 		seq_put_decimal_ull_width(m, str, (val) << (PAGE_SHIFT-10), 8)
33 void task_mem(struct seq_file *m, struct mm_struct *mm)
34 {
35 	unsigned long text, lib, swap, anon, file, shmem;
36 	unsigned long hiwater_vm, total_vm, hiwater_rss, total_rss;
37 
38 	anon = get_mm_counter(mm, MM_ANONPAGES);
39 	file = get_mm_counter(mm, MM_FILEPAGES);
40 	shmem = get_mm_counter(mm, MM_SHMEMPAGES);
41 
42 	/*
43 	 * Note: to minimize their overhead, mm maintains hiwater_vm and
44 	 * hiwater_rss only when about to *lower* total_vm or rss.  Any
45 	 * collector of these hiwater stats must therefore get total_vm
46 	 * and rss too, which will usually be the higher.  Barriers? not
47 	 * worth the effort, such snapshots can always be inconsistent.
48 	 */
49 	hiwater_vm = total_vm = mm->total_vm;
50 	if (hiwater_vm < mm->hiwater_vm)
51 		hiwater_vm = mm->hiwater_vm;
52 	hiwater_rss = total_rss = anon + file + shmem;
53 	if (hiwater_rss < mm->hiwater_rss)
54 		hiwater_rss = mm->hiwater_rss;
55 
56 	/* split executable areas between text and lib */
57 	text = PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK);
58 	text = min(text, mm->exec_vm << PAGE_SHIFT);
59 	lib = (mm->exec_vm << PAGE_SHIFT) - text;
60 
61 	swap = get_mm_counter(mm, MM_SWAPENTS);
62 	SEQ_PUT_DEC("VmPeak:\t", hiwater_vm);
63 	SEQ_PUT_DEC(" kB\nVmSize:\t", total_vm);
64 	SEQ_PUT_DEC(" kB\nVmLck:\t", mm->locked_vm);
65 	SEQ_PUT_DEC(" kB\nVmPin:\t", atomic64_read(&mm->pinned_vm));
66 	SEQ_PUT_DEC(" kB\nVmHWM:\t", hiwater_rss);
67 	SEQ_PUT_DEC(" kB\nVmRSS:\t", total_rss);
68 	SEQ_PUT_DEC(" kB\nRssAnon:\t", anon);
69 	SEQ_PUT_DEC(" kB\nRssFile:\t", file);
70 	SEQ_PUT_DEC(" kB\nRssShmem:\t", shmem);
71 	SEQ_PUT_DEC(" kB\nVmData:\t", mm->data_vm);
72 	SEQ_PUT_DEC(" kB\nVmStk:\t", mm->stack_vm);
73 	seq_put_decimal_ull_width(m,
74 		    " kB\nVmExe:\t", text >> 10, 8);
75 	seq_put_decimal_ull_width(m,
76 		    " kB\nVmLib:\t", lib >> 10, 8);
77 	seq_put_decimal_ull_width(m,
78 		    " kB\nVmPTE:\t", mm_pgtables_bytes(mm) >> 10, 8);
79 	SEQ_PUT_DEC(" kB\nVmSwap:\t", swap);
80 	seq_puts(m, " kB\n");
81 	hugetlb_report_usage(m, mm);
82 }
83 #undef SEQ_PUT_DEC
84 
85 unsigned long task_vsize(struct mm_struct *mm)
86 {
87 	return PAGE_SIZE * mm->total_vm;
88 }
89 
90 unsigned long task_statm(struct mm_struct *mm,
91 			 unsigned long *shared, unsigned long *text,
92 			 unsigned long *data, unsigned long *resident)
93 {
94 	*shared = get_mm_counter(mm, MM_FILEPAGES) +
95 			get_mm_counter(mm, MM_SHMEMPAGES);
96 	*text = (PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK))
97 								>> PAGE_SHIFT;
98 	*data = mm->data_vm + mm->stack_vm;
99 	*resident = *shared + get_mm_counter(mm, MM_ANONPAGES);
100 	return mm->total_vm;
101 }
102 
103 #ifdef CONFIG_NUMA
104 /*
105  * Save get_task_policy() for show_numa_map().
106  */
107 static void hold_task_mempolicy(struct proc_maps_private *priv)
108 {
109 	struct task_struct *task = priv->task;
110 
111 	task_lock(task);
112 	priv->task_mempolicy = get_task_policy(task);
113 	mpol_get(priv->task_mempolicy);
114 	task_unlock(task);
115 }
116 static void release_task_mempolicy(struct proc_maps_private *priv)
117 {
118 	mpol_put(priv->task_mempolicy);
119 }
120 #else
121 static void hold_task_mempolicy(struct proc_maps_private *priv)
122 {
123 }
124 static void release_task_mempolicy(struct proc_maps_private *priv)
125 {
126 }
127 #endif
128 
129 static struct vm_area_struct *proc_get_vma(struct proc_maps_private *priv,
130 						loff_t *ppos)
131 {
132 	struct vm_area_struct *vma = vma_next(&priv->iter);
133 
134 	if (vma) {
135 		*ppos = vma->vm_start;
136 	} else {
137 		*ppos = -2UL;
138 		vma = get_gate_vma(priv->mm);
139 	}
140 
141 	return vma;
142 }
143 
144 static void *m_start(struct seq_file *m, loff_t *ppos)
145 {
146 	struct proc_maps_private *priv = m->private;
147 	unsigned long last_addr = *ppos;
148 	struct mm_struct *mm;
149 
150 	/* See m_next(). Zero at the start or after lseek. */
151 	if (last_addr == -1UL)
152 		return NULL;
153 
154 	priv->task = get_proc_task(priv->inode);
155 	if (!priv->task)
156 		return ERR_PTR(-ESRCH);
157 
158 	mm = priv->mm;
159 	if (!mm || !mmget_not_zero(mm)) {
160 		put_task_struct(priv->task);
161 		priv->task = NULL;
162 		return NULL;
163 	}
164 
165 	if (mmap_read_lock_killable(mm)) {
166 		mmput(mm);
167 		put_task_struct(priv->task);
168 		priv->task = NULL;
169 		return ERR_PTR(-EINTR);
170 	}
171 
172 	vma_iter_init(&priv->iter, mm, last_addr);
173 	hold_task_mempolicy(priv);
174 	if (last_addr == -2UL)
175 		return get_gate_vma(mm);
176 
177 	return proc_get_vma(priv, ppos);
178 }
179 
180 static void *m_next(struct seq_file *m, void *v, loff_t *ppos)
181 {
182 	if (*ppos == -2UL) {
183 		*ppos = -1UL;
184 		return NULL;
185 	}
186 	return proc_get_vma(m->private, ppos);
187 }
188 
189 static void m_stop(struct seq_file *m, void *v)
190 {
191 	struct proc_maps_private *priv = m->private;
192 	struct mm_struct *mm = priv->mm;
193 
194 	if (!priv->task)
195 		return;
196 
197 	release_task_mempolicy(priv);
198 	mmap_read_unlock(mm);
199 	mmput(mm);
200 	put_task_struct(priv->task);
201 	priv->task = NULL;
202 }
203 
204 static int proc_maps_open(struct inode *inode, struct file *file,
205 			const struct seq_operations *ops, int psize)
206 {
207 	struct proc_maps_private *priv = __seq_open_private(file, ops, psize);
208 
209 	if (!priv)
210 		return -ENOMEM;
211 
212 	priv->inode = inode;
213 	priv->mm = proc_mem_open(inode, PTRACE_MODE_READ);
214 	if (IS_ERR(priv->mm)) {
215 		int err = PTR_ERR(priv->mm);
216 
217 		seq_release_private(inode, file);
218 		return err;
219 	}
220 
221 	return 0;
222 }
223 
224 static int proc_map_release(struct inode *inode, struct file *file)
225 {
226 	struct seq_file *seq = file->private_data;
227 	struct proc_maps_private *priv = seq->private;
228 
229 	if (priv->mm)
230 		mmdrop(priv->mm);
231 
232 	return seq_release_private(inode, file);
233 }
234 
235 static int do_maps_open(struct inode *inode, struct file *file,
236 			const struct seq_operations *ops)
237 {
238 	return proc_maps_open(inode, file, ops,
239 				sizeof(struct proc_maps_private));
240 }
241 
242 static void show_vma_header_prefix(struct seq_file *m,
243 				   unsigned long start, unsigned long end,
244 				   vm_flags_t flags, unsigned long long pgoff,
245 				   dev_t dev, unsigned long ino)
246 {
247 	seq_setwidth(m, 25 + sizeof(void *) * 6 - 1);
248 	seq_put_hex_ll(m, NULL, start, 8);
249 	seq_put_hex_ll(m, "-", end, 8);
250 	seq_putc(m, ' ');
251 	seq_putc(m, flags & VM_READ ? 'r' : '-');
252 	seq_putc(m, flags & VM_WRITE ? 'w' : '-');
253 	seq_putc(m, flags & VM_EXEC ? 'x' : '-');
254 	seq_putc(m, flags & VM_MAYSHARE ? 's' : 'p');
255 	seq_put_hex_ll(m, " ", pgoff, 8);
256 	seq_put_hex_ll(m, " ", MAJOR(dev), 2);
257 	seq_put_hex_ll(m, ":", MINOR(dev), 2);
258 	seq_put_decimal_ull(m, " ", ino);
259 	seq_putc(m, ' ');
260 }
261 
262 static void
263 show_map_vma(struct seq_file *m, struct vm_area_struct *vma)
264 {
265 	struct anon_vma_name *anon_name = NULL;
266 	struct mm_struct *mm = vma->vm_mm;
267 	struct file *file = vma->vm_file;
268 	vm_flags_t flags = vma->vm_flags;
269 	unsigned long ino = 0;
270 	unsigned long long pgoff = 0;
271 	unsigned long start, end;
272 	dev_t dev = 0;
273 	const char *name = NULL;
274 
275 	if (file) {
276 		const struct inode *inode = file_user_inode(vma->vm_file);
277 
278 		dev = inode->i_sb->s_dev;
279 		ino = inode->i_ino;
280 		pgoff = ((loff_t)vma->vm_pgoff) << PAGE_SHIFT;
281 	}
282 
283 	start = vma->vm_start;
284 	end = vma->vm_end;
285 	show_vma_header_prefix(m, start, end, flags, pgoff, dev, ino);
286 	if (mm)
287 		anon_name = anon_vma_name(vma);
288 
289 	/*
290 	 * Print the dentry name for named mappings, and a
291 	 * special [heap] marker for the heap:
292 	 */
293 	if (file) {
294 		seq_pad(m, ' ');
295 		/*
296 		 * If user named this anon shared memory via
297 		 * prctl(PR_SET_VMA ..., use the provided name.
298 		 */
299 		if (anon_name)
300 			seq_printf(m, "[anon_shmem:%s]", anon_name->name);
301 		else
302 			seq_path(m, file_user_path(file), "\n");
303 		goto done;
304 	}
305 
306 	if (vma->vm_ops && vma->vm_ops->name) {
307 		name = vma->vm_ops->name(vma);
308 		if (name)
309 			goto done;
310 	}
311 
312 	name = arch_vma_name(vma);
313 	if (!name) {
314 		if (!mm) {
315 			name = "[vdso]";
316 			goto done;
317 		}
318 
319 		if (vma_is_initial_heap(vma)) {
320 			name = "[heap]";
321 			goto done;
322 		}
323 
324 		if (vma_is_initial_stack(vma)) {
325 			name = "[stack]";
326 			goto done;
327 		}
328 
329 		if (anon_name) {
330 			seq_pad(m, ' ');
331 			seq_printf(m, "[anon:%s]", anon_name->name);
332 		}
333 	}
334 
335 done:
336 	if (name) {
337 		seq_pad(m, ' ');
338 		seq_puts(m, name);
339 	}
340 	seq_putc(m, '\n');
341 }
342 
343 static int show_map(struct seq_file *m, void *v)
344 {
345 	show_map_vma(m, v);
346 	return 0;
347 }
348 
349 static const struct seq_operations proc_pid_maps_op = {
350 	.start	= m_start,
351 	.next	= m_next,
352 	.stop	= m_stop,
353 	.show	= show_map
354 };
355 
356 static int pid_maps_open(struct inode *inode, struct file *file)
357 {
358 	return do_maps_open(inode, file, &proc_pid_maps_op);
359 }
360 
361 const struct file_operations proc_pid_maps_operations = {
362 	.open		= pid_maps_open,
363 	.read		= seq_read,
364 	.llseek		= seq_lseek,
365 	.release	= proc_map_release,
366 };
367 
368 /*
369  * Proportional Set Size(PSS): my share of RSS.
370  *
371  * PSS of a process is the count of pages it has in memory, where each
372  * page is divided by the number of processes sharing it.  So if a
373  * process has 1000 pages all to itself, and 1000 shared with one other
374  * process, its PSS will be 1500.
375  *
376  * To keep (accumulated) division errors low, we adopt a 64bit
377  * fixed-point pss counter to minimize division errors. So (pss >>
378  * PSS_SHIFT) would be the real byte count.
379  *
380  * A shift of 12 before division means (assuming 4K page size):
381  * 	- 1M 3-user-pages add up to 8KB errors;
382  * 	- supports mapcount up to 2^24, or 16M;
383  * 	- supports PSS up to 2^52 bytes, or 4PB.
