xref: /linux/fs/proc/task_mmu.c (revision 16e5ac127d8d18adf85fe5ba847d77b58d1ed418)
1 // SPDX-License-Identifier: GPL-2.0
2 #include <linux/pagewalk.h>
3 #include <linux/mm_inline.h>
4 #include <linux/hugetlb.h>
5 #include <linux/huge_mm.h>
6 #include <linux/mount.h>
7 #include <linux/ksm.h>
8 #include <linux/seq_file.h>
9 #include <linux/highmem.h>
10 #include <linux/ptrace.h>
11 #include <linux/slab.h>
12 #include <linux/pagemap.h>
13 #include <linux/mempolicy.h>
14 #include <linux/rmap.h>
15 #include <linux/swap.h>
16 #include <linux/sched/mm.h>
17 #include <linux/swapops.h>
18 #include <linux/mmu_notifier.h>
19 #include <linux/page_idle.h>
20 #include <linux/shmem_fs.h>
21 #include <linux/uaccess.h>
22 #include <linux/pkeys.h>
23 #include <linux/minmax.h>
24 #include <linux/overflow.h>
25 
26 #include <asm/elf.h>
27 #include <asm/tlb.h>
28 #include <asm/tlbflush.h>
29 #include "internal.h"
30 
31 #define SEQ_PUT_DEC(str, val) \
32 		seq_put_decimal_ull_width(m, str, (val) << (PAGE_SHIFT-10), 8)
33 void task_mem(struct seq_file *m, struct mm_struct *mm)
34 {
35 	unsigned long text, lib, swap, anon, file, shmem;
36 	unsigned long hiwater_vm, total_vm, hiwater_rss, total_rss;
37 
38 	anon = get_mm_counter(mm, MM_ANONPAGES);
39 	file = get_mm_counter(mm, MM_FILEPAGES);
40 	shmem = get_mm_counter(mm, MM_SHMEMPAGES);
41 
42 	/*
43 	 * Note: to minimize their overhead, mm maintains hiwater_vm and
44 	 * hiwater_rss only when about to *lower* total_vm or rss.  Any
45 	 * collector of these hiwater stats must therefore get total_vm
46 	 * and rss too, which will usually be the higher.  Barriers? not
47 	 * worth the effort, such snapshots can always be inconsistent.
48 	 */
49 	hiwater_vm = total_vm = mm->total_vm;
50 	if (hiwater_vm < mm->hiwater_vm)
51 		hiwater_vm = mm->hiwater_vm;
52 	hiwater_rss = total_rss = anon + file + shmem;
53 	if (hiwater_rss < mm->hiwater_rss)
54 		hiwater_rss = mm->hiwater_rss;
55 
56 	/* split executable areas between text and lib */
57 	text = PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK);
58 	text = min(text, mm->exec_vm << PAGE_SHIFT);
59 	lib = (mm->exec_vm << PAGE_SHIFT) - text;
60 
61 	swap = get_mm_counter(mm, MM_SWAPENTS);
62 	SEQ_PUT_DEC("VmPeak:\t", hiwater_vm);
63 	SEQ_PUT_DEC(" kB\nVmSize:\t", total_vm);
64 	SEQ_PUT_DEC(" kB\nVmLck:\t", mm->locked_vm);
65 	SEQ_PUT_DEC(" kB\nVmPin:\t", atomic64_read(&mm->pinned_vm));
66 	SEQ_PUT_DEC(" kB\nVmHWM:\t", hiwater_rss);
67 	SEQ_PUT_DEC(" kB\nVmRSS:\t", total_rss);
68 	SEQ_PUT_DEC(" kB\nRssAnon:\t", anon);
69 	SEQ_PUT_DEC(" kB\nRssFile:\t", file);
70 	SEQ_PUT_DEC(" kB\nRssShmem:\t", shmem);
71 	SEQ_PUT_DEC(" kB\nVmData:\t", mm->data_vm);
72 	SEQ_PUT_DEC(" kB\nVmStk:\t", mm->stack_vm);
73 	seq_put_decimal_ull_width(m,
74 		    " kB\nVmExe:\t", text >> 10, 8);
75 	seq_put_decimal_ull_width(m,
76 		    " kB\nVmLib:\t", lib >> 10, 8);
