xref: /linux/fs/proc/task_mmu.c (revision 2dbc0838bcf24ca59cabc3130cf3b1d6809cdcd4)
1 // SPDX-License-Identifier: GPL-2.0
2 #include <linux/mm.h>
3 #include <linux/vmacache.h>
4 #include <linux/hugetlb.h>
5 #include <linux/huge_mm.h>
6 #include <linux/mount.h>
7 #include <linux/seq_file.h>
8 #include <linux/highmem.h>
9 #include <linux/ptrace.h>
10 #include <linux/slab.h>
11 #include <linux/pagemap.h>
12 #include <linux/mempolicy.h>
13 #include <linux/rmap.h>
14 #include <linux/swap.h>
15 #include <linux/sched/mm.h>
16 #include <linux/swapops.h>
17 #include <linux/mmu_notifier.h>
18 #include <linux/page_idle.h>
19 #include <linux/shmem_fs.h>
20 #include <linux/uaccess.h>
21 #include <linux/pkeys.h>
22 
23 #include <asm/elf.h>
24 #include <asm/tlb.h>
25 #include <asm/tlbflush.h>
26 #include "internal.h"
27 
28 #define SEQ_PUT_DEC(str, val) \
29 		seq_put_decimal_ull_width(m, str, (val) << (PAGE_SHIFT-10), 8)
30 void task_mem(struct seq_file *m, struct mm_struct *mm)
31 {
32 	unsigned long text, lib, swap, anon, file, shmem;
33 	unsigned long hiwater_vm, total_vm, hiwater_rss, total_rss;
34 
35 	anon = get_mm_counter(mm, MM_ANONPAGES);
36 	file = get_mm_counter(mm, MM_FILEPAGES);
37 	shmem = get_mm_counter(mm, MM_SHMEMPAGES);
38 
39 	/*
40 	 * Note: to minimize their overhead, mm maintains hiwater_vm and
41 	 * hiwater_rss only when about to *lower* total_vm or rss.  Any
42 	 * collector of these hiwater stats must therefore get total_vm
43 	 * and rss too, which will usually be the higher.  Barriers? not
44 	 * worth the effort, such snapshots can always be inconsistent.
45 	 */
46 	hiwater_vm = total_vm = mm->total_vm;
47 	if (hiwater_vm < mm->hiwater_vm)
48 		hiwater_vm = mm->hiwater_vm;
49 	hiwater_rss = total_rss = anon + file + shmem;
50 	if (hiwater_rss < mm->hiwater_rss)
51 		hiwater_rss = mm->hiwater_rss;
52 
53 	/* split executable areas between text and lib */
54 	text = PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK);
55 	text = min(text, mm->exec_vm << PAGE_SHIFT);
56 	lib = (mm->exec_vm << PAGE_SHIFT) - text;
57 
58 	swap = get_mm_counter(mm, MM_SWAPENTS);
59 	SEQ_PUT_DEC("VmPeak:\t", hiwater_vm);
60 	SEQ_PUT_DEC(" kB\nVmSize:\t", total_vm);
61 	SEQ_PUT_DEC(" kB\nVmLck:\t", mm->locked_vm);
62 	SEQ_PUT_DEC(" kB\nVmPin:\t", atomic64_read(&mm->pinned_vm));
63 	SEQ_PUT_DEC(" kB\nVmHWM:\t", hiwater_rss);
64 	SEQ_PUT_DEC(" kB\nVmRSS:\t", total_rss);
65 	SEQ_PUT_DEC(" kB\nRssAnon:\t", anon);
66 	SEQ_PUT_DEC(" kB\nRssFile:\t", file);
67 	SEQ_PUT_DEC(" kB\nRssShmem:\t", shmem);
68 	SEQ_PUT_DEC(" kB\nVmData:\t", mm->data_vm);
69 	SEQ_PUT_DEC(" kB\nVmStk:\t", mm->stack_vm);
70 	seq_put_decimal_ull_width(m,
71 		    " kB\nVmExe:\t", text >> 10, 8);
72 	seq_put_decimal_ull_width(m,
73 		    " kB\nVmLib:\t", lib >> 10, 8);
74 	seq_put_decimal_ull_width(m,
75 		    " kB\nVmPTE:\t", mm_pgtables_bytes(mm) >> 10, 8);
76 	SEQ_PUT_DEC(" kB\nVmSwap:\t", swap);
77 	seq_puts(m, " kB\n");
78 	hugetlb_report_usage(m, mm);
79 }
80 #undef SEQ_PUT_DEC
81 
82 unsigned long task_vsize(struct mm_struct *mm)
83 {
84 	return PAGE_SIZE * mm->total_vm;
85 }
86 
87 unsigned long task_statm(struct mm_struct *mm,
88 			 unsigned long *shared, unsigned long *text,
89 			 unsigned long *data, unsigned long *resident)
90 {
91 	*shared = get_mm_counter(mm, MM_FILEPAGES) +
92 			get_mm_counter(mm, MM_SHMEMPAGES);
93 	*text = (PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK))
94 								>> PAGE_SHIFT;
95 	*data = mm->data_vm + mm->stack_vm;
96 	*resident = *shared + get_mm_counter(mm, MM_ANONPAGES);
97 	return mm->total_vm;
98 }
99 
100 #ifdef CONFIG_NUMA
101 /*
102  * Save get_task_policy() for show_numa_map().
103  */
104 static void hold_task_mempolicy(struct proc_maps_private *priv)
105 {
106 	struct task_struct *task = priv->task;
107 
108 	task_lock(task);
109 	priv->task_mempolicy = get_task_policy(task);
110 	mpol_get(priv->task_mempolicy);
111 	task_unlock(task);
112 }
113 static void release_task_mempolicy(struct proc_maps_private *priv)
114 {
115 	mpol_put(priv->task_mempolicy);
116 }
117 #else
118 static void hold_task_mempolicy(struct proc_maps_private *priv)
119 {
120 }
121 static void release_task_mempolicy(struct proc_maps_private *priv)
122 {
123 }
124 #endif
125 
126 static void vma_stop(struct proc_maps_private *priv)
127 {
128 	struct mm_struct *mm = priv->mm;
129 
130 	release_task_mempolicy(priv);
131 	up_read(&mm->mmap_sem);
132 	mmput(mm);
133 }
134 
135 static struct vm_area_struct *
136 m_next_vma(struct proc_maps_private *priv, struct vm_area_struct *vma)
137 {
138 	if (vma == priv->tail_vma)
139 		return NULL;
140 	return vma->vm_next ?: priv->tail_vma;
141 }
142 
143 static void m_cache_vma(struct seq_file *m, struct vm_area_struct *vma)
144 {
145 	if (m->count < m->size)	/* vma is copied successfully */
146 		m->version = m_next_vma(m->private, vma) ? vma->vm_end : -1UL;
147 }
148 
149 static void *m_start(struct seq_file *m, loff_t *ppos)
150 {
151 	struct proc_maps_private *priv = m->private;
152 	unsigned long last_addr = m->version;
153 	struct mm_struct *mm;
154 	struct vm_area_struct *vma;
155 	unsigned int pos = *ppos;
156 
157 	/* See m_cache_vma(). Zero at the start or after lseek. */
158 	if (last_addr == -1UL)
159 		return NULL;
160 
161 	priv->task = get_proc_task(priv->inode);
162 	if (!priv->task)
163 		return ERR_PTR(-ESRCH);
164 
165 	mm = priv->mm;
166 	if (!mm || !mmget_not_zero(mm))
167 		return NULL;
168 
169 	if (down_read_killable(&mm->mmap_sem)) {
170 		mmput(mm);
171 		return ERR_PTR(-EINTR);
172 	}
173 
174 	hold_task_mempolicy(priv);
175 	priv->tail_vma = get_gate_vma(mm);
176 
177 	if (last_addr) {
178 		vma = find_vma(mm, last_addr - 1);
179 		if (vma && vma->vm_start <= last_addr)
180 			vma = m_next_vma(priv, vma);
181 		if (vma)
182 			return vma;
183 	}
184 
185 	m->version = 0;
186 	if (pos < mm->map_count) {
187 		for (vma = mm->mmap; pos; pos--) {
188 			m->version = vma->vm_start;
189 			vma = vma->vm_next;
190 		}
191 		return vma;
192 	}
193 
194 	/* we do not bother to update m->version in this case */
195 	if (pos == mm->map_count && priv->tail_vma)
196 		return priv->tail_vma;
197 
198 	vma_stop(priv);
199 	return NULL;
200 }
201 
202 static void *m_next(struct seq_file *m, void *v, loff_t *pos)
203 {
204 	struct proc_maps_private *priv = m->private;
205 	struct vm_area_struct *next;
206 
207 	(*pos)++;
208 	next = m_next_vma(priv, v);
209 	if (!next)
210 		vma_stop(priv);
211 	return next;
212 }
213 
214 static void m_stop(struct seq_file *m, void *v)
215 {
216 	struct proc_maps_private *priv = m->private;
217 
218 	if (!IS_ERR_OR_NULL(v))
219 		vma_stop(priv);
220 	if (priv->task) {
221 		put_task_struct(priv->task);
222 		priv->task = NULL;
223 	}
224 }
225 
226 static int proc_maps_open(struct inode *inode, struct file *file,
227 			const struct seq_operations *ops, int psize)
228 {
229 	struct proc_maps_private *priv = __seq_open_private(file, ops, psize);
230 
231 	if (!priv)
232 		return -ENOMEM;
233 
234 	priv->inode = inode;
235 	priv->mm = proc_mem_open(inode, PTRACE_MODE_READ);
236 	if (IS_ERR(priv->mm)) {
237 		int err = PTR_ERR(priv->mm);
238 
239 		seq_release_private(inode, file);
240 		return err;
241 	}
242 
243 	return 0;
244 }
245 
246 static int proc_map_release(struct inode *inode, struct file *file)
247 {
248 	struct seq_file *seq = file->private_data;
249 	struct proc_maps_private *priv = seq->private;
250 
251 	if (priv->mm)
252 		mmdrop(priv->mm);
253 
254 	return seq_release_private(inode, file);
255 }
256 
257 static int do_maps_open(struct inode *inode, struct file *file,
258 			const struct seq_operations *ops)
259 {
260 	return proc_maps_open(inode, file, ops,
261 				sizeof(struct proc_maps_private));
262 }
263 
264 /*
265  * Indicate if the VMA is a stack for the given task; for
266  * /proc/PID/maps that is the stack of the main task.