384  */
385 #define PSS_SHIFT 12
386 
387 #ifdef CONFIG_PROC_PAGE_MONITOR
388 struct mem_size_stats {
389 	unsigned long resident;
390 	unsigned long shared_clean;
391 	unsigned long shared_dirty;
392 	unsigned long private_clean;
393 	unsigned long private_dirty;
394 	unsigned long referenced;
395 	unsigned long anonymous;
396 	unsigned long lazyfree;
397 	unsigned long anonymous_thp;
398 	unsigned long shmem_thp;
399 	unsigned long file_thp;
400 	unsigned long swap;
401 	unsigned long shared_hugetlb;
402 	unsigned long private_hugetlb;
403 	unsigned long ksm;
404 	u64 pss;
405 	u64 pss_anon;
406 	u64 pss_file;
407 	u64 pss_shmem;
408 	u64 pss_dirty;
409 	u64 pss_locked;
410 	u64 swap_pss;
411 };
412 
413 static void smaps_page_accumulate(struct mem_size_stats *mss,
414 		struct folio *folio, unsigned long size, unsigned long pss,
415 		bool dirty, bool locked, bool private)
416 {
417 	mss->pss += pss;
418 
419 	if (folio_test_anon(folio))
420 		mss->pss_anon += pss;
421 	else if (folio_test_swapbacked(folio))
422 		mss->pss_shmem += pss;
423 	else
424 		mss->pss_file += pss;
425 
426 	if (locked)
427 		mss->pss_locked += pss;
428 
429 	if (dirty || folio_test_dirty(folio)) {
430 		mss->pss_dirty += pss;
431 		if (private)
432 			mss->private_dirty += size;
433 		else
434 			mss->shared_dirty += size;
435 	} else {
436 		if (private)
437 			mss->private_clean += size;
438 		else
439 			mss->shared_clean += size;
440 	}
441 }
442 
443 static void smaps_account(struct mem_size_stats *mss, struct page *page,
444 		bool compound, bool young, bool dirty, bool locked,
445 		bool migration)
446 {
447 	struct folio *folio = page_folio(page);
448 	int i, nr = compound ? compound_nr(page) : 1;
449 	unsigned long size = nr * PAGE_SIZE;
450 
451 	/*
452 	 * First accumulate quantities that depend only on |size| and the type
453 	 * of the compound page.
454 	 */
455 	if (folio_test_anon(folio)) {
456 		mss->anonymous += size;
457 		if (!folio_test_swapbacked(folio) && !dirty &&
458 		    !folio_test_dirty(folio))
459 			mss->lazyfree += size;
460 	}
461 
462 	if (folio_test_ksm(folio))
463 		mss->ksm += size;
464 
465 	mss->resident += size;
466 	/* Accumulate the size in pages that have been accessed. */
467 	if (young || folio_test_young(folio) || folio_test_referenced(folio))
468 		mss->referenced += size;
469 
470 	/*
471 	 * Then accumulate quantities that may depend on sharing, or that may
472 	 * differ page-by-page.
473 	 *
474 	 * refcount == 1 guarantees the page is mapped exactly once.
475 	 * If any subpage of the compound page mapped with PTE it would elevate
476 	 * the refcount.
477 	 *
478 	 * The page_mapcount() is called to get a snapshot of the mapcount.
479 	 * Without holding the page lock this snapshot can be slightly wrong as
480 	 * we cannot always read the mapcount atomically.  It is not safe to
481 	 * call page_mapcount() even with PTL held if the page is not mapped,
482 	 * especially for migration entries.  Treat regular migration entries
483 	 * as mapcount == 1.
484 	 */
485 	if ((folio_ref_count(folio) == 1) || migration) {
486 		smaps_page_accumulate(mss, folio, size, size << PSS_SHIFT,
487 				dirty, locked, true);
488 		return;
489 	}
490 	for (i = 0; i < nr; i++, page++) {
491 		int mapcount = page_mapcount(page);
492 		unsigned long pss = PAGE_SIZE << PSS_SHIFT;
493 		if (mapcount >= 2)
494 			pss /= mapcount;
495 		smaps_page_accumulate(mss, folio, PAGE_SIZE, pss,
496 				dirty, locked, mapcount < 2);
497 	}
498 }
499 
500 #ifdef CONFIG_SHMEM
501 static int smaps_pte_hole(unsigned long addr, unsigned long end,
502 			  __always_unused int depth, struct mm_walk *walk)
503 {
504 	struct mem_size_stats *mss = walk->private;
505 	struct vm_area_struct *vma = walk->vma;
506 
507 	mss->swap += shmem_partial_swap_usage(walk->vma->vm_file->f_mapping,
508 					      linear_page_index(vma, addr),
509 					      linear_page_index(vma, end));
510 
511 	return 0;
512 }
513 #else
514 #define smaps_pte_hole		NULL
515 #endif /* CONFIG_SHMEM */
516 
517 static void smaps_pte_hole_lookup(unsigned long addr, struct mm_walk *walk)
518 {
519 #ifdef CONFIG_SHMEM
520 	if (walk->ops->pte_hole) {
521 		/* depth is not used */
522 		smaps_pte_hole(addr, addr + PAGE_SIZE, 0, walk);
523 	}
524 #endif
525 }
526 
527 static void smaps_pte_entry(pte_t *pte, unsigned long addr,
528 		struct mm_walk *walk)
529 {
530 	struct mem_size_stats *mss = walk->private;
531 	struct vm_area_struct *vma = walk->vma;
532 	bool locked = !!(vma->vm_flags & VM_LOCKED);
533 	struct page *page = NULL;
534 	bool migration = false, young = false, dirty = false;
535 	pte_t ptent = ptep_get(pte);
536 
537 	if (pte_present(ptent)) {
538 		page = vm_normal_page(vma, addr, ptent);
539 		young = pte_young(ptent);
540 		dirty = pte_dirty(ptent);
541 	} else if (is_swap_pte(ptent)) {
542 		swp_entry_t swpent = pte_to_swp_entry(ptent);
543 
544 		if (!non_swap_entry(swpent)) {
545 			int mapcount;
546 
547 			mss->swap += PAGE_SIZE;
548 			mapcount = swp_swapcount(swpent);
549 			if (mapcount >= 2) {
550 				u64 pss_delta = (u64)PAGE_SIZE << PSS_SHIFT;
551 
552 				do_div(pss_delta, mapcount);
553 				mss->swap_pss += pss_delta;
554 			} else {
555 				mss->swap_pss += (u64)PAGE_SIZE << PSS_SHIFT;
556 			}
557 		} else if (is_pfn_swap_entry(swpent)) {
558 			if (is_migration_entry(swpent))
559 				migration = true;
560 			page = pfn_swap_entry_to_page(swpent);
561 		}
562 	} else {
563 		smaps_pte_hole_lookup(addr, walk);
564 		return;
565 	}
566 
567 	if (!page)
568 		return;
569 
570 	smaps_account(mss, page, false, young, dirty, locked, migration);
571 }
572 
573 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
574 static void smaps_pmd_entry(pmd_t *pmd, unsigned long addr,
575 		struct mm_walk *walk)
576 {
577 	struct mem_size_stats *mss = walk->private;
578 	struct vm_area_struct *vma = walk->vma;
579 	bool locked = !!(vma->vm_flags & VM_LOCKED);
580 	struct page *page = NULL;
581 	struct folio *folio;
582 	bool migration = false;
583 
584 	if (pmd_present(*pmd)) {
585 		page = vm_normal_page_pmd(vma, addr, *pmd);
586 	} else if (unlikely(thp_migration_supported() && is_swap_pmd(*pmd))) {
587 		swp_entry_t entry = pmd_to_swp_entry(*pmd);
588 
589 		if (is_migration_entry(entry)) {
590 			migration = true;
591 			page = pfn_swap_entry_to_page(entry);
592 		}
593 	}
594 	if (IS_ERR_OR_NULL(page))
595 		return;
596 	folio = page_folio(page);
597 	if (folio_test_anon(folio))
598 		mss->anonymous_thp += HPAGE_PMD_SIZE;
599 	else if (folio_test_swapbacked(folio))
600 		mss->shmem_thp += HPAGE_PMD_SIZE;
601 	else if (folio_is_zone_device(folio))
602 		/* pass */;
603 	else
604 		mss->file_thp += HPAGE_PMD_SIZE;
605 
606 	smaps_account(mss, page, true, pmd_young(*pmd), pmd_dirty(*pmd),
607 		      locked, migration);
608 }
609 #else
610 static void smaps_pmd_entry(pmd_t *pmd, unsigned long addr,
611 		struct mm_walk *walk)
612 {
613 }
614 #endif
615 
616 static int smaps_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
617 			   struct mm_walk *walk)
618 {
619 	struct vm_area_struct *vma = walk->vma;
620 	pte_t *pte;
621 	spinlock_t *ptl;
622 
623 	ptl = pmd_trans_huge_lock(pmd, vma);
624 	if (ptl) {
625 		smaps_pmd_entry(pmd, addr, walk);
626 		spin_unlock(ptl);
627 		goto out;
628 	}
629 
630 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
631 	if (!pte) {
632 		walk->action = ACTION_AGAIN;
633 		return 0;
634 	}
635 	for (; addr != end; pte++, addr += PAGE_SIZE)
636 		smaps_pte_entry(pte, addr, walk);
637 	pte_unmap_unlock(pte - 1, ptl);
638 out:
639 	cond_resched();
640 	return 0;
641 }
642 
643 static void show_smap_vma_flags(struct seq_file *m, struct vm_area_struct *vma)
644 {
645 	/*
646 	 * Don't forget to update Documentation/ on changes.
647 	 */
648 	static const char mnemonics[BITS_PER_LONG][2] = {
649 		/*
650 		 * In case if we meet a flag we don't know about.
651 		 */
652 		[0 ... (BITS_PER_LONG-1)] = "??",
653 
654 		[ilog2(VM_READ)]	= "rd",
655 		[ilog2(VM_WRITE)]	= "wr",
656 		[ilog2(VM_EXEC)]	= "ex",
657 		[ilog2(VM_SHARED)]	= "sh",
658 		[ilog2(VM_MAYREAD)]	= "mr",
659 		[ilog2(VM_MAYWRITE)]	= "mw",
660 		[ilog2(VM_MAYEXEC)]	= "me",
661 		[ilog2(VM_MAYSHARE)]	= "ms",
662 		[ilog2(VM_GROWSDOWN)]	= "gd",
663 		[ilog2(VM_PFNMAP)]	= "pf",
664 		[ilog2(VM_LOCKED)]	= "lo",
665 		[ilog2(VM_IO)]		= "io",
666 		[ilog2(VM_SEQ_READ)]	= "sr",
667 		[ilog2(VM_RAND_READ)]	= "rr",
668 		[ilog2(VM_DONTCOPY)]	= "dc",
669 		[ilog2(VM_DONTEXPAND)]	= "de",
670 		[ilog2(VM_LOCKONFAULT)]	= "lf",
671 		[ilog2(VM_ACCOUNT)]	= "ac",
672 		[ilog2(VM_NORESERVE)]	= "nr",
673 		[ilog2(VM_HUGETLB)]	= "ht",
674 		[ilog2(VM_SYNC)]	= "sf",
675 		[ilog2(VM_ARCH_1)]	= "ar",
676 		[ilog2(VM_WIPEONFORK)]	= "wf",
677 		[ilog2(VM_DONTDUMP)]	= "dd",
678 #ifdef CONFIG_ARM64_BTI
679 		[ilog2(VM_ARM64_BTI)]	= "bt",
680 #endif
681 #ifdef CONFIG_MEM_SOFT_DIRTY
682 		[ilog2(VM_SOFTDIRTY)]	= "sd",
683 #endif
684 		[ilog2(VM_MIXEDMAP)]	= "mm",
685 		[ilog2(VM_HUGEPAGE)]	= "hg",
686 		[ilog2(VM_NOHUGEPAGE)]	= "nh",
687 		[ilog2(VM_MERGEABLE)]	= "mg",
688 		[ilog2(VM_UFFD_MISSING)]= "um",
689 		[ilog2(VM_UFFD_WP)]	= "uw",
690 #ifdef CONFIG_ARM64_MTE
691 		[ilog2(VM_MTE)]		= "mt",
692 		[ilog2(VM_MTE_ALLOWED)]	= "",
693 #endif
694 #ifdef CONFIG_ARCH_HAS_PKEYS
695 		/* These come out via ProtectionKey: */
696 		[ilog2(VM_PKEY_BIT0)]	= "",
697 		[ilog2(VM_PKEY_BIT1)]	= "",
698 		[ilog2(VM_PKEY_BIT2)]	= "",
699 		[ilog2(VM_PKEY_BIT3)]	= "",
700 #if VM_PKEY_BIT4
701 		[ilog2(VM_PKEY_BIT4)]	= "",
702 #endif
703 #endif /* CONFIG_ARCH_HAS_PKEYS */
704 #ifdef CONFIG_HAVE_ARCH_USERFAULTFD_MINOR
705 		[ilog2(VM_UFFD_MINOR)]	= "ui",
706 #endif /* CONFIG_HAVE_ARCH_USERFAULTFD_MINOR */
707 #ifdef CONFIG_X86_USER_SHADOW_STACK
708 		[ilog2(VM_SHADOW_STACK)] = "ss",
709 #endif
710 #ifdef CONFIG_64BIT
711 		[ilog2(VM_SEALED)] = "sl",
712 #endif
713 	};
714 	size_t i;
715 
716 	seq_puts(m, "VmFlags: ");
717 	for (i = 0; i < BITS_PER_LONG; i++) {
718 		if (!mnemonics[i][0])
719 			continue;
720 		if (vma->vm_flags & (1UL << i)) {
721 			seq_putc(m, mnemonics[i][0]);
722 			seq_putc(m, mnemonics[i][1]);
723 			seq_putc(m, ' ');
724 		}
725 	}
726 	seq_putc(m, '\n');
727 }
728 
729 #ifdef CONFIG_HUGETLB_PAGE
730 static int smaps_hugetlb_range(pte_t *pte, unsigned long hmask,
731 				 unsigned long addr, unsigned long end,
732 				 struct mm_walk *walk)
733 {
734 	struct mem_size_stats *mss = walk->private;
735 	struct vm_area_struct *vma = walk->vma;
736 	pte_t ptent = huge_ptep_get(pte);
737 	struct folio *folio = NULL;
738 
739 	if (pte_present(ptent)) {
740 		folio = page_folio(pte_page(ptent));
741 	} else if (is_swap_pte(ptent)) {
742 		swp_entry_t swpent = pte_to_swp_entry(ptent);
743 
744 		if (is_pfn_swap_entry(swpent))
745 			folio = pfn_swap_entry_folio(swpent);
746 	}
747 	if (folio) {
748 		if (folio_likely_mapped_shared(folio) ||
749 		    hugetlb_pmd_shared(pte))
750 			mss->shared_hugetlb += huge_page_size(hstate_vma(vma));
751 		else
752 			mss->private_hugetlb += huge_page_size(hstate_vma(vma));
753 	}
754 	return 0;
755 }
756 #else
757 #define smaps_hugetlb_range	NULL
758 #endif /* HUGETLB_PAGE */
759 
760 static const struct mm_walk_ops smaps_walk_ops = {
761 	.pmd_entry		= smaps_pte_range,
762 	.hugetlb_entry		= smaps_hugetlb_range,
763 	.walk_lock		= PGWALK_RDLOCK,
764 };
765 
766 static const struct mm_walk_ops smaps_shmem_walk_ops = {
767 	.pmd_entry		= smaps_pte_range,
768 	.hugetlb_entry		= smaps_hugetlb_range,
769 	.pte_hole		= smaps_pte_hole,
770 	.walk_lock		= PGWALK_RDLOCK,
771 };
772 
773 /*
774  * Gather mem stats from @vma with the indicated beginning
775  * address @start, and keep them in @mss.
