1 // SPDX-License-Identifier: GPL-2.0 2 #include <linux/pagewalk.h> 3 #include <linux/mm_inline.h> 4 #include <linux/hugetlb.h> 5 #include <linux/huge_mm.h> 6 #include <linux/mount.h> 7 #include <linux/seq_file.h> 8 #include <linux/highmem.h> 9 #include <linux/ptrace.h> 10 #include <linux/slab.h> 11 #include <linux/pagemap.h> 12 #include <linux/mempolicy.h> 13 #include <linux/rmap.h> 14 #include <linux/swap.h> 15 #include <linux/sched/mm.h> 16 #include <linux/swapops.h> 17 #include <linux/mmu_notifier.h> 18 #include <linux/page_idle.h> 19 #include <linux/shmem_fs.h> 20 #include <linux/uaccess.h> 21 #include <linux/pkeys.h> 22 23 #include <asm/elf.h> 24 #include <asm/tlb.h> 25 #include <asm/tlbflush.h> 26 #include "internal.h" 27 28 #define SEQ_PUT_DEC(str, val) \ 29 seq_put_decimal_ull_width(m, str, (val) << (PAGE_SHIFT-10), 8) 30 void task_mem(struct seq_file *m, struct mm_struct *mm) 31 { 32 unsigned long text, lib, swap, anon, file, shmem; 33 unsigned long hiwater_vm, total_vm, hiwater_rss, total_rss; 34 35 anon = get_mm_counter(mm, MM_ANONPAGES); 36 file = get_mm_counter(mm, MM_FILEPAGES); 37 shmem = get_mm_counter(mm, MM_SHMEMPAGES); 38 39 /* 40 * Note: to minimize their overhead, mm maintains hiwater_vm and 41 * hiwater_rss only when about to *lower* total_vm or rss. Any 42 * collector of these hiwater stats must therefore get total_vm 43 * and rss too, which will usually be the higher. Barriers? not 44 * worth the effort, such snapshots can always be inconsistent. 45 */ 46 hiwater_vm = total_vm = mm->total_vm; 47 if (hiwater_vm < mm->hiwater_vm) 48 hiwater_vm = mm->hiwater_vm; 49 hiwater_rss = total_rss = anon + file + shmem; 50 if (hiwater_rss < mm->hiwater_rss) 51 hiwater_rss = mm->hiwater_rss; 52 53 /* split executable areas between text and lib */ 54 text = PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK); 55 text = min(text, mm->exec_vm << PAGE_SHIFT); 56 lib = (mm->exec_vm << PAGE_SHIFT) - text; 57 58 swap = get_mm_counter(mm, MM_SWAPENTS); 59 SEQ_PUT_DEC("VmPeak:\t", hiwater_vm); 60 SEQ_PUT_DEC(" kB\nVmSize:\t", total_vm); 61 SEQ_PUT_DEC(" kB\nVmLck:\t", mm->locked_vm); 62 SEQ_PUT_DEC(" kB\nVmPin:\t", atomic64_read(&mm->pinned_vm)); 63 SEQ_PUT_DEC(" kB\nVmHWM:\t", hiwater_rss); 64 SEQ_PUT_DEC(" kB\nVmRSS:\t", total_rss); 65 SEQ_PUT_DEC(" kB\nRssAnon:\t", anon); 66 SEQ_PUT_DEC(" kB\nRssFile:\t", file); 67 SEQ_PUT_DEC(" kB\nRssShmem:\t", shmem); 68 SEQ_PUT_DEC(" kB\nVmData:\t", mm->data_vm); 69 SEQ_PUT_DEC(" kB\nVmStk:\t", mm->stack_vm); 70 seq_put_decimal_ull_width(m, 71 " kB\nVmExe:\t", text >> 10, 8); 72 seq_put_decimal_ull_width(m, 73 " kB\nVmLib:\t", lib >> 10, 8); 74 seq_put_decimal_ull_width(m, 75 " kB\nVmPTE:\t", mm_pgtables_bytes(mm) >> 10, 8); 76 SEQ_PUT_DEC(" kB\nVmSwap:\t", swap); 77 seq_puts(m, " kB\n"); 78 hugetlb_report_usage(m, mm); 79 } 80 #undef SEQ_PUT_DEC 81 82 unsigned long task_vsize(struct mm_struct *mm) 83 { 84 return PAGE_SIZE * mm->total_vm; 85 } 86 87 unsigned long task_statm(struct mm_struct *mm, 88 unsigned long *shared, unsigned long *text, 89 unsigned long *data, unsigned long *resident) 90 { 91 *shared = get_mm_counter(mm, MM_FILEPAGES) + 92 get_mm_counter(mm, MM_SHMEMPAGES); 93 *text = (PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK)) 94 >> PAGE_SHIFT; 95 *data = mm->data_vm + mm->stack_vm; 96 *resident = *shared + get_mm_counter(mm, MM_ANONPAGES); 97 return mm->total_vm; 98 } 99 100 #ifdef CONFIG_NUMA 101 /* 102 * Save get_task_policy() for show_numa_map(). 103 */ 104 static void hold_task_mempolicy(struct proc_maps_private *priv) 105 { 106 struct task_struct *task = priv->task; 107 108 task_lock(task); 109 priv->task_mempolicy = get_task_policy(task); 110 mpol_get(priv->task_mempolicy); 111 task_unlock(task); 112 } 113 static void release_task_mempolicy(struct proc_maps_private *priv) 114 { 115 mpol_put(priv->task_mempolicy); 116 } 117 #else 118 static void hold_task_mempolicy(struct proc_maps_private *priv) 119 { 120 } 121 static void release_task_mempolicy(struct proc_maps_private *priv) 122 { 123 } 124 #endif 125 126 static struct vm_area_struct *proc_get_vma(struct proc_maps_private *priv, 127 loff_t *ppos) 128 { 129 struct vm_area_struct *vma = vma_next(&priv->iter); 130 131 if (vma) { 132 *ppos = vma->vm_start; 133 } else { 134 *ppos = -2UL; 135 vma = get_gate_vma(priv->mm); 136 } 137 138 return vma; 139 } 140 141 static void *m_start(struct seq_file *m, loff_t *ppos) 142 { 143 struct proc_maps_private *priv = m->private; 144 unsigned long last_addr = *ppos; 145 struct mm_struct *mm; 146 147 /* See m_next(). Zero at the start or after lseek. */ 148 if (last_addr == -1UL) 149 return NULL; 150 151 priv->task = get_proc_task(priv->inode); 152 if (!priv->task) 153 return ERR_PTR(-ESRCH); 154 155 mm = priv->mm; 156 if (!mm || !mmget_not_zero(mm)) { 157 put_task_struct(priv->task); 158 priv->task = NULL; 159 return NULL; 160 } 161 162 if (mmap_read_lock_killable(mm)) { 163 mmput(mm); 164 put_task_struct(priv->task); 165 priv->task = NULL; 166 return ERR_PTR(-EINTR); 167 } 168 169 vma_iter_init(&priv->iter, mm, last_addr); 170 hold_task_mempolicy(priv); 171 if (last_addr == -2UL) 172 return get_gate_vma(mm); 173 174 return proc_get_vma(priv, ppos); 175 } 176 177 static void *m_next(struct seq_file *m, void *v, loff_t *ppos) 178 { 179 if (*ppos == -2UL) { 180 *ppos = -1UL; 181 return NULL; 182 } 183 return proc_get_vma(m->private, ppos); 184 } 185 186 static void m_stop(struct seq_file *m, void *v) 187 { 188 struct proc_maps_private *priv = m->private; 189 struct mm_struct *mm = priv->mm; 190 191 if (!priv->task) 192 return; 193 194 release_task_mempolicy(priv); 195 mmap_read_unlock(mm); 196 mmput(mm); 197 put_task_struct(priv->task); 198 priv->task = NULL; 199 } 200 201 static int proc_maps_open(struct inode *inode, struct file *file, 202 const struct seq_operations *ops, int psize) 203 { 204 struct proc_maps_private *priv = __seq_open_private(file, ops, psize); 205 206 if (!priv) 207 return -ENOMEM; 208 209 priv->inode = inode; 210 priv->mm = proc_mem_open(inode, PTRACE_MODE_READ); 211 if (IS_ERR(priv->mm)) { 212 int err = PTR_ERR(priv->mm); 213 214 seq_release_private(inode, file); 215 return err; 216 } 217 218 return 0; 219 } 220 221 static int proc_map_release(struct inode *inode, struct file *file) 222 { 223 struct seq_file *seq = file->private_data; 224 struct proc_maps_private *priv = seq->private; 225 226 if (priv->mm) 227 mmdrop(priv->mm); 228 229 return seq_release_private(inode, file); 230 } 231 232 static int do_maps_open(struct inode *inode, struct file *file, 233 const struct seq_operations *ops) 234 { 235 return proc_maps_open(inode, file, ops, 236 sizeof(struct proc_maps_private)); 237 } 238 239 static void show_vma_header_prefix(struct seq_file *m, 240 unsigned long start, unsigned long end, 241 vm_flags_t flags, unsigned long long pgoff, 242 dev_t dev, unsigned long ino) 243 { 244 seq_setwidth(m, 25 + sizeof(void *) * 6 - 1); 245 seq_put_hex_ll(m, NULL, start, 8); 246 seq_put_hex_ll(m, "-", end, 8); 247 seq_putc(m, ' '); 248 seq_putc(m, flags & VM_READ ? 