1 // SPDX-License-Identifier: GPL-2.0 2 #include <linux/pagewalk.h> 3 #include <linux/mm_inline.h> 4 #include <linux/hugetlb.h> 5 #include <linux/huge_mm.h> 6 #include <linux/mount.h> 7 #include <linux/ksm.h> 8 #include <linux/seq_file.h> 9 #include <linux/highmem.h> 10 #include <linux/ptrace.h> 11 #include <linux/slab.h> 12 #include <linux/pagemap.h> 13 #include <linux/mempolicy.h> 14 #include <linux/rmap.h> 15 #include <linux/swap.h> 16 #include <linux/sched/mm.h> 17 #include <linux/swapops.h> 18 #include <linux/mmu_notifier.h> 19 #include <linux/page_idle.h> 20 #include <linux/shmem_fs.h> 21 #include <linux/uaccess.h> 22 #include <linux/pkeys.h> 23 #include <linux/minmax.h> 24 #include <linux/overflow.h> 25 #include <linux/buildid.h> 26 27 #include <asm/elf.h> 28 #include <asm/tlb.h> 29 #include <asm/tlbflush.h> 30 #include "internal.h" 31 32 #define SENTINEL_VMA_END -1 33 #define SENTINEL_VMA_GATE -2 34 35 #define SEQ_PUT_DEC(str, val) \ 36 seq_put_decimal_ull_width(m, str, (val) << (PAGE_SHIFT-10), 8) 37 void task_mem(struct seq_file *m, struct mm_struct *mm) 38 { 39 unsigned long text, lib, swap, anon, file, shmem; 40 unsigned long hiwater_vm, total_vm, hiwater_rss, total_rss; 41 42 anon = get_mm_counter_sum(mm, MM_ANONPAGES); 43 file = get_mm_counter_sum(mm, MM_FILEPAGES); 44 shmem = get_mm_counter_sum(mm, MM_SHMEMPAGES); 45 46 /* 47 * Note: to minimize their overhead, mm maintains hiwater_vm and 48 * hiwater_rss only when about to *lower* total_vm or rss. Any 49 * collector of these hiwater stats must therefore get total_vm 50 * and rss too, which will usually be the higher. Barriers? not 51 * worth the effort, such snapshots can always be inconsistent. 52 */ 53 hiwater_vm = total_vm = mm->total_vm; 54 if (hiwater_vm < mm->hiwater_vm) 55 hiwater_vm = mm->hiwater_vm; 56 hiwater_rss = total_rss = anon + file + shmem; 57 if (hiwater_rss < mm->hiwater_rss) 58 hiwater_rss = mm->hiwater_rss; 59 60 /* split executable areas between text and lib */ 61 text = PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK); 62 text = min(text, mm->exec_vm << PAGE_SHIFT); 63 lib = (mm->exec_vm << PAGE_SHIFT) - text; 64 65 swap = get_mm_counter_sum(mm, MM_SWAPENTS); 66 SEQ_PUT_DEC("VmPeak:\t", hiwater_vm); 67 SEQ_PUT_DEC(" kB\nVmSize:\t", total_vm); 68 SEQ_PUT_DEC(" kB\nVmLck:\t", mm->locked_vm); 69 SEQ_PUT_DEC(" kB\nVmPin:\t", atomic64_read(&mm->pinned_vm)); 70 SEQ_PUT_DEC(" kB\nVmHWM:\t", hiwater_rss); 71 SEQ_PUT_DEC(" kB\nVmRSS:\t", total_rss); 72 SEQ_PUT_DEC(" kB\nRssAnon:\t", anon); 73 SEQ_PUT_DEC(" kB\nRssFile:\t", file); 74 SEQ_PUT_DEC(" kB\nRssShmem:\t", shmem); 75 SEQ_PUT_DEC(" kB\nVmData:\t", mm->data_vm); 76 SEQ_PUT_DEC(" kB\nVmStk:\t", mm->stack_vm); 77 seq_put_decimal_ull_width(m, 78 " kB\nVmExe:\t", text >> 10, 8); 79 seq_put_decimal_ull_width(m, 80 " kB\nVmLib:\t", lib >> 10, 8); 81 seq_put_decimal_ull_width(m, 82 " kB\nVmPTE:\t", mm_pgtables_bytes(mm) >> 10, 8); 83 SEQ_PUT_DEC(" kB\nVmSwap:\t", swap); 84 seq_puts(m, " kB\n"); 85 hugetlb_report_usage(m, mm); 86 } 87 #undef SEQ_PUT_DEC 88 89 unsigned long task_vsize(struct mm_struct *mm) 90 { 91 return PAGE_SIZE * mm->total_vm; 92 } 93 94 unsigned long task_statm(struct mm_struct *mm, 95 unsigned long *shared, unsigned long *text, 96 unsigned long *data, unsigned long *resident) 97 { 98 *shared = get_mm_counter_sum(mm, MM_FILEPAGES) + 99 get_mm_counter_sum(mm, MM_SHMEMPAGES); 100 *text = (PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK)) 101 >> PAGE_SHIFT; 102 *data = mm->data_vm + mm->stack_vm; 103 *resident = *shared + get_mm_counter_sum(mm, MM_ANONPAGES); 104 return mm->total_vm; 105 } 106 107 #ifdef CONFIG_NUMA 108 /* 109 * Save get_task_policy() for show_numa_map(). 110 */ 111 static void hold_task_mempolicy(struct proc_maps_private *priv) 112 { 113 struct task_struct *task = priv->task; 114 115 task_lock(task); 116 priv->task_mempolicy = get_task_policy(task); 117 mpol_get(priv->task_mempolicy); 118 task_unlock(task); 119 } 120 static void release_task_mempolicy(struct proc_maps_private *priv) 121 { 122 mpol_put(priv->task_mempolicy); 123 } 124 #else 125 static void hold_task_mempolicy(struct proc_maps_private *priv) 126 { 127 } 128 static void release_task_mempolicy(struct proc_maps_private *priv) 129 { 130 } 131 #endif 132 133 #ifdef CONFIG_PER_VMA_LOCK 134 135 static void reset_lock_ctx(struct proc_maps_locking_ctx *lock_ctx) 136 { 137 lock_ctx->locked_vma = NULL; 138 lock_ctx->mmap_locked = false; 139 } 140 141 static void unlock_ctx_vma(struct proc_maps_locking_ctx *lock_ctx) 142 { 143 if (lock_ctx->locked_vma) { 144 vma_end_read(lock_ctx->locked_vma); 145 lock_ctx->locked_vma = NULL; 146 } 147 } 148 149 static const struct seq_operations proc_pid_maps_op; 150 151 static inline bool lock_vma_range(struct seq_file *m, 152 struct proc_maps_locking_ctx *lock_ctx) 153 { 154 /* 155 * smaps and numa_maps perform page table walk, therefore require 156 * mmap_lock but maps can be read with locking just the vma and 157 * walking the vma tree under rcu read protection. 158 */ 159 if (m->op != &proc_pid_maps_op) { 160 if (mmap_read_lock_killable(lock_ctx->mm)) 161 return false; 162 163 lock_ctx->mmap_locked = true; 164 } else { 165 rcu_read_lock(); 166 reset_lock_ctx(lock_ctx); 167 } 168 169 return true; 170 } 171 172 static inline void unlock_vma_range(struct proc_maps_locking_ctx *lock_ctx) 173 { 174 if (lock_ctx->mmap_locked) { 175 mmap_read_unlock(lock_ctx->mm); 176 } else { 177 unlock_ctx_vma(lock_ctx); 178 rcu_read_unlock(); 179 } 180 } 181 182 static struct vm_area_struct *get_next_vma(struct proc_maps_private *priv, 183 loff_t last_pos) 184 { 185 struct proc_maps_locking_ctx *lock_ctx = &priv->lock_ctx; 186 struct vm_area_struct *vma; 187 188 if (lock_ctx->mmap_locked) 189 return vma_next(&priv->iter); 190 191 unlock_ctx_vma(lock_ctx); 192 vma = lock_next_vma(lock_ctx->mm, &priv->iter, last_pos); 193 if (!IS_ERR_OR_NULL(vma)) 194 lock_ctx->locked_vma = vma; 195 196 return vma; 197 } 198 199 static inline bool fallback_to_mmap_lock(struct proc_maps_private *priv, 200 loff_t pos) 201 { 202 struct proc_maps_locking_ctx *lock_ctx = &priv->lock_ctx; 203 204 if (lock_ctx->mmap_locked) 205 return false; 206 207 rcu_read_unlock(); 208 mmap_read_lock(lock_ctx->mm); 209 /* Reinitialize the iterator after taking mmap_lock */ 210 vma_iter_set(&priv->iter, pos); 211 lock_ctx->mmap_locked = true; 212 213 return true; 214 } 215 216 #else /* CONFIG_PER_VMA_LOCK */ 217 218 static inline bool lock_vma_range(struct seq_file *m, 219 struct proc_maps_locking_ctx *lock_ctx) 220 { 221 return mmap_read_lock_killable(lock_ctx->mm) == 0; 222 } 223 224 static inline void unlock_vma_range(struct proc_maps_locking_ctx *lock_ctx) 225 { 226 mmap_read_unlock(lock_ctx->mm); 227 } 228 229 static struct vm_area_struct *get_next_vma(struct proc_maps_private *priv, 230 loff_t last_pos) 231 { 232 return vma_next(&priv->iter); 233 } 234 235 static inline bool fallback_to_mmap_lock(struct proc_maps_private *priv, 236 loff_t pos) 237 { 238 return false; 239 } 240 241 #endif /* CONFIG_PER_VMA_LOCK */ 242 243 static struct vm_area_struct *proc_get_vma(struct seq_file *m, loff_t *ppos) 244 { 245 struct proc_maps_private *priv = m->private; 246 struct vm_area_struct *vma; 247 248 retry: 249 vma = get_next_vma(priv, *ppos); 250 /* EINTR of EAGAIN is possible */ 251 if (IS_ERR(vma)) { 252 if (PTR_ERR(vma) == -EAGAIN && fallback_to_mmap_lock(priv, *ppos)) 253 goto retry; 254 255 return vma; 256 } 257 258 /* Store previous position to be able to restart if needed */ 259 priv->last_pos = *ppos; 260 if (vma) { 261 /* 262 * Track the end of the reported vma to ensure position changes 263 * even if previous vma was merged with the next vma and we 264 * found the extended vma with the same vm_start. 265 */ 266 *ppos = vma->vm_end; 267 } else { 268 *ppos = SENTINEL_VMA_GATE; 269 vma = get_gate_vma(priv->lock_ctx.mm); 270 } 271 272 return vma; 273 } 274 275 static void *m_start(struct seq_file *m, loff_t *ppos) 276 { 277 struct proc_maps_private *priv = m->private; 278 struct proc_maps_locking_ctx *lock_ctx; 279 loff_t last_addr = *ppos; 280 struct mm_struct *mm; 281 282 /* See m_next(). Zero at the start or after lseek. */ 283 if (last_addr == SENTINEL_VMA_END) 284 return NULL; 285 286 priv->task = get_proc_task(priv->inode); 287 if (!priv->task) 288 return ERR_PTR(-ESRCH); 289 290 lock_ctx = &priv->lock_ctx; 291 mm = lock_ctx->mm; 292 if (!mm || !mmget_not_zero(mm)) { 293 put_task_struct(priv->task); 294 priv->task = NULL; 295 return NULL; 296 } 297 298 if (!lock_vma_range(m, lock_ctx)) { 299 mmput(mm); 300 put_task_struct(priv->task); 301 priv->task = NULL; 302 return ERR_PTR(-EINTR); 303 } 304 305 /* 306 * Reset current position if last_addr was set before 307 * and it's not a sentinel. 308 */ 309 if (last_addr > 0) 310 *ppos = last_addr = priv->last_pos; 311 vma_iter_init(&priv->iter, mm, (unsigned long)last_addr); 312 hold_task_mempolicy(priv); 313 if (last_addr == SENTINEL_VMA_GATE) 314 return get_gate_vma(mm); 315 316 return proc_get_vma(m, ppos); 317 } 318 319 static void *m_next(struct seq_file *m, void *v, loff_t *ppos) 320 { 321 if (*ppos == SENTINEL_VMA_GATE) { 322 *ppos = SENTINEL_VMA_END; 323 return NULL; 324 } 325 return proc_get_vma(m, ppos); 326 } 327 328 static void m_stop(struct seq_file *m, void *v) 329 { 330 struct proc_maps_private *priv = m->private; 331 struct mm_struct *mm = priv->lock_ctx.mm; 332 333 if (!priv->task) 334 return; 335 336 release_task_mempolicy(priv); 337 unlock_vma_range(&priv->lock_ctx); 338 mmput(mm); 339 put_task_struct(priv->task); 340 priv->task = NULL; 341 } 342 343 static int proc_maps_open(struct inode *inode, struct file *file, 344 const struct seq_operations *ops, int psize) 345 { 346 struct proc_maps_private *priv = __seq_open_private(file, ops, psize); 347 348 if (!priv) 349 return -ENOMEM; 350 351 priv->inode = inode; 352 priv->lock_ctx.mm = proc_mem_open(inode, PTRACE_MODE_READ); 353 if (IS_ERR(priv->lock_ctx.mm)) { 354 int err = PTR_ERR(priv->lock_ctx.mm); 355 356 seq_release_private(inode, file); 357 return err; 358 } 359 360 return 0; 361 } 362 363 static int proc_map_release(struct inode *inode, struct file *file) 364 { 365 struct seq_file *seq = file->private_data; 366 struct proc_maps_private *priv = seq->private; 367 368 if (priv->lock_ctx.mm) 369 mmdrop(priv->lock_ctx.mm); 370 371 return seq_release_private(inode, file); 372 } 373 374 static int do_maps_open(struct inode *inode, struct file *file, 375 const struct seq_operations *ops) 376 { 377 return proc_maps_open(inode, file, ops, 378 sizeof(struct proc_maps_private)); 379 } 380 381 static void get_vma_name(struct vm_area_struct *vma, 382 const struct path **path, 383 const char **name, 384 const char **name_fmt) 385 { 386 struct anon_vma_name *anon_name = vma->vm_mm ? anon_vma_name(vma) : NULL; 387 388 *name = NULL; 389 *path = NULL; 390 *name_fmt = NULL; 391 392 /* 393 * Print the dentry name for named mappings, and a 394 * special [heap] marker for the heap: 395 */ 396 if (vma->vm_file) { 397 /* 398 * If user named this anon shared memory via 399 * prctl(PR_SET_VMA ..., use the provided name. 400 */ 401 if (anon_name) { 402 *name_fmt = "[anon_shmem:%s]"; 403 *name = anon_name->name; 404 } else { 405 *path = file_user_path(vma->vm_file); 406 } 407 return; 408 } 409 410 if (vma->vm_ops && vma->vm_ops->name) { 411 *name = vma->vm_ops->name(vma); 412 if (*name) 413 return; 414 } 415 416 *name = arch_vma_name(vma); 417 if (*name) 418 return; 419 420 if (!vma->vm_mm) { 421 *name = "[vdso]"; 422 return; 423 } 424 425 if (vma_is_initial_heap(vma)) { 426 *name = "[heap]"; 427 return; 428 } 429 430 if (vma_is_initial_stack(vma)) { 431 *name = "[stack]"; 432 return; 433 } 434 435 if (anon_name) { 436 *name_fmt = "[anon:%s]"; 437 *name = anon_name->name; 438 return; 439 } 440 } 441 442 static void show_vma_header_prefix(struct seq_file *m, 443 unsigned long start, unsigned long end, 444 vm_flags_t flags, unsigned long long pgoff, 445 dev_t dev, unsigned long ino) 446 { 447 seq_setwidth(m, 25 + sizeof(void *) * 6 - 1); 448 seq_put_hex_ll(m, NULL, start, 8); 449 seq_put_hex_ll(m, "-", end, 8); 450 seq_putc(m, ' '); 451 seq_putc(m, flags & VM_READ ? 