xref: /linux/fs/proc/task_mmu.c (revision 37104286f9390a3da330c299b01cabfb4c98af7c)
1 // SPDX-License-Identifier: GPL-2.0
2 #include <linux/pagewalk.h>
3 #include <linux/mm_inline.h>
4 #include <linux/hugetlb.h>
5 #include <linux/huge_mm.h>
6 #include <linux/mount.h>
7 #include <linux/ksm.h>
8 #include <linux/seq_file.h>
9 #include <linux/highmem.h>
10 #include <linux/ptrace.h>
11 #include <linux/slab.h>
12 #include <linux/pagemap.h>
13 #include <linux/mempolicy.h>
14 #include <linux/rmap.h>
15 #include <linux/swap.h>
16 #include <linux/sched/mm.h>
17 #include <linux/swapops.h>
18 #include <linux/mmu_notifier.h>
19 #include <linux/page_idle.h>
20 #include <linux/shmem_fs.h>
21 #include <linux/uaccess.h>
22 #include <linux/pkeys.h>
23 #include <linux/minmax.h>
24 #include <linux/overflow.h>
25 #include <linux/buildid.h>
26 
27 #include <asm/elf.h>
28 #include <asm/tlb.h>
29 #include <asm/tlbflush.h>
30 #include "internal.h"
31 
32 #define SENTINEL_VMA_END	-1
33 #define SENTINEL_VMA_GATE	-2
34 
35 #define SEQ_PUT_DEC(str, val) \
36 		seq_put_decimal_ull_width(m, str, (val) << (PAGE_SHIFT-10), 8)
37 void task_mem(struct seq_file *m, struct mm_struct *mm)
38 {
39 	unsigned long text, lib, swap, anon, file, shmem;
40 	unsigned long hiwater_vm, total_vm, hiwater_rss, total_rss;
41 
42 	anon = get_mm_counter_sum(mm, MM_ANONPAGES);
43 	file = get_mm_counter_sum(mm, MM_FILEPAGES);
44 	shmem = get_mm_counter_sum(mm, MM_SHMEMPAGES);
45 
46 	/*
47 	 * Note: to minimize their overhead, mm maintains hiwater_vm and
48 	 * hiwater_rss only when about to *lower* total_vm or rss.  Any
49 	 * collector of these hiwater stats must therefore get total_vm
50 	 * and rss too, which will usually be the higher.  Barriers? not
51 	 * worth the effort, such snapshots can always be inconsistent.
52 	 */
53 	hiwater_vm = total_vm = mm->total_vm;
54 	if (hiwater_vm < mm->hiwater_vm)
55 		hiwater_vm = mm->hiwater_vm;
56 	hiwater_rss = total_rss = anon + file + shmem;
57 	if (hiwater_rss < mm->hiwater_rss)
58 		hiwater_rss = mm->hiwater_rss;
59 
60 	/* split executable areas between text and lib */
61 	text = PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK);
62 	text = min(text, mm->exec_vm << PAGE_SHIFT);
63 	lib = (mm->exec_vm << PAGE_SHIFT) - text;
64 
65 	swap = get_mm_counter_sum(mm, MM_SWAPENTS);
66 	SEQ_PUT_DEC("VmPeak:\t", hiwater_vm);
67 	SEQ_PUT_DEC(" kB\nVmSize:\t", total_vm);
68 	SEQ_PUT_DEC(" kB\nVmLck:\t", mm->locked_vm);
69 	SEQ_PUT_DEC(" kB\nVmPin:\t", atomic64_read(&mm->pinned_vm));
70 	SEQ_PUT_DEC(" kB\nVmHWM:\t", hiwater_rss);
71 	SEQ_PUT_DEC(" kB\nVmRSS:\t", total_rss);
72 	SEQ_PUT_DEC(" kB\nRssAnon:\t", anon);
73 	SEQ_PUT_DEC(" kB\nRssFile:\t", file);
74 	SEQ_PUT_DEC(" kB\nRssShmem:\t", shmem);
75 	SEQ_PUT_DEC(" kB\nVmData:\t", mm->data_vm);
76 	SEQ_PUT_DEC(" kB\nVmStk:\t", mm->stack_vm);
77 	seq_put_decimal_ull_width(m,
78 		    " kB\nVmExe:\t", text >> 10, 8);
79 	seq_put_decimal_ull_width(m,
80 		    " kB\nVmLib:\t", lib >> 10, 8);
81 	seq_put_decimal_ull_width(m,
82 		    " kB\nVmPTE:\t", mm_pgtables_bytes(mm) >> 10, 8);
83 	SEQ_PUT_DEC(" kB\nVmSwap:\t", swap);
84 	seq_puts(m, " kB\n");
85 	hugetlb_report_usage(m, mm);
86 }
87 #undef SEQ_PUT_DEC
88 
89 unsigned long task_vsize(struct mm_struct *mm)
90 {
91 	return PAGE_SIZE * mm->total_vm;
92 }
93 
94 unsigned long task_statm(struct mm_struct *mm,
95 			 unsigned long *shared, unsigned long *text,
96 			 unsigned long *data, unsigned long *resident)
97 {
98 	*shared = get_mm_counter_sum(mm, MM_FILEPAGES) +
99 			get_mm_counter_sum(mm, MM_SHMEMPAGES);
100 	*text = (PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK))
101 								>> PAGE_SHIFT;
102 	*data = mm->data_vm + mm->stack_vm;
103 	*resident = *shared + get_mm_counter_sum(mm, MM_ANONPAGES);
104 	return mm->total_vm;
105 }
106 
107 #ifdef CONFIG_NUMA
108 /*
109  * Save get_task_policy() for show_numa_map().
110  */
111 static void hold_task_mempolicy(struct proc_maps_private *priv)
112 {
113 	struct task_struct *task = priv->task;
114 
115 	task_lock(task);
116 	priv->task_mempolicy = get_task_policy(task);
117 	mpol_get(priv->task_mempolicy);
118 	task_unlock(task);
119 }
120 static void release_task_mempolicy(struct proc_maps_private *priv)
121 {
122 	mpol_put(priv->task_mempolicy);
123 }
124 #else
125 static void hold_task_mempolicy(struct proc_maps_private *priv)
126 {
127 }
128 static void release_task_mempolicy(struct proc_maps_private *priv)
129 {
130 }
131 #endif
132 
133 #ifdef CONFIG_PER_VMA_LOCK
134 
135 static void reset_lock_ctx(struct proc_maps_locking_ctx *lock_ctx)
136 {
137 	lock_ctx->locked_vma = NULL;
138 	lock_ctx->mmap_locked = false;
139 }
140 
141 static void unlock_ctx_vma(struct proc_maps_locking_ctx *lock_ctx)
142 {
143 	if (lock_ctx->locked_vma) {
144 		vma_end_read(lock_ctx->locked_vma);
145 		lock_ctx->locked_vma = NULL;
146 	}
147 }
148 
149 static const struct seq_operations proc_pid_maps_op;
150 
151 static inline bool lock_vma_range(struct seq_file *m,
152 				  struct proc_maps_locking_ctx *lock_ctx)
153 {
154 	/*
155 	 * smaps and numa_maps perform page table walk, therefore require
156 	 * mmap_lock but maps can be read with locking just the vma and
157 	 * walking the vma tree under rcu read protection.
158 	 */
159 	if (m->op != &proc_pid_maps_op) {
160 		if (mmap_read_lock_killable(lock_ctx->mm))
161 			return false;
162 
163 		lock_ctx->mmap_locked = true;
164 	} else {
165 		rcu_read_lock();
166 		reset_lock_ctx(lock_ctx);
167 	}
168 
169 	return true;
170 }
171 
172 static inline void unlock_vma_range(struct proc_maps_locking_ctx *lock_ctx)
173 {
174 	if (lock_ctx->mmap_locked) {
175 		mmap_read_unlock(lock_ctx->mm);
176 	} else {
177 		unlock_ctx_vma(lock_ctx);
178 		rcu_read_unlock();
179 	}
180 }
181 
182 static struct vm_area_struct *get_next_vma(struct proc_maps_private *priv,
183 					   loff_t last_pos)
184 {
185 	struct proc_maps_locking_ctx *lock_ctx = &priv->lock_ctx;
186 	struct vm_area_struct *vma;
187 
188 	if (lock_ctx->mmap_locked)
189 		return vma_next(&priv->iter);
190 
191 	unlock_ctx_vma(lock_ctx);
192 	vma = lock_next_vma(lock_ctx->mm, &priv->iter, last_pos);
193 	if (!IS_ERR_OR_NULL(vma))
194 		lock_ctx->locked_vma = vma;
195 
196 	return vma;
197 }
198 
199 static inline bool fallback_to_mmap_lock(struct proc_maps_private *priv,
200 					 loff_t pos)
201 {
202 	struct proc_maps_locking_ctx *lock_ctx = &priv->lock_ctx;
203 
204 	if (lock_ctx->mmap_locked)
205 		return false;
206 
207 	rcu_read_unlock();
208 	mmap_read_lock(lock_ctx->mm);
209 	/* Reinitialize the iterator after taking mmap_lock */
210 	vma_iter_set(&priv->iter, pos);
211 	lock_ctx->mmap_locked = true;
212 
213 	return true;
214 }
215 
216 #else /* CONFIG_PER_VMA_LOCK */
217 
218 static inline bool lock_vma_range(struct seq_file *m,
219 				  struct proc_maps_locking_ctx *lock_ctx)
220 {
221 	return mmap_read_lock_killable(lock_ctx->mm) == 0;
222 }
223 
224 static inline void unlock_vma_range(struct proc_maps_locking_ctx *lock_ctx)
225 {
226 	mmap_read_unlock(lock_ctx->mm);
227 }
228 
229 static struct vm_area_struct *get_next_vma(struct proc_maps_private *priv,
230 					   loff_t last_pos)
231 {
232 	return vma_next(&priv->iter);
233 }
234 
235 static inline bool fallback_to_mmap_lock(struct proc_maps_private *priv,
236 					 loff_t pos)
237 {
238 	return false;
239 }
240 
241 #endif /* CONFIG_PER_VMA_LOCK */
242 
243 static struct vm_area_struct *proc_get_vma(struct seq_file *m, loff_t *ppos)
244 {
245 	struct proc_maps_private *priv = m->private;
246 	struct vm_area_struct *vma;
247 
248 retry:
249 	vma = get_next_vma(priv, *ppos);
250 	/* EINTR of EAGAIN is possible */
251 	if (IS_ERR(vma)) {
252 		if (PTR_ERR(vma) == -EAGAIN && fallback_to_mmap_lock(priv, *ppos))
253 			goto retry;
254 
255 		return vma;
256 	}
257 
258 	/* Store previous position to be able to restart if needed */
259 	priv->last_pos = *ppos;
260 	if (vma) {
261 		/*
262 		 * Track the end of the reported vma to ensure position changes
263 		 * even if previous vma was merged with the next vma and we
264 		 * found the extended vma with the same vm_start.
265 		 */
266 		*ppos = vma->vm_end;
267 	} else {
268 		*ppos = SENTINEL_VMA_GATE;
269 		vma = get_gate_vma(priv->lock_ctx.mm);
270 	}
271 
272 	return vma;
273 }
274 
275 static void *m_start(struct seq_file *m, loff_t *ppos)
276 {
277 	struct proc_maps_private *priv = m->private;
278 	struct proc_maps_locking_ctx *lock_ctx;
279 	loff_t last_addr = *ppos;
280 	struct mm_struct *mm;
281 
282 	/* See m_next(). Zero at the start or after lseek. */
283 	if (last_addr == SENTINEL_VMA_END)
284 		return NULL;
285 
286 	priv->task = get_proc_task(priv->inode);
287 	if (!priv->task)
288 		return ERR_PTR(-ESRCH);
289 
290 	lock_ctx = &priv->lock_ctx;
291 	mm = lock_ctx->mm;
292 	if (!mm || !mmget_not_zero(mm)) {
293 		put_task_struct(priv->task);
294 		priv->task = NULL;
295 		return NULL;
296 	}
297 
298 	if (!lock_vma_range(m, lock_ctx)) {
299 		mmput(mm);
300 		put_task_struct(priv->task);
301 		priv->task = NULL;
302 		return ERR_PTR(-EINTR);
303 	}
304 
305 	/*
306 	 * Reset current position if last_addr was set before
307 	 * and it's not a sentinel.
308 	 */
309 	if (last_addr > 0)
310 		*ppos = last_addr = priv->last_pos;
311 	vma_iter_init(&priv->iter, mm, (unsigned long)last_addr);
312 	hold_task_mempolicy(priv);
313 	if (last_addr == SENTINEL_VMA_GATE)
314 		return get_gate_vma(mm);
315 
316 	return proc_get_vma(m, ppos);
317 }
318 
319 static void *m_next(struct seq_file *m, void *v, loff_t *ppos)
320 {
321 	if (*ppos == SENTINEL_VMA_GATE) {
322 		*ppos = SENTINEL_VMA_END;
323 		return NULL;
324 	}
325 	return proc_get_vma(m, ppos);
326 }
327 
328 static void m_stop(struct seq_file *m, void *v)
329 {
330 	struct proc_maps_private *priv = m->private;
331 	struct mm_struct *mm = priv->lock_ctx.mm;
332 
333 	if (!priv->task)
334 		return;
335 
336 	release_task_mempolicy(priv);
337 	unlock_vma_range(&priv->lock_ctx);
338 	mmput(mm);
339 	put_task_struct(priv->task);
340 	priv->task = NULL;
341 }
342 
343 static int proc_maps_open(struct inode *inode, struct file *file,
344 			const struct seq_operations *ops, int psize)
345 {
346 	struct proc_maps_private *priv = __seq_open_private(file, ops, psize);
347 
348 	if (!priv)
349 		return -ENOMEM;
350 
351 	priv->inode = inode;
352 	priv->lock_ctx.mm = proc_mem_open(inode, PTRACE_MODE_READ);
353 	if (IS_ERR(priv->lock_ctx.mm)) {
354 		int err = PTR_ERR(priv->lock_ctx.mm);
355 
356 		seq_release_private(inode, file);
357 		return err;
358 	}
359 
360 	return 0;
361 }
362 
363 static int proc_map_release(struct inode *inode, struct file *file)
364 {
365 	struct seq_file *seq = file->private_data;
366 	struct proc_maps_private *priv = seq->private;
367 
368 	if (priv->lock_ctx.mm)
369 		mmdrop(priv->lock_ctx.mm);
370 
371 	return seq_release_private(inode, file);
372 }
373 
374 static int do_maps_open(struct inode *inode, struct file *file,
375 			const struct seq_operations *ops)
376 {
377 	return proc_maps_open(inode, file, ops,
378 				sizeof(struct proc_maps_private));
379 }
380 
381 static void get_vma_name(struct vm_area_struct *vma,
382 			 const struct path **path,
383 			 const char **name,
384 			 const char **name_fmt)
385 {
386 	struct anon_vma_name *anon_name = vma->vm_mm ? anon_vma_name(vma) : NULL;
387 
388 	*name = NULL;
389 	*path = NULL;
390 	*name_fmt = NULL;
391 
392 	/*
393 	 * Print the dentry name for named mappings, and a
394 	 * special [heap] marker for the heap:
395 	 */
396 	if (vma->vm_file) {
397 		/*
398 		 * If user named this anon shared memory via
399 		 * prctl(PR_SET_VMA ..., use the provided name.