'r' : '-'); 249 seq_putc(m, flags & VM_WRITE ? 'w' : '-'); 250 seq_putc(m, flags & VM_EXEC ? 'x' : '-'); 251 seq_putc(m, flags & VM_MAYSHARE ? 's' : 'p'); 252 seq_put_hex_ll(m, " ", pgoff, 8); 253 seq_put_hex_ll(m, " ", MAJOR(dev), 2); 254 seq_put_hex_ll(m, ":", MINOR(dev), 2); 255 seq_put_decimal_ull(m, " ", ino); 256 seq_putc(m, ' '); 257 } 258 259 static void 260 show_map_vma(struct seq_file *m, struct vm_area_struct *vma) 261 { 262 struct anon_vma_name *anon_name = NULL; 263 struct mm_struct *mm = vma->vm_mm; 264 struct file *file = vma->vm_file; 265 vm_flags_t flags = vma->vm_flags; 266 unsigned long ino = 0; 267 unsigned long long pgoff = 0; 268 unsigned long start, end; 269 dev_t dev = 0; 270 const char *name = NULL; 271 272 if (file) { 273 struct inode *inode = file_inode(vma->vm_file); 274 dev = inode->i_sb->s_dev; 275 ino = inode->i_ino; 276 pgoff = ((loff_t)vma->vm_pgoff) << PAGE_SHIFT; 277 } 278 279 start = vma->vm_start; 280 end = vma->vm_end; 281 show_vma_header_prefix(m, start, end, flags, pgoff, dev, ino); 282 if (mm) 283 anon_name = anon_vma_name(vma); 284 285 /* 286 * Print the dentry name for named mappings, and a 287 * special [heap] marker for the heap: 288 */ 289 if (file) { 290 seq_pad(m, ' '); 291 /* 292 * If user named this anon shared memory via 293 * prctl(PR_SET_VMA ..., use the provided name. 294 */ 295 if (anon_name) 296 seq_printf(m, "[anon_shmem:%s]", anon_name->name); 297 else 298 seq_file_path(m, file, "\n"); 299 goto done; 300 } 301 302 if (vma->vm_ops && vma->vm_ops->name) { 303 name = vma->vm_ops->name(vma); 304 if (name) 305 goto done; 306 } 307 308 name = arch_vma_name(vma); 309 if (!name) { 310 if (!mm) { 311 name = "[vdso]"; 312 goto done; 313 } 314 315 if (vma_is_initial_heap(vma)) { 316 name = "[heap]"; 317 goto done; 318 } 319 320 if (vma_is_initial_stack(vma)) { 321 name = "[stack]"; 322 goto done; 323 } 324 325 if (anon_name) { 326 seq_pad(m, ' '); 327 seq_printf(m, "[anon:%s]", anon_name->name); 328 } 329 } 330 331 done: 332 if (name) { 333 seq_pad(m, ' '); 334 seq_puts(m, name); 335 } 336 seq_putc(m, '\n'); 337 } 338 339 static int show_map(struct seq_file *m, void *v) 340 { 341 show_map_vma(m, v); 342 return 0; 343 } 344 345 static const struct seq_operations proc_pid_maps_op = { 346 .start = m_start, 347 .next = m_next, 348 .stop = m_stop, 349 .show = show_map 350 }; 351 352 static int pid_maps_open(struct inode *inode, struct file *file) 353 { 354 return do_maps_open(inode, file, &proc_pid_maps_op); 355 } 356 357 const struct file_operations proc_pid_maps_operations = { 358 .open = pid_maps_open, 359 .read = seq_read, 360 .llseek = seq_lseek, 361 .release = proc_map_release, 362 }; 363 364 /* 365 * Proportional Set Size(PSS): my share of RSS. 366 * 367 * PSS of a process is the count of pages it has in memory, where each 368 * page is divided by the number of processes sharing it. So if a 369 * process has 1000 pages all to itself, and 1000 shared with one other 370 * process, its PSS will be 1500. 371 * 372 * To keep (accumulated) division errors low, we adopt a 64bit 373 * fixed-point pss counter to minimize division errors. So (pss >> 374 * PSS_SHIFT) would be the real byte count. 375 * 376 * A shift of 12 before division means (assuming 4K page size): 377 * - 1M 3-user-pages add up to 8KB errors; 378 * - supports mapcount up to 2^24, or 16M; 379 * - supports PSS up to 2^52 bytes, or 4PB. 380 */ 381 #define PSS_SHIFT 12 382 383 #ifdef CONFIG_PROC_PAGE_MONITOR 384 struct mem_size_stats { 385 unsigned long resident; 386 unsigned long shared_clean; 387 unsigned long shared_dirty; 388 unsigned long private_clean; 389 unsigned long private_dirty; 390 unsigned long referenced; 391 unsigned long anonymous; 392 unsigned long lazyfree; 393 unsigned long anonymous_thp; 394 unsigned long shmem_thp; 395 unsigned long file_thp; 396 unsigned long swap; 397 unsigned long shared_hugetlb; 398 unsigned long private_hugetlb; 399 u64 pss; 400 u64 pss_anon; 401 u64 pss_file; 402 u64 pss_shmem; 403 u64 pss_dirty; 404 u64 pss_locked; 405 u64 swap_pss; 406 }; 407 408 static void smaps_page_accumulate(struct mem_size_stats *mss, 409 struct page *page, unsigned long size, unsigned long pss, 410 bool dirty, bool locked, bool private) 411 { 412 mss->pss += pss; 413 414 if (PageAnon(page)) 415 mss->pss_anon += pss; 416 else if (PageSwapBacked(page)) 417 mss->pss_shmem += pss; 418 else 419 mss->pss_file += pss; 420 421 if (locked) 422 mss->pss_locked += pss; 423 424 if (dirty || PageDirty(page)) { 425 mss->pss_dirty += pss; 426 if (private) 427 mss->private_dirty += size; 428 else 429 mss->shared_dirty += size; 430 } else { 431 if (private) 432 mss->private_clean += size; 433 else 434 mss->shared_clean += size; 435 } 436 } 437 438 static void smaps_account(struct mem_size_stats *mss, struct page *page, 439 bool compound, bool young, bool dirty, bool locked, 440 bool migration) 441 { 442 int i, nr = compound ? compound_nr(page) : 1; 443 unsigned long size = nr * PAGE_SIZE; 444 445 /* 446 * First accumulate quantities that depend only on |size| and the type 447 * of the compound page. 448 */ 449 if (PageAnon(page)) { 450 mss->anonymous += size; 451 if (!PageSwapBacked(page) && !dirty && !PageDirty(page)) 452 mss->lazyfree += size; 453 } 454 455 mss->resident += size; 456 /* Accumulate the size in pages that have been accessed. */ 457 if (young || page_is_young(page) || PageReferenced(page)) 458 mss->referenced += size; 459 460 /* 461 * Then accumulate quantities that may depend on sharing, or that may 462 * differ page-by-page. 463 * 464 * page_count(page) == 1 guarantees the page is mapped exactly once. 465 * If any subpage of the compound page mapped with PTE it would elevate 466 * page_count(). 467 * 468 * The page_mapcount() is called to get a snapshot of the mapcount. 469 * Without holding the page lock this snapshot can be slightly wrong as 470 * we cannot always read the mapcount atomically. It is not safe to 471 * call page_mapcount() even with PTL held if the page is not mapped, 472 * especially for migration entries. Treat regular migration entries 473 * as mapcount == 1. 474 */ 475 if ((page_count(page) == 1) || migration) { 476 smaps_page_accumulate(mss, page, size, size << PSS_SHIFT, dirty, 477 locked, true); 478 return; 479 } 480 for (i = 0; i < nr; i++, page++) { 481 int mapcount = page_mapcount(page); 482 unsigned long pss = PAGE_SIZE << PSS_SHIFT; 483 if (mapcount >= 2) 484 pss /= mapcount; 485 smaps_page_accumulate(mss, page, PAGE_SIZE, pss, dirty, locked, 486 mapcount < 2); 487 } 488 } 489 490 #ifdef CONFIG_SHMEM 491 static int smaps_pte_hole(unsigned long addr, unsigned long end, 492 __always_unused int depth, struct mm_walk *walk) 493 { 494 struct mem_size_stats *mss = walk->private; 495 struct vm_area_struct *vma = walk->vma; 496 497 mss->swap += shmem_partial_swap_usage(walk->vma->vm_file->f_mapping, 498 linear_page_index(vma, addr), 499 linear_page_index(vma, end)); 500 501 return 0; 502 } 503 #else 504 #define smaps_pte_hole NULL 505 #endif /* CONFIG_SHMEM */ 506 507 static void smaps_pte_hole_lookup(unsigned long addr, struct mm_walk *walk) 508 { 509 #ifdef CONFIG_SHMEM 510 if (walk->ops->pte_hole) { 511 /* depth is not used */ 512 smaps_pte_hole(addr, addr + PAGE_SIZE, 0, walk); 513 } 514 #endif 515 } 516 517 static void smaps_pte_entry(pte_t *pte, unsigned long addr, 518 struct mm_walk *walk) 519 { 520 struct mem_size_stats *mss = walk->private; 521 struct vm_area_struct *vma = walk->vma; 522 bool locked = !!