xref: /linux/fs/proc/task_mmu.c (revision 19f2e267a5d0d26282a64f8f788c482852c95324)
1 // SPDX-License-Identifier: GPL-2.0
2 #include <linux/mm.h>
3 #include <linux/vmacache.h>
4 #include <linux/hugetlb.h>
5 #include <linux/huge_mm.h>
6 #include <linux/mount.h>
7 #include <linux/seq_file.h>
8 #include <linux/highmem.h>
9 #include <linux/ptrace.h>
10 #include <linux/slab.h>
11 #include <linux/pagemap.h>
12 #include <linux/mempolicy.h>
13 #include <linux/rmap.h>
14 #include <linux/swap.h>
15 #include <linux/sched/mm.h>
16 #include <linux/swapops.h>
17 #include <linux/mmu_notifier.h>
18 #include <linux/page_idle.h>
19 #include <linux/shmem_fs.h>
20 #include <linux/uaccess.h>
21 #include <linux/pkeys.h>
22 
23 #include <asm/elf.h>
24 #include <asm/tlb.h>
25 #include <asm/tlbflush.h>
26 #include "internal.h"
27 
28 #define SEQ_PUT_DEC(str, val) \
29 		seq_put_decimal_ull_width(m, str, (val) << (PAGE_SHIFT-10), 8)
30 void task_mem(struct seq_file *m, struct mm_struct *mm)
31 {
32 	unsigned long text, lib, swap, anon, file, shmem;
33 	unsigned long hiwater_vm, total_vm, hiwater_rss, total_rss;
34 
35 	anon = get_mm_counter(mm, MM_ANONPAGES);
36 	file = get_mm_counter(mm, MM_FILEPAGES);
37 	shmem = get_mm_counter(mm, MM_SHMEMPAGES);
38 
39 	/*
40 	 * Note: to minimize their overhead, mm maintains hiwater_vm and
41 	 * hiwater_rss only when about to *lower* total_vm or rss.  Any
42 	 * collector of these hiwater stats must therefore get total_vm
43 	 * and rss too, which will usually be the higher.  Barriers? not
44 	 * worth the effort, such snapshots can always be inconsistent.
45 	 */
46 	hiwater_vm = total_vm = mm->total_vm;
47 	if (hiwater_vm < mm->hiwater_vm)
48 		hiwater_vm = mm->hiwater_vm;
49 	hiwater_rss = total_rss = anon + file + shmem;
50 	if (hiwater_rss < mm->hiwater_rss)
51 		hiwater_rss = mm->hiwater_rss;
52 
53 	/* split executable areas between text and lib */
54 	text = PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK);
55 	text = min(text, mm->exec_vm << PAGE_SHIFT);
56 	lib = (mm->exec_vm << PAGE_SHIFT) - text;
57 
58 	swap = get_mm_counter(mm, MM_SWAPENTS);
59 	SEQ_PUT_DEC("VmPeak:\t", hiwater_vm);
60 	SEQ_PUT_DEC(" kB\nVmSize:\t", total_vm);
61 	SEQ_PUT_DEC(" kB\nVmLck:\t", mm->locked_vm);
62 	SEQ_PUT_DEC(" kB\nVmPin:\t", mm->pinned_vm);
63 	SEQ_PUT_DEC(" kB\nVmHWM:\t", hiwater_rss);
64 	SEQ_PUT_DEC(" kB\nVmRSS:\t", total_rss);
65 	SEQ_PUT_DEC(" kB\nRssAnon:\t", anon);
66 	SEQ_PUT_DEC(" kB\nRssFile:\t", file);
67 	SEQ_PUT_DEC(" kB\nRssShmem:\t", shmem);
68 	SEQ_PUT_DEC(" kB\nVmData:\t", mm->data_vm);
69 	SEQ_PUT_DEC(" kB\nVmStk:\t", mm->stack_vm);
70 	seq_put_decimal_ull_width(m,
71 		    " kB\nVmExe:\t", text >> 10, 8);
72 	seq_put_decimal_ull_width(m,
73 		    " kB\nVmLib:\t", lib >> 10, 8);
74 	seq_put_decimal_ull_width(m,
75 		    " kB\nVmPTE:\t", mm_pgtables_bytes(mm) >> 10, 8);
76 	SEQ_PUT_DEC(" kB\nVmSwap:\t", swap);
77 	seq_puts(m, " kB\n");
78 	hugetlb_report_usage(m, mm);
79 }
80 #undef SEQ_PUT_DEC
81 
82 unsigned long task_vsize(struct mm_struct *mm)
83 {
84 	return PAGE_SIZE * mm->total_vm;
85 }
86 
87 unsigned long task_statm(struct mm_struct *mm,
88 			 unsigned long *shared, unsigned long *text,
89 			 unsigned long *data, unsigned long *resident)
90 {
91 	*shared = get_mm_counter(mm, MM_FILEPAGES) +
92 			get_mm_counter(mm, MM_SHMEMPAGES);
93 	*text = (PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK))
94 								>> PAGE_SHIFT;
95 	*data = mm->data_vm + mm->stack_vm;
96 	*resident = *shared + get_mm_counter(mm, MM_ANONPAGES);
97 	return mm->total_vm;
98 }
99 
100 #ifdef CONFIG_NUMA
101 /*
102  * Save get_task_policy() for show_numa_map().
103  */
104 static void hold_task_mempolicy(struct proc_maps_private *priv)
105 {
106 	struct task_struct *task = priv->task;
107 
108 	task_lock(task);
109 	priv->task_mempolicy = get_task_policy(task);
110 	mpol_get(priv->task_mempolicy);
111 	task_unlock(task);
112 }
113 static void release_task_mempolicy(struct proc_maps_private *priv)
114 {
115 	mpol_put(priv->task_mempolicy);
116 }
117 #else
118 static void hold_task_mempolicy(struct proc_maps_private *priv)
119 {
120 }
121 static void release_task_mempolicy(struct proc_maps_private *priv)
122 {
123 }
124 #endif
125 
126 static void vma_stop(struct proc_maps_private *priv)
127 {
128 	struct mm_struct *mm = priv->mm;
129 
130 	release_task_mempolicy(priv);
131 	up_read(&mm->mmap_sem);
132 	mmput(mm);
133 }
134 
135 static struct vm_area_struct *
136 m_next_vma(struct proc_maps_private *priv, struct vm_area_struct *vma)
137 {
138 	if (vma == priv->tail_vma)
139 		return NULL;
140 	return vma->vm_next ?: priv->tail_vma;
141 }
142 
143 static void m_cache_vma(struct seq_file *m, struct vm_area_struct *vma)
144 {
145 	if (m->count < m->size)	/* vma is copied successfully */
146 		m->version = m_next_vma(m->private, vma) ? vma->vm_end : -1UL;
147 }
148 
149 static void *m_start(struct seq_file *m, loff_t *ppos)
150 {
151 	struct proc_maps_private *priv = m->private;
152 	unsigned long last_addr = m->version;
153 	struct mm_struct *mm;
154 	struct vm_area_struct *vma;
155 	unsigned int pos = *ppos;
156 
157 	/* See m_cache_vma(). Zero at the start or after lseek. */
158 	if (last_addr == -1UL)
159 		return NULL;
160 
161 	priv->task = get_proc_task(priv->inode);
162 	if (!priv->task)
163 		return ERR_PTR(-ESRCH);
164 
165 	mm = priv->mm;
166 	if (!mm || !mmget_not_zero(mm))
167 		return NULL;
168 
169 	down_read(&mm->mmap_sem);
170 	hold_task_mempolicy(priv);
171 	priv->tail_vma = get_gate_vma(mm);
172 
173 	if (last_addr) {
174 		vma = find_vma(mm, last_addr - 1);
175 		if (vma && vma->vm_start <= last_addr)
176 			vma = m_next_vma(priv, vma);
177 		if (vma)
178 			return vma;
179 	}
180 
181 	m->version = 0;
182 	if (pos < mm->map_count) {
183 		for (vma = mm->mmap; pos; pos--) {
184 			m->version = vma->vm_start;
185 			vma = vma->vm_next;
186 		}
187 		return vma;
188 	}
189 
190 	/* we do not bother to update m->version in this case */
191 	if (pos == mm->map_count && priv->tail_vma)
192 		return priv->tail_vma;
193 
194 	vma_stop(priv);
195 	return NULL;
196 }
197 
198 static void *m_next(struct seq_file *m, void *v, loff_t *pos)
199 {
200 	struct proc_maps_private *priv = m->private;
201 	struct vm_area_struct *next;
202 
203 	(*pos)++;
204 	next = m_next_vma(priv, v);
205 	if (!next)
206 		vma_stop(priv);
207 	return next;
208 }
209 
210 static void m_stop(struct seq_file *m, void *v)
211 {
212 	struct proc_maps_private *priv = m->private;
213 
214 	if (!IS_ERR_OR_NULL(v))
215 		vma_stop(priv);
216 	if (priv->task) {
217 		put_task_struct(priv->task);
218 		priv->task = NULL;
219 	}
220 }
221 
222 static int proc_maps_open(struct inode *inode, struct file *file,
223 			const struct seq_operations *ops, int psize)
224 {
225 	struct proc_maps_private *priv = __seq_open_private(file, ops, psize);
226 
227 	if (!priv)
228 		return -ENOMEM;
229 
230 	priv->inode = inode;
231 	priv->mm = proc_mem_open(inode, PTRACE_MODE_READ);
232 	if (IS_ERR(priv->mm)) {
233 		int err = PTR_ERR(priv->mm);
234 
235 		seq_release_private(inode, file);
236 		return err;
237 	}
238 
239 	return 0;
240 }
241 
242 static int proc_map_release(struct inode *inode, struct file *file)
243 {
244 	struct seq_file *seq = file->private_data;
245 	struct proc_maps_private *priv = seq->private;
246 
247 	if (priv->mm)
248 		mmdrop(priv->mm);
249 
250 	return seq_release_private(inode, file);
251 }
252 
253 static int do_maps_open(struct inode *inode, struct file *file,
254 			const struct seq_operations *ops)
255 {
256 	return proc_maps_open(inode, file, ops,
257 				sizeof(struct proc_maps_private));
258 }
259 
260 /*
261  * Indicate if the VMA is a stack for the given task; for
262  * /proc/PID/maps that is the stack of the main task.