400 		 */
401 		if (anon_name) {
402 			*name_fmt = "[anon_shmem:%s]";
403 			*name = anon_name->name;
404 		} else {
405 			*path = file_user_path(vma->vm_file);
406 		}
407 		return;
408 	}
409 
410 	if (vma->vm_ops && vma->vm_ops->name) {
411 		*name = vma->vm_ops->name(vma);
412 		if (*name)
413 			return;
414 	}
415 
416 	*name = arch_vma_name(vma);
417 	if (*name)
418 		return;
419 
420 	if (!vma->vm_mm) {
421 		*name = "[vdso]";
422 		return;
423 	}
424 
425 	if (vma_is_initial_heap(vma)) {
426 		*name = "[heap]";
427 		return;
428 	}
429 
430 	if (vma_is_initial_stack(vma)) {
431 		*name = "[stack]";
432 		return;
433 	}
434 
435 	if (anon_name) {
436 		*name_fmt = "[anon:%s]";
437 		*name = anon_name->name;
438 		return;
439 	}
440 }
441 
442 static void show_vma_header_prefix(struct seq_file *m,
443 				   unsigned long start, unsigned long end,
444 				   vm_flags_t flags, unsigned long long pgoff,
445 				   dev_t dev, unsigned long ino)
446 {
447 	seq_setwidth(m, 25 + sizeof(void *) * 6 - 1);
448 	seq_put_hex_ll(m, NULL, start, 8);
449 	seq_put_hex_ll(m, "-", end, 8);
450 	seq_putc(m, ' ');
451 	seq_putc(m, flags & VM_READ ? 'r' : '-');
452 	seq_putc(m, flags & VM_WRITE ? 'w' : '-');
453 	seq_putc(m, flags & VM_EXEC ? 'x' : '-');
454 	seq_putc(m, flags & VM_MAYSHARE ? 's' : 'p');
455 	seq_put_hex_ll(m, " ", pgoff, 8);
456 	seq_put_hex_ll(m, " ", MAJOR(dev), 2);
457 	seq_put_hex_ll(m, ":", MINOR(dev), 2);
458 	seq_put_decimal_ull(m, " ", ino);
459 	seq_putc(m, ' ');
460 }
461 
462 static void
463 show_map_vma(struct seq_file *m, struct vm_area_struct *vma)
464 {
465 	const struct path *path;
466 	const char *name_fmt, *name;
467 	vm_flags_t flags = vma->vm_flags;
468 	unsigned long ino = 0;
469 	unsigned long long pgoff = 0;
470 	unsigned long start, end;
471 	dev_t dev = 0;
472 
473 	if (vma->vm_file) {
474 		const struct inode *inode = file_user_inode(vma->vm_file);
475 
476 		dev = inode->i_sb->s_dev;
477 		ino = inode->i_ino;
478 		pgoff = ((loff_t)vma->vm_pgoff) << PAGE_SHIFT;
479 	}
480 
481 	start = vma->vm_start;
482 	end = vma->vm_end;
483 	show_vma_header_prefix(m, start, end, flags, pgoff, dev, ino);
484 
485 	get_vma_name(vma, &path, &name, &name_fmt);
486 	if (path) {
487 		seq_pad(m, ' ');
488 		seq_path(m, path, "\n");
489 	} else if (name_fmt) {
490 		seq_pad(m, ' ');
491 		seq_printf(m, name_fmt, name);
492 	} else if (name) {
493 		seq_pad(m, ' ');
494 		seq_puts(m, name);
495 	}
496 	seq_putc(m, '\n');
497 }
498 
499 static int show_map(struct seq_file *m, void *v)
500 {
501 	show_map_vma(m, v);
502 	return 0;
503 }
504 
505 static const struct seq_operations proc_pid_maps_op = {
506 	.start	= m_start,
507 	.next	= m_next,
508 	.stop	= m_stop,
509 	.show	= show_map
510 };
511 
512 static int pid_maps_open(struct inode *inode, struct file *file)
513 {
514 	return do_maps_open(inode, file, &proc_pid_maps_op);
515 }
516 
517 #define PROCMAP_QUERY_VMA_FLAGS (				\
518 		PROCMAP_QUERY_VMA_READABLE |			\
519 		PROCMAP_QUERY_VMA_WRITABLE |			\
520 		PROCMAP_QUERY_VMA_EXECUTABLE |			\
521 		PROCMAP_QUERY_VMA_SHARED			\
522 )
523 
524 #define PROCMAP_QUERY_VALID_FLAGS_MASK (			\
525 		PROCMAP_QUERY_COVERING_OR_NEXT_VMA |		\
526 		PROCMAP_QUERY_FILE_BACKED_VMA |			\
527 		PROCMAP_QUERY_VMA_FLAGS				\
528 )
529 
530 #ifdef CONFIG_PER_VMA_LOCK
531 
532 static int query_vma_setup(struct proc_maps_locking_ctx *lock_ctx)
533 {
534 	reset_lock_ctx(lock_ctx);
535 
536 	return 0;
537 }
538 
539 static void query_vma_teardown(struct proc_maps_locking_ctx *lock_ctx)
540 {
541 	if (lock_ctx->mmap_locked) {
542 		mmap_read_unlock(lock_ctx->mm);
543 		lock_ctx->mmap_locked = false;
544 	} else {
545 		unlock_ctx_vma(lock_ctx);
546 	}
547 }
548 
549 static struct vm_area_struct *query_vma_find_by_addr(struct proc_maps_locking_ctx *lock_ctx,
550 						     unsigned long addr)
551 {
552 	struct mm_struct *mm = lock_ctx->mm;
553 	struct vm_area_struct *vma;
554 	struct vma_iterator vmi;
555 
556 	if (lock_ctx->mmap_locked)
557 		return find_vma(mm, addr);
558 
559 	/* Unlock previously locked VMA and find the next one under RCU */
560 	unlock_ctx_vma(lock_ctx);
561 	rcu_read_lock();
562 	vma_iter_init(&vmi, mm, addr);
563 	vma = lock_next_vma(mm, &vmi, addr);
564 	rcu_read_unlock();
565 
566 	if (!vma)
567 		return NULL;
568 
569 	if (!IS_ERR(vma)) {
570 		lock_ctx->locked_vma = vma;
571 		return vma;
572 	}
573 
574 	if (PTR_ERR(vma) == -EAGAIN) {
575 		/* Fallback to mmap_lock on vma->vm_refcnt overflow */
576 		mmap_read_lock(mm);
577 		vma = find_vma(mm, addr);
578 		lock_ctx->mmap_locked = true;
579 	}
580 
581 	return vma;
582 }
583 
584 #else /* CONFIG_PER_VMA_LOCK */
585 
586 static int query_vma_setup(struct proc_maps_locking_ctx *lock_ctx)
587 {
588 	return mmap_read_lock_killable(lock_ctx->mm);
589 }
590 
591 static void query_vma_teardown(struct proc_maps_locking_ctx *lock_ctx)
592 {
593 	mmap_read_unlock(lock_ctx->mm);
594 }
595 
596 static struct vm_area_struct *query_vma_find_by_addr(struct proc_maps_locking_ctx *lock_ctx,
597 						     unsigned long addr)
598 {
599 	return find_vma(lock_ctx->mm, addr);
600 }
601 
602 #endif  /* CONFIG_PER_VMA_LOCK */
603 
604 static struct vm_area_struct *query_matching_vma(struct proc_maps_locking_ctx *lock_ctx,
605 						 unsigned long addr, u32 flags)
606 {
607 	struct vm_area_struct *vma;
608 
609 next_vma:
610 	vma = query_vma_find_by_addr(lock_ctx, addr);
611 	if (IS_ERR(vma))
612 		return vma;
613 
614 	if (!vma)
615 		goto no_vma;
616 
617 	/* user requested only file-backed VMA, keep iterating */
618 	if ((flags & PROCMAP_QUERY_FILE_BACKED_VMA) && !vma->vm_file)
619 		goto skip_vma;
620 
621 	/* VMA permissions should satisfy query flags */
622 	if (flags & PROCMAP_QUERY_VMA_FLAGS) {
623 		u32 perm = 0;
624 
625 		if (flags & PROCMAP_QUERY_VMA_READABLE)
626 			perm |= VM_READ;
627 		if (flags & PROCMAP_QUERY_VMA_WRITABLE)
628 			perm |= VM_WRITE;
629 		if (flags & PROCMAP_QUERY_VMA_EXECUTABLE)
630 			perm |= VM_EXEC;
631 		if (flags & PROCMAP_QUERY_VMA_SHARED)
632 			perm |= VM_MAYSHARE;
633 
634 		if ((vma->vm_flags & perm) != perm)
635 			goto skip_vma;
636 	}
637 
638 	/* found covering VMA or user is OK with the matching next VMA */
639 	if ((flags & PROCMAP_QUERY_COVERING_OR_NEXT_VMA) || vma->vm_start <= addr)
640 		return vma;
641 
642 skip_vma:
643 	/*
644 	 * If the user needs closest matching VMA, keep iterating.
645 	 */
646 	addr = vma->vm_end;
647 	if (flags & PROCMAP_QUERY_COVERING_OR_NEXT_VMA)
648 		goto next_vma;
649 
650 no_vma:
651 	return ERR_PTR(-ENOENT);
652 }
653 
654 static int do_procmap_query(struct mm_struct *mm, void __user *uarg)
655 {
656 	struct proc_maps_locking_ctx lock_ctx = { .mm = mm };
657 	struct procmap_query karg;
658 	struct vm_area_struct *vma;
659 	const char *name = NULL;
660 	char build_id_buf[BUILD_ID_SIZE_MAX], *name_buf = NULL;
661 	__u64 usize;
662 	int err;
663 
664 	if (copy_from_user(&usize, (void __user *)uarg, sizeof(usize)))
665 		return -EFAULT;
666 	/* argument struct can never be that large, reject abuse */
667 	if (usize > PAGE_SIZE)
668 		return -E2BIG;
669 	/* argument struct should have at least query_flags and query_addr fields */
670 	if (usize < offsetofend(struct procmap_query, query_addr))
671 		return -EINVAL;
672 	err = copy_struct_from_user(&karg, sizeof(karg), uarg, usize);
673 	if (err)
674 		return err;
675 
676 	/* reject unknown flags */
677 	if (karg.query_flags & ~PROCMAP_QUERY_VALID_FLAGS_MASK)
678 		return -EINVAL;
679 	/* either both buffer address and size are set, or both should be zero */
680 	if (!!karg.vma_name_size != !!karg.vma_name_addr)
681 		return -EINVAL;
682 	if (!!karg.build_id_size != !!karg.build_id_addr)
683 		return -EINVAL;
684 
685 	if (!mm || !mmget_not_zero(mm))
686 		return -ESRCH;
687 
688 	err = query_vma_setup(&lock_ctx);
689 	if (err) {
690 		mmput(mm);
691 		return err;
692 	}
693 
694 	vma = query_matching_vma(&lock_ctx, karg.query_addr, karg.query_flags);
695 	if (IS_ERR(vma)) {
696 		err = PTR_ERR(vma);
697 		vma = NULL;
698 		goto out;
699 	}
700 
701 	karg.vma_start = vma->vm_start;
702 	karg.vma_end = vma->vm_end;
703 
704 	karg.vma_flags = 0;
705 	if (vma->vm_flags & VM_READ)
706 		karg.vma_flags |= PROCMAP_QUERY_VMA_READABLE;
707 	if (vma->vm_flags & VM_WRITE)
708 		karg.vma_flags |= PROCMAP_QUERY_VMA_WRITABLE;
709 	if (vma->vm_flags & VM_EXEC)
710 		karg.vma_flags |= PROCMAP_QUERY_VMA_EXECUTABLE;
711 	if (vma->vm_flags & VM_MAYSHARE)
712 		karg.vma_flags |= PROCMAP_QUERY_VMA_SHARED;
713 
714 	karg.vma_page_size = vma_kernel_pagesize(vma);
715 
716 	if (vma->vm_file) {
717 		const struct inode *inode = file_user_inode(vma->vm_file);
718 
719 		karg.vma_offset = ((__u64)vma->vm_pgoff) << PAGE_SHIFT;
720 		karg.dev_major = MAJOR(inode->i_sb->s_dev);
721 		karg.dev_minor = MINOR(inode->i_sb->s_dev);
722 		karg.inode = inode->i_ino;
723 	} else {
724 		karg.vma_offset = 0;
725 		karg.dev_major = 0;
726 		karg.dev_minor = 0;
727 		karg.inode = 0;
728 	}
729 
730 	if (karg.build_id_size) {
731 		__u32 build_id_sz;
732 
733 		err = build_id_parse(vma, build_id_buf, &build_id_sz);
734 		if (err) {
735 			karg.build_id_size = 0;
736 		} else {
737 			if (karg.build_id_size < build_id_sz) {
738 				err = -ENAMETOOLONG;
739 				goto out;
740 			}
741 			karg.build_id_size = build_id_sz;
742 		}
743 	}
744 
745 	if (karg.vma_name_size) {
746 		size_t name_buf_sz = min_t(size_t, PATH_MAX, karg.vma_name_size);
747 		const struct path *path;
748 		const char *name_fmt;
749 		size_t name_sz = 0;
750 
751 		get_vma_name(vma, &path, &name, &name_fmt);
752 
753 		if (path || name_fmt || name) {
754 			name_buf = kmalloc(name_buf_sz, GFP_KERNEL);
755 			if (!name_buf) {
756 				err = -ENOMEM;
757 				goto out;
758 			}
759 		}
760 		if (path) {
761 			name = d_path(path, name_buf, name_buf_sz);
762 			if (IS_ERR(name)) {
763 				err = PTR_ERR(name);
764 				goto out;
765 			}
766 			name_sz = name_buf + name_buf_sz - name;
767 		} else if (name || name_fmt) {
768 			name_sz = 1 + snprintf(name_buf, name_buf_sz, name_fmt ?: "%s", name);
769 			name = name_buf;
770 		}
771 		if (name_sz > name_buf_sz) {
772 			err = -ENAMETOOLONG;
773 			goto out;
774 		}
775 		karg.vma_name_size = name_sz;
776 	}
777 
778 	/* unlock vma or mmap_lock, and put mm_struct before copying data to user */
779 	query_vma_teardown(&lock_ctx);
780 	mmput(mm);
781 
782 	if (karg.vma_name_size && copy_to_user(u64_to_user_ptr(karg.vma_name_addr),
783 					       name, karg.vma_name_size)) {
784 		kfree(name_buf);
785 		return -EFAULT;
786 	}
787 	kfree(name_buf);
788 
789 	if (karg.build_id_size && copy_to_user(u64_to_user_ptr(karg.build_id_addr),
790 					       build_id_buf, karg.build_id_size))
791 		return -EFAULT;
792 
793 	if (copy_to_user(uarg, &karg, min_t(size_t, sizeof(karg), usize)))
794 		return -EFAULT;
795 
796 	return 0;
797 
798 out:
799 	query_vma_teardown(&lock_ctx);
800 	mmput(mm);
801 	kfree(name_buf);
802 	return err;
803 }
804 
805 static long procfs_procmap_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
806 {
807 	struct seq_file *seq = file->private_data;
808 	struct proc_maps_private *priv = seq->private;
809 
810 	switch (cmd) {
811 	case PROCMAP_QUERY:
812 		/* priv->lock_ctx.mm is set during file open operation */
813 		return do_procmap_query(priv->lock_ctx.mm, (void __user *)arg);
814 	default:
815 		return -ENOIOCTLCMD;
816 	}
817 }
818 
819 const struct file_operations proc_pid_maps_operations = {
820 	.open		= pid_maps_open,
821 	.read		= seq_read,
822 	.llseek		= seq_lseek,
823 	.release	= proc_map_release,
824 	.unlocked_ioctl = procfs_procmap_ioctl,
825 	.compat_ioctl	= compat_ptr_ioctl,
826 };
827 
828 /*
829  * Proportional Set Size(PSS): my share of RSS.
830  *
831  * PSS of a process is the count of pages it has in memory, where each
832  * page is divided by the number of processes sharing it.  So if a
833  * process has 1000 pages all to itself, and 1000 shared with one other
834  * process, its PSS will be 1500.
835  *
836  * To keep (accumulated) division errors low, we adopt a 64bit
837  * fixed-point pss counter to minimize division errors. So (pss >>
838  * PSS_SHIFT) would be the real byte count.
839  *
840  * A shift of 12 before division means (assuming 4K page size):
841  * 	- 1M 3-user-pages add up to 8KB errors;
842  * 	- supports mapcount up to 2^24, or 16M;
843  * 	- supports PSS up to 2^52 bytes, or 4PB.
844  */
845 #define PSS_SHIFT 12
846 
847 #ifdef CONFIG_PROC_PAGE_MONITOR
848 struct mem_size_stats {
849 	unsigned long resident;
850 	unsigned long shared_clean;
851 	unsigned long shared_dirty;
852 	unsigned long private_clean;
853 	unsigned long private_dirty;
854 	unsigned long referenced;
855 	unsigned long anonymous;
856 	unsigned long lazyfree;
857 	unsigned long anonymous_thp;
858 	unsigned long shmem_thp;
859 	unsigned long file_thp;
860 	unsigned long swap;
861 	unsigned long shared_hugetlb;
862 	unsigned long private_hugetlb;
863 	unsigned long ksm;
864 	u64 pss;
865 	u64 pss_anon;
866 	u64 pss_file;
867 	u64 pss_shmem;
868 	u64 pss_dirty;
869 	u64 pss_locked;
870 	u64 swap_pss;
871 };
872 
873 static void smaps_page_accumulate(struct mem_size_stats *mss,
874 		struct folio *folio, unsigned long size, unsigned long pss,
875 		bool dirty, bool locked, bool private)
876 {
877 	mss->pss += pss;
878 
879 	if (folio_test_anon(folio))
880 		mss->pss_anon += pss;
881 	else if (folio_test_swapbacked(folio))
882 		mss->pss_shmem += pss;
883 	else
884 		mss->pss_file += pss;
885 
886 	if (locked)
887 		mss->pss_locked += pss;
888 
889 	if (dirty || folio_test_dirty(folio)) {
890 		mss->pss_dirty += pss;
891 		if (private)
892 			mss->private_dirty += size;
893 		else
894 			mss->shared_dirty += size;
895 	} else {
896 		if (private)
897 			mss->private_clean += size;
898 		else
899 			mss->shared_clean += size;
900 	}
901 }
902 
903 static void smaps_account(struct mem_size_stats *mss, struct page *page,
904 		bool compound, bool young, bool dirty, bool locked,
905 		bool present)
906 {
907 	struct folio *folio = page_folio(page);
908 	int i, nr = compound ? compound_nr(page) : 1;
909 	unsigned long size = nr * PAGE_SIZE;
910 	bool exclusive;
911 	int mapcount;
912 
913 	/*
914 	 * First accumulate quantities that depend only on |size| and the type
915 	 * of the compound page.