267  */
268 static int is_stack(struct vm_area_struct *vma)
269 {
270 	/*
271 	 * We make no effort to guess what a given thread considers to be
272 	 * its "stack".  It's not even well-defined for programs written
273 	 * languages like Go.
274 	 */
275 	return vma->vm_start <= vma->vm_mm->start_stack &&
276 		vma->vm_end >= vma->vm_mm->start_stack;
277 }
278 
279 static void show_vma_header_prefix(struct seq_file *m,
280 				   unsigned long start, unsigned long end,
281 				   vm_flags_t flags, unsigned long long pgoff,
282 				   dev_t dev, unsigned long ino)
283 {
284 	seq_setwidth(m, 25 + sizeof(void *) * 6 - 1);
285 	seq_put_hex_ll(m, NULL, start, 8);
286 	seq_put_hex_ll(m, "-", end, 8);
287 	seq_putc(m, ' ');
288 	seq_putc(m, flags & VM_READ ? 'r' : '-');
289 	seq_putc(m, flags & VM_WRITE ? 'w' : '-');
290 	seq_putc(m, flags & VM_EXEC ? 'x' : '-');
291 	seq_putc(m, flags & VM_MAYSHARE ? 's' : 'p');
292 	seq_put_hex_ll(m, " ", pgoff, 8);
293 	seq_put_hex_ll(m, " ", MAJOR(dev), 2);
294 	seq_put_hex_ll(m, ":", MINOR(dev), 2);
295 	seq_put_decimal_ull(m, " ", ino);
296 	seq_putc(m, ' ');
297 }
298 
299 static void
300 show_map_vma(struct seq_file *m, struct vm_area_struct *vma)
301 {
302 	struct mm_struct *mm = vma->vm_mm;
303 	struct file *file = vma->vm_file;
304 	vm_flags_t flags = vma->vm_flags;
305 	unsigned long ino = 0;
306 	unsigned long long pgoff = 0;
307 	unsigned long start, end;
308 	dev_t dev = 0;
309 	const char *name = NULL;
310 
311 	if (file) {
312 		struct inode *inode = file_inode(vma->vm_file);
313 		dev = inode->i_sb->s_dev;
314 		ino = inode->i_ino;
315 		pgoff = ((loff_t)vma->vm_pgoff) << PAGE_SHIFT;
316 	}
317 
318 	start = vma->vm_start;
319 	end = vma->vm_end;
320 	show_vma_header_prefix(m, start, end, flags, pgoff, dev, ino);
321 
322 	/*
323 	 * Print the dentry name for named mappings, and a
324 	 * special [heap] marker for the heap:
325 	 */
326 	if (file) {
327 		seq_pad(m, ' ');
328 		seq_file_path(m, file, "\n");
329 		goto done;
330 	}
331 
332 	if (vma->vm_ops && vma->vm_ops->name) {
333 		name = vma->vm_ops->name(vma);
334 		if (name)
335 			goto done;
336 	}
337 
338 	name = arch_vma_name(vma);
339 	if (!name) {
340 		if (!mm) {
341 			name = "[vdso]";
342 			goto done;
343 		}
344 
345 		if (vma->vm_start <= mm->brk &&
346 		    vma->vm_end >= mm->start_brk) {
347 			name = "[heap]";
348 			goto done;
349 		}
350 
351 		if (is_stack(vma))
352 			name = "[stack]";
353 	}
354 
355 done:
356 	if (name) {
357 		seq_pad(m, ' ');
358 		seq_puts(m, name);
359 	}
360 	seq_putc(m, '\n');
361 }
362 
363 static int show_map(struct seq_file *m, void *v)
364 {
365 	show_map_vma(m, v);
366 	m_cache_vma(m, v);
367 	return 0;
368 }
369 
370 static const struct seq_operations proc_pid_maps_op = {
371 	.start	= m_start,
372 	.next	= m_next,
373 	.stop	= m_stop,
374 	.show	= show_map
375 };
376 
377 static int pid_maps_open(struct inode *inode, struct file *file)
378 {
379 	return do_maps_open(inode, file, &proc_pid_maps_op);
380 }
381 
382 const struct file_operations proc_pid_maps_operations = {
383 	.open		= pid_maps_open,
384 	.read		= seq_read,
385 	.llseek		= seq_lseek,
386 	.release	= proc_map_release,
387 };
388 
389 /*
390  * Proportional Set Size(PSS): my share of RSS.
391  *
392  * PSS of a process is the count of pages it has in memory, where each
393  * page is divided by the number of processes sharing it.  So if a
394  * process has 1000 pages all to itself, and 1000 shared with one other
395  * process, its PSS will be 1500.
396  *
397  * To keep (accumulated) division errors low, we adopt a 64bit
398  * fixed-point pss counter to minimize division errors. So (pss >>
399  * PSS_SHIFT) would be the real byte count.
400  *
401  * A shift of 12 before division means (assuming 4K page size):
402  * 	- 1M 3-user-pages add up to 8KB errors;
403  * 	- supports mapcount up to 2^24, or 16M;
404  * 	- supports PSS up to 2^52 bytes, or 4PB.
405  */
406 #define PSS_SHIFT 12
407 
408 #ifdef CONFIG_PROC_PAGE_MONITOR
409 struct mem_size_stats {
410 	unsigned long resident;
411 	unsigned long shared_clean;
412 	unsigned long shared_dirty;
413 	unsigned long private_clean;
414 	unsigned long private_dirty;
415 	unsigned long referenced;
416 	unsigned long anonymous;
417 	unsigned long lazyfree;
418 	unsigned long anonymous_thp;
419 	unsigned long shmem_thp;
420 	unsigned long swap;
421 	unsigned long shared_hugetlb;
422 	unsigned long private_hugetlb;
423 	u64 pss;
424 	u64 pss_anon;
425 	u64 pss_file;
426 	u64 pss_shmem;
427 	u64 pss_locked;
428 	u64 swap_pss;
429 	bool check_shmem_swap;
430 };
431 
432 static void smaps_page_accumulate(struct mem_size_stats *mss,
433 		struct page *page, unsigned long size, unsigned long pss,
434 		bool dirty, bool locked, bool private)
435 {
436 	mss->pss += pss;
437 
438 	if (PageAnon(page))
439 		mss->pss_anon += pss;
440 	else if (PageSwapBacked(page))
441 		mss->pss_shmem += pss;
442 	else
443 		mss->pss_file += pss;
444 
445 	if (locked)
446 		mss->pss_locked += pss;
447 
448 	if (dirty || PageDirty(page)) {
449 		if (private)
450 			mss->private_dirty += size;
451 		else
452 			mss->shared_dirty += size;
453 	} else {
454 		if (private)
455 			mss->private_clean += size;
456 		else
457 			mss->shared_clean += size;
458 	}
459 }
460 
461 static void smaps_account(struct mem_size_stats *mss, struct page *page,
462 		bool compound, bool young, bool dirty, bool locked)
463 {
464 	int i, nr = compound ? 1 << compound_order(page) : 1;
465 	unsigned long size = nr * PAGE_SIZE;
466 
467 	/*
468 	 * First accumulate quantities that depend only on |size| and the type
469 	 * of the compound page.
470 	 */
471 	if (PageAnon(page)) {
472 		mss->anonymous += size;
473 		if (!PageSwapBacked(page) && !dirty && !PageDirty(page))
474 			mss->lazyfree += size;
475 	}
476 
477 	mss->resident += size;
478 	/* Accumulate the size in pages that have been accessed. */
479 	if (young || page_is_young(page) || PageReferenced(page))
480 		mss->referenced += size;
481 
482 	/*
483 	 * Then accumulate quantities that may depend on sharing, or that may
484 	 * differ page-by-page.
485 	 *
486 	 * page_count(page) == 1 guarantees the page is mapped exactly once.
487 	 * If any subpage of the compound page mapped with PTE it would elevate
488 	 * page_count().