'r' : '-'); 452 seq_putc(m, flags & VM_WRITE ? 'w' : '-'); 453 seq_putc(m, flags & VM_EXEC ? 'x' : '-'); 454 seq_putc(m, flags & VM_MAYSHARE ? 's' : 'p'); 455 seq_put_hex_ll(m, " ", pgoff, 8); 456 seq_put_hex_ll(m, " ", MAJOR(dev), 2); 457 seq_put_hex_ll(m, ":", MINOR(dev), 2); 458 seq_put_decimal_ull(m, " ", ino); 459 seq_putc(m, ' '); 460 } 461 462 static void 463 show_map_vma(struct seq_file *m, struct vm_area_struct *vma) 464 { 465 const struct path *path; 466 const char *name_fmt, *name; 467 vm_flags_t flags = vma->vm_flags; 468 unsigned long ino = 0; 469 unsigned long long pgoff = 0; 470 unsigned long start, end; 471 dev_t dev = 0; 472 473 if (vma->vm_file) { 474 const struct inode *inode = file_user_inode(vma->vm_file); 475 476 dev = inode->i_sb->s_dev; 477 ino = inode->i_ino; 478 pgoff = ((loff_t)vma->vm_pgoff) << PAGE_SHIFT; 479 } 480 481 start = vma->vm_start; 482 end = vma->vm_end; 483 show_vma_header_prefix(m, start, end, flags, pgoff, dev, ino); 484 485 get_vma_name(vma, &path, &name, &name_fmt); 486 if (path) { 487 seq_pad(m, ' '); 488 seq_path(m, path, "\n"); 489 } else if (name_fmt) { 490 seq_pad(m, ' '); 491 seq_printf(m, name_fmt, name); 492 } else if (name) { 493 seq_pad(m, ' '); 494 seq_puts(m, name); 495 } 496 seq_putc(m, '\n'); 497 } 498 499 static int show_map(struct seq_file *m, void *v) 500 { 501 show_map_vma(m, v); 502 return 0; 503 } 504 505 static const struct seq_operations proc_pid_maps_op = { 506 .start = m_start, 507 .next = m_next, 508 .stop = m_stop, 509 .show = show_map 510 }; 511 512 static int pid_maps_open(struct inode *inode, struct file *file) 513 { 514 return do_maps_open(inode, file, &proc_pid_maps_op); 515 } 516 517 #define PROCMAP_QUERY_VMA_FLAGS ( \ 518 PROCMAP_QUERY_VMA_READABLE | \ 519 PROCMAP_QUERY_VMA_WRITABLE | \ 520 PROCMAP_QUERY_VMA_EXECUTABLE | \ 521 PROCMAP_QUERY_VMA_SHARED \ 522 ) 523 524 #define PROCMAP_QUERY_VALID_FLAGS_MASK ( \ 525 PROCMAP_QUERY_COVERING_OR_NEXT_VMA | \ 526 PROCMAP_QUERY_FILE_BACKED_VMA | \ 527 PROCMAP_QUERY_VMA_FLAGS \ 528 ) 529 530 #ifdef CONFIG_PER_VMA_LOCK 531 532 static int query_vma_setup(struct proc_maps_locking_ctx *lock_ctx) 533 { 534 reset_lock_ctx(lock_ctx); 535 536 return 0; 537 } 538 539 static void query_vma_teardown(struct proc_maps_locking_ctx *lock_ctx) 540 { 541 if (lock_ctx->mmap_locked) { 542 mmap_read_unlock(lock_ctx->mm); 543 lock_ctx->mmap_locked = false; 544 } else { 545 unlock_ctx_vma(lock_ctx); 546 } 547 } 548 549 static struct vm_area_struct *query_vma_find_by_addr(struct proc_maps_locking_ctx *lock_ctx, 550 unsigned long addr) 551 { 552 struct mm_struct *mm = lock_ctx->mm; 553 struct vm_area_struct *vma; 554 struct vma_iterator vmi; 555 556 if (lock_ctx->mmap_locked) 557 return find_vma(mm, addr); 558 559 /* Unlock previously locked VMA and find the next one under RCU */ 560 unlock_ctx_vma(lock_ctx); 561 rcu_read_lock(); 562 vma_iter_init(&vmi, mm, addr); 563 vma = lock_next_vma(mm, &vmi, addr); 564 rcu_read_unlock(); 565 566 if (!vma) 567 return NULL; 568 569 if (!IS_ERR(vma)) { 570 lock_ctx->locked_vma = vma; 571 return vma; 572 } 573 574 if (PTR_ERR(vma) == -EAGAIN) { 575 /* Fallback to mmap_lock on vma->vm_refcnt overflow */ 576 mmap_read_lock(mm); 577 vma = find_vma(mm, addr); 578 lock_ctx->mmap_locked = true; 579 } 580 581 return vma; 582 } 583 584 #else /* CONFIG_PER_VMA_LOCK */ 585 586 static int query_vma_setup(struct proc_maps_locking_ctx *lock_ctx) 587 { 588 return mmap_read_lock_killable(lock_ctx->mm); 589 } 590 591 static void query_vma_teardown(struct proc_maps_locking_ctx *lock_ctx) 592 { 593 mmap_read_unlock(lock_ctx->mm); 594 } 595 596 static struct vm_area_struct *query_vma_find_by_addr(struct proc_maps_locking_ctx *lock_ctx, 597 unsigned long addr) 598 { 599 return find_vma(lock_ctx->mm, addr); 600 } 601 602 #endif /* CONFIG_PER_VMA_LOCK */ 603 604 static struct vm_area_struct *query_matching_vma(struct proc_maps_locking_ctx *lock_ctx, 605 unsigned long addr, u32 flags) 606 { 607 struct vm_area_struct *vma; 608 609 next_vma: 610 vma = query_vma_find_by_addr(lock_ctx, addr); 611 if (IS_ERR(vma)) 612 return vma; 613 614 if (!vma) 615 goto no_vma; 616 617 /* user requested only file-backed VMA, keep iterating */ 618 if ((flags & PROCMAP_QUERY_FILE_BACKED_VMA) && !vma->vm_file) 619 goto skip_vma; 620 621 /* VMA permissions should satisfy query flags */ 622 if (flags & PROCMAP_QUERY_VMA_FLAGS) { 623 u32 perm = 0; 624 625 if (flags & PROCMAP_QUERY_VMA_READABLE) 626 perm |= VM_READ; 627 if (flags & PROCMAP_QUERY_VMA_WRITABLE) 628 perm |= VM_WRITE; 629 if (flags & PROCMAP_QUERY_VMA_EXECUTABLE) 630 perm |= VM_EXEC; 631 if (flags & PROCMAP_QUERY_VMA_SHARED) 632 perm |= VM_MAYSHARE; 633 634 if ((vma->vm_flags & perm) != perm) 635 goto skip_vma; 636 } 637 638 /* found covering VMA or user is OK with the matching next VMA */ 639 if ((flags & PROCMAP_QUERY_COVERING_OR_NEXT_VMA) || vma->vm_start <= addr) 640 return vma; 641 642 skip_vma: 643 /* 644 * If the user needs closest matching VMA, keep iterating. 645 */ 646 addr = vma->vm_end; 647 if (flags & PROCMAP_QUERY_COVERING_OR_NEXT_VMA) 648 goto next_vma; 649 650 no_vma: 651 return ERR_PTR(-ENOENT); 652 } 653 654 static int do_procmap_query(struct mm_struct *mm, void __user *uarg) 655 { 656 struct proc_maps_locking_ctx lock_ctx = { .mm = mm }; 657 struct procmap_query karg; 658 struct vm_area_struct *vma; 659 const char *name = NULL; 660 char build_id_buf[BUILD_ID_SIZE_MAX], *name_buf = NULL; 661 __u64 usize; 662 int err; 663 664 if (copy_from_user(&usize, (void __user *)uarg, sizeof(usize))) 665 return -EFAULT; 666 /* argument struct can never be that large, reject abuse */ 667 if (usize > PAGE_SIZE) 668 return -E2BIG; 669 /* argument struct should have at least query_flags and query_addr fields */ 670 if (usize < offsetofend(struct procmap_query, query_addr)) 671 return -EINVAL; 672 err = copy_struct_from_user(&karg, sizeof(karg), uarg, usize); 673 if (err) 674 return err; 675 676 /* reject unknown flags */ 677 if (karg.query_flags & ~PROCMAP_QUERY_VALID_FLAGS_MASK) 678 return -EINVAL; 679 /* either both buffer address and size are set, or both should be zero */ 680 if (!!karg.vma_name_size != !!karg.vma_name_addr) 681 return -EINVAL; 682 if (!!karg.build_id_size != !!karg.build_id_addr) 683 return -EINVAL; 684 685 if (!mm || !mmget_not_zero(mm)) 686 return -ESRCH; 687 688 err = query_vma_setup(&lock_ctx); 689 if (err) { 690 mmput(mm); 691 return err; 692 } 693 694 vma = query_matching_vma(&lock_ctx, karg.query_addr, karg.query_flags); 695 if (IS_ERR(vma)) { 696 err = PTR_ERR(vma); 697 vma = NULL; 698 goto out; 699 } 700 701 karg.vma_start = vma->vm_start; 702 karg.vma_end = vma->vm_end; 703 704 karg.vma_flags = 0; 705 if (vma->vm_flags & VM_READ) 706 karg.vma_flags |= PROCMAP_QUERY_VMA_READABLE; 707 if (vma->vm_flags & VM_WRITE) 708 karg.vma_flags |= PROCMAP_QUERY_VMA_WRITABLE; 709 if (vma->vm_flags & VM_EXEC) 710 karg.vma_flags |= PROCMAP_QUERY_VMA_EXECUTABLE; 711 if (vma->vm_flags & VM_MAYSHARE) 712 karg.vma_flags |= PROCMAP_QUERY_VMA_SHARED; 713 714 karg.vma_page_size = vma_kernel_pagesize(vma); 715 716 if (vma->vm_file) { 717 const struct inode *inode = file_user_inode(vma->vm_file); 718 719 karg.vma_offset = ((__u64)vma->vm_pgoff) << PAGE_SHIFT; 720 karg.dev_major = MAJOR(inode->i_sb->s_dev); 721 karg.dev_minor = MINOR(inode->i_sb->s_dev); 722 karg.inode = inode->i_ino; 723 } else { 724 karg.vma_offset = 0; 725 karg.dev_major = 0; 726 karg.dev_minor = 0; 727 karg.inode = 0; 728 } 729 730 if (karg.build_id_size) { 731 __u32 build_id_sz; 732 733 err = build_id_parse(vma, build_id_buf, &build_id_sz); 734 if (err) { 735 karg.build_id_size = 0; 736 } else { 737 if (karg.build_id_size < build_id_sz) { 738 err = -ENAMETOOLONG; 739 goto out; 740 } 741 karg.build_id_size = build_id_sz; 742 } 743 } 744 745 if (karg.vma_name_size) { 746 size_t name_buf_sz = min_t(size_t, PATH_MAX, karg.vma_name_size); 747 const struct path *path; 748 const char *name_fmt; 749 size_t name_sz = 0; 750 751 get_vma_name(vma, &path, &name, &name_fmt); 752 753 if (path || name_fmt || name) { 754 name_buf = kmalloc(name_buf_sz, GFP_KERNEL); 755 if (!name_buf) { 756 err = -ENOMEM; 757 goto out; 758 } 759 } 760 if (path) { 761 name = d_path(path, name_buf, name_buf_sz); 762 if (IS_ERR(name)) { 763 err = PTR_ERR(name); 764 goto out; 765 } 766 name_sz = name_buf + name_buf_sz - name; 767 } else if (name || name_fmt) { 768 name_sz = 1 + snprintf(name_buf, name_buf_sz, name_fmt ?: "%s", name); 769 name = name_buf; 770 } 771 if (name_sz > name_buf_sz) { 772 err = -ENAMETOOLONG; 773 goto out; 774 } 775 karg.vma_name_size = name_sz; 776 } 777 778 /* unlock vma or mmap_lock, and put mm_struct before copying data to user */ 779 query_vma_teardown(&lock_ctx); 780 mmput(mm); 781 782 if (karg.vma_name_size && copy_to_user(u64_to_user_ptr(karg.vma_name_addr), 783 name, karg.vma_name_size)) { 784 kfree(name_buf); 785 return -EFAULT; 786 } 787 kfree(name_buf); 788 789 if (karg.build_id_size && copy_to_user(u64_to_user_ptr(karg.build_id_addr), 790 build_id_buf, karg.build_id_size)) 791 return -EFAULT; 792 793 if (copy_to_user(uarg, &karg, min_t(size_t, sizeof(karg), usize))) 794 return -EFAULT; 795 796 return 0; 797 798 out: 799 query_vma_teardown(&lock_ctx); 800 mmput(mm); 801 kfree(name_buf); 802 return err; 803 } 804 805 static long procfs_procmap_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 806 { 807 struct seq_file *seq = file->private_data; 808 struct proc_maps_private *priv = seq->private; 809 810 switch (cmd) { 811 case PROCMAP_QUERY: 812 /* priv->lock_ctx.mm is set during file open operation */ 813 return do_procmap_query(priv->lock_ctx.mm, (void __user *)arg); 814 default: 815 return -ENOIOCTLCMD; 816 } 817 } 818 819 const struct file_operations proc_pid_maps_operations = { 820 .open = pid_maps_open, 821 .read = seq_read, 822 .llseek = seq_lseek, 823 .release = proc_map_release, 824 .unlocked_ioctl = procfs_procmap_ioctl, 825 .compat_ioctl = compat_ptr_ioctl, 826 }; 827 828 /* 829 * Proportional Set Size(PSS): my share of RSS. 830 * 831 * PSS of a process is the count of pages it has in memory, where each 832 * page is divided by the number of processes sharing it. So if a 833 * process has 1000 pages all to itself, and 1000 shared with one other 834 * process, its PSS will be 1500. 835 * 836 * To keep (accumulated) division errors low, we adopt a 64bit 837 * fixed-point pss counter to minimize division errors. So (pss >> 838 * PSS_SHIFT) would be the real byte count. 