1 #include <linux/mm.h> 2 #include <linux/hugetlb.h> 3 #include <linux/mount.h> 4 #include <linux/seq_file.h> 5 #include <linux/highmem.h> 6 #include <linux/ptrace.h> 7 #include <linux/pagemap.h> 8 #include <linux/mempolicy.h> 9 #include <linux/swap.h> 10 #include <linux/swapops.h> 11 12 #include <asm/elf.h> 13 #include <asm/uaccess.h> 14 #include <asm/tlbflush.h> 15 #include "internal.h" 16 17 void task_mem(struct seq_file *m, struct mm_struct *mm) 18 { 19 unsigned long data, text, lib; 20 unsigned long hiwater_vm, total_vm, hiwater_rss, total_rss; 21 22 /* 23 * Note: to minimize their overhead, mm maintains hiwater_vm and 24 * hiwater_rss only when about to *lower* total_vm or rss. Any 25 * collector of these hiwater stats must therefore get total_vm 26 * and rss too, which will usually be the higher. Barriers? not 27 * worth the effort, such snapshots can always be inconsistent. 28 */ 29 hiwater_vm = total_vm = mm->total_vm; 30 if (hiwater_vm < mm->hiwater_vm) 31 hiwater_vm = mm->hiwater_vm; 32 hiwater_rss = total_rss = get_mm_rss(mm); 33 if (hiwater_rss < mm->hiwater_rss) 34 hiwater_rss = mm->hiwater_rss; 35 36 data = mm->total_vm - mm->shared_vm - mm->stack_vm; 37 text = (PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK)) >> 10; 38 lib = (mm->exec_vm << (PAGE_SHIFT-10)) - text; 39 seq_printf(m, 40 "VmPeak:\t%8lu kB\n" 41 "VmSize:\t%8lu kB\n" 42 "VmLck:\t%8lu kB\n" 43 "VmHWM:\t%8lu kB\n" 44 "VmRSS:\t%8lu kB\n" 45 "VmData:\t%8lu kB\n" 46 "VmStk:\t%8lu kB\n" 47 "VmExe:\t%8lu kB\n" 48 "VmLib:\t%8lu kB\n" 49 "VmPTE:\t%8lu kB\n", 50 hiwater_vm << (PAGE_SHIFT-10), 51 (total_vm - mm->reserved_vm) << (PAGE_SHIFT-10), 52 mm->locked_vm << (PAGE_SHIFT-10), 53 hiwater_rss << (PAGE_SHIFT-10), 54 total_rss << (PAGE_SHIFT-10), 55 data << (PAGE_SHIFT-10), 56 mm->stack_vm << (PAGE_SHIFT-10), text, lib, 57 (PTRS_PER_PTE*sizeof(pte_t)*mm->nr_ptes) >> 10); 58 } 59 60 unsigned long task_vsize(struct mm_struct *mm) 61 { 62 return PAGE_SIZE * mm->total_vm; 63 } 64 65 int task_statm(struct mm_struct *mm, int *shared, int *text, 66 int *data, int *resident) 67 { 68 *shared = get_mm_counter(mm, file_rss); 69 *text = (PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK)) 70 >> PAGE_SHIFT; 71 *data = mm->total_vm - mm->shared_vm; 72 *resident = *shared + get_mm_counter(mm, anon_rss); 73 return mm->total_vm; 74 } 75 76 static void pad_len_spaces(struct seq_file *m, int len) 77 { 78 len = 25 + sizeof(void*) * 6 - len; 79 if (len < 1) 80 len = 1; 81 seq_printf(m, "%*c", len, ' '); 82 } 83 84 static void vma_stop(struct proc_maps_private *priv, struct vm_area_struct *vma) 85 { 86 if (vma && vma != priv->tail_vma) { 87 struct mm_struct *mm = vma->vm_mm; 88 up_read(&mm->mmap_sem); 89 mmput(mm); 90 } 91 } 92 93 static void *m_start(struct seq_file *m, loff_t *pos) 94 { 95 struct proc_maps_private *priv = m->private; 96 unsigned long last_addr = m->version; 97 struct mm_struct *mm; 98 struct vm_area_struct *vma, *tail_vma = NULL; 99 loff_t l = *pos; 100 101 /* Clear