916 	 */
917 	if (folio_test_anon(folio)) {
918 		mss->anonymous += size;
919 		if (!folio_test_swapbacked(folio) && !dirty &&
920 		    !folio_test_dirty(folio))
921 			mss->lazyfree += size;
922 	}
923 
924 	if (folio_test_ksm(folio))
925 		mss->ksm += size;
926 
927 	mss->resident += size;
928 	/* Accumulate the size in pages that have been accessed. */
929 	if (young || folio_test_young(folio) || folio_test_referenced(folio))
930 		mss->referenced += size;
931 
932 	/*
933 	 * Then accumulate quantities that may depend on sharing, or that may
934 	 * differ page-by-page.
935 	 *
936 	 * refcount == 1 for present entries guarantees that the folio is mapped
937 	 * exactly once. For large folios this implies that exactly one
938 	 * PTE/PMD/... maps (a part of) this folio.
939 	 *
940 	 * Treat all non-present entries (where relying on the mapcount and
941 	 * refcount doesn't make sense) as "maybe shared, but not sure how
942 	 * often". We treat device private entries as being fake-present.
943 	 *
944 	 * Note that it would not be safe to read the mapcount especially for
945 	 * pages referenced by migration entries, even with the PTL held.
946 	 */
947 	if (folio_ref_count(folio) == 1 || !present) {
948 		smaps_page_accumulate(mss, folio, size, size << PSS_SHIFT,
949 				      dirty, locked, present);
950 		return;
951 	}
952 
953 	if (IS_ENABLED(CONFIG_NO_PAGE_MAPCOUNT)) {
954 		mapcount = folio_average_page_mapcount(folio);
955 		exclusive = !folio_maybe_mapped_shared(folio);
956 	}
957 
958 	/*
959 	 * We obtain a snapshot of the mapcount. Without holding the folio lock
960 	 * this snapshot can be slightly wrong as we cannot always read the
961 	 * mapcount atomically.
962 	 */
963 	for (i = 0; i < nr; i++, page++) {
964 		unsigned long pss = PAGE_SIZE << PSS_SHIFT;
965 
966 		if (IS_ENABLED(CONFIG_PAGE_MAPCOUNT)) {
967 			mapcount = folio_precise_page_mapcount(folio, page);
968 			exclusive = mapcount < 2;
969 		}
970 
971 		if (mapcount >= 2)
972 			pss /= mapcount;
973 		smaps_page_accumulate(mss, folio, PAGE_SIZE, pss,
974 				dirty, locked, exclusive);
975 	}
976 }
977 
978 #ifdef CONFIG_SHMEM
979 static int smaps_pte_hole(unsigned long addr, unsigned long end,
980 			  __always_unused int depth, struct mm_walk *walk)
981 {
982 	struct mem_size_stats *mss = walk->private;
983 	struct vm_area_struct *vma = walk->vma;
984 
985 	mss->swap += shmem_partial_swap_usage(walk->vma->vm_file->f_mapping,
986 					      linear_page_index(vma, addr),
987 					      linear_page_index(vma, end));
988 
989 	return 0;
990 }
991 #else
992 #define smaps_pte_hole		NULL
993 #endif /* CONFIG_SHMEM */
994 
995 static void smaps_pte_hole_lookup(unsigned long addr, struct mm_walk *walk)
996 {
997 #ifdef CONFIG_SHMEM
998 	if (walk->ops->pte_hole) {
999 		/* depth is not used */
1000 		smaps_pte_hole(addr, addr + PAGE_SIZE, 0, walk);
1001 	}
1002 #endif
1003 }
1004 
1005 static void smaps_pte_entry(pte_t *pte, unsigned long addr,
1006 		struct mm_walk *walk)
1007 {
1008 	struct mem_size_stats *mss = walk->private;
1009 	struct vm_area_struct *vma = walk->vma;
1010 	bool locked = !!(vma->vm_flags & VM_LOCKED);
1011 	struct page *page = NULL;
1012 	bool present = false, young = false, dirty = false;
1013 	pte_t ptent = ptep_get(pte);
1014 
1015 	if (pte_present(ptent)) {
1016 		page = vm_normal_page(vma, addr, ptent);
1017 		young = pte_young(ptent);
1018 		dirty = pte_dirty(ptent);
1019 		present = true;
1020 	} else if (is_swap_pte(ptent)) {
1021 		swp_entry_t swpent = pte_to_swp_entry(ptent);
1022 
1023 		if (!non_swap_entry(swpent)) {
1024 			int mapcount;
1025 
1026 			mss->swap += PAGE_SIZE;
1027 			mapcount = swp_swapcount(swpent);
1028 			if (mapcount >= 2) {
1029 				u64 pss_delta = (u64)PAGE_SIZE << PSS_SHIFT;
1030 
1031 				do_div(pss_delta, mapcount);
1032 				mss->swap_pss += pss_delta;
1033 			} else {
1034 				mss->swap_pss += (u64)PAGE_SIZE << PSS_SHIFT;
1035 			}
1036 		} else if (is_pfn_swap_entry(swpent)) {
1037 			if (is_device_private_entry(swpent))
1038 				present = true;
1039 			page = pfn_swap_entry_to_page(swpent);
1040 		}
1041 	} else {
1042 		smaps_pte_hole_lookup(addr, walk);
1043 		return;
1044 	}
1045 
1046 	if (!page)
1047 		return;
1048 
1049 	smaps_account(mss, page, false, young, dirty, locked, present);
1050 }
1051 
1052 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1053 static void smaps_pmd_entry(pmd_t *pmd, unsigned long addr,
1054 		struct mm_walk *walk)
1055 {
1056 	struct mem_size_stats *mss = walk->private;
1057 	struct vm_area_struct *vma = walk->vma;
1058 	bool locked = !!(vma->vm_flags & VM_LOCKED);
1059 	struct page *page = NULL;
1060 	bool present = false;
1061 	struct folio *folio;
1062 
1063 	if (pmd_present(*pmd)) {
1064 		page = vm_normal_page_pmd(vma, addr, *pmd);
1065 		present = true;
1066 	} else if (unlikely(thp_migration_supported() && is_swap_pmd(*pmd))) {
1067 		swp_entry_t entry = pmd_to_swp_entry(*pmd);
1068 
1069 		if (is_pfn_swap_entry(entry))
1070 			page = pfn_swap_entry_to_page(entry);
1071 	}
1072 	if (IS_ERR_OR_NULL(page))
1073 		return;
1074 	folio = page_folio(page);
1075 	if (folio_test_anon(folio))
1076 		mss->anonymous_thp += HPAGE_PMD_SIZE;
1077 	else if (folio_test_swapbacked(folio))
1078 		mss->shmem_thp += HPAGE_PMD_SIZE;
1079 	else if (folio_is_zone_device(folio))
1080 		/* pass */;
1081 	else
1082 		mss->file_thp += HPAGE_PMD_SIZE;
1083 
1084 	smaps_account(mss, page, true, pmd_young(*pmd), pmd_dirty(*pmd),
1085 		      locked, present);
1086 }
1087 #else
1088 static void smaps_pmd_entry(pmd_t *pmd, unsigned long addr,
1089 		struct mm_walk *walk)
1090 {
1091 }
1092 #endif
1093 
1094 static int smaps_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
1095 			   struct mm_walk *walk)
1096 {
1097 	struct vm_area_struct *vma = walk->vma;
1098 	pte_t *pte;
1099 	spinlock_t *ptl;
1100 
1101 	ptl = pmd_trans_huge_lock(pmd, vma);
1102 	if (ptl) {
1103 		smaps_pmd_entry(pmd, addr, walk);
1104 		spin_unlock(ptl);
1105 		goto out;
1106 	}
1107 
1108 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
1109 	if (!pte) {
1110 		walk->action = ACTION_AGAIN;
1111 		return 0;
1112 	}
1113 	for (; addr != end; pte++, addr += PAGE_SIZE)
1114 		smaps_pte_entry(pte, addr, walk);
1115 	pte_unmap_unlock(pte - 1, ptl);
1116 out:
1117 	cond_resched();
1118 	return 0;
1119 }
1120 
1121 static void show_smap_vma_flags(struct seq_file *m, struct vm_area_struct *vma)
1122 {
1123 	/*
1124 	 * Don't forget to update Documentation/ on changes.
1125 	 *
1126 	 * The length of the second argument of mnemonics[]
1127 	 * needs to be 3 instead of previously set 2
1128 	 * (i.e. from [BITS_PER_LONG][2] to [BITS_PER_LONG][3])
1129 	 * to avoid spurious
1130 	 * -Werror=unterminated-string-initialization warning
1131 	 *  with GCC 15
1132 	 */
1133 	static const char mnemonics[BITS_PER_LONG][3] = {
1134 		/*
1135 		 * In case if we meet a flag we don't know about.
1136 		 */
1137 		[0 ... (BITS_PER_LONG-1)] = "??",
1138 
1139 		[ilog2(VM_READ)]	= "rd",
1140 		[ilog2(VM_WRITE)]	= "wr",
1141 		[ilog2(VM_EXEC)]	= "ex",
1142 		[ilog2(VM_SHARED)]	= "sh",
1143 		[ilog2(VM_MAYREAD)]	= "mr",
1144 		[ilog2(VM_MAYWRITE)]	= "mw",
1145 		[ilog2(VM_MAYEXEC)]	= "me",
1146 		[ilog2(VM_MAYSHARE)]	= "ms",
1147 		[ilog2(VM_GROWSDOWN)]	= "gd",
1148 		[ilog2(VM_PFNMAP)]	= "pf",
1149 		[ilog2(VM_MAYBE_GUARD)]	= "gu",
1150 		[ilog2(VM_LOCKED)]	= "lo",
1151 		[ilog2(VM_IO)]		= "io",
1152 		[ilog2(VM_SEQ_READ)]	= "sr",
1153 		[ilog2(VM_RAND_READ)]	= "rr",
1154 		[ilog2(VM_DONTCOPY)]	= "dc",
1155 		[ilog2(VM_DONTEXPAND)]	= "de",
1156 		[ilog2(VM_LOCKONFAULT)]	= "lf",
1157 		[ilog2(VM_ACCOUNT)]	= "ac",
1158 		[ilog2(VM_NORESERVE)]	= "nr",
1159 		[ilog2(VM_HUGETLB)]	= "ht",
1160 		[ilog2(VM_SYNC)]	= "sf",
1161 		[ilog2(VM_ARCH_1)]	= "ar",
1162 		[ilog2(VM_WIPEONFORK)]	= "wf",
1163 		[ilog2(VM_DONTDUMP)]	= "dd",
1164 #ifdef CONFIG_ARM64_BTI
1165 		[ilog2(VM_ARM64_BTI)]	= "bt",
1166 #endif
1167 #ifdef CONFIG_MEM_SOFT_DIRTY
1168 		[ilog2(VM_SOFTDIRTY)]	= "sd",
1169 #endif
1170 		[ilog2(VM_MIXEDMAP)]	= "mm",
1171 		[ilog2(VM_HUGEPAGE)]	= "hg",
1172 		[ilog2(VM_NOHUGEPAGE)]	= "nh",
1173 		[ilog2(VM_MERGEABLE)]	= "mg",
1174 		[ilog2(VM_UFFD_MISSING)]= "um",
1175 		[ilog2(VM_UFFD_WP)]	= "uw",
1176 #ifdef CONFIG_ARM64_MTE
1177 		[ilog2(VM_MTE)]		= "mt",
1178 		[ilog2(VM_MTE_ALLOWED)]	= "",
1179 #endif
1180 #ifdef CONFIG_ARCH_HAS_PKEYS
1181 		/* These come out via ProtectionKey: */
1182 		[ilog2(VM_PKEY_BIT0)]	= "",
1183 		[ilog2(VM_PKEY_BIT1)]	= "",
1184 		[ilog2(VM_PKEY_BIT2)]	= "",
1185 #if VM_PKEY_BIT3
1186 		[ilog2(VM_PKEY_BIT3)]	= "",
1187 #endif
1188 #if VM_PKEY_BIT4
1189 		[ilog2(VM_PKEY_BIT4)]	= "",
1190 #endif
1191 #endif /* CONFIG_ARCH_HAS_PKEYS */
1192 #ifdef CONFIG_HAVE_ARCH_USERFAULTFD_MINOR
1193 		[ilog2(VM_UFFD_MINOR)]	= "ui",
1194 #endif /* CONFIG_HAVE_ARCH_USERFAULTFD_MINOR */
1195 #ifdef CONFIG_ARCH_HAS_USER_SHADOW_STACK
1196 		[ilog2(VM_SHADOW_STACK)] = "ss",
1197 #endif
1198 #if defined(CONFIG_64BIT) || defined(CONFIG_PPC32)
1199 		[ilog2(VM_DROPPABLE)] = "dp",
1200 #endif
1201 #ifdef CONFIG_64BIT
1202 		[ilog2(VM_SEALED)] = "sl",
1203 #endif
1204 	};
1205 	size_t i;
1206 
1207 	seq_puts(m, "VmFlags: ");
1208 	for (i = 0; i < BITS_PER_LONG; i++) {
1209 		if (!mnemonics[i][0])
1210 			continue;
1211 		if (vma->vm_flags & (1UL << i))
1212 			seq_printf(m, "%s ", mnemonics[i]);
1213 	}
1214 	seq_putc(m, '\n');
1215 }
1216 
1217 #ifdef CONFIG_HUGETLB_PAGE
1218 static int smaps_hugetlb_range(pte_t *pte, unsigned long hmask,
1219 				 unsigned long addr, unsigned long end,
1220 				 struct mm_walk *walk)
1221 {
1222 	struct mem_size_stats *mss = walk->private;
1223 	struct vm_area_struct *vma = walk->vma;
1224 	struct folio *folio = NULL;
1225 	bool present = false;
1226 	spinlock_t *ptl;
1227 	pte_t ptent;
1228 
1229 	ptl = huge_pte_lock(hstate_vma(vma), walk->mm, pte);
1230 	ptent = huge_ptep_get(walk->mm, addr, pte);
1231 	if (pte_present(ptent)) {
1232 		folio = page_folio(pte_page(ptent));
1233 		present = true;
1234 	} else if (is_swap_pte(ptent)) {
1235 		swp_entry_t swpent = pte_to_swp_entry(ptent);
1236 
1237 		if (is_pfn_swap_entry(swpent))
1238 			folio = pfn_swap_entry_folio(swpent);
1239 	}
1240 
1241 	if (folio) {
1242 		/* We treat non-present entries as "maybe shared". */
1243 		if (!present || folio_maybe_mapped_shared(folio) ||
1244 		    hugetlb_pmd_shared(pte))
1245 			mss->shared_hugetlb += huge_page_size(hstate_vma(vma));
1246 		else
1247 			mss->private_hugetlb += huge_page_size(hstate_vma(vma));
1248 	}
1249 	spin_unlock(ptl);
1250 	return 0;
1251 }
1252 #else
1253 #define smaps_hugetlb_range	NULL
1254 #endif /* HUGETLB_PAGE */
1255 
1256 static const struct mm_walk_ops smaps_walk_ops = {
1257 	.pmd_entry		= smaps_pte_range,
1258 	.hugetlb_entry		= smaps_hugetlb_range,
1259 	.walk_lock		= PGWALK_RDLOCK,
1260 };
1261 
1262 static const struct mm_walk_ops smaps_shmem_walk_ops = {
1263 	.pmd_entry		= smaps_pte_range,
1264 	.hugetlb_entry		= smaps_hugetlb_range,
1265 	.pte_hole		= smaps_pte_hole,
1266 	.walk_lock		= PGWALK_RDLOCK,
1267 };
1268 
1269 /*
1270  * Gather mem stats from @vma with the indicated beginning
1271  * address @start, and keep them in @mss.