776  *
777  * Use vm_start of @vma as the beginning address if @start is 0.
778  */
779 static void smap_gather_stats(struct vm_area_struct *vma,
780 		struct mem_size_stats *mss, unsigned long start)
781 {
782 	const struct mm_walk_ops *ops = &smaps_walk_ops;
783 
784 	/* Invalid start */
785 	if (start >= vma->vm_end)
786 		return;
787 
788 	if (vma->vm_file && shmem_mapping(vma->vm_file->f_mapping)) {
789 		/*
790 		 * For shared or readonly shmem mappings we know that all
791 		 * swapped out pages belong to the shmem object, and we can
792 		 * obtain the swap value much more efficiently. For private
793 		 * writable mappings, we might have COW pages that are
794 		 * not affected by the parent swapped out pages of the shmem
795 		 * object, so we have to distinguish them during the page walk.
796 		 * Unless we know that the shmem object (or the part mapped by
797 		 * our VMA) has no swapped out pages at all.
798 		 */
799 		unsigned long shmem_swapped = shmem_swap_usage(vma);
800 
801 		if (!start && (!shmem_swapped || (vma->vm_flags & VM_SHARED) ||
802 					!(vma->vm_flags & VM_WRITE))) {
803 			mss->swap += shmem_swapped;
804 		} else {
805 			ops = &smaps_shmem_walk_ops;
806 		}
807 	}
808 
809 	/* mmap_lock is held in m_start */
810 	if (!start)
811 		walk_page_vma(vma, ops, mss);
812 	else
813 		walk_page_range(vma->vm_mm, start, vma->vm_end, ops, mss);
814 }
815 
816 #define SEQ_PUT_DEC(str, val) \
817 		seq_put_decimal_ull_width(m, str, (val) >> 10, 8)
818 
819 /* Show the contents common for smaps and smaps_rollup */
820 static void __show_smap(struct seq_file *m, const struct mem_size_stats *mss,
821 	bool rollup_mode)
822 {
823 	SEQ_PUT_DEC("Rss:            ", mss->resident);
824 	SEQ_PUT_DEC(" kB\nPss:            ", mss->pss >> PSS_SHIFT);
825 	SEQ_PUT_DEC(" kB\nPss_Dirty:      ", mss->pss_dirty >> PSS_SHIFT);
826 	if (rollup_mode) {
827 		/*
828 		 * These are meaningful only for smaps_rollup, otherwise two of
829 		 * them are zero, and the other one is the same as Pss.
830 		 */
831 		SEQ_PUT_DEC(" kB\nPss_Anon:       ",
832 			mss->pss_anon >> PSS_SHIFT);
833 		SEQ_PUT_DEC(" kB\nPss_File:       ",
834 			mss->pss_file >> PSS_SHIFT);
835 		SEQ_PUT_DEC(" kB\nPss_Shmem:      ",
836 			mss->pss_shmem >> PSS_SHIFT);
837 	}
838 	SEQ_PUT_DEC(" kB\nShared_Clean:   ", mss->shared_clean);
839 	SEQ_PUT_DEC(" kB\nShared_Dirty:   ", mss->shared_dirty);
840 	SEQ_PUT_DEC(" kB\nPrivate_Clean:  ", mss->private_clean);
841 	SEQ_PUT_DEC(" kB\nPrivate_Dirty:  ", mss->private_dirty);
842 	SEQ_PUT_DEC(" kB\nReferenced:     ", mss->referenced);
843 	SEQ_PUT_DEC(" kB\nAnonymous:      ", mss->anonymous);
844 	SEQ_PUT_DEC(" kB\nKSM:            ", mss->ksm);
845 	SEQ_PUT_DEC(" kB\nLazyFree:       ", mss->lazyfree);
846 	SEQ_PUT_DEC(" kB\nAnonHugePages:  ", mss->anonymous_thp);
847 	SEQ_PUT_DEC(" kB\nShmemPmdMapped: ", mss->shmem_thp);
848 	SEQ_PUT_DEC(" kB\nFilePmdMapped:  ", mss->file_thp);
849 	SEQ_PUT_DEC(" kB\nShared_Hugetlb: ", mss->shared_hugetlb);
850 	seq_put_decimal_ull_width(m, " kB\nPrivate_Hugetlb: ",
851 				  mss->private_hugetlb >> 10, 7);
852 	SEQ_PUT_DEC(" kB\nSwap:           ", mss->swap);
853 	SEQ_PUT_DEC(" kB\nSwapPss:        ",
854 					mss->swap_pss >> PSS_SHIFT);
855 	SEQ_PUT_DEC(" kB\nLocked:         ",
856 					mss->pss_locked >> PSS_SHIFT);
857 	seq_puts(m, " kB\n");
858 }
859 
860 static int show_smap(struct seq_file *m, void *v)
861 {
862 	struct vm_area_struct *vma = v;
863 	struct mem_size_stats mss = {};
864 
865 	smap_gather_stats(vma, &mss, 0);
866 
867 	show_map_vma(m, vma);
868 
869 	SEQ_PUT_DEC("Size:           ", vma->vm_end - vma->vm_start);
870 	SEQ_PUT_DEC(" kB\nKernelPageSize: ", vma_kernel_pagesize(vma));
871 	SEQ_PUT_DEC(" kB\nMMUPageSize:    ", vma_mmu_pagesize(vma));
872 	seq_puts(m, " kB\n");
873 
874 	__show_smap(m, &mss, false);
875 
876 	seq_printf(m, "THPeligible:    %8u\n",
877 		   !!thp_vma_allowable_orders(vma, vma->vm_flags,
878 			   TVA_SMAPS | TVA_ENFORCE_SYSFS, THP_ORDERS_ALL));
879 
880 	if (arch_pkeys_enabled())
881 		seq_printf(m, "ProtectionKey:  %8u\n", vma_pkey(vma));
882 	show_smap_vma_flags(m, vma);
883 
884 	return 0;
885 }
886 
887 static int show_smaps_rollup(struct seq_file *m, void *v)
888 {
889 	struct proc_maps_private *priv = m->private;
890 	struct mem_size_stats mss = {};
891 	struct mm_struct *mm = priv->mm;
892 	struct vm_area_struct *vma;
893 	unsigned long vma_start = 0, last_vma_end = 0;
894 	int ret = 0;
895 	VMA_ITERATOR(vmi, mm, 0);
896 
897 	priv->task = get_proc_task(priv->inode);
898 	if (!priv->task)
899 		return -ESRCH;
900 
901 	if (!mm || !mmget_not_zero(mm)) {
902 		ret = -ESRCH;
903 		goto out_put_task;
904 	}
905 
906 	ret = mmap_read_lock_killable(mm);
907 	if (ret)
908 		goto out_put_mm;
909 
910 	hold_task_mempolicy(priv);
911 	vma = vma_next(&vmi);
912 
913 	if (unlikely(!vma))
914 		goto empty_set;
915 
916 	vma_start = vma->vm_start;
917 	do {
918 		smap_gather_stats(vma, &mss, 0);
919 		last_vma_end = vma->vm_end;
920 
921 		/*
922 		 * Release mmap_lock temporarily if someone wants to
923 		 * access it for write request.
924 		 */
925 		if (mmap_lock_is_contended(mm)) {
926 			vma_iter_invalidate(&vmi);
927 			mmap_read_unlock(mm);
928 			ret = mmap_read_lock_killable(mm);
929 			if (ret) {
930 				release_task_mempolicy(priv);
931 				goto out_put_mm;
932 			}
933 
934 			/*
935 			 * After dropping the lock, there are four cases to
936 			 * consider. See the following example for explanation.
937 			 *
938 			 *   +------+------+-----------+
939 			 *   | VMA1 | VMA2 | VMA3      |
940 			 *   +------+------+-----------+
941 			 *   |      |      |           |
942 			 *  4k     8k     16k         400k
943 			 *
944 			 * Suppose we drop the lock after reading VMA2 due to
945 			 * contention, then we get:
946 			 *
947 			 *	last_vma_end = 16k
948 			 *
949 			 * 1) VMA2 is freed, but VMA3 exists:
950 			 *
951 			 *    vma_next(vmi) will return VMA3.
952 			 *    In this case, just continue from VMA3.
953 			 *
954 			 * 2) VMA2 still exists:
955 			 *
956 			 *    vma_next(vmi) will return VMA3.
957 			 *    In this case, just continue from VMA3.
958 			 *
959 			 * 3) No more VMAs can be found:
960 			 *
961 			 *    vma_next(vmi) will return NULL.
962 			 *    No more things to do, just break.
963 			 *
964 			 * 4) (last_vma_end - 1) is the middle of a vma (VMA'):
965 			 *
966 			 *    vma_next(vmi) will return VMA' whose range
967 			 *    contains last_vma_end.
968 			 *    Iterate VMA' from last_vma_end.
969 			 */
970 			vma = vma_next(&vmi);
971 			/* Case 3 above */
972 			if (!vma)
973 				break;
974 
975 			/* Case 1 and 2 above */
976 			if (vma->vm_start >= last_vma_end) {
977 				smap_gather_stats(vma, &mss, 0);
978 				last_vma_end = vma->vm_end;
979 				continue;
980 			}
981 
982 			/* Case 4 above */
983 			if (vma->vm_end > last_vma_end) {
984 				smap_gather_stats(vma, &mss, last_vma_end);
985 				last_vma_end = vma->vm_end;
986 			}
987 		}
988 	} for_each_vma(vmi, vma);
989 
990 empty_set:
991 	show_vma_header_prefix(m, vma_start, last_vma_end, 0, 0, 0, 0);
992 	seq_pad(m, ' ');
993 	seq_puts(m, "[rollup]\n");
994 
995 	__show_smap(m, &mss, true);
996 
997 	release_task_mempolicy(priv);
998 	mmap_read_unlock(mm);
999 
1000 out_put_mm:
1001 	mmput(mm);
1002 out_put_task:
1003 	put_task_struct(priv->task);
1004 	priv->task = NULL;
1005 
1006 	return ret;
1007 }
1008 #undef SEQ_PUT_DEC
1009 
1010 static const struct seq_operations proc_pid_smaps_op = {
1011 	.start	= m_start,
1012 	.next	= m_next,
1013 	.stop	= m_stop,
1014 	.show	= show_smap
1015 };
1016 
1017 static int pid_smaps_open(struct inode *inode, struct file *file)
1018 {
1019 	return do_maps_open(inode, file, &proc_pid_smaps_op);
1020 }
1021 
1022 static int smaps_rollup_open(struct inode *inode, struct file *file)
1023 {
1024 	int ret;
1025 	struct proc_maps_private *priv;
1026 
1027 	priv = kzalloc(sizeof(*priv), GFP_KERNEL_ACCOUNT);
1028 	if (!priv)
1029 		return -ENOMEM;
1030 
1031 	ret = single_open(file, show_smaps_rollup, priv);
1032 	if (ret)
1033 		goto out_free;
1034 
1035 	priv->inode = inode;
1036 	priv->mm = proc_mem_open(inode, PTRACE_MODE_READ);
1037 	if (IS_ERR(priv->mm)) {
1038 		ret = PTR_ERR(priv->mm);
1039 
1040 		single_release(inode, file);
1041 		goto out_free;
1042 	}
1043 
1044 	return 0;
1045 
1046 out_free:
1047 	kfree(priv);
1048 	return ret;
1049 }
1050 
1051 static int smaps_rollup_release(struct inode *inode, struct file *file)
1052 {
1053 	struct seq_file *seq = file->private_data;
1054 	struct proc_maps_private *priv = seq->private;
1055 
1056 	if (priv->mm)
1057 		mmdrop(priv->mm);
1058 
1059 	kfree(priv);
1060 	return single_release(inode, file);
1061 }
1062 
1063 const struct file_operations proc_pid_smaps_operations = {
1064 	.open		= pid_smaps_open,
1065 	.read		= seq_read,
1066 	.llseek		= seq_lseek,
1067 	.release	= proc_map_release,
1068 };
1069 
1070 const struct file_operations proc_pid_smaps_rollup_operations = {
1071 	.open		= smaps_rollup_open,
1072 	.read		= seq_read,
1073 	.llseek		= seq_lseek,
1074 	.release	= smaps_rollup_release,
1075 };
1076 
1077 enum clear_refs_types {
1078 	CLEAR_REFS_ALL = 1,
1079 	CLEAR_REFS_ANON,
1080 	CLEAR_REFS_MAPPED,
1081 	CLEAR_REFS_SOFT_DIRTY,
1082 	CLEAR_REFS_MM_HIWATER_RSS,
1083 	CLEAR_REFS_LAST,
1084 };
1085 
1086 struct clear_refs_private {
1087 	enum clear_refs_types type;
1088 };
1089 
1090 #ifdef CONFIG_MEM_SOFT_DIRTY
1091 
1092 static inline bool pte_is_pinned(struct vm_area_struct *vma, unsigned long addr, pte_t pte)
1093 {
1094 	struct page *page;
1095 
1096 	if (!pte_write(pte))
1097 		return false;
1098 	if (!is_cow_mapping(vma->vm_flags))
1099 		return false;
1100 	if (likely(!test_bit(MMF_HAS_PINNED, &vma->vm_mm->flags)))
1101 		return false;
1102 	page = vm_normal_page(vma, addr, pte);
1103 	if (!page)
1104 		return false;
1105 	return page_maybe_dma_pinned(page);
1106 }
1107 
1108 static inline void clear_soft_dirty(struct vm_area_struct *vma,
1109 		unsigned long addr, pte_t *pte)
1110 {
1111 	/*
1112 	 * The soft-dirty tracker uses #PF-s to catch writes
1113 	 * to pages, so write-protect the pte as well. See the
1114 	 * Documentation/admin-guide/mm/soft-dirty.rst for full description
1115 	 * of how soft-dirty works.