263  */
264 static int is_stack(struct vm_area_struct *vma)
265 {
266 	/*
267 	 * We make no effort to guess what a given thread considers to be
268 	 * its "stack".  It's not even well-defined for programs written
269 	 * languages like Go.
270 	 */
271 	return vma->vm_start <= vma->vm_mm->start_stack &&
272 		vma->vm_end >= vma->vm_mm->start_stack;
273 }
274 
275 static void show_vma_header_prefix(struct seq_file *m,
276 				   unsigned long start, unsigned long end,
277 				   vm_flags_t flags, unsigned long long pgoff,
278 				   dev_t dev, unsigned long ino)
279 {
280 	seq_setwidth(m, 25 + sizeof(void *) * 6 - 1);
281 	seq_put_hex_ll(m, NULL, start, 8);
282 	seq_put_hex_ll(m, "-", end, 8);
283 	seq_putc(m, ' ');
284 	seq_putc(m, flags & VM_READ ? 'r' : '-');
285 	seq_putc(m, flags & VM_WRITE ? 'w' : '-');
286 	seq_putc(m, flags & VM_EXEC ? 'x' : '-');
287 	seq_putc(m, flags & VM_MAYSHARE ? 's' : 'p');
288 	seq_put_hex_ll(m, " ", pgoff, 8);
289 	seq_put_hex_ll(m, " ", MAJOR(dev), 2);
290 	seq_put_hex_ll(m, ":", MINOR(dev), 2);
291 	seq_put_decimal_ull(m, " ", ino);
292 	seq_putc(m, ' ');
293 }
294 
295 static void
296 show_map_vma(struct seq_file *m, struct vm_area_struct *vma)
297 {
298 	struct mm_struct *mm = vma->vm_mm;
299 	struct file *file = vma->vm_file;
300 	vm_flags_t flags = vma->vm_flags;
301 	unsigned long ino = 0;
302 	unsigned long long pgoff = 0;
303 	unsigned long start, end;
304 	dev_t dev = 0;
305 	const char *name = NULL;
306 
307 	if (file) {
308 		struct inode *inode = file_inode(vma->vm_file);
309 		dev = inode->i_sb->s_dev;
310 		ino = inode->i_ino;
311 		pgoff = ((loff_t)vma->vm_pgoff) << PAGE_SHIFT;
312 	}
313 
314 	start = vma->vm_start;
315 	end = vma->vm_end;
316 	show_vma_header_prefix(m, start, end, flags, pgoff, dev, ino);
317 
318 	/*
319 	 * Print the dentry name for named mappings, and a
320 	 * special [heap] marker for the heap:
321 	 */
322 	if (file) {
323 		seq_pad(m, ' ');
324 		seq_file_path(m, file, "\n");
325 		goto done;
326 	}
327 
328 	if (vma->vm_ops && vma->vm_ops->name) {
329 		name = vma->vm_ops->name(vma);
330 		if (name)
331 			goto done;
332 	}
333 
334 	name = arch_vma_name(vma);
335 	if (!name) {
336 		if (!mm) {
337 			name = "[vdso]";
338 			goto done;
339 		}
340 
341 		if (vma->vm_start <= mm->brk &&
342 		    vma->vm_end >= mm->start_brk) {
343 			name = "[heap]";
344 			goto done;
345 		}
346 
347 		if (is_stack(vma))
348 			name = "[stack]";
349 	}
350 
351 done:
352 	if (name) {
353 		seq_pad(m, ' ');
354 		seq_puts(m, name);
355 	}
356 	seq_putc(m, '\n');
357 }
358 
359 static int show_map(struct seq_file *m, void *v)
360 {
361 	show_map_vma(m, v);
362 	m_cache_vma(m, v);
363 	return 0;
364 }
365 
366 static const struct seq_operations proc_pid_maps_op = {
367 	.start	= m_start,
368 	.next	= m_next,
369 	.stop	= m_stop,
370 	.show	= show_map
371 };
372 
373 static int pid_maps_open(struct inode *inode, struct file *file)
374 {
375 	return do_maps_open(inode, file, &proc_pid_maps_op);
376 }
377 
378 const struct file_operations proc_pid_maps_operations = {
379 	.open		= pid_maps_open,
380 	.read		= seq_read,
381 	.llseek		= seq_lseek,
382 	.release	= proc_map_release,
383 };
384 
385 /*
386  * Proportional Set Size(PSS): my share of RSS.
387  *
388  * PSS of a process is the count of pages it has in memory, where each
389  * page is divided by the number of processes sharing it.  So if a
390  * process has 1000 pages all to itself, and 1000 shared with one other
391  * process, its PSS will be 1500.
392  *
393  * To keep (accumulated) division errors low, we adopt a 64bit
394  * fixed-point pss counter to minimize division errors. So (pss >>
395  * PSS_SHIFT) would be the real byte count.
396  *
397  * A shift of 12 before division means (assuming 4K page size):
398  * 	- 1M 3-user-pages add up to 8KB errors;
399  * 	- supports mapcount up to 2^24, or 16M;
400  * 	- supports PSS up to 2^52 bytes, or 4PB.
401  */
402 #define PSS_SHIFT 12
403 
404 #ifdef CONFIG_PROC_PAGE_MONITOR
405 struct mem_size_stats {
406 	unsigned long resident;
407 	unsigned long shared_clean;
408 	unsigned long shared_dirty;
409 	unsigned long private_clean;
410 	unsigned long private_dirty;
411 	unsigned long referenced;
412 	unsigned long anonymous;
413 	unsigned long lazyfree;
414 	unsigned long anonymous_thp;
415 	unsigned long shmem_thp;
416 	unsigned long swap;
417 	unsigned long shared_hugetlb;
418 	unsigned long private_hugetlb;
419 	u64 pss;
420 	u64 pss_locked;
421 	u64 swap_pss;
422 	bool check_shmem_swap;
423 };
424 
425 static void smaps_account(struct mem_size_stats *mss, struct page *page,
426 		bool compound, bool young, bool dirty)
427 {
428 	int i, nr = compound ? 1 << compound_order(page) : 1;
429 	unsigned long size = nr * PAGE_SIZE;
430 
431 	if (PageAnon(page)) {
432 		mss->anonymous += size;
433 		if (!PageSwapBacked(page) && !dirty && !PageDirty(page))
434 			mss->lazyfree += size;
435 	}
436 
437 	mss->resident += size;
438 	/* Accumulate the size in pages that have been accessed. */
439 	if (young || page_is_young(page) || PageReferenced(page))
440 		mss->referenced += size;
441 
442 	/*
443 	 * page_count(page) == 1 guarantees the page is mapped exactly once.
444 	 * If any subpage of the compound page mapped with PTE it would elevate
445 	 * page_count().