489 	 */
490 	if (page_count(page) == 1) {
491 		smaps_page_accumulate(mss, page, size, size << PSS_SHIFT, dirty,
492 			locked, true);
493 		return;
494 	}
495 	for (i = 0; i < nr; i++, page++) {
496 		int mapcount = page_mapcount(page);
497 		unsigned long pss = PAGE_SIZE << PSS_SHIFT;
498 		if (mapcount >= 2)
499 			pss /= mapcount;
500 		smaps_page_accumulate(mss, page, PAGE_SIZE, pss, dirty, locked,
501 				      mapcount < 2);
502 	}
503 }
504 
505 #ifdef CONFIG_SHMEM
506 static int smaps_pte_hole(unsigned long addr, unsigned long end,
507 		struct mm_walk *walk)
508 {
509 	struct mem_size_stats *mss = walk->private;
510 
511 	mss->swap += shmem_partial_swap_usage(
512 			walk->vma->vm_file->f_mapping, addr, end);
513 
514 	return 0;
515 }
516 #endif
517 
518 static void smaps_pte_entry(pte_t *pte, unsigned long addr,
519 		struct mm_walk *walk)
520 {
521 	struct mem_size_stats *mss = walk->private;
522 	struct vm_area_struct *vma = walk->vma;
523 	bool locked = !!(vma->vm_flags & VM_LOCKED);
524 	struct page *page = NULL;
525 
526 	if (pte_present(*pte)) {
527 		page = vm_normal_page(vma, addr, *pte);
528 	} else if (is_swap_pte(*pte)) {
529 		swp_entry_t swpent = pte_to_swp_entry(*pte);
530 
531 		if (!non_swap_entry(swpent)) {
532 			int mapcount;
533 
534 			mss->swap += PAGE_SIZE;
535 			mapcount = swp_swapcount(swpent);
536 			if (mapcount >= 2) {
537 				u64 pss_delta = (u64)PAGE_SIZE << PSS_SHIFT;
538 
539 				do_div(pss_delta, mapcount);
540 				mss->swap_pss += pss_delta;
541 			} else {
542 				mss->swap_pss += (u64)PAGE_SIZE << PSS_SHIFT;
543 			}
544 		} else if (is_migration_entry(swpent))
545 			page = migration_entry_to_page(swpent);
546 		else if (is_device_private_entry(swpent))
547 			page = device_private_entry_to_page(swpent);
548 	} else if (unlikely(IS_ENABLED(CONFIG_SHMEM) && mss->check_shmem_swap
549 							&& pte_none(*pte))) {
550 		page = find_get_entry(vma->vm_file->f_mapping,
551 						linear_page_index(vma, addr));
552 		if (!page)
553 			return;
554 
555 		if (xa_is_value(page))
556 			mss->swap += PAGE_SIZE;
557 		else
558 			put_page(page);
559 
560 		return;
561 	}
562 
563 	if (!page)
564 		return;
565 
566 	smaps_account(mss, page, false, pte_young(*pte), pte_dirty(*pte), locked);
567 }
568 
569 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
570 static void smaps_pmd_entry(pmd_t *pmd, unsigned long addr,
571 		struct mm_walk *walk)
572 {
573 	struct mem_size_stats *mss = walk->private;
574 	struct vm_area_struct *vma = walk->vma;
575 	bool locked = !!(vma->vm_flags & VM_LOCKED);
576 	struct page *page;
577 
578 	/* FOLL_DUMP will return -EFAULT on huge zero page */
579 	page = follow_trans_huge_pmd(vma, addr, pmd, FOLL_DUMP);
580 	if (IS_ERR_OR_NULL(page))
581 		return;
582 	if (PageAnon(page))
583 		mss->anonymous_thp += HPAGE_PMD_SIZE;
584 	else if (PageSwapBacked(page))
585 		mss->shmem_thp += HPAGE_PMD_SIZE;
586 	else if (is_zone_device_page(page))
587 		/* pass */;
588 	else
589 		VM_BUG_ON_PAGE(1, page);
590 	smaps_account(mss, page, true, pmd_young(*pmd), pmd_dirty(*pmd), locked);
591 }
592 #else
593 static void smaps_pmd_entry(pmd_t *pmd, unsigned long addr,
594 		struct mm_walk *walk)
595 {
596 }
597 #endif
598 
599 static int smaps_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
600 			   struct mm_walk *walk)
601 {
602 	struct vm_area_struct *vma = walk->vma;
603 	pte_t *pte;
604 	spinlock_t *ptl;
605 
606 	ptl = pmd_trans_huge_lock(pmd, vma);
607 	if (ptl) {
608 		if (pmd_present(*pmd))
609 			smaps_pmd_entry(pmd, addr, walk);
610 		spin_unlock(ptl);
611 		goto out;
612 	}
613 
614 	if (pmd_trans_unstable(pmd))
615 		goto out;
616 	/*
617 	 * The mmap_sem held all the way back in m_start() is what
618 	 * keeps khugepaged out of here and from collapsing things
619 	 * in here.
620 	 */
621 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
622 	for (; addr != end; pte++, addr += PAGE_SIZE)
623 		smaps_pte_entry(pte, addr, walk);
624 	pte_unmap_unlock(pte - 1, ptl);
625 out:
626 	cond_resched();
627 	return 0;
628 }
629 
630 static void show_smap_vma_flags(struct seq_file *m, struct vm_area_struct *vma)
631 {
632 	/*
633 	 * Don't forget to update Documentation/ on changes.
634 	 */
635 	static const char mnemonics[BITS_PER_LONG][2] = {
636 		/*
637 		 * In case if we meet a flag we don't know about.
638 		 */
639 		[0 ... (BITS_PER_LONG-1)] = "??",
640 
641 		[ilog2(VM_READ)]	= "rd",
642 		[ilog2(VM_WRITE)]	= "wr",
643 		[ilog2(VM_EXEC)]	= "ex",
644 		[ilog2(VM_SHARED)]	= "sh",
645 		[ilog2(VM_MAYREAD)]	= "mr",
646 		[ilog2(VM_MAYWRITE)]	= "mw",
647 		[ilog2(VM_MAYEXEC)]	= "me",
648 		[ilog2(VM_MAYSHARE)]	= "ms",
649 		[ilog2(VM_GROWSDOWN)]	= "gd",
650 		[ilog2(VM_PFNMAP)]	= "pf",
651 		[ilog2(VM_DENYWRITE)]	= "dw",
652 #ifdef CONFIG_X86_INTEL_MPX
653 		[ilog2(VM_MPX)]		= "mp",
654 #endif
655 		[ilog2(VM_LOCKED)]	= "lo",
656 		[ilog2(VM_IO)]		= "io",
657 		[ilog2(VM_SEQ_READ)]	= "sr",
658 		[ilog2(VM_RAND_READ)]	= "rr",
659 		[ilog2(VM_DONTCOPY)]	= "dc",
660 		[ilog2(VM_DONTEXPAND)]	= "de",
661 		[ilog2(VM_ACCOUNT)]	= "ac",
662 		[ilog2(VM_NORESERVE)]	= "nr",
663 		[ilog2(VM_HUGETLB)]	= "ht",
664 		[ilog2(VM_SYNC)]	= "sf",
665 		[ilog2(VM_ARCH_1)]	= "ar",
666 		[ilog2(VM_WIPEONFORK)]	= "wf",
667 		[ilog2(VM_DONTDUMP)]	= "dd",
668 #ifdef CONFIG_MEM_SOFT_DIRTY
669 		[ilog2(VM_SOFTDIRTY)]	= "sd",
670 #endif
671 		[ilog2(VM_MIXEDMAP)]	= "mm",
672 		[ilog2(VM_HUGEPAGE)]	= "hg",
673 		[ilog2(VM_NOHUGEPAGE)]	= "nh",
674 		[ilog2(VM_MERGEABLE)]	= "mg",
675 		[ilog2(VM_UFFD_MISSING)]= "um",
676 		[ilog2(VM_UFFD_WP)]	= "uw",
677 #ifdef CONFIG_ARCH_HAS_PKEYS
678 		/* These come out via ProtectionKey: */
679 		[ilog2(VM_PKEY_BIT0)]	= "",
680 		[ilog2(VM_PKEY_BIT1)]	= "",
681 		[ilog2(VM_PKEY_BIT2)]	= "",
682 		[ilog2(VM_PKEY_BIT3)]	= "",
683 #if VM_PKEY_BIT4
684 		[ilog2(VM_PKEY_BIT4)]	= "",
685 #endif
686 #endif /* CONFIG_ARCH_HAS_PKEYS */
687 	};
688 	size_t i;
689 
690 	seq_puts(m, "VmFlags: ");
691 	for (i = 0; i < BITS_PER_LONG; i++) {
692 		if (!mnemonics[i][0])
693 			continue;
694 		if (vma->vm_flags & (1UL << i)) {
695 			seq_putc(m, mnemonics[i][0]);
696 			seq_putc(m, mnemonics[i][1]);
697 			seq_putc(m, ' ');
698 		}
699 	}
700 	seq_putc(m, '\n');
701 }
702 
703 #ifdef CONFIG_HUGETLB_PAGE
704 static int smaps_hugetlb_range(pte_t *pte, unsigned long hmask,
705 				 unsigned long addr, unsigned long end,
706 				 struct mm_walk *walk)
707 {
708 	struct mem_size_stats *mss = walk->private;
709 	struct vm_area_struct *vma = walk->vma;
710 	struct page *page = NULL;
711 
712 	if (pte_present(*pte)) {
713 		page = vm_normal_page(vma, addr, *pte);
714 	} else if (is_swap_pte(*pte)) {
715 		swp_entry_t swpent = pte_to_swp_entry(*pte);
716 
717 		if (is_migration_entry(swpent))
718 			page = migration_entry_to_page(swpent);
719 		else if (is_device_private_entry(swpent))
720 			page = device_private_entry_to_page(swpent);
721 	}
722 	if (page) {
723 		int mapcount = page_mapcount(page);
724 
725 		if (mapcount >= 2)
726 			mss->shared_hugetlb += huge_page_size(hstate_vma(vma));
727 		else
728 			mss->private_hugetlb += huge_page_size(hstate_vma(vma));
729 	}
730 	return 0;
731 }
732 #endif /* HUGETLB_PAGE */
733 
734 static void smap_gather_stats(struct vm_area_struct *vma,
735 			     struct mem_size_stats *mss)
736 {
737 	struct mm_walk smaps_walk = {
738 		.pmd_entry = smaps_pte_range,
739 #ifdef CONFIG_HUGETLB_PAGE
740 		.hugetlb_entry = smaps_hugetlb_range,
741 #endif
742 		.mm = vma->vm_mm,
743 	};
744 
745 	smaps_walk.private = mss;
746 
747 #ifdef CONFIG_SHMEM
748 	/* In case of smaps_rollup, reset the value from previous vma */
749 	mss->check_shmem_swap = false;
750 	if (vma->vm_file && shmem_mapping(vma->vm_file->f_mapping)) {
751 		/*
752 		 * For shared or readonly shmem mappings we know that all
753 		 * swapped out pages belong to the shmem object, and we can
754 		 * obtain the swap value much more efficiently. For private
755 		 * writable mappings, we might have COW pages that are
756 		 * not affected by the parent swapped out pages of the shmem
757 		 * object, so we have to distinguish them during the page walk.