(vma->vm_flags & VM_LOCKED); 523 struct page *page = NULL; 524 bool migration = false, young = false, dirty = false; 525 pte_t ptent = ptep_get(pte); 526 527 if (pte_present(ptent)) { 528 page = vm_normal_page(vma, addr, ptent); 529 young = pte_young(ptent); 530 dirty = pte_dirty(ptent); 531 } else if (is_swap_pte(ptent)) { 532 swp_entry_t swpent = pte_to_swp_entry(ptent); 533 534 if (!non_swap_entry(swpent)) { 535 int mapcount; 536 537 mss->swap += PAGE_SIZE; 538 mapcount = swp_swapcount(swpent); 539 if (mapcount >= 2) { 540 u64 pss_delta = (u64)PAGE_SIZE << PSS_SHIFT; 541 542 do_div(pss_delta, mapcount); 543 mss->swap_pss += pss_delta; 544 } else { 545 mss->swap_pss += (u64)PAGE_SIZE << PSS_SHIFT; 546 } 547 } else if (is_pfn_swap_entry(swpent)) { 548 if (is_migration_entry(swpent)) 549 migration = true; 550 page = pfn_swap_entry_to_page(swpent); 551 } 552 } else { 553 smaps_pte_hole_lookup(addr, walk); 554 return; 555 } 556 557 if (!page) 558 return; 559 560 smaps_account(mss, page, false, young, dirty, locked, migration); 561 } 562 563 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 564 static void smaps_pmd_entry(pmd_t *pmd, unsigned long addr, 565 struct mm_walk *walk) 566 { 567 struct mem_size_stats *mss = walk->private; 568 struct vm_area_struct *vma = walk->vma; 569 bool locked = !!(vma->vm_flags & VM_LOCKED); 570 struct page *page = NULL; 571 bool migration = false; 572 573 if (pmd_present(*pmd)) { 574 page = vm_normal_page_pmd(vma, addr, *pmd); 575 } else if (unlikely(thp_migration_supported() && is_swap_pmd(*pmd))) { 576 swp_entry_t entry = pmd_to_swp_entry(*pmd); 577 578 if (is_migration_entry(entry)) { 579 migration = true; 580 page = pfn_swap_entry_to_page(entry); 581 } 582 } 583 if (IS_ERR_OR_NULL(page)) 584 return; 585 if (PageAnon(page)) 586 mss->anonymous_thp += HPAGE_PMD_SIZE; 587 else if (PageSwapBacked(page)) 588 mss->shmem_thp += HPAGE_PMD_SIZE; 589 else if (is_zone_device_page(page)) 590 /* pass */; 591 else 592 mss->file_thp += HPAGE_PMD_SIZE; 593 594 smaps_account(mss, page, true, pmd_young(*pmd), pmd_dirty(*pmd), 595 locked, migration); 596 } 597 #else 598 static void smaps_pmd_entry(pmd_t *pmd, unsigned long addr, 599 struct mm_walk *walk) 600 { 601 } 602 #endif 603 604 static int smaps_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end, 605 struct mm_walk *walk) 606 { 607 struct vm_area_struct *vma = walk->vma; 608 pte_t *pte; 609 spinlock_t *ptl; 610 611 ptl = pmd_trans_huge_lock(pmd, vma); 612 if (ptl) { 613 smaps_pmd_entry(pmd, addr, walk); 614 spin_unlock(ptl); 615 goto out; 616 } 617 618 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl); 619 if (!pte) { 620 walk->action = ACTION_AGAIN; 621 return 0; 622 } 623 for (; addr != end; pte++, addr += PAGE_SIZE) 624 smaps_pte_entry(pte, addr, walk); 625 pte_unmap_unlock(pte - 1, ptl); 626 out: 627 cond_resched(); 628 return 0; 629 } 630 631 static void show_smap_vma_flags(struct seq_file *m, struct vm_area_struct *vma) 632 { 633 /* 634 * Don't forget to update Documentation/ on changes. 635 */ 636 static const char mnemonics[BITS_PER_LONG][2] = { 637 /* 638 * In case if we meet a flag we don't know about. 639 */ 640 [0 ... (BITS_PER_LONG-1)] = "??", 641 642 [ilog2(VM_READ)] = "rd", 643 [ilog2(VM_WRITE)] = "wr", 644 [ilog2(VM_EXEC)] = "ex", 645 [ilog2(VM_SHARED)] = "sh", 646 [ilog2(VM_MAYREAD)] = "mr", 647 [ilog2(VM_MAYWRITE)] = "mw", 648 [ilog2(VM_MAYEXEC)] = "me", 649 [ilog2(VM_MAYSHARE)] = "ms", 650 [ilog2(VM_GROWSDOWN)] = "gd", 651 [ilog2(VM_PFNMAP)] = "pf", 652 [ilog2(VM_LOCKED)] = "lo", 653 [ilog2(VM_IO)] = "io", 654 [ilog2(VM_SEQ_READ)] = "sr", 655 [ilog2(VM_RAND_READ)] = "rr", 656 [ilog2(VM_DONTCOPY)] = "dc", 657 [ilog2(VM_DONTEXPAND)] = "de", 658 [ilog2(VM_LOCKONFAULT)] = "lf", 659 [ilog2(VM_ACCOUNT)] = "ac", 660 [ilog2(VM_NORESERVE)] = "nr", 661 [ilog2(VM_HUGETLB)] = "ht", 662 [ilog2(VM_SYNC)] = "sf", 663 [ilog2(VM_ARCH_1)] = "ar", 664 [ilog2(VM_WIPEONFORK)] = "wf", 665 [ilog2(VM_DONTDUMP)] = "dd", 666 #ifdef CONFIG_ARM64_BTI 667 [ilog2(VM_ARM64_BTI)] = "bt", 668 #endif 669 #ifdef CONFIG_MEM_SOFT_DIRTY 670 [ilog2(VM_SOFTDIRTY)] = "sd", 671 #endif 672 [ilog2(VM_MIXEDMAP)] = "mm", 673 [ilog2(VM_HUGEPAGE)] = "hg", 674 [ilog2(VM_NOHUGEPAGE)] = "nh", 675 [ilog2(VM_MERGEABLE)] = "mg", 676 [ilog2(VM_UFFD_MISSING)]= "um", 677 [ilog2(VM_UFFD_WP)] = "uw", 678 #ifdef CONFIG_ARM64_MTE 679 [ilog2(VM_MTE)] = "mt", 680 [ilog2(VM_MTE_ALLOWED)] = "", 681 #endif 682 #ifdef CONFIG_ARCH_HAS_PKEYS 683 /* These come out via ProtectionKey: */ 684 [ilog2(VM_PKEY_BIT0)] = "", 685 [ilog2(VM_PKEY_BIT1)] = "", 686 [ilog2(VM_PKEY_BIT2)] = "", 687 [ilog2(VM_PKEY_BIT3)] = "", 688 #if VM_PKEY_BIT4 689 [ilog2(VM_PKEY_BIT4)] = "", 690 #endif 691 #endif /* CONFIG_ARCH_HAS_PKEYS */ 692 #ifdef CONFIG_HAVE_ARCH_USERFAULTFD_MINOR 693 [ilog2(VM_UFFD_MINOR)] = "ui", 694 #endif /* CONFIG_HAVE_ARCH_USERFAULTFD_MINOR */ 695 #ifdef CONFIG_X86_USER_SHADOW_STACK 696 [ilog2(VM_SHADOW_STACK)] = "ss", 697 #endif 698 }; 699 size_t i; 700 701 seq_puts(m, "VmFlags: "); 702 for (i = 0; i < BITS_PER_LONG; i++) { 703 if (!mnemonics[i][0]) 704 continue; 705 if (vma->vm_flags & (1UL << i)) { 706 seq_putc(m, mnemonics[i][0]); 707 seq_putc(m, mnemonics[i][1]); 708 seq_putc(m, ' '); 709 } 710 } 711 seq_putc(m, '\n'); 712 } 713 714 #ifdef CONFIG_HUGETLB_PAGE 715 static int smaps_hugetlb_range(pte_t *pte, unsigned long hmask, 716 unsigned long addr, unsigned long end, 717 struct mm_walk *walk) 718 { 719 struct mem_size_stats *mss = walk->private; 720 struct vm_area_struct *vma = walk->vma; 721 struct page *page = NULL; 722 pte_t ptent = ptep_get(pte); 723 724 if (pte_present(ptent)) { 725 page = vm_normal_page(vma, addr, ptent); 726 } else if (is_swap_pte(ptent)) { 727 swp_entry_t swpent = pte_to_swp_entry(ptent); 728 729 if (is_pfn_swap_entry(swpent)) 730 page = pfn_swap_entry_to_page(swpent); 731 } 732 if (page) { 733 if (page_mapcount(page) >= 2 || hugetlb_pmd_shared(pte)) 734 mss->shared_hugetlb += huge_page_size(hstate_vma(vma)); 735 else 736 mss->private_hugetlb += huge_page_size(hstate_vma(vma)); 737 } 738 return 0; 739 } 740 #else 741 #define smaps_hugetlb_range NULL 742 #endif /* HUGETLB_PAGE */ 743 744 static const struct mm_walk_ops smaps_walk_ops = { 745 .pmd_entry = smaps_pte_range, 746 .hugetlb_entry = smaps_hugetlb_range, 747 .walk_lock = PGWALK_RDLOCK, 748 }; 749 750 static const struct mm_walk_ops smaps_shmem_walk_ops = { 751 .pmd_entry = smaps_pte_range, 752 .hugetlb_entry = smaps_hugetlb_range, 753 .pte_hole = smaps_pte_hole, 754 .walk_lock = PGWALK_RDLOCK, 755 }; 756 757 /* 758 * Gather mem stats from @vma with the indicated beginning 759 * address @start, and keep them in @mss. 760 * 761 * Use vm_start of @vma as the beginning address if @start is 0. 