446 	 */
447 	if (page_count(page) == 1) {
448 		if (dirty || PageDirty(page))
449 			mss->private_dirty += size;
450 		else
451 			mss->private_clean += size;
452 		mss->pss += (u64)size << PSS_SHIFT;
453 		return;
454 	}
455 
456 	for (i = 0; i < nr; i++, page++) {
457 		int mapcount = page_mapcount(page);
458 
459 		if (mapcount >= 2) {
460 			if (dirty || PageDirty(page))
461 				mss->shared_dirty += PAGE_SIZE;
462 			else
463 				mss->shared_clean += PAGE_SIZE;
464 			mss->pss += (PAGE_SIZE << PSS_SHIFT) / mapcount;
465 		} else {
466 			if (dirty || PageDirty(page))
467 				mss->private_dirty += PAGE_SIZE;
468 			else
469 				mss->private_clean += PAGE_SIZE;
470 			mss->pss += PAGE_SIZE << PSS_SHIFT;
471 		}
472 	}
473 }
474 
475 #ifdef CONFIG_SHMEM
476 static int smaps_pte_hole(unsigned long addr, unsigned long end,
477 		struct mm_walk *walk)
478 {
479 	struct mem_size_stats *mss = walk->private;
480 
481 	mss->swap += shmem_partial_swap_usage(
482 			walk->vma->vm_file->f_mapping, addr, end);
483 
484 	return 0;
485 }
486 #endif
487 
488 static void smaps_pte_entry(pte_t *pte, unsigned long addr,
489 		struct mm_walk *walk)
490 {
491 	struct mem_size_stats *mss = walk->private;
492 	struct vm_area_struct *vma = walk->vma;
493 	struct page *page = NULL;
494 
495 	if (pte_present(*pte)) {
496 		page = vm_normal_page(vma, addr, *pte);
497 	} else if (is_swap_pte(*pte)) {
498 		swp_entry_t swpent = pte_to_swp_entry(*pte);
499 
500 		if (!non_swap_entry(swpent)) {
501 			int mapcount;
502 
503 			mss->swap += PAGE_SIZE;
504 			mapcount = swp_swapcount(swpent);
505 			if (mapcount >= 2) {
506 				u64 pss_delta = (u64)PAGE_SIZE << PSS_SHIFT;
507 
508 				do_div(pss_delta, mapcount);
509 				mss->swap_pss += pss_delta;
510 			} else {
511 				mss->swap_pss += (u64)PAGE_SIZE << PSS_SHIFT;
512 			}
513 		} else if (is_migration_entry(swpent))
514 			page = migration_entry_to_page(swpent);
515 		else if (is_device_private_entry(swpent))
516 			page = device_private_entry_to_page(swpent);
517 	} else if (unlikely(IS_ENABLED(CONFIG_SHMEM) && mss->check_shmem_swap
518 							&& pte_none(*pte))) {
519 		page = find_get_entry(vma->vm_file->f_mapping,
520 						linear_page_index(vma, addr));
521 		if (!page)
522 			return;
523 
524 		if (xa_is_value(page))
525 			mss->swap += PAGE_SIZE;
526 		else
527 			put_page(page);
528 
529 		return;
530 	}
531 
532 	if (!page)
533 		return;
534 
535 	smaps_account(mss, page, false, pte_young(*pte), pte_dirty(*pte));
536 }
537 
538 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
539 static void smaps_pmd_entry(pmd_t *pmd, unsigned long addr,
540 		struct mm_walk *walk)
541 {
542 	struct mem_size_stats *mss = walk->private;
543 	struct vm_area_struct *vma = walk->vma;
544 	struct page *page;
545 
546 	/* FOLL_DUMP will return -EFAULT on huge zero page */
547 	page = follow_trans_huge_pmd(vma, addr, pmd, FOLL_DUMP);
548 	if (IS_ERR_OR_NULL(page))
549 		return;
550 	if (PageAnon(page))
551 		mss->anonymous_thp += HPAGE_PMD_SIZE;
552 	else if (PageSwapBacked(page))
553 		mss->shmem_thp += HPAGE_PMD_SIZE;
554 	else if (is_zone_device_page(page))
555 		/* pass */;
556 	else
557 		VM_BUG_ON_PAGE(1, page);
558 	smaps_account(mss, page, true, pmd_young(*pmd), pmd_dirty(*pmd));
559 }
560 #else
561 static void smaps_pmd_entry(pmd_t *pmd, unsigned long addr,
562 		struct mm_walk *walk)
563 {
564 }
565 #endif
566 
567 static int smaps_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
568 			   struct mm_walk *walk)
569 {
570 	struct vm_area_struct *vma = walk->vma;
571 	pte_t *pte;
572 	spinlock_t *ptl;
573 
574 	ptl = pmd_trans_huge_lock(pmd, vma);
575 	if (ptl) {
576 		if (pmd_present(*pmd))
577 			smaps_pmd_entry(pmd, addr, walk);
578 		spin_unlock(ptl);
579 		goto out;
580 	}
581 
582 	if (pmd_trans_unstable(pmd))
583 		goto out;
584 	/*
585 	 * The mmap_sem held all the way back in m_start() is what
586 	 * keeps khugepaged out of here and from collapsing things
587 	 * in here.
588 	 */
589 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
590 	for (; addr != end; pte++, addr += PAGE_SIZE)
591 		smaps_pte_entry(pte, addr, walk);
592 	pte_unmap_unlock(pte - 1, ptl);
593 out:
594 	cond_resched();
595 	return 0;
596 }
597 
598 static void show_smap_vma_flags(struct seq_file *m, struct vm_area_struct *vma)
599 {
600 	/*
601 	 * Don't forget to update Documentation/ on changes.
602 	 */
603 	static const char mnemonics[BITS_PER_LONG][2] = {
604 		/*
605 		 * In case if we meet a flag we don't know about.
606 		 */
607 		[0 ... (BITS_PER_LONG-1)] = "??",
608 
609 		[ilog2(VM_READ)]	= "rd",
610 		[ilog2(VM_WRITE)]	= "wr",
611 		[ilog2(VM_EXEC)]	= "ex",
612 		[ilog2(VM_SHARED)]	= "sh",
613 		[ilog2(VM_MAYREAD)]	= "mr",
614 		[ilog2(VM_MAYWRITE)]	= "mw",
615 		[ilog2(VM_MAYEXEC)]	= "me",
616 		[ilog2(VM_MAYSHARE)]	= "ms",
617 		[ilog2(VM_GROWSDOWN)]	= "gd",
618 		[ilog2(VM_PFNMAP)]	= "pf",
619 		[ilog2(VM_DENYWRITE)]	= "dw",
620 #ifdef CONFIG_X86_INTEL_MPX
621 		[ilog2(VM_MPX)]		= "mp",
622 #endif
623 		[ilog2(VM_LOCKED)]	= "lo",
624 		[ilog2(VM_IO)]		= "io",
625 		[ilog2(VM_SEQ_READ)]	= "sr",
626 		[ilog2(VM_RAND_READ)]	= "rr",
627 		[ilog2(VM_DONTCOPY)]	= "dc",
628 		[ilog2(VM_DONTEXPAND)]	= "de",
629 		[ilog2(VM_ACCOUNT)]	= "ac",
630 		[ilog2(VM_NORESERVE)]	= "nr",
631 		[ilog2(VM_HUGETLB)]	= "ht",
632 		[ilog2(VM_SYNC)]	= "sf",
633 		[ilog2(VM_ARCH_1)]	= "ar",
634 		[ilog2(VM_WIPEONFORK)]	= "wf",
635 		[ilog2(VM_DONTDUMP)]	= "dd",
636 #ifdef CONFIG_MEM_SOFT_DIRTY
637 		[ilog2(VM_SOFTDIRTY)]	= "sd",
638 #endif
639 		[ilog2(VM_MIXEDMAP)]	= "mm",
640 		[ilog2(VM_HUGEPAGE)]	= "hg",
641 		[ilog2(VM_NOHUGEPAGE)]	= "nh",
642 		[ilog2(VM_MERGEABLE)]	= "mg",
643 		[ilog2(VM_UFFD_MISSING)]= "um",
644 		[ilog2(VM_UFFD_WP)]	= "uw",
645 #ifdef CONFIG_ARCH_HAS_PKEYS
646 		/* These come out via ProtectionKey: */
647 		[ilog2(VM_PKEY_BIT0)]	= "",
648 		[ilog2(VM_PKEY_BIT1)]	= "",
649 		[ilog2(VM_PKEY_BIT2)]	= "",
650 		[ilog2(VM_PKEY_BIT3)]	= "",
651 #if VM_PKEY_BIT4
652 		[ilog2(VM_PKEY_BIT4)]	= "",
653 #endif
654 #endif /* CONFIG_ARCH_HAS_PKEYS */
655 	};
656 	size_t i;
657 
658 	seq_puts(m, "VmFlags: ");
659 	for (i = 0; i < BITS_PER_LONG; i++) {
660 		if (!mnemonics[i][0])
661 			continue;
662 		if (vma->vm_flags & (1UL << i)) {
663 			seq_putc(m, mnemonics[i][0]);
664 			seq_putc(m, mnemonics[i][1]);
665 			seq_putc(m, ' ');
666 		}
667 	}
668 	seq_putc(m, '\n');
669 }
670 
671 #ifdef CONFIG_HUGETLB_PAGE
672 static int smaps_hugetlb_range(pte_t *pte, unsigned long hmask,
673 				 unsigned long addr, unsigned long end,
674 				 struct mm_walk *walk)
675 {
676 	struct mem_size_stats *mss = walk->private;
677 	struct vm_area_struct *vma = walk->vma;
678 	struct page *page = NULL;
679 
680 	if (pte_present(*pte)) {
681 		page = vm_normal_page(vma, addr, *pte);
682 	} else if (is_swap_pte(*pte)) {
683 		swp_entry_t swpent = pte_to_swp_entry(*pte);
684 
685 		if (is_migration_entry(swpent))
686 			page = migration_entry_to_page(swpent);
687 		else if (is_device_private_entry(swpent))
688 			page = device_private_entry_to_page(swpent);
689 	}
690 	if (page) {
691 		int mapcount = page_mapcount(page);
692 
693 		if (mapcount >= 2)
694 			mss->shared_hugetlb += huge_page_size(hstate_vma(vma));
695 		else
696 			mss->private_hugetlb += huge_page_size(hstate_vma(vma));
697 	}
698 	return 0;
699 }
700 #endif /* HUGETLB_PAGE */
701 
702 static void smap_gather_stats(struct vm_area_struct *vma,
703 			     struct mem_size_stats *mss)
704 {
705 	struct mm_walk smaps_walk = {
706 		.pmd_entry = smaps_pte_range,
707 #ifdef CONFIG_HUGETLB_PAGE
708 		.hugetlb_entry = smaps_hugetlb_range,
709 #endif
710 		.mm = vma->vm_mm,
711 	};
712 
713 	smaps_walk.private = mss;
714 
715 #ifdef CONFIG_SHMEM
716 	/* In case of smaps_rollup, reset the value from previous vma */
717 	mss->check_shmem_swap = false;
718 	if (vma->vm_file && shmem_mapping(vma->vm_file->f_mapping)) {
719 		/*
720 		 * For shared or readonly shmem mappings we know that all
721 		 * swapped out pages belong to the shmem object, and we can
722 		 * obtain the swap value much more efficiently. For private
723 		 * writable mappings, we might have COW pages that are
724 		 * not affected by the parent swapped out pages of the shmem
725 		 * object, so we have to distinguish them during the page walk.