758 		 * Unless we know that the shmem object (or the part mapped by
759 		 * our VMA) has no swapped out pages at all.
760 		 */
761 		unsigned long shmem_swapped = shmem_swap_usage(vma);
762 
763 		if (!shmem_swapped || (vma->vm_flags & VM_SHARED) ||
764 					!(vma->vm_flags & VM_WRITE)) {
765 			mss->swap += shmem_swapped;
766 		} else {
767 			mss->check_shmem_swap = true;
768 			smaps_walk.pte_hole = smaps_pte_hole;
769 		}
770 	}
771 #endif
772 	/* mmap_sem is held in m_start */
773 	walk_page_vma(vma, &smaps_walk);
774 }
775 
776 #define SEQ_PUT_DEC(str, val) \
777 		seq_put_decimal_ull_width(m, str, (val) >> 10, 8)
778 
779 /* Show the contents common for smaps and smaps_rollup */
780 static void __show_smap(struct seq_file *m, const struct mem_size_stats *mss,
781 	bool rollup_mode)
782 {
783 	SEQ_PUT_DEC("Rss:            ", mss->resident);
784 	SEQ_PUT_DEC(" kB\nPss:            ", mss->pss >> PSS_SHIFT);
785 	if (rollup_mode) {
786 		/*
787 		 * These are meaningful only for smaps_rollup, otherwise two of
788 		 * them are zero, and the other one is the same as Pss.
789 		 */
790 		SEQ_PUT_DEC(" kB\nPss_Anon:       ",
791 			mss->pss_anon >> PSS_SHIFT);
792 		SEQ_PUT_DEC(" kB\nPss_File:       ",
793 			mss->pss_file >> PSS_SHIFT);
794 		SEQ_PUT_DEC(" kB\nPss_Shmem:      ",
795 			mss->pss_shmem >> PSS_SHIFT);
796 	}
797 	SEQ_PUT_DEC(" kB\nShared_Clean:   ", mss->shared_clean);
798 	SEQ_PUT_DEC(" kB\nShared_Dirty:   ", mss->shared_dirty);
799 	SEQ_PUT_DEC(" kB\nPrivate_Clean:  ", mss->private_clean);
800 	SEQ_PUT_DEC(" kB\nPrivate_Dirty:  ", mss->private_dirty);
801 	SEQ_PUT_DEC(" kB\nReferenced:     ", mss->referenced);
802 	SEQ_PUT_DEC(" kB\nAnonymous:      ", mss->anonymous);
803 	SEQ_PUT_DEC(" kB\nLazyFree:       ", mss->lazyfree);
804 	SEQ_PUT_DEC(" kB\nAnonHugePages:  ", mss->anonymous_thp);
805 	SEQ_PUT_DEC(" kB\nShmemPmdMapped: ", mss->shmem_thp);
806 	SEQ_PUT_DEC(" kB\nShared_Hugetlb: ", mss->shared_hugetlb);
807 	seq_put_decimal_ull_width(m, " kB\nPrivate_Hugetlb: ",
808 				  mss->private_hugetlb >> 10, 7);
809 	SEQ_PUT_DEC(" kB\nSwap:           ", mss->swap);
810 	SEQ_PUT_DEC(" kB\nSwapPss:        ",
811 					mss->swap_pss >> PSS_SHIFT);
812 	SEQ_PUT_DEC(" kB\nLocked:         ",
813 					mss->pss_locked >> PSS_SHIFT);
814 	seq_puts(m, " kB\n");
815 }
816 
817 static int show_smap(struct seq_file *m, void *v)
818 {
819 	struct vm_area_struct *vma = v;
820 	struct mem_size_stats mss;
821 
822 	memset(&mss, 0, sizeof(mss));
823 
824 	smap_gather_stats(vma, &mss);
825 
826 	show_map_vma(m, vma);
827 
828 	SEQ_PUT_DEC("Size:           ", vma->vm_end - vma->vm_start);
829 	SEQ_PUT_DEC(" kB\nKernelPageSize: ", vma_kernel_pagesize(vma));
830 	SEQ_PUT_DEC(" kB\nMMUPageSize:    ", vma_mmu_pagesize(vma));
831 	seq_puts(m, " kB\n");
832 
833 	__show_smap(m, &mss, false);
834 
835 	seq_printf(m, "THPeligible:    %d\n", transparent_hugepage_enabled(vma));
836 
837 	if (arch_pkeys_enabled())
838 		seq_printf(m, "ProtectionKey:  %8u\n", vma_pkey(vma));
839 	show_smap_vma_flags(m, vma);
840 
841 	m_cache_vma(m, vma);
842 
843 	return 0;
844 }
845 
846 static int show_smaps_rollup(struct seq_file *m, void *v)
847 {
848 	struct proc_maps_private *priv = m->private;
849 	struct mem_size_stats mss;
850 	struct mm_struct *mm;
851 	struct vm_area_struct *vma;
852 	unsigned long last_vma_end = 0;
853 	int ret = 0;
854 
855 	priv->task = get_proc_task(priv->inode);
856 	if (!priv->task)
857 		return -ESRCH;
858 
859 	mm = priv->mm;
860 	if (!mm || !mmget_not_zero(mm)) {
861 		ret = -ESRCH;
862 		goto out_put_task;
863 	}
864 
865 	memset(&mss, 0, sizeof(mss));
866 
867 	ret = down_read_killable(&mm->mmap_sem);
868 	if (ret)
869 		goto out_put_mm;
870 
871 	hold_task_mempolicy(priv);
872 
873 	for (vma = priv->mm->mmap; vma; vma = vma->vm_next) {
874 		smap_gather_stats(vma, &mss);
875 		last_vma_end = vma->vm_end;
876 	}
877 
878 	show_vma_header_prefix(m, priv->mm->mmap->vm_start,
879 			       last_vma_end, 0, 0, 0, 0);
880 	seq_pad(m, ' ');
881 	seq_puts(m, "[rollup]\n");
882 
883 	__show_smap(m, &mss, true);
884 
885 	release_task_mempolicy(priv);
886 	up_read(&mm->mmap_sem);
887 
888 out_put_mm:
889 	mmput(mm);
890 out_put_task:
891 	put_task_struct(priv->task);
892 	priv->task = NULL;
893 
894 	return ret;
895 }
896 #undef SEQ_PUT_DEC
897 
898 static const struct seq_operations proc_pid_smaps_op = {
899 	.start	= m_start,
900 	.next	= m_next,
901 	.stop	= m_stop,
902 	.show	= show_smap
903 };
904 
905 static int pid_smaps_open(struct inode *inode, struct file *file)
906 {
907 	return do_maps_open(inode, file, &proc_pid_smaps_op);
908 }
909 
910 static int smaps_rollup_open(struct inode *inode, struct file *file)
911 {
912 	int ret;
913 	struct proc_maps_private *priv;
914 
915 	priv = kzalloc(sizeof(*priv), GFP_KERNEL_ACCOUNT);
916 	if (!priv)
917 		return -ENOMEM;
918 
919 	ret = single_open(file, show_smaps_rollup, priv);
920 	if (ret)
921 		goto out_free;
922 
923 	priv->inode = inode;
924 	priv->mm = proc_mem_open(inode, PTRACE_MODE_READ);
925 	if (IS_ERR(priv->mm)) {
926 		ret = PTR_ERR(priv->mm);
927 
928 		single_release(inode, file);
929 		goto out_free;
930 	}
931 
932 	return 0;
933 
934 out_free:
935 	kfree(priv);
936 	return ret;
937 }
938 
939 static int smaps_rollup_release(struct inode *inode, struct file *file)
940 {
941 	struct seq_file *seq = file->private_data;
942 	struct proc_maps_private *priv = seq->private;
943 
944 	if (priv->mm)
945 		mmdrop(priv->mm);
946 
947 	kfree(priv);
948 	return single_release(inode, file);
949 }
950 
951 const struct file_operations proc_pid_smaps_operations = {
952 	.open		= pid_smaps_open,
953 	.read		= seq_read,
954 	.llseek		= seq_lseek,
955 	.release	= proc_map_release,
956 };
957 
958 const struct file_operations proc_pid_smaps_rollup_operations = {
959 	.open		= smaps_rollup_open,
960 	.read		= seq_read,
961 	.llseek		= seq_lseek,
962 	.release	= smaps_rollup_release,
963 };
964 
965 enum clear_refs_types {
966 	CLEAR_REFS_ALL = 1,
967 	CLEAR_REFS_ANON,
968 	CLEAR_REFS_MAPPED,
969 	CLEAR_REFS_SOFT_DIRTY,
970 	CLEAR_REFS_MM_HIWATER_RSS,
971 	CLEAR_REFS_LAST,
972 };
973 
974 struct clear_refs_private {
975 	enum clear_refs_types type;
976 };
977 
978 #ifdef CONFIG_MEM_SOFT_DIRTY
979 static inline void clear_soft_dirty(struct vm_area_struct *vma,
980 		unsigned long addr, pte_t *pte)
981 {
982 	/*
983 	 * The soft-dirty tracker uses #PF-s to catch writes
984 	 * to pages, so write-protect the pte as well. See the
985 	 * Documentation/admin-guide/mm/soft-dirty.rst for full description
986 	 * of how soft-dirty works.