1272  *
1273  * Use vm_start of @vma as the beginning address if @start is 0.
1274  */
1275 static void smap_gather_stats(struct vm_area_struct *vma,
1276 		struct mem_size_stats *mss, unsigned long start)
1277 {
1278 	const struct mm_walk_ops *ops = &smaps_walk_ops;
1279 
1280 	/* Invalid start */
1281 	if (start >= vma->vm_end)
1282 		return;
1283 
1284 	if (vma->vm_file && shmem_mapping(vma->vm_file->f_mapping)) {
1285 		/*
1286 		 * For shared or readonly shmem mappings we know that all
1287 		 * swapped out pages belong to the shmem object, and we can
1288 		 * obtain the swap value much more efficiently. For private
1289 		 * writable mappings, we might have COW pages that are
1290 		 * not affected by the parent swapped out pages of the shmem
1291 		 * object, so we have to distinguish them during the page walk.
1292 		 * Unless we know that the shmem object (or the part mapped by
1293 		 * our VMA) has no swapped out pages at all.
1294 		 */
1295 		unsigned long shmem_swapped = shmem_swap_usage(vma);
1296 
1297 		if (!start && (!shmem_swapped || (vma->vm_flags & VM_SHARED) ||
1298 					!(vma->vm_flags & VM_WRITE))) {
1299 			mss->swap += shmem_swapped;
1300 		} else {
1301 			ops = &smaps_shmem_walk_ops;
1302 		}
1303 	}
1304 
1305 	/* mmap_lock is held in m_start */
1306 	if (!start)
1307 		walk_page_vma(vma, ops, mss);
1308 	else
1309 		walk_page_range(vma->vm_mm, start, vma->vm_end, ops, mss);
1310 }
1311 
1312 #define SEQ_PUT_DEC(str, val) \
1313 		seq_put_decimal_ull_width(m, str, (val) >> 10, 8)
1314 
1315 /* Show the contents common for smaps and smaps_rollup */
1316 static void __show_smap(struct seq_file *m, const struct mem_size_stats *mss,
1317 	bool rollup_mode)
1318 {
1319 	SEQ_PUT_DEC("Rss:            ", mss->resident);
1320 	SEQ_PUT_DEC(" kB\nPss:            ", mss->pss >> PSS_SHIFT);
1321 	SEQ_PUT_DEC(" kB\nPss_Dirty:      ", mss->pss_dirty >> PSS_SHIFT);
1322 	if (rollup_mode) {
1323 		/*
1324 		 * These are meaningful only for smaps_rollup, otherwise two of
1325 		 * them are zero, and the other one is the same as Pss.
1326 		 */
1327 		SEQ_PUT_DEC(" kB\nPss_Anon:       ",
1328 			mss->pss_anon >> PSS_SHIFT);
1329 		SEQ_PUT_DEC(" kB\nPss_File:       ",
1330 			mss->pss_file >> PSS_SHIFT);
1331 		SEQ_PUT_DEC(" kB\nPss_Shmem:      ",
1332 			mss->pss_shmem >> PSS_SHIFT);
1333 	}
1334 	SEQ_PUT_DEC(" kB\nShared_Clean:   ", mss->shared_clean);
1335 	SEQ_PUT_DEC(" kB\nShared_Dirty:   ", mss->shared_dirty);
1336 	SEQ_PUT_DEC(" kB\nPrivate_Clean:  ", mss->private_clean);
1337 	SEQ_PUT_DEC(" kB\nPrivate_Dirty:  ", mss->private_dirty);
1338 	SEQ_PUT_DEC(" kB\nReferenced:     ", mss->referenced);
1339 	SEQ_PUT_DEC(" kB\nAnonymous:      ", mss->anonymous);
1340 	SEQ_PUT_DEC(" kB\nKSM:            ", mss->ksm);
1341 	SEQ_PUT_DEC(" kB\nLazyFree:       ", mss->lazyfree);
1342 	SEQ_PUT_DEC(" kB\nAnonHugePages:  ", mss->anonymous_thp);
1343 	SEQ_PUT_DEC(" kB\nShmemPmdMapped: ", mss->shmem_thp);
1344 	SEQ_PUT_DEC(" kB\nFilePmdMapped:  ", mss->file_thp);
1345 	SEQ_PUT_DEC(" kB\nShared_Hugetlb: ", mss->shared_hugetlb);
1346 	seq_put_decimal_ull_width(m, " kB\nPrivate_Hugetlb: ",
1347 				  mss->private_hugetlb >> 10, 7);
1348 	SEQ_PUT_DEC(" kB\nSwap:           ", mss->swap);
1349 	SEQ_PUT_DEC(" kB\nSwapPss:        ",
1350 					mss->swap_pss >> PSS_SHIFT);
1351 	SEQ_PUT_DEC(" kB\nLocked:         ",
1352 					mss->pss_locked >> PSS_SHIFT);
1353 	seq_puts(m, " kB\n");
1354 }
1355 
1356 static int show_smap(struct seq_file *m, void *v)
1357 {
1358 	struct vm_area_struct *vma = v;
1359 	struct mem_size_stats mss = {};
1360 
1361 	smap_gather_stats(vma, &mss, 0);
1362 
1363 	show_map_vma(m, vma);
1364 
1365 	SEQ_PUT_DEC("Size:           ", vma->vm_end - vma->vm_start);
1366 	SEQ_PUT_DEC(" kB\nKernelPageSize: ", vma_kernel_pagesize(vma));
1367 	SEQ_PUT_DEC(" kB\nMMUPageSize:    ", vma_mmu_pagesize(vma));
1368 	seq_puts(m, " kB\n");
1369 
1370 	__show_smap(m, &mss, false);
1371 
1372 	seq_printf(m, "THPeligible:    %8u\n",
1373 		   !!thp_vma_allowable_orders(vma, vma->vm_flags, TVA_SMAPS,
1374 					      THP_ORDERS_ALL));
1375 
1376 	if (arch_pkeys_enabled())
1377 		seq_printf(m, "ProtectionKey:  %8u\n", vma_pkey(vma));
1378 	show_smap_vma_flags(m, vma);
1379 
1380 	return 0;
1381 }
1382 
1383 static int show_smaps_rollup(struct seq_file *m, void *v)
1384 {
1385 	struct proc_maps_private *priv = m->private;
1386 	struct mem_size_stats mss = {};
1387 	struct mm_struct *mm = priv->lock_ctx.mm;
1388 	struct vm_area_struct *vma;
1389 	unsigned long vma_start = 0, last_vma_end = 0;
1390 	int ret = 0;
1391 	VMA_ITERATOR(vmi, mm, 0);
1392 
1393 	priv->task = get_proc_task(priv->inode);
1394 	if (!priv->task)
1395 		return -ESRCH;
1396 
1397 	if (!mm || !mmget_not_zero(mm)) {
1398 		ret = -ESRCH;
1399 		goto out_put_task;
1400 	}
1401 
1402 	ret = mmap_read_lock_killable(mm);
1403 	if (ret)
1404 		goto out_put_mm;
1405 
1406 	hold_task_mempolicy(priv);
1407 	vma = vma_next(&vmi);
1408 
1409 	if (unlikely(!vma))
1410 		goto empty_set;
1411 
1412 	vma_start = vma->vm_start;
1413 	do {
1414 		smap_gather_stats(vma, &mss, 0);
1415 		last_vma_end = vma->vm_end;
1416 
1417 		/*
1418 		 * Release mmap_lock temporarily if someone wants to
1419 		 * access it for write request.
1420 		 */
1421 		if (mmap_lock_is_contended(mm)) {
1422 			vma_iter_invalidate(&vmi);
1423 			mmap_read_unlock(mm);
1424 			ret = mmap_read_lock_killable(mm);
1425 			if (ret) {
1426 				release_task_mempolicy(priv);
1427 				goto out_put_mm;
1428 			}
1429 
1430 			/*
1431 			 * After dropping the lock, there are four cases to
1432 			 * consider. See the following example for explanation.
1433 			 *
1434 			 *   +------+------+-----------+
1435 			 *   | VMA1 | VMA2 | VMA3      |
1436 			 *   +------+------+-----------+
1437 			 *   |      |      |           |
1438 			 *  4k     8k     16k         400k
1439 			 *
1440 			 * Suppose we drop the lock after reading VMA2 due to
1441 			 * contention, then we get:
1442 			 *
1443 			 *	last_vma_end = 16k
1444 			 *
1445 			 * 1) VMA2 is freed, but VMA3 exists:
1446 			 *
1447 			 *    vma_next(vmi) will return VMA3.
1448 			 *    In this case, just continue from VMA3.
1449 			 *
1450 			 * 2) VMA2 still exists:
1451 			 *
1452 			 *    vma_next(vmi) will return VMA3.
1453 			 *    In this case, just continue from VMA3.
1454 			 *
1455 			 * 3) No more VMAs can be found:
1456 			 *
1457 			 *    vma_next(vmi) will return NULL.
1458 			 *    No more things to do, just break.
1459 			 *
1460 			 * 4) (last_vma_end - 1) is the middle of a vma (VMA'):
1461 			 *
1462 			 *    vma_next(vmi) will return VMA' whose range
1463 			 *    contains last_vma_end.
1464 			 *    Iterate VMA' from last_vma_end.
1465 			 */
1466 			vma = vma_next(&vmi);
1467 			/* Case 3 above */
1468 			if (!vma)
1469 				break;
1470 
1471 			/* Case 1 and 2 above */
1472 			if (vma->vm_start >= last_vma_end) {
1473 				smap_gather_stats(vma, &mss, 0);
1474 				last_vma_end = vma->vm_end;
1475 				continue;
1476 			}
1477 
1478 			/* Case 4 above */
1479 			if (vma->vm_end > last_vma_end) {
1480 				smap_gather_stats(vma, &mss, last_vma_end);
1481 				last_vma_end = vma->vm_end;
1482 			}
1483 		}
1484 	} for_each_vma(vmi, vma);
1485 
1486 empty_set:
1487 	show_vma_header_prefix(m, vma_start, last_vma_end, 0, 0, 0, 0);
1488 	seq_pad(m, ' ');
1489 	seq_puts(m, "[rollup]\n");
1490 
1491 	__show_smap(m, &mss, true);
1492 
1493 	release_task_mempolicy(priv);
1494 	mmap_read_unlock(mm);
1495 
1496 out_put_mm:
1497 	mmput(mm);
1498 out_put_task:
1499 	put_task_struct(priv->task);
1500 	priv->task = NULL;
1501 
1502 	return ret;
1503 }
1504 #undef SEQ_PUT_DEC
1505 
1506 static const struct seq_operations proc_pid_smaps_op = {
1507 	.start	= m_start,
1508 	.next	= m_next,
1509 	.stop	= m_stop,
1510 	.show	= show_smap
1511 };
1512 
1513 static int pid_smaps_open(struct inode *inode, struct file *file)
1514 {
1515 	return do_maps_open(inode, file, &proc_pid_smaps_op);
1516 }
1517 
1518 static int smaps_rollup_open(struct inode *inode, struct file *file)
1519 {
1520 	int ret;
1521 	struct proc_maps_private *priv;
1522 
1523 	priv = kzalloc(sizeof(*priv), GFP_KERNEL_ACCOUNT);
1524 	if (!priv)
1525 		return -ENOMEM;
1526 
1527 	ret = single_open(file, show_smaps_rollup, priv);
1528 	if (ret)
1529 		goto out_free;
1530 
1531 	priv->inode = inode;
1532 	priv->lock_ctx.mm = proc_mem_open(inode, PTRACE_MODE_READ);
1533 	if (IS_ERR_OR_NULL(priv->lock_ctx.mm)) {
1534 		ret = priv->lock_ctx.mm ? PTR_ERR(priv->lock_ctx.mm) : -ESRCH;
1535 
1536 		single_release(inode, file);
1537 		goto out_free;
1538 	}
1539 
1540 	return 0;
1541 
1542 out_free:
1543 	kfree(priv);
1544 	return ret;
1545 }
1546 
1547 static int smaps_rollup_release(struct inode *inode, struct file *file)
1548 {
1549 	struct seq_file *seq = file->private_data;
1550 	struct proc_maps_private *priv = seq->private;
1551 
1552 	if (priv->lock_ctx.mm)
1553 		mmdrop(priv->lock_ctx.mm);
1554 
1555 	kfree(priv);
1556 	return single_release(inode, file);
1557 }
1558 
1559 const struct file_operations proc_pid_smaps_operations = {
1560 	.open		= pid_smaps_open,
1561 	.read		= seq_read,
1562 	.llseek		= seq_lseek,
1563 	.release	= proc_map_release,
1564 };
1565 
1566 const struct file_operations proc_pid_smaps_rollup_operations = {
1567 	.open		= smaps_rollup_open,
1568 	.read		= seq_read,
1569 	.llseek		= seq_lseek,
1570 	.release	= smaps_rollup_release,
1571 };
1572 
1573 enum clear_refs_types {
1574 	CLEAR_REFS_ALL = 1,
1575 	CLEAR_REFS_ANON,
1576 	CLEAR_REFS_MAPPED,
1577 	CLEAR_REFS_SOFT_DIRTY,
1578 	CLEAR_REFS_MM_HIWATER_RSS,
1579 	CLEAR_REFS_LAST,
1580 };
1581 
1582 struct clear_refs_private {
1583 	enum clear_refs_types type;
1584 };
1585 
1586 #ifdef CONFIG_MEM_SOFT_DIRTY
1587 
1588 static inline bool pte_is_pinned(struct vm_area_struct *vma, unsigned long addr, pte_t pte)
1589 {
1590 	struct folio *folio;
1591 
1592 	if (!pte_write(pte))
1593 		return false;
1594 	if (!is_cow_mapping(vma->vm_flags))
1595 		return false;
1596 	if (likely(!mm_flags_test(MMF_HAS_PINNED, vma->vm_mm)))
1597 		return false;
1598 	folio = vm_normal_folio(vma, addr, pte);
1599 	if (!folio)
1600 		return false;
1601 	return folio_maybe_dma_pinned(folio);
1602 }
1603 
1604 static inline void clear_soft_dirty(struct vm_area_struct *vma,
1605 		unsigned long addr, pte_t *pte)
1606 {
1607 	/*
1608 	 * The soft-dirty tracker uses #PF-s to catch writes
1609 	 * to pages, so write-protect the pte as well. See the
1610 	 * Documentation/admin-guide/mm/soft-dirty.rst for full description
1611 	 * of how soft-dirty works.