726 		 * Unless we know that the shmem object (or the part mapped by
727 		 * our VMA) has no swapped out pages at all.
728 		 */
729 		unsigned long shmem_swapped = shmem_swap_usage(vma);
730 
731 		if (!shmem_swapped || (vma->vm_flags & VM_SHARED) ||
732 					!(vma->vm_flags & VM_WRITE)) {
733 			mss->swap += shmem_swapped;
734 		} else {
735 			mss->check_shmem_swap = true;
736 			smaps_walk.pte_hole = smaps_pte_hole;
737 		}
738 	}
739 #endif
740 
741 	/* mmap_sem is held in m_start */
742 	walk_page_vma(vma, &smaps_walk);
743 	if (vma->vm_flags & VM_LOCKED)
744 		mss->pss_locked += mss->pss;
745 }
746 
747 #define SEQ_PUT_DEC(str, val) \
748 		seq_put_decimal_ull_width(m, str, (val) >> 10, 8)
749 
750 /* Show the contents common for smaps and smaps_rollup */
751 static void __show_smap(struct seq_file *m, const struct mem_size_stats *mss)
752 {
753 	SEQ_PUT_DEC("Rss:            ", mss->resident);
754 	SEQ_PUT_DEC(" kB\nPss:            ", mss->pss >> PSS_SHIFT);
755 	SEQ_PUT_DEC(" kB\nShared_Clean:   ", mss->shared_clean);
756 	SEQ_PUT_DEC(" kB\nShared_Dirty:   ", mss->shared_dirty);
757 	SEQ_PUT_DEC(" kB\nPrivate_Clean:  ", mss->private_clean);
758 	SEQ_PUT_DEC(" kB\nPrivate_Dirty:  ", mss->private_dirty);
759 	SEQ_PUT_DEC(" kB\nReferenced:     ", mss->referenced);
760 	SEQ_PUT_DEC(" kB\nAnonymous:      ", mss->anonymous);
761 	SEQ_PUT_DEC(" kB\nLazyFree:       ", mss->lazyfree);
762 	SEQ_PUT_DEC(" kB\nAnonHugePages:  ", mss->anonymous_thp);
763 	SEQ_PUT_DEC(" kB\nShmemPmdMapped: ", mss->shmem_thp);
764 	SEQ_PUT_DEC(" kB\nShared_Hugetlb: ", mss->shared_hugetlb);
765 	seq_put_decimal_ull_width(m, " kB\nPrivate_Hugetlb: ",
766 				  mss->private_hugetlb >> 10, 7);
767 	SEQ_PUT_DEC(" kB\nSwap:           ", mss->swap);
768 	SEQ_PUT_DEC(" kB\nSwapPss:        ",
769 					mss->swap_pss >> PSS_SHIFT);
770 	SEQ_PUT_DEC(" kB\nLocked:         ",
771 					mss->pss_locked >> PSS_SHIFT);
772 	seq_puts(m, " kB\n");
773 }
774 
775 static int show_smap(struct seq_file *m, void *v)
776 {
777 	struct vm_area_struct *vma = v;
778 	struct mem_size_stats mss;
779 
780 	memset(&mss, 0, sizeof(mss));
781 
782 	smap_gather_stats(vma, &mss);
783 
784 	show_map_vma(m, vma);
785 
786 	SEQ_PUT_DEC("Size:           ", vma->vm_end - vma->vm_start);
787 	SEQ_PUT_DEC(" kB\nKernelPageSize: ", vma_kernel_pagesize(vma));
788 	SEQ_PUT_DEC(" kB\nMMUPageSize:    ", vma_mmu_pagesize(vma));
789 	seq_puts(m, " kB\n");
790 
791 	__show_smap(m, &mss);
792 
793 	seq_printf(m, "THPeligible:    %d\n", transparent_hugepage_enabled(vma));
794 
795 	if (arch_pkeys_enabled())
796 		seq_printf(m, "ProtectionKey:  %8u\n", vma_pkey(vma));
797 	show_smap_vma_flags(m, vma);
798 
799 	m_cache_vma(m, vma);
800 
801 	return 0;
802 }
803 
804 static int show_smaps_rollup(struct seq_file *m, void *v)
805 {
806 	struct proc_maps_private *priv = m->private;
807 	struct mem_size_stats mss;
808 	struct mm_struct *mm;
809 	struct vm_area_struct *vma;
810 	unsigned long last_vma_end = 0;
811 	int ret = 0;
812 
813 	priv->task = get_proc_task(priv->inode);
814 	if (!priv->task)
815 		return -ESRCH;
816 
817 	mm = priv->mm;
818 	if (!mm || !mmget_not_zero(mm)) {
819 		ret = -ESRCH;
820 		goto out_put_task;
821 	}
822 
823 	memset(&mss, 0, sizeof(mss));
824 
825 	down_read(&mm->mmap_sem);
826 	hold_task_mempolicy(priv);
827 
828 	for (vma = priv->mm->mmap; vma; vma = vma->vm_next) {
829 		smap_gather_stats(vma, &mss);
830 		last_vma_end = vma->vm_end;
831 	}
832 
833 	show_vma_header_prefix(m, priv->mm->mmap->vm_start,
834 			       last_vma_end, 0, 0, 0, 0);
835 	seq_pad(m, ' ');
836 	seq_puts(m, "[rollup]\n");
837 
838 	__show_smap(m, &mss);
839 
840 	release_task_mempolicy(priv);
841 	up_read(&mm->mmap_sem);
842 	mmput(mm);
843 
844 out_put_task:
845 	put_task_struct(priv->task);
846 	priv->task = NULL;
847 
848 	return ret;
849 }
850 #undef SEQ_PUT_DEC
851 
852 static const struct seq_operations proc_pid_smaps_op = {
853 	.start	= m_start,
854 	.next	= m_next,
855 	.stop	= m_stop,
856 	.show	= show_smap
857 };
858 
859 static int pid_smaps_open(struct inode *inode, struct file *file)
860 {
861 	return do_maps_open(inode, file, &proc_pid_smaps_op);
862 }
863 
864 static int smaps_rollup_open(struct inode *inode, struct file *file)
865 {
866 	int ret;
867 	struct proc_maps_private *priv;
868 
869 	priv = kzalloc(sizeof(*priv), GFP_KERNEL_ACCOUNT);
870 	if (!priv)
871 		return -ENOMEM;
872 
873 	ret = single_open(file, show_smaps_rollup, priv);
874 	if (ret)
875 		goto out_free;
876 
877 	priv->inode = inode;
878 	priv->mm = proc_mem_open(inode, PTRACE_MODE_READ);
879 	if (IS_ERR(priv->mm)) {
880 		ret = PTR_ERR(priv->mm);
881 
882 		single_release(inode, file);
883 		goto out_free;
884 	}
885 
886 	return 0;
887 
888 out_free:
889 	kfree(priv);
890 	return ret;
891 }
892 
893 static int smaps_rollup_release(struct inode *inode, struct file *file)
894 {
895 	struct seq_file *seq = file->private_data;
896 	struct proc_maps_private *priv = seq->private;
897 
898 	if (priv->mm)
899 		mmdrop(priv->mm);
900 
901 	kfree(priv);
902 	return single_release(inode, file);
903 }
904 
905 const struct file_operations proc_pid_smaps_operations = {
906 	.open		= pid_smaps_open,
907 	.read		= seq_read,
908 	.llseek		= seq_lseek,
909 	.release	= proc_map_release,
910 };
911 
912 const struct file_operations proc_pid_smaps_rollup_operations = {
913 	.open		= smaps_rollup_open,
914 	.read		= seq_read,
915 	.llseek		= seq_lseek,
916 	.release	= smaps_rollup_release,
917 };
918 
919 enum clear_refs_types {
920 	CLEAR_REFS_ALL = 1,
921 	CLEAR_REFS_ANON,
922 	CLEAR_REFS_MAPPED,
923 	CLEAR_REFS_SOFT_DIRTY,
924 	CLEAR_REFS_MM_HIWATER_RSS,
925 	CLEAR_REFS_LAST,
926 };
927 
928 struct clear_refs_private {
929 	enum clear_refs_types type;
930 };
931 
932 #ifdef CONFIG_MEM_SOFT_DIRTY
933 static inline void clear_soft_dirty(struct vm_area_struct *vma,
934 		unsigned long addr, pte_t *pte)
935 {
936 	/*
937 	 * The soft-dirty tracker uses #PF-s to catch writes
938 	 * to pages, so write-protect the pte as well. See the
939 	 * Documentation/admin-guide/mm/soft-dirty.rst for full description
940 	 * of how soft-dirty works.