987 	 */
988 	pte_t ptent = *pte;
989 
990 	if (pte_present(ptent)) {
991 		pte_t old_pte;
992 
993 		old_pte = ptep_modify_prot_start(vma, addr, pte);
994 		ptent = pte_wrprotect(old_pte);
995 		ptent = pte_clear_soft_dirty(ptent);
996 		ptep_modify_prot_commit(vma, addr, pte, old_pte, ptent);
997 	} else if (is_swap_pte(ptent)) {
998 		ptent = pte_swp_clear_soft_dirty(ptent);
999 		set_pte_at(vma->vm_mm, addr, pte, ptent);
1000 	}
1001 }
1002 #else
1003 static inline void clear_soft_dirty(struct vm_area_struct *vma,
1004 		unsigned long addr, pte_t *pte)
1005 {
1006 }
1007 #endif
1008 
1009 #if defined(CONFIG_MEM_SOFT_DIRTY) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
1010 static inline void clear_soft_dirty_pmd(struct vm_area_struct *vma,
1011 		unsigned long addr, pmd_t *pmdp)
1012 {
1013 	pmd_t old, pmd = *pmdp;
1014 
1015 	if (pmd_present(pmd)) {
1016 		/* See comment in change_huge_pmd() */
1017 		old = pmdp_invalidate(vma, addr, pmdp);
1018 		if (pmd_dirty(old))
1019 			pmd = pmd_mkdirty(pmd);
1020 		if (pmd_young(old))
1021 			pmd = pmd_mkyoung(pmd);
1022 
1023 		pmd = pmd_wrprotect(pmd);
1024 		pmd = pmd_clear_soft_dirty(pmd);
1025 
1026 		set_pmd_at(vma->vm_mm, addr, pmdp, pmd);
1027 	} else if (is_migration_entry(pmd_to_swp_entry(pmd))) {
1028 		pmd = pmd_swp_clear_soft_dirty(pmd);
1029 		set_pmd_at(vma->vm_mm, addr, pmdp, pmd);
1030 	}
1031 }
1032 #else
1033 static inline void clear_soft_dirty_pmd(struct vm_area_struct *vma,
1034 		unsigned long addr, pmd_t *pmdp)
1035 {
1036 }
1037 #endif
1038 
1039 static int clear_refs_pte_range(pmd_t *pmd, unsigned long addr,
1040 				unsigned long end, struct mm_walk *walk)
1041 {
1042 	struct clear_refs_private *cp = walk->private;
1043 	struct vm_area_struct *vma = walk->vma;
1044 	pte_t *pte, ptent;
1045 	spinlock_t *ptl;
1046 	struct page *page;
1047 
1048 	ptl = pmd_trans_huge_lock(pmd, vma);
1049 	if (ptl) {
1050 		if (cp->type == CLEAR_REFS_SOFT_DIRTY) {
1051 			clear_soft_dirty_pmd(vma, addr, pmd);
1052 			goto out;
1053 		}
1054 
1055 		if (!pmd_present(*pmd))
1056 			goto out;
1057 
1058 		page = pmd_page(*pmd);
1059 
1060 		/* Clear accessed and referenced bits. */
1061 		pmdp_test_and_clear_young(vma, addr, pmd);
1062 		test_and_clear_page_young(page);
1063 		ClearPageReferenced(page);
1064 out:
1065 		spin_unlock(ptl);
1066 		return 0;
1067 	}
1068 
1069 	if (pmd_trans_unstable(pmd))
1070 		return 0;
1071 
1072 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
1073 	for (; addr != end; pte++, addr += PAGE_SIZE) {
1074 		ptent = *pte;
1075 
1076 		if (cp->type == CLEAR_REFS_SOFT_DIRTY) {
1077 			clear_soft_dirty(vma, addr, pte);
1078 			continue;
1079 		}
1080 
1081 		if (!pte_present(ptent))
1082 			continue;
1083 
1084 		page = vm_normal_page(vma, addr, ptent);
1085 		if (!page)
1086 			continue;
1087 
1088 		/* Clear accessed and referenced bits. */
1089 		ptep_test_and_clear_young(vma, addr, pte);
1090 		test_and_clear_page_young(page);
1091 		ClearPageReferenced(page);
1092 	}
1093 	pte_unmap_unlock(pte - 1, ptl);
1094 	cond_resched();
1095 	return 0;
1096 }
1097 
1098 static int clear_refs_test_walk(unsigned long start, unsigned long end,
1099 				struct mm_walk *walk)
1100 {
1101 	struct clear_refs_private *cp = walk->private;
1102 	struct vm_area_struct *vma = walk->vma;
1103 
1104 	if (vma->vm_flags & VM_PFNMAP)
1105 		return 1;
1106 
1107 	/*
1108 	 * Writing 1 to /proc/pid/clear_refs affects all pages.
1109 	 * Writing 2 to /proc/pid/clear_refs only affects anonymous pages.
1110 	 * Writing 3 to /proc/pid/clear_refs only affects file mapped pages.
1111 	 * Writing 4 to /proc/pid/clear_refs affects all pages.
1112 	 */
1113 	if (cp->type == CLEAR_REFS_ANON && vma->vm_file)
1114 		return 1;
1115 	if (cp->type == CLEAR_REFS_MAPPED && !vma->vm_file)
1116 		return 1;
1117 	return 0;
1118 }
1119 
1120 static ssize_t clear_refs_write(struct file *file, const char __user *buf,
1121 				size_t count, loff_t *ppos)
1122 {
1123 	struct task_struct *task;
1124 	char buffer[PROC_NUMBUF];
1125 	struct mm_struct *mm;
1126 	struct vm_area_struct *vma;
1127 	enum clear_refs_types type;
1128 	struct mmu_gather tlb;
1129 	int itype;
1130 	int rv;
1131 
1132 	memset(buffer, 0, sizeof(buffer));
1133 	if (count > sizeof(buffer) - 1)
1134 		count = sizeof(buffer) - 1;
1135 	if (copy_from_user(buffer, buf, count))
1136 		return -EFAULT;
1137 	rv = kstrtoint(strstrip(buffer), 10, &itype);
1138 	if (rv < 0)
1139 		return rv;
1140 	type = (enum clear_refs_types)itype;
1141 	if (type < CLEAR_REFS_ALL || type >= CLEAR_REFS_LAST)
1142 		return -EINVAL;
1143 
1144 	task = get_proc_task(file_inode(file));
1145 	if (!task)
1146 		return -ESRCH;
1147 	mm = get_task_mm(task);
1148 	if (mm) {
1149 		struct mmu_notifier_range range;
1150 		struct clear_refs_private cp = {
1151 			.type = type,
1152 		};
1153 		struct mm_walk clear_refs_walk = {
1154 			.pmd_entry = clear_refs_pte_range,
1155 			.test_walk = clear_refs_test_walk,
1156 			.mm = mm,
1157 			.private = &cp,
1158 		};
1159 
1160 		if (type == CLEAR_REFS_MM_HIWATER_RSS) {
1161 			if (down_write_killable(&mm->mmap_sem)) {
1162 				count = -EINTR;
1163 				goto out_mm;
1164 			}
1165 
1166 			/*
1167 			 * Writing 5 to /proc/pid/clear_refs resets the peak
1168 			 * resident set size to this mm's current rss value.