77 	seq_put_decimal_ull_width(m,
78 		    " kB\nVmPTE:\t", mm_pgtables_bytes(mm) >> 10, 8);
79 	SEQ_PUT_DEC(" kB\nVmSwap:\t", swap);
80 	seq_puts(m, " kB\n");
81 	hugetlb_report_usage(m, mm);
82 }
83 #undef SEQ_PUT_DEC
84 
85 unsigned long task_vsize(struct mm_struct *mm)
86 {
87 	return PAGE_SIZE * mm->total_vm;
88 }
89 
90 unsigned long task_statm(struct mm_struct *mm,
91 			 unsigned long *shared, unsigned long *text,
92 			 unsigned long *data, unsigned long *resident)
93 {
94 	*shared = get_mm_counter(mm, MM_FILEPAGES) +
95 			get_mm_counter(mm, MM_SHMEMPAGES);
96 	*text = (PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK))
97 								>> PAGE_SHIFT;
98 	*data = mm->data_vm + mm->stack_vm;
99 	*resident = *shared + get_mm_counter(mm, MM_ANONPAGES);
100 	return mm->total_vm;
101 }
102 
103 #ifdef CONFIG_NUMA
104 /*
105  * Save get_task_policy() for show_numa_map().
106  */
107 static void hold_task_mempolicy(struct proc_maps_private *priv)
108 {
109 	struct task_struct *task = priv->task;
110 
111 	task_lock(task);
112 	priv->task_mempolicy = get_task_policy(task);
113 	mpol_get(priv->task_mempolicy);
114 	task_unlock(task);
115 }
116 static void release_task_mempolicy(struct proc_maps_private *priv)
117 {
118 	mpol_put(priv->task_mempolicy);
119 }
120 #else
121 static void hold_task_mempolicy(struct proc_maps_private *priv)
122 {
123 }
124 static void release_task_mempolicy(struct proc_maps_private *priv)
125 {
126 }
127 #endif
128 
129 static struct vm_area_struct *proc_get_vma(struct proc_maps_private *priv,
130 						loff_t *ppos)
131 {
132 	struct vm_area_struct *vma = vma_next(&priv->iter);
133 
134 	if (vma) {
135 		*ppos = vma->vm_start;
136 	} else {
137 		*ppos = -2UL;
138 		vma = get_gate_vma(priv->mm);
139 	}
140 
141 	return vma;
142 }
143 
144 static void *m_start(struct seq_file *m, loff_t *ppos)
145 {
146 	struct proc_maps_private *priv = m->private;
147 	unsigned long last_addr = *ppos;
148 	struct mm_struct *mm;
149 
150 	/* See m_next(). Zero at the start or after lseek. */
151 	if (last_addr == -1UL)
152 		return NULL;
153 
154 	priv->task = get_proc_task(priv->inode);
155 	if (!priv->task)
156 		return ERR_PTR(-ESRCH);
157 
158 	mm = priv->mm;
159 	if (!mm || !mmget_not_zero(mm)) {
160 		put_task_struct(priv->task);
161 		priv->task = NULL;
162 		return NULL;
163 	}
164 
165 	if (mmap_read_lock_killable(mm)) {
166 		mmput(mm);
167 		put_task_struct(priv->task);
168 		priv->task = NULL;
169 		return ERR_PTR(-EINTR);
170 	}
171 
172 	vma_iter_init(&priv->iter, mm, last_addr);
173 	hold_task_mempolicy(priv);
174 	if (last_addr == -2UL)
175 		return get_gate_vma(mm);
176 
177 	return proc_get_vma(priv, ppos);
178 }
179 
180 static void *m_next(struct seq_file *m, void *v, loff_t *ppos)
181 {
182 	if (*ppos == -2UL) {
183 		*ppos = -1UL;
184 		return NULL;
185 	}
186 	return proc_get_vma(m->private, ppos);
187 }
188 