1116 	 */
1117 	pte_t ptent = ptep_get(pte);
1118 
1119 	if (pte_present(ptent)) {
1120 		pte_t old_pte;
1121 
1122 		if (pte_is_pinned(vma, addr, ptent))
1123 			return;
1124 		old_pte = ptep_modify_prot_start(vma, addr, pte);
1125 		ptent = pte_wrprotect(old_pte);
1126 		ptent = pte_clear_soft_dirty(ptent);
1127 		ptep_modify_prot_commit(vma, addr, pte, old_pte, ptent);
1128 	} else if (is_swap_pte(ptent)) {
1129 		ptent = pte_swp_clear_soft_dirty(ptent);
1130 		set_pte_at(vma->vm_mm, addr, pte, ptent);
1131 	}
1132 }
1133 #else
1134 static inline void clear_soft_dirty(struct vm_area_struct *vma,
1135 		unsigned long addr, pte_t *pte)
1136 {
1137 }
1138 #endif
1139 
1140 #if defined(CONFIG_MEM_SOFT_DIRTY) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
1141 static inline void clear_soft_dirty_pmd(struct vm_area_struct *vma,
1142 		unsigned long addr, pmd_t *pmdp)
1143 {
1144 	pmd_t old, pmd = *pmdp;
1145 
1146 	if (pmd_present(pmd)) {
1147 		/* See comment in change_huge_pmd() */
1148 		old = pmdp_invalidate(vma, addr, pmdp);
1149 		if (pmd_dirty(old))
1150 			pmd = pmd_mkdirty(pmd);
1151 		if (pmd_young(old))
1152 			pmd = pmd_mkyoung(pmd);
1153 
1154 		pmd = pmd_wrprotect(pmd);
1155 		pmd = pmd_clear_soft_dirty(pmd);
1156 
1157 		set_pmd_at(vma->vm_mm, addr, pmdp, pmd);
1158 	} else if (is_migration_entry(pmd_to_swp_entry(pmd))) {
1159 		pmd = pmd_swp_clear_soft_dirty(pmd);
1160 		set_pmd_at(vma->vm_mm, addr, pmdp, pmd);
1161 	}
1162 }
1163 #else
1164 static inline void clear_soft_dirty_pmd(struct vm_area_struct *vma,
1165 		unsigned long addr, pmd_t *pmdp)
1166 {
1167 }
1168 #endif
1169 
1170 static int clear_refs_pte_range(pmd_t *pmd, unsigned long addr,
1171 				unsigned long end, struct mm_walk *walk)
1172 {
1173 	struct clear_refs_private *cp = walk->private;
1174 	struct vm_area_struct *vma = walk->vma;
1175 	pte_t *pte, ptent;
1176 	spinlock_t *ptl;
1177 	struct folio *folio;
1178 
1179 	ptl = pmd_trans_huge_lock(pmd, vma);
1180 	if (ptl) {
1181 		if (cp->type == CLEAR_REFS_SOFT_DIRTY) {
1182 			clear_soft_dirty_pmd(vma, addr, pmd);
1183 			goto out;
1184 		}
1185 
1186 		if (!pmd_present(*pmd))
1187 			goto out;
1188 
1189 		folio = pmd_folio(*pmd);
1190 
1191 		/* Clear accessed and referenced bits. */
1192 		pmdp_test_and_clear_young(vma, addr, pmd);
1193 		folio_test_clear_young(folio);
1194 		folio_clear_referenced(folio);
1195 out:
1196 		spin_unlock(ptl);
1197 		return 0;
1198 	}
1199 
1200 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
1201 	if (!pte) {
1202 		walk->action = ACTION_AGAIN;
1203 		return 0;
1204 	}
1205 	for (; addr != end; pte++, addr += PAGE_SIZE) {
1206 		ptent = ptep_get(pte);
1207 
1208 		if (cp->type == CLEAR_REFS_SOFT_DIRTY) {
1209 			clear_soft_dirty(vma, addr, pte);
1210 			continue;
1211 		}
1212 
1213 		if (!pte_present(ptent))
1214 			continue;
1215 
1216 		folio = vm_normal_folio(vma, addr, ptent);
1217 		if (!folio)
1218 			continue;
1219 
1220 		/* Clear accessed and referenced bits. */
1221 		ptep_test_and_clear_young(vma, addr, pte);
1222 		folio_test_clear_young(folio);
1223 		folio_clear_referenced(folio);
1224 	}
1225 	pte_unmap_unlock(pte - 1, ptl);
1226 	cond_resched();
1227 	return 0;
1228 }
1229 
1230 static int clear_refs_test_walk(unsigned long start, unsigned long end,
1231 				struct mm_walk *walk)
1232 {
1233 	struct clear_refs_private *cp = walk->private;
1234 	struct vm_area_struct *vma = walk->vma;
1235 
1236 	if (vma->vm_flags & VM_PFNMAP)
1237 		return 1;
1238 
1239 	/*
1240 	 * Writing 1 to /proc/pid/clear_refs affects all pages.
1241 	 * Writing 2 to /proc/pid/clear_refs only affects anonymous pages.
1242 	 * Writing 3 to /proc/pid/clear_refs only affects file mapped pages.
1243 	 * Writing 4 to /proc/pid/clear_refs affects all pages.
1244 	 */
1245 	if (cp->type == CLEAR_REFS_ANON && vma->vm_file)
1246 		return 1;
1247 	if (cp->type == CLEAR_REFS_MAPPED && !vma->vm_file)
1248 		return 1;
1249 	return 0;
1250 }
1251 
1252 static const struct mm_walk_ops clear_refs_walk_ops = {
1253 	.pmd_entry		= clear_refs_pte_range,
1254 	.test_walk		= clear_refs_test_walk,
1255 	.walk_lock		= PGWALK_WRLOCK,
1256 };
1257 
1258 static ssize_t clear_refs_write(struct file *file, const char __user *buf,
1259 				size_t count, loff_t *ppos)
1260 {
1261 	struct task_struct *task;
1262 	char buffer[PROC_NUMBUF] = {};
1263 	struct mm_struct *mm;
1264 	struct vm_area_struct *vma;
1265 	enum clear_refs_types type;
1266 	int itype;
1267 	int rv;
1268 
1269 	if (count > sizeof(buffer) - 1)
1270 		count = sizeof(buffer) - 1;
1271 	if (copy_from_user(buffer, buf, count))
1272 		return -EFAULT;
1273 	rv = kstrtoint(strstrip(buffer), 10, &itype);
1274 	if (rv < 0)
1275 		return rv;
1276 	type = (enum clear_refs_types)itype;
1277 	if (type < CLEAR_REFS_ALL || type >= CLEAR_REFS_LAST)
1278 		return -EINVAL;
1279 
1280 	task = get_proc_task(file_inode(file));
1281 	if (!task)
1282 		return -ESRCH;
1283 	mm = get_task_mm(task);
1284 	if (mm) {
1285 		VMA_ITERATOR(vmi, mm, 0);
1286 		struct mmu_notifier_range range;
1287 		struct clear_refs_private cp = {
1288 			.type = type,
1289 		};
1290 
1291 		if (mmap_write_lock_killable(mm)) {
1292 			count = -EINTR;
1293 			goto out_mm;
1294 		}
1295 		if (type == CLEAR_REFS_MM_HIWATER_RSS) {
1296 			/*
1297 			 * Writing 5 to /proc/pid/clear_refs resets the peak
1298 			 * resident set size to this mm's current rss value.
1299 			 */
1300 			reset_mm_hiwater_rss(mm);
1301 			goto out_unlock;
1302 		}
1303 
1304 		if (type == CLEAR_REFS_SOFT_DIRTY) {
1305 			for_each_vma(vmi, vma) {
1306 				if (!(vma->vm_flags & VM_SOFTDIRTY))
1307 					continue;
1308 				vm_flags_clear(vma, VM_SOFTDIRTY);
1309 				vma_set_page_prot(vma);
1310 			}
1311 
1312 			inc_tlb_flush_pending(mm);
1313 			mmu_notifier_range_init(&range, MMU_NOTIFY_SOFT_DIRTY,
1314 						0, mm, 0, -1UL);
1315 			mmu_notifier_invalidate_range_start(&range);
1316 		}
1317 		walk_page_range(mm, 0, -1, &clear_refs_walk_ops, &cp);
1318 		if (type == CLEAR_REFS_SOFT_DIRTY) {
1319 			mmu_notifier_invalidate_range_end(&range);
1320 			flush_tlb_mm(mm);
1321 			dec_tlb_flush_pending(mm);
1322 		}
1323 out_unlock:
1324 		mmap_write_unlock(mm);
1325 out_mm:
1326 		mmput(mm);
1327 	}
1328 	put_task_struct(task);
1329 
1330 	return count;
1331 }
1332 
1333 const struct file_operations proc_clear_refs_operations = {
1334 	.write		= clear_refs_write,
1335 	.llseek		= noop_llseek,
1336 };
1337 
1338 typedef struct {
1339 	u64 pme;
1340 } pagemap_entry_t;
1341 
1342 struct pagemapread {
1343 	int pos, len;		/* units: PM_ENTRY_BYTES, not bytes */
1344 	pagemap_entry_t *buffer;
1345 	bool show_pfn;
1346 };
1347 
1348 #define PAGEMAP_WALK_SIZE	(PMD_SIZE)
1349 #define PAGEMAP_WALK_MASK	(PMD_MASK)
1350 
1351 #define PM_ENTRY_BYTES		sizeof(pagemap_entry_t)
1352 #define PM_PFRAME_BITS		55
1353 #define PM_PFRAME_MASK		GENMASK_ULL(PM_PFRAME_BITS - 1, 0)
1354 #define PM_SOFT_DIRTY		BIT_ULL(55)
1355 #define PM_MMAP_EXCLUSIVE	BIT_ULL(56)
1356 #define PM_UFFD_WP		BIT_ULL(57)
1357 #define PM_FILE			BIT_ULL(61)
1358 #define PM_SWAP			BIT_ULL(62)
1359 #define PM_PRESENT		BIT_ULL(63)
1360 
1361 #define PM_END_OF_BUFFER    1
1362 
1363 static inline pagemap_entry_t make_pme(u64 frame, u64 flags)
1364 {
1365 	return (pagemap_entry_t) { .pme = (frame & PM_PFRAME_MASK) | flags };
1366 }
1367 
1368 static int add_to_pagemap(pagemap_entry_t *pme, struct pagemapread *pm)
1369 {
1370 	pm->buffer[pm->pos++] = *pme;
1371 	if (pm->pos >= pm->len)
1372 		return PM_END_OF_BUFFER;
1373 	return 0;
1374 }
1375 
1376 static int pagemap_pte_hole(unsigned long start, unsigned long end,
1377 			    __always_unused int depth, struct mm_walk *walk)
1378 {
1379 	struct pagemapread *pm = walk->private;
1380 	unsigned long addr = start;
1381 	int err = 0;
1382 
1383 	while (addr < end) {
1384 		struct vm_area_struct *vma = find_vma(walk->mm, addr);
1385 		pagemap_entry_t pme = make_pme(0, 0);
1386 		/* End of address space hole, which we mark as non-present. */
1387 		unsigned long hole_end;
1388 
1389 		if (vma)
1390 			hole_end = min(end, vma->vm_start);
1391 		else
1392 			hole_end = end;
1393 
1394 		for (; addr < hole_end; addr += PAGE_SIZE) {
1395 			err = add_to_pagemap(&pme, pm);
1396 			if (err)
1397 				goto out;
1398 		}
1399 
1400 		if (!vma)
1401 			break;
1402 
1403 		/* Addresses in the VMA. */
1404 		if (vma->vm_flags & VM_SOFTDIRTY)
1405 			pme = make_pme(0, PM_SOFT_DIRTY);
1406 		for (; addr < min(end, vma->vm_end); addr += PAGE_SIZE) {
1407 			err = add_to_pagemap(&pme, pm);
1408 			if (err)
1409 				goto out;
1410 		}
1411 	}
1412 out:
1413 	return err;
1414 }
1415 
1416 static pagemap_entry_t pte_to_pagemap_entry(struct pagemapread *pm,
1417 		struct vm_area_struct *vma, unsigned long addr, pte_t pte)
1418 {
1419 	u64 frame = 0, flags = 0;
1420 	struct page *page = NULL;
1421 	bool migration = false;
1422 
1423 	if (pte_present(pte)) {
1424 		if (pm->show_pfn)
1425 			frame = pte_pfn(pte);
1426 		flags |= PM_PRESENT;
1427 		page = vm_normal_page(vma, addr, pte);
1428 		if (pte_soft_dirty(pte))
1429 			flags |= PM_SOFT_DIRTY;
1430 		if (pte_uffd_wp(pte))
1431 			flags |= PM_UFFD_WP;
1432 	} else if (is_swap_pte(pte)) {
1433 		swp_entry_t entry;
1434 		if (pte_swp_soft_dirty(pte))
1435 			flags |= PM_SOFT_DIRTY;
1436 		if (pte_swp_uffd_wp(pte))
1437 			flags |= PM_UFFD_WP;
1438 		entry = pte_to_swp_entry(pte);
1439 		if (pm->show_pfn) {
1440 			pgoff_t offset;
1441 			/*
1442 			 * For PFN swap offsets, keeping the offset field
1443 			 * to be PFN only to be compatible with old smaps.
