1 // SPDX-License-Identifier: GPL-2.0 2 #include <linux/pagewalk.h> 3 #include <linux/mm_inline.h> 4 #include <linux/hugetlb.h> 5 #include <linux/huge_mm.h> 6 #include <linux/mount.h> 7 #include <linux/ksm.h> 8 #include <linux/seq_file.h> 9 #include <linux/highmem.h> 10 #include <linux/ptrace.h> 11 #include <linux/slab.h> 12 #include <linux/pagemap.h> 13 #include <linux/mempolicy.h> 14 #include <linux/rmap.h> 15 #include <linux/swap.h> 16 #include <linux/sched/mm.h> 17 #include <linux/swapops.h> 18 #include <linux/mmu_notifier.h> 19 #include <linux/page_idle.h> 20 #include <linux/shmem_fs.h> 21 #include <linux/uaccess.h> 22 #include <linux/pkeys.h> 23 #include <linux/minmax.h> 24 #include <linux/overflow.h> 25 #include <linux/buildid.h> 26 27 #include <asm/elf.h> 28 #include <asm/tlb.h> 29 #include <asm/tlbflush.h> 30 #include "internal.h" 31 32 #define SEQ_PUT_DEC(str, val) \ 33 seq_put_decimal_ull_width(m, str, (val) << (PAGE_SHIFT-10), 8) 34 void task_mem(struct seq_file *m, struct mm_struct *mm) 35 { 36 unsigned long text, lib, swap, anon, file, shmem; 37 unsigned long hiwater_vm, total_vm, hiwater_rss, total_rss; 38 39 anon = get_mm_counter(mm, MM_ANONPAGES); 40 file = get_mm_counter(mm, MM_FILEPAGES); 41 shmem = get_mm_counter(mm, MM_SHMEMPAGES); 42 43 /* 44 * Note: to minimize their overhead, mm maintains hiwater_vm and 45 * hiwater_rss only when about to *lower* total_vm or rss. Any 46 * collector of these hiwater stats must therefore get total_vm 47 * and rss too, which will usually be the higher. Barriers? not 48 * worth the effort, such snapshots can always be inconsistent. 49 */ 50 hiwater_vm = total_vm = mm->total_vm; 51 if (hiwater_vm < mm->hiwater_vm) 52 hiwater_vm = mm->hiwater_vm; 53 hiwater_rss = total_rss = anon + file + shmem; 54 if (hiwater_rss < mm->hiwater_rss) 55 hiwater_rss = mm->hiwater_rss; 56 57 /* split executable areas between text and lib */ 58 text = PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK); 59 text = min(text, mm->exec_vm << PAGE_SHIFT); 60 lib = (mm->exec_vm << PAGE_SHIFT) - text; 61 62 swap = get_mm_counter(mm, MM_SWAPENTS); 63 SEQ_PUT_DEC("VmPeak:\t", hiwater_vm); 64 SEQ_PUT_DEC(" kB\nVmSize:\t", total_vm); 65 SEQ_PUT_DEC(" kB\nVmLck:\t", mm->locked_vm); 66 SEQ_PUT_DEC(" kB\nVmPin:\t", atomic64_read(&mm->pinned_vm)); 67 SEQ_PUT_DEC(" kB\nVmHWM:\t", hiwater_rss); 68 SEQ_PUT_DEC(" kB\nVmRSS:\t", total_rss); 69 SEQ_PUT_DEC(" kB\nRssAnon:\t", anon); 70 SEQ_PUT_DEC(" kB\nRssFile:\t", file); 71 SEQ_PUT_DEC(" kB\nRssShmem:\t", shmem); 72 SEQ_PUT_DEC(" kB\nVmData:\t", mm->data_vm); 73 SEQ_PUT_DEC(" kB\nVmStk:\t", mm->stack_vm); 74 seq_put_decimal_ull_width(m, 75 " kB\nVmExe:\t", text >> 10, 8); 76 seq_put_decimal_ull_width(m, 77 " kB\nVmLib:\t", lib >> 10, 8); 78 seq_put_decimal_ull_width(m, 79 " kB\nVmPTE:\t", mm_pgtables_bytes(mm) >> 10, 8); 80 SEQ_PUT_DEC(" kB\nVmSwap:\t", swap); 81 seq_puts(m, " kB\n"); 82 hugetlb_report_usage(m, mm); 83 } 84 #undef SEQ_PUT_DEC 85 86 unsigned long task_vsize(struct mm_struct *mm) 87 { 88 return PAGE_SIZE * mm->total_vm; 89 } 90 91 unsigned long task_statm(struct mm_struct *mm, 92 unsigned long *shared, unsigned long *text, 93 unsigned long *data, unsigned long *resident) 94 { 95 *shared = get_mm_counter(mm, MM_FILEPAGES) + 96 get_mm_counter(mm, MM_SHMEMPAGES); 97 *text = (PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK)) 98 >> PAGE_SHIFT; 99 *data = mm->data_vm + mm->stack_vm; 100 *resident = *shared + get_mm_counter(mm, MM_ANONPAGES); 101 return mm->total_vm; 102 } 103 104 #ifdef CONFIG_NUMA 105 /* 106 * Save get_task_policy() for show_numa_map(). 107 */ 108 static void hold_task_mempolicy(struct proc_maps_private *priv) 109 { 110 struct task_struct *task = priv->task; 111 112 task_lock(task); 113 priv->task_mempolicy = get_task_policy(task); 114 mpol_get(priv->task_mempolicy); 115 task_unlock(task); 116 } 117 static void release_task_mempolicy(struct proc_maps_private *priv) 118 { 119 mpol_put(priv->task_mempolicy); 120 } 121 #else 122 static void hold_task_mempolicy(struct proc_maps_private *priv) 123 { 124 } 125 static void release_task_mempolicy(struct proc_maps_private *priv) 126 { 127 } 128 #endif 129 130 static struct vm_area_struct *proc_get_vma(struct proc_maps_private *priv, 131 loff_t *ppos) 132 { 133 struct vm_area_struct *vma = vma_next(&priv->iter); 134 135 if (vma) { 136 *ppos = vma->vm_start; 137 } else { 138 *ppos = -2UL; 139 vma = get_gate_vma(priv->mm); 140 } 141 142 return vma; 143 } 144 145 static void *m_start(struct seq_file *m, loff_t *ppos) 146 { 147 struct proc_maps_private *priv = m->private; 148 unsigned long last_addr = *ppos; 149 struct mm_struct *mm; 150 151 /* See m_next(). Zero at the start or after lseek. */ 152 if (last_addr == -1UL) 153 return NULL; 154 155 priv->task = get_proc_task(priv->inode); 156 if (!priv->task) 157 return ERR_PTR(-ESRCH); 158 159 mm = priv->mm; 160 if (!mm || !mmget_not_zero(mm)) { 161 put_task_struct(priv->task); 162 priv->task = NULL; 163 return NULL; 164 } 165 166 if (mmap_read_lock_killable(mm)) { 167 mmput(mm); 168 put_task_struct(priv->task); 169 priv->task = NULL; 170 return ERR_PTR(-EINTR); 171 } 172 173 vma_iter_init(&priv->iter, mm, last_addr); 174 hold_task_mempolicy(priv); 175 if (last_addr == -2UL) 176 return get_gate_vma(mm); 177 178 return proc_get_vma(priv, ppos); 179 } 180 181 static void *m_next(struct seq_file *m, void *v, loff_t *ppos) 182 { 183 if (*ppos == -2UL) { 184 *ppos = -1UL; 185 return NULL; 186 } 187 return proc_get_vma(m->private, ppos); 188 } 189 190 static void m_stop(struct seq_file *m, void *v) 191 { 192 struct proc_maps_private *priv = m->private; 193 struct mm_struct *mm = priv->mm; 194 195 if (!priv->task) 196 return; 197 198 release_task_mempolicy(priv); 199 mmap_read_unlock(mm); 200 mmput(mm); 201 put_task_struct(priv->task); 202 priv->task = NULL; 203 } 204 205 static int proc_maps_open(struct inode *inode, struct file *file, 206 const struct seq_operations *ops, int psize) 207 { 208 struct proc_maps_private *priv = __seq_open_private(file, ops, psize); 209 210 if (!priv) 211 return -ENOMEM; 212 213 priv->inode = inode; 214 priv->mm = proc_mem_open(inode, PTRACE_MODE_READ); 215 if (IS_ERR(priv->mm)) { 216 int err = PTR_ERR(priv->mm); 217 218 seq_release_private(inode, file); 219 return err; 220 } 221 222 return 0; 223 } 224 225 static int proc_map_release(struct inode *inode, struct file *file) 226 { 227 struct seq_file *seq = file->private_data; 228 struct proc_maps_private *priv = seq->private; 229 230 if (priv->mm) 231 mmdrop(priv->mm); 232 233 return seq_release_private(inode, file); 234 } 235 236 static int do_maps_open(struct inode *inode, struct file *file, 237 const struct seq_operations *ops) 238 { 239 return proc_maps_open(inode, file, ops, 240 sizeof(struct proc_maps_private)); 241 } 242 243 static void get_vma_name(struct vm_area_struct *vma, 244 const struct path **path, 245 const char **name, 246 const char **name_fmt) 247 { 248 struct anon_vma_name *anon_name = vma->vm_mm ? anon_vma_name(vma) : NULL; 249 250 *name = NULL; 251 *path = NULL; 252 *name_fmt = NULL; 253 254 /* 255 * Print the dentry name for named mappings, and a 256 * special [heap] marker for the heap: 257 */ 258 if (vma->vm_file) { 259 /* 260 * If user named this anon shared memory via 261 * prctl(PR_SET_VMA ..., use the provided name. 262 */ 263 if (anon_name) { 264 *name_fmt = "[anon_shmem:%s]"; 265 *name = anon_name->name; 266 } else { 267 *path = file_user_path(vma->vm_file); 268 } 269 return; 270 } 271 272 if (vma->vm_ops && vma->vm_ops->name) { 273 *name = vma->vm_ops->name(vma); 274 if (*name) 275 return; 276 } 277 278 *name = arch_vma_name(vma); 279 if (*name) 280 return; 281 282 if (!vma->vm_mm) { 283 *name = "[vdso]"; 284 return; 285 } 286 287 if (vma_is_initial_heap(vma)) { 288 *name = "[heap]"; 289 return; 290 } 291 292 if (vma_is_initial_stack(vma)) { 293 *name = "[stack]"; 294 return; 295 } 296 297 if (anon_name) { 298 *name_fmt = "[anon:%s]"; 299 *name = anon_name->name; 300 return; 301 } 302 } 303 304 static void show_vma_header_prefix(struct seq_file *m, 305 unsigned long start, unsigned long end, 306 vm_flags_t flags, unsigned long long pgoff, 307 dev_t dev, unsigned long ino) 308 { 309 seq_setwidth(m, 25 + sizeof(void *) * 6 - 1); 310 seq_put_hex_ll(m, NULL, start, 8); 311 seq_put_hex_ll(m, "-", end, 8); 312 seq_putc(m, ' '); 313 seq_putc(m, flags & VM_READ ? 'r' : '-'); 314 seq_putc(m, flags & VM_WRITE ? 'w' : '-'); 315 seq_putc(m, flags & VM_EXEC ? 'x' : '-'); 316 seq_putc(m, flags & VM_MAYSHARE ? 's' : 'p'); 317 seq_put_hex_ll(m, " ", pgoff, 8); 318 seq_put_hex_ll(m, " ", MAJOR(dev), 2); 319 seq_put_hex_ll(m, ":", MINOR(dev), 2); 320 seq_put_decimal_ull(m, " ", ino); 321 seq_putc(m, ' '); 322 } 323 324 static void 325 show_map_vma(struct seq_file *m, struct vm_area_struct *vma) 326 { 327 const struct path *path; 328 const char *name_fmt, *name; 329 vm_flags_t flags = vma->vm_flags; 330 unsigned long ino = 0; 331 unsigned long long pgoff = 0; 332 unsigned long start, end; 333 dev_t dev = 0; 334 335 if (vma->vm_file) { 336 const struct inode *inode = file_user_inode(vma->vm_file); 337 338 dev = inode->i_sb->s_dev; 339 ino = inode->i_ino; 340 pgoff = ((loff_t)vma->vm_pgoff) << PAGE_SHIFT; 341 } 342 343 start = vma->vm_start; 344 end = vma->vm_end; 345 show_vma_header_prefix(m, start, end, flags, pgoff, dev, ino); 346 347 get_vma_name(vma, &path, &name, &name_fmt); 348 if (path) { 349 seq_pad(m, ' '); 350 seq_path(m, path, "\n"); 351 } else if (name_fmt) { 352 seq_pad(m, ' '); 353 seq_printf(m, name_fmt, name); 354 } else if (name) { 355 seq_pad(m, ' '); 356 seq_puts(m, name); 357 } 358 seq_putc(m, '\n'); 359 } 360 361 static int show_map(struct seq_file *m, void *v) 362 { 363 show_map_vma(m, v); 364 return 0; 365 } 366 367 static const struct seq_operations proc_pid_maps_op = { 368 .start = m_start, 369 .next = m_next, 370 .stop = m_stop, 371 .show = show_map 372 }; 373 374 static int pid_maps_open(struct inode *inode, struct file *file) 375 { 376 return do_maps_open(inode, file, &proc_pid_maps_op); 377 } 378 379 #define PROCMAP_QUERY_VMA_FLAGS ( \ 380 PROCMAP_QUERY_VMA_READABLE | \ 381 PROCMAP_QUERY_VMA_WRITABLE | \ 382 PROCMAP_QUERY_VMA_EXECUTABLE | \ 383 PROCMAP_QUERY_VMA_SHARED \ 384 ) 385 386 #define PROCMAP_QUERY_VALID_FLAGS_MASK ( \ 387 PROCMAP_QUERY_COVERING_OR_NEXT_VMA | \ 388 PROCMAP_QUERY_FILE_BACKED_VMA | \ 389 PROCMAP_QUERY_VMA_FLAGS \ 390 ) 391 392 static int query_vma_setup(struct mm_struct *mm) 393 { 394 return mmap_read_lock_killable(mm); 395 } 396 397 static void query_vma_teardown(struct mm_struct *mm, struct vm_area_struct *vma) 398 { 399 mmap_read_unlock(mm); 400 } 401 402 static struct vm_area_struct *query_vma_find_by_addr(struct mm_struct *mm, unsigned long addr) 403 { 404 return find_vma(mm, addr); 405 } 406 407 static struct vm_area_struct *query_matching_vma(struct mm_struct *mm, 408 unsigned long addr, u32 flags) 409 { 410 struct vm_area_struct *vma; 411 412 next_vma: 413 vma = query_vma_find_by_addr(mm, addr); 414 if (!vma) 415 goto no_vma; 416 417 /* user requested only file-backed VMA, keep iterating */ 418 if ((flags & PROCMAP_QUERY_FILE_BACKED_VMA) && !vma->vm_file) 419 goto skip_vma; 420 421 /* VMA permissions should satisfy query flags */ 422 if (flags & PROCMAP_QUERY_VMA_FLAGS) { 423 u32 perm = 0; 424 425 if (flags & PROCMAP_QUERY_VMA_READABLE) 426 perm |= VM_READ; 427 if (flags & PROCMAP_QUERY_VMA_WRITABLE) 428 perm |= VM_WRITE; 429 if (flags & PROCMAP_QUERY_VMA_EXECUTABLE) 430 perm |= VM_EXEC; 431 if (flags & PROCMAP_QUERY_VMA_SHARED) 432 perm |= VM_MAYSHARE; 433 434 if ((vma->vm_flags & perm) != perm) 435 goto skip_vma; 436 } 437 438 /* found covering VMA or user is OK with the matching next VMA */ 439 if ((flags & PROCMAP_QUERY_COVERING_OR_NEXT_VMA) || vma->vm_start <= addr) 440 return vma; 441 442 skip_vma: 443 /* 444 * If the user needs closest matching VMA, keep iterating. 