the per syscall fields in priv */ 102 priv->task = NULL; 103 priv->tail_vma = NULL; 104 105 /* 106 * We remember last_addr rather than next_addr to hit with 107 * mmap_cache most of the time. We have zero last_addr at 108 * the beginning and also after lseek. We will have -1 last_addr 109 * after the end of the vmas. 110 */ 111 112 if (last_addr == -1UL) 113 return NULL; 114 115 priv->task = get_pid_task(priv->pid, PIDTYPE_PID); 116 if (!priv->task) 117 return NULL; 118 119 mm = mm_for_maps(priv->task); 120 if (!mm) 121 return NULL; 122 123 tail_vma = get_gate_vma(priv->task); 124 priv->tail_vma = tail_vma; 125 126 /* Start with last addr hint */ 127 vma = find_vma(mm, last_addr); 128 if (last_addr && vma) { 129 vma = vma->vm_next; 130 goto out; 131 } 132 133 /* 134 * Check the vma index is within the range and do 135 * sequential scan until m_index. 136 */ 137 vma = NULL; 138 if ((unsigned long)l < mm->map_count) { 139 vma = mm->mmap; 140 while (l-- && vma) 141 vma = vma->vm_next; 142 goto out; 143 } 144 145 if (l != mm->map_count) 146 tail_vma = NULL; /* After gate vma */ 147 148 out: 149 if (vma) 150 return vma; 151 152 /* End of vmas has been reached */ 153 m->version = (tail_vma != NULL)? 0: -1UL; 154 up_read(&mm->mmap_sem); 155 mmput(mm); 156 return tail_vma; 157 } 158 159 static void *m_next(struct seq_file *m, void *v, loff_t *pos) 160 { 161 struct proc_maps_private *priv = m->private; 162 struct vm_area_struct *vma = v; 163 struct vm_area_struct *tail_vma = priv->tail_vma; 164 165 (*pos)++; 166 if (vma && (vma != tail_vma) && vma->vm_next) 167 return vma->vm_next; 168 vma_stop(priv, vma); 169 return (vma != tail_vma)? tail_vma: NULL; 170 } 171 172 static void m_stop(struct seq_file *m, void *v) 173 { 174 struct proc_maps_private *priv = m->private; 175 struct vm_area_struct *vma = v; 176 177 vma_stop(priv, vma); 178 if (priv->task) 179 put_task_struct(priv->task); 180 } 181 182 static int do_maps_open(struct inode *inode, struct file *file, 183 const struct seq_operations *ops) 184 { 185 struct proc_maps_private *priv; 186 int ret = -ENOMEM; 187 priv = kzalloc(sizeof(*priv), GFP_KERNEL); 188 if (priv) { 189 priv->pid = proc_pid(inode); 190 ret = seq_open(file, ops); 191 if (!ret) { 192 struct seq_file *m = file->private_data; 193 m->private = priv; 194 } else { 195 kfree(priv); 196 } 197 } 198 return ret; 199 } 200 201 static void show_map_vma(struct seq_file *m, struct vm_area_struct *vma) 202 { 203 struct mm_struct *mm = vma->vm_mm; 204 struct file *file = vma->vm_file; 205 int flags = vma->vm_flags; 206 unsigned long ino = 0; 207 dev_t dev = 0; 208 int len; 209 210 if (file) { 211 struct inode *inode = vma->vm_file->f_path.dentry->d_inode; 212 dev = inode->i_sb->s_dev; 213 ino = inode->i_ino; 214 } 215 216 seq_printf(m, "%08lx-%08lx %c%c%c%c %08llx %02x:%02x %lu %n", 217 vma->vm_start, 218 vma->vm_end, 219 flags & VM_READ ? 'r' : '-', 220 flags & VM_WRITE ? 'w' : '-', 221 flags & VM_EXEC ? 'x' : '-', 222 flags & VM_MAYSHARE ? 