839 * 840 * A shift of 12 before division means (assuming 4K page size): 841 * - 1M 3-user-pages add up to 8KB errors; 842 * - supports mapcount up to 2^24, or 16M; 843 * - supports PSS up to 2^52 bytes, or 4PB. 844 */ 845 #define PSS_SHIFT 12 846 847 #ifdef CONFIG_PROC_PAGE_MONITOR 848 struct mem_size_stats { 849 unsigned long resident; 850 unsigned long shared_clean; 851 unsigned long shared_dirty; 852 unsigned long private_clean; 853 unsigned long private_dirty; 854 unsigned long referenced; 855 unsigned long anonymous; 856 unsigned long lazyfree; 857 unsigned long anonymous_thp; 858 unsigned long shmem_thp; 859 unsigned long file_thp; 860 unsigned long swap; 861 unsigned long shared_hugetlb; 862 unsigned long private_hugetlb; 863 unsigned long ksm; 864 u64 pss; 865 u64 pss_anon; 866 u64 pss_file; 867 u64 pss_shmem; 868 u64 pss_dirty; 869 u64 pss_locked; 870 u64 swap_pss; 871 }; 872 873 static void smaps_page_accumulate(struct mem_size_stats *mss, 874 struct folio *folio, unsigned long size, unsigned long pss, 875 bool dirty, bool locked, bool private) 876 { 877 mss->pss += pss; 878 879 if (folio_test_anon(folio)) 880 mss->pss_anon += pss; 881 else if (folio_test_swapbacked(folio)) 882 mss->pss_shmem += pss; 883 else 884 mss->pss_file += pss; 885 886 if (locked) 887 mss->pss_locked += pss; 888 889 if (dirty || folio_test_dirty(folio)) { 890 mss->pss_dirty += pss; 891 if (private) 892 mss->private_dirty += size; 893 else 894 mss->shared_dirty += size; 895 } else { 896 if (private) 897 mss->private_clean += size; 898 else 899 mss->shared_clean += size; 900 } 901 } 902 903 static void smaps_account(struct mem_size_stats *mss, struct page *page, 904 bool compound, bool young, bool dirty, bool locked, 905 bool present) 906 { 907 struct folio *folio = page_folio(page); 908 int i, nr = compound ? compound_nr(page) : 1; 909 unsigned long size = nr * PAGE_SIZE; 910 bool exclusive; 911 int mapcount; 912 913 /* 914 * First accumulate quantities that depend only on |size| and the type 915 * of the compound page. 916 */ 917 if (folio_test_anon(folio)) { 918 mss->anonymous += size; 919 if (!folio_test_swapbacked(folio) && !dirty && 920 !folio_test_dirty(folio)) 921 mss->lazyfree += size; 922 } 923 924 if (folio_test_ksm(folio)) 925 mss->ksm += size; 926 927 mss->resident += size; 928 /* Accumulate the size in pages that have been accessed. */ 929 if (young || folio_test_young(folio) || folio_test_referenced(folio)) 930 mss->referenced += size; 931 932 /* 933 * Then accumulate quantities that may depend on sharing, or that may 934 * differ page-by-page. 935 * 936 * refcount == 1 for present entries guarantees that the folio is mapped 937 * exactly once. For large folios this implies that exactly one 938 * PTE/PMD/... maps (a part of) this folio. 939 * 940 * Treat all non-present entries (where relying on the mapcount and 941 * refcount doesn't make sense) as "maybe shared, but not sure how 942 * often". We treat device private entries as being fake-present. 943 * 944 * Note that it would not be safe to read the mapcount especially for 945 * pages referenced by migration entries, even with the PTL held. 946 */ 947 if (folio_ref_count(folio) == 1 || !present) { 948 smaps_page_accumulate(mss, folio, size, size << PSS_SHIFT, 949 dirty, locked, present); 950 return; 951 } 952 953 if (IS_ENABLED(CONFIG_NO_PAGE_MAPCOUNT)) { 954 mapcount = folio_average_page_mapcount(folio); 955 exclusive = !folio_maybe_mapped_shared(folio); 956 } 957 958 /* 959 * We obtain a snapshot of the mapcount. Without holding the folio lock 960 * this snapshot can be slightly wrong as we cannot always read the 961 * mapcount atomically. 962 */ 963 for (i = 0; i < nr; i++, page++) { 964 unsigned long pss = PAGE_SIZE << PSS_SHIFT; 965 966 if (IS_ENABLED(CONFIG_PAGE_MAPCOUNT)) { 967 mapcount = folio_precise_page_mapcount(folio, page); 968 exclusive = mapcount < 2; 969 } 970 971 if (mapcount >= 2) 972 pss /= mapcount; 973 smaps_page_accumulate(mss, folio, PAGE_SIZE, pss, 974 dirty, locked, exclusive); 975 } 976 } 977 978 #ifdef CONFIG_SHMEM 979 static int smaps_pte_hole(unsigned long addr, unsigned long end, 980 __always_unused int depth, struct mm_walk *walk) 981 { 982 struct mem_size_stats *mss = walk->private; 983 struct vm_area_struct *vma = walk->vma; 984 985 mss->swap += shmem_partial_swap_usage(walk->vma->vm_file->f_mapping, 986 linear_page_index(vma, addr), 987 linear_page_index(vma, end)); 988 989 return 0; 990 } 991 #else 992 #define smaps_pte_hole NULL 993 #endif /* CONFIG_SHMEM */ 994 995 static void smaps_pte_hole_lookup(unsigned long addr, struct mm_walk *walk) 996 { 997 #ifdef CONFIG_SHMEM 998 if (walk->ops->pte_hole) { 999 /* depth is not used */ 1000 smaps_pte_hole(addr, addr + PAGE_SIZE, 0, walk); 1001 } 1002 #endif 1003 } 1004 1005 static void smaps_pte_entry(pte_t *pte, unsigned long addr, 1006 struct mm_walk *walk) 1007 { 1008 struct mem_size_stats *mss = walk->private; 1009 struct vm_area_struct *vma = walk->vma; 1010 bool locked = !!(vma->vm_flags & VM_LOCKED); 1011 struct page *page = NULL; 1012 bool present = false, young = false, dirty = false; 1013 pte_t ptent = ptep_get(pte); 1014 1015 if (pte_present(ptent)) { 1016 page = vm_normal_page(vma, addr, ptent); 1017 young = pte_young(ptent); 1018 dirty = pte_dirty(ptent); 1019 present = true; 1020 } else if (is_swap_pte(ptent)) { 1021 swp_entry_t swpent = pte_to_swp_entry(ptent); 1022 1023 if (!non_swap_entry(swpent)) { 1024 int mapcount; 1025 1026 mss->swap += PAGE_SIZE; 1027 mapcount = swp_swapcount(swpent); 1028 if (mapcount >= 2) { 1029 u64 pss_delta = (u64)PAGE_SIZE << PSS_SHIFT; 1030 1031 do_div(pss_delta, mapcount); 1032 mss->swap_pss += pss_delta; 1033 } else { 1034 mss->swap_pss += (u64)PAGE_SIZE << PSS_SHIFT; 1035 } 1036 } else if (is_pfn_swap_entry(swpent)) { 1037 if (is_device_private_entry(swpent)) 1038 present = true; 1039 page = pfn_swap_entry_to_page(swpent); 1040 } 1041 } else { 1042 smaps_pte_hole_lookup(addr, walk); 1043 return; 1044 } 1045 1046 if (!page) 1047 return; 1048 1049 smaps_account(mss, page, false, young, dirty, locked, present); 1050 } 1051 1052 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1053 static void smaps_pmd_entry(pmd_t *pmd, unsigned long addr, 1054 struct mm_walk *walk) 1055 { 1056 struct mem_size_stats *mss = walk->private; 1057 struct vm_area_struct *vma = walk->vma; 1058 bool locked = !!(vma->vm_flags & VM_LOCKED); 1059 struct page *page = NULL; 1060 bool present = false; 1061 struct folio *folio; 1062 1063 if (pmd_present(*pmd)) { 1064 page = vm_normal_page_pmd(vma, addr, *pmd); 1065 present = true; 1066 } else if (unlikely(thp_migration_supported() && is_swap_pmd(*pmd))) { 1067 swp_entry_t entry = pmd_to_swp_entry(*pmd); 1068 1069 if (is_pfn_swap_entry(entry)) 1070 page = pfn_swap_entry_to_page(entry); 1071 } 1072 if (IS_ERR_OR_NULL(page)) 1073 return; 1074 folio = page_folio(page); 1075 if (folio_test_anon(folio)) 1076 mss->anonymous_thp += HPAGE_PMD_SIZE; 1077 else if (folio_test_swapbacked(folio)) 1078 mss->shmem_thp += HPAGE_PMD_SIZE; 1079 else if (folio_is_zone_device(folio)) 1080 /* pass */; 1081 else 1082 mss->file_thp += HPAGE_PMD_SIZE; 1083 1084 smaps_account(mss, page, true, pmd_young(*pmd), pmd_dirty(*pmd), 1085 locked, present); 1086 } 1087 #else 1088 static void smaps_pmd_entry(pmd_t *pmd, unsigned long addr, 1089 struct mm_walk *walk) 1090 { 1091 } 1092 #endif 1093 1094 static int smaps_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end, 1095 struct mm_walk *walk) 1096 { 1097 struct vm_area_struct *vma = walk->vma; 1098 pte_t *pte; 1099 spinlock_t *ptl; 1100 1101 ptl = pmd_trans_huge_lock(pmd, vma); 1102 if (ptl) { 1103 smaps_pmd_entry(pmd, addr, walk); 1104 spin_unlock(ptl); 1105 goto out; 1106 } 1107 1108 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl); 1109 if (!pte) { 1110 walk->action = ACTION_AGAIN; 1111 return 0; 1112 } 1113 for (; addr != end; pte++, addr += PAGE_SIZE) 1114 smaps_pte_entry(pte, addr, walk); 1115 pte_unmap_unlock(pte - 1, ptl); 1116 out: 1117 cond_resched(); 1118 return 0; 1119 } 1120 1121 static void show_smap_vma_flags(struct seq_file *m, struct vm_area_struct *vma) 1122 { 1123 /* 1124 * Don't forget to update Documentation/ on changes. 1125 * 1126 * The length of the second argument of mnemonics[] 1127 * needs to be 3 instead of previously set 2 1128 * (i.e. from [BITS_PER_LONG][2] to [BITS_PER_LONG][3]) 1129 * to avoid spurious 1130 * -Werror=unterminated-string-initialization warning 1131 * with GCC 15 1132 */ 1133 static const char mnemonics[BITS_PER_LONG][3] = { 1134 /* 1135 * In case if we meet a flag we don't know about. 1136 */ 1137 [0 ... (BITS_PER_LONG-1)] = "??", 1138 1139 [ilog2(VM_READ)] = "rd", 1140 [ilog2(VM_WRITE)] = "wr", 1141 [ilog2(VM_EXEC)] = "ex", 1142 [ilog2(VM_SHARED)] = "sh", 1143 [ilog2(VM_MAYREAD)] = "mr", 1144 [ilog2(VM_MAYWRITE)] = "mw", 1145 [ilog2(VM_MAYEXEC)] = "me", 1146 [ilog2(VM_MAYSHARE)] = "ms", 1147 [ilog2(VM_GROWSDOWN)] = "gd", 1148 [ilog2(VM_PFNMAP)] = "pf", 1149 [ilog2(VM_MAYBE_GUARD)] = "gu", 1150 [ilog2(VM_LOCKED)] = "lo", 1151 [ilog2(VM_IO)] = "io", 1152 [ilog2(VM_SEQ_READ)] = "sr", 1153 [ilog2(VM_RAND_READ)] = "rr", 1154 [ilog2(VM_DONTCOPY)] = "dc", 1155 [ilog2(VM_DONTEXPAND)] = "de", 1156 [ilog2(VM_LOCKONFAULT)] = "lf", 1157 [ilog2(VM_ACCOUNT)] = "ac", 1158 [ilog2(VM_NORESERVE)] = "nr", 1159 [ilog2(VM_HUGETLB)] = "ht", 1160 [ilog2(VM_SYNC)] = "sf", 1161 [ilog2(VM_ARCH_1)] = "ar", 1162 [ilog2(VM_WIPEONFORK)] = "wf", 1163 [ilog2(VM_DONTDUMP)] = "dd", 1164 #ifdef CONFIG_ARM64_BTI 1165 [ilog2(VM_ARM64_BTI)] = "bt", 1166 #endif 1167 #ifdef CONFIG_MEM_SOFT_DIRTY 1168 [ilog2(VM_SOFTDIRTY)] = "sd", 1169 #endif 1170 [ilog2(VM_MIXEDMAP)] = "mm", 1171 [ilog2(VM_HUGEPAGE)] = "hg", 1172 [ilog2(VM_NOHUGEPAGE)] = "nh", 1173 [ilog2(VM_MERGEABLE)] = "mg", 1174 [ilog2(VM_UFFD_MISSING)]= "um", 1175 [ilog2(VM_UFFD_WP)] = "uw", 1176 #ifdef CONFIG_ARM64_MTE 1177 [ilog2(VM_MTE)] = "mt", 1178 [ilog2(VM_MTE_ALLOWED)] = "", 1179 #endif 1180 #ifdef CONFIG_ARCH_HAS_PKEYS 1181 /* These come out via ProtectionKey: */ 1182 [ilog2(VM_PKEY_BIT0)] = "", 1183 [ilog2(VM_PKEY_BIT1)] = "", 1184 [ilog2(VM_PKEY_BIT2)] = "", 1185 #if VM_PKEY_BIT3 1186 [ilog2(VM_PKEY_BIT3)] = "", 1187 #endif 1188 #if VM_PKEY_BIT4 1189 [ilog2(VM_PKEY_BIT4)] = "", 1190 #endif 1191 #endif /* CONFIG_ARCH_HAS_PKEYS */ 1192 #ifdef CONFIG_HAVE_ARCH_USERFAULTFD_MINOR 1193 [ilog2(VM_UFFD_MINOR)] = "ui", 1194 #endif /* CONFIG_HAVE_ARCH_USERFAULTFD_MINOR */ 1195 #ifdef CONFIG_ARCH_HAS_USER_SHADOW_STACK 1196 [ilog2(VM_SHADOW_STACK)] = "ss", 1197 #endif 1198 #if defined(CONFIG_64BIT) || defined(CONFIG_PPC32) 1199 [ilog2(VM_DROPPABLE)] = "dp", 1200 #endif 1201 #ifdef CONFIG_64BIT 1202 [ilog2(VM_SEALED)] = "sl", 1203 #endif 1204 }; 1205 size_t i; 1206 1207 seq_puts(m, "VmFlags: "); 1208 for (i = 0; i < BITS_PER_LONG; i++) { 1209 if (!mnemonics[i][0]) 1210 continue; 1211 if (vma->vm_flags & (1UL << i)) 1212 seq_printf(m, "%s ", mnemonics[i]); 1213 } 1214 seq_putc(m, '\n'); 1215 } 1216 1217 #ifdef CONFIG_HUGETLB_PAGE 1218 static int smaps_hugetlb_range(pte_t *pte, unsigned long hmask, 1219 unsigned long addr, unsigned long end, 1220 struct mm_walk *walk) 1221 { 1222 struct mem_size_stats *mss = walk->private; 1223 struct vm_area_struct *vma = walk->vma; 1224 struct folio *folio = NULL; 1225 bool present = false; 1226 spinlock_t *ptl; 1227 pte_t ptent; 1228 1229 ptl = huge_pte_lock(hstate_vma(vma), walk->mm, pte); 1230 ptent = huge_ptep_get(walk->mm, addr, pte); 1231 if (pte_present(ptent)) { 1232 folio = page_folio(pte_page(ptent)); 1233 present = true; 1234 } else if (is_swap_pte(ptent)) { 1235 swp_entry_t swpent = pte_to_swp_entry(ptent); 1236 1237 if (is_pfn_swap_entry(swpent)) 1238 folio = pfn_swap_entry_folio(swpent); 1239 } 1240 1241 if (folio) { 1242 /* We treat non-present entries as "maybe shared". */ 1243 if (!present || folio_maybe_mapped_shared(folio) || 1244 hugetlb_pmd_shared(pte)) 1245 mss->shared_hugetlb += huge_page_size(hstate_vma(vma)); 1246 else 1247 mss->private_hugetlb += huge_page_size(hstate_vma(vma)); 1248 } 1249 spin_unlock(ptl); 1250 return 0; 1251 } 1252 #else 1253 #define smaps_hugetlb_range NULL 1254 #endif /* HUGETLB_PAGE */ 1255 1256 static const struct mm_walk_ops smaps_walk_ops = { 1257 .pmd_entry = smaps_pte_range, 1258 .hugetlb_entry = smaps_hugetlb_range, 1259 .walk_lock = PGWALK_RDLOCK, 1260 }; 1261 1262 static const struct mm_walk_ops smaps_shmem_walk_ops = { 1263 .pmd_entry = smaps_pte_range, 1264 .hugetlb_entry = smaps_hugetlb_range, 1265 .pte_hole = smaps_pte_hole, 1266 .walk_lock = PGWALK_RDLOCK, 1267 }; 1268 1269 /* 1270 * Gather mem stats from @vma with the indicated beginning 1271 * address @start, and keep them in @mss. 1272 * 1273 * Use vm_start of @vma as the beginning address if @start is 0. 