1169 			 */
1170 			reset_mm_hiwater_rss(mm);
1171 			up_write(&mm->mmap_sem);
1172 			goto out_mm;
1173 		}
1174 
1175 		if (down_read_killable(&mm->mmap_sem)) {
1176 			count = -EINTR;
1177 			goto out_mm;
1178 		}
1179 		tlb_gather_mmu(&tlb, mm, 0, -1);
1180 		if (type == CLEAR_REFS_SOFT_DIRTY) {
1181 			for (vma = mm->mmap; vma; vma = vma->vm_next) {
1182 				if (!(vma->vm_flags & VM_SOFTDIRTY))
1183 					continue;
1184 				up_read(&mm->mmap_sem);
1185 				if (down_write_killable(&mm->mmap_sem)) {
1186 					count = -EINTR;
1187 					goto out_mm;
1188 				}
1189 				/*
1190 				 * Avoid to modify vma->vm_flags
1191 				 * without locked ops while the
1192 				 * coredump reads the vm_flags.
1193 				 */
1194 				if (!mmget_still_valid(mm)) {
1195 					/*
1196 					 * Silently return "count"
1197 					 * like if get_task_mm()
1198 					 * failed. FIXME: should this
1199 					 * function have returned
1200 					 * -ESRCH if get_task_mm()
1201 					 * failed like if
1202 					 * get_proc_task() fails?
1203 					 */
1204 					up_write(&mm->mmap_sem);
1205 					goto out_mm;
1206 				}
1207 				for (vma = mm->mmap; vma; vma = vma->vm_next) {
1208 					vma->vm_flags &= ~VM_SOFTDIRTY;
1209 					vma_set_page_prot(vma);
1210 				}
1211 				downgrade_write(&mm->mmap_sem);
1212 				break;
1213 			}
1214 
1215 			mmu_notifier_range_init(&range, MMU_NOTIFY_SOFT_DIRTY,
1216 						0, NULL, mm, 0, -1UL);
1217 			mmu_notifier_invalidate_range_start(&range);
1218 		}
1219 		walk_page_range(0, mm->highest_vm_end, &clear_refs_walk);
1220 		if (type == CLEAR_REFS_SOFT_DIRTY)
1221 			mmu_notifier_invalidate_range_end(&range);
1222 		tlb_finish_mmu(&tlb, 0, -1);
1223 		up_read(&mm->mmap_sem);
1224 out_mm:
1225 		mmput(mm);
1226 	}
1227 	put_task_struct(task);
1228 
1229 	return count;
1230 }
1231 
1232 const struct file_operations proc_clear_refs_operations = {
1233 	.write		= clear_refs_write,
1234 	.llseek		= noop_llseek,
1235 };
1236 
1237 typedef struct {
1238 	u64 pme;
1239 } pagemap_entry_t;
1240 
1241 struct pagemapread {
1242 	int pos, len;		/* units: PM_ENTRY_BYTES, not bytes */
1243 	pagemap_entry_t *buffer;
1244 	bool show_pfn;
1245 };
1246 
1247 #define PAGEMAP_WALK_SIZE	(PMD_SIZE)
1248 #define PAGEMAP_WALK_MASK	(PMD_MASK)
1249 
1250 #define PM_ENTRY_BYTES		sizeof(pagemap_entry_t)
1251 #define PM_PFRAME_BITS		55
1252 #define PM_PFRAME_MASK		GENMASK_ULL(PM_PFRAME_BITS - 1, 0)
1253 #define PM_SOFT_DIRTY		BIT_ULL(55)
1254 #define PM_MMAP_EXCLUSIVE	BIT_ULL(56)
1255 #define PM_FILE			BIT_ULL(61)
1256 #define PM_SWAP			BIT_ULL(62)
1257 #define PM_PRESENT		BIT_ULL(63)
1258 
1259 #define PM_END_OF_BUFFER    1
1260 
1261 static inline pagemap_entry_t make_pme(u64 frame, u64 flags)
1262 {
1263 	return (pagemap_entry_t) { .pme = (frame & PM_PFRAME_MASK) | flags };
1264 }
1265 
1266 static int add_to_pagemap(unsigned long addr, pagemap_entry_t *pme,
1267 			  struct pagemapread *pm)
1268 {
1269 	pm->buffer[pm->pos++] = *pme;
1270 	if (pm->pos >= pm->len)
1271 		return PM_END_OF_BUFFER;
1272 	return 0;
1273 }
1274 
1275 static int pagemap_pte_hole(unsigned long start, unsigned long end,
1276 				struct mm_walk *walk)
1277 {
1278 	struct pagemapread *pm = walk->private;
1279 	unsigned long addr = start;
1280 	int err = 0;
1281 
1282 	while (addr < end) {
1283 		struct vm_area_struct *vma = find_vma(walk->mm, addr);
1284 		pagemap_entry_t pme = make_pme(0, 0);
1285 		/* End of address space hole, which we mark as non-present. */
1286 		unsigned long hole_end;
1287 
1288 		if (vma)
1289 			hole_end = min(end, vma->vm_start);
1290 		else
1291 			hole_end = end;
1292 
1293 		for (; addr < hole_end; addr += PAGE_SIZE) {
1294 			err = add_to_pagemap(addr, &pme, pm);
1295 			if (err)
1296 				goto out;
1297 		}
1298 
1299 		if (!vma)
1300 			break;
1301 
1302 		/* Addresses in the VMA. */
1303 		if (vma->vm_flags & VM_SOFTDIRTY)
1304 			pme = make_pme(0, PM_SOFT_DIRTY);
1305 		for (; addr < min(end, vma->vm_end); addr += PAGE_SIZE) {
1306 			err = add_to_pagemap(addr, &pme, pm);
1307 			if (err)
1308 				goto out;
1309 		}
1310 	}
1311 out:
1312 	return err;
1313 }
1314 
1315 static pagemap_entry_t pte_to_pagemap_entry(struct pagemapread *pm,
1316 		struct vm_area_struct *vma, unsigned long addr, pte_t pte)
1317 {
1318 	u64 frame = 0, flags = 0;
1319 	struct page *page = NULL;
1320 
1321 	if (pte_present(pte)) {
1322 		if (pm->show_pfn)
1323 			frame = pte_pfn(pte);
1324 		flags |= PM_PRESENT;
1325 		page = vm_normal_page(vma, addr, pte);
1326 		if (pte_soft_dirty(pte))
1327 			flags |= PM_SOFT_DIRTY;
1328 	} else if (is_swap_pte(pte)) {
1329 		swp_entry_t entry;
1330 		if (pte_swp_soft_dirty(pte))
1331 			flags |= PM_SOFT_DIRTY;
1332 		entry = pte_to_swp_entry(pte);
1333 		if (pm->show_pfn)
1334 			frame = swp_type(entry) |
1335 				(swp_offset(entry) << MAX_SWAPFILES_SHIFT);
1336 		flags |= PM_SWAP;
1337 		if (is_migration_entry(entry))
1338 			page = migration_entry_to_page(entry);
1339 
1340 		if (is_device_private_entry(entry))
1341 			page = device_private_entry_to_page(entry);
1342 	}
1343 
1344 	if (page && !PageAnon(page))
1345 		flags |= PM_FILE;
1346 	if (page && page_mapcount(page) == 1)
1347 		flags |= PM_MMAP_EXCLUSIVE;
1348 	if (vma->vm_flags & VM_SOFTDIRTY)
1349 		flags |= PM_SOFT_DIRTY;
1350 
1351 	return make_pme(frame, flags);
1352 }
1353 
1354 static int pagemap_pmd_range(pmd_t *pmdp, unsigned long addr, unsigned long end,
1355 			     struct mm_walk *walk)
1356 {
1357 	struct vm_area_struct *vma = walk->vma;
1358 	struct pagemapread *pm = walk->private;
1359 	spinlock_t *ptl;
1360 	pte_t *pte, *orig_pte;
1361 	int err = 0;
1362 
1363 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1364 	ptl = pmd_trans_huge_lock(pmdp, vma);
1365 	if (ptl) {
1366 		u64 flags = 0, frame = 0;
1367 		pmd_t pmd = *pmdp;
1368 		struct page *page = NULL;
1369 
1370 		if (vma->vm_flags & VM_SOFTDIRTY)
1371 			flags |= PM_SOFT_DIRTY;
1372 
1373 		if (pmd_present(pmd)) {
1374 			page = pmd_page(pmd);
1375 
1376 			flags |= PM_PRESENT;
1377 			if (pmd_soft_dirty(pmd))
1378 				flags |= PM_SOFT_DIRTY;
1379 			if (pm->show_pfn)
1380 				frame = pmd_pfn(pmd) +
1381 					((addr & ~PMD_MASK) >> PAGE_SHIFT);
1382 		}
1383 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1384 		else if (is_swap_pmd(pmd)) {
1385 			swp_entry_t entry = pmd_to_swp_entry(pmd);
1386 			unsigned long offset;
1387 
1388 			if (pm->show_pfn) {
1389 				offset = swp_offset(entry) +
1390 					((addr & ~PMD_MASK) >> PAGE_SHIFT);
1391 				frame = swp_type(entry) |
1392 					(offset << MAX_SWAPFILES_SHIFT);
1393 			}
1394 			flags |= PM_SWAP;
1395 			if (pmd_swp_soft_dirty(pmd))
1396 				flags |= PM_SOFT_DIRTY;
1397 			VM_BUG_ON(!is_pmd_migration_entry(pmd));
1398 			page = migration_entry_to_page(entry);
1399 		}
1400 #endif
1401 
1402 		if (page && page_mapcount(page) == 1)
1403 			flags |= PM_MMAP_EXCLUSIVE;
1404 
1405 		for (; addr != end; addr += PAGE_SIZE) {
1406 			pagemap_entry_t pme = make_pme(frame, flags);
1407 
1408 			err = add_to_pagemap(addr, &pme, pm);
1409 			if (err)
1410 				break;
1411 			if (pm->show_pfn) {
1412 				if (flags & PM_PRESENT)
1413 					frame++;
1414 				else if (flags & PM_SWAP)
1415 					frame += (1 << MAX_SWAPFILES_SHIFT);
1416 			}
1417 		}
1418 		spin_unlock(ptl);
1419 		return err;
1420 	}
1421 
1422 	if (pmd_trans_unstable(pmdp))
1423 		return 0;
1424 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1425 
1426 	/*
1427 	 * We can assume that @vma always points to a valid one and @end never
1428 	 * goes beyond vma->vm_end.