's' : 'p', 223 ((loff_t)vma->vm_pgoff) << PAGE_SHIFT, 224 MAJOR(dev), MINOR(dev), ino, &len); 225 226 /* 227 * Print the dentry name for named mappings, and a 228 * special [heap] marker for the heap: 229 */ 230 if (file) { 231 pad_len_spaces(m, len); 232 seq_path(m, &file->f_path, "\n"); 233 } else { 234 const char *name = arch_vma_name(vma); 235 if (!name) { 236 if (mm) { 237 if (vma->vm_start <= mm->start_brk && 238 vma->vm_end >= mm->brk) { 239 name = "[heap]"; 240 } else if (vma->vm_start <= mm->start_stack && 241 vma->vm_end >= mm->start_stack) { 242 name = "[stack]"; 243 } 244 } else { 245 name = "[vdso]"; 246 } 247 } 248 if (name) { 249 pad_len_spaces(m, len); 250 seq_puts(m, name); 251 } 252 } 253 seq_putc(m, '\n'); 254 } 255 256 static int show_map(struct seq_file *m, void *v) 257 { 258 struct vm_area_struct *vma = v; 259 struct proc_maps_private *priv = m->private; 260 struct task_struct *task = priv->task; 261 262 show_map_vma(m, vma); 263 264 if (m->count < m->size) /* vma is copied successfully */ 265 m->version = (vma != get_gate_vma(task))? vma->vm_start: 0; 266 return 0; 267 } 268 269 static const struct seq_operations proc_pid_maps_op = { 270 .start = m_start, 271 .next = m_next, 272 .stop = m_stop, 273 .show = show_map 274 }; 275 276 static int maps_open(struct inode *inode, struct file *file) 277 { 278 return do_maps_open(inode, file, &proc_pid_maps_op); 279 } 280 281 const struct file_operations proc_maps_operations = { 282 .open = maps_open, 283 .read = seq_read, 284 .llseek = seq_lseek, 285 .release = seq_release_private, 286 }; 287 288 /* 289 * Proportional Set Size(PSS): my share of RSS. 290 * 291 * PSS of a process is the count of pages it has in memory, where each 292 * page is divided by the number of processes sharing it. So if a 293 * process has 1000 pages all to itself, and 1000 shared with one other 294 * process, its PSS will be 1500. 295 * 296 * To keep (accumulated) division errors low, we adopt a 64bit 297 * fixed-point pss counter to minimize division errors. So (pss >> 298 * PSS_SHIFT) would be the real byte count. 299 * 300 * A shift of 12 before division means (assuming 4K page size): 301 * - 1M 3-user-pages add up to 8KB errors; 302 * - supports mapcount up to 2^24, or 16M; 303 * - supports PSS up to 2^52 bytes, or 4PB. 304 */ 305 #define PSS_SHIFT 12 306 307 #ifdef CONFIG_PROC_PAGE_MONITOR 308 struct mem_size_stats { 309 struct vm_area_struct *vma; 310 unsigned long resident; 311 unsigned long shared_clean; 312 unsigned long shared_dirty; 313 unsigned long private_clean; 314 unsigned long private_dirty; 315 unsigned long referenced; 316 unsigned long swap; 317 u64 pss; 318 }; 319 320 static int smaps_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end, 321 struct mm_walk *walk) 322 { 323 struct mem_size_stats *mss = walk->private; 324 struct vm_area_struct *vma = mss->vma; 325 pte_t *pte, ptent; 326 spinlock_t *ptl; 327 struct page *page; 328 int mapcount; 329 330 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl); 