1274 */ 1275 static void smap_gather_stats(struct vm_area_struct *vma, 1276 struct mem_size_stats *mss, unsigned long start) 1277 { 1278 const struct mm_walk_ops *ops = &smaps_walk_ops; 1279 1280 /* Invalid start */ 1281 if (start >= vma->vm_end) 1282 return; 1283 1284 if (vma->vm_file && shmem_mapping(vma->vm_file->f_mapping)) { 1285 /* 1286 * For shared or readonly shmem mappings we know that all 1287 * swapped out pages belong to the shmem object, and we can 1288 * obtain the swap value much more efficiently. For private 1289 * writable mappings, we might have COW pages that are 1290 * not affected by the parent swapped out pages of the shmem 1291 * object, so we have to distinguish them during the page walk. 1292 * Unless we know that the shmem object (or the part mapped by 1293 * our VMA) has no swapped out pages at all. 1294 */ 1295 unsigned long shmem_swapped = shmem_swap_usage(vma); 1296 1297 if (!start && (!shmem_swapped || (vma->vm_flags & VM_SHARED) || 1298 !(vma->vm_flags & VM_WRITE))) { 1299 mss->swap += shmem_swapped; 1300 } else { 1301 ops = &smaps_shmem_walk_ops; 1302 } 1303 } 1304 1305 /* mmap_lock is held in m_start */ 1306 if (!start) 1307 walk_page_vma(vma, ops, mss); 1308 else 1309 walk_page_range(vma->vm_mm, start, vma->vm_end, ops, mss); 1310 } 1311 1312 #define SEQ_PUT_DEC(str, val) \ 1313 seq_put_decimal_ull_width(m, str, (val) >> 10, 8) 1314 1315 /* Show the contents common for smaps and smaps_rollup */ 1316 static void __show_smap(struct seq_file *m, const struct mem_size_stats *mss, 1317 bool rollup_mode) 1318 { 1319 SEQ_PUT_DEC("Rss: ", mss->resident); 1320 SEQ_PUT_DEC(" kB\nPss: ", mss->pss >> PSS_SHIFT); 1321 SEQ_PUT_DEC(" kB\nPss_Dirty: ", mss->pss_dirty >> PSS_SHIFT); 1322 if (rollup_mode) { 1323 /* 1324 * These are meaningful only for smaps_rollup, otherwise two of 1325 * them are zero, and the other one is the same as Pss. 1326 */ 1327 SEQ_PUT_DEC(" kB\nPss_Anon: ", 1328 mss->pss_anon >> PSS_SHIFT); 1329 SEQ_PUT_DEC(" kB\nPss_File: ", 1330 mss->pss_file >> PSS_SHIFT); 1331 SEQ_PUT_DEC(" kB\nPss_Shmem: ", 1332 mss->pss_shmem >> PSS_SHIFT); 1333 } 1334 SEQ_PUT_DEC(" kB\nShared_Clean: ", mss->shared_clean); 1335 SEQ_PUT_DEC(" kB\nShared_Dirty: ", mss->shared_dirty); 1336 SEQ_PUT_DEC(" kB\nPrivate_Clean: ", mss->private_clean); 1337 SEQ_PUT_DEC(" kB\nPrivate_Dirty: ", mss->private_dirty); 1338 SEQ_PUT_DEC(" kB\nReferenced: ", mss->referenced); 1339 SEQ_PUT_DEC(" kB\nAnonymous: ", mss->anonymous); 1340 SEQ_PUT_DEC(" kB\nKSM: ", mss->ksm); 1341 SEQ_PUT_DEC(" kB\nLazyFree: ", mss->lazyfree); 1342 SEQ_PUT_DEC(" kB\nAnonHugePages: ", mss->anonymous_thp); 1343 SEQ_PUT_DEC(" kB\nShmemPmdMapped: ", mss->shmem_thp); 1344 SEQ_PUT_DEC(" kB\nFilePmdMapped: ", mss->file_thp); 1345 SEQ_PUT_DEC(" kB\nShared_Hugetlb: ", mss->shared_hugetlb); 1346 seq_put_decimal_ull_width(m, " kB\nPrivate_Hugetlb: ", 1347 mss->private_hugetlb >> 10, 7); 1348 SEQ_PUT_DEC(" kB\nSwap: ", mss->swap); 1349 SEQ_PUT_DEC(" kB\nSwapPss: ", 1350 mss->swap_pss >> PSS_SHIFT); 1351 SEQ_PUT_DEC(" kB\nLocked: ", 1352 mss->pss_locked >> PSS_SHIFT); 1353 seq_puts(m, " kB\n"); 1354 } 1355 1356 static int show_smap(struct seq_file *m, void *v) 1357 { 1358 struct vm_area_struct *vma = v; 1359 struct mem_size_stats mss = {}; 1360 1361 smap_gather_stats(vma, &mss, 0); 1362 1363 show_map_vma(m, vma); 1364 1365 SEQ_PUT_DEC("Size: ", vma->vm_end - vma->vm_start); 1366 SEQ_PUT_DEC(" kB\nKernelPageSize: ", vma_kernel_pagesize(vma)); 1367 SEQ_PUT_DEC(" kB\nMMUPageSize: ", vma_mmu_pagesize(vma)); 1368 seq_puts(m, " kB\n"); 1369 1370 __show_smap(m, &mss, false); 1371 1372 seq_printf(m, "THPeligible: %8u\n", 1373 !!thp_vma_allowable_orders(vma, vma->vm_flags, TVA_SMAPS, 1374 THP_ORDERS_ALL)); 1375 1376 if (arch_pkeys_enabled()) 1377 seq_printf(m, "ProtectionKey: %8u\n", vma_pkey(vma)); 1378 show_smap_vma_flags(m, vma); 1379 1380 return 0; 1381 } 1382 1383 static int show_smaps_rollup(struct seq_file *m, void *v) 1384 { 1385 struct proc_maps_private *priv = m->private; 1386 struct mem_size_stats mss = {}; 1387 struct mm_struct *mm = priv->lock_ctx.mm; 1388 struct vm_area_struct *vma; 1389 unsigned long vma_start = 0, last_vma_end = 0; 1390 int ret = 0; 1391 VMA_ITERATOR(vmi, mm, 0); 1392 1393 priv->task = get_proc_task(priv->inode); 1394 if (!priv->task) 1395 return -ESRCH; 1396 1397 if (!mm || !mmget_not_zero(mm)) { 1398 ret = -ESRCH; 1399 goto out_put_task; 1400 } 1401 1402 ret = mmap_read_lock_killable(mm); 1403 if (ret) 1404 goto out_put_mm; 1405 1406 hold_task_mempolicy(priv); 1407 vma = vma_next(&vmi); 1408 1409 if (unlikely(!vma)) 1410 goto empty_set; 1411 1412 vma_start = vma->vm_start; 1413 do { 1414 smap_gather_stats(vma, &mss, 0); 1415 last_vma_end = vma->vm_end; 1416 1417 /* 1418 * Release mmap_lock temporarily if someone wants to 1419 * access it for write request. 1420 */ 1421 if (mmap_lock_is_contended(mm)) { 1422 vma_iter_invalidate(&vmi); 1423 mmap_read_unlock(mm); 1424 ret = mmap_read_lock_killable(mm); 1425 if (ret) { 1426 release_task_mempolicy(priv); 1427 goto out_put_mm; 1428 } 1429 1430 /* 1431 * After dropping the lock, there are four cases to 1432 * consider. See the following example for explanation. 1433 * 1434 * +------+------+-----------+ 1435 * | VMA1 | VMA2 | VMA3 | 1436 * +------+------+-----------+ 1437 * | | | | 1438 * 4k 8k 16k 400k 1439 * 1440 * Suppose we drop the lock after reading VMA2 due to 1441 * contention, then we get: 1442 * 1443 * last_vma_end = 16k 1444 * 1445 * 1) VMA2 is freed, but VMA3 exists: 1446 * 1447 * vma_next(vmi) will return VMA3. 1448 * In this case, just continue from VMA3. 1449 * 1450 * 2) VMA2 still exists: 1451 * 1452 * vma_next(vmi) will return VMA3. 1453 * In this case, just continue from VMA3. 1454 * 1455 * 3) No more VMAs can be found: 1456 * 1457 * vma_next(vmi) will return NULL. 1458 * No more things to do, just break. 1459 * 1460 * 4) (last_vma_end - 1) is the middle of a vma (VMA'): 1461 * 1462 * vma_next(vmi) will return VMA' whose range 1463 * contains last_vma_end. 1464 * Iterate VMA' from last_vma_end. 1465 */ 1466 vma = vma_next(&vmi); 1467 /* Case 3 above */ 1468 if (!vma) 1469 break; 1470 1471 /* Case 1 and 2 above */ 1472 if (vma->vm_start >= last_vma_end) { 1473 smap_gather_stats(vma, &mss, 0); 1474 last_vma_end = vma->vm_end; 1475 continue; 1476 } 1477 1478 /* Case 4 above */ 1479 if (vma->vm_end > last_vma_end) { 1480 smap_gather_stats(vma, &mss, last_vma_end); 1481 last_vma_end = vma->vm_end; 1482 } 1483 } 1484 } for_each_vma(vmi, vma); 1485 1486 empty_set: 1487 show_vma_header_prefix(m, vma_start, last_vma_end, 0, 0, 0, 0); 1488 seq_pad(m, ' '); 1489 seq_puts(m, "[rollup]\n"); 1490 1491 __show_smap(m, &mss, true); 1492 1493 release_task_mempolicy(priv); 1494 mmap_read_unlock(mm); 1495 1496 out_put_mm: 1497 mmput(mm); 1498 out_put_task: 1499 put_task_struct(priv->task); 1500 priv->task = NULL; 1501 1502 return ret; 1503 } 1504 #undef SEQ_PUT_DEC 1505 1506 static const struct seq_operations proc_pid_smaps_op = { 1507 .start = m_start, 1508 .next = m_next, 1509 .stop = m_stop, 1510 .show = show_smap 1511 }; 1512 1513 static int pid_smaps_open(struct inode *inode, struct file *file) 1514 { 1515 return do_maps_open(inode, file, &proc_pid_smaps_op); 1516 } 1517 1518 static int smaps_rollup_open(struct inode *inode, struct file *file) 1519 { 1520 int ret; 1521 struct proc_maps_private *priv; 1522 1523 priv = kzalloc(sizeof(*priv), GFP_KERNEL_ACCOUNT); 1524 if (!priv) 1525 return -ENOMEM; 1526 1527 ret = single_open(file, show_smaps_rollup, priv); 1528 if (ret) 1529 goto out_free; 1530 1531 priv->inode = inode; 1532 priv->lock_ctx.mm = proc_mem_open(inode, PTRACE_MODE_READ); 1533 if (IS_ERR_OR_NULL(priv->lock_ctx.mm)) { 1534 ret = priv->lock_ctx.mm ? PTR_ERR(priv->lock_ctx.mm) : -ESRCH; 1535 1536 single_release(inode, file); 1537 goto out_free; 1538 } 1539 1540 return 0; 1541 1542 out_free: 1543 kfree(priv); 1544 return ret; 1545 } 1546 1547 static int smaps_rollup_release(struct inode *inode, struct file *file) 1548 { 1549 struct seq_file *seq = file->private_data; 1550 struct proc_maps_private *priv = seq->private; 1551 1552 if (priv->lock_ctx.mm) 1553 mmdrop(priv->lock_ctx.mm); 1554 1555 kfree(priv); 1556 return single_release(inode, file); 1557 } 1558 1559 const struct file_operations proc_pid_smaps_operations = { 1560 .open = pid_smaps_open, 1561 .read = seq_read, 1562 .llseek = seq_lseek, 1563 .release = proc_map_release, 1564 }; 1565 1566 const struct file_operations proc_pid_smaps_rollup_operations = { 1567 .open = smaps_rollup_open, 1568 .read = seq_read, 1569 .llseek = seq_lseek, 1570 .release = smaps_rollup_release, 1571 }; 1572 1573 enum clear_refs_types { 1574 CLEAR_REFS_ALL = 1, 1575 CLEAR_REFS_ANON, 1576 CLEAR_REFS_MAPPED, 1577 CLEAR_REFS_SOFT_DIRTY, 1578 CLEAR_REFS_MM_HIWATER_RSS, 1579 CLEAR_REFS_LAST, 1580 }; 1581 1582 struct clear_refs_private { 1583 enum clear_refs_types type; 1584 }; 1585 1586 #ifdef CONFIG_MEM_SOFT_DIRTY 1587 1588 static inline bool pte_is_pinned(struct vm_area_struct *vma, unsigned long addr, pte_t pte) 1589 { 1590 struct folio *folio; 1591 1592 if (!pte_write(pte)) 1593 return false; 1594 if (!is_cow_mapping(vma->vm_flags)) 1595 return false; 1596 if (likely(!mm_flags_test(MMF_HAS_PINNED, vma->vm_mm))) 1597 return false; 1598 folio = vm_normal_folio(vma, addr, pte); 1599 if (!folio) 1600 return false; 1601 return folio_maybe_dma_pinned(folio); 1602 } 1603 1604 static inline void clear_soft_dirty(struct vm_area_struct *vma, 1605 unsigned long addr, pte_t *pte) 1606 { 1607 /* 1608 * The soft-dirty tracker uses #PF-s to catch writes 1609 * to pages, so write-protect the pte as well. See the 1610 * Documentation/admin-guide/mm/soft-dirty.rst for full description 1611 * of how soft-dirty works. 