1612 	 */
1613 	pte_t ptent = ptep_get(pte);
1614 
1615 	if (pte_present(ptent)) {
1616 		pte_t old_pte;
1617 
1618 		if (pte_is_pinned(vma, addr, ptent))
1619 			return;
1620 		old_pte = ptep_modify_prot_start(vma, addr, pte);
1621 		ptent = pte_wrprotect(old_pte);
1622 		ptent = pte_clear_soft_dirty(ptent);
1623 		ptep_modify_prot_commit(vma, addr, pte, old_pte, ptent);
1624 	} else if (is_swap_pte(ptent)) {
1625 		ptent = pte_swp_clear_soft_dirty(ptent);
1626 		set_pte_at(vma->vm_mm, addr, pte, ptent);
1627 	}
1628 }
1629 #else
1630 static inline void clear_soft_dirty(struct vm_area_struct *vma,
1631 		unsigned long addr, pte_t *pte)
1632 {
1633 }
1634 #endif
1635 
1636 #if defined(CONFIG_MEM_SOFT_DIRTY) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
1637 static inline void clear_soft_dirty_pmd(struct vm_area_struct *vma,
1638 		unsigned long addr, pmd_t *pmdp)
1639 {
1640 	pmd_t old, pmd = *pmdp;
1641 
1642 	if (pmd_present(pmd)) {
1643 		/* See comment in change_huge_pmd() */
1644 		old = pmdp_invalidate(vma, addr, pmdp);
1645 		if (pmd_dirty(old))
1646 			pmd = pmd_mkdirty(pmd);
1647 		if (pmd_young(old))
1648 			pmd = pmd_mkyoung(pmd);
1649 
1650 		pmd = pmd_wrprotect(pmd);
1651 		pmd = pmd_clear_soft_dirty(pmd);
1652 
1653 		set_pmd_at(vma->vm_mm, addr, pmdp, pmd);
1654 	} else if (is_migration_entry(pmd_to_swp_entry(pmd))) {
1655 		pmd = pmd_swp_clear_soft_dirty(pmd);
1656 		set_pmd_at(vma->vm_mm, addr, pmdp, pmd);
1657 	}
1658 }
1659 #else
1660 static inline void clear_soft_dirty_pmd(struct vm_area_struct *vma,
1661 		unsigned long addr, pmd_t *pmdp)
1662 {
1663 }
1664 #endif
1665 
1666 static int clear_refs_pte_range(pmd_t *pmd, unsigned long addr,
1667 				unsigned long end, struct mm_walk *walk)
1668 {
1669 	struct clear_refs_private *cp = walk->private;
1670 	struct vm_area_struct *vma = walk->vma;
1671 	pte_t *pte, ptent;
1672 	spinlock_t *ptl;
1673 	struct folio *folio;
1674 
1675 	ptl = pmd_trans_huge_lock(pmd, vma);
1676 	if (ptl) {
1677 		if (cp->type == CLEAR_REFS_SOFT_DIRTY) {
1678 			clear_soft_dirty_pmd(vma, addr, pmd);
1679 			goto out;
1680 		}
1681 
1682 		if (!pmd_present(*pmd))
1683 			goto out;
1684 
1685 		folio = pmd_folio(*pmd);
1686 
1687 		/* Clear accessed and referenced bits. */
1688 		pmdp_test_and_clear_young(vma, addr, pmd);
1689 		folio_test_clear_young(folio);
1690 		folio_clear_referenced(folio);
1691 out:
1692 		spin_unlock(ptl);
1693 		return 0;
1694 	}
1695 
1696 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
1697 	if (!pte) {
1698 		walk->action = ACTION_AGAIN;
1699 		return 0;
1700 	}
1701 	for (; addr != end; pte++, addr += PAGE_SIZE) {
1702 		ptent = ptep_get(pte);
1703 
1704 		if (cp->type == CLEAR_REFS_SOFT_DIRTY) {
1705 			clear_soft_dirty(vma, addr, pte);
1706 			continue;
1707 		}
1708 
1709 		if (!pte_present(ptent))
1710 			continue;
1711 
1712 		folio = vm_normal_folio(vma, addr, ptent);
1713 		if (!folio)
1714 			continue;
1715 
1716 		/* Clear accessed and referenced bits. */
1717 		ptep_test_and_clear_young(vma, addr, pte);
1718 		folio_test_clear_young(folio);
1719 		folio_clear_referenced(folio);
1720 	}
1721 	pte_unmap_unlock(pte - 1, ptl);
1722 	cond_resched();
1723 	return 0;
1724 }
1725 
1726 static int clear_refs_test_walk(unsigned long start, unsigned long end,
1727 				struct mm_walk *walk)
1728 {
1729 	struct clear_refs_private *cp = walk->private;
1730 	struct vm_area_struct *vma = walk->vma;
1731 
1732 	if (vma->vm_flags & VM_PFNMAP)
1733 		return 1;
1734 
1735 	/*
1736 	 * Writing 1 to /proc/pid/clear_refs affects all pages.
1737 	 * Writing 2 to /proc/pid/clear_refs only affects anonymous pages.
1738 	 * Writing 3 to /proc/pid/clear_refs only affects file mapped pages.
1739 	 * Writing 4 to /proc/pid/clear_refs affects all pages.
1740 	 */
1741 	if (cp->type == CLEAR_REFS_ANON && vma->vm_file)
1742 		return 1;
1743 	if (cp->type == CLEAR_REFS_MAPPED && !vma->vm_file)
1744 		return 1;
1745 	return 0;
1746 }
1747 
1748 static const struct mm_walk_ops clear_refs_walk_ops = {
1749 	.pmd_entry		= clear_refs_pte_range,
1750 	.test_walk		= clear_refs_test_walk,
1751 	.walk_lock		= PGWALK_WRLOCK,
1752 };
1753 
1754 static ssize_t clear_refs_write(struct file *file, const char __user *buf,
1755 				size_t count, loff_t *ppos)
1756 {
1757 	struct task_struct *task;
1758 	char buffer[PROC_NUMBUF] = {};
1759 	struct mm_struct *mm;
1760 	struct vm_area_struct *vma;
1761 	enum clear_refs_types type;
1762 	int itype;
1763 	int rv;
1764 
1765 	if (count > sizeof(buffer) - 1)
1766 		count = sizeof(buffer) - 1;
1767 	if (copy_from_user(buffer, buf, count))
1768 		return -EFAULT;
1769 	rv = kstrtoint(strstrip(buffer), 10, &itype);
1770 	if (rv < 0)
1771 		return rv;
1772 	type = (enum clear_refs_types)itype;
1773 	if (type < CLEAR_REFS_ALL || type >= CLEAR_REFS_LAST)
1774 		return -EINVAL;
1775 
1776 	task = get_proc_task(file_inode(file));
1777 	if (!task)
1778 		return -ESRCH;
1779 	mm = get_task_mm(task);
1780 	if (mm) {
1781 		VMA_ITERATOR(vmi, mm, 0);
1782 		struct mmu_notifier_range range;
1783 		struct clear_refs_private cp = {
1784 			.type = type,
1785 		};
1786 
1787 		if (mmap_write_lock_killable(mm)) {
1788 			count = -EINTR;
1789 			goto out_mm;
1790 		}
1791 		if (type == CLEAR_REFS_MM_HIWATER_RSS) {
1792 			/*
1793 			 * Writing 5 to /proc/pid/clear_refs resets the peak
1794 			 * resident set size to this mm's current rss value.
1795 			 */
1796 			reset_mm_hiwater_rss(mm);
1797 			goto out_unlock;
1798 		}
1799 
1800 		if (type == CLEAR_REFS_SOFT_DIRTY) {
1801 			for_each_vma(vmi, vma) {
1802 				if (!(vma->vm_flags & VM_SOFTDIRTY))
1803 					continue;
1804 				vm_flags_clear(vma, VM_SOFTDIRTY);
1805 				vma_set_page_prot(vma);
1806 			}
1807 
1808 			inc_tlb_flush_pending(mm);
1809 			mmu_notifier_range_init(&range, MMU_NOTIFY_SOFT_DIRTY,
1810 						0, mm, 0, -1UL);
1811 			mmu_notifier_invalidate_range_start(&range);
1812 		}
1813 		walk_page_range(mm, 0, -1, &clear_refs_walk_ops, &cp);
1814 		if (type == CLEAR_REFS_SOFT_DIRTY) {
1815 			mmu_notifier_invalidate_range_end(&range);
1816 			flush_tlb_mm(mm);
1817 			dec_tlb_flush_pending(mm);
1818 		}
1819 out_unlock:
1820 		mmap_write_unlock(mm);
1821 out_mm:
1822 		mmput(mm);
1823 	}
1824 	put_task_struct(task);
1825 
1826 	return count;
1827 }
1828 
1829 const struct file_operations proc_clear_refs_operations = {
1830 	.write		= clear_refs_write,
1831 	.llseek		= noop_llseek,
1832 };
1833 
1834 typedef struct {
1835 	u64 pme;
1836 } pagemap_entry_t;
1837 
1838 struct pagemapread {
1839 	int pos, len;		/* units: PM_ENTRY_BYTES, not bytes */
1840 	pagemap_entry_t *buffer;
1841 	bool show_pfn;
1842 };
1843 
1844 #define PAGEMAP_WALK_SIZE	(PMD_SIZE)
1845 #define PAGEMAP_WALK_MASK	(PMD_MASK)
1846 
1847 #define PM_ENTRY_BYTES		sizeof(pagemap_entry_t)
1848 #define PM_PFRAME_BITS		55
1849 #define PM_PFRAME_MASK		GENMASK_ULL(PM_PFRAME_BITS - 1, 0)
1850 #define PM_SOFT_DIRTY		BIT_ULL(55)
1851 #define PM_MMAP_EXCLUSIVE	BIT_ULL(56)
1852 #define PM_UFFD_WP		BIT_ULL(57)
1853 #define PM_GUARD_REGION		BIT_ULL(58)
1854 #define PM_FILE			BIT_ULL(61)
1855 #define PM_SWAP			BIT_ULL(62)
1856 #define PM_PRESENT		BIT_ULL(63)
1857 
1858 #define PM_END_OF_BUFFER    1
1859 
1860 static inline pagemap_entry_t make_pme(u64 frame, u64 flags)
1861 {
1862 	return (pagemap_entry_t) { .pme = (frame & PM_PFRAME_MASK) | flags };
1863 }
1864 
1865 static int add_to_pagemap(pagemap_entry_t *pme, struct pagemapread *pm)
1866 {
1867 	pm->buffer[pm->pos++] = *pme;
1868 	if (pm->pos >= pm->len)
1869 		return PM_END_OF_BUFFER;
1870 	return 0;
1871 }
1872 
1873 static bool __folio_page_mapped_exclusively(struct folio *folio, struct page *page)
1874 {
1875 	if (IS_ENABLED(CONFIG_PAGE_MAPCOUNT))
1876 		return folio_precise_page_mapcount(folio, page) == 1;
1877 	return !folio_maybe_mapped_shared(folio);
1878 }
1879 
1880 static int pagemap_pte_hole(unsigned long start, unsigned long end,
1881 			    __always_unused int depth, struct mm_walk *walk)
1882 {
1883 	struct pagemapread *pm = walk->private;
1884 	unsigned long addr = start;
1885 	int err = 0;
1886 
1887 	while (addr < end) {
1888 		struct vm_area_struct *vma = find_vma(walk->mm, addr);
1889 		pagemap_entry_t pme = make_pme(0, 0);
1890 		/* End of address space hole, which we mark as non-present. */
1891 		unsigned long hole_end;
1892 
1893 		if (vma)
1894 			hole_end = min(end, vma->vm_start);
1895 		else
1896 			hole_end = end;
1897 
1898 		for (; addr < hole_end; addr += PAGE_SIZE) {
1899 			err = add_to_pagemap(&pme, pm);
1900 			if (err)
1901 				goto out;
1902 		}
1903 
1904 		if (!vma)
1905 			break;
1906 
1907 		/* Addresses in the VMA. */
1908 		if (vma->vm_flags & VM_SOFTDIRTY)
1909 			pme = make_pme(0, PM_SOFT_DIRTY);
1910 		for (; addr < min(end, vma->vm_end); addr += PAGE_SIZE) {
1911 			err = add_to_pagemap(&pme, pm);
1912 			if (err)
1913 				goto out;
1914 		}
1915 	}
1916 out:
1917 	return err;
1918 }
1919 
1920 static pagemap_entry_t pte_to_pagemap_entry(struct pagemapread *pm,
1921 		struct vm_area_struct *vma, unsigned long addr, pte_t pte)
1922 {
1923 	u64 frame = 0, flags = 0;
1924 	struct page *page = NULL;
1925 	struct folio *folio;
1926 
1927 	if (pte_present(pte)) {
1928 		if (pm->show_pfn)
1929 			frame = pte_pfn(pte);
1930 		flags |= PM_PRESENT;
1931 		page = vm_normal_page(vma, addr, pte);
1932 		if (pte_soft_dirty(pte))
1933 			flags |= PM_SOFT_DIRTY;
1934 		if (pte_uffd_wp(pte))
1935 			flags |= PM_UFFD_WP;
1936 	} else if (is_swap_pte(pte)) {
1937 		swp_entry_t entry;
1938 		if (pte_swp_soft_dirty(pte))
1939 			flags |= PM_SOFT_DIRTY;
1940 		if (pte_swp_uffd_wp(pte))
1941 			flags |= PM_UFFD_WP;
1942 		entry = pte_to_swp_entry(pte);
1943 		if (pm->show_pfn) {
1944 			pgoff_t offset;
1945 			/*
1946 			 * For PFN swap offsets, keeping the offset field
1947 			 * to be PFN only to be compatible with old smaps.
1948 			 */
1949 			if (is_pfn_swap_entry(entry))
1950 				offset = swp_offset_pfn(entry);
1951 			else
1952 				offset = swp_offset(entry);
1953 			frame = swp_type(entry) |
1954 			    (offset << MAX_SWAPFILES_SHIFT);
1955 		}
1956 		flags |= PM_SWAP;
1957 		if (is_pfn_swap_entry(entry))
1958 			page = pfn_swap_entry_to_page(entry);
1959 		if (pte_marker_entry_uffd_wp(entry))
1960 			flags |= PM_UFFD_WP;
1961 		if (is_guard_swp_entry(entry))
1962 			flags |=  PM_GUARD_REGION;
1963 	}
1964 
1965 	if (page) {
1966 		folio = page_folio(page);
1967 		if (!folio_test_anon(folio))
1968 			flags |= PM_FILE;
1969 		if ((flags & PM_PRESENT) &&
1970 		    __folio_page_mapped_exclusively(folio, page))
1971 			flags |= PM_MMAP_EXCLUSIVE;
1972 	}
1973 	if (vma->vm_flags & VM_SOFTDIRTY)
1974 		flags |= PM_SOFT_DIRTY;
1975 
1976 	return make_pme(frame, flags);
1977 }
1978 
1979 static int pagemap_pmd_range(pmd_t *pmdp, unsigned long addr, unsigned long end,
1980 			     struct mm_walk *walk)
1981 {
1982 	struct vm_area_struct *vma = walk->vma;
1983 	struct pagemapread *pm = walk->private;
1984 	spinlock_t *ptl;
1985 	pte_t *pte, *orig_pte;
1986 	int err = 0;
1987 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1988 
1989 	ptl = pmd_trans_huge_lock(pmdp, vma);
1990 	if (ptl) {
1991 		unsigned int idx = (addr & ~PMD_MASK) >> PAGE_SHIFT;
1992 		u64 flags = 0, frame = 0;
1993 		pmd_t pmd = *pmdp;
1994 		struct page *page = NULL;
1995 		struct folio *folio = NULL;
1996 
1997 		if (vma->vm_flags & VM_SOFTDIRTY)
1998 			flags |= PM_SOFT_DIRTY;
1999 
2000 		if (pmd_present(pmd)) {
2001 			page = pmd_page(pmd);
2002 
2003 			flags |= PM_PRESENT;
2004 			if (pmd_soft_dirty(pmd))
2005 				flags |= PM_SOFT_DIRTY;
2006 			if (pmd_uffd_wp(pmd))
2007 				flags |= PM_UFFD_WP;
2008 			if (pm->show_pfn)
2009 				frame = pmd_pfn(pmd) + idx;
2010 		}
2011 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
2012 		else if (is_swap_pmd(pmd)) {
2013 			swp_entry_t entry = pmd_to_swp_entry(pmd);
2014 			unsigned long offset;
2015 
2016 			if (pm->show_pfn) {
2017 				if (is_pfn_swap_entry(entry))
2018 					offset = swp_offset_pfn(entry) + idx;
2019 				else
2020 					offset = swp_offset(entry) + idx;
2021 				frame = swp_type(entry) |
2022 					(offset << MAX_SWAPFILES_SHIFT);
2023 			}
2024 			flags |= PM_SWAP;
2025 			if (pmd_swp_soft_dirty(pmd))
2026 				flags |= PM_SOFT_DIRTY;
2027 			if (pmd_swp_uffd_wp(pmd))
2028 				flags |= PM_UFFD_WP;
2029 			VM_BUG_ON(!is_pmd_migration_entry(pmd));
2030 			page = pfn_swap_entry_to_page(entry);
2031 		}
2032 #endif
2033 
2034 		if (page) {
2035 			folio = page_folio(page);
2036 			if (!folio_test_anon(folio))
2037 				flags |= PM_FILE;
2038 		}
2039 
2040 		for (; addr != end; addr += PAGE_SIZE, idx++) {
2041 			u64 cur_flags = flags;
2042 			pagemap_entry_t pme;
2043 
2044 			if (folio && (flags & PM_PRESENT) &&
2045 			    __folio_page_mapped_exclusively(folio, page))
2046 				cur_flags |= PM_MMAP_EXCLUSIVE;
2047 
2048 			pme = make_pme(frame, cur_flags);
2049 			err = add_to_pagemap(&pme, pm);
2050 			if (err)
2051 				break;
2052 			if (pm->show_pfn) {
2053 				if (flags & PM_PRESENT)
2054 					frame++;
2055 				else if (flags & PM_SWAP)
2056 					frame += (1 << MAX_SWAPFILES_SHIFT);
2057 			}
2058 		}
2059 		spin_unlock(ptl);
2060 		return err;
2061 	}
2062 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2063 
2064 	/*
2065 	 * We can assume that @vma always points to a valid one and @end never
2066 	 * goes beyond vma->vm_end.