331 for (; addr != end; pte++, addr += PAGE_SIZE) { 332 ptent = *pte; 333 334 if (is_swap_pte(ptent)) { 335 mss->swap += PAGE_SIZE; 336 continue; 337 } 338 339 if (!pte_present(ptent)) 340 continue; 341 342 mss->resident += PAGE_SIZE; 343 344 page = vm_normal_page(vma, addr, ptent); 345 if (!page) 346 continue; 347 348 /* Accumulate the size in pages that have been accessed. */ 349 if (pte_young(ptent) || PageReferenced(page)) 350 mss->referenced += PAGE_SIZE; 351 mapcount = page_mapcount(page); 352 if (mapcount >= 2) { 353 if (pte_dirty(ptent)) 354 mss->shared_dirty += PAGE_SIZE; 355 else 356 mss->shared_clean += PAGE_SIZE; 357 mss->pss += (PAGE_SIZE << PSS_SHIFT) / mapcount; 358 } else { 359 if (pte_dirty(ptent)) 360 mss->private_dirty += PAGE_SIZE; 361 else 362 mss->private_clean += PAGE_SIZE; 363 mss->pss += (PAGE_SIZE << PSS_SHIFT); 364 } 365 } 366 pte_unmap_unlock(pte - 1, ptl); 367 cond_resched(); 368 return 0; 369 } 370 371 static int show_smap(struct seq_file *m, void *v) 372 { 373 struct proc_maps_private *priv = m->private; 374 struct task_struct *task = priv->task; 375 struct vm_area_struct *vma = v; 376 struct mem_size_stats mss; 377 struct mm_walk smaps_walk = { 378 .pmd_entry = smaps_pte_range, 379 .mm = vma->vm_mm, 380 .private = &mss, 381 }; 382 383 memset(&mss, 0, sizeof mss); 384 mss.vma = vma; 385 if (vma->vm_mm && !is_vm_hugetlb_page(vma)) 386 walk_page_range(vma->vm_start, vma->vm_end, &smaps_walk); 387 388 show_map_vma(m, vma); 389 390 seq_printf(m, 391 "Size: %8lu kB\n" 392 "Rss: %8lu kB\n" 393 "Pss: %8lu kB\n" 394 "Shared_Clean: %8lu kB\n" 395 "Shared_Dirty: %8lu kB\n" 396 "Private_Clean: %8lu kB\n" 397 "Private_Dirty: %8lu kB\n" 398 "Referenced: %8lu kB\n" 399 "Swap: %8lu kB\n", 400 (vma->vm_end - vma->vm_start) >> 10, 401 mss.resident >> 10, 402 (unsigned long)(mss.pss >> (10 + PSS_SHIFT)), 403 mss.shared_clean >> 10, 404 mss.shared_dirty >> 10, 405 mss.private_clean >> 10, 406 mss.private_dirty >> 10, 407 mss.referenced >> 10, 408 mss.swap >> 10); 409 410 if (m->count < m->size) /* vma is copied successfully */ 411 m->version = (vma != get_gate_vma(task)) ? vma->vm_start : 0; 412 return 0; 413 } 414 415 static const struct seq_operations proc_pid_smaps_op = { 416 .start = m_start, 417 .next = m_next, 418 .stop = m_stop, 419 .show = show_smap 420 }; 421 422 static int smaps_open(struct inode *inode, struct file *file) 423 { 424 return do_maps_open(inode, file, &proc_pid_smaps_op); 425 } 426 427 const struct file_operations proc_smaps_operations = { 428 .open = smaps_open, 429 .read = seq_read, 430 .llseek = seq_lseek, 431 .release = seq_release_private, 432 }; 433 434 static int clear_refs_pte_range(pmd_t *pmd, unsigned long addr, 435 unsigned long end, struct mm_walk *walk) 436 { 437 struct vm_area_struct *vma = walk->private; 438 pte_t *pte, ptent; 439 spinlock_t *ptl; 440 struct page *page; 441 442 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl); 443 for (; addr != end; pte++, addr += PAGE_SIZE) { 444 