1429 	 */
1430 	orig_pte = pte = pte_offset_map_lock(walk->mm, pmdp, addr, &ptl);
1431 	for (; addr < end; pte++, addr += PAGE_SIZE) {
1432 		pagemap_entry_t pme;
1433 
1434 		pme = pte_to_pagemap_entry(pm, vma, addr, *pte);
1435 		err = add_to_pagemap(addr, &pme, pm);
1436 		if (err)
1437 			break;
1438 	}
1439 	pte_unmap_unlock(orig_pte, ptl);
1440 
1441 	cond_resched();
1442 
1443 	return err;
1444 }
1445 
1446 #ifdef CONFIG_HUGETLB_PAGE
1447 /* This function walks within one hugetlb entry in the single call */
1448 static int pagemap_hugetlb_range(pte_t *ptep, unsigned long hmask,
1449 				 unsigned long addr, unsigned long end,
1450 				 struct mm_walk *walk)
1451 {
1452 	struct pagemapread *pm = walk->private;
1453 	struct vm_area_struct *vma = walk->vma;
1454 	u64 flags = 0, frame = 0;
1455 	int err = 0;
1456 	pte_t pte;
1457 
1458 	if (vma->vm_flags & VM_SOFTDIRTY)
1459 		flags |= PM_SOFT_DIRTY;
1460 
1461 	pte = huge_ptep_get(ptep);
1462 	if (pte_present(pte)) {
1463 		struct page *page = pte_page(pte);
1464 
1465 		if (!PageAnon(page))
1466 			flags |= PM_FILE;
1467 
1468 		if (page_mapcount(page) == 1)
1469 			flags |= PM_MMAP_EXCLUSIVE;
1470 
1471 		flags |= PM_PRESENT;
1472 		if (pm->show_pfn)
1473 			frame = pte_pfn(pte) +
1474 				((addr & ~hmask) >> PAGE_SHIFT);
1475 	}
1476 
1477 	for (; addr != end; addr += PAGE_SIZE) {
1478 		pagemap_entry_t pme = make_pme(frame, flags);
1479 
1480 		err = add_to_pagemap(addr, &pme, pm);
1481 		if (err)
1482 			return err;
1483 		if (pm->show_pfn && (flags & PM_PRESENT))
1484 			frame++;
1485 	}
1486 
1487 	cond_resched();
1488 
1489 	return err;
1490 }
1491 #endif /* HUGETLB_PAGE */
1492 
1493 /*
1494  * /proc/pid/pagemap - an array mapping virtual pages to pfns
1495  *
1496  * For each page in the address space, this file contains one 64-bit entry
1497  * consisting of the following:
1498  *
1499  * Bits 0-54  page frame number (PFN) if present
1500  * Bits 0-4   swap type if swapped
1501  * Bits 5-54  swap offset if swapped
1502  * Bit  55    pte is soft-dirty (see Documentation/admin-guide/mm/soft-dirty.rst)
1503  * Bit  56    page exclusively mapped
1504  * Bits 57-60 zero
1505  * Bit  61    page is file-page or shared-anon
1506  * Bit  62    page swapped
1507  * Bit  63    page present
1508  *
1509  * If the page is not present but in swap, then the PFN contains an
1510  * encoding of the swap file number and the page's offset into the
1511  * swap. Unmapped pages return a null PFN. This allows determining
1512  * precisely which pages are mapped (or in swap) and comparing mapped
1513  * pages between processes.
1514  *
1515  * Efficient users of this interface will use /proc/pid/maps to
1516  * determine which areas of memory are actually mapped and llseek to
1517  * skip over unmapped regions.
1518  */
1519 static ssize_t pagemap_read(struct file *file, char __user *buf,
1520 			    size_t count, loff_t *ppos)
1521 {
1522 	struct mm_struct *mm = file->private_data;
1523 	struct pagemapread pm;
1524 	struct mm_walk pagemap_walk = {};
1525 	unsigned long src;
1526 	unsigned long svpfn;
1527 	unsigned long start_vaddr;
1528 	unsigned long end_vaddr;
1529 	int ret = 0, copied = 0;
1530 
1531 	if (!mm || !mmget_not_zero(mm))
1532 		goto out;
1533 
1534 	ret = -EINVAL;
1535 	/* file position must be aligned */
1536 	if ((*ppos % PM_ENTRY_BYTES) || (count % PM_ENTRY_BYTES))
1537 		goto out_mm;
1538 
1539 	ret = 0;
1540 	if (!count)
1541 		goto out_mm;
1542 
1543 	/* do not disclose physical addresses: attack vector */
1544 	pm.show_pfn = file_ns_capable(file, &init_user_ns, CAP_SYS_ADMIN);
1545 
1546 	pm.len = (PAGEMAP_WALK_SIZE >> PAGE_SHIFT);
1547 	pm.buffer = kmalloc_array(pm.len, PM_ENTRY_BYTES, GFP_KERNEL);
1548 	ret = -ENOMEM;
1549 	if (!pm.buffer)
1550 		goto out_mm;
1551 
1552 	pagemap_walk.pmd_entry = pagemap_pmd_range;
1553 	pagemap_walk.pte_hole = pagemap_pte_hole;
1554 #ifdef CONFIG_HUGETLB_PAGE
1555 	pagemap_walk.hugetlb_entry = pagemap_hugetlb_range;
1556 #endif
1557 	pagemap_walk.mm = mm;
1558 	pagemap_walk.private = &pm;
1559 
1560 	src = *ppos;
1561 	svpfn = src / PM_ENTRY_BYTES;
1562 	start_vaddr = svpfn << PAGE_SHIFT;
1563 	end_vaddr = mm->task_size;
1564 
1565 	/* watch out for wraparound */
1566 	if (svpfn > mm->task_size >> PAGE_SHIFT)
1567 		start_vaddr = end_vaddr;
1568 
1569 	/*
1570 	 * The odds are that this will stop walking way
1571 	 * before end_vaddr, because the length of the
1572 	 * user buffer is tracked in "pm", and the walk
1573 	 * will stop when we hit the end of the buffer.