941 	 */
942 	pte_t ptent = *pte;
943 
944 	if (pte_present(ptent)) {
945 		ptent = ptep_modify_prot_start(vma->vm_mm, addr, pte);
946 		ptent = pte_wrprotect(ptent);
947 		ptent = pte_clear_soft_dirty(ptent);
948 		ptep_modify_prot_commit(vma->vm_mm, addr, pte, ptent);
949 	} else if (is_swap_pte(ptent)) {
950 		ptent = pte_swp_clear_soft_dirty(ptent);
951 		set_pte_at(vma->vm_mm, addr, pte, ptent);
952 	}
953 }
954 #else
955 static inline void clear_soft_dirty(struct vm_area_struct *vma,
956 		unsigned long addr, pte_t *pte)
957 {
958 }
959 #endif
960 
961 #if defined(CONFIG_MEM_SOFT_DIRTY) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
962 static inline void clear_soft_dirty_pmd(struct vm_area_struct *vma,
963 		unsigned long addr, pmd_t *pmdp)
964 {
965 	pmd_t old, pmd = *pmdp;
966 
967 	if (pmd_present(pmd)) {
968 		/* See comment in change_huge_pmd() */
969 		old = pmdp_invalidate(vma, addr, pmdp);
970 		if (pmd_dirty(old))
971 			pmd = pmd_mkdirty(pmd);
972 		if (pmd_young(old))
973 			pmd = pmd_mkyoung(pmd);
974 
975 		pmd = pmd_wrprotect(pmd);
976 		pmd = pmd_clear_soft_dirty(pmd);
977 
978 		set_pmd_at(vma->vm_mm, addr, pmdp, pmd);
979 	} else if (is_migration_entry(pmd_to_swp_entry(pmd))) {
980 		pmd = pmd_swp_clear_soft_dirty(pmd);
981 		set_pmd_at(vma->vm_mm, addr, pmdp, pmd);
982 	}
983 }
984 #else
985 static inline void clear_soft_dirty_pmd(struct vm_area_struct *vma,
986 		unsigned long addr, pmd_t *pmdp)
987 {
988 }
989 #endif
990 
991 static int clear_refs_pte_range(pmd_t *pmd, unsigned long addr,
992 				unsigned long end, struct mm_walk *walk)
993 {
994 	struct clear_refs_private *cp = walk->private;
995 	struct vm_area_struct *vma = walk->vma;
996 	pte_t *pte, ptent;
997 	spinlock_t *ptl;
998 	struct page *page;
999 
1000 	ptl = pmd_trans_huge_lock(pmd, vma);
1001 	if (ptl) {
1002 		if (cp->type == CLEAR_REFS_SOFT_DIRTY) {
1003 			clear_soft_dirty_pmd(vma, addr, pmd);
1004 			goto out;
1005 		}
1006 
1007 		if (!pmd_present(*pmd))
1008 			goto out;
1009 
1010 		page = pmd_page(*pmd);
1011 
1012 		/* Clear accessed and referenced bits. */
1013 		pmdp_test_and_clear_young(vma, addr, pmd);
1014 		test_and_clear_page_young(page);
1015 		ClearPageReferenced(page);
1016 out:
1017 		spin_unlock(ptl);
1018 		return 0;
1019 	}
1020 
1021 	if (pmd_trans_unstable(pmd))
1022 		return 0;
1023 
1024 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
1025 	for (; addr != end; pte++, addr += PAGE_SIZE) {
1026 		ptent = *pte;
1027 
1028 		if (cp->type == CLEAR_REFS_SOFT_DIRTY) {
1029 			clear_soft_dirty(vma, addr, pte);
1030 			continue;
1031 		}
1032 
1033 		if (!pte_present(ptent))
1034 			continue;
1035 
1036 		page = vm_normal_page(vma, addr, ptent);
1037 		if (!page)
1038 			continue;
1039 
1040 		/* Clear accessed and referenced bits. */
1041 		ptep_test_and_clear_young(vma, addr, pte);
1042 		test_and_clear_page_young(page);
1043 		ClearPageReferenced(page);
1044 	}
1045 	pte_unmap_unlock(pte - 1, ptl);
1046 	cond_resched();
1047 	return 0;
1048 }
1049 
1050 static int clear_refs_test_walk(unsigned long start, unsigned long end,
1051 				struct mm_walk *walk)
1052 {
1053 	struct clear_refs_private *cp = walk->private;
1054 	struct vm_area_struct *vma = walk->vma;
1055 
1056 	if (vma->vm_flags & VM_PFNMAP)
1057 		return 1;
1058 
1059 	/*
1060 	 * Writing 1 to /proc/pid/clear_refs affects all pages.
1061 	 * Writing 2 to /proc/pid/clear_refs only affects anonymous pages.
1062 	 * Writing 3 to /proc/pid/clear_refs only affects file mapped pages.
1063 	 * Writing 4 to /proc/pid/clear_refs affects all pages.
1064 	 */
1065 	if (cp->type == CLEAR_REFS_ANON && vma->vm_file)
1066 		return 1;
1067 	if (cp->type == CLEAR_REFS_MAPPED && !vma->vm_file)
1068 		return 1;
1069 	return 0;
1070 }
1071 
1072 static ssize_t clear_refs_write(struct file *file, const char __user *buf,
1073 				size_t count, loff_t *ppos)
1074 {
1075 	struct task_struct *task;
1076 	char buffer[PROC_NUMBUF];
1077 	struct mm_struct *mm;
1078 	struct vm_area_struct *vma;
1079 	enum clear_refs_types type;
1080 	struct mmu_gather tlb;
1081 	int itype;
1082 	int rv;
1083 
1084 	memset(buffer, 0, sizeof(buffer));
1085 	if (count > sizeof(buffer) - 1)
1086 		count = sizeof(buffer) - 1;
1087 	if (copy_from_user(buffer, buf, count))
1088 		return -EFAULT;
1089 	rv = kstrtoint(strstrip(buffer), 10, &itype);
1090 	if (rv < 0)
1091 		return rv;
1092 	type = (enum clear_refs_types)itype;
1093 	if (type < CLEAR_REFS_ALL || type >= CLEAR_REFS_LAST)
1094 		return -EINVAL;
1095 
1096 	task = get_proc_task(file_inode(file));
1097 	if (!task)
1098 		return -ESRCH;
1099 	mm = get_task_mm(task);
1100 	if (mm) {
1101 		struct mmu_notifier_range range;
1102 		struct clear_refs_private cp = {
1103 			.type = type,
1104 		};
1105 		struct mm_walk clear_refs_walk = {
1106 			.pmd_entry = clear_refs_pte_range,
1107 			.test_walk = clear_refs_test_walk,
1108 			.mm = mm,
1109 			.private = &cp,
1110 		};
1111 
1112 		if (type == CLEAR_REFS_MM_HIWATER_RSS) {
1113 			if (down_write_killable(&mm->mmap_sem)) {
1114 				count = -EINTR;
1115 				goto out_mm;
1116 			}
1117 
1118 			/*
1119 			 * Writing 5 to /proc/pid/clear_refs resets the peak
1120 			 * resident set size to this mm's current rss value.