ptent = *pte; 445 if (!pte_present(ptent)) 446 continue; 447 448 page = vm_normal_page(vma, addr, ptent); 449 if (!page) 450 continue; 451 452 /* Clear accessed and referenced bits. */ 453 ptep_test_and_clear_young(vma, addr, pte); 454 ClearPageReferenced(page); 455 } 456 pte_unmap_unlock(pte - 1, ptl); 457 cond_resched(); 458 return 0; 459 } 460 461 static ssize_t clear_refs_write(struct file *file, const char __user *buf, 462 size_t count, loff_t *ppos) 463 { 464 struct task_struct *task; 465 char buffer[PROC_NUMBUF], *end; 466 struct mm_struct *mm; 467 struct vm_area_struct *vma; 468 469 memset(buffer, 0, sizeof(buffer)); 470 if (count > sizeof(buffer) - 1) 471 count = sizeof(buffer) - 1; 472 if (copy_from_user(buffer, buf, count)) 473 return -EFAULT; 474 if (!simple_strtol(buffer, &end, 0)) 475 return -EINVAL; 476 if (*end == '\n') 477 end++; 478 task = get_proc_task(file->f_path.dentry->d_inode); 479 if (!task) 480 return -ESRCH; 481 mm = get_task_mm(task); 482 if (mm) { 483 struct mm_walk clear_refs_walk = { 484 .pmd_entry = clear_refs_pte_range, 485 .mm = mm, 486 }; 487 down_read(&mm->mmap_sem); 488 for (vma = mm->mmap; vma; vma = vma->vm_next) { 489 clear_refs_walk.private = vma; 490 if (!is_vm_hugetlb_page(vma)) 491 walk_page_range(vma->vm_start, vma->vm_end, 492 &clear_refs_walk); 493 } 494 flush_tlb_mm(mm); 495 up_read(&mm->mmap_sem); 496 mmput(mm); 497 } 498 put_task_struct(task); 499 if (end - buffer == 0) 500 return -EIO; 501 return end - buffer; 502 } 503 504 const struct file_operations proc_clear_refs_operations = { 505 .write = clear_refs_write, 506 }; 507 508 struct pagemapread { 509 u64 __user *out, *end; 510 }; 511 512 #define PM_ENTRY_BYTES sizeof(u64) 513 #define PM_STATUS_BITS 3 514 #define PM_STATUS_OFFSET (64 - PM_STATUS_BITS) 515 #define PM_STATUS_MASK (((1LL << PM_STATUS_BITS) - 1) << PM_STATUS_OFFSET) 516 #define PM_STATUS(nr) (((nr) << PM_STATUS_OFFSET) & PM_STATUS_MASK) 517 #define PM_PSHIFT_BITS 6 518 #define PM_PSHIFT_OFFSET (PM_STATUS_OFFSET - PM_PSHIFT_BITS) 519 #define PM_PSHIFT_MASK (((1LL << PM_PSHIFT_BITS) - 1) << PM_PSHIFT_OFFSET) 520 #define PM_PSHIFT(x) (((u64) (x) << PM_PSHIFT_OFFSET) & PM_PSHIFT_MASK) 521 #define PM_PFRAME_MASK ((1LL << PM_PSHIFT_OFFSET) - 1) 522 #define PM_PFRAME(x) ((x) & PM_PFRAME_MASK) 523 524 #define PM_PRESENT PM_STATUS(4LL) 525 #define PM_SWAP PM_STATUS(2LL) 526 #define PM_NOT_PRESENT PM_PSHIFT(PAGE_SHIFT) 527 #define PM_END_OF_BUFFER 1 528 529 static int add_to_pagemap(unsigned long addr, u64 pfn, 530 struct pagemapread *pm) 531 { 532 if (put_user(pfn, pm->out)) 533 return -EFAULT; 534 pm->out++; 535 if (pm->out >= pm->end) 536 return PM_END_OF_BUFFER; 537 return 0; 538 } 539 540 static int pagemap_pte_hole(unsigned long start, unsigned long end, 541 struct mm_walk *walk) 542 { 543 struct pagemapread *pm = walk->private; 544 unsigned long addr; 545 int err = 0; 546 for (addr = start; addr < end; addr += PAGE_SIZE) { 547 err = add_to_pagemap(addr, PM_NOT_PRESENT, pm); 548 if (err) 