762 */ 763 static void smap_gather_stats(struct vm_area_struct *vma, 764 struct mem_size_stats *mss, unsigned long start) 765 { 766 const struct mm_walk_ops *ops = &smaps_walk_ops; 767 768 /* Invalid start */ 769 if (start >= vma->vm_end) 770 return; 771 772 if (vma->vm_file && shmem_mapping(vma->vm_file->f_mapping)) { 773 /* 774 * For shared or readonly shmem mappings we know that all 775 * swapped out pages belong to the shmem object, and we can 776 * obtain the swap value much more efficiently. For private 777 * writable mappings, we might have COW pages that are 778 * not affected by the parent swapped out pages of the shmem 779 * object, so we have to distinguish them during the page walk. 780 * Unless we know that the shmem object (or the part mapped by 781 * our VMA) has no swapped out pages at all. 782 */ 783 unsigned long shmem_swapped = shmem_swap_usage(vma); 784 785 if (!start && (!shmem_swapped || (vma->vm_flags & VM_SHARED) || 786 !(vma->vm_flags & VM_WRITE))) { 787 mss->swap += shmem_swapped; 788 } else { 789 ops = &smaps_shmem_walk_ops; 790 } 791 } 792 793 /* mmap_lock is held in m_start */ 794 if (!start) 795 walk_page_vma(vma, ops, mss); 796 else 797 walk_page_range(vma->vm_mm, start, vma->vm_end, ops, mss); 798 } 799 800 #define SEQ_PUT_DEC(str, val) \ 801 seq_put_decimal_ull_width(m, str, (val) >> 10, 8) 802 803 /* Show the contents common for smaps and smaps_rollup */ 804 static void __show_smap(struct seq_file *m, const struct mem_size_stats *mss, 805 bool rollup_mode) 806 { 807 SEQ_PUT_DEC("Rss: ", mss->resident); 808 SEQ_PUT_DEC(" kB\nPss: ", mss->pss >> PSS_SHIFT); 809 SEQ_PUT_DEC(" kB\nPss_Dirty: ", mss->pss_dirty >> PSS_SHIFT); 810 if (rollup_mode) { 811 /* 812 * These are meaningful only for smaps_rollup, otherwise two of 813 * them are zero, and the other one is the same as Pss. 814 */ 815 SEQ_PUT_DEC(" kB\nPss_Anon: ", 816 mss->pss_anon >> PSS_SHIFT); 817 SEQ_PUT_DEC(" kB\nPss_File: ", 818 mss->pss_file >> PSS_SHIFT); 819 SEQ_PUT_DEC(" kB\nPss_Shmem: ", 820 mss->pss_shmem >> PSS_SHIFT); 821 } 822 SEQ_PUT_DEC(" kB\nShared_Clean: ", mss->shared_clean); 823 SEQ_PUT_DEC(" kB\nShared_Dirty: ", mss->shared_dirty); 824 SEQ_PUT_DEC(" kB\nPrivate_Clean: ", mss->private_clean); 825 SEQ_PUT_DEC(" kB\nPrivate_Dirty: ", mss->private_dirty); 826 SEQ_PUT_DEC(" kB\nReferenced: ", mss->referenced); 827 SEQ_PUT_DEC(" kB\nAnonymous: ", mss->anonymous); 828 SEQ_PUT_DEC(" kB\nLazyFree: ", mss->lazyfree); 829 SEQ_PUT_DEC(" kB\nAnonHugePages: ", mss->anonymous_thp); 830 SEQ_PUT_DEC(" kB\nShmemPmdMapped: ", mss->shmem_thp); 831 SEQ_PUT_DEC(" kB\nFilePmdMapped: ", mss->file_thp); 832 SEQ_PUT_DEC(" kB\nShared_Hugetlb: ", mss->shared_hugetlb); 833 seq_put_decimal_ull_width(m, " kB\nPrivate_Hugetlb: ", 834 mss->private_hugetlb >> 10, 7); 835 SEQ_PUT_DEC(" kB\nSwap: ", mss->swap); 836 SEQ_PUT_DEC(" kB\nSwapPss: ", 837 mss->swap_pss >> PSS_SHIFT); 838 SEQ_PUT_DEC(" kB\nLocked: ", 839 mss->pss_locked >> PSS_SHIFT); 840 seq_puts(m, " kB\n"); 841 } 842 843 static int show_smap(struct seq_file *m, void *v) 844 { 845 struct vm_area_struct *vma = v; 846 struct mem_size_stats mss; 847 848 memset(&mss, 0, sizeof(mss)); 849 850 smap_gather_stats(vma, &mss, 0); 851 852 show_map_vma(m, vma); 853 854 SEQ_PUT_DEC("Size: ", vma->vm_end - vma->vm_start); 855 SEQ_PUT_DEC(" kB\nKernelPageSize: ", vma_kernel_pagesize(vma)); 856 SEQ_PUT_DEC(" kB\nMMUPageSize: ", vma_mmu_pagesize(vma)); 857 seq_puts(m, " kB\n"); 858 859 __show_smap(m, &mss, false); 860 861 seq_printf(m, "THPeligible: %8u\n", 862 hugepage_vma_check(vma, vma->vm_flags, true, false, true)); 863 864 if (arch_pkeys_enabled()) 865 seq_printf(m, "ProtectionKey: %8u\n", vma_pkey(vma)); 866 show_smap_vma_flags(m, vma); 867 868 return 0; 869 } 870 871 static int show_smaps_rollup(struct seq_file *m, void *v) 872 { 873 struct proc_maps_private *priv = m->private; 874 struct mem_size_stats mss; 875 struct mm_struct *mm = priv->mm; 876 struct vm_area_struct *vma; 877 unsigned long vma_start = 0, last_vma_end = 0; 878 int ret = 0; 879 VMA_ITERATOR(vmi, mm, 0); 880 881 priv->task = get_proc_task(priv->inode); 882 if (!priv->task) 883 return -ESRCH; 884 885 if (!mm || !mmget_not_zero(mm)) { 886 ret = -ESRCH; 887 goto out_put_task; 888 } 889 890 memset(&mss, 0, sizeof(mss)); 891 892 ret = mmap_read_lock_killable(mm); 893 if (ret) 894 goto out_put_mm; 895 896 hold_task_mempolicy(priv); 897 vma = vma_next(&vmi); 898 899 if (unlikely(!vma)) 900 goto empty_set; 901 902 vma_start = vma->vm_start; 903 do { 904 smap_gather_stats(vma, &mss, 0); 905 last_vma_end = vma->vm_end; 906 907 /* 908 * Release mmap_lock temporarily if someone wants to 909 * access it for write request. 910 */ 911 if (mmap_lock_is_contended(mm)) { 912 vma_iter_invalidate(&vmi); 913 mmap_read_unlock(mm); 914 ret = mmap_read_lock_killable(mm); 915 if (ret) { 916 release_task_mempolicy(priv); 917 goto out_put_mm; 918 } 919 920 /* 921 * After dropping the lock, there are four cases to 922 * consider. See the following example for explanation. 923 * 924 * +------+------+-----------+ 925 * | VMA1 | VMA2 | VMA3 | 926 * +------+------+-----------+ 927 * | | | | 928 * 4k 8k 16k 400k 929 * 930 * Suppose we drop the lock after reading VMA2 due to 931 * contention, then we get: 932 * 933 * last_vma_end = 16k 934 * 935 * 1) VMA2 is freed, but VMA3 exists: 936 * 937 * vma_next(vmi) will return VMA3. 938 * In this case, just continue from VMA3. 939 * 940 * 2) VMA2 still exists: 941 * 942 * vma_next(vmi) will return VMA3. 943 * In this case, just continue from VMA3. 944 * 945 * 3) No more VMAs can be found: 946 * 947 * vma_next(vmi) will return NULL. 948 * No more things to do, just break. 