2067 	 */
2068 	orig_pte = pte = pte_offset_map_lock(walk->mm, pmdp, addr, &ptl);
2069 	if (!pte) {
2070 		walk->action = ACTION_AGAIN;
2071 		return err;
2072 	}
2073 	for (; addr < end; pte++, addr += PAGE_SIZE) {
2074 		pagemap_entry_t pme;
2075 
2076 		pme = pte_to_pagemap_entry(pm, vma, addr, ptep_get(pte));
2077 		err = add_to_pagemap(&pme, pm);
2078 		if (err)
2079 			break;
2080 	}
2081 	pte_unmap_unlock(orig_pte, ptl);
2082 
2083 	cond_resched();
2084 
2085 	return err;
2086 }
2087 
2088 #ifdef CONFIG_HUGETLB_PAGE
2089 /* This function walks within one hugetlb entry in the single call */
2090 static int pagemap_hugetlb_range(pte_t *ptep, unsigned long hmask,
2091 				 unsigned long addr, unsigned long end,
2092 				 struct mm_walk *walk)
2093 {
2094 	struct pagemapread *pm = walk->private;
2095 	struct vm_area_struct *vma = walk->vma;
2096 	u64 flags = 0, frame = 0;
2097 	spinlock_t *ptl;
2098 	int err = 0;
2099 	pte_t pte;
2100 
2101 	if (vma->vm_flags & VM_SOFTDIRTY)
2102 		flags |= PM_SOFT_DIRTY;
2103 
2104 	ptl = huge_pte_lock(hstate_vma(vma), walk->mm, ptep);
2105 	pte = huge_ptep_get(walk->mm, addr, ptep);
2106 	if (pte_present(pte)) {
2107 		struct folio *folio = page_folio(pte_page(pte));
2108 
2109 		if (!folio_test_anon(folio))
2110 			flags |= PM_FILE;
2111 
2112 		if (!folio_maybe_mapped_shared(folio) &&
2113 		    !hugetlb_pmd_shared(ptep))
2114 			flags |= PM_MMAP_EXCLUSIVE;
2115 
2116 		if (huge_pte_uffd_wp(pte))
2117 			flags |= PM_UFFD_WP;
2118 
2119 		flags |= PM_PRESENT;
2120 		if (pm->show_pfn)
2121 			frame = pte_pfn(pte) +
2122 				((addr & ~hmask) >> PAGE_SHIFT);
2123 	} else if (pte_swp_uffd_wp_any(pte)) {
2124 		flags |= PM_UFFD_WP;
2125 	}
2126 
2127 	for (; addr != end; addr += PAGE_SIZE) {
2128 		pagemap_entry_t pme = make_pme(frame, flags);
2129 
2130 		err = add_to_pagemap(&pme, pm);
2131 		if (err)
2132 			break;
2133 		if (pm->show_pfn && (flags & PM_PRESENT))
2134 			frame++;
2135 	}
2136 
2137 	spin_unlock(ptl);
2138 	cond_resched();
2139 
2140 	return err;
2141 }
2142 #else
2143 #define pagemap_hugetlb_range	NULL
2144 #endif /* HUGETLB_PAGE */
2145 
2146 static const struct mm_walk_ops pagemap_ops = {
2147 	.pmd_entry	= pagemap_pmd_range,
2148 	.pte_hole	= pagemap_pte_hole,
2149 	.hugetlb_entry	= pagemap_hugetlb_range,
2150 	.walk_lock	= PGWALK_RDLOCK,
2151 };
2152 
2153 /*
2154  * /proc/pid/pagemap - an array mapping virtual pages to pfns
2155  *
2156  * For each page in the address space, this file contains one 64-bit entry
2157  * consisting of the following:
2158  *
2159  * Bits 0-54  page frame number (PFN) if present
2160  * Bits 0-4   swap type if swapped
2161  * Bits 5-54  swap offset if swapped
2162  * Bit  55    pte is soft-dirty (see Documentation/admin-guide/mm/soft-dirty.rst)
2163  * Bit  56    page exclusively mapped
2164  * Bit  57    pte is uffd-wp write-protected
2165  * Bit  58    pte is a guard region
2166  * Bits 59-60 zero
2167  * Bit  61    page is file-page or shared-anon
2168  * Bit  62    page swapped
2169  * Bit  63    page present
2170  *
2171  * If the page is not present but in swap, then the PFN contains an
2172  * encoding of the swap file number and the page's offset into the
2173  * swap. Unmapped pages return a null PFN. This allows determining
2174  * precisely which pages are mapped (or in swap) and comparing mapped
2175  * pages between processes.
2176  *
2177  * Efficient users of this interface will use /proc/pid/maps to
2178  * determine which areas of memory are actually mapped and llseek to
2179  * skip over unmapped regions.
2180  */
2181 static ssize_t pagemap_read(struct file *file, char __user *buf,
2182 			    size_t count, loff_t *ppos)
2183 {
2184 	struct mm_struct *mm = file->private_data;
2185 	struct pagemapread pm;
2186 	unsigned long src;
2187 	unsigned long svpfn;
2188 	unsigned long start_vaddr;
2189 	unsigned long end_vaddr;
2190 	int ret = 0, copied = 0;
2191 
2192 	if (!mm || !mmget_not_zero(mm))
2193 		goto out;
2194 
2195 	ret = -EINVAL;
2196 	/* file position must be aligned */
2197 	if ((*ppos % PM_ENTRY_BYTES) || (count % PM_ENTRY_BYTES))
2198 		goto out_mm;
2199 
2200 	ret = 0;
2201 	if (!count)
2202 		goto out_mm;
2203 
2204 	/* do not disclose physical addresses: attack vector */
2205 	pm.show_pfn = file_ns_capable(file, &init_user_ns, CAP_SYS_ADMIN);
2206 
2207 	pm.len = (PAGEMAP_WALK_SIZE >> PAGE_SHIFT);
2208 	pm.buffer = kmalloc_array(pm.len, PM_ENTRY_BYTES, GFP_KERNEL);
2209 	ret = -ENOMEM;
2210 	if (!pm.buffer)
2211 		goto out_mm;
2212 
2213 	src = *ppos;
2214 	svpfn = src / PM_ENTRY_BYTES;
2215 	end_vaddr = mm->task_size;
2216 
2217 	/* watch out for wraparound */
2218 	start_vaddr = end_vaddr;
2219 	if (svpfn <= (ULONG_MAX >> PAGE_SHIFT)) {
2220 		unsigned long end;
2221 
2222 		ret = mmap_read_lock_killable(mm);
2223 		if (ret)
2224 			goto out_free;
2225 		start_vaddr = untagged_addr_remote(mm, svpfn << PAGE_SHIFT);
2226 		mmap_read_unlock(mm);
2227 
2228 		end = start_vaddr + ((count / PM_ENTRY_BYTES) << PAGE_SHIFT);
2229 		if (end >= start_vaddr && end < mm->task_size)
2230 			end_vaddr = end;
2231 	}
2232 
2233 	/* Ensure the address is inside the task */
2234 	if (start_vaddr > mm->task_size)
2235 		start_vaddr = end_vaddr;
2236 
2237 	ret = 0;
2238 	while (count && (start_vaddr < end_vaddr)) {
2239 		int len;
2240 		unsigned long end;
2241 
2242 		pm.pos = 0;
2243 		end = (start_vaddr + PAGEMAP_WALK_SIZE) & PAGEMAP_WALK_MASK;
2244 		/* overflow ? */
2245 		if (end < start_vaddr || end > end_vaddr)
2246 			end = end_vaddr;
2247 		ret = mmap_read_lock_killable(mm);
2248 		if (ret)
2249 			goto out_free;
2250 		ret = walk_page_range(mm, start_vaddr, end, &pagemap_ops, &pm);
2251 		mmap_read_unlock(mm);
2252 		start_vaddr = end;
2253 
2254 		len = min(count, PM_ENTRY_BYTES * pm.pos);
2255 		if (copy_to_user(buf, pm.buffer, len)) {
2256 			ret = -EFAULT;
2257 			goto out_free;
2258 		}
2259 		copied += len;
2260 		buf += len;
2261 		count -= len;
2262 	}
2263 	*ppos += copied;
2264 	if (!ret || ret == PM_END_OF_BUFFER)
2265 		ret = copied;
2266 
2267 out_free:
2268 	kfree(pm.buffer);
2269 out_mm:
2270 	mmput(mm);
2271 out:
2272 	return ret;
2273 }
2274 
2275 static int pagemap_open(struct inode *inode, struct file *file)
2276 {
2277 	struct mm_struct *mm;
2278 
2279 	mm = proc_mem_open(inode, PTRACE_MODE_READ);
2280 	if (IS_ERR_OR_NULL(mm))
2281 		return mm ? PTR_ERR(mm) : -ESRCH;
2282 	file->private_data = mm;
2283 	return 0;
2284 }
2285 
2286 static int pagemap_release(struct inode *inode, struct file *file)
2287 {
2288 	struct mm_struct *mm = file->private_data;
2289 
2290 	if (mm)
2291 		mmdrop(mm);
2292 	return 0;
2293 }
2294 
2295 #define PM_SCAN_CATEGORIES	(PAGE_IS_WPALLOWED | PAGE_IS_WRITTEN |	\
2296 				 PAGE_IS_FILE |	PAGE_IS_PRESENT |	\
2297 				 PAGE_IS_SWAPPED | PAGE_IS_PFNZERO |	\
2298 				 PAGE_IS_HUGE | PAGE_IS_SOFT_DIRTY |	\
2299 				 PAGE_IS_GUARD)
2300 #define PM_SCAN_FLAGS		(PM_SCAN_WP_MATCHING | PM_SCAN_CHECK_WPASYNC)
2301 
2302 struct pagemap_scan_private {
2303 	struct pm_scan_arg arg;
2304 	unsigned long masks_of_interest, cur_vma_category;
2305 	struct page_region *vec_buf;
2306 	unsigned long vec_buf_len, vec_buf_index, found_pages;
2307 	struct page_region __user *vec_out;
2308 };
2309 
2310 static unsigned long pagemap_page_category(struct pagemap_scan_private *p,
2311 					   struct vm_area_struct *vma,
2312 					   unsigned long addr, pte_t pte)
2313 {
2314 	unsigned long categories = 0;
2315 
2316 	if (pte_present(pte)) {
2317 		struct page *page;
2318 
2319 		categories |= PAGE_IS_PRESENT;
2320 		if (!pte_uffd_wp(pte))
2321 			categories |= PAGE_IS_WRITTEN;
2322 
2323 		if (p->masks_of_interest & PAGE_IS_FILE) {
2324 			page = vm_normal_page(vma, addr, pte);
2325 			if (page && !PageAnon(page))
2326 				categories |= PAGE_IS_FILE;
2327 		}
2328 
2329 		if (is_zero_pfn(pte_pfn(pte)))
2330 			categories |= PAGE_IS_PFNZERO;
2331 		if (pte_soft_dirty(pte))
2332 			categories |= PAGE_IS_SOFT_DIRTY;
2333 	} else if (is_swap_pte(pte)) {
2334 		swp_entry_t swp;
2335 
2336 		categories |= PAGE_IS_SWAPPED;
2337 		if (!pte_swp_uffd_wp_any(pte))
2338 			categories |= PAGE_IS_WRITTEN;
2339 
2340 		swp = pte_to_swp_entry(pte);
2341 		if (is_guard_swp_entry(swp))
2342 			categories |= PAGE_IS_GUARD;
2343 		else if ((p->masks_of_interest & PAGE_IS_FILE) &&
2344 			 is_pfn_swap_entry(swp) &&
2345 			 !folio_test_anon(pfn_swap_entry_folio(swp)))
2346 			categories |= PAGE_IS_FILE;
2347 
2348 		if (pte_swp_soft_dirty(pte))
2349 			categories |= PAGE_IS_SOFT_DIRTY;
2350 	}
2351 
2352 	return categories;
2353 }
2354 
2355 static void make_uffd_wp_pte(struct vm_area_struct *vma,
2356 			     unsigned long addr, pte_t *pte, pte_t ptent)
2357 {
2358 	if (pte_present(ptent)) {
2359 		pte_t old_pte;
2360 
2361 		old_pte = ptep_modify_prot_start(vma, addr, pte);
2362 		ptent = pte_mkuffd_wp(old_pte);
2363 		ptep_modify_prot_commit(vma, addr, pte, old_pte, ptent);
2364 	} else if (is_swap_pte(ptent)) {
2365 		ptent = pte_swp_mkuffd_wp(ptent);
2366 		set_pte_at(vma->vm_mm, addr, pte, ptent);
2367 	} else {
2368 		set_pte_at(vma->vm_mm, addr, pte,
2369 			   make_pte_marker(PTE_MARKER_UFFD_WP));
2370 	}
2371 }
2372 
2373 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2374 static unsigned long pagemap_thp_category(struct pagemap_scan_private *p,
2375 					  struct vm_area_struct *vma,
2376 					  unsigned long addr, pmd_t pmd)
2377 {
2378 	unsigned long categories = PAGE_IS_HUGE;
2379 
2380 	if (pmd_present(pmd)) {
2381 		struct page *page;
2382 
2383 		categories |= PAGE_IS_PRESENT;
2384 		if (!pmd_uffd_wp(pmd))
2385 			categories |= PAGE_IS_WRITTEN;
2386 
2387 		if (p->masks_of_interest & PAGE_IS_FILE) {
2388 			page = vm_normal_page_pmd(vma, addr, pmd);
2389 			if (page && !PageAnon(page))
2390 				categories |= PAGE_IS_FILE;
2391 		}
2392 
2393 		if (is_huge_zero_pmd(pmd))
2394 			categories |= PAGE_IS_PFNZERO;
2395 		if (pmd_soft_dirty(pmd))
2396 			categories |= PAGE_IS_SOFT_DIRTY;
2397 	} else if (is_swap_pmd(pmd)) {
2398 		swp_entry_t swp;
2399 
2400 		categories |= PAGE_IS_SWAPPED;
2401 		if (!pmd_swp_uffd_wp(pmd))
2402 			categories |= PAGE_IS_WRITTEN;
2403 		if (pmd_swp_soft_dirty(pmd))
2404 			categories |= PAGE_IS_SOFT_DIRTY;
2405 
2406 		if (p->masks_of_interest & PAGE_IS_FILE) {
2407 			swp = pmd_to_swp_entry(pmd);
2408 			if (is_pfn_swap_entry(swp) &&
2409 			    !folio_test_anon(pfn_swap_entry_folio(swp)))
2410 				categories |= PAGE_IS_FILE;
2411 		}
2412 	}
2413 
2414 	return categories;
2415 }
2416 
2417 static void make_uffd_wp_pmd(struct vm_area_struct *vma,
2418 			     unsigned long addr, pmd_t *pmdp)
2419 {
2420 	pmd_t old, pmd = *pmdp;
2421 
2422 	if (pmd_present(pmd)) {
2423 		old = pmdp_invalidate_ad(vma, addr, pmdp);
2424 		pmd = pmd_mkuffd_wp(old);
2425 		set_pmd_at(vma->vm_mm, addr, pmdp, pmd);
2426 	} else if (is_migration_entry(pmd_to_swp_entry(pmd))) {
2427 		pmd = pmd_swp_mkuffd_wp(pmd);
2428 		set_pmd_at(vma->vm_mm, addr, pmdp, pmd);
2429 	}
2430 }
2431 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2432 
2433 #ifdef CONFIG_HUGETLB_PAGE
2434 static unsigned long pagemap_hugetlb_category(pte_t pte)
2435 {
2436 	unsigned long categories = PAGE_IS_HUGE;
2437 
2438 	/*
2439 	 * According to pagemap_hugetlb_range(), file-backed HugeTLB
2440 	 * page cannot be swapped. So PAGE_IS_FILE is not checked for
2441 	 * swapped pages.