1612 */ 1613 pte_t ptent = ptep_get(pte); 1614 1615 if (pte_present(ptent)) { 1616 pte_t old_pte; 1617 1618 if (pte_is_pinned(vma, addr, ptent)) 1619 return; 1620 old_pte = ptep_modify_prot_start(vma, addr, pte); 1621 ptent = pte_wrprotect(old_pte); 1622 ptent = pte_clear_soft_dirty(ptent); 1623 ptep_modify_prot_commit(vma, addr, pte, old_pte, ptent); 1624 } else if (is_swap_pte(ptent)) { 1625 ptent = pte_swp_clear_soft_dirty(ptent); 1626 set_pte_at(vma->vm_mm, addr, pte, ptent); 1627 } 1628 } 1629 #else 1630 static inline void clear_soft_dirty(struct vm_area_struct *vma, 1631 unsigned long addr, pte_t *pte) 1632 { 1633 } 1634 #endif 1635 1636 #if defined(CONFIG_MEM_SOFT_DIRTY) && defined(CONFIG_TRANSPARENT_HUGEPAGE) 1637 static inline void clear_soft_dirty_pmd(struct vm_area_struct *vma, 1638 unsigned long addr, pmd_t *pmdp) 1639 { 1640 pmd_t old, pmd = *pmdp; 1641 1642 if (pmd_present(pmd)) { 1643 /* See comment in change_huge_pmd() */ 1644 old = pmdp_invalidate(vma, addr, pmdp); 1645 if (pmd_dirty(old)) 1646 pmd = pmd_mkdirty(pmd); 1647 if (pmd_young(old)) 1648 pmd = pmd_mkyoung(pmd); 1649 1650 pmd = pmd_wrprotect(pmd); 1651 pmd = pmd_clear_soft_dirty(pmd); 1652 1653 set_pmd_at(vma->vm_mm, addr, pmdp, pmd); 1654 } else if (is_migration_entry(pmd_to_swp_entry(pmd))) { 1655 pmd = pmd_swp_clear_soft_dirty(pmd); 1656 set_pmd_at(vma->vm_mm, addr, pmdp, pmd); 1657 } 1658 } 1659 #else 1660 static inline void clear_soft_dirty_pmd(struct vm_area_struct *vma, 1661 unsigned long addr, pmd_t *pmdp) 1662 { 1663 } 1664 #endif 1665 1666 static int clear_refs_pte_range(pmd_t *pmd, unsigned long addr, 1667 unsigned long end, struct mm_walk *walk) 1668 { 1669 struct clear_refs_private *cp = walk->private; 1670 struct vm_area_struct *vma = walk->vma; 1671 pte_t *pte, ptent; 1672 spinlock_t *ptl; 1673 struct folio *folio; 1674 1675 ptl = pmd_trans_huge_lock(pmd, vma); 1676 if (ptl) { 1677 if (cp->type == CLEAR_REFS_SOFT_DIRTY) { 1678 clear_soft_dirty_pmd(vma, addr, pmd); 1679 goto out; 1680 } 1681 1682 if (!pmd_present(*pmd)) 1683 goto out; 1684 1685 folio = pmd_folio(*pmd); 1686 1687 /* Clear accessed and referenced bits. */ 1688 pmdp_test_and_clear_young(vma, addr, pmd); 1689 folio_test_clear_young(folio); 1690 folio_clear_referenced(folio); 1691 out: 1692 spin_unlock(ptl); 1693 return 0; 1694 } 1695 1696 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl); 1697 if (!pte) { 1698 walk->action = ACTION_AGAIN; 1699 return 0; 1700 } 1701 for (; addr != end; pte++, addr += PAGE_SIZE) { 1702 ptent = ptep_get(pte); 1703 1704 if (cp->type == CLEAR_REFS_SOFT_DIRTY) { 1705 clear_soft_dirty(vma, addr, pte); 1706 continue; 1707 } 1708 1709 if (!pte_present(ptent)) 1710 continue; 1711 1712 folio = vm_normal_folio(vma, addr, ptent); 1713 if (!folio) 1714 continue; 1715 1716 /* Clear accessed and referenced bits. */ 1717 ptep_test_and_clear_young(vma, addr, pte); 1718 folio_test_clear_young(folio); 1719 folio_clear_referenced(folio); 1720 } 1721 pte_unmap_unlock(pte - 1, ptl); 1722 cond_resched(); 1723 return 0; 1724 } 1725 1726 static int clear_refs_test_walk(unsigned long start, unsigned long end, 1727 struct mm_walk *walk) 1728 { 1729 struct clear_refs_private *cp = walk->private; 1730 struct vm_area_struct *vma = walk->vma; 1731 1732 if (vma->vm_flags & VM_PFNMAP) 1733 return 1; 1734 1735 /* 1736 * Writing 1 to /proc/pid/clear_refs affects all pages. 1737 * Writing 2 to /proc/pid/clear_refs only affects anonymous pages. 1738 * Writing 3 to /proc/pid/clear_refs only affects file mapped pages. 1739 * Writing 4 to /proc/pid/clear_refs affects all pages. 1740 */ 1741 if (cp->type == CLEAR_REFS_ANON && vma->vm_file) 1742 return 1; 1743 if (cp->type == CLEAR_REFS_MAPPED && !vma->vm_file) 1744 return 1; 1745 return 0; 1746 } 1747 1748 static const struct mm_walk_ops clear_refs_walk_ops = { 1749 .pmd_entry = clear_refs_pte_range, 1750 .test_walk = clear_refs_test_walk, 1751 .walk_lock = PGWALK_WRLOCK, 1752 }; 1753 1754 static ssize_t clear_refs_write(struct file *file, const char __user *buf, 1755 size_t count, loff_t *ppos) 1756 { 1757 struct task_struct *task; 1758 char buffer[PROC_NUMBUF] = {}; 1759 struct mm_struct *mm; 1760 struct vm_area_struct *vma; 1761 enum clear_refs_types type; 1762 int itype; 1763 int rv; 1764 1765 if (count > sizeof(buffer) - 1) 1766 count = sizeof(buffer) - 1; 1767 if (copy_from_user(buffer, buf, count)) 1768 return -EFAULT; 1769 rv = kstrtoint(strstrip(buffer), 10, &itype); 1770 if (rv < 0) 1771 return rv; 1772 type = (enum clear_refs_types)itype; 1773 if (type < CLEAR_REFS_ALL || type >= CLEAR_REFS_LAST) 1774 return -EINVAL; 1775 1776 task = get_proc_task(file_inode(file)); 1777 if (!task) 1778 return -ESRCH; 1779 mm = get_task_mm(task); 1780 if (mm) { 1781 VMA_ITERATOR(vmi, mm, 0); 1782 struct mmu_notifier_range range; 1783 struct clear_refs_private cp = { 1784 .type = type, 1785 }; 1786 1787 if (mmap_write_lock_killable(mm)) { 1788 count = -EINTR; 1789 goto out_mm; 1790 } 1791 if (type == CLEAR_REFS_MM_HIWATER_RSS) { 1792 /* 1793 * Writing 5 to /proc/pid/clear_refs resets the peak 1794 * resident set size to this mm's current rss value. 1795 */ 1796 reset_mm_hiwater_rss(mm); 1797 goto out_unlock; 1798 } 1799 1800 if (type == CLEAR_REFS_SOFT_DIRTY) { 1801 for_each_vma(vmi, vma) { 1802 if (!(vma->vm_flags & VM_SOFTDIRTY)) 1803 continue; 1804 vm_flags_clear(vma, VM_SOFTDIRTY); 1805 vma_set_page_prot(vma); 1806 } 1807 1808 inc_tlb_flush_pending(mm); 1809 mmu_notifier_range_init(&range, MMU_NOTIFY_SOFT_DIRTY, 1810 0, mm, 0, -1UL); 1811 mmu_notifier_invalidate_range_start(&range); 1812 } 1813 walk_page_range(mm, 0, -1, &clear_refs_walk_ops, &cp); 1814 if (type == CLEAR_REFS_SOFT_DIRTY) { 1815 mmu_notifier_invalidate_range_end(&range); 1816 flush_tlb_mm(mm); 1817 dec_tlb_flush_pending(mm); 1818 } 1819 out_unlock: 1820 mmap_write_unlock(mm); 1821 out_mm: 1822 mmput(mm); 1823 } 1824 put_task_struct(task); 1825 1826 return count; 1827 } 1828 1829 const struct file_operations proc_clear_refs_operations = { 1830 .write = clear_refs_write, 1831 .llseek = noop_llseek, 1832 }; 1833 1834 typedef struct { 1835 u64 pme; 1836 } pagemap_entry_t; 1837 1838 struct pagemapread { 1839 int pos, len; /* units: PM_ENTRY_BYTES, not bytes */ 1840 pagemap_entry_t *buffer; 1841 bool show_pfn; 1842 }; 1843 1844 #define PAGEMAP_WALK_SIZE (PMD_SIZE) 1845 #define PAGEMAP_WALK_MASK (PMD_MASK) 1846 1847 #define PM_ENTRY_BYTES sizeof(pagemap_entry_t) 1848 #define PM_PFRAME_BITS 55 1849 #define PM_PFRAME_MASK GENMASK_ULL(PM_PFRAME_BITS - 1, 0) 1850 #define PM_SOFT_DIRTY BIT_ULL(55) 1851 #define PM_MMAP_EXCLUSIVE BIT_ULL(56) 1852 #define PM_UFFD_WP BIT_ULL(57) 1853 #define PM_GUARD_REGION BIT_ULL(58) 1854 #define PM_FILE BIT_ULL(61) 1855 #define PM_SWAP BIT_ULL(62) 1856 #define PM_PRESENT BIT_ULL(63) 1857 1858 #define PM_END_OF_BUFFER 1 1859 1860 static inline pagemap_entry_t make_pme(u64 frame, u64 flags) 1861 { 1862 return (pagemap_entry_t) { .pme = (frame & PM_PFRAME_MASK) | flags }; 1863 } 1864 1865 static int add_to_pagemap(pagemap_entry_t *pme, struct pagemapread *pm) 1866 { 1867 pm->buffer[pm->pos++] = *pme; 1868 if (pm->pos >= pm->len) 1869 return PM_END_OF_BUFFER; 1870 return 0; 1871 } 1872 1873 static bool __folio_page_mapped_exclusively(struct folio *folio, struct page *page) 1874 { 1875 if (IS_ENABLED(CONFIG_PAGE_MAPCOUNT)) 1876 return folio_precise_page_mapcount(folio, page) == 1; 1877 return !folio_maybe_mapped_shared(folio); 1878 } 1879 1880 static int pagemap_pte_hole(unsigned long start, unsigned long end, 1881 __always_unused int depth, struct mm_walk *walk) 1882 { 1883 struct pagemapread *pm = walk->private; 1884 unsigned long addr = start; 1885 int err = 0; 1886 1887 while (addr < end) { 1888 struct vm_area_struct *vma = find_vma(walk->mm, addr); 1889 pagemap_entry_t pme = make_pme(0, 0); 1890 /* End of address space hole, which we mark as non-present. */ 1891 unsigned long hole_end; 1892 1893 if (vma) 1894 hole_end = min(end, vma->vm_start); 1895 else 1896 hole_end = end; 1897 1898 for (; addr < hole_end; addr += PAGE_SIZE) { 1899 err = add_to_pagemap(&pme, pm); 1900 if (err) 1901 goto out; 1902 } 1903 1904 if (!vma) 1905 break; 1906 1907 /* Addresses in the VMA. */ 1908 if (vma->vm_flags & VM_SOFTDIRTY) 1909 pme = make_pme(0, PM_SOFT_DIRTY); 1910 for (; addr < min(end, vma->vm_end); addr += PAGE_SIZE) { 1911 err = add_to_pagemap(&pme, pm); 1912 if (err) 1913 goto out; 1914 } 1915 } 1916 out: 1917 return err; 1918 } 1919 1920 static pagemap_entry_t pte_to_pagemap_entry(struct pagemapread *pm, 1921 struct vm_area_struct *vma, unsigned long addr, pte_t pte) 1922 { 1923 u64 frame = 0, flags = 0; 1924 struct page *page = NULL; 1925 struct folio *folio; 1926 1927 if (pte_present(pte)) { 1928 if (pm->show_pfn) 1929 frame = pte_pfn(pte); 1930 flags |= PM_PRESENT; 1931 page = vm_normal_page(vma, addr, pte); 1932 if (pte_soft_dirty(pte)) 1933 flags |= PM_SOFT_DIRTY; 1934 if (pte_uffd_wp(pte)) 1935 flags |= PM_UFFD_WP; 1936 } else if (is_swap_pte(pte)) { 1937 swp_entry_t entry; 1938 if (pte_swp_soft_dirty(pte)) 1939 flags |= PM_SOFT_DIRTY; 1940 if (pte_swp_uffd_wp(pte)) 1941 flags |= PM_UFFD_WP; 1942 entry = pte_to_swp_entry(pte); 1943 if (pm->show_pfn) { 1944 pgoff_t offset; 1945 /* 1946 * For PFN swap offsets, keeping the offset field 1947 * to be PFN only to be compatible with old smaps. 1948 */ 1949 if (is_pfn_swap_entry(entry)) 1950 offset = swp_offset_pfn(entry); 1951 else 1952 offset = swp_offset(entry); 1953 frame = swp_type(entry) | 1954 (offset << MAX_SWAPFILES_SHIFT); 1955 } 1956 flags |= PM_SWAP; 1957 if (is_pfn_swap_entry(entry)) 1958 page = pfn_swap_entry_to_page(entry); 1959 if (pte_marker_entry_uffd_wp(entry)) 1960 flags |= PM_UFFD_WP; 1961 if (is_guard_swp_entry(entry)) 1962 flags |= PM_GUARD_REGION; 1963 } 1964 1965 if (page) { 1966 folio = page_folio(page); 1967 if (!folio_test_anon(folio)) 1968 flags |= PM_FILE; 1969 if ((flags & PM_PRESENT) && 1970 __folio_page_mapped_exclusively(folio, page)) 1971 flags |= PM_MMAP_EXCLUSIVE; 1972 } 1973 if (vma->vm_flags & VM_SOFTDIRTY) 1974 flags |= PM_SOFT_DIRTY; 1975 1976 return make_pme(frame, flags); 1977 } 1978 1979 static int pagemap_pmd_range(pmd_t *pmdp, unsigned long addr, unsigned long end, 1980 struct mm_walk *walk) 1981 { 1982 struct vm_area_struct *vma = walk->vma; 1983 struct pagemapread *pm = walk->private; 1984 spinlock_t *ptl; 1985 pte_t *pte, *orig_pte; 1986 int err = 0; 1987 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1988 1989 ptl = pmd_trans_huge_lock(pmdp, vma); 1990 if (ptl) { 1991 unsigned int idx = (addr & ~PMD_MASK) >> PAGE_SHIFT; 1992 u64 flags = 0, frame = 0; 1993 pmd_t pmd = *pmdp; 1994 struct page *page = NULL; 1995 struct folio *folio = NULL; 1996 1997 if (vma->vm_flags & VM_SOFTDIRTY) 1998 flags |= PM_SOFT_DIRTY; 1999 2000 if (pmd_present(pmd)) { 2001 page = pmd_page(pmd); 2002 2003 flags |= PM_PRESENT; 2004 if (pmd_soft_dirty(pmd)) 2005 flags |= PM_SOFT_DIRTY; 2006 if (pmd_uffd_wp(pmd)) 2007 flags |= PM_UFFD_WP; 2008 if (pm->show_pfn) 2009 frame = pmd_pfn(pmd) + idx; 2010 } 2011 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION 2012 else if (is_swap_pmd(pmd)) { 2013 swp_entry_t entry = pmd_to_swp_entry(pmd); 2014 unsigned long offset; 2015 2016 if (pm->show_pfn) { 2017 if (is_pfn_swap_entry(entry)) 2018 offset = swp_offset_pfn(entry) + idx; 2019 else 2020 offset = swp_offset(entry) + idx; 2021 frame = swp_type(entry) | 2022 (offset << MAX_SWAPFILES_SHIFT); 2023 } 2024 flags |= PM_SWAP; 2025 if (pmd_swp_soft_dirty(pmd)) 2026 flags |= PM_SOFT_DIRTY; 2027 if (pmd_swp_uffd_wp(pmd)) 2028 flags |= PM_UFFD_WP; 2029 VM_BUG_ON(!is_pmd_migration_entry(pmd)); 2030 page = pfn_swap_entry_to_page(entry); 2031 } 2032 #endif 2033 2034 if (page) { 2035 folio = page_folio(page); 2036 if (!folio_test_anon(folio)) 2037 flags |= PM_FILE; 2038 } 2039 2040 for (; addr != end; addr += PAGE_SIZE, idx++) { 2041 u64 cur_flags = flags; 2042 pagemap_entry_t pme; 2043 2044 if (folio && (flags & PM_PRESENT) && 2045 __folio_page_mapped_exclusively(folio, page)) 2046 cur_flags |= PM_MMAP_EXCLUSIVE; 2047 2048 pme = make_pme(frame, cur_flags); 2049 err = add_to_pagemap(&pme, pm); 2050 if (err) 2051 break; 2052 if (pm->show_pfn) { 2053 if (flags & PM_PRESENT) 2054 frame++; 2055 else if (flags & PM_SWAP) 2056 frame += (1 << MAX_SWAPFILES_SHIFT); 2057 } 2058 } 2059 spin_unlock(ptl); 2060 return err; 2061 } 2062 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 2063 2064 /* 2065 * We can assume that @vma always points to a valid one and @end never 2066 * goes beyond vma->vm_end. 2067 */ 2068 orig_pte = pte = pte_offset_map_lock(walk->mm, pmdp, addr, &ptl); 2069 if (!pte) { 2070 walk->action = ACTION_AGAIN; 2071 return err; 2072 } 2073 for (; addr < end; pte++, addr += PAGE_SIZE) { 2074 pagemap_entry_t pme; 2075 2076 pme = pte_to_pagemap_entry(pm, vma, addr, ptep_get(pte)); 2077 err = add_to_pagemap(&pme, pm); 2078 if (err) 2079 break; 2080 } 2081 pte_unmap_unlock(orig_pte, ptl); 2082 2083 cond_resched(); 2084 2085 return err; 2086 } 2087 2088 #ifdef CONFIG_HUGETLB_PAGE 2089 /* This function walks within one hugetlb entry in the single call */ 2090 static int pagemap_hugetlb_range(pte_t *ptep, unsigned long hmask, 2091 unsigned long