949 * 950 * 4) (last_vma_end - 1) is the middle of a vma (VMA'): 951 * 952 * vma_next(vmi) will return VMA' whose range 953 * contains last_vma_end. 954 * Iterate VMA' from last_vma_end. 955 */ 956 vma = vma_next(&vmi); 957 /* Case 3 above */ 958 if (!vma) 959 break; 960 961 /* Case 1 and 2 above */ 962 if (vma->vm_start >= last_vma_end) 963 continue; 964 965 /* Case 4 above */ 966 if (vma->vm_end > last_vma_end) 967 smap_gather_stats(vma, &mss, last_vma_end); 968 } 969 } for_each_vma(vmi, vma); 970 971 empty_set: 972 show_vma_header_prefix(m, vma_start, last_vma_end, 0, 0, 0, 0); 973 seq_pad(m, ' '); 974 seq_puts(m, "[rollup]\n"); 975 976 __show_smap(m, &mss, true); 977 978 release_task_mempolicy(priv); 979 mmap_read_unlock(mm); 980 981 out_put_mm: 982 mmput(mm); 983 out_put_task: 984 put_task_struct(priv->task); 985 priv->task = NULL; 986 987 return ret; 988 } 989 #undef SEQ_PUT_DEC 990 991 static const struct seq_operations proc_pid_smaps_op = { 992 .start = m_start, 993 .next = m_next, 994 .stop = m_stop, 995 .show = show_smap 996 }; 997 998 static int pid_smaps_open(struct inode *inode, struct file *file) 999 { 1000 return do_maps_open(inode, file, &proc_pid_smaps_op); 1001 } 1002 1003 static int smaps_rollup_open(struct inode *inode, struct file *file) 1004 { 1005 int ret; 1006 struct proc_maps_private *priv; 1007 1008 priv = kzalloc(sizeof(*priv), GFP_KERNEL_ACCOUNT); 1009 if (!priv) 1010 return -ENOMEM; 1011 1012 ret = single_open(file, show_smaps_rollup, priv); 1013 if (ret) 1014 goto out_free; 1015 1016 priv->inode = inode; 1017 priv->mm = proc_mem_open(inode, PTRACE_MODE_READ); 1018 if (IS_ERR(priv->mm)) { 1019 ret = PTR_ERR(priv->mm); 1020 1021 single_release(inode, file); 1022 goto out_free; 1023 } 1024 1025 return 0; 1026 1027 out_free: 1028 kfree(priv); 1029 return ret; 1030 } 1031 1032 static int smaps_rollup_release(struct inode *inode, struct file *file) 1033 { 1034 struct seq_file *seq = file->private_data; 1035 struct proc_maps_private *priv = seq->private; 1036 1037 if (priv->mm) 1038 mmdrop(priv->mm); 1039 1040 kfree(priv); 1041 return single_release(inode, file); 1042 } 1043 1044 const struct file_operations proc_pid_smaps_operations = { 1045 .open = pid_smaps_open, 1046 .read = seq_read, 1047 .llseek = seq_lseek, 1048 .release = proc_map_release, 1049 }; 1050 1051 const struct file_operations proc_pid_smaps_rollup_operations = { 1052 .open = smaps_rollup_open, 1053 .read = seq_read, 1054 .llseek = seq_lseek, 1055 .release = smaps_rollup_release, 1056 }; 1057 1058 enum clear_refs_types { 1059 CLEAR_REFS_ALL = 1, 1060 CLEAR_REFS_ANON, 1061 CLEAR_REFS_MAPPED, 1062 CLEAR_REFS_SOFT_DIRTY, 1063 CLEAR_REFS_MM_HIWATER_RSS, 1064 CLEAR_REFS_LAST, 1065 }; 1066 1067 struct clear_refs_private { 1068 enum clear_refs_types type; 1069 }; 1070 1071 #ifdef CONFIG_MEM_SOFT_DIRTY 1072 1073 static inline bool pte_is_pinned(struct vm_area_struct *vma, unsigned long addr, pte_t pte) 1074 { 1075 struct page *page; 1076 1077 if (!pte_write(pte)) 1078 return false; 1079 if (!is_cow_mapping(vma->vm_flags)) 1080 return false; 1081 if (likely(!test_bit(MMF_HAS_PINNED, &vma->vm_mm->flags))) 1082 return false; 1083 page = vm_normal_page(vma, addr, pte); 1084 if (!page) 1085 return false; 1086 return page_maybe_dma_pinned(page); 1087 } 1088 1089 static inline void clear_soft_dirty(struct vm_area_struct *vma, 1090 unsigned long addr, pte_t *pte) 1091 { 1092 /* 1093 * The soft-dirty tracker uses #PF-s to catch writes 1094 * to pages, so write-protect the pte as well. See the 1095 * Documentation/admin-guide/mm/soft-dirty.rst for full description 1096 * of how soft-dirty works. 1097 */ 1098 pte_t ptent = ptep_get(pte); 1099 1100 if (pte_present(ptent)) { 1101 pte_t old_pte; 1102 1103 if (pte_is_pinned(vma, addr, ptent)) 1104 return; 1105 old_pte = ptep_modify_prot_start(vma, addr, pte); 1106 ptent = pte_wrprotect(old_pte); 1107 ptent = pte_clear_soft_dirty(ptent); 1108 ptep_modify_prot_commit(vma, addr, pte, old_pte, ptent); 1109 } else if (is_swap_pte(ptent)) { 1110 ptent = pte_swp_clear_soft_dirty(ptent); 1111 set_pte_at(vma->vm_mm, addr, pte, ptent); 1112 } 1113 } 1114 #else 1115 static inline void clear_soft_dirty(struct vm_area_struct *vma, 1116 unsigned long addr, pte_t *pte) 1117 { 1118 } 1119 #endif 1120 1121 #if defined(CONFIG_MEM_SOFT_DIRTY) && defined(CONFIG_TRANSPARENT_HUGEPAGE) 1122 static inline void clear_soft_dirty_pmd(struct vm_area_struct *vma, 1123 unsigned long addr, pmd_t *pmdp) 1124 { 1125 pmd_t old, pmd = *pmdp; 1126 1127 if (pmd_present(pmd)) { 1128 /* See comment in change_huge_pmd() */ 1129 old = pmdp_invalidate(vma, addr, pmdp); 1130 if (pmd_dirty(old)) 1131 pmd = pmd_mkdirty(pmd); 1132 if (pmd_young(old)) 1133 pmd = pmd_mkyoung(pmd); 1134 1135 pmd = pmd_wrprotect(pmd); 1136 pmd = pmd_clear_soft_dirty(pmd); 1137 1138 set_pmd_at(vma->vm_mm, addr, pmdp, pmd); 1139 } else if (is_migration_entry(pmd_to_swp_entry(pmd))) { 1140 pmd = pmd_swp_clear_soft_dirty(pmd); 1141 set_pmd_at(vma->vm_mm, addr, pmdp, pmd); 1142 } 1143 } 1144 #else 1145 static inline void clear_soft_dirty_pmd(struct vm_area_struct *vma, 1146 unsigned long addr, pmd_t *pmdp) 1147 { 1148 } 1149 #endif 1150 1151 static int clear_refs_pte_range(pmd_t *pmd, unsigned long addr, 1152 unsigned long end, struct mm_walk *walk) 1153 { 1154 struct clear_refs_private *cp = walk->private; 1155 struct vm_area_struct *vma = walk->vma; 1156 pte_t *pte, ptent; 1157 spinlock_t *ptl; 1158 struct page *page; 1159 1160 ptl = pmd_trans_huge_lock(pmd, vma); 1161 if (ptl) { 1162 if (cp->type == CLEAR_REFS_SOFT_DIRTY) { 1163 clear_soft_dirty_pmd(vma, addr, pmd); 1164 goto out; 1165 } 1166 1167 if (!pmd_present(*pmd)) 1168 goto out; 1169 1170 page = pmd_page(*pmd); 1171 1172 /* Clear accessed and referenced bits. */ 1173 pmdp_test_and_clear_young(vma, addr, pmd); 1174 test_and_clear_page_young(page); 1175 ClearPageReferenced(page); 1176 out: 1177 spin_unlock(ptl); 1178 return 0; 1179 } 1180 1181 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl); 1182 if (!pte) { 1183 walk->action = ACTION_AGAIN; 1184 return 0; 1185 } 1186 for (; addr != end; pte++, addr += PAGE_SIZE) { 1187 ptent = ptep_get(pte); 1188 1189 if (cp->type == CLEAR_REFS_SOFT_DIRTY) { 1190 clear_soft_dirty(vma, addr, pte); 1191 continue; 1192 } 1193 1194 if (!pte_present(ptent)) 1195 continue; 1196 1197 page = vm_normal_page(vma, addr, ptent); 1198 if (!page) 1199 continue; 1200 1201 /* Clear accessed and referenced bits. */ 1202 ptep_test_and_clear_young(vma, addr, pte); 1203 test_and_clear_page_young(page); 1204 ClearPageReferenced(page); 1205 } 1206 pte_unmap_unlock(pte - 1, ptl); 1207 cond_resched(); 1208 return 0; 1209 } 1210 1211 static int clear_refs_test_walk(unsigned long start, unsigned long end, 1212 struct mm_walk *walk) 1213 { 1214 struct clear_refs_private *cp = walk->private; 1215 struct vm_area_struct *vma = walk->vma; 1216 1217 if (vma->vm_flags & VM_PFNMAP) 1218 return 1; 1219 1220 /* 1221 * Writing 1 to /proc/pid/clear_refs affects all pages. 1222 * Writing 2 to /proc/pid/clear_refs only affects anonymous pages. 1223 * Writing 3 to /proc/pid/clear_refs only affects file mapped pages. 1224 * Writing 4 to /proc/pid/clear_refs affects all pages. 1225 */ 1226 if (cp->type == CLEAR_REFS_ANON && vma->vm_file) 1227 return 1; 1228 if (cp->type == CLEAR_REFS_MAPPED && !vma->vm_file) 1229 return 1; 1230 return 0; 1231 } 1232 1233 static const struct mm_walk_ops clear_refs_walk_ops = { 1234 .pmd_entry = clear_refs_pte_range, 1235 .test_walk = clear_refs_test_walk, 1236 .walk_lock = PGWALK_WRLOCK, 1237 }; 1238 1239 static ssize_t clear_refs_write(struct file *file, const char __user *buf, 1240 size_t count, loff_t *ppos) 1241 { 1242 struct task_struct *task; 1243 char buffer[PROC_NUMBUF]; 1244 struct mm_struct *mm; 1245 struct vm_area_struct *vma; 1246 enum clear_refs_types type; 1247 int itype; 1248 int rv; 1249 1250 memset(buffer, 0, sizeof(buffer)); 1251 if (count > sizeof(buffer) - 1) 1252 count = sizeof(buffer) - 1; 1253 if (copy_from_user(buffer, buf, count)) 1254 return -EFAULT; 1255 rv = kstrtoint(strstrip(buffer), 10, &itype); 1256 if (rv < 0) 1257 return rv; 1258 type = (enum clear_refs_types)itype; 1259 if (type < CLEAR_REFS_ALL || type >= CLEAR_REFS_LAST) 1260 return -EINVAL; 1261 1262 task = get_proc_task(file_inode(file)); 1263 if (!task) 1264 return -ESRCH; 1265 mm = get_task_mm(task); 1266 if (mm) { 1267 VMA_ITERATOR(vmi, mm, 0); 1268 struct mmu_notifier_range range; 1269 struct clear_refs_private cp = { 1270 .type = type, 1271 }; 1272 1273 if (mmap_write_lock_killable(mm)) { 1274 count = -EINTR; 1275 goto out_mm; 1276 } 1277 if (type == CLEAR_REFS_MM_HIWATER_RSS) { 1278 /* 1279 * Writing 5 to /proc/pid/clear_refs resets the peak 1280 * resident set size to this mm's current rss value. 