2442 	 */
2443 	if (pte_present(pte)) {
2444 		categories |= PAGE_IS_PRESENT;
2445 		if (!huge_pte_uffd_wp(pte))
2446 			categories |= PAGE_IS_WRITTEN;
2447 		if (!PageAnon(pte_page(pte)))
2448 			categories |= PAGE_IS_FILE;
2449 		if (is_zero_pfn(pte_pfn(pte)))
2450 			categories |= PAGE_IS_PFNZERO;
2451 		if (pte_soft_dirty(pte))
2452 			categories |= PAGE_IS_SOFT_DIRTY;
2453 	} else if (is_swap_pte(pte)) {
2454 		categories |= PAGE_IS_SWAPPED;
2455 		if (!pte_swp_uffd_wp_any(pte))
2456 			categories |= PAGE_IS_WRITTEN;
2457 		if (pte_swp_soft_dirty(pte))
2458 			categories |= PAGE_IS_SOFT_DIRTY;
2459 	}
2460 
2461 	return categories;
2462 }
2463 
2464 static void make_uffd_wp_huge_pte(struct vm_area_struct *vma,
2465 				  unsigned long addr, pte_t *ptep,
2466 				  pte_t ptent)
2467 {
2468 	unsigned long psize;
2469 
2470 	if (is_hugetlb_entry_hwpoisoned(ptent) || is_pte_marker(ptent))
2471 		return;
2472 
2473 	psize = huge_page_size(hstate_vma(vma));
2474 
2475 	if (is_hugetlb_entry_migration(ptent))
2476 		set_huge_pte_at(vma->vm_mm, addr, ptep,
2477 				pte_swp_mkuffd_wp(ptent), psize);
2478 	else if (!huge_pte_none(ptent))
2479 		huge_ptep_modify_prot_commit(vma, addr, ptep, ptent,
2480 					     huge_pte_mkuffd_wp(ptent));
2481 	else
2482 		set_huge_pte_at(vma->vm_mm, addr, ptep,
2483 				make_pte_marker(PTE_MARKER_UFFD_WP), psize);
2484 }
2485 #endif /* CONFIG_HUGETLB_PAGE */
2486 
2487 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLB_PAGE)
2488 static void pagemap_scan_backout_range(struct pagemap_scan_private *p,
2489 				       unsigned long addr, unsigned long end)
2490 {
2491 	struct page_region *cur_buf = &p->vec_buf[p->vec_buf_index];
2492 
2493 	if (!p->vec_buf)
2494 		return;
2495 
2496 	if (cur_buf->start != addr)
2497 		cur_buf->end = addr;
2498 	else
2499 		cur_buf->start = cur_buf->end = 0;
2500 
2501 	p->found_pages -= (end - addr) / PAGE_SIZE;
2502 }
2503 #endif
2504 
2505 static bool pagemap_scan_is_interesting_page(unsigned long categories,
2506 					     const struct pagemap_scan_private *p)
2507 {
2508 	categories ^= p->arg.category_inverted;
2509 	if ((categories & p->arg.category_mask) != p->arg.category_mask)
2510 		return false;
2511 	if (p->arg.category_anyof_mask && !(categories & p->arg.category_anyof_mask))
2512 		return false;
2513 
2514 	return true;
2515 }
2516 
2517 static bool pagemap_scan_is_interesting_vma(unsigned long categories,
2518 					    const struct pagemap_scan_private *p)
2519 {
2520 	unsigned long required = p->arg.category_mask & PAGE_IS_WPALLOWED;
2521 
2522 	categories ^= p->arg.category_inverted;
2523 	if ((categories & required) != required)
2524 		return false;
2525 
2526 	return true;
2527 }
2528 
2529 static int pagemap_scan_test_walk(unsigned long start, unsigned long end,
2530 				  struct mm_walk *walk)
2531 {
2532 	struct pagemap_scan_private *p = walk->private;
2533 	struct vm_area_struct *vma = walk->vma;
2534 	unsigned long vma_category = 0;
2535 	bool wp_allowed = userfaultfd_wp_async(vma) &&
2536 	    userfaultfd_wp_use_markers(vma);
2537 
2538 	if (!wp_allowed) {
2539 		/* User requested explicit failure over wp-async capability */
2540 		if (p->arg.flags & PM_SCAN_CHECK_WPASYNC)
2541 			return -EPERM;
2542 		/*
2543 		 * User requires wr-protect, and allows silently skipping
2544 		 * unsupported vmas.
2545 		 */
2546 		if (p->arg.flags & PM_SCAN_WP_MATCHING)
2547 			return 1;
2548 		/*
2549 		 * Then the request doesn't involve wr-protects at all,
2550 		 * fall through to the rest checks, and allow vma walk.
2551 		 */
2552 	}
2553 
2554 	if (vma->vm_flags & VM_PFNMAP)
2555 		return 1;
2556 
2557 	if (wp_allowed)
2558 		vma_category |= PAGE_IS_WPALLOWED;
2559 
2560 	if (vma->vm_flags & VM_SOFTDIRTY)
2561 		vma_category |= PAGE_IS_SOFT_DIRTY;
2562 
2563 	if (!pagemap_scan_is_interesting_vma(vma_category, p))
2564 		return 1;
2565 
2566 	p->cur_vma_category = vma_category;
2567 
2568 	return 0;
2569 }
2570 
2571 static bool pagemap_scan_push_range(unsigned long categories,
2572 				    struct pagemap_scan_private *p,
2573 				    unsigned long addr, unsigned long end)
2574 {
2575 	struct page_region *cur_buf = &p->vec_buf[p->vec_buf_index];
2576 
2577 	/*
2578 	 * When there is no output buffer provided at all, the sentinel values
2579 	 * won't match here. There is no other way for `cur_buf->end` to be
2580 	 * non-zero other than it being non-empty.
2581 	 */
2582 	if (addr == cur_buf->end && categories == cur_buf->categories) {
2583 		cur_buf->end = end;
2584 		return true;
2585 	}
2586 
2587 	if (cur_buf->end) {
2588 		if (p->vec_buf_index >= p->vec_buf_len - 1)
2589 			return false;
2590 
2591 		cur_buf = &p->vec_buf[++p->vec_buf_index];
2592 	}
2593 
2594 	cur_buf->start = addr;
2595 	cur_buf->end = end;
2596 	cur_buf->categories = categories;
2597 
2598 	return true;
2599 }
2600 
2601 static int pagemap_scan_output(unsigned long categories,
2602 			       struct pagemap_scan_private *p,
2603 			       unsigned long addr, unsigned long *end)
2604 {
2605 	unsigned long n_pages, total_pages;
2606 	int ret = 0;
2607 
2608 	if (!p->vec_buf)
2609 		return 0;
2610 
2611 	categories &= p->arg.return_mask;
2612 
2613 	n_pages = (*end - addr) / PAGE_SIZE;
2614 	if (check_add_overflow(p->found_pages, n_pages, &total_pages) ||
2615 	    total_pages > p->arg.max_pages) {
2616 		size_t n_too_much = total_pages - p->arg.max_pages;
2617 		*end -= n_too_much * PAGE_SIZE;
2618 		n_pages -= n_too_much;
2619 		ret = -ENOSPC;
2620 	}
2621 
2622 	if (!pagemap_scan_push_range(categories, p, addr, *end)) {
2623 		*end = addr;
2624 		n_pages = 0;
2625 		ret = -ENOSPC;
2626 	}
2627 
2628 	p->found_pages += n_pages;
2629 	if (ret)
2630 		p->arg.walk_end = *end;
2631 
2632 	return ret;
2633 }
2634 
2635 static int pagemap_scan_thp_entry(pmd_t *pmd, unsigned long start,
2636 				  unsigned long end, struct mm_walk *walk)
2637 {
2638 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2639 	struct pagemap_scan_private *p = walk->private;
2640 	struct vm_area_struct *vma = walk->vma;
2641 	unsigned long categories;
2642 	spinlock_t *ptl;
2643 	int ret = 0;
2644 
2645 	ptl = pmd_trans_huge_lock(pmd, vma);
2646 	if (!ptl)
2647 		return -ENOENT;
2648 
2649 	categories = p->cur_vma_category |
2650 		     pagemap_thp_category(p, vma, start, *pmd);
2651 
2652 	if (!pagemap_scan_is_interesting_page(categories, p))
2653 		goto out_unlock;
2654 
2655 	ret = pagemap_scan_output(categories, p, start, &end);
2656 	if (start == end)
2657 		goto out_unlock;
2658 
2659 	if (~p->arg.flags & PM_SCAN_WP_MATCHING)
2660 		goto out_unlock;
2661 	if (~categories & PAGE_IS_WRITTEN)
2662 		goto out_unlock;
2663 
2664 	/*
2665 	 * Break huge page into small pages if the WP operation
2666 	 * needs to be performed on a portion of the huge page.
2667 	 */
2668 	if (end != start + HPAGE_SIZE) {
2669 		spin_unlock(ptl);
2670 		split_huge_pmd(vma, pmd, start);
2671 		pagemap_scan_backout_range(p, start, end);
2672 		/* Report as if there was no THP */
2673 		return -ENOENT;
2674 	}
2675 
2676 	make_uffd_wp_pmd(vma, start, pmd);
2677 	flush_tlb_range(vma, start, end);
2678 out_unlock:
2679 	spin_unlock(ptl);
2680 	return ret;
2681 #else /* !CONFIG_TRANSPARENT_HUGEPAGE */
2682 	return -ENOENT;
2683 #endif
2684 }
2685 
2686 static int pagemap_scan_pmd_entry(pmd_t *pmd, unsigned long start,
2687 				  unsigned long end, struct mm_walk *walk)
2688 {
2689 	struct pagemap_scan_private *p = walk->private;
2690 	struct vm_area_struct *vma = walk->vma;
2691 	unsigned long addr, flush_end = 0;
2692 	pte_t *pte, *start_pte;
2693 	spinlock_t *ptl;
2694 	int ret;
2695 
2696 	ret = pagemap_scan_thp_entry(pmd, start, end, walk);
2697 	if (ret != -ENOENT)
2698 		return ret;
2699 
2700 	ret = 0;
2701 	start_pte = pte = pte_offset_map_lock(vma->vm_mm, pmd, start, &ptl);
2702 	if (!pte) {
2703 		walk->action = ACTION_AGAIN;
2704 		return 0;
2705 	}
2706 
2707 	arch_enter_lazy_mmu_mode();
2708 
2709 	if ((p->arg.flags & PM_SCAN_WP_MATCHING) && !p->vec_out) {
2710 		/* Fast path for performing exclusive WP */
2711 		for (addr = start; addr != end; pte++, addr += PAGE_SIZE) {
2712 			pte_t ptent = ptep_get(pte);
2713 
2714 			if ((pte_present(ptent) && pte_uffd_wp(ptent)) ||
2715 			    pte_swp_uffd_wp_any(ptent))
2716 				continue;
2717 			make_uffd_wp_pte(vma, addr, pte, ptent);
2718 			if (!flush_end)
2719 				start = addr;
2720 			flush_end = addr + PAGE_SIZE;
2721 		}
2722 		goto flush_and_return;
2723 	}
2724 
2725 	if (!p->arg.category_anyof_mask && !p->arg.category_inverted &&
2726 	    p->arg.category_mask == PAGE_IS_WRITTEN &&
2727 	    p->arg.return_mask == PAGE_IS_WRITTEN) {
2728 		for (addr = start; addr < end; pte++, addr += PAGE_SIZE) {
2729 			unsigned long next = addr + PAGE_SIZE;
2730 			pte_t ptent = ptep_get(pte);
2731 
2732 			if ((pte_present(ptent) && pte_uffd_wp(ptent)) ||
2733 			    pte_swp_uffd_wp_any(ptent))
2734 				continue;
2735 			ret = pagemap_scan_output(p->cur_vma_category | PAGE_IS_WRITTEN,
2736 						  p, addr, &next);
2737 			if (next == addr)
2738 				break;
2739 			if (~p->arg.flags & PM_SCAN_WP_MATCHING)
2740 				continue;
2741 			make_uffd_wp_pte(vma, addr, pte, ptent);
2742 			if (!flush_end)
2743 				start = addr;
2744 			flush_end = next;
2745 		}
2746 		goto flush_and_return;
2747 	}
2748 
2749 	for (addr = start; addr != end; pte++, addr += PAGE_SIZE) {
2750 		pte_t ptent = ptep_get(pte);
2751 		unsigned long categories = p->cur_vma_category |
2752 					   pagemap_page_category(p, vma, addr, ptent);
2753 		unsigned long next = addr + PAGE_SIZE;
2754 
2755 		if (!pagemap_scan_is_interesting_page(categories, p))
2756 			continue;
2757 
2758 		ret = pagemap_scan_output(categories, p, addr, &next);
2759 		if (next == addr)
2760 			break;
2761 
2762 		if (~p->arg.flags & PM_SCAN_WP_MATCHING)
2763 			continue;
2764 		if (~categories & PAGE_IS_WRITTEN)
2765 			continue;
2766 
2767 		make_uffd_wp_pte(vma, addr, pte, ptent);
2768 		if (!flush_end)
2769 			start = addr;
2770 		flush_end = next;
2771 	}
2772 
2773 flush_and_return:
2774 	if (flush_end)
2775 		flush_tlb_range(vma, start, addr);
2776 
2777 	arch_leave_lazy_mmu_mode();
2778 	pte_unmap_unlock(start_pte, ptl);
2779 
2780 	cond_resched();
2781 	return ret;
2782 }
2783 
2784 #ifdef CONFIG_HUGETLB_PAGE
2785 static int pagemap_scan_hugetlb_entry(pte_t *ptep, unsigned long hmask,
2786 				      unsigned long start, unsigned long end,
2787 				      struct mm_walk *walk)
2788 {
2789 	struct pagemap_scan_private *p = walk->private;
2790 	struct vm_area_struct *vma = walk->vma;
2791 	unsigned long categories;
2792 	spinlock_t *ptl;
2793 	int ret = 0;
2794 	pte_t pte;
2795 
2796 	if (~p->arg.flags & PM_SCAN_WP_MATCHING) {
2797 		/* Go the short route when not write-protecting pages. */
2798 
2799 		pte = huge_ptep_get(walk->mm, start, ptep);
2800 		categories = p->cur_vma_category | pagemap_hugetlb_category(pte);
2801 
2802 		if (!pagemap_scan_is_interesting_page(categories, p))
2803 			return 0;
2804 
2805 		return pagemap_scan_output(categories, p, start, &end);
2806 	}
2807 
2808 	i_mmap_lock_write(vma->vm_file->f_mapping);
2809 	ptl = huge_pte_lock(hstate_vma(vma), vma->vm_mm, ptep);
2810 
2811 	pte = huge_ptep_get(walk->mm, start, ptep);
2812 	categories = p->cur_vma_category | pagemap_hugetlb_category(pte);
2813 
2814 	if (!pagemap_scan_is_interesting_page(categories, p))
2815 		goto out_unlock;
2816 
2817 	ret = pagemap_scan_output(categories, p, start, &end);
2818 	if (start == end)
2819 		goto out_unlock;
2820 
2821 	if (~categories & PAGE_IS_WRITTEN)
2822 		goto out_unlock;
2823 
2824 	if (end != start + HPAGE_SIZE) {
2825 		/* Partial HugeTLB page WP isn't possible. */
2826 		pagemap_scan_backout_range(p, start, end);
2827 		p->arg.walk_end = start;
2828 		ret = 0;
2829 		goto out_unlock;
2830 	}
2831 
2832 	make_uffd_wp_huge_pte(vma, start, ptep, pte);
2833 	flush_hugetlb_tlb_range(vma, start, end);
2834 
2835 out_unlock:
2836 	spin_unlock(ptl);
2837 	i_mmap_unlock_write(vma->vm_file->f_mapping);
2838 
2839 	return ret;
2840 }
2841 #else
2842 #define pagemap_scan_hugetlb_entry NULL
2843 #endif
2844 
2845 static int pagemap_scan_pte_hole(unsigned long addr, unsigned long end,
2846 				 int depth, struct mm_walk *walk)
2847 {
2848 	struct pagemap_scan_private *p = walk->private;
2849 	struct vm_area_struct *vma = walk->vma;
2850 	int ret, err;
2851 
2852 	if (!vma || !pagemap_scan_is_interesting_page(p->cur_vma_category, p))
2853 		return 0;
2854 
2855 	ret = pagemap_scan_output(p->cur_vma_category, p, addr, &end);
2856 	if (addr == end)
2857 		return ret;
2858 
2859 	if (~p->arg.flags & PM_SCAN_WP_MATCHING)
2860 		return ret;
2861 
2862 	err = uffd_wp_range(vma, addr, end - addr, true);
2863 	if (err < 0)
2864 		ret = err;
2865 
2866 	return ret;
2867 }
2868 
2869 static const struct mm_walk_ops pagemap_scan_ops = {
2870 	.test_walk = pagemap_scan_test_walk,
2871 	.pmd_entry = pagemap_scan_pmd_entry,
2872 	.pte_hole = pagemap_scan_pte_hole,
2873 	.hugetlb_entry = pagemap_scan_hugetlb_entry,
2874 };
2875 
2876 static int pagemap_scan_get_args(struct pm_scan_arg *arg,
2877 				 unsigned long uarg)
2878 {