addr, unsigned long end, 2092 struct mm_walk *walk) 2093 { 2094 struct pagemapread *pm = walk->private; 2095 struct vm_area_struct *vma = walk->vma; 2096 u64 flags = 0, frame = 0; 2097 spinlock_t *ptl; 2098 int err = 0; 2099 pte_t pte; 2100 2101 if (vma->vm_flags & VM_SOFTDIRTY) 2102 flags |= PM_SOFT_DIRTY; 2103 2104 ptl = huge_pte_lock(hstate_vma(vma), walk->mm, ptep); 2105 pte = huge_ptep_get(walk->mm, addr, ptep); 2106 if (pte_present(pte)) { 2107 struct folio *folio = page_folio(pte_page(pte)); 2108 2109 if (!folio_test_anon(folio)) 2110 flags |= PM_FILE; 2111 2112 if (!folio_maybe_mapped_shared(folio) && 2113 !hugetlb_pmd_shared(ptep)) 2114 flags |= PM_MMAP_EXCLUSIVE; 2115 2116 if (huge_pte_uffd_wp(pte)) 2117 flags |= PM_UFFD_WP; 2118 2119 flags |= PM_PRESENT; 2120 if (pm->show_pfn) 2121 frame = pte_pfn(pte) + 2122 ((addr & ~hmask) >> PAGE_SHIFT); 2123 } else if (pte_swp_uffd_wp_any(pte)) { 2124 flags |= PM_UFFD_WP; 2125 } 2126 2127 for (; addr != end; addr += PAGE_SIZE) { 2128 pagemap_entry_t pme = make_pme(frame, flags); 2129 2130 err = add_to_pagemap(&pme, pm); 2131 if (err) 2132 break; 2133 if (pm->show_pfn && (flags & PM_PRESENT)) 2134 frame++; 2135 } 2136 2137 spin_unlock(ptl); 2138 cond_resched(); 2139 2140 return err; 2141 } 2142 #else 2143 #define pagemap_hugetlb_range NULL 2144 #endif /* HUGETLB_PAGE */ 2145 2146 static const struct mm_walk_ops pagemap_ops = { 2147 .pmd_entry = pagemap_pmd_range, 2148 .pte_hole = pagemap_pte_hole, 2149 .hugetlb_entry = pagemap_hugetlb_range, 2150 .walk_lock = PGWALK_RDLOCK, 2151 }; 2152 2153 /* 2154 * /proc/pid/pagemap - an array mapping virtual pages to pfns 2155 * 2156 * For each page in the address space, this file contains one 64-bit entry 2157 * consisting of the following: 2158 * 2159 * Bits 0-54 page frame number (PFN) if present 2160 * Bits 0-4 swap type if swapped 2161 * Bits 5-54 swap offset if swapped 2162 * Bit 55 pte is soft-dirty (see Documentation/admin-guide/mm/soft-dirty.rst) 2163 * Bit 56 page exclusively mapped 2164 * Bit 57 pte is uffd-wp write-protected 2165 * Bit 58 pte is a guard region 2166 * Bits 59-60 zero 2167 * Bit 61 page is file-page or shared-anon 2168 * Bit 62 page swapped 2169 * Bit 63 page present 2170 * 2171 * If the page is not present but in swap, then the PFN contains an 2172 * encoding of the swap file number and the page's offset into the 2173 * swap. Unmapped pages return a null PFN. This allows determining 2174 * precisely which pages are mapped (or in swap) and comparing mapped 2175 * pages between processes. 2176 * 2177 * Efficient users of this interface will use /proc/pid/maps to 2178 * determine which areas of memory are actually mapped and llseek to 2179 * skip over unmapped regions. 2180 */ 2181 static ssize_t pagemap_read(struct file *file, char __user *buf, 2182 size_t count, loff_t *ppos) 2183 { 2184 struct mm_struct *mm = file->private_data; 2185 struct pagemapread pm; 2186 unsigned long src; 2187 unsigned long svpfn; 2188 unsigned long start_vaddr; 2189 unsigned long end_vaddr; 2190 int ret = 0, copied = 0; 2191 2192 if (!mm || !mmget_not_zero(mm)) 2193 goto out; 2194 2195 ret = -EINVAL; 2196 /* file position must be aligned */ 2197 if ((*ppos % PM_ENTRY_BYTES) || (count % PM_ENTRY_BYTES)) 2198 goto out_mm; 2199 2200 ret = 0; 2201 if (!count) 2202 goto out_mm; 2203 2204 /* do not disclose physical addresses: attack vector */ 2205 pm.show_pfn = file_ns_capable(file, &init_user_ns, CAP_SYS_ADMIN); 2206 2207 pm.len = (PAGEMAP_WALK_SIZE >> PAGE_SHIFT); 2208 pm.buffer = kmalloc_array(pm.len, PM_ENTRY_BYTES, GFP_KERNEL); 2209 ret = -ENOMEM; 2210 if (!pm.buffer) 2211 goto out_mm; 2212 2213 src = *ppos; 2214 svpfn = src / PM_ENTRY_BYTES; 2215 end_vaddr = mm->task_size; 2216 2217 /* watch out for wraparound */ 2218 start_vaddr = end_vaddr; 2219 if (svpfn <= (ULONG_MAX >> PAGE_SHIFT)) { 2220 unsigned long end; 2221 2222 ret = mmap_read_lock_killable(mm); 2223 if (ret) 2224 goto out_free; 2225 start_vaddr = untagged_addr_remote(mm, svpfn << PAGE_SHIFT); 2226 mmap_read_unlock(mm); 2227 2228 end = start_vaddr + ((count / PM_ENTRY_BYTES) << PAGE_SHIFT); 2229 if (end >= start_vaddr && end < mm->task_size) 2230 end_vaddr = end; 2231 } 2232 2233 /* Ensure the address is inside the task */ 2234 if (start_vaddr > mm->task_size) 2235 start_vaddr = end_vaddr; 2236 2237 ret = 0; 2238 while (count && (start_vaddr < end_vaddr)) { 2239 int len; 2240 unsigned long end; 2241 2242 pm.pos = 0; 2243 end = (start_vaddr + PAGEMAP_WALK_SIZE) & PAGEMAP_WALK_MASK; 2244 /* overflow ? */ 2245 if (end < start_vaddr || end > end_vaddr) 2246 end = end_vaddr; 2247 ret = mmap_read_lock_killable(mm); 2248 if (ret) 2249 goto out_free; 2250 ret = walk_page_range(mm, start_vaddr, end, &pagemap_ops, &pm); 2251 mmap_read_unlock(mm); 2252 start_vaddr = end; 2253 2254 len = min(count, PM_ENTRY_BYTES * pm.pos); 2255 if (copy_to_user(buf, pm.buffer, len)) { 2256 ret = -EFAULT; 2257 goto out_free; 2258 } 2259 copied += len; 2260 buf += len; 2261 count -= len; 2262 } 2263 *ppos += copied; 2264 if (!ret || ret == PM_END_OF_BUFFER) 2265 ret = copied; 2266 2267 out_free: 2268 kfree(pm.buffer); 2269 out_mm: 2270 mmput(mm); 2271 out: 2272 return ret; 2273 } 2274 2275 static int pagemap_open(struct inode *inode, struct file *file) 2276 { 2277 struct mm_struct *mm; 2278 2279 mm = proc_mem_open(inode, PTRACE_MODE_READ); 2280 if (IS_ERR_OR_NULL(mm)) 2281 return mm ? PTR_ERR(mm) : -ESRCH; 2282 file->private_data = mm; 2283 return 0; 2284 } 2285 2286 static int pagemap_release(struct inode *inode, struct file *file) 2287 { 2288 struct mm_struct *mm = file->private_data; 2289 2290 if (mm) 2291 mmdrop(mm); 2292 return 0; 2293 } 2294 2295 #define PM_SCAN_CATEGORIES (PAGE_IS_WPALLOWED | PAGE_IS_WRITTEN | \ 2296 PAGE_IS_FILE | PAGE_IS_PRESENT | \ 2297 PAGE_IS_SWAPPED | PAGE_IS_PFNZERO | \ 2298 PAGE_IS_HUGE | PAGE_IS_SOFT_DIRTY | \ 2299 PAGE_IS_GUARD) 2300 #define PM_SCAN_FLAGS (PM_SCAN_WP_MATCHING | PM_SCAN_CHECK_WPASYNC) 2301 2302 struct pagemap_scan_private { 2303 struct pm_scan_arg arg; 2304 unsigned long masks_of_interest, cur_vma_category; 2305 struct page_region *vec_buf; 2306 unsigned long vec_buf_len, vec_buf_index, found_pages; 2307 struct page_region __user *vec_out; 2308 }; 2309 2310 static unsigned long pagemap_page_category(struct pagemap_scan_private *p, 2311 struct vm_area_struct *vma, 2312 unsigned long addr, pte_t pte) 2313 { 2314 unsigned long categories = 0; 2315 2316 if (pte_present(pte)) { 2317 struct page *page; 2318 2319 categories |= PAGE_IS_PRESENT; 2320 if (!pte_uffd_wp(pte)) 2321 categories |= PAGE_IS_WRITTEN; 2322 2323 if (p->masks_of_interest & PAGE_IS_FILE) { 2324 page = vm_normal_page(vma, addr, pte); 2325 if (page && !PageAnon(page)) 2326 categories |= PAGE_IS_FILE; 2327 } 2328 2329 if (is_zero_pfn(pte_pfn(pte))) 2330 categories |= PAGE_IS_PFNZERO; 2331 if (pte_soft_dirty(pte)) 2332 categories |= PAGE_IS_SOFT_DIRTY; 2333 } else if (is_swap_pte(pte)) { 2334 swp_entry_t swp; 2335 2336 categories |= PAGE_IS_SWAPPED; 2337 if (!pte_swp_uffd_wp_any(pte)) 2338 categories |= PAGE_IS_WRITTEN; 2339 2340 swp = pte_to_swp_entry(pte); 2341 if (is_guard_swp_entry(swp)) 2342 categories |= PAGE_IS_GUARD; 2343 else if ((p->masks_of_interest & PAGE_IS_FILE) && 2344 is_pfn_swap_entry(swp) && 2345 !folio_test_anon(pfn_swap_entry_folio(swp))) 2346 categories |= PAGE_IS_FILE; 2347 2348 if (pte_swp_soft_dirty(pte)) 2349 categories |= PAGE_IS_SOFT_DIRTY; 2350 } 2351 2352 return categories; 2353 } 2354 2355 static void make_uffd_wp_pte(struct vm_area_struct *vma, 2356 unsigned long addr, pte_t *pte, pte_t ptent) 2357 { 2358 if (pte_present(ptent)) { 2359 pte_t old_pte; 2360 2361 old_pte = ptep_modify_prot_start(vma, addr, pte); 2362 ptent = pte_mkuffd_wp(old_pte); 2363 ptep_modify_prot_commit(vma, addr, pte, old_pte, ptent); 2364 } else if (is_swap_pte(ptent)) { 2365 ptent = pte_swp_mkuffd_wp(ptent); 2366 set_pte_at(vma->vm_mm, addr, pte, ptent); 2367 } else { 2368 set_pte_at(vma->vm_mm, addr, pte, 2369 make_pte_marker(PTE_MARKER_UFFD_WP)); 2370 } 2371 } 2372 2373 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 2374 static unsigned long pagemap_thp_category(struct pagemap_scan_private *p, 2375 struct vm_area_struct *vma, 2376 unsigned long addr, pmd_t pmd) 2377 { 2378 unsigned long categories = PAGE_IS_HUGE; 2379 2380 if (pmd_present(pmd)) { 2381 struct page *page; 2382 2383 categories |= PAGE_IS_PRESENT; 2384 if (!pmd_uffd_wp(pmd)) 2385 categories |= PAGE_IS_WRITTEN; 2386 2387 if (p->masks_of_interest & PAGE_IS_FILE) { 2388 page = vm_normal_page_pmd(vma, addr, pmd); 2389 if (page && !PageAnon(page)) 2390 categories |= PAGE_IS_FILE; 2391 } 2392 2393 if (is_huge_zero_pmd(pmd)) 2394 categories |= PAGE_IS_PFNZERO; 2395 if (pmd_soft_dirty(pmd)) 2396 categories |= PAGE_IS_SOFT_DIRTY; 2397 } else if (is_swap_pmd(pmd)) { 2398 swp_entry_t swp; 2399 2400 categories |= PAGE_IS_SWAPPED; 2401 if (!pmd_swp_uffd_wp(pmd)) 2402 categories |= PAGE_IS_WRITTEN; 2403 if (pmd_swp_soft_dirty(pmd)) 2404 categories |= PAGE_IS_SOFT_DIRTY; 2405 2406 if (p->masks_of_interest & PAGE_IS_FILE) { 2407 swp = pmd_to_swp_entry(pmd); 2408 if (is_pfn_swap_entry(swp) && 2409 !folio_test_anon(pfn_swap_entry_folio(swp))) 2410 categories |= PAGE_IS_FILE; 2411 } 2412 } 2413 2414 return categories; 2415 } 2416 2417 static void make_uffd_wp_pmd(struct vm_area_struct *vma, 2418 unsigned long addr, pmd_t *pmdp) 2419 { 2420 pmd_t old, pmd = *pmdp; 2421 2422 if (pmd_present(pmd)) { 2423 old = pmdp_invalidate_ad(vma, addr, pmdp); 2424 pmd = pmd_mkuffd_wp(old); 2425 set_pmd_at(vma->vm_mm, addr, pmdp, pmd); 2426 } else if (is_migration_entry(pmd_to_swp_entry(pmd))) { 2427 pmd = pmd_swp_mkuffd_wp(pmd); 2428 set_pmd_at(vma->vm_mm, addr, pmdp, pmd); 2429 } 2430 } 2431 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 2432 2433 #ifdef CONFIG_HUGETLB_PAGE 2434 static unsigned long pagemap_hugetlb_category(pte_t pte) 2435 { 2436 unsigned long categories = PAGE_IS_HUGE; 2437 2438 /* 2439 * According to pagemap_hugetlb_range(), file-backed HugeTLB 2440 * page cannot be swapped. So PAGE_IS_FILE is not checked for 2441 * swapped pages. 2442 */ 2443 if (pte_present(pte)) { 2444 categories |= PAGE_IS_PRESENT; 2445 if (!huge_pte_uffd_wp(pte)) 2446 categories |= PAGE_IS_WRITTEN; 2447 if (!PageAnon(pte_page(pte))) 2448 categories |= PAGE_IS_FILE; 2449 if (is_zero_pfn(pte_pfn(pte))) 2450 categories |= PAGE_IS_PFNZERO; 2451 if (pte_soft_dirty(pte)) 2452 categories |= PAGE_IS_SOFT_DIRTY; 2453 } else if (is_swap_pte(pte)) { 2454 categories |= PAGE_IS_SWAPPED; 2455 if (!pte_swp_uffd_wp_any(pte)) 2456 categories |= PAGE_IS_WRITTEN; 2457 if (pte_swp_soft_dirty(pte)) 2458 categories |= PAGE_IS_SOFT_DIRTY; 2459 } 2460 2461 return categories; 2462 } 2463 2464 static void make_uffd_wp_huge_pte(struct vm_area_struct *vma, 2465 unsigned long addr, pte_t *ptep, 2466 pte_t ptent) 2467 { 2468 unsigned long psize; 2469 2470 if (is_hugetlb_entry_hwpoisoned(ptent) || is_pte_marker(ptent)) 2471 return; 2472 2473 psize = huge_page_size(hstate_vma(vma)); 2474 2475 if (is_hugetlb_entry_migration(ptent)) 2476 set_huge_pte_at(vma->vm_mm, addr, ptep, 2477 pte_swp_mkuffd_wp(ptent), psize); 2478 else if (!huge_pte_none(ptent)) 2479 huge_ptep_modify_prot_commit(vma, addr, ptep, ptent, 2480 huge_pte_mkuffd_wp(ptent)); 2481 else 2482 set_huge_pte_at(vma->vm_mm, addr, ptep, 2483 make_pte_marker(PTE_MARKER_UFFD_WP), psize); 2484 } 2485 #endif /* CONFIG_HUGETLB_PAGE */ 2486 2487 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLB_PAGE) 2488 static void pagemap_scan_backout_range(struct pagemap_scan_private *p, 2489 unsigned long addr, unsigned long end) 2490 { 2491 struct page_region *cur_buf = &p->vec_buf[p->vec_buf_index]; 2492 2493 if (!p->vec_buf) 2494 return; 2495 2496 if (cur_buf->start != addr) 2497 cur_buf->end = addr; 2498 else 2499 cur_buf->start = cur_buf->end = 0; 2500 2501 p->found_pages -= (end - addr) / PAGE_SIZE; 2502 } 2503 #endif 2504 2505 static bool pagemap_scan_is_interesting_page(unsigned long categories, 2506 const struct pagemap_scan_private *p) 2507 { 2508 categories ^= p->arg.category_inverted; 2509 if ((categories & p->arg.category_mask) != p->arg.category_mask) 2510 return false; 2511 if (p->arg.category_anyof_mask && !