445 */ 446 addr = vma->vm_end; 447 if (flags & PROCMAP_QUERY_COVERING_OR_NEXT_VMA) 448 goto next_vma; 449 450 no_vma: 451 return ERR_PTR(-ENOENT); 452 } 453 454 static int do_procmap_query(struct proc_maps_private *priv, void __user *uarg) 455 { 456 struct procmap_query karg; 457 struct vm_area_struct *vma; 458 struct mm_struct *mm; 459 const char *name = NULL; 460 char build_id_buf[BUILD_ID_SIZE_MAX], *name_buf = NULL; 461 __u64 usize; 462 int err; 463 464 if (copy_from_user(&usize, (void __user *)uarg, sizeof(usize))) 465 return -EFAULT; 466 /* argument struct can never be that large, reject abuse */ 467 if (usize > PAGE_SIZE) 468 return -E2BIG; 469 /* argument struct should have at least query_flags and query_addr fields */ 470 if (usize < offsetofend(struct procmap_query, query_addr)) 471 return -EINVAL; 472 err = copy_struct_from_user(&karg, sizeof(karg), uarg, usize); 473 if (err) 474 return err; 475 476 /* reject unknown flags */ 477 if (karg.query_flags & ~PROCMAP_QUERY_VALID_FLAGS_MASK) 478 return -EINVAL; 479 /* either both buffer address and size are set, or both should be zero */ 480 if (!!karg.vma_name_size != !!karg.vma_name_addr) 481 return -EINVAL; 482 if (!!karg.build_id_size != !!karg.build_id_addr) 483 return -EINVAL; 484 485 mm = priv->mm; 486 if (!mm || !mmget_not_zero(mm)) 487 return -ESRCH; 488 489 err = query_vma_setup(mm); 490 if (err) { 491 mmput(mm); 492 return err; 493 } 494 495 vma = query_matching_vma(mm, karg.query_addr, karg.query_flags); 496 if (IS_ERR(vma)) { 497 err = PTR_ERR(vma); 498 vma = NULL; 499 goto out; 500 } 501 502 karg.vma_start = vma->vm_start; 503 karg.vma_end = vma->vm_end; 504 505 karg.vma_flags = 0; 506 if (vma->vm_flags & VM_READ) 507 karg.vma_flags |= PROCMAP_QUERY_VMA_READABLE; 508 if (vma->vm_flags & VM_WRITE) 509 karg.vma_flags |= PROCMAP_QUERY_VMA_WRITABLE; 510 if (vma->vm_flags & VM_EXEC) 511 karg.vma_flags |= PROCMAP_QUERY_VMA_EXECUTABLE; 512 if (vma->vm_flags & VM_MAYSHARE) 513 karg.vma_flags |= PROCMAP_QUERY_VMA_SHARED; 514 515 karg.vma_page_size = vma_kernel_pagesize(vma); 516 517 if (vma->vm_file) { 518 const struct inode *inode = file_user_inode(vma->vm_file); 519 520 karg.vma_offset = ((__u64)vma->vm_pgoff) << PAGE_SHIFT; 521 karg.dev_major = MAJOR(inode->i_sb->s_dev); 522 karg.dev_minor = MINOR(inode->i_sb->s_dev); 523 karg.inode = inode->i_ino; 524 } else { 525 karg.vma_offset = 0; 526 karg.dev_major = 0; 527 karg.dev_minor = 0; 528 karg.inode = 0; 529 } 530 531 if (karg.build_id_size) { 532 __u32 build_id_sz; 533 534 err = build_id_parse(vma, build_id_buf, &build_id_sz); 535 if (err) { 536 karg.build_id_size = 0; 537 } else { 538 if (karg.build_id_size < build_id_sz) { 539 err = -ENAMETOOLONG; 540 goto out; 541 } 542 karg.build_id_size = build_id_sz; 543 } 544 } 545 546 if (karg.build_id_size) { 547 __u32 build_id_sz; 548 549 err = build_id_parse(vma, build_id_buf, &build_id_sz); 550 if (err) { 551 karg.build_id_size = 0; 552 } else { 553 if (karg.build_id_size < build_id_sz) { 554 err = -ENAMETOOLONG; 555 goto out; 556 } 557 karg.build_id_size = build_id_sz; 558 } 559 } 560 561 if (karg.vma_name_size) { 562 size_t name_buf_sz = min_t(size_t, PATH_MAX, karg.vma_name_size); 563 const struct path *path; 564 const char *name_fmt; 565 size_t name_sz = 0; 566 567 get_vma_name(vma, &path, &name, &name_fmt); 568 569 if (path || name_fmt || name) { 570 name_buf = kmalloc(name_buf_sz, GFP_KERNEL); 571 if (!name_buf) { 572 err = -ENOMEM; 573 goto out; 574 } 575 } 576 if (path) { 577 name = d_path(path, name_buf, name_buf_sz); 578 if (IS_ERR(name)) { 579 err = PTR_ERR(name); 580 goto out; 581 } 582 name_sz = name_buf + name_buf_sz - name; 583 } else if (name || name_fmt) { 584 name_sz = 1 + snprintf(name_buf, name_buf_sz, name_fmt ?: "%s", name); 585 name = name_buf; 586 } 587 if (name_sz > name_buf_sz) { 588 err = -ENAMETOOLONG; 589 goto out; 590 } 591 karg.vma_name_size = name_sz; 592 } 593 594 /* unlock vma or mmap_lock, and put mm_struct before copying data to user */ 595 query_vma_teardown(mm, vma); 596 mmput(mm); 597 598 if (karg.vma_name_size && copy_to_user(u64_to_user_ptr(karg.vma_name_addr), 599 name, karg.vma_name_size)) { 600 kfree(name_buf); 601 return -EFAULT; 602 } 603 kfree(name_buf); 604 605 if (karg.build_id_size && copy_to_user(u64_to_user_ptr(karg.build_id_addr), 606 build_id_buf, karg.build_id_size)) 607 return -EFAULT; 608 609 if (copy_to_user(uarg, &karg, min_t(size_t, sizeof(karg), usize))) 610 return -EFAULT; 611 612 return 0; 613 614 out: 615 query_vma_teardown(mm, vma); 616 mmput(mm); 617 kfree(name_buf); 618 return err; 619 } 620 621 static long procfs_procmap_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 622 { 623 struct seq_file *seq = file->private_data; 624 struct proc_maps_private *priv = seq->private; 625 626 switch (cmd) { 627 case PROCMAP_QUERY: 628 return do_procmap_query(priv, (void __user *)arg); 629 default: 630 return -ENOIOCTLCMD; 631 } 632 } 633 634 const struct file_operations proc_pid_maps_operations = { 635 .open = pid_maps_open, 636 .read = seq_read, 637 .llseek = seq_lseek, 638 .release = proc_map_release, 639 .unlocked_ioctl = procfs_procmap_ioctl, 640 .compat_ioctl = compat_ptr_ioctl, 641 }; 642 643 /* 644 * Proportional Set Size(PSS): my share of RSS. 645 * 646 * PSS of a process is the count of pages it has in memory, where each 647 * page is divided by the number of processes sharing it. So if a 648 * process has 1000 pages all to itself, and 1000 shared with one other 649 * process, its PSS will be 1500. 650 * 651 * To keep (accumulated) division errors low, we adopt a 64bit 652 * fixed-point pss counter to minimize division errors. So (pss >> 653 * PSS_SHIFT) would be the real byte count. 654 * 655 * A shift of 12 before division means (assuming 4K page size): 656 * - 1M 3-user-pages add up to 8KB errors; 657 * - supports mapcount up to 2^24, or 16M; 658 * - supports PSS up to 2^52 bytes, or 4PB. 659 */ 660 #define PSS_SHIFT 12 661 662 #ifdef CONFIG_PROC_PAGE_MONITOR 663 struct mem_size_stats { 664 unsigned long resident; 665 unsigned long shared_clean; 666 unsigned long shared_dirty; 667 unsigned long private_clean; 668 unsigned long private_dirty; 669 unsigned long referenced; 670 unsigned long anonymous; 671 unsigned long lazyfree; 672 unsigned long anonymous_thp; 673 unsigned long shmem_thp; 674 unsigned long file_thp; 675 unsigned long swap; 676 unsigned long shared_hugetlb; 677 unsigned long private_hugetlb; 678 unsigned long ksm; 679 u64 pss; 680 u64 pss_anon; 681 u64 pss_file; 682 u64 pss_shmem; 683 u64 pss_dirty; 684 u64 pss_locked; 685 u64 swap_pss; 686 }; 687 688 static void smaps_page_accumulate(struct mem_size_stats *mss, 689 struct folio *folio, unsigned long size, unsigned long pss, 690 bool dirty, bool locked, bool private) 691 { 692 mss->pss += pss; 693 694 if (folio_test_anon(folio)) 695 mss->pss_anon += pss; 696 else if (folio_test_swapbacked(folio)) 697 mss->pss_shmem += pss; 698 else 699 mss->pss_file += pss; 700 701 if (locked) 702 mss->pss_locked += pss; 703 704 if (dirty || folio_test_dirty(folio)) { 705 mss->pss_dirty += pss; 706 if (private) 707 mss->private_dirty += size; 708 else 709 mss->shared_dirty += size; 710 } else { 711 if (private) 712 mss->private_clean += size; 713 else 714 mss->shared_clean += size; 715 } 716 } 717 718 static void smaps_account(struct mem_size_stats *mss, struct page *page, 719 bool compound, bool young, bool dirty, bool locked, 720 bool present) 721 { 722 struct folio *folio = page_folio(page); 723 int i, nr = compound ? compound_nr(page) : 1; 724 unsigned long size = nr * PAGE_SIZE; 725 726 /* 727 * First accumulate quantities that depend only on |size| and the type 728 * of the compound page. 729 */ 730 if (folio_test_anon(folio)) { 731 mss->anonymous += size; 732 if (!folio_test_swapbacked(folio) && !dirty && 733 !folio_test_dirty(folio)) 734 mss->lazyfree += size; 735 } 736 737 if (folio_test_ksm(folio)) 738 mss->ksm += size; 739 740 mss->resident += size; 741 /* Accumulate the size in pages that have been accessed. */ 742 if (young || folio_test_young(folio) || folio_test_referenced(folio)) 743 mss->referenced += size; 744 745 /* 746 * Then accumulate quantities that may depend on sharing, or that may 747 * differ page-by-page. 748 * 749 * refcount == 1 for present entries guarantees that the folio is mapped 750 * exactly once. For large folios this implies that exactly one 751 * PTE/PMD/... maps (a part of) this folio. 752 * 753 * Treat all non-present entries (where relying on the mapcount and 754 * refcount doesn't make sense) as "maybe shared, but not sure how 755 * often". We treat device private entries as being fake-present. 756 * 757 * Note that it would not be safe to read the mapcount especially for 758 * pages referenced by migration entries, even with the PTL held. 759 */ 760 if (folio_ref_count(folio) == 1 || !present) { 761 smaps_page_accumulate(mss, folio, size, size << PSS_SHIFT, 762 dirty, locked, present); 763 return; 764 } 765 /* 766 * We obtain a snapshot of the mapcount. Without holding the folio lock 767 * this snapshot can be slightly wrong as we cannot always read the 768 * mapcount atomically. 