2879 	if (copy_from_user(arg, (void __user *)uarg, sizeof(*arg)))
2880 		return -EFAULT;
2881 
2882 	if (arg->size != sizeof(struct pm_scan_arg))
2883 		return -EINVAL;
2884 
2885 	/* Validate requested features */
2886 	if (arg->flags & ~PM_SCAN_FLAGS)
2887 		return -EINVAL;
2888 	if ((arg->category_inverted | arg->category_mask |
2889 	     arg->category_anyof_mask | arg->return_mask) & ~PM_SCAN_CATEGORIES)
2890 		return -EINVAL;
2891 
2892 	arg->start = untagged_addr((unsigned long)arg->start);
2893 	arg->end = untagged_addr((unsigned long)arg->end);
2894 	arg->vec = untagged_addr((unsigned long)arg->vec);
2895 
2896 	/* Validate memory pointers */
2897 	if (!IS_ALIGNED(arg->start, PAGE_SIZE))
2898 		return -EINVAL;
2899 	if (!access_ok((void __user *)(long)arg->start, arg->end - arg->start))
2900 		return -EFAULT;
2901 	if (!arg->vec && arg->vec_len)
2902 		return -EINVAL;
2903 	if (UINT_MAX == SIZE_MAX && arg->vec_len > SIZE_MAX)
2904 		return -EINVAL;
2905 	if (arg->vec && !access_ok((void __user *)(long)arg->vec,
2906 				   size_mul(arg->vec_len, sizeof(struct page_region))))
2907 		return -EFAULT;
2908 
2909 	/* Fixup default values */
2910 	arg->end = ALIGN(arg->end, PAGE_SIZE);
2911 	arg->walk_end = 0;
2912 	if (!arg->max_pages)
2913 		arg->max_pages = ULONG_MAX;
2914 
2915 	return 0;
2916 }
2917 
2918 static int pagemap_scan_writeback_args(struct pm_scan_arg *arg,
2919 				       unsigned long uargl)
2920 {
2921 	struct pm_scan_arg __user *uarg	= (void __user *)uargl;
2922 
2923 	if (copy_to_user(&uarg->walk_end, &arg->walk_end, sizeof(arg->walk_end)))
2924 		return -EFAULT;
2925 
2926 	return 0;
2927 }
2928 
2929 static int pagemap_scan_init_bounce_buffer(struct pagemap_scan_private *p)
2930 {
2931 	if (!p->arg.vec_len)
2932 		return 0;
2933 
2934 	p->vec_buf_len = min_t(size_t, PAGEMAP_WALK_SIZE >> PAGE_SHIFT,
2935 			       p->arg.vec_len);
2936 	p->vec_buf = kmalloc_array(p->vec_buf_len, sizeof(*p->vec_buf),
2937 				   GFP_KERNEL);
2938 	if (!p->vec_buf)
2939 		return -ENOMEM;
2940 
2941 	p->vec_buf->start = p->vec_buf->end = 0;
2942 	p->vec_out = (struct page_region __user *)(long)p->arg.vec;
2943 
2944 	return 0;
2945 }
2946 
2947 static long pagemap_scan_flush_buffer(struct pagemap_scan_private *p)
2948 {
2949 	const struct page_region *buf = p->vec_buf;
2950 	long n = p->vec_buf_index;
2951 
2952 	if (!p->vec_buf)
2953 		return 0;
2954 
2955 	if (buf[n].end != buf[n].start)
2956 		n++;
2957 
2958 	if (!n)
2959 		return 0;
2960 
2961 	if (copy_to_user(p->vec_out, buf, n * sizeof(*buf)))
2962 		return -EFAULT;
2963 
2964 	p->arg.vec_len -= n;
2965 	p->vec_out += n;
2966 
2967 	p->vec_buf_index = 0;
2968 	p->vec_buf_len = min_t(size_t, p->vec_buf_len, p->arg.vec_len);
2969 	p->vec_buf->start = p->vec_buf->end = 0;
2970 
2971 	return n;
2972 }
2973 
2974 static long do_pagemap_scan(struct mm_struct *mm, unsigned long uarg)
2975 {
2976 	struct pagemap_scan_private p = {0};
2977 	unsigned long walk_start;
2978 	size_t n_ranges_out = 0;
2979 	int ret;
2980 
2981 	ret = pagemap_scan_get_args(&p.arg, uarg);
2982 	if (ret)
2983 		return ret;
2984 
2985 	p.masks_of_interest = p.arg.category_mask | p.arg.category_anyof_mask |
2986 			      p.arg.return_mask;
2987 	ret = pagemap_scan_init_bounce_buffer(&p);
2988 	if (ret)
2989 		return ret;
2990 
2991 	for (walk_start = p.arg.start; walk_start < p.arg.end;
2992 			walk_start = p.arg.walk_end) {
2993 		struct mmu_notifier_range range;
2994 		long n_out;
2995 
2996 		if (fatal_signal_pending(current)) {
2997 			ret = -EINTR;
2998 			break;
2999 		}
3000 
3001 		ret = mmap_read_lock_killable(mm);
3002 		if (ret)
3003 			break;
3004 
3005 		/* Protection change for the range is going to happen. */
3006 		if (p.arg.flags & PM_SCAN_WP_MATCHING) {
3007 			mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_VMA, 0,
3008 						mm, walk_start, p.arg.end);
3009 			mmu_notifier_invalidate_range_start(&range);
3010 		}
3011 
3012 		ret = walk_page_range(mm, walk_start, p.arg.end,
3013 				      &pagemap_scan_ops, &p);
3014 
3015 		if (p.arg.flags & PM_SCAN_WP_MATCHING)
3016 			mmu_notifier_invalidate_range_end(&range);
3017 
3018 		mmap_read_unlock(mm);
3019 
3020 		n_out = pagemap_scan_flush_buffer(&p);
3021 		if (n_out < 0)
3022 			ret = n_out;
3023 		else
3024 			n_ranges_out += n_out;
3025 
3026 		if (ret != -ENOSPC)
3027 			break;
3028 
3029 		if (p.arg.vec_len == 0 || p.found_pages == p.arg.max_pages)
3030 			break;
3031 	}
3032 
3033 	/* ENOSPC signifies early stop (buffer full) from the walk. */
3034 	if (!ret || ret == -ENOSPC)
3035 		ret = n_ranges_out;
3036 
3037 	/* The walk_end isn't set when ret is zero */
3038 	if (!p.arg.walk_end)
3039 		p.arg.walk_end = p.arg.end;
3040 	if (pagemap_scan_writeback_args(&p.arg, uarg))
3041 		ret = -EFAULT;
3042 
3043 	kfree(p.vec_buf);
3044 	return ret;
3045 }
3046 
3047 static long do_pagemap_cmd(struct file *file, unsigned int cmd,
3048 			   unsigned long arg)
3049 {
3050 	struct mm_struct *mm = file->private_data;
3051 
3052 	switch (cmd) {
3053 	case PAGEMAP_SCAN:
3054 		return do_pagemap_scan(mm, arg);
3055 
3056 	default:
3057 		return -EINVAL;
3058 	}
3059 }
3060 
3061 const struct file_operations proc_pagemap_operations = {
3062 	.llseek		= mem_lseek, /* borrow this */
3063 	.read		= pagemap_read,
3064 	.open		= pagemap_open,
3065 	.release	= pagemap_release,
3066 	.unlocked_ioctl = do_pagemap_cmd,
3067 	.compat_ioctl	= do_pagemap_cmd,
3068 };
3069 #endif /* CONFIG_PROC_PAGE_MONITOR */
3070 
3071 #ifdef CONFIG_NUMA
3072 
3073 struct numa_maps {
3074 	unsigned long pages;
3075 	unsigned long anon;
3076 	unsigned long active;
3077 	unsigned long writeback;
3078 	unsigned long mapcount_max;
3079 	unsigned long dirty;
3080 	unsigned long swapcache;
3081 	unsigned long node[MAX_NUMNODES];
3082 };
3083 
3084 struct numa_maps_private {
3085 	struct proc_maps_private proc_maps;
3086 	struct numa_maps md;
3087 };
3088 
3089 static void gather_stats(struct page *page, struct numa_maps *md, int pte_dirty,
3090 			unsigned long nr_pages)
3091 {
3092 	struct folio *folio = page_folio(page);
3093 	int count;
3094 
3095 	if (IS_ENABLED(CONFIG_PAGE_MAPCOUNT))
3096 		count = folio_precise_page_mapcount(folio, page);
3097 	else
3098 		count = folio_average_page_mapcount(folio);
3099 
3100 	md->pages += nr_pages;
3101 	if (pte_dirty || folio_test_dirty(folio))
3102 		md->dirty += nr_pages;
3103 
3104 	if (folio_test_swapcache(folio))
3105 		md->swapcache += nr_pages;
3106 
3107 	if (folio_test_active(folio) || folio_test_unevictable(folio))
3108 		md->active += nr_pages;
3109 
3110 	if (folio_test_writeback(folio))
3111 		md->writeback += nr_pages;
3112 
3113 	if (folio_test_anon(folio))
3114 		md->anon += nr_pages;
3115 
3116 	if (count > md->mapcount_max)
3117 		md->mapcount_max = count;
3118 
3119 	md->node[folio_nid(folio)] += nr_pages;
3120 }
3121 
3122 static struct page *can_gather_numa_stats(pte_t pte, struct vm_area_struct *vma,
3123 		unsigned long addr)
3124 {
3125 	struct page *page;
3126 	int nid;
3127 
3128 	if (!pte_present(pte))
3129 		return NULL;
3130 
3131 	page = vm_normal_page(vma, addr, pte);
3132 	if (!page || is_zone_device_page(page))
3133 		return NULL;
3134 
3135 	if (PageReserved(page))
3136 		return NULL;
3137 
3138 	nid = page_to_nid(page);
3139 	if (!node_isset(nid, node_states[N_MEMORY]))
3140 		return NULL;
3141 
3142 	return page;
3143 }
3144 
3145 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3146 static struct page *can_gather_numa_stats_pmd(pmd_t pmd,
3147 					      struct vm_area_struct *vma,
3148 					      unsigned long addr)
3149 {
3150 	struct page *page;
3151 	int nid;
3152 
3153 	if (!pmd_present(pmd))
3154 		return NULL;
3155 
3156 	page = vm_normal_page_pmd(vma, addr, pmd);
3157 	if (!page)
3158 		return NULL;
3159 
3160 	if (PageReserved(page))
3161 		return NULL;
3162 
3163 	nid = page_to_nid(page);
3164 	if (!node_isset(nid, node_states[N_MEMORY]))
3165 		return NULL;
3166 
3167 	return page;
3168 }
3169 #endif
3170 
3171 static int gather_pte_stats(pmd_t *pmd, unsigned long addr,
3172 		unsigned long end, struct mm_walk *walk)
3173 {
3174 	struct numa_maps *md = walk->private;
3175 	struct vm_area_struct *vma = walk->vma;
3176 	spinlock_t *ptl;
3177 	pte_t *orig_pte;
3178 	pte_t *pte;
3179 
3180 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3181 	ptl = pmd_trans_huge_lock(pmd, vma);
3182 	if (ptl) {
3183 		struct page *page;
3184 
3185 		page = can_gather_numa_stats_pmd(*pmd, vma, addr);
3186 		if (page)
3187 			gather_stats(page, md, pmd_dirty(*pmd),
3188 				     HPAGE_PMD_SIZE/PAGE_SIZE);
3189 		spin_unlock(ptl);
3190 		return 0;
3191 	}
3192 #endif
3193 	orig_pte = pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
3194 	if (!pte) {
3195 		walk->action = ACTION_AGAIN;
3196 		return 0;
3197 	}
3198 	do {
3199 		pte_t ptent = ptep_get(pte);
3200 		struct page *page = can_gather_numa_stats(ptent, vma, addr);
3201 		if (!page)
3202 			continue;
3203 		gather_stats(page, md, pte_dirty(ptent), 1);
3204 
3205 	} while (pte++, addr += PAGE_SIZE, addr != end);
3206 	pte_unmap_unlock(orig_pte, ptl);
3207 	cond_resched();
3208 	return 0;
3209 }
3210 #ifdef CONFIG_HUGETLB_PAGE
3211 static int gather_hugetlb_stats(pte_t *pte, unsigned long hmask,
3212 		unsigned long addr, unsigned long end, struct mm_walk *walk)
3213 {
3214 	pte_t huge_pte;
3215 	struct numa_maps *md;
3216 	struct page *page;
3217 	spinlock_t *ptl;
3218 
3219 	ptl = huge_pte_lock(hstate_vma(walk->vma), walk->mm, pte);
3220 	huge_pte = huge_ptep_get(walk->mm, addr, pte);
3221 	if (!pte_present(huge_pte))
3222 		goto out;
3223 
3224 	page = pte_page(huge_pte);
3225 
3226 	md = walk->private;
3227 	gather_stats(page, md, pte_dirty(huge_pte), 1);
3228 out:
3229 	spin_unlock(ptl);
3230 	return 0;
3231 }
3232 
3233 #else
3234 static int gather_hugetlb_stats(pte_t *pte, unsigned long hmask,
3235 		unsigned long addr, unsigned long end, struct mm_walk *walk)
3236 {
3237 	return 0;
3238 }
3239 #endif
3240 
3241 static const struct mm_walk_ops show_numa_ops = {
3242 	.hugetlb_entry = gather_hugetlb_stats,
3243 	.pmd_entry = gather_pte_stats,
3244 	.walk_lock = PGWALK_RDLOCK,
3245 };
3246 
3247 /*
3248  * Display pages allocated per node and memory policy via /proc.
3249  */
3250 static int show_numa_map(struct seq_file *m, void *v)
3251 {
3252 	struct numa_maps_private *numa_priv = m->private;
3253 	struct proc_maps_private *proc_priv = &numa_priv->proc_maps;
3254 	struct vm_area_struct *vma = v;
3255 	struct numa_maps *md = &numa_priv->md;
3256 	struct file *file = vma->vm_file;
3257 	struct mm_struct *mm = vma->vm_mm;
3258 	char buffer[64];
3259 	struct mempolicy *pol;
3260 	pgoff_t ilx;
3261 	int nid;
3262 
3263 	if (!mm)
3264 		return 0;
3265 
3266 	/* Ensure we start with an empty set of numa_maps statistics. */
3267 	memset(md, 0, sizeof(*md));
3268 
3269 	pol = __get_vma_policy(vma, vma->vm_start, &ilx);
3270 	if (pol) {
3271 		mpol_to_str(buffer, sizeof(buffer), pol);
3272 		mpol_cond_put(pol);
3273 	} else {
3274 		mpol_to_str(buffer, sizeof(buffer), proc_priv->task_mempolicy);
3275 	}
3276 
3277 	seq_printf(m, "%08lx %s", vma->vm_start, buffer);
3278 
3279 	if (file) {
3280 		seq_puts(m, " file=");
3281 		seq_path(m, file_user_path(file), "\n\t= ");
3282 	} else if (vma_is_initial_heap(vma)) {
3283 		seq_puts(m, " heap");
3284 	} else if (vma_is_initial_stack(vma)) {
3285 		seq_puts(m, " stack");
3286 	}
3287 
3288 	if (is_vm_hugetlb_page(vma))
3289 		seq_puts(m, " huge");
3290 
3291 	/* mmap_lock is held by m_start */
3292 	walk_page_vma(vma, &show_numa_ops, md);
3293 
3294 	if (!md->pages)
3295 		goto out;
3296 
3297 	if (md->anon)
3298 		seq_printf(m, " anon=%lu", md->anon);
3299 
3300 	if (md->dirty)
3301 		seq_printf(m, " dirty=%lu", md->dirty);
3302 
3303 	if (md->pages != md->anon && md->pages != md->dirty)
3304 		seq_printf(m, " mapped=%lu", md->pages);
3305 
3306 	if (md->mapcount_max > 1)
3307 		seq_printf(m, " mapmax=%lu", md->mapcount_max);
3308 
3309 	if (md->swapcache)
3310 		seq_printf(m, " swapcache=%lu", md->swapcache);
3311 
3312 	if (md->active < md->pages && !is_vm_hugetlb_page(vma))
3313 		seq_printf(m, " active=%lu", md->active);
3314 
3315 	if (md->writeback)
3316 		seq_printf(m, " writeback=%lu", md->writeback);
3317 
3318 	for_each_node_state(nid, N_MEMORY)
3319 		if (md->node[nid])
3320 			seq_printf(m, " N%d=%lu", nid, md->node[nid]);
3321 
3322 	seq_printf(m, " kernelpagesize_kB=%lu", vma_kernel_pagesize(vma) >> 10);
3323 out:
3324 	seq_putc(m, '\n');
3325 	return 0;
3326 }
3327 
3328 static const struct seq_operations proc_pid_numa_maps_op = {
3329 	.start  = m_start,
3330 	.next   = m_next,
3331 	.stop   = m_stop,
3332 	.show   = show_numa_map,
3333 };
3334 
3335 static int pid_numa_maps_open(struct inode *inode, struct file *file)
3336 {
3337 	return proc_maps_open(inode, file, &proc_pid_numa_maps_op,
3338 				sizeof(struct numa_maps_private));
3339 }
3340 
3341 const struct file_operations proc_pid_numa_maps_operations = {
3342 	.open		= pid_numa_maps_open,
3343 	.read		= seq_read,
3344 	.llseek		= seq_lseek,
3345 	.release	= proc_map_release,
3346 };
3347 
3348 #endif /* CONFIG_NUMA */
3349