(categories & p->arg.category_anyof_mask)) 2512 return false; 2513 2514 return true; 2515 } 2516 2517 static bool pagemap_scan_is_interesting_vma(unsigned long categories, 2518 const struct pagemap_scan_private *p) 2519 { 2520 unsigned long required = p->arg.category_mask & PAGE_IS_WPALLOWED; 2521 2522 categories ^= p->arg.category_inverted; 2523 if ((categories & required) != required) 2524 return false; 2525 2526 return true; 2527 } 2528 2529 static int pagemap_scan_test_walk(unsigned long start, unsigned long end, 2530 struct mm_walk *walk) 2531 { 2532 struct pagemap_scan_private *p = walk->private; 2533 struct vm_area_struct *vma = walk->vma; 2534 unsigned long vma_category = 0; 2535 bool wp_allowed = userfaultfd_wp_async(vma) && 2536 userfaultfd_wp_use_markers(vma); 2537 2538 if (!wp_allowed) { 2539 /* User requested explicit failure over wp-async capability */ 2540 if (p->arg.flags & PM_SCAN_CHECK_WPASYNC) 2541 return -EPERM; 2542 /* 2543 * User requires wr-protect, and allows silently skipping 2544 * unsupported vmas. 2545 */ 2546 if (p->arg.flags & PM_SCAN_WP_MATCHING) 2547 return 1; 2548 /* 2549 * Then the request doesn't involve wr-protects at all, 2550 * fall through to the rest checks, and allow vma walk. 2551 */ 2552 } 2553 2554 if (vma->vm_flags & VM_PFNMAP) 2555 return 1; 2556 2557 if (wp_allowed) 2558 vma_category |= PAGE_IS_WPALLOWED; 2559 2560 if (vma->vm_flags & VM_SOFTDIRTY) 2561 vma_category |= PAGE_IS_SOFT_DIRTY; 2562 2563 if (!pagemap_scan_is_interesting_vma(vma_category, p)) 2564 return 1; 2565 2566 p->cur_vma_category = vma_category; 2567 2568 return 0; 2569 } 2570 2571 static bool pagemap_scan_push_range(unsigned long categories, 2572 struct pagemap_scan_private *p, 2573 unsigned long addr, unsigned long end) 2574 { 2575 struct page_region *cur_buf = &p->vec_buf[p->vec_buf_index]; 2576 2577 /* 2578 * When there is no output buffer provided at all, the sentinel values 2579 * won't match here. There is no other way for `cur_buf->end` to be 2580 * non-zero other than it being non-empty. 2581 */ 2582 if (addr == cur_buf->end && categories == cur_buf->categories) { 2583 cur_buf->end = end; 2584 return true; 2585 } 2586 2587 if (cur_buf->end) { 2588 if (p->vec_buf_index >= p->vec_buf_len - 1) 2589 return false; 2590 2591 cur_buf = &p->vec_buf[++p->vec_buf_index]; 2592 } 2593 2594 cur_buf->start = addr; 2595 cur_buf->end = end; 2596 cur_buf->categories = categories; 2597 2598 return true; 2599 } 2600 2601 static int pagemap_scan_output(unsigned long categories, 2602 struct pagemap_scan_private *p, 2603 unsigned long addr, unsigned long *end) 2604 { 2605 unsigned long n_pages, total_pages; 2606 int ret = 0; 2607 2608 if (!p->vec_buf) 2609 return 0; 2610 2611 categories &= p->arg.return_mask; 2612 2613 n_pages = (*end - addr) / PAGE_SIZE; 2614 if (check_add_overflow(p->found_pages, n_pages, &total_pages) || 2615 total_pages > p->arg.max_pages) { 2616 size_t n_too_much = total_pages - p->arg.max_pages; 2617 *end -= n_too_much * PAGE_SIZE; 2618 n_pages -= n_too_much; 2619 ret = -ENOSPC; 2620 } 2621 2622 if (!pagemap_scan_push_range(categories, p, addr, *end)) { 2623 *end = addr; 2624 n_pages = 0; 2625 ret = -ENOSPC; 2626 } 2627 2628 p->found_pages += n_pages; 2629 if (ret) 2630 p->arg.walk_end = *end; 2631 2632 return ret; 2633 } 2634 2635 static int pagemap_scan_thp_entry(pmd_t *pmd, unsigned long start, 2636 unsigned long end, struct mm_walk *walk) 2637 { 2638 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 2639 struct pagemap_scan_private *p = walk->private; 2640 struct vm_area_struct *vma = walk->vma; 2641 unsigned long categories; 2642 spinlock_t *ptl; 2643 int ret = 0; 2644 2645 ptl = pmd_trans_huge_lock(pmd, vma); 2646 if (!ptl) 2647 return -ENOENT; 2648 2649 categories = p->cur_vma_category | 2650 pagemap_thp_category(p, vma, start, *pmd); 2651 2652 if (!pagemap_scan_is_interesting_page(categories, p)) 2653 goto out_unlock; 2654 2655 ret = pagemap_scan_output(categories, p, start, &end); 2656 if (start == end) 2657 goto out_unlock; 2658 2659 if (~p->arg.flags & PM_SCAN_WP_MATCHING) 2660 goto out_unlock; 2661 if (~categories & PAGE_IS_WRITTEN) 2662 goto out_unlock; 2663 2664 /* 2665 * Break huge page into small pages if the WP operation 2666 * needs to be performed on a portion of the huge page. 2667 */ 2668 if (end != start + HPAGE_SIZE) { 2669 spin_unlock(ptl); 2670 split_huge_pmd(vma, pmd, start); 2671 pagemap_scan_backout_range(p, start, end); 2672 /* Report as if there was no THP */ 2673 return -ENOENT; 2674 } 2675 2676 make_uffd_wp_pmd(vma, start, pmd); 2677 flush_tlb_range(vma, start, end); 2678 out_unlock: 2679 spin_unlock(ptl); 2680 return ret; 2681 #else /* !CONFIG_TRANSPARENT_HUGEPAGE */ 2682 return -ENOENT; 2683 #endif 2684 } 2685 2686 static int pagemap_scan_pmd_entry(pmd_t *pmd, unsigned long start, 2687 unsigned long end, struct mm_walk *walk) 2688 { 2689 struct pagemap_scan_private *p = walk->private; 2690 struct vm_area_struct *vma = walk->vma; 2691 unsigned long addr, flush_end = 0; 2692 pte_t *pte, *start_pte; 2693 spinlock_t *ptl; 2694 int ret; 2695 2696 ret = pagemap_scan_thp_entry(pmd, start, end, walk); 2697 if (ret != -ENOENT) 2698 return ret; 2699 2700 ret = 0; 2701 start_pte = pte = pte_offset_map_lock(vma->vm_mm, pmd, start, &ptl); 2702 if (!pte) { 2703 walk->action = ACTION_AGAIN; 2704 return 0; 2705 } 2706 2707 arch_enter_lazy_mmu_mode(); 2708 2709 if ((p->arg.flags & PM_SCAN_WP_MATCHING) && !p->vec_out) { 2710 /* Fast path for performing exclusive WP */ 2711 for (addr = start; addr != end; pte++, addr += PAGE_SIZE) { 2712 pte_t ptent = ptep_get(pte); 2713 2714 if ((pte_present(ptent) && pte_uffd_wp(ptent)) || 2715 pte_swp_uffd_wp_any(ptent)) 2716 continue; 2717 make_uffd_wp_pte(vma, addr, pte, ptent); 2718 if (!flush_end) 2719 start = addr; 2720 flush_end = addr + PAGE_SIZE; 2721 } 2722 goto flush_and_return; 2723 } 2724 2725 if (!p->arg.category_anyof_mask && !p->arg.category_inverted && 2726 p->arg.category_mask == PAGE_IS_WRITTEN && 2727 p->arg.return_mask == PAGE_IS_WRITTEN) { 2728 for (addr = start; addr < end; pte++, addr += PAGE_SIZE) { 2729 unsigned long next = addr + PAGE_SIZE; 2730 pte_t ptent = ptep_get(pte); 2731 2732 if ((pte_present(ptent) && pte_uffd_wp(ptent)) || 2733 pte_swp_uffd_wp_any(ptent)) 2734 continue; 2735 ret = pagemap_scan_output(p->cur_vma_category | PAGE_IS_WRITTEN, 2736 p, addr, &next); 2737 if (next == addr) 2738 break; 2739 if (~p->arg.flags & PM_SCAN_WP_MATCHING) 2740 continue; 2741 make_uffd_wp_pte(vma, addr, pte, ptent); 2742 if (!flush_end) 2743 start = addr; 2744 flush_end = next; 2745 } 2746 goto flush_and_return; 2747 } 2748 2749 for (addr = start; addr != end; pte++, addr += PAGE_SIZE) { 2750 pte_t ptent = ptep_get(pte); 2751 unsigned long categories = p->cur_vma_category | 2752 pagemap_page_category(p, vma, addr, ptent); 2753 unsigned long next = addr + PAGE_SIZE; 2754 2755 if (!pagemap_scan_is_interesting_page(categories, p)) 2756 continue; 2757 2758 ret = pagemap_scan_output(categories, p, addr, &next); 2759 if (next == addr) 2760 break; 2761 2762 if (~p->arg.flags & PM_SCAN_WP_MATCHING) 2763 continue; 2764 if (~categories & PAGE_IS_WRITTEN) 2765 continue; 2766 2767 make_uffd_wp_pte(vma, addr, pte, ptent); 2768 if (!flush_end) 2769 start = addr; 2770 flush_end = next; 2771 } 2772 2773 flush_and_return: 2774 if (flush_end) 2775 flush_tlb_range(vma, start, addr); 2776 2777 arch_leave_lazy_mmu_mode(); 2778 pte_unmap_unlock(start_pte, ptl); 2779 2780 cond_resched(); 2781 return ret; 2782 } 2783 2784 #ifdef CONFIG_HUGETLB_PAGE 2785 static int pagemap_scan_hugetlb_entry(pte_t *ptep, unsigned long hmask, 2786 unsigned long start, unsigned long end, 2787 struct mm_walk *walk) 2788 { 2789 struct pagemap_scan_private *p = walk->private; 2790 struct vm_area_struct *vma = walk->vma; 2791 unsigned long categories; 2792 spinlock_t *ptl; 2793 int ret = 0; 2794 pte_t pte; 2795 2796 if (~p->arg.flags & PM_SCAN_WP_MATCHING) { 2797 /* Go the short route when not write-protecting pages. */ 2798 2799 pte = huge_ptep_get(walk->mm, start, ptep); 2800 categories = p->cur_vma_category | pagemap_hugetlb_category(pte); 2801 2802 if (!pagemap_scan_is_interesting_page(categories, p)) 2803 return 0; 2804 2805 return pagemap_scan_output(categories, p, start, &end); 2806 } 2807 2808 i_mmap_lock_write(vma->vm_file->f_mapping); 2809 ptl = huge_pte_lock(hstate_vma(vma), vma->vm_mm, ptep); 2810 2811 pte = huge_ptep_get(walk->mm, start, ptep); 2812 categories = p->cur_vma_category | pagemap_hugetlb_category(pte); 2813 2814 if (!pagemap_scan_is_interesting_page(categories, p)) 2815 goto out_unlock; 2816 2817 ret = pagemap_scan_output(categories, p, start, &end); 2818 if (start == end) 2819 goto out_unlock; 2820 2821 if (~categories & PAGE_IS_WRITTEN) 2822 goto out_unlock; 2823 2824 if (end != start + HPAGE_SIZE) { 2825 /* Partial HugeTLB page WP isn't possible. */ 2826 pagemap_scan_backout_range(p, start, end); 2827 p->arg.walk_end = start; 2828 ret = 0; 2829 goto out_unlock; 2830 } 2831 2832 make_uffd_wp_huge_pte(vma, start, ptep, pte); 2833 flush_hugetlb_tlb_range(vma, start, end); 2834 2835 out_unlock: 2836 spin_unlock(ptl); 2837 i_mmap_unlock_write(vma->vm_file->f_mapping); 2838 2839 return ret; 2840 } 2841 #else 2842 #define pagemap_scan_hugetlb_entry NULL 2843 #endif 2844 2845 static int pagemap_scan_pte_hole(unsigned long addr, unsigned long end, 2846 int depth, struct mm_walk *walk) 2847 { 2848 struct pagemap_scan_private *p = walk->private; 2849 struct vm_area_struct *vma = walk->vma; 2850 int ret, err; 2851 2852 if (!vma || !pagemap_scan_is_interesting_page(p->cur_vma_category, p)) 2853 return 0; 2854 2855 ret = pagemap_scan_output(p->cur_vma_category, p, addr, &end); 2856 if (addr == end) 2857 return ret; 2858 2859 if (~p->arg.flags & PM_SCAN_WP_MATCHING) 2860 return ret; 2861 2862 err = uffd_wp_range(vma, addr, end - addr, true); 2863 if (err < 0) 2864 ret = err; 2865 2866 return ret; 2867 } 2868 2869 static const struct mm_walk_ops pagemap_scan_ops = { 2870 .test_walk = pagemap_scan_test_walk, 2871 .pmd_entry = pagemap_scan_pmd_entry, 2872 .pte_hole = pagemap_scan_pte_hole, 2873 .hugetlb_entry = pagemap_scan_hugetlb_entry, 2874 }; 2875 2876 static int pagemap_scan_get_args(struct pm_scan_arg *arg, 2877 unsigned long uarg) 2878 { 2879 if (copy_from_user(arg, (void __user *)uarg, sizeof(*arg))) 2880 return -EFAULT; 2881 2882 if (arg->size != sizeof(struct pm_scan_arg)) 2883 return -EINVAL; 2884 2885 /* Validate requested features */ 2886 if (arg->flags & ~PM_SCAN_FLAGS) 2887 return -EINVAL; 2888 if ((arg->category_inverted | arg->category_mask | 2889 arg->category_anyof_mask | arg->return_mask) & ~PM_SCAN_CATEGORIES) 2890 return -EINVAL; 2891 2892 arg->start = untagged_addr((unsigned long)arg->start); 2893 arg->end = untagged_addr((unsigned long)arg->end); 2894 arg->vec = untagged_addr((unsigned long)arg->vec); 2895 2896 /* Validate memory pointers */ 2897 if (!IS_ALIGNED(arg->start, PAGE_SIZE)) 2898 return -EINVAL; 2899 if (!access_ok((void __user *)(long)arg->start, arg->end - arg->start)) 2900 return -EFAULT; 2901 if (!arg->vec && arg->vec_len) 2902 return -EINVAL; 2903 if (UINT_MAX == SIZE_MAX && arg->vec_len > SIZE_MAX) 2904 return -EINVAL; 2905 if (arg->vec && !access_ok((void __user *)(long)arg->vec, 2906 size_mul(arg->vec_len, sizeof(struct page_region)))) 2907 return -EFAULT; 2908 2909 /* Fixup default values */ 2910 arg->end = ALIGN(arg->end, PAGE_SIZE); 2911 arg->walk_end = 0; 2912 if (!arg->max_pages) 2913 arg->max_pages = ULONG_MAX; 2914 2915 return 0; 2916 } 2917 2918 static int pagemap_scan_writeback_args(struct pm_scan_arg *arg, 2919 unsigned long uargl) 2920 { 2921 struct pm_scan_arg __user *uarg = (void __user *)uargl; 2922 2923 if (copy_to_user(&uarg->walk_end, &arg->walk_end, sizeof(arg->walk_end))) 2924 return -EFAULT; 2925 2926 return 0; 2927 } 2928 2929 static int pagemap_scan_init_bounce_buffer(struct pagemap_scan_private *p) 2930 { 2931 if (!p->arg.vec_len) 2932 return 0; 2933 2934 p->vec_buf_len = min_t(size_t, PAGEMAP_WALK_SIZE >> PAGE_SHIFT, 2935 p->arg.vec_len); 2936 p->vec_buf = kmalloc_array(p->vec_buf_len, sizeof(*p->vec_buf), 2937 GFP_KERNEL); 2938 if (!p->vec_buf) 2939 return -ENOMEM; 2940 2941 p->vec_buf->start = p->vec_buf->end = 0; 2942 p->vec_out = (struct page_region __user *)(long)p->arg.vec; 2943 2944 return 0; 2945 } 2946 2947 static long pagemap_scan_flush_buffer(struct pagemap_scan_private *p) 2948 { 2949 const struct page_region *buf = p->vec_buf; 2950 long n = p->vec_buf_index; 2951 2952 if (!p->vec_buf) 2953 return 0; 2954 2955 if (buf[n].end != buf[n].start) 2956 n++; 2957 2958 if (!n) 2959 return 0; 2960 2961 if (copy_to_user(p->vec_out, buf, n * sizeof(*buf))) 2962 return -EFAULT; 2963 2964 p->arg.vec_len -= n; 2965 p->vec_out += n; 2966 2967 p->vec_buf_index = 0; 2968 p->vec_buf_len = min_t(size_t, p->vec_buf_len, p->arg.vec_len); 2969 p->vec_buf->start = p->vec_buf->end = 0; 2970 2971 return n; 2972 } 2973 2974 static long do_pagemap_scan(struct mm_struct *mm, unsigned long uarg) 2975 { 2976 struct pagemap_scan_private p = {0}; 2977 unsigned long walk_start; 2978 size_t n_ranges_out = 0; 2979 int ret; 2980 2981 ret = pagemap_scan_get_args(&p.arg, uarg); 2982 if (ret) 2983 return ret; 2984 2985 p.masks_of_interest = p.arg.category_mask | p.arg.category_anyof_mask | 2986 p.arg.return_mask; 2987 ret = pagemap_scan_init_bounce_buffer(&p); 2988 if (ret) 2989 return ret; 2990 2991 for (walk_start = p.arg.start; walk_start < p.arg.end; 2992 walk_start = p.arg.walk_end) { 2993 struct mmu_notifier_range range; 2994 long n_out; 2995 2996 if (fatal_signal_pending(current)) { 2997 ret = -EINTR; 2998 break; 2999 } 3000 3001 ret = mmap_read_lock_killable(mm); 3002 if (ret) 3003 break; 3004 3005 /* Protection change for the range is going to happen. */ 3006 if (p.arg.flags & PM_SCAN_WP_MATCHING) { 3007 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_VMA, 0, 3008 mm, walk_start, p.arg.end); 3009 mmu_notifier_invalidate_range_start(&range); 3010 } 3011 3012 ret = walk_page_range(mm, walk_start, p.arg.end, 3013 &pagemap_scan_ops, &p); 3014 3015 if (p.arg.flags & PM_SCAN_WP_MATCHING) 3016 mmu_notifier_invalidate_range_end(&range); 3017 3018 mmap_read_unlock(mm); 3019 3020 n_out = pagemap_scan_flush_buffer(&p); 3021 if (n_out < 0) 3022 ret = n_out; 3023 else 3024 n_ranges_out += n_out; 3025 3026 if (ret != -ENOSPC) 3027 break; 3028 3029 if (p.arg.vec_len == 0 || p.found_pages == p.arg.max_pages) 3030 break; 3031 } 3032 3033 /* ENOSPC signifies early stop (buffer full) from the walk. */ 3034 if (!ret || ret == -ENOSPC) 3035 ret = n_ranges_out; 3036 3037 /* The walk_end isn't set when ret is zero */ 3038 if (!p.arg.walk_end) 3039 p.arg.walk_end = p.arg.end; 3040 if (pagemap_scan_writeback_args(&p.arg, uarg)) 3041 ret = -EFAULT; 3042 3043 kfree(p.vec_buf); 3044 return ret; 3045 } 3046 3047 static long do_pagemap_cmd(struct file *file, unsigned int cmd, 3048 unsigned long arg) 3049 { 3050 struct mm_struct *mm = file->private_data; 3051 3052 switch (cmd) { 3053 case PAGEMAP_SCAN: 3054 return do_pagemap_scan(mm, arg); 3055 3056 default: 3057 return -EINVAL; 3058 } 3059 } 3060 3061 const struct file_operations proc_pagemap_operations = { 3062 .llseek = mem_lseek, /* borrow this */ 3063 .read = pagemap_read, 3064 .open = pagemap_open, 3065 .release = pagemap_release, 3066 .unlocked_ioctl = do_pagemap_cmd, 3067 .compat_ioctl = do_pagemap_cmd, 3068 }; 3069 #endif /* CONFIG_PROC_PAGE_MONITOR */ 3070 3071 #ifdef CONFIG_NUMA 3072 3073 struct numa_maps { 3074 unsigned long pages; 3075 unsigned long anon; 3076 unsigned long active; 3077 unsigned long writeback; 3078 unsigned long mapcount_max; 3079 unsigned long dirty; 3080 unsigned long swapcache; 3081 unsigned long node[MAX_NUMNODES]; 3082 }; 3083 3084 struct numa_maps_private { 3085 struct proc_maps_private proc_maps; 3086 struct numa_maps md; 3087 }; 3088 3089 static void gather_stats(struct page *page, struct numa_maps *md, int pte_dirty, 3090 unsigned long nr_pages) 3091 { 3092 struct folio *folio = page_folio(page); 3093 int count; 3094 3095 if (IS_ENABLED(CONFIG_PAGE_MAPCOUNT)) 3096 count = folio_precise_page_mapcount(folio, page); 3097 else 3098 count = folio_average_page_mapcount(folio); 3099 3100 md->pages += nr_pages; 3101 if (pte_dirty || folio_test_dirty(folio)) 3102 md->dirty += nr_pages; 3103 3104 if (folio_test_swapcache(folio)) 3105 md->swapcache += nr_pages; 3106 3107 if (folio_test_active(folio) || folio_test_unevictable(folio)) 3108 md->active += nr_pages; 3109 3110 if (folio_test_writeback(folio)) 3111 md->writeback += nr_pages; 3112 3113 if (folio_test_anon(folio)) 3114 md->anon += nr_pages; 3115 3116 if (count > md->mapcount_max) 3117 md->mapcount_max = count; 3118 3119 md->node[folio_nid(folio)] += nr_pages; 3120 } 3121 3122 static struct page *can_gather_numa_stats(pte_t pte, struct vm_area_struct *vma, 3123 unsigned long addr) 3124 { 3125 struct page *page; 3126 int nid; 3127 3128 if (!pte_present(pte)) 3129 return NULL; 3130 3131 page = vm_normal_page(vma, addr, pte); 3132 if (!page || is_zone_device_page(page)) 3133 return NULL; 3134 3135 if (PageReserved(page)) 3136 return NULL; 3137 3138 nid = page_to_nid(page); 3139 if (!node_isset(nid, node_states[N_MEMORY])) 3140 return NULL; 3141 3142 return page; 3143 } 3144 3145 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 3146 static struct page *can_gather_numa_stats_pmd(pmd_t pmd, 3147 struct vm_area_struct *vma, 3148 unsigned long addr) 3149 { 3150 struct page *page; 3151 int nid; 3152 3153 if (!pmd_present(pmd)) 3154 return NULL; 3155 3156 page = vm_normal_page_pmd(vma, addr, pmd); 3157 if (!page) 3158 return NULL; 3159 3160 if (PageReserved(page)) 3161 return NULL; 3162 3163 nid = page_to_nid(page); 3164 if (!node_isset(nid, node_states[N_MEMORY])) 3165 return NULL; 3166 3167 return page; 3168 } 3169 #endif 3170 3171 static int gather_pte_stats(pmd_t *pmd, unsigned long addr, 3172 unsigned long end, struct mm_walk *walk) 3173 { 3174 struct numa_maps *md = walk->private; 3175 struct vm_area_struct *vma = walk->vma; 3176 spinlock_t *ptl; 3177 pte_t *orig_pte; 3178 pte_t *pte; 3179 3180 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 3181 ptl = pmd_trans_huge_lock(pmd, vma); 3182 if (ptl) { 3183 struct page *page; 3184 3185 page = can_gather_numa_stats_pmd(*pmd, vma, addr); 3186 if (page) 3187 gather_stats(page, md, pmd_dirty(*pmd), 3188 HPAGE_PMD_SIZE/PAGE_SIZE); 3189 spin_unlock(ptl); 3190 return 0; 3191 } 3192 #endif 3193 orig_pte = pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl); 3194 if (!pte) { 3195 walk->action = ACTION_AGAIN; 3196 return 0; 3197 } 3198 do { 3199 pte_t ptent = ptep_get(pte); 3200 struct page *page = can_gather_numa_stats(ptent, vma, addr); 3201 if (!page) 3202 continue; 3203 gather_stats(page, md, pte_dirty(ptent), 1); 3204 3205 } while (pte++, addr += PAGE_SIZE, addr != end); 3206 pte_unmap_unlock(orig_pte, ptl); 3207 cond_resched(); 3208 return 0; 3209 } 3210 #ifdef CONFIG_HUGETLB_PAGE 3211 static int gather_hugetlb_stats(pte_t *pte, unsigned long hmask, 3212 unsigned long addr, unsigned long end, struct mm_walk *walk) 3213 { 3214 pte_t huge_pte; 3215 struct numa_maps *md; 3216 struct page *page; 3217 spinlock_t *ptl; 3218 3219 ptl = huge_pte_lock(hstate_vma(walk->vma), walk->mm, pte); 3220 huge_pte = huge_ptep_get(walk->mm, addr, pte); 3221 if (!pte_present(huge_pte)) 3222 goto out; 3223 3224 page = pte_page(huge_pte); 3225 3226 md = walk->private; 3227 gather_stats(page, md, pte_dirty(huge_pte), 1); 3228 out: 3229 spin_unlock(ptl); 3230 return 0; 3231 } 3232 3233 #else 3234 static int gather_hugetlb_stats(pte_t *pte, unsigned long hmask, 3235 unsigned long addr, unsigned long end, struct mm_walk *walk) 3236 { 3237 return 0; 3238 } 3239 #endif 3240 3241 static const struct mm_walk_ops show_numa_ops = { 3242 .hugetlb_entry = gather_hugetlb_stats, 3243 .pmd_entry = gather_pte_stats, 3244 .walk_lock = PGWALK_RDLOCK, 3245 }; 3246 3247 /* 3248 * Display pages allocated per node and memory policy via /proc. 3249 */ 3250 static int show_numa_map(struct seq_file *m, void *v) 3251 { 3252 struct numa_maps_private *numa_priv = m->private; 3253 struct proc_maps_private *proc_priv = &numa_priv->proc_maps; 3254 struct vm_area_struct *vma = v; 3255 struct numa_maps *md = &numa_priv->md; 3256 struct file *file = vma->vm_file; 3257 struct mm_struct *mm = vma->vm_mm; 3258 char buffer[64]; 3259 struct mempolicy *pol; 3260 pgoff_t ilx; 3261 int nid; 3262 3263 if (!mm) 3264 return 0; 3265 3266 /* Ensure we start with an empty set of numa_maps statistics. */ 3267 memset(md, 0, sizeof(*md)); 3268 3269 pol = __get_vma_policy(vma, vma->vm_start, &ilx); 3270 if (pol) { 3271 mpol_to_str(buffer, sizeof(buffer), pol); 3272 mpol_cond_put(pol); 3273 } else { 3274 mpol_to_str(buffer, sizeof(buffer), proc_priv->task_mempolicy); 3275 } 3276 3277 seq_printf(m, "%08lx %s", vma->vm_start, buffer); 3278 3279 if (file) { 3280 seq_puts(m, " file="); 3281 seq_path(m, file_user_path(file), "\n\t= "); 3282 } else if (vma_is_initial_heap(vma)) { 3283 seq_puts(m, " heap"); 3284 } else if (vma_is_initial_stack(vma)) { 3285 seq_puts(m, " stack"); 3286 } 3287 3288 if (is_vm_hugetlb_page(vma)) 3289 seq_puts(m, " huge"); 3290 3291 /* mmap_lock is held by m_start */ 3292 walk_page_vma(vma, &show_numa_ops, md); 3293 3294 if (!md->pages) 3295 goto out; 3296 3297 if (md->anon) 3298 seq_printf(m, " anon=%lu", md->anon); 3299 3300 if (md->dirty) 3301 seq_printf(m, " dirty=%lu", md->dirty); 3302 3303 if (md->pages != md->anon && md->pages != md->dirty) 3304 seq_printf(m, " mapped=%lu", md->pages); 3305 3306 if (md->mapcount_max > 1) 3307 seq_printf(m, " mapmax=%lu", md->mapcount_max); 3308 3309 if (md->swapcache) 3310 seq_printf(m, " swapcache=%lu", md->swapcache); 3311 3312 if (md->active < md->pages && !is_vm_hugetlb_page(vma)) 3313 seq_printf(m, " active=%lu", md->active); 3314 3315 if (md->writeback) 3316 seq_printf(m, " writeback=%lu", md->writeback); 3317 3318 for_each_node_state(nid, N_MEMORY) 3319 if (md->node[nid]) 3320 seq_printf(m, " N%d=%lu", nid, md->node[nid]); 3321 3322 seq_printf(m, " kernelpagesize_kB=%lu", vma_kernel_pagesize(vma) >> 10); 3323 out: 3324 seq_putc(m, '\n'); 3325 return 0; 3326 } 3327 3328 static const struct seq_operations proc_pid_numa_maps_op = { 3329 .start = m_start, 3330 .next = m_next, 3331 .stop = m_stop, 3332 .show = show_numa_map, 3333 }; 3334 3335 static int pid_numa_maps_open(struct inode *inode, struct file *file) 3336 { 3337 return proc_maps_open(inode, file, &proc_pid_numa_maps_op, 3338 sizeof(struct numa_maps_private)); 3339 } 3340 3341 const struct file_operations proc_pid_numa_maps_operations = { 3342 .open = pid_numa_maps_open, 3343 .read = seq_read, 3344 .llseek = seq_lseek, 3345 .release = proc_map_release, 3346 }; 3347 3348 #endif /* CONFIG_NUMA */ 3349