769 */ 770 for (i = 0; i < nr; i++, page++) { 771 int mapcount = folio_precise_page_mapcount(folio, page); 772 unsigned long pss = PAGE_SIZE << PSS_SHIFT; 773 if (mapcount >= 2) 774 pss /= mapcount; 775 smaps_page_accumulate(mss, folio, PAGE_SIZE, pss, 776 dirty, locked, mapcount < 2); 777 } 778 } 779 780 #ifdef CONFIG_SHMEM 781 static int smaps_pte_hole(unsigned long addr, unsigned long end, 782 __always_unused int depth, struct mm_walk *walk) 783 { 784 struct mem_size_stats *mss = walk->private; 785 struct vm_area_struct *vma = walk->vma; 786 787 mss->swap += shmem_partial_swap_usage(walk->vma->vm_file->f_mapping, 788 linear_page_index(vma, addr), 789 linear_page_index(vma, end)); 790 791 return 0; 792 } 793 #else 794 #define smaps_pte_hole NULL 795 #endif /* CONFIG_SHMEM */ 796 797 static void smaps_pte_hole_lookup(unsigned long addr, struct mm_walk *walk) 798 { 799 #ifdef CONFIG_SHMEM 800 if (walk->ops->pte_hole) { 801 /* depth is not used */ 802 smaps_pte_hole(addr, addr + PAGE_SIZE, 0, walk); 803 } 804 #endif 805 } 806 807 static void smaps_pte_entry(pte_t *pte, unsigned long addr, 808 struct mm_walk *walk) 809 { 810 struct mem_size_stats *mss = walk->private; 811 struct vm_area_struct *vma = walk->vma; 812 bool locked = !!(vma->vm_flags & VM_LOCKED); 813 struct page *page = NULL; 814 bool present = false, young = false, dirty = false; 815 pte_t ptent = ptep_get(pte); 816 817 if (pte_present(ptent)) { 818 page = vm_normal_page(vma, addr, ptent); 819 young = pte_young(ptent); 820 dirty = pte_dirty(ptent); 821 present = true; 822 } else if (is_swap_pte(ptent)) { 823 swp_entry_t swpent = pte_to_swp_entry(ptent); 824 825 if (!non_swap_entry(swpent)) { 826 int mapcount; 827 828 mss->swap += PAGE_SIZE; 829 mapcount = swp_swapcount(swpent); 830 if (mapcount >= 2) { 831 u64 pss_delta = (u64)PAGE_SIZE << PSS_SHIFT; 832 833 do_div(pss_delta, mapcount); 834 mss->swap_pss += pss_delta; 835 } else { 836 mss->swap_pss += (u64)PAGE_SIZE << PSS_SHIFT; 837 } 838 } else if (is_pfn_swap_entry(swpent)) { 839 if (is_device_private_entry(swpent)) 840 present = true; 841 page = pfn_swap_entry_to_page(swpent); 842 } 843 } else { 844 smaps_pte_hole_lookup(addr, walk); 845 return; 846 } 847 848 if (!page) 849 return; 850 851 smaps_account(mss, page, false, young, dirty, locked, present); 852 } 853 854 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 855 static void smaps_pmd_entry(pmd_t *pmd, unsigned long addr, 856 struct mm_walk *walk) 857 { 858 struct mem_size_stats *mss = walk->private; 859 struct vm_area_struct *vma = walk->vma; 860 bool locked = !!(vma->vm_flags & VM_LOCKED); 861 struct page *page = NULL; 862 bool present = false; 863 struct folio *folio; 864 865 if (pmd_present(*pmd)) { 866 page = vm_normal_page_pmd(vma, addr, *pmd); 867 present = true; 868 } else if (unlikely(thp_migration_supported() && is_swap_pmd(*pmd))) { 869 swp_entry_t entry = pmd_to_swp_entry(*pmd); 870 871 if (is_pfn_swap_entry(entry)) 872 page = pfn_swap_entry_to_page(entry); 873 } 874 if (IS_ERR_OR_NULL(page)) 875 return; 876 folio = page_folio(page); 877 if (folio_test_anon(folio)) 878 mss->anonymous_thp += HPAGE_PMD_SIZE; 879 else if (folio_test_swapbacked(folio)) 880 mss->shmem_thp += HPAGE_PMD_SIZE; 881 else if (folio_is_zone_device(folio)) 882 /* pass */; 883 else 884 mss->file_thp += HPAGE_PMD_SIZE; 885 886 smaps_account(mss, page, true, pmd_young(*pmd), pmd_dirty(*pmd), 887 locked, present); 888 } 889 #else 890 static void smaps_pmd_entry(pmd_t *pmd, unsigned long addr, 891 struct mm_walk *walk) 892 { 893 } 894 #endif 895 896 static int smaps_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end, 897 struct mm_walk *walk) 898 { 899 struct vm_area_struct *vma = walk->vma; 900 pte_t *pte; 901 spinlock_t *ptl; 902 903 ptl = pmd_trans_huge_lock(pmd, vma); 904 if (ptl) { 905 smaps_pmd_entry(pmd, addr, walk); 906 spin_unlock(ptl); 907 goto out; 908 } 909 910 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl); 911 if (!pte) { 912 walk->action = ACTION_AGAIN; 913 return 0; 914 } 915 for (; addr != end; pte++, addr += PAGE_SIZE) 916 smaps_pte_entry(pte, addr, walk); 917 pte_unmap_unlock(pte - 1, ptl); 918 out: 919 cond_resched(); 920 return 0; 921 } 922 923 static void show_smap_vma_flags(struct seq_file *m, struct vm_area_struct *vma) 924 { 925 /* 926 * Don't forget to update Documentation/ on changes. 927 */ 928 static const char mnemonics[BITS_PER_LONG][2] = { 929 /* 930 * In case if we meet a flag we don't know about. 931 */ 932 [0 ... (BITS_PER_LONG-1)] = "??", 933 934 [ilog2(VM_READ)] = "rd", 935 [ilog2(VM_WRITE)] = "wr", 936 [ilog2(VM_EXEC)] = "ex", 937 [ilog2(VM_SHARED)] = "sh", 938 [ilog2(VM_MAYREAD)] = "mr", 939 [ilog2(VM_MAYWRITE)] = "mw", 940 [ilog2(VM_MAYEXEC)] = "me", 941 [ilog2(VM_MAYSHARE)] = "ms", 942 [ilog2(VM_GROWSDOWN)] = "gd", 943 [ilog2(VM_PFNMAP)] = "pf", 944 [ilog2(VM_LOCKED)] = "lo", 945 [ilog2(VM_IO)] = "io", 946 [ilog2(VM_SEQ_READ)] = "sr", 947 [ilog2(VM_RAND_READ)] = "rr", 948 [ilog2(VM_DONTCOPY)] = "dc", 949 [ilog2(VM_DONTEXPAND)] = "de", 950 [ilog2(VM_LOCKONFAULT)] = "lf", 951 [ilog2(VM_ACCOUNT)] = "ac", 952 [ilog2(VM_NORESERVE)] = "nr", 953 [ilog2(VM_HUGETLB)] = "ht", 954 [ilog2(VM_SYNC)] = "sf", 955 [ilog2(VM_ARCH_1)] = "ar", 956 [ilog2(VM_WIPEONFORK)] = "wf", 957 [ilog2(VM_DONTDUMP)] = "dd", 958 #ifdef CONFIG_ARM64_BTI 959 [ilog2(VM_ARM64_BTI)] = "bt", 960 #endif 961 #ifdef CONFIG_MEM_SOFT_DIRTY 962 [ilog2(VM_SOFTDIRTY)] = "sd", 963 #endif 964 [ilog2(VM_MIXEDMAP)] = "mm", 965 [ilog2(VM_HUGEPAGE)] = "hg", 966 [ilog2(VM_NOHUGEPAGE)] = "nh", 967 [ilog2(VM_MERGEABLE)] = "mg", 968 [ilog2(VM_UFFD_MISSING)]= "um", 969 [ilog2(VM_UFFD_WP)] = "uw", 970 #ifdef CONFIG_ARM64_MTE 971 [ilog2(VM_MTE)] = "mt", 972 [ilog2(VM_MTE_ALLOWED)] = "", 973 #endif 974 #ifdef CONFIG_ARCH_HAS_PKEYS 975 /* These come out via ProtectionKey: */ 976 [ilog2(VM_PKEY_BIT0)] = "", 977 [ilog2(VM_PKEY_BIT1)] = "", 978 [ilog2(VM_PKEY_BIT2)] = "", 979 #if VM_PKEY_BIT3 980 [ilog2(VM_PKEY_BIT3)] = "", 981 #endif 982 #if VM_PKEY_BIT4 983 [ilog2(VM_PKEY_BIT4)] = "", 984 #endif 985 #endif /* CONFIG_ARCH_HAS_PKEYS */ 986 #ifdef CONFIG_HAVE_ARCH_USERFAULTFD_MINOR 987 [ilog2(VM_UFFD_MINOR)] = "ui", 988 #endif /* CONFIG_HAVE_ARCH_USERFAULTFD_MINOR */ 989 #ifdef CONFIG_X86_USER_SHADOW_STACK 990 [ilog2(VM_SHADOW_STACK)] = "ss", 991 #endif 992 #ifdef CONFIG_64BIT 993 [ilog2(VM_DROPPABLE)] = "dp", 994 [ilog2(VM_SEALED)] = "sl", 995 #endif 996 }; 997 size_t i; 998 999 seq_puts(m, "VmFlags: "); 1000 for (i = 0; i < BITS_PER_LONG; i++) { 1001 if (!mnemonics[i][0]) 1002 continue; 1003 if (vma->vm_flags & (1UL << i)) { 1004 seq_putc(m, mnemonics[i][0]); 1005 seq_putc(m, mnemonics[i][1]); 1006 seq_putc(m, ' '); 1007 } 1008 } 1009 seq_putc(m, '\n'); 1010 } 1011 1012 #ifdef CONFIG_HUGETLB_PAGE 1013 static int smaps_hugetlb_range(pte_t *pte, unsigned long hmask, 1014 unsigned long addr, unsigned long end, 1015 struct mm_walk *walk) 1016 { 1017 struct mem_size_stats *mss = walk->private; 1018 struct vm_area_struct *vma = walk->vma; 1019 pte_t ptent = huge_ptep_get(walk->mm, addr, pte); 1020 struct folio *folio = NULL; 1021 bool present = false; 1022 1023 if (pte_present(ptent)) { 1024 folio = page_folio(pte_page(ptent)); 1025 present = true; 1026 } else if (is_swap_pte(ptent)) { 1027 swp_entry_t swpent = pte_to_swp_entry(ptent); 1028 1029 if (is_pfn_swap_entry(swpent)) 1030 folio = pfn_swap_entry_folio(swpent); 1031 } 1032 1033 if (folio) { 1034 /* We treat non-present entries as "maybe shared". */ 1035 if (!present || folio_likely_mapped_shared(folio) || 1036 hugetlb_pmd_shared(pte)) 1037 mss->shared_hugetlb += huge_page_size(hstate_vma(vma)); 1038 else 1039 mss->private_hugetlb += huge_page_size(hstate_vma(vma)); 1040 } 1041 return 0; 1042 } 1043 #else 1044 #define smaps_hugetlb_range NULL 1045 #endif /* HUGETLB_PAGE */ 1046 1047 static const struct mm_walk_ops smaps_walk_ops = { 1048 .pmd_entry = smaps_pte_range, 1049 .hugetlb_entry = smaps_hugetlb_range, 1050 .walk_lock = PGWALK_RDLOCK, 1051 }; 1052 1053 static const struct mm_walk_ops smaps_shmem_walk_ops = { 1054 .pmd_entry = smaps_pte_range, 1055 .hugetlb_entry = smaps_hugetlb_range, 1056 .pte_hole = smaps_pte_hole, 1057 .walk_lock = PGWALK_RDLOCK, 1058 }; 1059 1060 /* 1061 * Gather mem stats from @vma with the indicated beginning 1062 * address @start, and keep them in @mss. 1063 * 1064 * Use vm_start of @vma as the beginning address if @start is 0. 1065 */ 1066 static void smap_gather_stats(struct vm_area_struct *vma, 1067 struct mem_size_stats *mss, unsigned long start) 1068 { 1069 const struct mm_walk_ops *ops = &smaps_walk_ops; 1070 1071 /* Invalid start */ 1072 if (start >= vma->vm_end) 1073 return; 1074 1075 if (vma->vm_file && shmem_mapping(vma->vm_file->f_mapping)) { 1076 /* 1077 * For shared or readonly shmem mappings we know that all 1078 * swapped out pages belong to the shmem object, and we can 1079 * obtain the swap value much more efficiently. For private 1080 * writable mappings, we might have COW pages that are 1081 * not affected by the parent swapped out pages of the shmem 1082 * object, so we have to distinguish them during the page walk. 1083 * Unless we know that the shmem object (or the part mapped by 1084 * our VMA) has no swapped out pages at all. 1085 */ 1086 unsigned long shmem_swapped = shmem_swap_usage(vma); 1087 1088 if (!start && (!shmem_swapped || (vma->vm_flags & VM_SHARED) || 1089 !(vma->vm_flags & VM_WRITE))) { 1090 mss->swap += shmem_swapped; 1091 } else { 1092 ops = &smaps_shmem_walk_ops; 1093 } 1094 } 1095 1096 /* mmap_lock is held in m_start */ 1097 if (!start) 1098 walk_page_vma(vma, ops, mss); 1099 else 1100 walk_page_range(vma->vm_mm, start, vma->vm_end, ops, mss); 1101 } 1102 1103 #define SEQ_PUT_DEC(str, val) \ 1104 seq_put_decimal_ull_width(m, str, (val) >> 10, 8) 1105 1106 /* Show the contents common for smaps and smaps_rollup */ 1107 static void __show_smap(struct seq_file *m, const struct mem_size_stats *mss, 1108 bool rollup_mode) 1109 { 1110 SEQ_PUT_DEC("Rss: ", mss->resident); 1111 SEQ_PUT_DEC(" kB\nPss: ", mss->pss >> PSS_SHIFT); 1112 SEQ_PUT_DEC(" kB\nPss_Dirty: ", mss->pss_dirty >> PSS_SHIFT); 1113 if (rollup_mode) { 1114 /* 1115 * These are meaningful only for smaps_rollup, otherwise two of 1116 * them are zero, and the other one is the same as Pss. 1117 */ 1118 SEQ_PUT_DEC(" kB\nPss_Anon: ", 1119 mss->pss_anon >> PSS_SHIFT); 1120 SEQ_PUT_DEC(" kB\nPss_File: ", 1121 mss->pss_file >> PSS_SHIFT); 1122 SEQ_PUT_DEC(" kB\nPss_Shmem: ", 1123 mss->pss_shmem >> PSS_SHIFT); 1124 } 1125 SEQ_PUT_DEC(" kB\nShared_Clean: ", mss->shared_clean); 1126 SEQ_PUT_DEC(" kB\nShared_Dirty: ", mss->shared_dirty); 1127 SEQ_PUT_DEC(" kB\nPrivate_Clean: ", mss->private_clean); 1128 SEQ_PUT_DEC(" kB\nPrivate_Dirty: ", mss->private_dirty); 1129 SEQ_PUT_DEC(" kB\nReferenced: ", mss->referenced); 1130 SEQ_PUT_DEC(" kB\nAnonymous: ", mss->anonymous); 1131 SEQ_PUT_DEC(" kB\nKSM: ", mss->ksm); 1132 SEQ_PUT_DEC(" kB\nLazyFree: ", mss->lazyfree); 1133 SEQ_PUT_DEC(" kB\nAnonHugePages: ", mss->anonymous_thp); 1134 SEQ_PUT_DEC(" kB\nShmemPmdMapped: ", mss->shmem_thp); 1135 SEQ_PUT_DEC(" kB\nFilePmdMapped: ", mss->file_thp); 1136 SEQ_PUT_DEC(" kB\nShared_Hugetlb: ", mss->shared_hugetlb); 1137 seq_put_decimal_ull_width(m, " kB\nPrivate_Hugetlb: ", 1138 mss->private_hugetlb >> 10, 7); 1139 SEQ_PUT_DEC(" kB\nSwap: ", mss->swap); 1140 SEQ_PUT_DEC(" kB\nSwapPss: ", 1141 mss->swap_pss >> PSS_SHIFT); 1142 SEQ_PUT_DEC(" kB\nLocked: ", 1143 mss->pss_locked >> PSS_SHIFT); 1144 seq_puts(m, " kB\n"); 1145 } 1146 1147 static int show_smap(struct seq_file *m, void *v) 1148 { 1149 struct vm_area_struct *vma = v; 1150 struct mem_size_stats mss = {}; 1151 1152 smap_gather_stats(vma, &mss, 0); 1153 1154 show_map_vma(m, vma); 1155 1156 SEQ_PUT_DEC("Size: ", vma->vm_end - vma->vm_start); 1157 SEQ_PUT_DEC(" kB\nKernelPageSize: ", vma_kernel_pagesize(vma)); 1158 SEQ_PUT_DEC(" kB\nMMUPageSize: ", vma_mmu_pagesize(vma)); 1159 seq_puts(m, " kB\n"); 1160 1161 __show_smap(m, &mss, false); 1162 1163 seq_printf(m, "THPeligible: %8u\n", 1164 !!thp_vma_allowable_orders(vma, vma->vm_flags, 1165 TVA_SMAPS | TVA_ENFORCE_SYSFS, THP_ORDERS_ALL)); 1166 1167 if (arch_pkeys_enabled()) 1168 seq_printf(m, "ProtectionKey: %8u\n", vma_pkey(vma)); 1169 show_smap_vma_flags(m, vma); 1170 1171 return 0; 1172 } 1173 1174 static int show_smaps_rollup(struct seq_file *m, void *v) 1175 { 1176 struct proc_maps_private *priv = m->private; 1177 struct mem_size_stats mss = {}; 1178 struct mm_struct *mm = priv->mm; 1179 struct vm_area_struct *vma; 1180 unsigned long vma_start = 0, last_vma_end = 0; 1181 int ret = 0; 1182 VMA_ITERATOR(vmi, mm, 0); 1183 1184 priv->task = get_proc_task(priv->inode); 1185 if (!priv->task) 1186 return -ESRCH; 1187 1188 if (!mm || !mmget_not_zero(mm)) { 1189 ret = -ESRCH; 1190 goto out_put_task; 1191 } 1192 1193 ret = mmap_read_lock_killable(mm); 1194 if (ret) 1195 goto out_put_mm; 1196 1197 hold_task_mempolicy(priv); 1198 vma = vma_next(&vmi); 1199 1200 if (unlikely(!vma)) 1201 goto empty_set; 1202 1203 vma_start = vma->vm_start; 1204 do { 1205 smap_gather_stats(vma, &mss, 0); 1206 last_vma_end = vma->vm_end; 1207 1208 /* 1209 * Release mmap_lock temporarily if someone wants to 1210 * access it for write request. 1211 */ 1212 if (mmap_lock_is_contended(mm)) { 1213 vma_iter_invalidate(&vmi); 1214 mmap_read_unlock(mm); 1215 ret = mmap_read_lock_killable(mm); 1216 if (ret) { 1217 release_task_mempolicy(priv); 1218 goto out_put_mm; 1219 } 1220 1221 /* 1222 * After dropping the lock, there are four cases to 1223 * consider. See the following example for explanation. 1224 * 1225 * +------+------+-----------+ 1226 * | VMA1 | VMA2 | VMA3 | 1227 * +------+------+-----------+ 1228 * | | | | 1229 * 4k 8k 16k 400k 1230 * 1231 * Suppose we drop the lock after reading VMA2 due to 1232 * contention, then we get: 1233 * 1234 * last_vma_end = 16k 1235 * 1236 * 1) VMA2 is freed, but VMA3 exists: 1237 * 1238 * vma_next(vmi) will return VMA3. 1239 * In this case, just continue from VMA3. 1240 * 1241 * 2) VMA2 still exists: 1242 * 1243 * vma_next(vmi) will return VMA3. 1244 * In this case, just continue from VMA3. 1245 * 1246 * 3) No more VMAs can be found: 1247 * 1248 * vma_next(vmi) will return NULL. 1249 * No more things to do, just break. 1250 * 1251 * 4) (last_vma_end - 1) is the middle of a vma (VMA'): 1252 * 1253 * vma_next(vmi) will return VMA' whose range 1254 * contains last_vma_end. 1255 * Iterate VMA' from last_vma_end. 1256 */ 1257 vma = vma_next(&vmi); 1258 /* Case 3 above */ 1259 if (!vma) 1260 break; 1261 1262 /* Case 1 and 2 above */ 1263 if (vma->vm_start >= last_vma_end) { 1264 smap_gather_stats(vma, &mss, 0); 1265 last_vma_end = vma->vm_end; 1266 continue; 1267 } 1268 1269 /* Case 4 above */ 1270 if (vma->vm_end > last_vma_end) { 1271 smap_gather_stats(vma, &mss, last_vma_end); 1272 last_vma_end = vma->vm_end; 1273 } 1274 } 1275 } for_each_vma(vmi, vma); 1276 1277 empty_set: 1278 show_vma_header_prefix(m, vma_start, last_vma_end, 0, 0, 0, 0); 1279 seq_pad(m, ' '); 1280 seq_puts(m, "[rollup]\n"); 1281 1282 __show_smap(m, &mss, true); 1283 1284 release_task_mempolicy(priv); 1285 mmap_read_unlock(mm); 1286 1287 out_put_mm: 1288 mmput(mm); 1289 out_put_task: 1290 put_task_struct(priv->task); 1291 priv->task = NULL; 1292 1293 return ret; 1294 } 1295 #undef SEQ_PUT_DEC 1296 1297 static const struct seq_operations proc_pid_smaps_op = { 1298 .start = m_start, 1299 .next = m_next, 1300 .stop = m_stop, 1301 .show = show_smap 1302 }; 1303 1304 static int pid_smaps_open(struct inode *inode, struct file *file) 1305 { 1306 return do_maps_open(inode, file, &proc_pid_smaps_op); 1307 } 1308 1309 static int smaps_rollup_open(struct inode *inode, struct file *file) 1310 { 1311 int ret; 1312 struct proc_maps_private *priv; 1313 1314 priv = kzalloc(sizeof(*priv), GFP_KERNEL_ACCOUNT); 1315 if (!priv) 1316 return -ENOMEM; 1317 1318 ret = single_open(file, show_smaps_rollup, priv); 1319 if (ret) 1320 goto out_free; 1321 1322 priv->inode = inode; 1323 priv->mm = proc_mem_open(inode, PTRACE_MODE_READ); 1324 if (IS_ERR(priv->mm)) { 1325 ret = PTR_ERR(priv->mm); 1326 1327 single_release(inode, file); 1328 goto out_free; 1329 } 1330 1331 return 0; 1332 1333 out_free: 1334 kfree(priv); 1335 return ret; 1336 } 1337 1338 static int smaps_rollup_release(struct inode *inode, struct file *file) 1339 { 1340 struct seq_file *seq = file->private_data; 1341 struct proc_maps_private *priv = seq->private; 1342 1343 if (priv->mm) 1344 mmdrop(priv->mm); 1345 1346 kfree(priv); 1347 return single_release(inode, file); 1348 } 1349 1350 const struct file_operations proc_pid_smaps_operations = { 1351 .open = pid_smaps_open, 1352 .read = seq_read, 1353 .llseek = seq_lseek, 1354 .release = proc_map_release, 1355 }; 1356 1357 const struct file_operations proc_pid_smaps_rollup_operations = { 1358 .open = smaps_rollup_open, 1359 .read = seq_read, 1360 .llseek = seq_lseek, 1361 .release = smaps_rollup_release, 1362 }; 1363 1364 enum clear_refs_types { 1365 CLEAR_REFS_ALL = 1, 1366 CLEAR_REFS_ANON, 1367 CLEAR_REFS_MAPPED, 1368 CLEAR_REFS_SOFT_DIRTY, 1369 CLEAR_REFS_MM_HIWATER_RSS, 1370 CLEAR_REFS_LAST, 1371 }; 1372 1373 struct clear_refs_private { 1374 enum clear_refs_types type; 1375 }; 1376 1377 #ifdef CONFIG_MEM_SOFT_DIRTY 1378 1379 static inline bool pte_is_pinned(struct vm_area_struct *vma, unsigned long addr, pte_t pte) 1380 { 1381 struct folio *folio; 1382 1383 if (!pte_write(pte)) 1384 return false; 1385 if (!is_cow_mapping(vma->vm_flags)) 1386 return false; 1387 if (likely(!test_bit(MMF_HAS_PINNED, &vma->vm_mm->flags))) 1388 return false; 1389 folio = vm_normal_folio(vma, addr, pte); 1390 if (!folio) 1391 return false; 1392 return folio_maybe_dma_pinned(folio); 1393 } 1394 1395 static inline void clear_soft_dirty(struct vm_area_struct *vma, 1396 unsigned long addr, pte_t *pte) 1397 { 1398 /* 1399 * The soft-dirty tracker uses #PF-s to catch writes 1400 * to pages, so write-protect the pte as well. See the 1401 * Documentation/admin-guide/mm/soft-dirty.rst for full description 1402 * of how soft-dirty works. 1403 */ 1404 pte_t ptent = ptep_get(pte); 1405 1406 if (pte_present(ptent)) { 1407 pte_t old_pte; 1408 1409 if (pte_is_pinned(vma, addr, ptent)) 1410 return; 1411 old_pte = ptep_modify_prot_start(vma, addr, pte); 1412 ptent = pte_wrprotect(old_pte); 1413 ptent = pte_clear_soft_dirty(ptent); 1414 ptep_modify_prot_commit(vma, addr, pte, old_pte, ptent); 1415 } else if (is_swap_pte(ptent)) { 1416 ptent = pte_swp_clear_soft_dirty(ptent); 1417 set_pte_at(vma->vm_mm, addr, pte, ptent); 1418 } 1419 } 1420 #else 1421 static inline void clear_soft_dirty(struct vm_area_struct *vma, 1422 unsigned long addr, pte_t *pte) 1423 { 1424 } 1425 #endif 1426 1427 #if defined(CONFIG_MEM_SOFT_DIRTY) && defined(CONFIG_TRANSPARENT_HUGEPAGE) 1428 static inline void clear_soft_dirty_pmd(struct vm_area_struct *vma, 1429 unsigned long addr, pmd_t *pmdp) 1430 { 1431 pmd_t old, pmd = *pmdp; 1432 1433 if (pmd_present(pmd)) { 1434 /* See comment in change_huge_pmd() */ 1435 old = pmdp_invalidate(vma, addr, pmdp); 1436 if (pmd_dirty(old)) 1437 pmd = pmd_mkdirty(pmd); 1438 if (pmd_young(old)) 1439 pmd = pmd_mkyoung(pmd); 1440 1441 pmd = pmd_wrprotect(pmd); 1442 pmd = pmd_clear_soft_dirty(pmd); 1443 1444 set_pmd_at(vma->vm_mm, addr, pmdp, pmd); 1445 } else if (is_migration_entry(pmd_to_swp_entry(pmd))) { 1446 pmd = pmd_swp_clear_soft_dirty(pmd); 1447 set_pmd_at(vma->vm_mm, addr, pmdp, pmd); 1448 } 1449 } 1450 #else 1451 static inline void clear_soft_dirty_pmd(struct vm_area_struct *vma, 1452 unsigned long addr, pmd_t *pmdp) 1453 { 1454 } 1455 #endif 1456 1457 static int clear_refs_pte_range(pmd_t *pmd, unsigned long addr, 1458 unsigned long end, struct mm_walk *walk) 1459 { 1460 struct clear_refs_private *cp = walk->private; 1461 struct vm_area_struct *vma = walk->vma; 1462 pte_t *pte, ptent; 1463 spinlock_t *ptl; 1464 struct folio *folio; 1465 1466 ptl = pmd_trans_huge_lock(pmd, vma); 1467 if (ptl) { 1468 if (cp->type == CLEAR_REFS_SOFT_DIRTY) { 1469 clear_soft_dirty_pmd(vma, addr, pmd); 1470 goto out; 1471 } 1472 1473 if (!pmd_present(*pmd)) 1474 goto out; 1475 1476 folio = pmd_folio(*pmd); 1477 1478 /* Clear accessed and referenced bits. */ 1479 pmdp_test_and_clear_young(vma, addr, pmd); 1480 folio_test_clear_young(folio); 1481 folio_clear_referenced(folio); 1482 out: 1483 spin_unlock(ptl); 1484 return 0; 1485 } 1486 1487 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl); 1488 if (!pte) { 1489 walk->action = ACTION_AGAIN; 1490 return 0; 1491 } 1492 for (; addr != end; pte++, addr += PAGE_SIZE) { 1493 ptent = ptep_get(pte); 1494 1495 if (cp->type == CLEAR_REFS_SOFT_DIRTY) { 1496 clear_soft_dirty(vma, addr, pte); 1497 continue; 1498 } 1499 1500 if (!pte_present(ptent)) 1501 continue; 1502 1503 folio = vm_normal_folio(vma, addr, ptent); 1504 if (!folio) 1505 continue; 1506 1507 /* Clear accessed and referenced bits. */ 1508 ptep_test_and_clear_young(vma, addr, pte); 1509 folio_test_clear_young(folio); 1510 folio_clear_referenced(folio); 1511 } 1512 pte_unmap_unlock(pte - 1, ptl); 1513 cond_resched(); 1514 return 0; 1515 } 1516 1517 static int clear_refs_test_walk(unsigned long start, unsigned long end, 1518 struct mm_walk *walk) 1519 { 1520 struct clear_refs_private *cp = walk->private; 1521 struct vm_area_struct *vma = walk->vma; 1522 1523 if (vma->vm_flags & VM_PFNMAP) 1524 return 1; 1525 1526 /* 1527 * Writing 1 to /proc/pid/clear_refs affects all pages. 1528 * Writing 2 to /proc/pid/clear_refs only affects anonymous pages. 1529 * Writing 3 to /proc/pid/clear_refs only affects file mapped pages. 1530 * Writing 4 to /proc/pid/clear_refs affects all pages. 