1121 			 */
1122 			reset_mm_hiwater_rss(mm);
1123 			up_write(&mm->mmap_sem);
1124 			goto out_mm;
1125 		}
1126 
1127 		down_read(&mm->mmap_sem);
1128 		tlb_gather_mmu(&tlb, mm, 0, -1);
1129 		if (type == CLEAR_REFS_SOFT_DIRTY) {
1130 			for (vma = mm->mmap; vma; vma = vma->vm_next) {
1131 				if (!(vma->vm_flags & VM_SOFTDIRTY))
1132 					continue;
1133 				up_read(&mm->mmap_sem);
1134 				if (down_write_killable(&mm->mmap_sem)) {
1135 					count = -EINTR;
1136 					goto out_mm;
1137 				}
1138 				for (vma = mm->mmap; vma; vma = vma->vm_next) {
1139 					vma->vm_flags &= ~VM_SOFTDIRTY;
1140 					vma_set_page_prot(vma);
1141 				}
1142 				downgrade_write(&mm->mmap_sem);
1143 				break;
1144 			}
1145 
1146 			mmu_notifier_range_init(&range, mm, 0, -1UL);
1147 			mmu_notifier_invalidate_range_start(&range);
1148 		}
1149 		walk_page_range(0, mm->highest_vm_end, &clear_refs_walk);
1150 		if (type == CLEAR_REFS_SOFT_DIRTY)
1151 			mmu_notifier_invalidate_range_end(&range);
1152 		tlb_finish_mmu(&tlb, 0, -1);
1153 		up_read(&mm->mmap_sem);
1154 out_mm:
1155 		mmput(mm);
1156 	}
1157 	put_task_struct(task);
1158 
1159 	return count;
1160 }
1161 
1162 const struct file_operations proc_clear_refs_operations = {
1163 	.write		= clear_refs_write,
1164 	.llseek		= noop_llseek,
1165 };
1166 
1167 typedef struct {
1168 	u64 pme;
1169 } pagemap_entry_t;
1170 
1171 struct pagemapread {
1172 	int pos, len;		/* units: PM_ENTRY_BYTES, not bytes */
1173 	pagemap_entry_t *buffer;
1174 	bool show_pfn;
1175 };
1176 
1177 #define PAGEMAP_WALK_SIZE	(PMD_SIZE)
1178 #define PAGEMAP_WALK_MASK	(PMD_MASK)
1179 
1180 #define PM_ENTRY_BYTES		sizeof(pagemap_entry_t)
1181 #define PM_PFRAME_BITS		55
1182 #define PM_PFRAME_MASK		GENMASK_ULL(PM_PFRAME_BITS - 1, 0)
1183 #define PM_SOFT_DIRTY		BIT_ULL(55)
1184 #define PM_MMAP_EXCLUSIVE	BIT_ULL(56)
1185 #define PM_FILE			BIT_ULL(61)
1186 #define PM_SWAP			BIT_ULL(62)
1187 #define PM_PRESENT		BIT_ULL(63)
1188 
1189 #define PM_END_OF_BUFFER    1
1190 
1191 static inline pagemap_entry_t make_pme(u64 frame, u64 flags)
1192 {
1193 	return (pagemap_entry_t) { .pme = (frame & PM_PFRAME_MASK) | flags };
1194 }
1195 
1196 static int add_to_pagemap(unsigned long addr, pagemap_entry_t *pme,
1197 			  struct pagemapread *pm)
1198 {
1199 	pm->buffer[pm->pos++] = *pme;
1200 	if (pm->pos >= pm->len)
1201 		return PM_END_OF_BUFFER;
1202 	return 0;
1203 }
1204 
1205 static int pagemap_pte_hole(unsigned long start, unsigned long end,
1206 				struct mm_walk *walk)
1207 {
1208 	struct pagemapread *pm = walk->private;
1209 	unsigned long addr = start;
1210 	int err = 0;
1211 
1212 	while (addr < end) {
1213 		struct vm_area_struct *vma = find_vma(walk->mm, addr);
1214 		pagemap_entry_t pme = make_pme(0, 0);
1215 		/* End of address space hole, which we mark as non-present. */
1216 		unsigned long hole_end;
1217 
1218 		if (vma)
1219 			hole_end = min(end, vma->vm_start);
1220 		else
1221 			hole_end = end;
1222 
1223 		for (; addr < hole_end; addr += PAGE_SIZE) {
1224 			err = add_to_pagemap(addr, &pme, pm);
1225 			if (err)
1226 				goto out;
1227 		}
1228 
1229 		if (!vma)
1230 			break;
1231 
1232 		/* Addresses in the VMA. */
1233 		if (vma->vm_flags & VM_SOFTDIRTY)
1234 			pme = make_pme(0, PM_SOFT_DIRTY);
1235 		for (; addr < min(end, vma->vm_end); addr += PAGE_SIZE) {
1236 			err = add_to_pagemap(addr, &pme, pm);
1237 			if (err)
1238 				goto out;
1239 		}
1240 	}
1241 out:
1242 	return err;
1243 }
1244 
1245 static pagemap_entry_t pte_to_pagemap_entry(struct pagemapread *pm,
1246 		struct vm_area_struct *vma, unsigned long addr, pte_t pte)
1247 {
1248 	u64 frame = 0, flags = 0;
1249 	struct page *page = NULL;
1250 
1251 	if (pte_present(pte)) {
1252 		if (pm->show_pfn)
1253 			frame = pte_pfn(pte);
1254 		flags |= PM_PRESENT;
1255 		page = _vm_normal_page(vma, addr, pte, true);
1256 		if (pte_soft_dirty(pte))
1257 			flags |= PM_SOFT_DIRTY;
1258 	} else if (is_swap_pte(pte)) {
1259 		swp_entry_t entry;
1260 		if (pte_swp_soft_dirty(pte))
1261 			flags |= PM_SOFT_DIRTY;
1262 		entry = pte_to_swp_entry(pte);
1263 		if (pm->show_pfn)
1264 			frame = swp_type(entry) |
1265 				(swp_offset(entry) << MAX_SWAPFILES_SHIFT);
1266 		flags |= PM_SWAP;
1267 		if (is_migration_entry(entry))
1268 			page = migration_entry_to_page(entry);
1269 
1270 		if (is_device_private_entry(entry))
1271 			page = device_private_entry_to_page(entry);
1272 	}
1273 
1274 	if (page && !PageAnon(page))
1275 		flags |= PM_FILE;
1276 	if (page && page_mapcount(page) == 1)
1277 		flags |= PM_MMAP_EXCLUSIVE;
1278 	if (vma->vm_flags & VM_SOFTDIRTY)
1279 		flags |= PM_SOFT_DIRTY;
1280 
1281 	return make_pme(frame, flags);
1282 }
1283 
1284 static int pagemap_pmd_range(pmd_t *pmdp, unsigned long addr, unsigned long end,
1285 			     struct mm_walk *walk)
1286 {
1287 	struct vm_area_struct *vma = walk->vma;
1288 	struct pagemapread *pm = walk->private;
1289 	spinlock_t *ptl;
1290 	pte_t *pte, *orig_pte;
1291 	int err = 0;
1292 
1293 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1294 	ptl = pmd_trans_huge_lock(pmdp, vma);
1295 	if (ptl) {
1296 		u64 flags = 0, frame = 0;
1297 		pmd_t pmd = *pmdp;
1298 		struct page *page = NULL;
1299 
1300 		if (vma->vm_flags & VM_SOFTDIRTY)
1301 			flags |= PM_SOFT_DIRTY;
1302 
1303 		if (pmd_present(pmd)) {
1304 			page = pmd_page(pmd);
1305 
1306 			flags |= PM_PRESENT;
1307 			if (pmd_soft_dirty(pmd))
1308 				flags |= PM_SOFT_DIRTY;
1309 			if (pm->show_pfn)
1310 				frame = pmd_pfn(pmd) +
1311 					((addr & ~PMD_MASK) >> PAGE_SHIFT);
1312 		}
1313 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1314 		else if (is_swap_pmd(pmd)) {
1315 			swp_entry_t entry = pmd_to_swp_entry(pmd);
1316 			unsigned long offset;
1317 
1318 			if (pm->show_pfn) {
1319 				offset = swp_offset(entry) +
1320 					((addr & ~PMD_MASK) >> PAGE_SHIFT);
1321 				frame = swp_type(entry) |
1322 					(offset << MAX_SWAPFILES_SHIFT);
1323 			}
1324 			flags |= PM_SWAP;
1325 			if (pmd_swp_soft_dirty(pmd))
1326 				flags |= PM_SOFT_DIRTY;
1327 			VM_BUG_ON(!is_pmd_migration_entry(pmd));
1328 			page = migration_entry_to_page(entry);
1329 		}
1330 #endif
1331 
1332 		if (page && page_mapcount(page) == 1)
1333 			flags |= PM_MMAP_EXCLUSIVE;
1334 
1335 		for (; addr != end; addr += PAGE_SIZE) {
1336 			pagemap_entry_t pme = make_pme(frame, flags);
1337 
1338 			err = add_to_pagemap(addr, &pme, pm);
1339 			if (err)
1340 				break;
1341 			if (pm->show_pfn) {
1342 				if (flags & PM_PRESENT)
1343 					frame++;
1344 				else if (flags & PM_SWAP)
1345 					frame += (1 << MAX_SWAPFILES_SHIFT);
1346 			}
1347 		}
1348 		spin_unlock(ptl);
1349 		return err;
1350 	}
1351 
1352 	if (pmd_trans_unstable(pmdp))
1353 		return 0;
1354 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1355 
1356 	/*
1357 	 * We can assume that @vma always points to a valid one and @end never
1358 	 * goes beyond vma->vm_end.