1444 			 */
1445 			if (is_pfn_swap_entry(entry))
1446 				offset = swp_offset_pfn(entry);
1447 			else
1448 				offset = swp_offset(entry);
1449 			frame = swp_type(entry) |
1450 			    (offset << MAX_SWAPFILES_SHIFT);
1451 		}
1452 		flags |= PM_SWAP;
1453 		migration = is_migration_entry(entry);
1454 		if (is_pfn_swap_entry(entry))
1455 			page = pfn_swap_entry_to_page(entry);
1456 		if (pte_marker_entry_uffd_wp(entry))
1457 			flags |= PM_UFFD_WP;
1458 	}
1459 
1460 	if (page && !PageAnon(page))
1461 		flags |= PM_FILE;
1462 	if (page && !migration && page_mapcount(page) == 1)
1463 		flags |= PM_MMAP_EXCLUSIVE;
1464 	if (vma->vm_flags & VM_SOFTDIRTY)
1465 		flags |= PM_SOFT_DIRTY;
1466 
1467 	return make_pme(frame, flags);
1468 }
1469 
1470 static int pagemap_pmd_range(pmd_t *pmdp, unsigned long addr, unsigned long end,
1471 			     struct mm_walk *walk)
1472 {
1473 	struct vm_area_struct *vma = walk->vma;
1474 	struct pagemapread *pm = walk->private;
1475 	spinlock_t *ptl;
1476 	pte_t *pte, *orig_pte;
1477 	int err = 0;
1478 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1479 	bool migration = false;
1480 
1481 	ptl = pmd_trans_huge_lock(pmdp, vma);
1482 	if (ptl) {
1483 		u64 flags = 0, frame = 0;
1484 		pmd_t pmd = *pmdp;
1485 		struct page *page = NULL;
1486 
1487 		if (vma->vm_flags & VM_SOFTDIRTY)
1488 			flags |= PM_SOFT_DIRTY;
1489 
1490 		if (pmd_present(pmd)) {
1491 			page = pmd_page(pmd);
1492 
1493 			flags |= PM_PRESENT;
1494 			if (pmd_soft_dirty(pmd))
1495 				flags |= PM_SOFT_DIRTY;
1496 			if (pmd_uffd_wp(pmd))
1497 				flags |= PM_UFFD_WP;
1498 			if (pm->show_pfn)
1499 				frame = pmd_pfn(pmd) +
1500 					((addr & ~PMD_MASK) >> PAGE_SHIFT);
1501 		}
1502 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1503 		else if (is_swap_pmd(pmd)) {
1504 			swp_entry_t entry = pmd_to_swp_entry(pmd);
1505 			unsigned long offset;
1506 
1507 			if (pm->show_pfn) {
1508 				if (is_pfn_swap_entry(entry))
1509 					offset = swp_offset_pfn(entry);
1510 				else
1511 					offset = swp_offset(entry);
1512 				offset = offset +
1513 					((addr & ~PMD_MASK) >> PAGE_SHIFT);
1514 				frame = swp_type(entry) |
1515 					(offset << MAX_SWAPFILES_SHIFT);
1516 			}
1517 			flags |= PM_SWAP;
1518 			if (pmd_swp_soft_dirty(pmd))
1519 				flags |= PM_SOFT_DIRTY;
1520 			if (pmd_swp_uffd_wp(pmd))
1521 				flags |= PM_UFFD_WP;
1522 			VM_BUG_ON(!is_pmd_migration_entry(pmd));
1523 			migration = is_migration_entry(entry);
1524 			page = pfn_swap_entry_to_page(entry);
1525 		}
1526 #endif
1527 
1528 		if (page && !migration && page_mapcount(page) == 1)
1529 			flags |= PM_MMAP_EXCLUSIVE;
1530 
1531 		for (; addr != end; addr += PAGE_SIZE) {
1532 			pagemap_entry_t pme = make_pme(frame, flags);
1533 
1534 			err = add_to_pagemap(&pme, pm);
1535 			if (err)
1536 				break;
1537 			if (pm->show_pfn) {
1538 				if (flags & PM_PRESENT)
1539 					frame++;
1540 				else if (flags & PM_SWAP)
1541 					frame += (1 << MAX_SWAPFILES_SHIFT);
1542 			}
1543 		}
1544 		spin_unlock(ptl);
1545 		return err;
1546 	}
1547 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1548 
1549 	/*
1550 	 * We can assume that @vma always points to a valid one and @end never
1551 	 * goes beyond vma->vm_end.
1552 	 */
1553 	orig_pte = pte = pte_offset_map_lock(walk->mm, pmdp, addr, &ptl);
1554 	if (!pte) {
1555 		walk->action = ACTION_AGAIN;
1556 		return err;
1557 	}
1558 	for (; addr < end; pte++, addr += PAGE_SIZE) {
1559 		pagemap_entry_t pme;
1560 
1561 		pme = pte_to_pagemap_entry(pm, vma, addr, ptep_get(pte));
1562 		err = add_to_pagemap(&pme, pm);
1563 		if (err)
1564 			break;
1565 	}
1566 	pte_unmap_unlock(orig_pte, ptl);
1567 
1568 	cond_resched();
1569 
1570 	return err;
1571 }
1572 
1573 #ifdef CONFIG_HUGETLB_PAGE
1574 /* This function walks within one hugetlb entry in the single call */
1575 static int pagemap_hugetlb_range(pte_t *ptep, unsigned long hmask,
1576 				 unsigned long addr, unsigned long end,
1577 				 struct mm_walk *walk)
1578 {
1579 	struct pagemapread *pm = walk->private;
1580 	struct vm_area_struct *vma = walk->vma;
1581 	u64 flags = 0, frame = 0;
1582 	int err = 0;
1583 	pte_t pte;
1584 
1585 	if (vma->vm_flags & VM_SOFTDIRTY)
1586 		flags |= PM_SOFT_DIRTY;
1587 
1588 	pte = huge_ptep_get(ptep);
1589 	if (pte_present(pte)) {
1590 		struct folio *folio = page_folio(pte_page(pte));
1591 
1592 		if (!folio_test_anon(folio))
1593 			flags |= PM_FILE;
1594 
1595 		if (!folio_likely_mapped_shared(folio) &&
1596 		    !hugetlb_pmd_shared(ptep))
1597 			flags |= PM_MMAP_EXCLUSIVE;
1598 
1599 		if (huge_pte_uffd_wp(pte))
1600 			flags |= PM_UFFD_WP;
1601 
1602 		flags |= PM_PRESENT;
1603 		if (pm->show_pfn)
1604 			frame = pte_pfn(pte) +
1605 				((addr & ~hmask) >> PAGE_SHIFT);
1606 	} else if (pte_swp_uffd_wp_any(pte)) {
1607 		flags |= PM_UFFD_WP;
1608 	}
1609 
1610 	for (; addr != end; addr += PAGE_SIZE) {
1611 		pagemap_entry_t pme = make_pme(frame, flags);
1612 
1613 		err = add_to_pagemap(&pme, pm);
1614 		if (err)
1615 			return err;
1616 		if (pm->show_pfn && (flags & PM_PRESENT))
1617 			frame++;
1618 	}
1619 
1620 	cond_resched();
1621 
1622 	return err;
1623 }
1624 #else
1625 #define pagemap_hugetlb_range	NULL
1626 #endif /* HUGETLB_PAGE */
1627 
1628 static const struct mm_walk_ops pagemap_ops = {
1629 	.pmd_entry	= pagemap_pmd_range,
1630 	.pte_hole	= pagemap_pte_hole,
1631 	.hugetlb_entry	= pagemap_hugetlb_range,
1632 	.walk_lock	= PGWALK_RDLOCK,
1633 };
1634 
1635 /*
1636  * /proc/pid/pagemap - an array mapping virtual pages to pfns
1637  *
1638  * For each page in the address space, this file contains one 64-bit entry
1639  * consisting of the following:
1640  *
1641  * Bits 0-54  page frame number (PFN) if present
1642  * Bits 0-4   swap type if swapped
1643  * Bits 5-54  swap offset if swapped
1644  * Bit  55    pte is soft-dirty (see Documentation/admin-guide/mm/soft-dirty.rst)
1645  * Bit  56    page exclusively mapped
1646  * Bit  57    pte is uffd-wp write-protected
1647  * Bits 58-60 zero
1648  * Bit  61    page is file-page or shared-anon
1649  * Bit  62    page swapped
1650  * Bit  63    page present
1651  *
1652  * If the page is not present but in swap, then the PFN contains an
1653  * encoding of the swap file number and the page's offset into the
1654  * swap. Unmapped pages return a null PFN. This allows determining
1655  * precisely which pages are mapped (or in swap) and comparing mapped
1656  * pages between processes.
1657  *
1658  * Efficient users of this interface will use /proc/pid/maps to
1659  * determine which areas of memory are actually mapped and llseek to
1660  * skip over unmapped regions.