1281 */ 1282 reset_mm_hiwater_rss(mm); 1283 goto out_unlock; 1284 } 1285 1286 if (type == CLEAR_REFS_SOFT_DIRTY) { 1287 for_each_vma(vmi, vma) { 1288 if (!(vma->vm_flags & VM_SOFTDIRTY)) 1289 continue; 1290 vm_flags_clear(vma, VM_SOFTDIRTY); 1291 vma_set_page_prot(vma); 1292 } 1293 1294 inc_tlb_flush_pending(mm); 1295 mmu_notifier_range_init(&range, MMU_NOTIFY_SOFT_DIRTY, 1296 0, mm, 0, -1UL); 1297 mmu_notifier_invalidate_range_start(&range); 1298 } 1299 walk_page_range(mm, 0, -1, &clear_refs_walk_ops, &cp); 1300 if (type == CLEAR_REFS_SOFT_DIRTY) { 1301 mmu_notifier_invalidate_range_end(&range); 1302 flush_tlb_mm(mm); 1303 dec_tlb_flush_pending(mm); 1304 } 1305 out_unlock: 1306 mmap_write_unlock(mm); 1307 out_mm: 1308 mmput(mm); 1309 } 1310 put_task_struct(task); 1311 1312 return count; 1313 } 1314 1315 const struct file_operations proc_clear_refs_operations = { 1316 .write = clear_refs_write, 1317 .llseek = noop_llseek, 1318 }; 1319 1320 typedef struct { 1321 u64 pme; 1322 } pagemap_entry_t; 1323 1324 struct pagemapread { 1325 int pos, len; /* units: PM_ENTRY_BYTES, not bytes */ 1326 pagemap_entry_t *buffer; 1327 bool show_pfn; 1328 }; 1329 1330 #define PAGEMAP_WALK_SIZE (PMD_SIZE) 1331 #define PAGEMAP_WALK_MASK (PMD_MASK) 1332 1333 #define PM_ENTRY_BYTES sizeof(pagemap_entry_t) 1334 #define PM_PFRAME_BITS 55 1335 #define PM_PFRAME_MASK GENMASK_ULL(PM_PFRAME_BITS - 1, 0) 1336 #define PM_SOFT_DIRTY BIT_ULL(55) 1337 #define PM_MMAP_EXCLUSIVE BIT_ULL(56) 1338 #define PM_UFFD_WP BIT_ULL(57) 1339 #define PM_FILE BIT_ULL(61) 1340 #define PM_SWAP BIT_ULL(62) 1341 #define PM_PRESENT BIT_ULL(63) 1342 1343 #define PM_END_OF_BUFFER 1 1344 1345 static inline pagemap_entry_t make_pme(u64 frame, u64 flags) 1346 { 1347 return (pagemap_entry_t) { .pme = (frame & PM_PFRAME_MASK) | flags }; 1348 } 1349 1350 static int add_to_pagemap(unsigned long addr, pagemap_entry_t *pme, 1351 struct pagemapread *pm) 1352 { 1353 pm->buffer[pm->pos++] = *pme; 1354 if (pm->pos >= pm->len) 1355 return PM_END_OF_BUFFER; 1356 return 0; 1357 } 1358 1359 static int pagemap_pte_hole(unsigned long start, unsigned long end, 1360 __always_unused int depth, struct mm_walk *walk) 1361 { 1362 struct pagemapread *pm = walk->private; 1363 unsigned long addr = start; 1364 int err = 0; 1365 1366 while (addr < end) { 1367 struct vm_area_struct *vma = find_vma(walk->mm, addr); 1368 pagemap_entry_t pme = make_pme(0, 0); 1369 /* End of address space hole, which we mark as non-present. */ 1370 unsigned long hole_end; 1371 1372 if (vma) 1373 hole_end = min(end, vma->vm_start); 1374 else 1375 hole_end = end; 1376 1377 for (; addr < hole_end; addr += PAGE_SIZE) { 1378 err = add_to_pagemap(addr, &pme, pm); 1379 if (err) 1380 goto out; 1381 } 1382 1383 if (!vma) 1384 break; 1385 1386 /* Addresses in the VMA. */ 1387 if (vma->vm_flags & VM_SOFTDIRTY) 1388 pme = make_pme(0, PM_SOFT_DIRTY); 1389 for (; addr < min(end, vma->vm_end); addr += PAGE_SIZE) { 1390 err = add_to_pagemap(addr, &pme, pm); 1391 if (err) 1392 goto out; 1393 } 1394 } 1395 out: 1396 return err; 1397 } 1398 1399 static pagemap_entry_t pte_to_pagemap_entry(struct pagemapread *pm, 1400 struct vm_area_struct *vma, unsigned long addr, pte_t pte) 1401 { 1402 u64 frame = 0, flags = 0; 1403 struct page *page = NULL; 1404 bool migration = false; 1405 1406 if (pte_present(pte)) { 1407 if (pm->show_pfn) 1408 frame = pte_pfn(pte); 1409 flags |= PM_PRESENT; 1410 page = vm_normal_page(vma, addr, pte); 1411 if (pte_soft_dirty(pte)) 1412 flags |= PM_SOFT_DIRTY; 1413 if (pte_uffd_wp(pte)) 1414 flags |= PM_UFFD_WP; 1415 } else if (is_swap_pte(pte)) { 1416 swp_entry_t entry; 1417 if (pte_swp_soft_dirty(pte)) 1418 flags |= PM_SOFT_DIRTY; 1419 if (pte_swp_uffd_wp(pte)) 1420 flags |= PM_UFFD_WP; 1421 entry = pte_to_swp_entry(pte); 1422 if (pm->show_pfn) { 1423 pgoff_t offset; 1424 /* 1425 * For PFN swap offsets, keeping the offset field 1426 * to be PFN only to be compatible with old smaps. 1427 */ 1428 if (is_pfn_swap_entry(entry)) 1429 offset = swp_offset_pfn(entry); 1430 else 1431 offset = swp_offset(entry); 1432 frame = swp_type(entry) | 1433 (offset << MAX_SWAPFILES_SHIFT); 1434 } 1435 flags |= PM_SWAP; 1436 migration = is_migration_entry(entry); 1437 if (is_pfn_swap_entry(entry)) 1438 page = pfn_swap_entry_to_page(entry); 1439 if (pte_marker_entry_uffd_wp(entry)) 1440 flags |= PM_UFFD_WP; 1441 } 1442 1443 if (page && !PageAnon(page)) 1444 flags |= PM_FILE; 1445 if (page && !migration && page_mapcount(page) == 1) 1446 flags |= PM_MMAP_EXCLUSIVE; 1447 if (vma->vm_flags & VM_SOFTDIRTY) 1448 flags |= PM_SOFT_DIRTY; 1449 1450 return make_pme(frame, flags); 1451 } 1452 1453 static int pagemap_pmd_range(pmd_t *pmdp, unsigned long addr, unsigned long end, 1454 struct mm_walk *walk) 1455 { 1456 struct vm_area_struct *vma = walk->vma; 1457 struct pagemapread *pm = walk->private; 1458 spinlock_t *ptl; 1459 pte_t *pte, *orig_pte; 1460 int err = 0; 1461 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1462 bool migration = false; 1463 1464 ptl = pmd_trans_huge_lock(pmdp, vma); 1465 if (ptl) { 1466 u64 flags = 0, frame = 0; 1467 pmd_t pmd = *pmdp; 1468 struct page *page = NULL; 1469 1470 if (vma->vm_flags & VM_SOFTDIRTY) 1471 flags |= PM_SOFT_DIRTY; 1472 1473 if (pmd_present(pmd)) { 1474 page = pmd_page(pmd); 1475 1476 flags |= PM_PRESENT; 1477 if (pmd_soft_dirty(pmd)) 1478 flags |= PM_SOFT_DIRTY; 1479 if (pmd_uffd_wp(pmd)) 1480 flags |= PM_UFFD_WP; 1481 if (pm->show_pfn) 1482 frame = pmd_pfn(pmd) + 1483 ((addr & ~PMD_MASK) >> PAGE_SHIFT); 1484 } 1485 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION 1486 else if (is_swap_pmd(pmd)) { 1487 swp_entry_t entry = pmd_to_swp_entry(pmd); 1488 unsigned long offset; 1489 1490 if (pm->show_pfn) { 1491 if (is_pfn_swap_entry(entry)) 1492 offset = swp_offset_pfn(entry); 1493 else 1494 offset = swp_offset(entry); 1495 offset = offset + 1496 ((addr & ~PMD_MASK) >> PAGE_SHIFT); 1497 frame = swp_type(entry) | 1498 (offset << MAX_SWAPFILES_SHIFT); 1499 } 1500 flags |= PM_SWAP; 1501 if (pmd_swp_soft_dirty(pmd)) 1502 flags |= PM_SOFT_DIRTY; 1503 if (pmd_swp_uffd_wp(pmd)) 1504 flags |= PM_UFFD_WP; 1505 VM_BUG_ON(!is_pmd_migration_entry(pmd)); 1506 migration = is_migration_entry(entry); 1507 page = pfn_swap_entry_to_page(entry); 1508 } 1509 #endif 1510 1511 if (page && !migration && page_mapcount(page) == 1) 1512 flags |= PM_MMAP_EXCLUSIVE; 1513 1514 for (; addr != end; addr += PAGE_SIZE) { 1515 pagemap_entry_t pme = make_pme(frame, flags); 1516 1517 err = add_to_pagemap(addr, &pme, pm); 1518 if (err) 1519 break; 1520 if (pm->show_pfn) { 1521 if (flags & PM_PRESENT) 1522 frame++; 1523 else if (flags & PM_SWAP) 1524 frame += (1 << MAX_SWAPFILES_SHIFT); 1525 } 1526 } 1527 spin_unlock(ptl); 1528 return err; 1529 } 1530 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 1531 1532 /* 1533 * We can assume that @vma always points to a valid one and @end never 1534 * goes beyond vma->vm_end. 1535 */ 1536 orig_pte = pte = pte_offset_map_lock(walk->mm, pmdp, addr, &ptl); 1537 if (!pte) { 1538 walk->action = ACTION_AGAIN; 1539 return err; 1540 } 1541 for (; addr < end; pte++, addr += PAGE_SIZE) { 1542 pagemap_entry_t pme; 1543 1544 pme = pte_to_pagemap_entry(pm, vma, addr, ptep_get(pte)); 1545 err = add_to_pagemap(addr, &pme, pm); 1546 if (err) 1547 break; 1548 } 1549 pte_unmap_unlock(orig_pte, ptl); 1550 1551 cond_resched(); 1552 1553 return err; 1554 } 1555 1556 #ifdef CONFIG_HUGETLB_PAGE 1557 /* This function walks within one hugetlb entry in the single call */ 1558 static int pagemap_hugetlb_range(pte_t *ptep, unsigned long hmask, 1559 unsigned long addr, unsigned long end, 1560 struct mm_walk *walk) 1561 { 1562 struct pagemapread *pm = walk->private; 1563 struct vm_area_struct *vma = walk->vma; 1564 u64 flags = 0, frame = 0; 1565 int err = 0; 1566 pte_t pte; 1567 1568 if (vma->vm_flags & VM_SOFTDIRTY) 1569 flags |= PM_SOFT_DIRTY; 1570 1571 pte = huge_ptep_get(ptep); 1572 if (pte_present(pte)) { 1573 struct page *page = pte_page(pte); 1574 1575 if (!PageAnon(page)) 1576 flags |= PM_FILE; 1577 1578 if (page_mapcount(page) == 1) 1579 flags |= PM_MMAP_EXCLUSIVE; 1580 1581 if (huge_pte_uffd_wp(pte)) 1582 flags |= PM_UFFD_WP; 1583 1584 flags |= PM_PRESENT; 1585 if (pm->show_pfn) 1586 frame = pte_pfn(pte) + 1587 ((addr & ~hmask) >> PAGE_SHIFT); 1588 } else if (pte_swp_uffd_wp_any(pte)) { 1589 flags |= PM_UFFD_WP; 1590 } 1591 1592 for (; addr != end; addr += PAGE_SIZE) { 1593 pagemap_entry_t pme = make_pme(frame, flags); 1594 1595 err = add_to_pagemap(addr, &pme, pm); 1596 if (err) 1597 return err; 1598 if (pm->show_pfn && (flags & PM_PRESENT)) 1599 frame++; 1600 } 1601 1602 cond_resched(); 1603 1604 return err; 1605 } 1606 #else 1607 #define pagemap_hugetlb_range NULL 1608 #endif /* HUGETLB_PAGE */ 1609 1610 static const struct mm_walk_ops pagemap_ops = { 1611 .pmd_entry = pagemap_pmd_range, 1612 .pte_hole = pagemap_pte_hole, 1613 .hugetlb_entry = pagemap_hugetlb_range, 1614 .walk_lock = PGWALK_RDLOCK, 1615 }; 1616 1617 /* 1618 * /proc/pid/pagemap - an array mapping virtual pages to pfns 1619 * 1620 * For each page in the address space, this file contains one 64-bit entry 1621 * consisting of the following: 1622 * 1623 * Bits 0-54 page frame number (PFN) if present 1624 * Bits 0-4 swap type if swapped 1625 * Bits 5-54 swap offset if swapped 1626 * Bit 55 pte is soft-dirty (see Documentation/admin-guide/mm/soft-dirty.rst) 1627 * Bit 56 page exclusively mapped 1628 * Bit 57 pte is uffd-wp write-protected 1629 * Bits 58-60 zero 1630 * Bit 61 page is file-page or shared-anon 1631 * Bit 62 page swapped 1632 * Bit 63 page present 1633 * 1634 * If the page is not present but in swap, then the PFN contains an 1635 * encoding of the swap file number and the page's offset into the 1636 * swap. Unmapped pages return a null PFN. This allows determining 1637 * precisely which pages are mapped (or in swap) and comparing mapped 1638 * pages between processes. 1639 * 1640 * Efficient users of this interface will use /proc/pid/maps to 1641 * determine which areas of memory are actually mapped and llseek to 1642 * skip over unmapped regions. 1643 */ 1644 static ssize_t pagemap_read(struct file *file, char __user *buf, 1645 size_t count, loff_t *ppos) 1646 { 1647 struct mm_struct *mm = file->private_data; 1648 struct pagemapread pm; 1649 unsigned long src; 1650 unsigned long svpfn; 1651 unsigned long start_vaddr; 1652 unsigned long end_vaddr; 1653 int ret = 0, copied = 0; 1654 1655 if (!mm || !mmget_not_zero(mm)) 1656 goto out; 1657 1658 ret = -EINVAL; 1659 /* file position must be aligned */ 1660 if ((*ppos % PM_ENTRY_BYTES) || (count % PM_ENTRY_BYTES)) 1661 goto out_mm; 1662 1663 ret = 0; 1664 if (!count) 1665 goto out_mm; 1666 1667 /* do not disclose physical addresses: attack vector */ 1668 pm.show_pfn = file_ns_capable(file, &init_user_ns, CAP_SYS_ADMIN); 1669 1670 pm.len = (PAGEMAP_WALK_SIZE >> PAGE_SHIFT); 1671 pm.buffer = kmalloc_array(pm.len, PM_ENTRY_BYTES, GFP_KERNEL); 1672 ret = -ENOMEM; 1673 if (!pm.buffer) 1674 goto out_mm; 1675 1676 src = *ppos; 1677 svpfn = src / PM_ENTRY_BYTES; 1678 end_vaddr = mm->task_size; 1679 1680 /* watch out for wraparound */ 1681 start_vaddr = end_vaddr; 1682 if (svpfn <= (ULONG_MAX >> PAGE_SHIFT)) { 1683 unsigned long end; 1684 1685 ret = mmap_read_lock_killable(mm); 1686 if (ret) 1687 goto out_free; 1688 start_vaddr = untagged_addr_remote(mm, svpfn << PAGE_SHIFT); 1689 mmap_read_unlock(mm); 1690 1691 end = start_vaddr + ((count / PM_ENTRY_BYTES) << PAGE_SHIFT); 1692 if (end >= start_vaddr && end < mm->task_size) 1693 end_vaddr = end; 1694 } 1695 1696 /* Ensure the address is inside the task */ 1697 if (start_vaddr > mm->task_size) 1698 start_vaddr = end_vaddr; 1699 1700 ret = 0; 1701 while (count && (start_vaddr < end_vaddr)) { 1702 int len; 1703 unsigned long end; 1704 1705 pm.pos = 0; 1706 end = (start_vaddr + PAGEMAP_WALK_SIZE) & PAGEMAP_WALK_MASK; 1707 /* overflow ? */ 1708 if (end < start_vaddr || end > end_vaddr) 1709 end = end_vaddr; 1710 ret = mmap_read_lock_killable(mm); 1711 if (ret) 1712 goto out_free; 1713 ret = walk_page_range(mm, start_vaddr, end, &pagemap_ops, &pm); 1714 mmap_read_unlock(mm); 1715 start_vaddr = end; 1716 1717 len = min(count, PM_ENTRY_BYTES * pm.pos); 1718 if (copy_to_user(buf, pm.buffer, len)) { 1719 ret = -EFAULT; 1720 goto out_free; 1721 } 1722 copied += len; 1723 buf += len; 1724 count -= len; 1725 } 1726 *ppos += copied; 1727 if (!ret || ret == PM_END_OF_BUFFER) 1728 ret = copied; 1729 1730 out_free: 1731 kfree(pm.buffer); 1732 out_mm: 1733 mmput(mm); 1734 out: 1735 return ret; 1736 } 1737 1738 static int pagemap_open(struct inode *inode, struct file *file) 1739 { 1740 struct mm_struct *mm; 1741 1742 mm = proc_mem_open(inode, PTRACE_MODE_READ); 1743 if (IS_ERR(mm)) 1744 return PTR_ERR(mm); 1745 file->private_data = mm; 1746 return 0; 1747 } 1748 1749 static int pagemap_release(struct inode *inode, struct file *file) 1750 { 1751 struct mm_struct *mm = file->private_data; 1752 1753 if (mm) 1754 mmdrop(mm); 1755 return 0; 1756 } 1757 1758 const struct file_operations proc_pagemap_operations = { 1759 .llseek = mem_lseek, /* borrow this */ 1760 .read = pagemap_read, 1761 .open = pagemap_open, 1762 .release = pagemap_release, 