1359 	 */
1360 	orig_pte = pte = pte_offset_map_lock(walk->mm, pmdp, addr, &ptl);
1361 	for (; addr < end; pte++, addr += PAGE_SIZE) {
1362 		pagemap_entry_t pme;
1363 
1364 		pme = pte_to_pagemap_entry(pm, vma, addr, *pte);
1365 		err = add_to_pagemap(addr, &pme, pm);
1366 		if (err)
1367 			break;
1368 	}
1369 	pte_unmap_unlock(orig_pte, ptl);
1370 
1371 	cond_resched();
1372 
1373 	return err;
1374 }
1375 
1376 #ifdef CONFIG_HUGETLB_PAGE
1377 /* This function walks within one hugetlb entry in the single call */
1378 static int pagemap_hugetlb_range(pte_t *ptep, unsigned long hmask,
1379 				 unsigned long addr, unsigned long end,
1380 				 struct mm_walk *walk)
1381 {
1382 	struct pagemapread *pm = walk->private;
1383 	struct vm_area_struct *vma = walk->vma;
1384 	u64 flags = 0, frame = 0;
1385 	int err = 0;
1386 	pte_t pte;
1387 
1388 	if (vma->vm_flags & VM_SOFTDIRTY)
1389 		flags |= PM_SOFT_DIRTY;
1390 
1391 	pte = huge_ptep_get(ptep);
1392 	if (pte_present(pte)) {
1393 		struct page *page = pte_page(pte);
1394 
1395 		if (!PageAnon(page))
1396 			flags |= PM_FILE;
1397 
1398 		if (page_mapcount(page) == 1)
1399 			flags |= PM_MMAP_EXCLUSIVE;
1400 
1401 		flags |= PM_PRESENT;
1402 		if (pm->show_pfn)
1403 			frame = pte_pfn(pte) +
1404 				((addr & ~hmask) >> PAGE_SHIFT);
1405 	}
1406 
1407 	for (; addr != end; addr += PAGE_SIZE) {
1408 		pagemap_entry_t pme = make_pme(frame, flags);
1409 
1410 		err = add_to_pagemap(addr, &pme, pm);
1411 		if (err)
1412 			return err;
1413 		if (pm->show_pfn && (flags & PM_PRESENT))
1414 			frame++;
1415 	}
1416 
1417 	cond_resched();
1418 
1419 	return err;
1420 }
1421 #endif /* HUGETLB_PAGE */
1422 
1423 /*
1424  * /proc/pid/pagemap - an array mapping virtual pages to pfns
1425  *
1426  * For each page in the address space, this file contains one 64-bit entry
1427  * consisting of the following:
1428  *
1429  * Bits 0-54  page frame number (PFN) if present
1430  * Bits 0-4   swap type if swapped
1431  * Bits 5-54  swap offset if swapped
1432  * Bit  55    pte is soft-dirty (see Documentation/admin-guide/mm/soft-dirty.rst)
1433  * Bit  56    page exclusively mapped
1434  * Bits 57-60 zero
1435  * Bit  61    page is file-page or shared-anon
1436  * Bit  62    page swapped
1437  * Bit  63    page present
1438  *
1439  * If the page is not present but in swap, then the PFN contains an
1440  * encoding of the swap file number and the page's offset into the
1441  * swap. Unmapped pages return a null PFN. This allows determining
1442  * precisely which pages are mapped (or in swap) and comparing mapped
1443  * pages between processes.
1444  *
1445  * Efficient users of this interface will use /proc/pid/maps to
1446  * determine which areas of memory are actually mapped and llseek to
1447  * skip over unmapped regions.
1448  */
1449 static ssize_t pagemap_read(struct file *file, char __user *buf,
1450 			    size_t count, loff_t *ppos)
1451 {
1452 	struct mm_struct *mm = file->private_data;
1453 	struct pagemapread pm;
1454 	struct mm_walk pagemap_walk = {};
1455 	unsigned long src;
1456 	unsigned long svpfn;
1457 	unsigned long start_vaddr;
1458 	unsigned long end_vaddr;
1459 	int ret = 0, copied = 0;
1460 
1461 	if (!mm || !mmget_not_zero(mm))
1462 		goto out;
1463 
1464 	ret = -EINVAL;
1465 	/* file position must be aligned */
1466 	if ((*ppos % PM_ENTRY_BYTES) || (count % PM_ENTRY_BYTES))
1467 		goto out_mm;
1468 
1469 	ret = 0;
1470 	if (!count)
1471 		goto out_mm;
1472 
1473 	/* do not disclose physical addresses: attack vector */
1474 	pm.show_pfn = file_ns_capable(file, &init_user_ns, CAP_SYS_ADMIN);
1475 
1476 	pm.len = (PAGEMAP_WALK_SIZE >> PAGE_SHIFT);
1477 	pm.buffer = kmalloc_array(pm.len, PM_ENTRY_BYTES, GFP_KERNEL);
1478 	ret = -ENOMEM;
1479 	if (!pm.buffer)
1480 		goto out_mm;
1481 
1482 	pagemap_walk.pmd_entry = pagemap_pmd_range;
1483 	pagemap_walk.pte_hole = pagemap_pte_hole;
1484 #ifdef CONFIG_HUGETLB_PAGE
1485 	pagemap_walk.hugetlb_entry = pagemap_hugetlb_range;
1486 #endif
1487 	pagemap_walk.mm = mm;
1488 	pagemap_walk.private = &pm;
1489 
1490 	src = *ppos;
1491 	svpfn = src / PM_ENTRY_BYTES;
1492 	start_vaddr = svpfn << PAGE_SHIFT;
1493 	end_vaddr = mm->task_size;
1494 
1495 	/* watch out for wraparound */
1496 	if (svpfn > mm->task_size >> PAGE_SHIFT)
1497 		start_vaddr = end_vaddr;
1498 
1499 	/*
1500 	 * The odds are that this will stop walking way
1501 	 * before end_vaddr, because the length of the
1502 	 * user buffer is tracked in "pm", and the walk
1503 	 * will stop when we hit the end of the buffer.
1504 	 */
1505 	ret = 0;
1506 	while (count && (start_vaddr < end_vaddr)) {
1507 		int len;
1508 		unsigned long end;
1509 
1510 		pm.pos = 0;
1511 		end = (start_vaddr + PAGEMAP_WALK_SIZE) & PAGEMAP_WALK_MASK;
1512 		/* overflow ? */
1513 		if (end < start_vaddr || end > end_vaddr)
1514 			end = end_vaddr;
1515 		down_read(&mm->mmap_sem);
1516 		ret = walk_page_range(start_vaddr, end, &pagemap_walk);
1517 		up_read(&mm->mmap_sem);
1518 		start_vaddr = end;
1519 
1520 		len = min(count, PM_ENTRY_BYTES * pm.pos);
1521 		if (copy_to_user(buf, pm.buffer, len)) {
1522 			ret = -EFAULT;
1523 			goto out_free;
1524 		}
1525 		copied += len;
1526 		buf += len;
1527 		count -= len;
1528 	}
1529 	*ppos += copied;
1530 	if (!ret || ret == PM_END_OF_BUFFER)
1531 		ret = copied;
1532 
1533 out_free:
1534 	kfree(pm.buffer);
1535 out_mm:
1536 	mmput(mm);
1537 out:
1538 	return ret;
1539 }
1540 
1541 static int pagemap_open(struct inode *inode, struct file *file)
1542 {
1543 	struct mm_struct *mm;
1544 
1545 	mm = proc_mem_open(inode, PTRACE_MODE_READ);
1546 	if (IS_ERR(mm))
1547 		return PTR_ERR(mm);
1548 	file->private_data = mm;
1549 	return 0;
1550 }
1551 
1552 static int pagemap_release(struct inode *inode, struct file *file)
1553 {
1554 	struct mm_struct *mm = file->private_data;
1555 
1556 	if (mm)
1557 		mmdrop(mm);
1558 	return 0;
1559 }
1560 
1561 const struct file_operations proc_pagemap_operations = {
1562 	.llseek		= mem_lseek, /* borrow this */
1563 	.read		= pagemap_read,
1564 	.open		= pagemap_open,
1565 	.release	= pagemap_release,
1566 };
1567 #endif /* CONFIG_PROC_PAGE_MONITOR */
1568 
1569 #ifdef CONFIG_NUMA
1570 
1571 struct numa_maps {
1572 	unsigned long pages;
1573 	unsigned long anon;
1574 	unsigned long active;
1575 	unsigned long writeback;
1576 	unsigned long mapcount_max;
1577 	unsigned long dirty;
1578 	unsigned long swapcache;
1579 	unsigned long node[MAX_NUMNODES];
1580 };
1581 
1582 struct numa_maps_private {
1583 	struct proc_maps_private proc_maps;
1584 	struct numa_maps md;
1585 };
1586 
1587 static void gather_stats(struct page *page, struct numa_maps *md, int pte_dirty,