1661  */
1662 static ssize_t pagemap_read(struct file *file, char __user *buf,
1663 			    size_t count, loff_t *ppos)
1664 {
1665 	struct mm_struct *mm = file->private_data;
1666 	struct pagemapread pm;
1667 	unsigned long src;
1668 	unsigned long svpfn;
1669 	unsigned long start_vaddr;
1670 	unsigned long end_vaddr;
1671 	int ret = 0, copied = 0;
1672 
1673 	if (!mm || !mmget_not_zero(mm))
1674 		goto out;
1675 
1676 	ret = -EINVAL;
1677 	/* file position must be aligned */
1678 	if ((*ppos % PM_ENTRY_BYTES) || (count % PM_ENTRY_BYTES))
1679 		goto out_mm;
1680 
1681 	ret = 0;
1682 	if (!count)
1683 		goto out_mm;
1684 
1685 	/* do not disclose physical addresses: attack vector */
1686 	pm.show_pfn = file_ns_capable(file, &init_user_ns, CAP_SYS_ADMIN);
1687 
1688 	pm.len = (PAGEMAP_WALK_SIZE >> PAGE_SHIFT);
1689 	pm.buffer = kmalloc_array(pm.len, PM_ENTRY_BYTES, GFP_KERNEL);
1690 	ret = -ENOMEM;
1691 	if (!pm.buffer)
1692 		goto out_mm;
1693 
1694 	src = *ppos;
1695 	svpfn = src / PM_ENTRY_BYTES;
1696 	end_vaddr = mm->task_size;
1697 
1698 	/* watch out for wraparound */
1699 	start_vaddr = end_vaddr;
1700 	if (svpfn <= (ULONG_MAX >> PAGE_SHIFT)) {
1701 		unsigned long end;
1702 
1703 		ret = mmap_read_lock_killable(mm);
1704 		if (ret)
1705 			goto out_free;
1706 		start_vaddr = untagged_addr_remote(mm, svpfn << PAGE_SHIFT);
1707 		mmap_read_unlock(mm);
1708 
1709 		end = start_vaddr + ((count / PM_ENTRY_BYTES) << PAGE_SHIFT);
1710 		if (end >= start_vaddr && end < mm->task_size)
1711 			end_vaddr = end;
1712 	}
1713 
1714 	/* Ensure the address is inside the task */
1715 	if (start_vaddr > mm->task_size)
1716 		start_vaddr = end_vaddr;
1717 
1718 	ret = 0;
1719 	while (count && (start_vaddr < end_vaddr)) {
1720 		int len;
1721 		unsigned long end;
1722 
1723 		pm.pos = 0;
1724 		end = (start_vaddr + PAGEMAP_WALK_SIZE) & PAGEMAP_WALK_MASK;
1725 		/* overflow ? */
1726 		if (end < start_vaddr || end > end_vaddr)
1727 			end = end_vaddr;
1728 		ret = mmap_read_lock_killable(mm);
1729 		if (ret)
1730 			goto out_free;
1731 		ret = walk_page_range(mm, start_vaddr, end, &pagemap_ops, &pm);
1732 		mmap_read_unlock(mm);
1733 		start_vaddr = end;
1734 
1735 		len = min(count, PM_ENTRY_BYTES * pm.pos);
1736 		if (copy_to_user(buf, pm.buffer, len)) {
1737 			ret = -EFAULT;
1738 			goto out_free;
1739 		}
1740 		copied += len;
1741 		buf += len;
1742 		count -= len;
1743 	}
1744 	*ppos += copied;
1745 	if (!ret || ret == PM_END_OF_BUFFER)
1746 		ret = copied;
1747 
1748 out_free:
1749 	kfree(pm.buffer);
1750 out_mm:
1751 	mmput(mm);
1752 out:
1753 	return ret;
1754 }
1755 
1756 static int pagemap_open(struct inode *inode, struct file *file)
1757 {
1758 	struct mm_struct *mm;
1759 
1760 	mm = proc_mem_open(inode, PTRACE_MODE_READ);
1761 	if (IS_ERR(mm))
1762 		return PTR_ERR(mm);
1763 	file->private_data = mm;
1764 	return 0;
1765 }
1766 
1767 static int pagemap_release(struct inode *inode, struct file *file)
1768 {
1769 	struct mm_struct *mm = file->private_data;
1770 
1771 	if (mm)
1772 		mmdrop(mm);
1773 	return 0;
1774 }
1775 
1776 #define PM_SCAN_CATEGORIES	(PAGE_IS_WPALLOWED | PAGE_IS_WRITTEN |	\
1777 				 PAGE_IS_FILE |	PAGE_IS_PRESENT |	\
1778 				 PAGE_IS_SWAPPED | PAGE_IS_PFNZERO |	\
1779 				 PAGE_IS_HUGE | PAGE_IS_SOFT_DIRTY)
1780 #define PM_SCAN_FLAGS		(PM_SCAN_WP_MATCHING | PM_SCAN_CHECK_WPASYNC)
1781 
1782 struct pagemap_scan_private {
1783 	struct pm_scan_arg arg;
1784 	unsigned long masks_of_interest, cur_vma_category;
1785 	struct page_region *vec_buf;
1786 	unsigned long vec_buf_len, vec_buf_index, found_pages;
1787 	struct page_region __user *vec_out;
1788 };
1789 
1790 static unsigned long pagemap_page_category(struct pagemap_scan_private *p,
1791 					   struct vm_area_struct *vma,
1792 					   unsigned long addr, pte_t pte)
1793 {
1794 	unsigned long categories = 0;
1795 
1796 	if (pte_present(pte)) {
1797 		struct page *page;
1798 
1799 		categories |= PAGE_IS_PRESENT;
1800 		if (!pte_uffd_wp(pte))
1801 			categories |= PAGE_IS_WRITTEN;
1802 
1803 		if (p->masks_of_interest & PAGE_IS_FILE) {
1804 			page = vm_normal_page(vma, addr, pte);
1805 			if (page && !PageAnon(page))
1806 				categories |= PAGE_IS_FILE;
1807 		}
1808 
1809 		if (is_zero_pfn(pte_pfn(pte)))
1810 			categories |= PAGE_IS_PFNZERO;
1811 		if (pte_soft_dirty(pte))
1812 			categories |= PAGE_IS_SOFT_DIRTY;
1813 	} else if (is_swap_pte(pte)) {
1814 		swp_entry_t swp;
1815 
1816 		categories |= PAGE_IS_SWAPPED;
1817 		if (!pte_swp_uffd_wp_any(pte))
1818 			categories |= PAGE_IS_WRITTEN;
1819 
1820 		if (p->masks_of_interest & PAGE_IS_FILE) {
1821 			swp = pte_to_swp_entry(pte);
1822 			if (is_pfn_swap_entry(swp) &&
1823 			    !folio_test_anon(pfn_swap_entry_folio(swp)))
1824 				categories |= PAGE_IS_FILE;
1825 		}
1826 		if (pte_swp_soft_dirty(pte))
1827 			categories |= PAGE_IS_SOFT_DIRTY;
1828 	}
1829 
1830 	return categories;
1831 }
1832 
1833 static void make_uffd_wp_pte(struct vm_area_struct *vma,
1834 			     unsigned long addr, pte_t *pte, pte_t ptent)
1835 {
1836 	if (pte_present(ptent)) {
1837 		pte_t old_pte;
1838 
1839 		old_pte = ptep_modify_prot_start(vma, addr, pte);
1840 		ptent = pte_mkuffd_wp(old_pte);
1841 		ptep_modify_prot_commit(vma, addr, pte, old_pte, ptent);
1842 	} else if (is_swap_pte(ptent)) {
1843 		ptent = pte_swp_mkuffd_wp(ptent);
1844 		set_pte_at(vma->vm_mm, addr, pte, ptent);
1845 	} else {
1846 		set_pte_at(vma->vm_mm, addr, pte,
1847 			   make_pte_marker(PTE_MARKER_UFFD_WP));
1848 	}
1849 }
1850 
1851 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1852 static unsigned long pagemap_thp_category(struct pagemap_scan_private *p,
1853 					  struct vm_area_struct *vma,
1854 					  unsigned long addr, pmd_t pmd)
1855 {
1856 	unsigned long categories = PAGE_IS_HUGE;
1857 
1858 	if (pmd_present(pmd)) {
1859 		struct page *page;
1860 
1861 		categories |= PAGE_IS_PRESENT;
1862 		if (!pmd_uffd_wp(pmd))
1863 			categories |= PAGE_IS_WRITTEN;
1864 
1865 		if (p->masks_of_interest & PAGE_IS_FILE) {
1866 			page = vm_normal_page_pmd(vma, addr, pmd);
1867 			if (page && !PageAnon(page))
1868 				categories |= PAGE_IS_FILE;
1869 		}
1870 
1871 		if (is_zero_pfn(pmd_pfn(pmd)))
1872 			categories |= PAGE_IS_PFNZERO;
1873 		if (pmd_soft_dirty(pmd))
1874 			categories |= PAGE_IS_SOFT_DIRTY;
1875 	} else if (is_swap_pmd(pmd)) {
1876 		swp_entry_t swp;
1877 
1878 		categories |= PAGE_IS_SWAPPED;
1879 		if (!pmd_swp_uffd_wp(pmd))
1880 			categories |= PAGE_IS_WRITTEN;
1881 		if (pmd_swp_soft_dirty(pmd))
1882 			categories |= PAGE_IS_SOFT_DIRTY;
1883 
1884 		if (p->masks_of_interest & PAGE_IS_FILE) {
1885 			swp = pmd_to_swp_entry(pmd);
1886 			if (is_pfn_swap_entry(swp) &&
1887 			    !folio_test_anon(pfn_swap_entry_folio(swp)))
1888 				categories |= PAGE_IS_FILE;
1889 		}
1890 	}
1891 
1892 	return categories;
1893 }
1894 
1895 static void make_uffd_wp_pmd(struct vm_area_struct *vma,
1896 			     unsigned long addr, pmd_t *pmdp)
1897 {
1898 	pmd_t old, pmd = *pmdp;
1899 
1900 	if (pmd_present(pmd)) {
1901 		old = pmdp_invalidate_ad(vma, addr, pmdp);
1902 		pmd = pmd_mkuffd_wp(old);
1903 		set_pmd_at(vma->vm_mm, addr, pmdp, pmd);
1904 	} else if (is_migration_entry(pmd_to_swp_entry(pmd))) {
1905 		pmd = pmd_swp_mkuffd_wp(pmd);
1906 		set_pmd_at(vma->vm_mm, addr, pmdp, pmd);
1907 	}
1908 }
1909 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1910 
1911 #ifdef CONFIG_HUGETLB_PAGE
1912 static unsigned long pagemap_hugetlb_category(pte_t pte)
1913 {
1914 	unsigned long categories = PAGE_IS_HUGE;
1915 
1916 	/*
1917 	 * According to pagemap_hugetlb_range(), file-backed HugeTLB
1918 	 * page cannot be swapped. So PAGE_IS_FILE is not checked for
1919 	 * swapped pages.
1920 	 */
1921 	if (pte_present(pte)) {
1922 		categories |= PAGE_IS_PRESENT;
1923 		if (!huge_pte_uffd_wp(pte))
1924 			categories |= PAGE_IS_WRITTEN;
1925 		if (!PageAnon(pte_page(pte)))
1926 			categories |= PAGE_IS_FILE;
1927 		if (is_zero_pfn(pte_pfn(pte)))
1928 			categories |= PAGE_IS_PFNZERO;
1929 		if (pte_soft_dirty(pte))
1930 			categories |= PAGE_IS_SOFT_DIRTY;
1931 	} else if (is_swap_pte(pte)) {
1932 		categories |= PAGE_IS_SWAPPED;
1933 		if (!pte_swp_uffd_wp_any(pte))
1934 			categories |= PAGE_IS_WRITTEN;
1935 		if (pte_swp_soft_dirty(pte))
1936 			categories |= PAGE_IS_SOFT_DIRTY;
1937 	}
1938 
1939 	return categories;
1940 }
1941 
1942 static void make_uffd_wp_huge_pte(struct vm_area_struct *vma,
1943 				  unsigned long addr, pte_t *ptep,
1944 				  pte_t ptent)
1945 {
1946 	unsigned long psize;
1947 
1948 	if (is_hugetlb_entry_hwpoisoned(ptent) || is_pte_marker(ptent))
1949 		return;
1950 
1951 	psize = huge_page_size(hstate_vma(vma));
1952 
1953 	if (is_hugetlb_entry_migration(ptent))
1954 		set_huge_pte_at(vma->vm_mm, addr, ptep,
1955 				pte_swp_mkuffd_wp(ptent), psize);
1956 	else if (!huge_pte_none(ptent))
1957 		huge_ptep_modify_prot_commit(vma, addr, ptep, ptent,
1958 					     huge_pte_mkuffd_wp(ptent));
1959 	else
1960 		set_huge_pte_at(vma->vm_mm, addr, ptep,
1961 				make_pte_marker(PTE_MARKER_UFFD_WP), psize);
1962 }
1963 #endif /* CONFIG_HUGETLB_PAGE */
1964 
1965 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLB_PAGE)
1966 static void pagemap_scan_backout_range(struct pagemap_scan_private *p,
1967 				       unsigned long addr, unsigned long end)
1968 {
1969 	struct page_region *cur_buf = &p->vec_buf[p->vec_buf_index];
1970 
1971 	if (cur_buf->start != addr)
1972 		cur_buf->end = addr;
1973 	else
1974 		cur_buf->start = cur_buf->end = 0;
1975 
1976 	p->found_pages -= (end - addr) / PAGE_SIZE;
1977 }
1978 #endif
1979 
1980 static bool pagemap_scan_is_interesting_page(unsigned long categories,
1981 					     const struct pagemap_scan_private *p)
1982 {
1983 	categories ^= p->arg.category_inverted;
1984 	if ((categories & p->arg.category_mask) != p->arg.category_mask)
1985 		return false;
1986 	if (p->arg.category_anyof_mask && !(categories & p->arg.category_anyof_mask))
1987 		return false;
1988 
1989 	return true;
1990 }
1991 
1992 static bool pagemap_scan_is_interesting_vma(unsigned long categories,
1993 					    const struct pagemap_scan_private *p)
1994 {
1995 	unsigned long required = p->arg.category_mask & PAGE_IS_WPALLOWED;
1996 
1997 	categories ^= p->arg.category_inverted;
1998 	if ((categories & required) != required)
1999 		return false;
2000 
2001 	return true;
2002 }
2003 
2004 static int pagemap_scan_test_walk(unsigned long start, unsigned long end,
2005 				  struct mm_walk *walk)
2006 {
2007 	struct pagemap_scan_private *p = walk->private;
2008 	struct vm_area_struct *vma = walk->vma;
2009 	unsigned long vma_category = 0;
2010 	bool wp_allowed = userfaultfd_wp_async(vma) &&
2011 	    userfaultfd_wp_use_markers(vma);
2012 
2013 	if (!wp_allowed) {
2014 		/* User requested explicit failure over wp-async capability */
2015 		if (p->arg.flags & PM_SCAN_CHECK_WPASYNC)
2016 			return -EPERM;
2017 		/*
2018 		 * User requires wr-protect, and allows silently skipping
2019 		 * unsupported vmas.
2020 		 */
2021 		if (p->arg.flags & PM_SCAN_WP_MATCHING)
2022 			return 1;
2023 		/*
2024 		 * Then the request doesn't involve wr-protects at all,
2025 		 * fall through to the rest checks, and allow vma walk.
2026 		 */
2027 	}
2028 
2029 	if (vma->vm_flags & VM_PFNMAP)
2030 		return 1;
2031 
2032 	if (wp_allowed)
2033 		vma_category |= PAGE_IS_WPALLOWED;
2034 
2035 	if (vma->vm_flags & VM_SOFTDIRTY)
2036 		vma_category |= PAGE_IS_SOFT_DIRTY;
2037 
2038 	if (!pagemap_scan_is_interesting_vma(vma_category, p))
2039 		return 1;
2040 
2041 	p->cur_vma_category = vma_category;
2042 
2043 	return 0;
2044 }
2045 
2046 static bool pagemap_scan_push_range(unsigned long categories,
2047 				    struct pagemap_scan_private *p,
2048 				    unsigned long addr, unsigned long end)
2049 {
2050 	struct page_region *cur_buf = &p->vec_buf[p->vec_buf_index];
2051 
2052 	/*
2053 	 * When there is no output buffer provided at all, the sentinel values
2054 	 * won't match here. There is no other way for `cur_buf->end` to be
2055 	 * non-zero other than it being non-empty.