1574 	 */
1575 	ret = 0;
1576 	while (count && (start_vaddr < end_vaddr)) {
1577 		int len;
1578 		unsigned long end;
1579 
1580 		pm.pos = 0;
1581 		end = (start_vaddr + PAGEMAP_WALK_SIZE) & PAGEMAP_WALK_MASK;
1582 		/* overflow ? */
1583 		if (end < start_vaddr || end > end_vaddr)
1584 			end = end_vaddr;
1585 		ret = down_read_killable(&mm->mmap_sem);
1586 		if (ret)
1587 			goto out_free;
1588 		ret = walk_page_range(start_vaddr, end, &pagemap_walk);
1589 		up_read(&mm->mmap_sem);
1590 		start_vaddr = end;
1591 
1592 		len = min(count, PM_ENTRY_BYTES * pm.pos);
1593 		if (copy_to_user(buf, pm.buffer, len)) {
1594 			ret = -EFAULT;
1595 			goto out_free;
1596 		}
1597 		copied += len;
1598 		buf += len;
1599 		count -= len;
1600 	}
1601 	*ppos += copied;
1602 	if (!ret || ret == PM_END_OF_BUFFER)
1603 		ret = copied;
1604 
1605 out_free:
1606 	kfree(pm.buffer);
1607 out_mm:
1608 	mmput(mm);
1609 out:
1610 	return ret;
1611 }
1612 
1613 static int pagemap_open(struct inode *inode, struct file *file)
1614 {
1615 	struct mm_struct *mm;
1616 
1617 	mm = proc_mem_open(inode, PTRACE_MODE_READ);
1618 	if (IS_ERR(mm))
1619 		return PTR_ERR(mm);
1620 	file->private_data = mm;
1621 	return 0;
1622 }
1623 
1624 static int pagemap_release(struct inode *inode, struct file *file)
1625 {
1626 	struct mm_struct *mm = file->private_data;
1627 
1628 	if (mm)
1629 		mmdrop(mm);
1630 	return 0;
1631 }
1632 
1633 const struct file_operations proc_pagemap_operations = {
1634 	.llseek		= mem_lseek, /* borrow this */
1635 	.read		= pagemap_read,
1636 	.open		= pagemap_open,
1637 	.release	= pagemap_release,
1638 };
1639 #endif /* CONFIG_PROC_PAGE_MONITOR */
1640 
1641 #ifdef CONFIG_NUMA
1642 
1643 struct numa_maps {
1644 	unsigned long pages;
1645 	unsigned long anon;
1646 	unsigned long active;
1647 	unsigned long writeback;
1648 	unsigned long mapcount_max;
1649 	unsigned long dirty;
1650 	unsigned long swapcache;
1651 	unsigned long node[MAX_NUMNODES];
1652 };
1653 
1654 struct numa_maps_private {
1655 	struct proc_maps_private proc_maps;
1656 	struct numa_maps md;
1657 };
1658 
1659 static void gather_stats(struct page *page, struct numa_maps *md, int pte_dirty,
1660 			unsigned long nr_pages)
1661 {
1662 	int count = page_mapcount(page);
1663 
1664 	md->pages += nr_pages;
1665 	if (pte_dirty || PageDirty(page))
1666 		md->dirty += nr_pages;
1667 
1668 	if (PageSwapCache(page))
1669 		md->swapcache += nr_pages;
1670 
1671 	if (PageActive(page) || PageUnevictable(page))
1672 		md->active += nr_pages;
1673 
1674 	if (PageWriteback(page))
1675 		md->writeback += nr_pages;
1676 
1677 	if (PageAnon(page))
1678 		md->anon += nr_pages;
1679 
1680 	if (count > md->mapcount_max)
1681 		md->mapcount_max = count;
1682 
1683 	md->node[page_to_nid(page)] += nr_pages;
1684 }
1685 
1686 static struct page *can_gather_numa_stats(pte_t pte, struct vm_area_struct *vma,
1687 		unsigned long addr)
1688 {
1689 	struct page *page;
1690 	int nid;
1691 
1692 	if (!pte_present(pte))
1693 		return NULL;
1694 
1695 	page = vm_normal_page(vma, addr, pte);
1696 	if (!page)
1697 		return NULL;
1698 
1699 	if (PageReserved(page))
1700 		return NULL;
1701 
1702 	nid = page_to_nid(page);
1703 	if (!node_isset(nid, node_states[N_MEMORY]))
1704 		return NULL;
1705 
1706 	return page;
1707 }
1708 
1709 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1710 static struct page *can_gather_numa_stats_pmd(pmd_t pmd,
1711 					      struct vm_area_struct *vma,
1712 					      unsigned long addr)
1713 {
1714 	struct page *page;
1715 	int nid;
1716 
1717 	if (!pmd_present(pmd))
1718 		return NULL;
1719 
1720 	page = vm_normal_page_pmd(vma, addr, pmd);
1721 	if (!page)
1722 		return NULL;
1723 
1724 	if (PageReserved(page))
1725 		return NULL;
1726 
1727 	nid = page_to_nid(page);
1728 	if (!node_isset(nid, node_states[N_MEMORY]))
1729 		return NULL;
1730 
1731 	return page;
1732 }
1733 #endif
1734 
1735 static int gather_pte_stats(pmd_t *pmd, unsigned long addr,
1736 		unsigned long end, struct mm_walk *walk)
1737 {
1738 	struct numa_maps *md = walk->private;
1739 	struct vm_area_struct *vma = walk->vma;
1740 	spinlock_t *ptl;
1741 	pte_t *orig_pte;
1742 	pte_t *pte;
1743 
1744 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1745 	ptl = pmd_trans_huge_lock(pmd, vma);
1746 	if (ptl) {
1747 		struct page *page;
1748 
1749 		page = can_gather_numa_stats_pmd(*pmd, vma, addr);
1750 		if (page)
1751 			gather_stats(page, md, pmd_dirty(*pmd),
1752 				     HPAGE_PMD_SIZE/PAGE_SIZE);
1753 		spin_unlock(ptl);
1754 		return 0;
1755 	}
1756 
1757 	if (pmd_trans_unstable(pmd))
1758 		return 0;
1759 #endif
1760 	orig_pte = pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
1761 	do {
1762 		struct page *page = can_gather_numa_stats(*pte, vma, addr);
1763 		if (!page)
1764 			continue;
1765 		gather_stats(page, md, pte_dirty(*pte), 1);
1766 
1767 	} while (pte++, addr += PAGE_SIZE, addr != end);
1768 	pte_unmap_unlock(orig_pte, ptl);
1769 	cond_resched();
1770 	return 0;
1771 }
1772 #ifdef CONFIG_HUGETLB_PAGE
1773 static int gather_hugetlb_stats(pte_t *pte, unsigned long hmask,
1774 		unsigned long addr, unsigned long end, struct mm_walk *walk)
1775 {
1776 	pte_t huge_pte = huge_ptep_get(pte);
1777 	struct numa_maps *md;
1778 	struct page *page;
1779 
1780 	if (!pte_present(huge_pte))
1781 		return 0;
1782 
1783 	page = pte_page(huge_pte);
1784 	if (!page)
1785 		return 0;
1786 
1787 	md = walk->private;
1788 	gather_stats(page, md, pte_dirty(huge_pte), 1);
1789 	return 0;
1790 }
1791 
1792 #else
1793 static int gather_hugetlb_stats(pte_t *pte, unsigned long hmask,
1794 		unsigned long addr, unsigned long end, struct mm_walk *walk)
1795 {
1796 	return 0;
1797 }
1798 #endif
1799 
1800 /*
1801  * Display pages allocated per node and memory policy via /proc.
1802  */
1803 static int show_numa_map(struct seq_file *m, void *v)
1804 {
1805 	struct numa_maps_private *numa_priv = m->private;
1806 	struct proc_maps_private *proc_priv = &numa_priv->proc_maps;
1807 	struct vm_area_struct *vma = v;
1808 	struct numa_maps *md = &numa_priv->md;
1809 	struct file *file = vma->vm_file;
1810 	struct mm_struct *mm = vma->vm_mm;
1811 	struct mm_walk walk = {
1812 		.hugetlb_entry = gather_hugetlb_stats,
1813 		.pmd_entry = gather_pte_stats,
1814 		.private = md,
1815 		.mm = mm,
1816 	};
1817 	struct mempolicy *pol;
1818 	char buffer[64];
1819 	int nid;
1820 
1821 	if (!mm)
1822 		return 0;
1823 
1824 	/* Ensure we start with an empty set of numa_maps statistics. */
1825 	memset(md, 0, sizeof(*md));
1826 
1827 	pol = __get_vma_policy(vma, vma->vm_start);
1828 	if (pol) {
1829 		mpol_to_str(buffer, sizeof(buffer), pol);
1830 		mpol_cond_put(pol);
1831 	} else {
1832 		mpol_to_str(buffer, sizeof(buffer), proc_priv->task_mempolicy);
1833 	}
1834 
1835 	seq_printf(m, "%08lx %s", vma->vm_start, buffer);
1836 
1837 	if (file) {
1838 		seq_puts(m, " file=");
1839 		seq_file_path(m, file, "\n\t= ");
1840 	} else if (vma->vm_start <= mm->brk && vma->vm_end >= mm->start_brk) {
1841 		seq_puts(m, " heap");
1842 	} else if (is_stack(vma)) {
1843 		seq_puts(m, " stack");
1844 	}
1845 
1846 	if (is_vm_hugetlb_page(vma))
1847 		seq_puts(m, " huge");
1848 
1849 	/* mmap_sem is held by m_start */
1850 	walk_page_vma(vma, &walk);
1851 
1852 	if (!md->pages)
1853 		goto out;
1854 
1855 	if (md->anon)
1856 		seq_printf(m, " anon=%lu", md->anon);
1857 
1858 	if (md->dirty)
1859 		seq_printf(m, " dirty=%lu", md->dirty);
1860 
1861 	if (md->pages != md->anon && md->pages != md->dirty)
1862 		seq_printf(m, " mapped=%lu", md->pages);
1863 
1864 	if (md->mapcount_max > 1)
1865 		seq_printf(m, " mapmax=%lu", md->mapcount_max);
1866 
1867 	if (md->swapcache)
1868 		seq_printf(m, " swapcache=%lu", md->swapcache);
1869 
1870 	if (md->active < md->pages && !is_vm_hugetlb_page(vma))
1871 		seq_printf(m, " active=%lu", md->active);
1872 
1873 	if (md->writeback)
1874 		seq_printf(m, " writeback=%lu", md->writeback);
1875 
1876 	for_each_node_state(nid, N_MEMORY)
1877 		if (md->node[nid])
1878 			seq_printf(m, " N%d=%lu", nid, md->node[nid]);
1879 
1880 	seq_printf(m, " kernelpagesize_kB=%lu", vma_kernel_pagesize(vma) >> 10);
1881 out:
1882 	seq_putc(m, '\n');
1883 	m_cache_vma(m, vma);
1884 	return 0;
1885 }
1886 
1887 static const struct seq_operations proc_pid_numa_maps_op = {
1888 	.start  = m_start,
1889 	.next   = m_next,
1890 	.stop   = m_stop,
1891 	.show   = show_numa_map,
1892 };
1893 
1894 static int pid_numa_maps_open(struct inode *inode, struct file *file)
1895 {
1896 	return proc_maps_open(inode, file, &proc_pid_numa_maps_op,
1897 				sizeof(struct numa_maps_private));
1898 }
1899 
1900 const struct file_operations proc_pid_numa_maps_operations = {
1901 	.open		= pid_numa_maps_open,
1902 	.read		= seq_read,
1903 	.llseek		= seq_lseek,
1904 	.release	= proc_map_release,
1905 };
1906 
1907 #endif /* CONFIG_NUMA */
1908