1588 			unsigned long nr_pages)
1589 {
1590 	int count = page_mapcount(page);
1591 
1592 	md->pages += nr_pages;
1593 	if (pte_dirty || PageDirty(page))
1594 		md->dirty += nr_pages;
1595 
1596 	if (PageSwapCache(page))
1597 		md->swapcache += nr_pages;
1598 
1599 	if (PageActive(page) || PageUnevictable(page))
1600 		md->active += nr_pages;
1601 
1602 	if (PageWriteback(page))
1603 		md->writeback += nr_pages;
1604 
1605 	if (PageAnon(page))
1606 		md->anon += nr_pages;
1607 
1608 	if (count > md->mapcount_max)
1609 		md->mapcount_max = count;
1610 
1611 	md->node[page_to_nid(page)] += nr_pages;
1612 }
1613 
1614 static struct page *can_gather_numa_stats(pte_t pte, struct vm_area_struct *vma,
1615 		unsigned long addr)
1616 {
1617 	struct page *page;
1618 	int nid;
1619 
1620 	if (!pte_present(pte))
1621 		return NULL;
1622 
1623 	page = vm_normal_page(vma, addr, pte);
1624 	if (!page)
1625 		return NULL;
1626 
1627 	if (PageReserved(page))
1628 		return NULL;
1629 
1630 	nid = page_to_nid(page);
1631 	if (!node_isset(nid, node_states[N_MEMORY]))
1632 		return NULL;
1633 
1634 	return page;
1635 }
1636 
1637 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1638 static struct page *can_gather_numa_stats_pmd(pmd_t pmd,
1639 					      struct vm_area_struct *vma,
1640 					      unsigned long addr)
1641 {
1642 	struct page *page;
1643 	int nid;
1644 
1645 	if (!pmd_present(pmd))
1646 		return NULL;
1647 
1648 	page = vm_normal_page_pmd(vma, addr, pmd);
1649 	if (!page)
1650 		return NULL;
1651 
1652 	if (PageReserved(page))
1653 		return NULL;
1654 
1655 	nid = page_to_nid(page);
1656 	if (!node_isset(nid, node_states[N_MEMORY]))
1657 		return NULL;
1658 
1659 	return page;
1660 }
1661 #endif
1662 
1663 static int gather_pte_stats(pmd_t *pmd, unsigned long addr,
1664 		unsigned long end, struct mm_walk *walk)
1665 {
1666 	struct numa_maps *md = walk->private;
1667 	struct vm_area_struct *vma = walk->vma;
1668 	spinlock_t *ptl;
1669 	pte_t *orig_pte;
1670 	pte_t *pte;
1671 
1672 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1673 	ptl = pmd_trans_huge_lock(pmd, vma);
1674 	if (ptl) {
1675 		struct page *page;
1676 
1677 		page = can_gather_numa_stats_pmd(*pmd, vma, addr);
1678 		if (page)
1679 			gather_stats(page, md, pmd_dirty(*pmd),
1680 				     HPAGE_PMD_SIZE/PAGE_SIZE);
1681 		spin_unlock(ptl);
1682 		return 0;
1683 	}
1684 
1685 	if (pmd_trans_unstable(pmd))
1686 		return 0;
1687 #endif
1688 	orig_pte = pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
1689 	do {
1690 		struct page *page = can_gather_numa_stats(*pte, vma, addr);
1691 		if (!page)
1692 			continue;
1693 		gather_stats(page, md, pte_dirty(*pte), 1);
1694 
1695 	} while (pte++, addr += PAGE_SIZE, addr != end);
1696 	pte_unmap_unlock(orig_pte, ptl);
1697 	cond_resched();
1698 	return 0;
1699 }
1700 #ifdef CONFIG_HUGETLB_PAGE
1701 static int gather_hugetlb_stats(pte_t *pte, unsigned long hmask,
1702 		unsigned long addr, unsigned long end, struct mm_walk *walk)
1703 {
1704 	pte_t huge_pte = huge_ptep_get(pte);
1705 	struct numa_maps *md;
1706 	struct page *page;
1707 
1708 	if (!pte_present(huge_pte))
1709 		return 0;
1710 
1711 	page = pte_page(huge_pte);
1712 	if (!page)
1713 		return 0;
1714 
1715 	md = walk->private;
1716 	gather_stats(page, md, pte_dirty(huge_pte), 1);
1717 	return 0;
1718 }
1719 
1720 #else
1721 static int gather_hugetlb_stats(pte_t *pte, unsigned long hmask,
1722 		unsigned long addr, unsigned long end, struct mm_walk *walk)
1723 {
1724 	return 0;
1725 }
1726 #endif
1727 
1728 /*
1729  * Display pages allocated per node and memory policy via /proc.
1730  */
1731 static int show_numa_map(struct seq_file *m, void *v)
1732 {
1733 	struct numa_maps_private *numa_priv = m->private;
1734 	struct proc_maps_private *proc_priv = &numa_priv->proc_maps;
1735 	struct vm_area_struct *vma = v;
1736 	struct numa_maps *md = &numa_priv->md;
1737 	struct file *file = vma->vm_file;
1738 	struct mm_struct *mm = vma->vm_mm;
1739 	struct mm_walk walk = {
1740 		.hugetlb_entry = gather_hugetlb_stats,
1741 		.pmd_entry = gather_pte_stats,
1742 		.private = md,
1743 		.mm = mm,
1744 	};
1745 	struct mempolicy *pol;
1746 	char buffer[64];
1747 	int nid;
1748 
1749 	if (!mm)
1750 		return 0;
1751 
1752 	/* Ensure we start with an empty set of numa_maps statistics. */
1753 	memset(md, 0, sizeof(*md));
1754 
1755 	pol = __get_vma_policy(vma, vma->vm_start);
1756 	if (pol) {
1757 		mpol_to_str(buffer, sizeof(buffer), pol);
1758 		mpol_cond_put(pol);
1759 	} else {
1760 		mpol_to_str(buffer, sizeof(buffer), proc_priv->task_mempolicy);
1761 	}
1762 
1763 	seq_printf(m, "%08lx %s", vma->vm_start, buffer);
1764 
1765 	if (file) {
1766 		seq_puts(m, " file=");
1767 		seq_file_path(m, file, "\n\t= ");
1768 	} else if (vma->vm_start <= mm->brk && vma->vm_end >= mm->start_brk) {
1769 		seq_puts(m, " heap");
1770 	} else if (is_stack(vma)) {
1771 		seq_puts(m, " stack");
1772 	}
1773 
1774 	if (is_vm_hugetlb_page(vma))
1775 		seq_puts(m, " huge");
1776 
1777 	/* mmap_sem is held by m_start */
1778 	walk_page_vma(vma, &walk);
1779 
1780 	if (!md->pages)
1781 		goto out;
1782 
1783 	if (md->anon)
1784 		seq_printf(m, " anon=%lu", md->anon);
1785 
1786 	if (md->dirty)
1787 		seq_printf(m, " dirty=%lu", md->dirty);
1788 
1789 	if (md->pages != md->anon && md->pages != md->dirty)
1790 		seq_printf(m, " mapped=%lu", md->pages);
1791 
1792 	if (md->mapcount_max > 1)
1793 		seq_printf(m, " mapmax=%lu", md->mapcount_max);
1794 
1795 	if (md->swapcache)
1796 		seq_printf(m, " swapcache=%lu", md->swapcache);
1797 
1798 	if (md->active < md->pages && !is_vm_hugetlb_page(vma))
1799 		seq_printf(m, " active=%lu", md->active);
1800 
1801 	if (md->writeback)
1802 		seq_printf(m, " writeback=%lu", md->writeback);
1803 
1804 	for_each_node_state(nid, N_MEMORY)
1805 		if (md->node[nid])
1806 			seq_printf(m, " N%d=%lu", nid, md->node[nid]);
1807 
1808 	seq_printf(m, " kernelpagesize_kB=%lu", vma_kernel_pagesize(vma) >> 10);
1809 out:
1810 	seq_putc(m, '\n');
1811 	m_cache_vma(m, vma);
1812 	return 0;
1813 }
1814 
1815 static const struct seq_operations proc_pid_numa_maps_op = {
1816 	.start  = m_start,
1817 	.next   = m_next,
1818 	.stop   = m_stop,
1819 	.show   = show_numa_map,
1820 };
1821 
1822 static int pid_numa_maps_open(struct inode *inode, struct file *file)
1823 {
1824 	return proc_maps_open(inode, file, &proc_pid_numa_maps_op,
1825 				sizeof(struct numa_maps_private));
1826 }
1827 
1828 const struct file_operations proc_pid_numa_maps_operations = {
1829 	.open		= pid_numa_maps_open,
1830 	.read		= seq_read,
1831 	.llseek		= seq_lseek,
1832 	.release	= proc_map_release,
1833 };
1834 
1835 #endif /* CONFIG_NUMA */
1836