549 break; 550 } 551 return err; 552 } 553 554 static u64 swap_pte_to_pagemap_entry(pte_t pte) 555 { 556 swp_entry_t e = pte_to_swp_entry(pte); 557 return swp_type(e) | (swp_offset(e) << MAX_SWAPFILES_SHIFT); 558 } 559 560 static unsigned long pte_to_pagemap_entry(pte_t pte) 561 { 562 unsigned long pme = 0; 563 if (is_swap_pte(pte)) 564 pme = PM_PFRAME(swap_pte_to_pagemap_entry(pte)) 565 | PM_PSHIFT(PAGE_SHIFT) | PM_SWAP; 566 else if (pte_present(pte)) 567 pme = PM_PFRAME(pte_pfn(pte)) 568 | PM_PSHIFT(PAGE_SHIFT) | PM_PRESENT; 569 return pme; 570 } 571 572 static int pagemap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end, 573 struct mm_walk *walk) 574 { 575 struct vm_area_struct *vma; 576 struct pagemapread *pm = walk->private; 577 pte_t *pte; 578 int err = 0; 579 580 /* find the first VMA at or above 'addr' */ 581 vma = find_vma(walk->mm, addr); 582 for (; addr != end; addr += PAGE_SIZE) { 583 u64 pfn = PM_NOT_PRESENT; 584 585 /* check to see if we've left 'vma' behind 586 * and need a new, higher one */ 587 if (vma && (addr >= vma->vm_end)) 588 vma = find_vma(walk->mm, addr); 589 590 /* check that 'vma' actually covers this address, 591 * and that it isn't a huge page vma */ 592 if (vma && (vma->vm_start <= addr) && 593 !is_vm_hugetlb_page(vma)) { 594 pte = pte_offset_map(pmd, addr); 595 pfn = pte_to_pagemap_entry(*pte); 596 /* unmap before userspace copy */ 597 pte_unmap(pte); 598 } 599 err = add_to_pagemap(addr, pfn, pm); 600 if (err) 601 return err; 602 } 603 604 cond_resched(); 605 606 return err; 607 } 608 609 /* 610 * /proc/pid/pagemap - an array mapping virtual pages to pfns 611 * 612 * For each page in the address space, this file contains one 64-bit entry 613 * consisting of the following: 614 * 615 * Bits 0-55 page frame number (PFN) if present 616 * Bits 0-4 swap type if swapped 617 * Bits 5-55 swap offset if swapped 618 * Bits 55-60 page shift (page size = 1<<page shift) 619 * Bit 61 reserved for future use 620 * Bit 62 page swapped 621 * Bit 63 page present 622 * 623 * If the page is not present but in swap, then the PFN contains an 624 * encoding of the swap file number and the page's offset into the 625 * swap. Unmapped pages return a null PFN. This allows determining 626 * precisely which pages are mapped (or in swap) and comparing mapped 627 * pages between processes. 628 * 629 * Efficient users of this interface will use /proc/pid/maps to 630 * determine which areas of memory are actually mapped and llseek to 631 * skip over unmapped regions. 632 */ 633 static ssize_t pagemap_read(struct file *file, char __user *buf, 634 size_t count, loff_t *ppos) 635 { 636 struct task_struct *task = get_proc_task(file->f_path.dentry->d_inode); 637 struct page **pages, *page; 638 unsigned long uaddr, uend; 639 struct mm_struct *mm; 640 struct pagemapread pm; 641 int pagecount; 642 int ret = -ESRCH; 643 struct mm_walk pagemap_walk = {}; 644 unsigned long src; 645 unsigned long svpfn; 646 unsigned long start_vaddr; 647 unsigned long