2056 	 */
2057 	if (addr == cur_buf->end && categories == cur_buf->categories) {
2058 		cur_buf->end = end;
2059 		return true;
2060 	}
2061 
2062 	if (cur_buf->end) {
2063 		if (p->vec_buf_index >= p->vec_buf_len - 1)
2064 			return false;
2065 
2066 		cur_buf = &p->vec_buf[++p->vec_buf_index];
2067 	}
2068 
2069 	cur_buf->start = addr;
2070 	cur_buf->end = end;
2071 	cur_buf->categories = categories;
2072 
2073 	return true;
2074 }
2075 
2076 static int pagemap_scan_output(unsigned long categories,
2077 			       struct pagemap_scan_private *p,
2078 			       unsigned long addr, unsigned long *end)
2079 {
2080 	unsigned long n_pages, total_pages;
2081 	int ret = 0;
2082 
2083 	if (!p->vec_buf)
2084 		return 0;
2085 
2086 	categories &= p->arg.return_mask;
2087 
2088 	n_pages = (*end - addr) / PAGE_SIZE;
2089 	if (check_add_overflow(p->found_pages, n_pages, &total_pages) ||
2090 	    total_pages > p->arg.max_pages) {
2091 		size_t n_too_much = total_pages - p->arg.max_pages;
2092 		*end -= n_too_much * PAGE_SIZE;
2093 		n_pages -= n_too_much;
2094 		ret = -ENOSPC;
2095 	}
2096 
2097 	if (!pagemap_scan_push_range(categories, p, addr, *end)) {
2098 		*end = addr;
2099 		n_pages = 0;
2100 		ret = -ENOSPC;
2101 	}
2102 
2103 	p->found_pages += n_pages;
2104 	if (ret)
2105 		p->arg.walk_end = *end;
2106 
2107 	return ret;
2108 }
2109 
2110 static int pagemap_scan_thp_entry(pmd_t *pmd, unsigned long start,
2111 				  unsigned long end, struct mm_walk *walk)
2112 {
2113 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2114 	struct pagemap_scan_private *p = walk->private;
2115 	struct vm_area_struct *vma = walk->vma;
2116 	unsigned long categories;
2117 	spinlock_t *ptl;
2118 	int ret = 0;
2119 
2120 	ptl = pmd_trans_huge_lock(pmd, vma);
2121 	if (!ptl)
2122 		return -ENOENT;
2123 
2124 	categories = p->cur_vma_category |
2125 		     pagemap_thp_category(p, vma, start, *pmd);
2126 
2127 	if (!pagemap_scan_is_interesting_page(categories, p))
2128 		goto out_unlock;
2129 
2130 	ret = pagemap_scan_output(categories, p, start, &end);
2131 	if (start == end)
2132 		goto out_unlock;
2133 
2134 	if (~p->arg.flags & PM_SCAN_WP_MATCHING)
2135 		goto out_unlock;
2136 	if (~categories & PAGE_IS_WRITTEN)
2137 		goto out_unlock;
2138 
2139 	/*
2140 	 * Break huge page into small pages if the WP operation
2141 	 * needs to be performed on a portion of the huge page.
2142 	 */
2143 	if (end != start + HPAGE_SIZE) {
2144 		spin_unlock(ptl);
2145 		split_huge_pmd(vma, pmd, start);
2146 		pagemap_scan_backout_range(p, start, end);
2147 		/* Report as if there was no THP */
2148 		return -ENOENT;
2149 	}
2150 
2151 	make_uffd_wp_pmd(vma, start, pmd);
2152 	flush_tlb_range(vma, start, end);
2153 out_unlock:
2154 	spin_unlock(ptl);
2155 	return ret;
2156 #else /* !CONFIG_TRANSPARENT_HUGEPAGE */
2157 	return -ENOENT;
2158 #endif
2159 }
2160 
2161 static int pagemap_scan_pmd_entry(pmd_t *pmd, unsigned long start,
2162 				  unsigned long end, struct mm_walk *walk)
2163 {
2164 	struct pagemap_scan_private *p = walk->private;
2165 	struct vm_area_struct *vma = walk->vma;
2166 	unsigned long addr, flush_end = 0;
2167 	pte_t *pte, *start_pte;
2168 	spinlock_t *ptl;
2169 	int ret;
2170 
2171 	arch_enter_lazy_mmu_mode();
2172 
2173 	ret = pagemap_scan_thp_entry(pmd, start, end, walk);
2174 	if (ret != -ENOENT) {
2175 		arch_leave_lazy_mmu_mode();
2176 		return ret;
2177 	}
2178 
2179 	ret = 0;
2180 	start_pte = pte = pte_offset_map_lock(vma->vm_mm, pmd, start, &ptl);
2181 	if (!pte) {
2182 		arch_leave_lazy_mmu_mode();
2183 		walk->action = ACTION_AGAIN;
2184 		return 0;
2185 	}
2186 
2187 	if ((p->arg.flags & PM_SCAN_WP_MATCHING) && !p->vec_out) {
2188 		/* Fast path for performing exclusive WP */
2189 		for (addr = start; addr != end; pte++, addr += PAGE_SIZE) {
2190 			pte_t ptent = ptep_get(pte);
2191 
2192 			if ((pte_present(ptent) && pte_uffd_wp(ptent)) ||
2193 			    pte_swp_uffd_wp_any(ptent))
2194 				continue;
2195 			make_uffd_wp_pte(vma, addr, pte, ptent);
2196 			if (!flush_end)
2197 				start = addr;
2198 			flush_end = addr + PAGE_SIZE;
2199 		}
2200 		goto flush_and_return;
2201 	}
2202 
2203 	if (!p->arg.category_anyof_mask && !p->arg.category_inverted &&
2204 	    p->arg.category_mask == PAGE_IS_WRITTEN &&
2205 	    p->arg.return_mask == PAGE_IS_WRITTEN) {
2206 		for (addr = start; addr < end; pte++, addr += PAGE_SIZE) {
2207 			unsigned long next = addr + PAGE_SIZE;
2208 			pte_t ptent = ptep_get(pte);
2209 
2210 			if ((pte_present(ptent) && pte_uffd_wp(ptent)) ||
2211 			    pte_swp_uffd_wp_any(ptent))
2212 				continue;
2213 			ret = pagemap_scan_output(p->cur_vma_category | PAGE_IS_WRITTEN,
2214 						  p, addr, &next);
2215 			if (next == addr)
2216 				break;
2217 			if (~p->arg.flags & PM_SCAN_WP_MATCHING)
2218 				continue;
2219 			make_uffd_wp_pte(vma, addr, pte, ptent);
2220 			if (!flush_end)
2221 				start = addr;
2222 			flush_end = next;
2223 		}
2224 		goto flush_and_return;
2225 	}
2226 
2227 	for (addr = start; addr != end; pte++, addr += PAGE_SIZE) {
2228 		pte_t ptent = ptep_get(pte);
2229 		unsigned long categories = p->cur_vma_category |
2230 					   pagemap_page_category(p, vma, addr, ptent);
2231 		unsigned long next = addr + PAGE_SIZE;
2232 
2233 		if (!pagemap_scan_is_interesting_page(categories, p))
2234 			continue;
2235 
2236 		ret = pagemap_scan_output(categories, p, addr, &next);
2237 		if (next == addr)
2238 			break;
2239 
2240 		if (~p->arg.flags & PM_SCAN_WP_MATCHING)
2241 			continue;
2242 		if (~categories & PAGE_IS_WRITTEN)
2243 			continue;
2244 
2245 		make_uffd_wp_pte(vma, addr, pte, ptent);
2246 		if (!flush_end)
2247 			start = addr;
2248 		flush_end = next;
2249 	}
2250 
2251 flush_and_return:
2252 	if (flush_end)
2253 		flush_tlb_range(vma, start, addr);
2254 
2255 	pte_unmap_unlock(start_pte, ptl);
2256 	arch_leave_lazy_mmu_mode();
2257 
2258 	cond_resched();
2259 	return ret;
2260 }
2261 
2262 #ifdef CONFIG_HUGETLB_PAGE
2263 static int pagemap_scan_hugetlb_entry(pte_t *ptep, unsigned long hmask,
2264 				      unsigned long start, unsigned long end,
2265 				      struct mm_walk *walk)
2266 {
2267 	struct pagemap_scan_private *p = walk->private;
2268 	struct vm_area_struct *vma = walk->vma;
2269 	unsigned long categories;
2270 	spinlock_t *ptl;
2271 	int ret = 0;
2272 	pte_t pte;
2273 
2274 	if (~p->arg.flags & PM_SCAN_WP_MATCHING) {
2275 		/* Go the short route when not write-protecting pages. */
2276 
2277 		pte = huge_ptep_get(ptep);
2278 		categories = p->cur_vma_category | pagemap_hugetlb_category(pte);
2279 
2280 		if (!pagemap_scan_is_interesting_page(categories, p))
2281 			return 0;
2282 
2283 		return pagemap_scan_output(categories, p, start, &end);
2284 	}
2285 
2286 	i_mmap_lock_write(vma->vm_file->f_mapping);
2287 	ptl = huge_pte_lock(hstate_vma(vma), vma->vm_mm, ptep);
2288 
2289 	pte = huge_ptep_get(ptep);
2290 	categories = p->cur_vma_category | pagemap_hugetlb_category(pte);
2291 
2292 	if (!pagemap_scan_is_interesting_page(categories, p))
2293 		goto out_unlock;
2294 
2295 	ret = pagemap_scan_output(categories, p, start, &end);
2296 	if (start == end)
2297 		goto out_unlock;
2298 
2299 	if (~categories & PAGE_IS_WRITTEN)
2300 		goto out_unlock;
2301 
2302 	if (end != start + HPAGE_SIZE) {
2303 		/* Partial HugeTLB page WP isn't possible. */
2304 		pagemap_scan_backout_range(p, start, end);
2305 		p->arg.walk_end = start;
2306 		ret = 0;
2307 		goto out_unlock;
2308 	}
2309 
2310 	make_uffd_wp_huge_pte(vma, start, ptep, pte);
2311 	flush_hugetlb_tlb_range(vma, start, end);
2312 
2313 out_unlock:
2314 	spin_unlock(ptl);
2315 	i_mmap_unlock_write(vma->vm_file->f_mapping);
2316 
2317 	return ret;
2318 }
2319 #else
2320 #define pagemap_scan_hugetlb_entry NULL
2321 #endif
2322 
2323 static int pagemap_scan_pte_hole(unsigned long addr, unsigned long end,
2324 				 int depth, struct mm_walk *walk)
2325 {
2326 	struct pagemap_scan_private *p = walk->private;
2327 	struct vm_area_struct *vma = walk->vma;
2328 	int ret, err;
2329 
2330 	if (!vma || !pagemap_scan_is_interesting_page(p->cur_vma_category, p))
2331 		return 0;
2332 
2333 	ret = pagemap_scan_output(p->cur_vma_category, p, addr, &end);
2334 	if (addr == end)
2335 		return ret;
2336 
2337 	if (~p->arg.flags & PM_SCAN_WP_MATCHING)
2338 		return ret;
2339 
2340 	err = uffd_wp_range(vma, addr, end - addr, true);
2341 	if (err < 0)
2342 		ret = err;
2343 
2344 	return ret;
2345 }
2346 
2347 static const struct mm_walk_ops pagemap_scan_ops = {
2348 	.test_walk = pagemap_scan_test_walk,
2349 	.pmd_entry = pagemap_scan_pmd_entry,
2350 	.pte_hole = pagemap_scan_pte_hole,
2351 	.hugetlb_entry = pagemap_scan_hugetlb_entry,
2352 };
2353 
2354 static int pagemap_scan_get_args(struct pm_scan_arg *arg,
2355 				 unsigned long uarg)
2356 {
2357 	if (copy_from_user(arg, (void __user *)uarg, sizeof(*arg)))
2358 		return -EFAULT;
2359 
2360 	if (arg->size != sizeof(struct pm_scan_arg))
2361 		return -EINVAL;
2362 
2363 	/* Validate requested features */
2364 	if (arg->flags & ~PM_SCAN_FLAGS)
2365 		return -EINVAL;
2366 	if ((arg->category_inverted | arg->category_mask |
2367 	     arg->category_anyof_mask | arg->return_mask) & ~PM_SCAN_CATEGORIES)
2368 		return -EINVAL;
2369 
2370 	arg->start = untagged_addr((unsigned long)arg->start);
2371 	arg->end = untagged_addr((unsigned long)arg->end);
2372 	arg->vec = untagged_addr((unsigned long)arg->vec);
2373 
2374 	/* Validate memory pointers */
2375 	if (!IS_ALIGNED(arg->start, PAGE_SIZE))
2376 		return -EINVAL;
2377 	if (!access_ok((void __user *)(long)arg->start, arg->end - arg->start))
2378 		return -EFAULT;
2379 	if (!arg->vec && arg->vec_len)
2380 		return -EINVAL;
2381 	if (arg->vec && !access_ok((void __user *)(long)arg->vec,
2382 			      arg->vec_len * sizeof(struct page_region)))
2383 		return -EFAULT;
2384 
2385 	/* Fixup default values */
2386 	arg->end = ALIGN(arg->end, PAGE_SIZE);
2387 	arg->walk_end = 0;
2388 	if (!arg->max_pages)
2389 		arg->max_pages = ULONG_MAX;
2390 
2391 	return 0;
2392 }
2393 
2394 static int pagemap_scan_writeback_args(struct pm_scan_arg *arg,
2395 				       unsigned long uargl)
2396 {
2397 	struct pm_scan_arg __user *uarg	= (void __user *)uargl;
2398 
2399 	if (copy_to_user(&uarg->walk_end, &arg->walk_end, sizeof(arg->walk_end)))
2400 		return -EFAULT;
2401 
2402 	return 0;
2403 }
2404 
2405 static int pagemap_scan_init_bounce_buffer(struct pagemap_scan_private *p)
2406 {
2407 	if (!p->arg.vec_len)
2408 		return 0;
2409 
2410 	p->vec_buf_len = min_t(size_t, PAGEMAP_WALK_SIZE >> PAGE_SHIFT,
2411 			       p->arg.vec_len);
2412 	p->vec_buf = kmalloc_array(p->vec_buf_len, sizeof(*p->vec_buf),
2413 				   GFP_KERNEL);
2414 	if (!p->vec_buf)
2415 		return -ENOMEM;
2416 
2417 	p->vec_buf->start = p->vec_buf->end = 0;