1763 }; 1764 #endif /* CONFIG_PROC_PAGE_MONITOR */ 1765 1766 #ifdef CONFIG_NUMA 1767 1768 struct numa_maps { 1769 unsigned long pages; 1770 unsigned long anon; 1771 unsigned long active; 1772 unsigned long writeback; 1773 unsigned long mapcount_max; 1774 unsigned long dirty; 1775 unsigned long swapcache; 1776 unsigned long node[MAX_NUMNODES]; 1777 }; 1778 1779 struct numa_maps_private { 1780 struct proc_maps_private proc_maps; 1781 struct numa_maps md; 1782 }; 1783 1784 static void gather_stats(struct page *page, struct numa_maps *md, int pte_dirty, 1785 unsigned long nr_pages) 1786 { 1787 int count = page_mapcount(page); 1788 1789 md->pages += nr_pages; 1790 if (pte_dirty || PageDirty(page)) 1791 md->dirty += nr_pages; 1792 1793 if (PageSwapCache(page)) 1794 md->swapcache += nr_pages; 1795 1796 if (PageActive(page) || PageUnevictable(page)) 1797 md->active += nr_pages; 1798 1799 if (PageWriteback(page)) 1800 md->writeback += nr_pages; 1801 1802 if (PageAnon(page)) 1803 md->anon += nr_pages; 1804 1805 if (count > md->mapcount_max) 1806 md->mapcount_max = count; 1807 1808 md->node[page_to_nid(page)] += nr_pages; 1809 } 1810 1811 static struct page *can_gather_numa_stats(pte_t pte, struct vm_area_struct *vma, 1812 unsigned long addr) 1813 { 1814 struct page *page; 1815 int nid; 1816 1817 if (!pte_present(pte)) 1818 return NULL; 1819 1820 page = vm_normal_page(vma, addr, pte); 1821 if (!page || is_zone_device_page(page)) 1822 return NULL; 1823 1824 if (PageReserved(page)) 1825 return NULL; 1826 1827 nid = page_to_nid(page); 1828 if (!node_isset(nid, node_states[N_MEMORY])) 1829 return NULL; 1830 1831 return page; 1832 } 1833 1834 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1835 static struct page *can_gather_numa_stats_pmd(pmd_t pmd, 1836 struct vm_area_struct *vma, 1837 unsigned long addr) 1838 { 1839 struct page *page; 1840 int nid; 1841 1842 if (!pmd_present(pmd)) 1843 return NULL; 1844 1845 page = vm_normal_page_pmd(vma, addr, pmd); 1846 if (!page) 1847 return NULL; 1848 1849 if (PageReserved(page)) 1850 return NULL; 1851 1852 nid = page_to_nid(page); 1853 if (!node_isset(nid, node_states[N_MEMORY])) 1854 return NULL; 1855 1856 return page; 1857 } 1858 #endif 1859 1860 static int gather_pte_stats(pmd_t *pmd, unsigned long addr, 1861 unsigned long end, struct mm_walk *walk) 1862 { 1863 struct numa_maps *md = walk->private; 1864 struct vm_area_struct *vma = walk->vma; 1865 spinlock_t *ptl; 1866 pte_t *orig_pte; 1867 pte_t *pte; 1868 1869 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1870 ptl = pmd_trans_huge_lock(pmd, vma); 1871 if (ptl) { 1872 struct page *page; 1873 1874 page = can_gather_numa_stats_pmd(*pmd, vma, addr); 1875 if (page) 1876 gather_stats(page, md, pmd_dirty(*pmd), 1877 HPAGE_PMD_SIZE/PAGE_SIZE); 1878 spin_unlock(ptl); 1879 return 0; 1880 } 1881 #endif 1882 orig_pte = pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl); 1883 if (!pte) { 1884 walk->action = ACTION_AGAIN; 1885 return 0; 1886 } 1887 do { 1888 pte_t ptent = ptep_get(pte); 1889 struct page *page = can_gather_numa_stats(ptent, vma, addr); 1890 if (!page) 1891 continue; 1892 gather_stats(page, md, pte_dirty(ptent), 1); 1893 1894 } while (pte++, addr += PAGE_SIZE, addr != end); 1895 pte_unmap_unlock(orig_pte, ptl); 1896 cond_resched(); 1897 return 0; 1898 } 1899 #ifdef CONFIG_HUGETLB_PAGE 1900 static int gather_hugetlb_stats(pte_t *pte, unsigned long hmask, 1901 unsigned long addr, unsigned long end, struct mm_walk *walk) 1902 { 1903 pte_t huge_pte = huge_ptep_get(pte); 1904 struct numa_maps *md; 1905 struct page *page; 1906 1907 if (!pte_present(huge_pte)) 1908 return 0; 1909 1910 page = pte_page(huge_pte); 1911 1912 md = walk->private; 1913 gather_stats(page, md, pte_dirty(huge_pte), 1); 1914 return 0; 1915 } 1916 1917 #else 1918 static int gather_hugetlb_stats(pte_t *pte, unsigned long hmask, 1919 unsigned long addr, unsigned long end, struct mm_walk *walk) 1920 { 1921 return 0; 1922 } 1923 #endif 1924 1925 static const struct mm_walk_ops show_numa_ops = { 1926 .hugetlb_entry = gather_hugetlb_stats, 1927 .pmd_entry = gather_pte_stats, 1928 .walk_lock = PGWALK_RDLOCK, 1929 }; 1930 1931 /* 1932 * Display pages allocated per node and memory policy via /proc. 1933 */ 1934 static int show_numa_map(struct seq_file *m, void *v) 1935 { 1936 struct numa_maps_private *numa_priv = m->private; 1937 struct proc_maps_private *proc_priv = &numa_priv->proc_maps; 1938 struct vm_area_struct *vma = v; 1939 struct numa_maps *md = &numa_priv->md; 1940 struct file *file = vma->vm_file; 1941 struct mm_struct *mm = vma->vm_mm; 1942 struct mempolicy *pol; 1943 char buffer[64]; 1944 int nid; 1945 1946 if (!mm) 1947 return 0; 1948 1949 /* Ensure we start with an empty set of numa_maps statistics. */ 1950 memset(md, 0, sizeof(*md)); 1951 1952 pol = __get_vma_policy(vma, vma->vm_start); 1953 if (pol) { 1954 mpol_to_str(buffer, sizeof(buffer), pol); 1955 mpol_cond_put(pol); 1956 } else { 1957 mpol_to_str(buffer, sizeof(buffer), proc_priv->task_mempolicy); 1958 } 1959 1960 seq_printf(m, "%08lx %s", vma->vm_start, buffer); 1961 1962 if (file) { 1963 seq_puts(m, " file="); 1964 seq_file_path(m, file, "\n\t= "); 1965 } else if (vma_is_initial_heap(vma)) { 1966 seq_puts(m, " heap"); 1967 } else if (vma_is_initial_stack(vma)) { 1968 seq_puts(m, " stack"); 1969 } 1970 1971 if (is_vm_hugetlb_page(vma)) 1972 seq_puts(m, " huge"); 1973 1974 /* mmap_lock is held by m_start */ 1975 walk_page_vma(vma, &show_numa_ops, md); 1976 1977 if (!md->pages) 1978 goto out; 1979 1980 if (md->anon) 1981 seq_printf(m, " anon=%lu", md->anon); 1982 1983 if (md->dirty) 1984 seq_printf(m, " dirty=%lu", md->dirty); 1985 1986 if (md->pages != md->anon && md->pages != md->dirty) 1987 seq_printf(m, " mapped=%lu", md->pages); 1988 1989 if (md->mapcount_max > 1) 1990 seq_printf(m, " mapmax=%lu", md->mapcount_max); 1991 1992 if (md->swapcache) 1993 seq_printf(m, " swapcache=%lu", md->swapcache); 1994 1995 if (md->active < md->pages && !is_vm_hugetlb_page(vma)) 1996 seq_printf(m, " active=%lu", md->active); 1997 1998 if (md->writeback) 1999 seq_printf(m, " writeback=%lu", md->writeback); 2000 2001 for_each_node_state(nid, N_MEMORY) 2002 if (md->node[nid]) 2003 seq_printf(m, " N%d=%lu", nid, md->node[nid]); 2004 2005 seq_printf(m, " kernelpagesize_kB=%lu", vma_kernel_pagesize(vma) >> 10); 2006 out: 2007 seq_putc(m, '\n'); 2008 return 0; 2009 } 2010 2011 static const struct seq_operations proc_pid_numa_maps_op = { 2012 .start = m_start, 2013 .next = m_next, 2014 .stop = m_stop, 2015 .show = show_numa_map, 2016 }; 2017 2018 static int pid_numa_maps_open(struct inode *inode, struct file *file) 2019 { 2020 return proc_maps_open(inode, file, &proc_pid_numa_maps_op, 2021 sizeof(struct numa_maps_private)); 2022 } 2023 2024 const struct file_operations proc_pid_numa_maps_operations = { 2025 .open = pid_numa_maps_open, 2026 .read = seq_read, 2027 .llseek = seq_lseek, 2028 .release = proc_map_release, 2029 }; 2030 2031 #endif /* CONFIG_NUMA */ 2032