1531 */ 1532 if (cp->type == CLEAR_REFS_ANON && vma->vm_file) 1533 return 1; 1534 if (cp->type == CLEAR_REFS_MAPPED && !vma->vm_file) 1535 return 1; 1536 return 0; 1537 } 1538 1539 static const struct mm_walk_ops clear_refs_walk_ops = { 1540 .pmd_entry = clear_refs_pte_range, 1541 .test_walk = clear_refs_test_walk, 1542 .walk_lock = PGWALK_WRLOCK, 1543 }; 1544 1545 static ssize_t clear_refs_write(struct file *file, const char __user *buf, 1546 size_t count, loff_t *ppos) 1547 { 1548 struct task_struct *task; 1549 char buffer[PROC_NUMBUF] = {}; 1550 struct mm_struct *mm; 1551 struct vm_area_struct *vma; 1552 enum clear_refs_types type; 1553 int itype; 1554 int rv; 1555 1556 if (count > sizeof(buffer) - 1) 1557 count = sizeof(buffer) - 1; 1558 if (copy_from_user(buffer, buf, count)) 1559 return -EFAULT; 1560 rv = kstrtoint(strstrip(buffer), 10, &itype); 1561 if (rv < 0) 1562 return rv; 1563 type = (enum clear_refs_types)itype; 1564 if (type < CLEAR_REFS_ALL || type >= CLEAR_REFS_LAST) 1565 return -EINVAL; 1566 1567 task = get_proc_task(file_inode(file)); 1568 if (!task) 1569 return -ESRCH; 1570 mm = get_task_mm(task); 1571 if (mm) { 1572 VMA_ITERATOR(vmi, mm, 0); 1573 struct mmu_notifier_range range; 1574 struct clear_refs_private cp = { 1575 .type = type, 1576 }; 1577 1578 if (mmap_write_lock_killable(mm)) { 1579 count = -EINTR; 1580 goto out_mm; 1581 } 1582 if (type == CLEAR_REFS_MM_HIWATER_RSS) { 1583 /* 1584 * Writing 5 to /proc/pid/clear_refs resets the peak 1585 * resident set size to this mm's current rss value. 1586 */ 1587 reset_mm_hiwater_rss(mm); 1588 goto out_unlock; 1589 } 1590 1591 if (type == CLEAR_REFS_SOFT_DIRTY) { 1592 for_each_vma(vmi, vma) { 1593 if (!(vma->vm_flags & VM_SOFTDIRTY)) 1594 continue; 1595 vm_flags_clear(vma, VM_SOFTDIRTY); 1596 vma_set_page_prot(vma); 1597 } 1598 1599 inc_tlb_flush_pending(mm); 1600 mmu_notifier_range_init(&range, MMU_NOTIFY_SOFT_DIRTY, 1601 0, mm, 0, -1UL); 1602 mmu_notifier_invalidate_range_start(&range); 1603 } 1604 walk_page_range(mm, 0, -1, &clear_refs_walk_ops, &cp); 1605 if (type == CLEAR_REFS_SOFT_DIRTY) { 1606 mmu_notifier_invalidate_range_end(&range); 1607 flush_tlb_mm(mm); 1608 dec_tlb_flush_pending(mm); 1609 } 1610 out_unlock: 1611 mmap_write_unlock(mm); 1612 out_mm: 1613 mmput(mm); 1614 } 1615 put_task_struct(task); 1616 1617 return count; 1618 } 1619 1620 const struct file_operations proc_clear_refs_operations = { 1621 .write = clear_refs_write, 1622 .llseek = noop_llseek, 1623 }; 1624 1625 typedef struct { 1626 u64 pme; 1627 } pagemap_entry_t; 1628 1629 struct pagemapread { 1630 int pos, len; /* units: PM_ENTRY_BYTES, not bytes */ 1631 pagemap_entry_t *buffer; 1632 bool show_pfn; 1633 }; 1634 1635 #define PAGEMAP_WALK_SIZE (PMD_SIZE) 1636 #define PAGEMAP_WALK_MASK (PMD_MASK) 1637 1638 #define PM_ENTRY_BYTES sizeof(pagemap_entry_t) 1639 #define PM_PFRAME_BITS 55 1640 #define PM_PFRAME_MASK GENMASK_ULL(PM_PFRAME_BITS - 1, 0) 1641 #define PM_SOFT_DIRTY BIT_ULL(55) 1642 #define PM_MMAP_EXCLUSIVE BIT_ULL(56) 1643 #define PM_UFFD_WP BIT_ULL(57) 1644 #define PM_FILE BIT_ULL(61) 1645 #define PM_SWAP BIT_ULL(62) 1646 #define PM_PRESENT BIT_ULL(63) 1647 1648 #define PM_END_OF_BUFFER 1 1649 1650 static inline pagemap_entry_t make_pme(u64 frame, u64 flags) 1651 { 1652 return (pagemap_entry_t) { .pme = (frame & PM_PFRAME_MASK) | flags }; 1653 } 1654 1655 static int add_to_pagemap(pagemap_entry_t *pme, struct pagemapread *pm) 1656 { 1657 pm->buffer[pm->pos++] = *pme; 1658 if (pm->pos >= pm->len) 1659 return PM_END_OF_BUFFER; 1660 return 0; 1661 } 1662 1663 static int pagemap_pte_hole(unsigned long start, unsigned long end, 1664 __always_unused int depth, struct mm_walk *walk) 1665 { 1666 struct pagemapread *pm = walk->private; 1667 unsigned long addr = start; 1668 int err = 0; 1669 1670 while (addr < end) { 1671 struct vm_area_struct *vma = find_vma(walk->mm, addr); 1672 pagemap_entry_t pme = make_pme(0, 0); 1673 /* End of address space hole, which we mark as non-present. */ 1674 unsigned long hole_end; 1675 1676 if (vma) 1677 hole_end = min(end, vma->vm_start); 1678 else 1679 hole_end = end; 1680 1681 for (; addr < hole_end; addr += PAGE_SIZE) { 1682 err = add_to_pagemap(&pme, pm); 1683 if (err) 1684 goto out; 1685 } 1686 1687 if (!vma) 1688 break; 1689 1690 /* Addresses in the VMA. */ 1691 if (vma->vm_flags & VM_SOFTDIRTY) 1692 pme = make_pme(0, PM_SOFT_DIRTY); 1693 for (; addr < min(end, vma->vm_end); addr += PAGE_SIZE) { 1694 err = add_to_pagemap(&pme, pm); 1695 if (err) 1696 goto out; 1697 } 1698 } 1699 out: 1700 return err; 1701 } 1702 1703 static pagemap_entry_t pte_to_pagemap_entry(struct pagemapread *pm, 1704 struct vm_area_struct *vma, unsigned long addr, pte_t pte) 1705 { 1706 u64 frame = 0, flags = 0; 1707 struct page *page = NULL; 1708 struct folio *folio; 1709 1710 if (pte_present(pte)) { 1711 if (pm->show_pfn) 1712 frame = pte_pfn(pte); 1713 flags |= PM_PRESENT; 1714 page = vm_normal_page(vma, addr, pte); 1715 if (pte_soft_dirty(pte)) 1716 flags |= PM_SOFT_DIRTY; 1717 if (pte_uffd_wp(pte)) 1718 flags |= PM_UFFD_WP; 1719 } else if (is_swap_pte(pte)) { 1720 swp_entry_t entry; 1721 if (pte_swp_soft_dirty(pte)) 1722 flags |= PM_SOFT_DIRTY; 1723 if (pte_swp_uffd_wp(pte)) 1724 flags |= PM_UFFD_WP; 1725 entry = pte_to_swp_entry(pte); 1726 if (pm->show_pfn) { 1727 pgoff_t offset; 1728 /* 1729 * For PFN swap offsets, keeping the offset field 1730 * to be PFN only to be compatible with old smaps. 1731 */ 1732 if (is_pfn_swap_entry(entry)) 1733 offset = swp_offset_pfn(entry); 1734 else 1735 offset = swp_offset(entry); 1736 frame = swp_type(entry) | 1737 (offset << MAX_SWAPFILES_SHIFT); 1738 } 1739 flags |= PM_SWAP; 1740 if (is_pfn_swap_entry(entry)) 1741 page = pfn_swap_entry_to_page(entry); 1742 if (pte_marker_entry_uffd_wp(entry)) 1743 flags |= PM_UFFD_WP; 1744 } 1745 1746 if (page) { 1747 folio = page_folio(page); 1748 if (!folio_test_anon(folio)) 1749 flags |= PM_FILE; 1750 if ((flags & PM_PRESENT) && 1751 folio_precise_page_mapcount(folio, page) == 1) 1752 flags |= PM_MMAP_EXCLUSIVE; 1753 } 1754 if (vma->vm_flags & VM_SOFTDIRTY) 1755 flags |= PM_SOFT_DIRTY; 1756 1757 return make_pme(frame, flags); 1758 } 1759 1760 static int pagemap_pmd_range(pmd_t *pmdp, unsigned long addr, unsigned long end, 1761 struct mm_walk *walk) 1762 { 1763 struct vm_area_struct *vma = walk->vma; 1764 struct pagemapread *pm = walk->private; 1765 spinlock_t *ptl; 1766 pte_t *pte, *orig_pte; 1767 int err = 0; 1768 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1769 1770 ptl = pmd_trans_huge_lock(pmdp, vma); 1771 if (ptl) { 1772 unsigned int idx = (addr & ~PMD_MASK) >> PAGE_SHIFT; 1773 u64 flags = 0, frame = 0; 1774 pmd_t pmd = *pmdp; 1775 struct page *page = NULL; 1776 struct folio *folio = NULL; 1777 1778 if (vma->vm_flags & VM_SOFTDIRTY) 1779 flags |= PM_SOFT_DIRTY; 1780 1781 if (pmd_present(pmd)) { 1782 page = pmd_page(pmd); 1783 1784 flags |= PM_PRESENT; 1785 if (pmd_soft_dirty(pmd)) 1786 flags |= PM_SOFT_DIRTY; 1787 if (pmd_uffd_wp(pmd)) 1788 flags |= PM_UFFD_WP; 1789 if (pm->show_pfn) 1790 frame = pmd_pfn(pmd) + idx; 1791 } 1792 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION 1793 else if (is_swap_pmd(pmd)) { 1794 swp_entry_t entry = pmd_to_swp_entry(pmd); 1795 unsigned long offset; 1796 1797 if (pm->show_pfn) { 1798 if (is_pfn_swap_entry(entry)) 1799 offset = swp_offset_pfn(entry) + idx; 1800 else 1801 offset = swp_offset(entry) + idx; 1802 frame = swp_type(entry) | 1803 (offset << MAX_SWAPFILES_SHIFT); 1804 } 1805 flags |= PM_SWAP; 1806 if (pmd_swp_soft_dirty(pmd)) 1807 flags |= PM_SOFT_DIRTY; 1808 if (pmd_swp_uffd_wp(pmd)) 1809 flags |= PM_UFFD_WP; 1810 VM_BUG_ON(!is_pmd_migration_entry(pmd)); 1811 page = pfn_swap_entry_to_page(entry); 1812 } 1813 #endif 1814 1815 if (page) { 1816 folio = page_folio(page); 1817 if (!folio_test_anon(folio)) 1818 flags |= PM_FILE; 1819 } 1820 1821 for (; addr != end; addr += PAGE_SIZE, idx++) { 1822 unsigned long cur_flags = flags; 1823 pagemap_entry_t pme; 1824 1825 if (folio && (flags & PM_PRESENT) && 1826 folio_precise_page_mapcount(folio, page + idx) == 1) 1827 cur_flags |= PM_MMAP_EXCLUSIVE; 1828 1829 pme = make_pme(frame, cur_flags); 1830 err = add_to_pagemap(&pme, pm); 1831 if (err) 1832 break; 1833 if (pm->show_pfn) { 1834 if (flags & PM_PRESENT) 1835 frame++; 1836 else if (flags & PM_SWAP) 1837 frame += (1 << MAX_SWAPFILES_SHIFT); 1838 } 1839 } 1840 spin_unlock(ptl); 1841 return err; 1842 } 1843 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 1844 1845 /* 1846 * We can assume that @vma always points to a valid one and @end never 1847 * goes beyond vma->vm_end. 1848 */ 1849 orig_pte = pte = pte_offset_map_lock(walk->mm, pmdp, addr, &ptl); 1850 if (!pte) { 1851 walk->action = ACTION_AGAIN; 1852 return err; 1853 } 1854 for (; addr < end; pte++, addr += PAGE_SIZE) { 1855 pagemap_entry_t pme; 1856 1857 pme = pte_to_pagemap_entry(pm, vma, addr, ptep_get(pte)); 1858 err = add_to_pagemap(&pme, pm); 1859 if (err) 1860 break; 1861 } 1862 pte_unmap_unlock(orig_pte, ptl); 1863 1864 cond_resched(); 1865 1866 return err; 1867 } 1868 1869 #ifdef CONFIG_HUGETLB_PAGE 1870 /* This function walks within one hugetlb entry in the single call */ 1871 static int pagemap_hugetlb_range(pte_t *ptep, unsigned long hmask, 1872 unsigned long addr, unsigned long end, 1873 struct mm_walk *walk) 1874 { 1875 struct pagemapread *pm = walk->private; 1876 struct vm_area_struct *vma = walk->vma; 1877 u64 flags = 0, frame = 0; 1878 int err = 0; 1879 pte_t pte; 1880 1881 if (vma->vm_flags & VM_SOFTDIRTY) 1882 flags |= PM_SOFT_DIRTY; 1883 1884 pte = huge_ptep_get(walk->mm, addr, ptep); 1885 if (pte_present(pte)) { 1886 struct folio *folio = page_folio(pte_page(pte)); 1887 1888 if (!folio_test_anon(folio)) 1889 flags |= PM_FILE; 1890 1891 if (!folio_likely_mapped_shared(folio) && 1892 !hugetlb_pmd_shared(ptep)) 1893 flags |= PM_MMAP_EXCLUSIVE; 1894 1895 if (huge_pte_uffd_wp(pte)) 1896 flags |= PM_UFFD_WP; 1897 1898 flags |= PM_PRESENT; 1899 if (pm->show_pfn) 1900 frame = pte_pfn(pte) + 1901 ((addr & ~hmask) >> PAGE_SHIFT); 1902 } else if (pte_swp_uffd_wp_any(pte)) { 1903 flags |= PM_UFFD_WP; 1904 } 1905 1906 for (; addr != end; addr += PAGE_SIZE) { 1907 pagemap_entry_t pme = make_pme(frame, flags); 1908 1909 err = add_to_pagemap(&pme, pm); 1910 if (err) 1911 return err; 1912 if (pm->show_pfn && (flags & PM_PRESENT)) 1913 frame++; 1914 } 1915 1916 cond_resched(); 1917 1918 return err; 1919 } 1920 #else 1921 #define pagemap_hugetlb_range NULL 1922 #endif /* HUGETLB_PAGE */ 1923 1924 static const struct mm_walk_ops pagemap_ops = { 1925 .pmd_entry = pagemap_pmd_range, 1926 .pte_hole = pagemap_pte_hole, 1927 .hugetlb_entry = pagemap_hugetlb_range, 1928 .walk_lock = PGWALK_RDLOCK, 1929 }; 1930 1931 /* 1932 * /proc/pid/pagemap - an array mapping virtual pages to pfns 1933 * 1934 * For each page in the address space, this file contains one 64-bit entry 1935 * consisting of the following: 1936 * 1937 * Bits 0-54 page frame number (PFN) if present 1938 * Bits 0-4 swap type if swapped 1939 * Bits 5-54 swap offset if swapped 1940 * Bit 55 pte is soft-dirty (see Documentation/admin-guide/mm/soft-dirty.rst) 1941 * Bit 56 page exclusively mapped 1942 * Bit 57 pte is uffd-wp write-protected 1943 * Bits 58-60 zero 1944 * Bit 61 page is file-page or shared-anon 1945 * Bit 62 page swapped 1946 * Bit 63 page present 1947 * 1948 * If the page is not present but in swap, then the PFN contains an 1949 * encoding of the swap file number and the page's offset into the 1950 * swap. Unmapped pages return a null PFN. This allows determining 1951 * precisely which pages are mapped (or in swap) and comparing mapped 1952 * pages between processes. 