2418 	p->vec_out = (struct page_region __user *)(long)p->arg.vec;
2419 
2420 	return 0;
2421 }
2422 
2423 static long pagemap_scan_flush_buffer(struct pagemap_scan_private *p)
2424 {
2425 	const struct page_region *buf = p->vec_buf;
2426 	long n = p->vec_buf_index;
2427 
2428 	if (!p->vec_buf)
2429 		return 0;
2430 
2431 	if (buf[n].end != buf[n].start)
2432 		n++;
2433 
2434 	if (!n)
2435 		return 0;
2436 
2437 	if (copy_to_user(p->vec_out, buf, n * sizeof(*buf)))
2438 		return -EFAULT;
2439 
2440 	p->arg.vec_len -= n;
2441 	p->vec_out += n;
2442 
2443 	p->vec_buf_index = 0;
2444 	p->vec_buf_len = min_t(size_t, p->vec_buf_len, p->arg.vec_len);
2445 	p->vec_buf->start = p->vec_buf->end = 0;
2446 
2447 	return n;
2448 }
2449 
2450 static long do_pagemap_scan(struct mm_struct *mm, unsigned long uarg)
2451 {
2452 	struct pagemap_scan_private p = {0};
2453 	unsigned long walk_start;
2454 	size_t n_ranges_out = 0;
2455 	int ret;
2456 
2457 	ret = pagemap_scan_get_args(&p.arg, uarg);
2458 	if (ret)
2459 		return ret;
2460 
2461 	p.masks_of_interest = p.arg.category_mask | p.arg.category_anyof_mask |
2462 			      p.arg.return_mask;
2463 	ret = pagemap_scan_init_bounce_buffer(&p);
2464 	if (ret)
2465 		return ret;
2466 
2467 	for (walk_start = p.arg.start; walk_start < p.arg.end;
2468 			walk_start = p.arg.walk_end) {
2469 		struct mmu_notifier_range range;
2470 		long n_out;
2471 
2472 		if (fatal_signal_pending(current)) {
2473 			ret = -EINTR;
2474 			break;
2475 		}
2476 
2477 		ret = mmap_read_lock_killable(mm);
2478 		if (ret)
2479 			break;
2480 
2481 		/* Protection change for the range is going to happen. */
2482 		if (p.arg.flags & PM_SCAN_WP_MATCHING) {
2483 			mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_VMA, 0,
2484 						mm, walk_start, p.arg.end);
2485 			mmu_notifier_invalidate_range_start(&range);
2486 		}
2487 
2488 		ret = walk_page_range(mm, walk_start, p.arg.end,
2489 				      &pagemap_scan_ops, &p);
2490 
2491 		if (p.arg.flags & PM_SCAN_WP_MATCHING)
2492 			mmu_notifier_invalidate_range_end(&range);
2493 
2494 		mmap_read_unlock(mm);
2495 
2496 		n_out = pagemap_scan_flush_buffer(&p);
2497 		if (n_out < 0)
2498 			ret = n_out;
2499 		else
2500 			n_ranges_out += n_out;
2501 
2502 		if (ret != -ENOSPC)
2503 			break;
2504 
2505 		if (p.arg.vec_len == 0 || p.found_pages == p.arg.max_pages)
2506 			break;
2507 	}
2508 
2509 	/* ENOSPC signifies early stop (buffer full) from the walk. */
2510 	if (!ret || ret == -ENOSPC)
2511 		ret = n_ranges_out;
2512 
2513 	/* The walk_end isn't set when ret is zero */
2514 	if (!p.arg.walk_end)
2515 		p.arg.walk_end = p.arg.end;
2516 	if (pagemap_scan_writeback_args(&p.arg, uarg))
2517 		ret = -EFAULT;
2518 
2519 	kfree(p.vec_buf);
2520 	return ret;
2521 }
2522 
2523 static long do_pagemap_cmd(struct file *file, unsigned int cmd,
2524 			   unsigned long arg)
2525 {
2526 	struct mm_struct *mm = file->private_data;
2527 
2528 	switch (cmd) {
2529 	case PAGEMAP_SCAN:
2530 		return do_pagemap_scan(mm, arg);
2531 
2532 	default:
2533 		return -EINVAL;
2534 	}
2535 }
2536 
2537 const struct file_operations proc_pagemap_operations = {
2538 	.llseek		= mem_lseek, /* borrow this */
2539 	.read		= pagemap_read,
2540 	.open		= pagemap_open,
2541 	.release	= pagemap_release,
2542 	.unlocked_ioctl = do_pagemap_cmd,
2543 	.compat_ioctl	= do_pagemap_cmd,
2544 };
2545 #endif /* CONFIG_PROC_PAGE_MONITOR */
2546 
2547 #ifdef CONFIG_NUMA
2548 
2549 struct numa_maps {
2550 	unsigned long pages;
2551 	unsigned long anon;
2552 	unsigned long active;
2553 	unsigned long writeback;
2554 	unsigned long mapcount_max;
2555 	unsigned long dirty;
2556 	unsigned long swapcache;
2557 	unsigned long node[MAX_NUMNODES];
2558 };
2559 
2560 struct numa_maps_private {
2561 	struct proc_maps_private proc_maps;
2562 	struct numa_maps md;
2563 };
2564 
2565 static void gather_stats(struct page *page, struct numa_maps *md, int pte_dirty,
2566 			unsigned long nr_pages)
2567 {
2568 	struct folio *folio = page_folio(page);
2569 	int count = page_mapcount(page);
2570 
2571 	md->pages += nr_pages;
2572 	if (pte_dirty || folio_test_dirty(folio))
2573 		md->dirty += nr_pages;
2574 
2575 	if (folio_test_swapcache(folio))
2576 		md->swapcache += nr_pages;
2577 
2578 	if (folio_test_active(folio) || folio_test_unevictable(folio))
2579 		md->active += nr_pages;
2580 
2581 	if (folio_test_writeback(folio))
2582 		md->writeback += nr_pages;
2583 
2584 	if (folio_test_anon(folio))
2585 		md->anon += nr_pages;
2586 
2587 	if (count > md->mapcount_max)
2588 		md->mapcount_max = count;
2589 
2590 	md->node[folio_nid(folio)] += nr_pages;
2591 }
2592 
2593 static struct page *can_gather_numa_stats(pte_t pte, struct vm_area_struct *vma,
2594 		unsigned long addr)
2595 {
2596 	struct page *page;
2597 	int nid;
2598 
2599 	if (!pte_present(pte))
2600 		return NULL;
2601 
2602 	page = vm_normal_page(vma, addr, pte);
2603 	if (!page || is_zone_device_page(page))
2604 		return NULL;
2605 
2606 	if (PageReserved(page))
2607 		return NULL;
2608 
2609 	nid = page_to_nid(page);
2610 	if (!node_isset(nid, node_states[N_MEMORY]))
2611 		return NULL;
2612 
2613 	return page;
2614 }
2615 
2616 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2617 static struct page *can_gather_numa_stats_pmd(pmd_t pmd,
2618 					      struct vm_area_struct *vma,
2619 					      unsigned long addr)
2620 {
2621 	struct page *page;
2622 	int nid;
2623 
2624 	if (!pmd_present(pmd))
2625 		return NULL;
2626 
2627 	page = vm_normal_page_pmd(vma, addr, pmd);
2628 	if (!page)
2629 		return NULL;
2630 
2631 	if (PageReserved(page))
2632 		return NULL;
2633 
2634 	nid = page_to_nid(page);
2635 	if (!node_isset(nid, node_states[N_MEMORY]))
2636 		return NULL;
2637 
2638 	return page;
2639 }
2640 #endif
2641 
2642 static int gather_pte_stats(pmd_t *pmd, unsigned long addr,
2643 		unsigned long end, struct mm_walk *walk)
2644 {
2645 	struct numa_maps *md = walk->private;
2646 	struct vm_area_struct *vma = walk->vma;
2647 	spinlock_t *ptl;
2648 	pte_t *orig_pte;
2649 	pte_t *pte;
2650 
2651 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2652 	ptl = pmd_trans_huge_lock(pmd, vma);
2653 	if (ptl) {
2654 		struct page *page;
2655 
2656 		page = can_gather_numa_stats_pmd(*pmd, vma, addr);
2657 		if (page)
2658 			gather_stats(page, md, pmd_dirty(*pmd),
2659 				     HPAGE_PMD_SIZE/PAGE_SIZE);
2660 		spin_unlock(ptl);
2661 		return 0;
2662 	}
2663 #endif
2664 	orig_pte = pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
2665 	if (!pte) {
2666 		walk->action = ACTION_AGAIN;
2667 		return 0;
2668 	}
2669 	do {
2670 		pte_t ptent = ptep_get(pte);
2671 		struct page *page = can_gather_numa_stats(ptent, vma, addr);
2672 		if (!page)
2673 			continue;
2674 		gather_stats(page, md, pte_dirty(ptent), 1);
2675 
2676 	} while (pte++, addr += PAGE_SIZE, addr != end);
2677 	pte_unmap_unlock(orig_pte, ptl);
2678 	cond_resched();
2679 	return 0;
2680 }
2681 #ifdef CONFIG_HUGETLB_PAGE
2682 static int gather_hugetlb_stats(pte_t *pte, unsigned long hmask,
2683 		unsigned long addr, unsigned long end, struct mm_walk *walk)
2684 {
2685 	pte_t huge_pte = huge_ptep_get(pte);
2686 	struct numa_maps *md;
2687 	struct page *page;
2688 
2689 	if (!pte_present(huge_pte))
2690 		return 0;
2691 
2692 	page = pte_page(huge_pte);
2693 
2694 	md = walk->private;
2695 	gather_stats(page, md, pte_dirty(huge_pte), 1);
2696 	return 0;
2697 }
2698 
2699 #else
2700 static int gather_hugetlb_stats(pte_t *pte, unsigned long hmask,
2701 		unsigned long addr, unsigned long end, struct mm_walk *walk)
2702 {
2703 	return 0;
2704 }
2705 #endif
2706 
2707 static const struct mm_walk_ops show_numa_ops = {
2708 	.hugetlb_entry = gather_hugetlb_stats,
2709 	.pmd_entry = gather_pte_stats,
2710 	.walk_lock = PGWALK_RDLOCK,
2711 };
2712 
2713 /*
2714  * Display pages allocated per node and memory policy via /proc.
2715  */
2716 static int show_numa_map(struct seq_file *m, void *v)
2717 {
2718 	struct numa_maps_private *numa_priv = m->private;
2719 	struct proc_maps_private *proc_priv = &numa_priv->proc_maps;
2720 	struct vm_area_struct *vma = v;
2721 	struct numa_maps *md = &numa_priv->md;
2722 	struct file *file = vma->vm_file;
2723 	struct mm_struct *mm = vma->vm_mm;
2724 	char buffer[64];
2725 	struct mempolicy *pol;
2726 	pgoff_t ilx;
2727 	int nid;
2728 
2729 	if (!mm)
2730 		return 0;
2731 
2732 	/* Ensure we start with an empty set of numa_maps statistics. */
2733 	memset(md, 0, sizeof(*md));
2734 
2735 	pol = __get_vma_policy(vma, vma->vm_start, &ilx);
2736 	if (pol) {
2737 		mpol_to_str(buffer, sizeof(buffer), pol);
2738 		mpol_cond_put(pol);
2739 	} else {
2740 		mpol_to_str(buffer, sizeof(buffer), proc_priv->task_mempolicy);
2741 	}
2742 
2743 	seq_printf(m, "%08lx %s", vma->vm_start, buffer);
2744 
2745 	if (file) {
2746 		seq_puts(m, " file=");
2747 		seq_path(m, file_user_path(file), "\n\t= ");
2748 	} else if (vma_is_initial_heap(vma)) {
2749 		seq_puts(m, " heap");
2750 	} else if (vma_is_initial_stack(vma)) {
2751 		seq_puts(m, " stack");
2752 	}
2753 
2754 	if (is_vm_hugetlb_page(vma))
2755 		seq_puts(m, " huge");
2756 
2757 	/* mmap_lock is held by m_start */
2758 	walk_page_vma(vma, &show_numa_ops, md);
2759 
2760 	if (!md->pages)
2761 		goto out;
2762 
2763 	if (md->anon)
2764 		seq_printf(m, " anon=%lu", md->anon);
2765 
2766 	if (md->dirty)
2767 		seq_printf(m, " dirty=%lu", md->dirty);
2768 
2769 	if (md->pages != md->anon && md->pages != md->dirty)
2770 		seq_printf(m, " mapped=%lu", md->pages);
2771 
2772 	if (md->mapcount_max > 1)
2773 		seq_printf(m, " mapmax=%lu", md->mapcount_max);
2774 
2775 	if (md->swapcache)
2776 		seq_printf(m, " swapcache=%lu", md->swapcache);
2777 
2778 	if (md->active < md->pages && !is_vm_hugetlb_page(vma))
2779 		seq_printf(m, " active=%lu", md->active);
2780 
2781 	if (md->writeback)
2782 		seq_printf(m, " writeback=%lu", md->writeback);
2783 
2784 	for_each_node_state(nid, N_MEMORY)
2785 		if (md->node[nid])
2786 			seq_printf(m, " N%d=%lu", nid, md->node[nid]);
2787 
2788 	seq_printf(m, " kernelpagesize_kB=%lu", vma_kernel_pagesize(vma) >> 10);
2789 out:
2790 	seq_putc(m, '\n');
2791 	return 0;
2792 }
2793 
2794 static const struct seq_operations proc_pid_numa_maps_op = {
2795 	.start  = m_start,
2796 	.next   = m_next,
2797 	.stop   = m_stop,
2798 	.show   = show_numa_map,
2799 };
2800 
2801 static int pid_numa_maps_open(struct inode *inode, struct file *file)
2802 {
2803 	return proc_maps_open(inode, file, &proc_pid_numa_maps_op,
2804 				sizeof(struct numa_maps_private));
2805 }
2806 
2807 const struct file_operations proc_pid_numa_maps_operations = {
2808 	.open		= pid_numa_maps_open,
2809 	.read		= seq_read,
2810 	.llseek		= seq_lseek,
2811 	.release	= proc_map_release,
2812 };
2813 
2814 #endif /* CONFIG_NUMA */
2815