end_vaddr; 648 649 if (!task) 650 goto out; 651 652 ret = -EACCES; 653 if (!ptrace_may_access(task, PTRACE_MODE_READ)) 654 goto out_task; 655 656 ret = -EINVAL; 657 /* file position must be aligned */ 658 if ((*ppos % PM_ENTRY_BYTES) || (count % PM_ENTRY_BYTES)) 659 goto out_task; 660 661 ret = 0; 662 mm = get_task_mm(task); 663 if (!mm) 664 goto out_task; 665 666 667 uaddr = (unsigned long)buf & PAGE_MASK; 668 uend = (unsigned long)(buf + count); 669 pagecount = (PAGE_ALIGN(uend) - uaddr) / PAGE_SIZE; 670 ret = 0; 671 if (pagecount == 0) 672 goto out_mm; 673 pages = kcalloc(pagecount, sizeof(struct page *), GFP_KERNEL); 674 ret = -ENOMEM; 675 if (!pages) 676 goto out_mm; 677 678 down_read(¤t->mm->mmap_sem); 679 ret = get_user_pages(current, current->mm, uaddr, pagecount, 680 1, 0, pages, NULL); 681 up_read(¤t->mm->mmap_sem); 682 683 if (ret < 0) 684 goto out_free; 685 686 if (ret != pagecount) { 687 pagecount = ret; 688 ret = -EFAULT; 689 goto out_pages; 690 } 691 692 pm.out = (u64 *)buf; 693 pm.end = (u64 *)(buf + count); 694 695 pagemap_walk.pmd_entry = pagemap_pte_range; 696 pagemap_walk.pte_hole = pagemap_pte_hole; 697 pagemap_walk.mm = mm; 698 pagemap_walk.private = ± 699 700 src = *ppos; 701 svpfn = src / PM_ENTRY_BYTES; 702 start_vaddr = svpfn << PAGE_SHIFT; 703 end_vaddr = TASK_SIZE_OF(task); 704 705 /* watch out for wraparound */ 706 if (svpfn > TASK_SIZE_OF(task) >> PAGE_SHIFT) 707 start_vaddr = end_vaddr; 708 709 /* 710 * The odds are that this will stop walking way 711 * before end_vaddr, because the length of the 712 * user buffer is tracked in "pm", and the walk 713 * will stop when we hit the end of the buffer. 714 */ 715 ret = walk_page_range(start_vaddr, end_vaddr, &pagemap_walk); 716 if (ret == PM_END_OF_BUFFER) 717 ret = 0; 718 /* don't need mmap_sem for these, but this looks cleaner */ 719 *ppos += (char *)pm.out - buf; 720 if (!ret) 721 ret = (char *)pm.out - buf; 722 723 out_pages: 724 for (; pagecount; pagecount--) { 725 page = pages[pagecount-1]; 726 if (!PageReserved(page)) 727 SetPageDirty(page); 728 page_cache_release(page); 729 } 730 out_free: 731 kfree(pages); 732 out_mm: 733 mmput(mm); 734 out_task: 735 put_task_struct(task); 736 out: 737 return ret; 738 } 739 740 const struct file_operations proc_pagemap_operations = { 741 .llseek = mem_lseek, /* borrow this */ 742 .read = pagemap_read, 743 }; 744 #endif /* CONFIG_PROC_PAGE_MONITOR */ 745 746 #ifdef CONFIG_NUMA 747 extern int show_numa_map(struct seq_file *m, void *v); 748 749 static const struct seq_operations proc_pid_numa_maps_op = { 750 .start = m_start, 751 .next = m_next, 752 .stop = m_stop, 753 .show = show_numa_map, 754 }; 755 756 static int numa_maps_open(struct inode *inode, struct file *file) 757 { 758 return do_maps_open(inode, file, &proc_pid_numa_maps_op); 759 } 760 761 const struct file_operations proc_numa_maps_operations = { 762 .open = numa_maps_open, 763 .read = seq_read, 764 .llseek = seq_lseek, 765 .release = seq_release_private, 766 }; 767 #endif 768