1953 * 1954 * Efficient users of this interface will use /proc/pid/maps to 1955 * determine which areas of memory are actually mapped and llseek to 1956 * skip over unmapped regions. 1957 */ 1958 static ssize_t pagemap_read(struct file *file, char __user *buf, 1959 size_t count, loff_t *ppos) 1960 { 1961 struct mm_struct *mm = file->private_data; 1962 struct pagemapread pm; 1963 unsigned long src; 1964 unsigned long svpfn; 1965 unsigned long start_vaddr; 1966 unsigned long end_vaddr; 1967 int ret = 0, copied = 0; 1968 1969 if (!mm || !mmget_not_zero(mm)) 1970 goto out; 1971 1972 ret = -EINVAL; 1973 /* file position must be aligned */ 1974 if ((*ppos % PM_ENTRY_BYTES) || (count % PM_ENTRY_BYTES)) 1975 goto out_mm; 1976 1977 ret = 0; 1978 if (!count) 1979 goto out_mm; 1980 1981 /* do not disclose physical addresses: attack vector */ 1982 pm.show_pfn = file_ns_capable(file, &init_user_ns, CAP_SYS_ADMIN); 1983 1984 pm.len = (PAGEMAP_WALK_SIZE >> PAGE_SHIFT); 1985 pm.buffer = kmalloc_array(pm.len, PM_ENTRY_BYTES, GFP_KERNEL); 1986 ret = -ENOMEM; 1987 if (!pm.buffer) 1988 goto out_mm; 1989 1990 src = *ppos; 1991 svpfn = src / PM_ENTRY_BYTES; 1992 end_vaddr = mm->task_size; 1993 1994 /* watch out for wraparound */ 1995 start_vaddr = end_vaddr; 1996 if (svpfn <= (ULONG_MAX >> PAGE_SHIFT)) { 1997 unsigned long end; 1998 1999 ret = mmap_read_lock_killable(mm); 2000 if (ret) 2001 goto out_free; 2002 start_vaddr = untagged_addr_remote(mm, svpfn << PAGE_SHIFT); 2003 mmap_read_unlock(mm); 2004 2005 end = start_vaddr + ((count / PM_ENTRY_BYTES) << PAGE_SHIFT); 2006 if (end >= start_vaddr && end < mm->task_size) 2007 end_vaddr = end; 2008 } 2009 2010 /* Ensure the address is inside the task */ 2011 if (start_vaddr > mm->task_size) 2012 start_vaddr = end_vaddr; 2013 2014 ret = 0; 2015 while (count && (start_vaddr < end_vaddr)) { 2016 int len; 2017 unsigned long end; 2018 2019 pm.pos = 0; 2020 end = (start_vaddr + PAGEMAP_WALK_SIZE) & PAGEMAP_WALK_MASK; 2021 /* overflow ? */ 2022 if (end < start_vaddr || end > end_vaddr) 2023 end = end_vaddr; 2024 ret = mmap_read_lock_killable(mm); 2025 if (ret) 2026 goto out_free; 2027 ret = walk_page_range(mm, start_vaddr, end, &pagemap_ops, &pm); 2028 mmap_read_unlock(mm); 2029 start_vaddr = end; 2030 2031 len = min(count, PM_ENTRY_BYTES * pm.pos); 2032 if (copy_to_user(buf, pm.buffer, len)) { 2033 ret = -EFAULT; 2034 goto out_free; 2035 } 2036 copied += len; 2037 buf += len; 2038 count -= len; 2039 } 2040 *ppos += copied; 2041 if (!ret || ret == PM_END_OF_BUFFER) 2042 ret = copied; 2043 2044 out_free: 2045 kfree(pm.buffer); 2046 out_mm: 2047 mmput(mm); 2048 out: 2049 return ret; 2050 } 2051 2052 static int pagemap_open(struct inode *inode, struct file *file) 2053 { 2054 struct mm_struct *mm; 2055 2056 mm = proc_mem_open(inode, PTRACE_MODE_READ); 2057 if (IS_ERR(mm)) 2058 return PTR_ERR(mm); 2059 file->private_data = mm; 2060 return 0; 2061 } 2062 2063 static int pagemap_release(struct inode *inode, struct file *file) 2064 { 2065 struct mm_struct *mm = file->private_data; 2066 2067 if (mm) 2068 mmdrop(mm); 2069 return 0; 2070 } 2071 2072 #define PM_SCAN_CATEGORIES (PAGE_IS_WPALLOWED | PAGE_IS_WRITTEN | \ 2073 PAGE_IS_FILE | PAGE_IS_PRESENT | \ 2074 PAGE_IS_SWAPPED | PAGE_IS_PFNZERO | \ 2075 PAGE_IS_HUGE | PAGE_IS_SOFT_DIRTY) 2076 #define PM_SCAN_FLAGS (PM_SCAN_WP_MATCHING | PM_SCAN_CHECK_WPASYNC) 2077 2078 struct pagemap_scan_private { 2079 struct pm_scan_arg arg; 2080 unsigned long masks_of_interest, cur_vma_category; 2081 struct page_region *vec_buf; 2082 unsigned long vec_buf_len, vec_buf_index, found_pages; 2083 struct page_region __user *vec_out; 2084 }; 2085 2086 static unsigned long pagemap_page_category(struct pagemap_scan_private *p, 2087 struct vm_area_struct *vma, 2088 unsigned long addr, pte_t pte) 2089 { 2090 unsigned long categories = 0; 2091 2092 if (pte_present(pte)) { 2093 struct page *page; 2094 2095 categories |= PAGE_IS_PRESENT; 2096 if (!pte_uffd_wp(pte)) 2097 categories |= PAGE_IS_WRITTEN; 2098 2099 if (p->masks_of_interest & PAGE_IS_FILE) { 2100 page = vm_normal_page(vma, addr, pte); 2101 if (page && !PageAnon(page)) 2102 categories |= PAGE_IS_FILE; 2103 } 2104 2105 if (is_zero_pfn(pte_pfn(pte))) 2106 categories |= PAGE_IS_PFNZERO; 2107 if (pte_soft_dirty(pte)) 2108 categories |= PAGE_IS_SOFT_DIRTY; 2109 } else if (is_swap_pte(pte)) { 2110 swp_entry_t swp; 2111 2112 categories |= PAGE_IS_SWAPPED; 2113 if (!pte_swp_uffd_wp_any(pte)) 2114 categories |= PAGE_IS_WRITTEN; 2115 2116 if (p->masks_of_interest & PAGE_IS_FILE) { 2117 swp = pte_to_swp_entry(pte); 2118 if (is_pfn_swap_entry(swp) && 2119 !folio_test_anon(pfn_swap_entry_folio(swp))) 2120 categories |= PAGE_IS_FILE; 2121 } 2122 if (pte_swp_soft_dirty(pte)) 2123 categories |= PAGE_IS_SOFT_DIRTY; 2124 } 2125 2126 return categories; 2127 } 2128 2129 static void make_uffd_wp_pte(struct vm_area_struct *vma, 2130 unsigned long addr, pte_t *pte, pte_t ptent) 2131 { 2132 if (pte_present(ptent)) { 2133 pte_t old_pte; 2134 2135 old_pte = ptep_modify_prot_start(vma, addr, pte); 2136 ptent = pte_mkuffd_wp(old_pte); 2137 ptep_modify_prot_commit(vma, addr, pte, old_pte, ptent); 2138 } else if (is_swap_pte(ptent)) { 2139 ptent = pte_swp_mkuffd_wp(ptent); 2140 set_pte_at(vma->vm_mm, addr, pte, ptent); 2141 } else { 2142 set_pte_at(vma->vm_mm, addr, pte, 2143 make_pte_marker(PTE_MARKER_UFFD_WP)); 2144 } 2145 } 2146 2147 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 2148 static unsigned long pagemap_thp_category(struct pagemap_scan_private *p, 2149 struct vm_area_struct *vma, 2150 unsigned long addr, pmd_t pmd) 2151 { 2152 unsigned long categories = PAGE_IS_HUGE; 2153 2154 if (pmd_present(pmd)) { 2155 struct page *page; 2156 2157 categories |= PAGE_IS_PRESENT; 2158 if (!pmd_uffd_wp(pmd)) 2159 categories |= PAGE_IS_WRITTEN; 2160 2161 if (p->masks_of_interest & PAGE_IS_FILE) { 2162 page = vm_normal_page_pmd(vma, addr, pmd); 2163 if (page && !PageAnon(page)) 2164 categories |= PAGE_IS_FILE; 2165 } 2166 2167 if (is_zero_pfn(pmd_pfn(pmd))) 2168 categories |= PAGE_IS_PFNZERO; 2169 if (pmd_soft_dirty(pmd)) 2170 categories |= PAGE_IS_SOFT_DIRTY; 2171 } else if (is_swap_pmd(pmd)) { 2172 swp_entry_t swp; 2173 2174 categories |= PAGE_IS_SWAPPED; 2175 if (!pmd_swp_uffd_wp(pmd)) 2176 categories |= PAGE_IS_WRITTEN; 2177 if (pmd_swp_soft_dirty(pmd)) 2178 categories |= PAGE_IS_SOFT_DIRTY; 2179 2180 if (p->masks_of_interest & PAGE_IS_FILE) { 2181 swp = pmd_to_swp_entry(pmd); 2182 if (is_pfn_swap_entry(swp) && 2183 !folio_test_anon(pfn_swap_entry_folio(swp))) 2184 categories |= PAGE_IS_FILE; 2185 } 2186 } 2187 2188 return categories; 2189 } 2190 2191 static void make_uffd_wp_pmd(struct vm_area_struct *vma, 2192 unsigned long addr, pmd_t *pmdp) 2193 { 2194 pmd_t old, pmd = *pmdp; 2195 2196 if (pmd_present(pmd)) { 2197 old = pmdp_invalidate_ad(vma, addr, pmdp); 2198 pmd = pmd_mkuffd_wp(old); 2199 set_pmd_at(vma->vm_mm, addr, pmdp, pmd); 2200 } else if (is_migration_entry(pmd_to_swp_entry(pmd))) { 2201 pmd = pmd_swp_mkuffd_wp(pmd); 2202 set_pmd_at(vma->vm_mm, addr, pmdp, pmd); 2203 } 2204 } 2205 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 2206 2207 #ifdef CONFIG_HUGETLB_PAGE 2208 static unsigned long pagemap_hugetlb_category(pte_t pte) 2209 { 2210 unsigned long categories = PAGE_IS_HUGE; 2211 2212 /* 2213 * According to pagemap_hugetlb_range(), file-backed HugeTLB 2214 * page cannot be swapped. So PAGE_IS_FILE is not checked for 2215 * swapped pages. 2216 */ 2217 if (pte_present(pte)) { 2218 categories |= PAGE_IS_PRESENT; 2219 if (!huge_pte_uffd_wp(pte)) 2220 categories |= PAGE_IS_WRITTEN; 2221 if (!PageAnon(pte_page(pte))) 2222 categories |= PAGE_IS_FILE; 2223 if (is_zero_pfn(pte_pfn(pte))) 2224 categories |= PAGE_IS_PFNZERO; 2225 if (pte_soft_dirty(pte)) 2226 categories |= PAGE_IS_SOFT_DIRTY; 2227 } else if (is_swap_pte(pte)) { 2228 categories |= PAGE_IS_SWAPPED; 2229 if (!pte_swp_uffd_wp_any(pte)) 2230 categories |= PAGE_IS_WRITTEN; 2231 if (pte_swp_soft_dirty(pte)) 2232 categories |= PAGE_IS_SOFT_DIRTY; 2233 } 2234 2235 return categories; 2236 } 2237 2238 static void make_uffd_wp_huge_pte(struct vm_area_struct *vma, 2239 unsigned long addr, pte_t *ptep, 2240 pte_t ptent) 2241 { 2242 unsigned long psize; 2243 2244 if (is_hugetlb_entry_hwpoisoned(ptent) || is_pte_marker(ptent)) 2245 return; 2246 2247 psize = huge_page_size(hstate_vma(vma)); 2248 2249 if (is_hugetlb_entry_migration(ptent)) 2250 set_huge_pte_at(vma->vm_mm, addr, ptep, 2251 pte_swp_mkuffd_wp(ptent), psize); 2252 else if (!huge_pte_none(ptent)) 2253 huge_ptep_modify_prot_commit(vma, addr, ptep, ptent, 2254 huge_pte_mkuffd_wp(ptent)); 2255 else 2256 set_huge_pte_at(vma->vm_mm, addr, ptep, 2257 make_pte_marker(PTE_MARKER_UFFD_WP), psize); 2258 } 2259 #endif /* CONFIG_HUGETLB_PAGE */ 2260 2261 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLB_PAGE) 2262 static void pagemap_scan_backout_range(struct pagemap_scan_private *p, 2263 unsigned long addr, unsigned long end) 2264 { 2265 struct page_region *cur_buf = &p->vec_buf[p->vec_buf_index]; 2266 2267 if (cur_buf->start != addr) 2268 cur_buf->end = addr; 2269 else 2270 cur_buf->start = cur_buf->end = 0; 2271 2272 p->found_pages -= (end - addr) / PAGE_SIZE; 2273 } 2274 #endif 2275 2276 static bool pagemap_scan_is_interesting_page(unsigned long categories, 2277 const struct pagemap_scan_private *p) 2278 { 2279 categories ^= p->arg.category_inverted; 2280 if ((categories & p->arg.category_mask) != p->arg.category_mask) 2281 return false; 2282 if (p->arg.category_anyof_mask && !(categories & p->arg.category_anyof_mask)) 2283 return false; 2284 2285 return true; 2286 } 2287 2288 static bool pagemap_scan_is_interesting_vma(unsigned long categories, 2289 const struct pagemap_scan_private *p) 2290 { 2291 unsigned long required = p->arg.category_mask & PAGE_IS_WPALLOWED; 2292 2293 categories ^= p->arg.category_inverted; 2294 if ((categories & required) != required) 2295 return false; 2296 2297 return true; 2298 } 2299 2300 static int pagemap_scan_test_walk(unsigned long start, unsigned long end, 2301 struct mm_walk *walk) 2302 { 2303 struct pagemap_scan_private *p = walk->private; 2304 struct vm_area_struct *vma = walk->vma; 2305 unsigned long vma_category = 0; 2306 bool wp_allowed = userfaultfd_wp_async(vma) && 2307 userfaultfd_wp_use_markers(vma); 2308 2309 if (!wp_allowed) { 2310 /* User requested explicit failure over wp-async capability */ 2311 if (p->arg.flags & PM_SCAN_CHECK_WPASYNC) 2312 return -EPERM; 2313 /* 2314 * User requires wr-protect, and allows silently skipping 2315 * unsupported vmas. 2316 */ 2317 if (p->arg.flags & PM_SCAN_WP_MATCHING) 2318 return 1; 2319 /* 2320 * Then the request doesn't involve wr-protects at all, 2321 * fall through to the rest checks, and allow vma walk. 2322 */ 2323 } 2324 2325 if (vma->vm_flags & VM_PFNMAP) 2326 return 1; 2327 2328 if (wp_allowed) 2329 vma_category |= PAGE_IS_WPALLOWED; 2330 2331 if (vma->vm_flags & VM_SOFTDIRTY) 2332 vma_category |= PAGE_IS_SOFT_DIRTY; 2333 2334 if (!pagemap_scan_is_interesting_vma(vma_category, p)) 2335 return 1; 2336 2337 p->cur_vma_category = vma_category; 2338 2339 return 0; 2340 } 2341 2342 static bool pagemap_scan_push_range(unsigned long categories, 2343 struct pagemap_scan_private *p, 2344 unsigned long addr, unsigned long end) 2345 { 2346 struct page_region *cur_buf = &p->vec_buf[p->vec_buf_index]; 2347 2348 /* 2349 * When there is no output buffer provided at all, the sentinel values 2350 * won't match here. There is no other way for `cur_buf->end` to be 2351 * non-zero other than it being non-empty. 2352 */ 2353 if (addr == cur_buf->end && categories == cur_buf->categories) { 2354 cur_buf->end = end; 2355 return true; 2356 } 2357 2358 if (cur_buf->end) { 2359 if (p->vec_buf_index >= p->vec_buf_len - 1) 2360 return false; 2361 2362 cur_buf = &p->vec_buf[++p->vec_buf_index]; 2363 } 2364 2365 cur_buf->start = addr; 2366 cur_buf->end = end; 2367 cur_buf->categories = categories; 2368 2369 return true; 2370 } 2371 2372 static int pagemap_scan_output(unsigned long categories, 2373 struct pagemap_scan_private *p, 2374 unsigned long addr, unsigned long *end) 2375 { 2376 unsigned long n_pages, total_pages; 2377 int ret = 0; 2378 2379 if (!p->vec_buf) 2380 return 0; 2381 2382 categories &= p->arg.return_mask; 2383 2384 n_pages = (*end - addr) / PAGE_SIZE; 2385 if (check_add_overflow(p->found_pages, n_pages, &total_pages) || 2386 total_pages > p->arg.max_pages) { 2387 size_t n_too_much = total_pages - p->arg.max_pages; 2388 *end -= n_too_much * PAGE_SIZE; 2389 n_pages -= n_too_much; 2390 ret = -ENOSPC; 2391 } 2392 2393 if (!pagemap_scan_push_range(categories, p, addr, *end)) { 2394 *end = addr; 2395 n_pages = 0; 2396 ret = -ENOSPC; 2397 } 2398 2399 p->found_pages += n_pages; 2400 if (ret) 2401 p->arg.walk_end = *end; 2402 2403 return ret; 2404 } 2405 2406 static int pagemap_scan_thp_entry(pmd_t *pmd, unsigned long start, 2407 unsigned long end, struct mm_walk *walk) 2408 { 2409 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 2410 struct pagemap_scan_private *p = walk->private; 2411 struct vm_area_struct *vma = walk->vma; 2412 unsigned long categories; 2413 spinlock_t *ptl; 2414 int ret = 0; 2415 2416 ptl = pmd_trans_huge_lock(pmd, vma); 2417 if (!ptl) 2418 return -ENOENT; 2419 2420 categories = p->cur_vma_category | 2421 pagemap_thp_category(p, vma, start, *pmd); 2422 2423 if (!pagemap_scan_is_interesting_page(categories, p)) 2424 goto out_unlock; 2425 2426 ret = pagemap_scan_output(categories, p, start, &end); 2427 if (start == end) 2428 goto out_unlock; 2429 2430 if (~p->arg.flags & PM_SCAN_WP_MATCHING) 2431 goto out_unlock; 2432 if (~categories & PAGE_IS_WRITTEN) 2433 goto out_unlock; 2434 2435 /* 2436 * Break huge page into small pages if the WP operation 2437 * needs to be performed on a portion of the huge page. 2438 */ 2439 if (end != start + HPAGE_SIZE) { 2440 spin_unlock(ptl); 2441 split_huge_pmd(vma, pmd, start); 2442 pagemap_scan_backout_range(p, start, end); 2443 /* Report as if there was no THP */ 2444 return -ENOENT; 2445 } 2446 2447 make_uffd_wp_pmd(vma, start, pmd); 2448 flush_tlb_range(vma, start, end); 2449 out_unlock: 2450 spin_unlock(ptl); 2451 return ret; 2452 #else /* !CONFIG_TRANSPARENT_HUGEPAGE */ 2453 return -ENOENT; 2454 #endif 2455 } 2456 2457 static int pagemap_scan_pmd_entry(pmd_t *pmd, unsigned long start, 2458 unsigned long end, struct mm_walk *walk) 2459 { 2460 struct pagemap_scan_private *p = walk->private; 2461 struct vm_area_struct *vma = walk->vma; 2462 unsigned long addr, flush_end = 0; 2463 pte_t *pte, *start_pte; 2464 spinlock_t *ptl; 2465 int ret; 2466 2467 arch_enter_lazy_mmu_mode(); 2468 2469 ret = pagemap_scan_thp_entry(pmd, start, end, walk); 2470 if (ret != -ENOENT) { 2471 arch_leave_lazy_mmu_mode(); 2472 return ret; 2473 } 2474 2475 ret = 0; 2476 start_pte = pte = pte_offset_map_lock(vma->vm_mm, pmd, start, &ptl); 2477 if (!pte) { 2478 arch_leave_lazy_mmu_mode(); 2479 walk->action = ACTION_AGAIN; 2480 return 0; 2481 } 2482 2483 if ((p->arg.flags & PM_SCAN_WP_MATCHING) && !p->vec_out) { 2484 /* Fast path for performing exclusive WP */ 2485 for (addr = start; addr != end; pte++, addr += PAGE_SIZE) { 2486 pte_t ptent = ptep_get(pte); 2487 2488 if ((pte_present(ptent) && pte_uffd_wp(ptent)) || 2489 pte_swp_uffd_wp_any(ptent)) 2490 continue; 2491 make_uffd_wp_pte(vma, addr, pte, ptent); 2492 if (!flush_end) 2493 start = addr; 2494 flush_end = addr + PAGE_SIZE; 2495 } 2496 goto flush_and_return; 2497 } 2498 2499 if (!p->arg.category_anyof_mask && !p->arg.category_inverted && 2500 p->arg.category_mask == PAGE_IS_WRITTEN && 2501 p->arg.return_mask == PAGE_IS_WRITTEN) { 2502 for (addr = start; addr < end; pte++, addr += PAGE_SIZE) { 2503 unsigned long next = addr + PAGE_SIZE; 2504 pte_t ptent = ptep_get(pte); 2505 2506 if ((pte_present(ptent) && pte_uffd_wp(ptent)) || 2507 pte_swp_uffd_wp_any(ptent)) 2508 continue; 2509 ret = pagemap_scan_output(p->cur_vma_category | PAGE_IS_WRITTEN, 2510 p, addr, &next); 2511 if (next == addr) 2512 break; 2513 if (~p->arg.flags & PM_SCAN_WP_MATCHING) 2514 continue; 2515 make_uffd_wp_pte(vma, addr, pte, ptent); 2516 if (!flush_end) 2517 start = addr; 2518 flush_end = next; 2519 } 2520 goto flush_and_return; 2521 } 2522 2523 for (addr = start; addr != end; pte++, addr += PAGE_SIZE) { 2524 pte_t ptent = ptep_get(pte); 2525 unsigned long categories = p->cur_vma_category | 2526 pagemap_page_category(p, vma, addr, ptent); 2527 unsigned long next = addr + PAGE_SIZE; 2528 2529 if (!pagemap_scan_is_interesting_page(categories, p)) 2530 continue; 2531 2532 ret = pagemap_scan_output(categories, p, addr, &next); 2533 if (next == addr) 2534 break; 2535 2536 if (~p->arg.flags & PM_SCAN_WP_MATCHING) 2537 continue; 2538 if (~categories & PAGE_IS_WRITTEN) 2539 continue; 2540 2541 make_uffd_wp_pte(vma, addr, pte, ptent); 2542 if (!flush_end) 2543 start = addr; 2544 flush_end = next; 2545 } 2546 2547 flush_and_return: 2548 if (flush_end) 2549 flush_tlb_range(vma, start, addr); 2550 2551 pte_unmap_unlock(start_pte, ptl); 2552 arch_leave_lazy_mmu_mode(); 2553 2554 cond_resched(); 2555 return ret; 2556 } 2557 2558 #ifdef CONFIG_HUGETLB_PAGE 2559 static int pagemap_scan_hugetlb_entry(pte_t *ptep, unsigned long hmask, 2560 unsigned long start, unsigned long end, 2561 struct mm_walk *walk) 2562 { 2563 struct pagemap_scan_private *p = walk->private; 2564 struct vm_area_struct *vma = walk->vma; 2565 unsigned long categories; 2566 spinlock_t *ptl; 2567 int ret = 0; 2568 pte_t pte; 2569 2570 if (~p->arg.flags & PM_SCAN_WP_MATCHING) { 2571 /* Go the short route when not write-protecting pages. */ 2572 2573 pte = huge_ptep_get(walk->mm, start, ptep); 2574 categories = p->cur_vma_category | pagemap_hugetlb_category(pte); 2575 2576 if (!pagemap_scan_is_interesting_page(categories, p)) 2577 return 0; 2578 2579 return pagemap_scan_output(categories, p, start, &end); 2580 } 2581 2582 i_mmap_lock_write(vma->vm_file->f_mapping); 2583 ptl = huge_pte_lock(hstate_vma(vma), vma->vm_mm, ptep); 2584 2585 pte = huge_ptep_get(walk->mm, start, ptep); 2586 categories = p->cur_vma_category | pagemap_hugetlb_category(pte); 2587 2588 if (!pagemap_scan_is_interesting_page(categories, p)) 2589 goto out_unlock; 2590 2591 ret = pagemap_scan_output(categories, p, start, &end); 2592 if (start == end) 2593 goto out_unlock; 2594 2595 if (~categories & PAGE_IS_WRITTEN) 2596 goto out_unlock; 2597 2598 if (end != start + HPAGE_SIZE) { 2599 /* Partial HugeTLB page WP isn't possible. */ 2600 pagemap_scan_backout_range(p, start, end); 2601 p->arg.walk_end = start; 2602 ret = 0; 2603 goto out_unlock; 2604 } 2605 2606 make_uffd_wp_huge_pte(vma, start, ptep, pte); 2607 flush_hugetlb_tlb_range(vma, start, end); 2608 2609 out_unlock: 2610 spin_unlock(ptl); 2611 i_mmap_unlock_write(vma->vm_file->f_mapping); 2612 2613 return ret; 2614 } 2615 #else 2616 #define pagemap_scan_hugetlb_entry NULL 2617 #endif 2618 2619 static int pagemap_scan_pte_hole(unsigned long addr, unsigned long end, 2620 int depth, struct mm_walk *walk) 2621 { 2622 struct pagemap_scan_private *p = walk->private; 2623 struct vm_area_struct *vma = walk->vma; 2624 int ret, err; 2625 2626 if (!vma || !pagemap_scan_is_interesting_page(p->cur_vma_category, p)) 2627 return 0; 2628 2629 ret = pagemap_scan_output(p->cur_vma_category, p, addr, &end); 2630 if (addr == end) 2631 return ret; 2632 2633 if (~p->arg.flags & PM_SCAN_WP_MATCHING) 2634 return ret; 2635 2636 err = uffd_wp_range(vma, addr, end - addr, true); 2637 if (err < 0) 2638 ret = err; 2639 2640 return ret; 2641 } 2642 2643 static const struct mm_walk_ops pagemap_scan_ops = { 2644 .test_walk = pagemap_scan_test_walk, 2645 .pmd_entry = pagemap_scan_pmd_entry, 2646 .pte_hole = pagemap_scan_pte_hole, 2647 .hugetlb_entry = pagemap_scan_hugetlb_entry, 2648 }; 2649 2650 static int pagemap_scan_get_args(struct pm_scan_arg *arg, 2651 unsigned long uarg) 2652 { 2653 if (copy_from_user(arg, (void __user *)uarg, sizeof(*arg))) 2654 return -EFAULT; 2655 2656 if (arg->size != sizeof(struct pm_scan_arg)) 2657 return -EINVAL; 2658 2659 /* Validate requested features */ 2660 if (arg->flags & ~PM_SCAN_FLAGS) 2661 return -EINVAL; 2662 if ((arg->category_inverted | arg->category_mask | 2663 arg->category_anyof_mask | arg->return_mask) & ~PM_SCAN_CATEGORIES) 2664 return -EINVAL; 2665 2666 arg->start = untagged_addr((unsigned long)arg->start); 2667 arg->end = untagged_addr((unsigned long)arg->end); 2668 arg->vec = untagged_addr((unsigned long)arg->vec); 2669 2670 /* Validate memory pointers */ 2671 if (!IS_ALIGNED(arg->start, PAGE_SIZE)) 2672 return -EINVAL; 2673 if (!access_ok((void __user *)(long)arg->start, arg->end - arg->start)) 2674 return -EFAULT; 2675 if (!arg->vec && arg->vec_len) 2676 return -EINVAL; 2677 if (arg->vec && !access_ok((void __user *)(long)arg->vec, 2678 arg->vec_len * sizeof(struct page_region))) 2679 return -EFAULT; 2680 2681 /* Fixup default values */ 2682 arg->end = ALIGN(arg->end, PAGE_SIZE); 2683 arg->walk_end = 0; 2684 if (!arg->max_pages) 2685 arg->max_pages = ULONG_MAX; 2686 2687 return 0; 2688 } 2689 2690 static int pagemap_scan_writeback_args(struct pm_scan_arg *arg, 2691 unsigned long uargl) 2692 { 2693 struct pm_scan_arg __user *uarg = (void __user *)uargl; 2694 2695 if (copy_to_user(&uarg->walk_end, &arg->walk_end, sizeof(arg->walk_end))) 2696 return -EFAULT; 2697 2698 return 0; 2699 } 2700 2701 static int pagemap_scan_init_bounce_buffer(struct pagemap_scan_private *p) 2702 { 2703 if (!p->arg.vec_len) 2704 return 0; 2705 2706 p->vec_buf_len = min_t(size_t, PAGEMAP_WALK_SIZE >> PAGE_SHIFT, 2707 p->arg.vec_len); 2708 p->vec_buf = kmalloc_array(p->vec_buf_len, sizeof(*p->vec_buf), 2709 GFP_KERNEL); 2710 if (!p->vec_buf) 2711 return -ENOMEM; 2712 2713 p->vec_buf->start = p->vec_buf->end = 0; 2714 p->vec_out = (struct page_region __user *)(long)p->arg.vec; 2715 2716 return 0; 2717 } 2718 2719 static long pagemap_scan_flush_buffer(struct pagemap_scan_private *p) 2720 { 2721 const struct page_region *buf = p->vec_buf; 2722 long n = p->vec_buf_index; 2723 2724 if (!p->vec_buf) 2725 return 0; 2726 2727 if (buf[n].end != buf[n].start) 2728 n++; 2729 2730 if (!n) 2731 return 0; 2732 2733 if (copy_to_user(p->vec_out, buf, n * sizeof(*buf))) 2734 return -EFAULT; 2735 2736 p->arg.vec_len -= n; 2737 p->vec_out += n; 2738 2739 p->vec_buf_index = 0; 2740 p->vec_buf_len = min_t(size_t, p->vec_buf_len, p->arg.vec_len); 2741 p->vec_buf->start = p->vec_buf->end = 0; 2742 2743 return n; 2744 } 2745 2746 static long do_pagemap_scan(struct mm_struct *mm, unsigned long uarg) 2747 { 2748 struct pagemap_scan_private p = {0}; 2749 unsigned long walk_start; 2750 size_t n_ranges_out = 0; 2751 int ret; 2752 2753 ret = pagemap_scan_get_args(&p.arg, uarg); 2754 if (ret) 2755 return ret; 2756 2757 p.masks_of_interest = p.arg.category_mask | p.arg.category_anyof_mask | 2758 p.arg.return_mask; 2759 ret = pagemap_scan_init_bounce_buffer(&p); 2760 if (ret) 2761 return ret; 2762 2763 for (walk_start = p.arg.start; walk_start < p.arg.end; 2764 walk_start = p.arg.walk_end) { 2765 struct mmu_notifier_range range; 2766 long n_out; 2767 2768 if (fatal_signal_pending(current)) { 2769 ret = -EINTR; 2770 break; 2771 } 2772 2773 ret = mmap_read_lock_killable(mm); 2774 if (ret) 2775 break; 2776 2777 /* Protection change for the range is going to happen. */ 2778 if (p.arg.flags & PM_SCAN_WP_MATCHING) { 2779 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_VMA, 0, 2780 mm, walk_start, p.arg.end); 2781 mmu_notifier_invalidate_range_start(&range); 2782 } 2783 2784 ret = walk_page_range(mm, walk_start, p.arg.end, 2785 &pagemap_scan_ops, &p); 2786 2787 if (p.arg.flags & PM_SCAN_WP_MATCHING) 2788 mmu_notifier_invalidate_range_end(&range); 2789 2790 mmap_read_unlock(mm); 2791 2792 n_out = pagemap_scan_flush_buffer(&p); 2793 if (n_out < 0) 2794 ret = n_out; 2795 else 2796 n_ranges_out += n_out; 2797 2798 if (ret != -ENOSPC) 2799 break; 2800 2801 if (p.arg.vec_len == 0 || p.found_pages == p.arg.max_pages) 2802 break; 2803 } 2804 2805 /* ENOSPC signifies early stop (buffer full) from the walk. */ 2806 if (!ret || ret == -ENOSPC) 2807 ret = n_ranges_out; 2808 2809 /* The walk_end isn't set when ret is zero */ 2810 if (!p.arg.walk_end) 2811 p.arg.walk_end = p.arg.end; 2812 if (pagemap_scan_writeback_args(&p.arg, uarg)) 2813 ret = -EFAULT; 2814 2815 kfree(p.vec_buf); 2816 return ret; 2817 } 2818 2819 static long do_pagemap_cmd(struct file *file, unsigned int cmd, 2820 unsigned long arg) 2821 { 2822 struct mm_struct *mm = file->private_data; 2823 2824 switch (cmd) { 2825 case PAGEMAP_SCAN: 2826 return do_pagemap_scan(mm, arg); 2827 2828 default: 2829 return -EINVAL; 2830 } 2831 } 2832 2833 const struct file_operations proc_pagemap_operations = { 2834 .llseek = mem_lseek, /* borrow this */ 2835 .read = pagemap_read, 2836 .open = pagemap_open, 2837 .release = pagemap_release, 2838 .unlocked_ioctl = do_pagemap_cmd, 2839 .compat_ioctl = do_pagemap_cmd, 2840 }; 2841 #endif /* CONFIG_PROC_PAGE_MONITOR */ 2842 2843 #ifdef CONFIG_NUMA 2844 2845 struct numa_maps { 2846 unsigned long pages; 2847 unsigned long anon; 2848 unsigned long active; 2849 unsigned long writeback; 2850 unsigned long mapcount_max; 2851 unsigned long dirty; 2852 unsigned long swapcache; 2853 unsigned long node[MAX_NUMNODES]; 2854 }; 2855 2856 struct numa_maps_private { 2857 struct proc_maps_private proc_maps; 2858 struct numa_maps md; 2859 }; 2860 2861 static void gather_stats(struct page *page, struct numa_maps *md, int pte_dirty, 2862 unsigned long nr_pages) 2863 { 2864 struct folio *folio = page_folio(page); 2865 int count = folio_precise_page_mapcount(folio, page); 2866 2867 md->pages += nr_pages; 2868 if (pte_dirty || folio_test_dirty(folio)) 2869 md->dirty += nr_pages; 2870 2871 if (folio_test_swapcache(folio)) 2872 md->swapcache += nr_pages; 2873 2874 if (folio_test_active(folio) || folio_test_unevictable(folio)) 2875 md->active += nr_pages; 2876 2877 if (folio_test_writeback(folio)) 2878 md->writeback += nr_pages; 2879 2880 if (folio_test_anon(folio)) 2881 md->anon += nr_pages; 2882 2883 if (count > md->mapcount_max) 2884 md->mapcount_max = count; 2885 2886 md->node[folio_nid(folio)] += nr_pages; 2887 } 2888 2889 static struct page *can_gather_numa_stats(pte_t pte, struct vm_area_struct *vma, 2890 unsigned long addr) 2891 { 2892 struct page *page; 2893 int nid; 2894 2895 if (!pte_present(pte)) 2896 return NULL; 2897 2898 page = vm_normal_page(vma, addr, pte); 2899 if (!page || is_zone_device_page(page)) 2900 return NULL; 2901 2902 if (PageReserved(page)) 2903 return NULL; 2904 2905 nid = page_to_nid(page); 2906 if (!node_isset(nid, node_states[N_MEMORY])) 2907 return NULL; 2908 2909 return page; 2910 } 2911 2912 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 2913 static struct page *can_gather_numa_stats_pmd(pmd_t pmd, 2914 struct vm_area_struct *vma, 2915 unsigned long addr) 2916 { 2917 struct page *page; 2918 int nid; 2919 2920 if (!pmd_present(pmd)) 2921 return NULL; 2922 2923 page = vm_normal_page_pmd(vma, addr, pmd); 2924 if (!page) 2925 return NULL; 2926 2927 if (PageReserved(page)) 2928 return NULL; 2929 2930 nid = page_to_nid(page); 2931 if (!node_isset(nid, node_states[N_MEMORY])) 2932 return NULL; 2933 2934 return page; 2935 } 2936 #endif 2937 2938 static int gather_pte_stats(pmd_t *pmd, unsigned long addr, 2939 unsigned long end, struct mm_walk *walk) 2940 { 2941 struct numa_maps *md = walk->private; 2942 struct vm_area_struct *vma = walk->vma; 2943 spinlock_t *ptl; 2944 pte_t *orig_pte; 2945 pte_t *pte; 2946 2947 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 2948 ptl = pmd_trans_huge_lock(pmd, vma); 2949 if (ptl) { 2950 struct page *page; 2951 2952 page = can_gather_numa_stats_pmd(*pmd, vma, addr); 2953 if (page) 2954 gather_stats(page, md, pmd_dirty(*pmd), 2955 HPAGE_PMD_SIZE/PAGE_SIZE); 2956 spin_unlock(ptl); 2957 return 0; 2958 } 2959 #endif 2960 orig_pte = pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl); 2961 if (!pte) { 2962 walk->action = ACTION_AGAIN; 2963 return 0; 2964 } 2965 do { 2966 pte_t ptent = ptep_get(pte); 2967 struct page *page = can_gather_numa_stats(ptent, vma, addr); 2968 if (!page) 2969 continue; 2970 gather_stats(page, md, pte_dirty(ptent), 1); 2971 2972 } while (pte++, addr += PAGE_SIZE, addr != end); 2973 pte_unmap_unlock(orig_pte, ptl); 2974 cond_resched(); 2975 return 0; 2976 } 2977 #ifdef CONFIG_HUGETLB_PAGE 2978 static int gather_hugetlb_stats(pte_t *pte, unsigned long hmask, 2979 unsigned long addr, unsigned long end, struct mm_walk *walk) 2980 { 2981 pte_t huge_pte = huge_ptep_get(walk->mm, addr, pte); 2982 struct numa_maps *md; 2983 struct page *page; 2984 2985 if (!pte_present(huge_pte)) 2986 return 0; 2987 2988 page = pte_page(huge_pte); 2989 2990 md = walk->private; 2991 gather_stats(page, md, pte_dirty(huge_pte), 1); 2992 return 0; 2993 } 2994 2995 #else 2996 static int gather_hugetlb_stats(pte_t *pte, unsigned long hmask, 2997 unsigned long addr, unsigned long end, struct mm_walk *walk) 2998 { 2999 return 0; 3000 } 3001 #endif 3002 3003 static const struct mm_walk_ops show_numa_ops = { 3004 .hugetlb_entry = gather_hugetlb_stats, 3005 .pmd_entry = gather_pte_stats, 3006 .walk_lock = PGWALK_RDLOCK, 3007 }; 3008 3009 /* 3010 * Display pages allocated per node and memory policy via /proc. 3011 */ 3012 static int show_numa_map(struct seq_file *m, void *v) 3013 { 3014 struct numa_maps_private *numa_priv = m->private; 3015 struct proc_maps_private *proc_priv = &numa_priv->proc_maps; 3016 struct vm_area_struct *vma = v; 3017 struct numa_maps *md = &numa_priv->md; 3018 struct file *file = vma->vm_file; 3019 struct mm_struct *mm = vma->vm_mm; 3020 char buffer[64]; 3021 struct mempolicy *pol; 3022 pgoff_t ilx; 3023 int nid; 3024 3025 if (!mm) 3026 return 0; 3027 3028 /* Ensure we start with an empty set of numa_maps statistics. */ 3029 memset(md, 0, sizeof(*md)); 3030 3031 pol = __get_vma_policy(vma, vma->vm_start, &ilx); 3032 if (pol) { 3033 mpol_to_str(buffer, sizeof(buffer), pol); 3034 mpol_cond_put(pol); 3035 } else { 3036 mpol_to_str(buffer, sizeof(buffer), proc_priv->task_mempolicy); 3037 } 3038 3039 seq_printf(m, "%08lx %s", vma->vm_start, buffer); 3040 3041 if (file) { 3042 seq_puts(m, " file="); 3043 seq_path(m, file_user_path(file), "\n\t= "); 3044 } else if (vma_is_initial_heap(vma)) { 3045 seq_puts(m, " heap"); 3046 } else if (vma_is_initial_stack(vma)) { 3047 seq_puts(m, " stack"); 3048 } 3049 3050 if (is_vm_hugetlb_page(vma)) 3051 seq_puts(m, " huge"); 3052 3053 /* mmap_lock is held by m_start */ 3054 walk_page_vma(vma, &show_numa_ops, md); 3055 3056 if (!md->pages) 3057 goto out; 3058 3059 if (md->anon) 3060 seq_printf(m, " anon=%lu", md->anon); 3061 3062 if (md->dirty) 3063 seq_printf(m, " dirty=%lu", md->dirty); 3064 3065 if (md->pages != md->anon && md->pages != md->dirty) 3066 seq_printf(m, " mapped=%lu", md->pages); 3067 3068 if (md->mapcount_max > 1) 3069 seq_printf(m, " mapmax=%lu", md->mapcount_max); 3070 3071 if (md->swapcache) 3072 seq_printf(m, " swapcache=%lu", md->swapcache); 3073 3074 if (md->active < md->pages && !is_vm_hugetlb_page(vma)) 3075 seq_printf(m, " active=%lu", md->active); 3076 3077 if (md->writeback) 3078 seq_printf(m, " writeback=%lu", md->writeback); 3079 3080 for_each_node_state(nid, N_MEMORY) 3081 if (md->node[nid]) 3082 seq_printf(m, " N%d=%lu", nid, md->node[nid]); 3083 3084 seq_printf(m, " kernelpagesize_kB=%lu", vma_kernel_pagesize(vma) >> 10); 3085 out: 3086 seq_putc(m, '\n'); 3087 return 0; 3088 } 3089 3090 static const struct seq_operations proc_pid_numa_maps_op = { 3091 .start = m_start, 3092 .next = m_next, 3093 .stop = m_stop, 3094 .show = show_numa_map, 3095 }; 3096 3097 static int pid_numa_maps_open(struct inode *inode, struct file *file) 3098 { 3099 return proc_maps_open(inode, file, &proc_pid_numa_maps_op, 3100 sizeof(struct numa_maps_private)); 3101 } 3102 3103 const struct file_operations proc_pid_numa_maps_operations = { 3104 .open = pid_numa_maps_open, 3105 .read = seq_read, 3106 .llseek = seq_lseek, 3107 .release = proc_map_release, 3108 }; 3109 3110 #endif /* CONFIG_NUMA */ 3111