189 static void m_stop(struct seq_file *m, void *v)
190 {
191 	struct proc_maps_private *priv = m->private;
192 	struct mm_struct *mm = priv->mm;
193 
194 	if (!priv->task)
195 		return;
196 
197 	release_task_mempolicy(priv);
198 	mmap_read_unlock(mm);
199 	mmput(mm);
200 	put_task_struct(priv->task);
201 	priv->task = NULL;
202 }
203 
204 static int proc_maps_open(struct inode *inode, struct file *file,
205 			const struct seq_operations *ops, int psize)
206 {
207 	struct proc_maps_private *priv = __seq_open_private(file, ops, psize);
208 
209 	if (!priv)
210 		return -ENOMEM;
211 
212 	priv->inode = inode;
213 	priv->mm = proc_mem_open(inode, PTRACE_MODE_READ);
214 	if (IS_ERR(priv->mm)) {
215 		int err = PTR_ERR(priv->mm);
216 
217 		seq_release_private(inode, file);
218 		return err;
219 	}
220 
221 	return 0;
222 }
223 
224 static int proc_map_release(struct inode *inode, struct file *file)
225 {
226 	struct seq_file *seq = file->private_data;
227 	struct proc_maps_private *priv = seq->private;
228 
229 	if (priv->mm)
230 		mmdrop(priv->mm);
231 
232 	return seq_release_private(inode, file);
233 }
234 
235 static int do_maps_open(struct inode *inode, struct file *file,
236 			const struct seq_operations *ops)
237 {
238 	return proc_maps_open(inode, file, ops,
239 				sizeof(struct proc_maps_private));
240 }
241 
242 static void show_vma_header_prefix(struct seq_file *m,
243 				   unsigned long start, unsigned long end,
244 				   vm_flags_t flags, unsigned long long pgoff,
245 				   dev_t dev, unsigned long ino)
246 {
247 	seq_setwidth(m, 25 + sizeof(void *) * 6 - 1);
248 	seq_put_hex_ll(m, NULL, start, 8);
249 	seq_put_hex_ll(m, "-", end, 8);
250 	seq_putc(m, ' ');
251 	seq_putc(m, flags & VM_READ ? 'r' : '-');
252 	seq_putc(m, flags & VM_WRITE ? 'w' : '-');
253 	seq_putc(m, flags & VM_EXEC ? 'x' : '-');
254 	seq_putc(m, flags & VM_MAYSHARE ? 's' : 'p');
255 	seq_put_hex_ll(m, " ", pgoff, 8);
256 	seq_put_hex_ll(m, " ", MAJOR(dev), 2);
257 	seq_put_hex_ll(m, ":", MINOR(dev), 2);
258 	seq_put_decimal_ull(m, " ", ino);
259 	seq_putc(m, ' ');
260 }
261 
262 static void
263 show_map_vma(struct seq_file *m, struct vm_area_struct *vma)
264 {
265 	struct anon_vma_name *anon_name = NULL;
266 	struct mm_struct *mm = vma->vm_mm;
267 	struct file *file = vma->vm_file;
268 	vm_flags_t flags = vma->vm_flags;
269 	unsigned long ino = 0;
270 	unsigned long long pgoff = 0;
271 	unsigned long start, end;
272 	dev_t dev = 0;
273 	const char *name = NULL;
274 
275 	if (file) {
276 		struct inode *inode = file_inode(vma->vm_file);
277 		dev = inode->i_sb->s_dev;
278 		ino = inode->i_ino;
279 		pgoff = ((loff_t)vma->vm_pgoff) << PAGE_SHIFT;
280 	}
281 
282 	start = vma->vm_start;
283 	end = vma->vm_end;
284 	show_vma_header_prefix(m, start, end, flags, pgoff, dev, ino);
285 	if (mm)
286 		anon_name = anon_vma_name(vma);
287 
288 	/*
289 	 * Print the dentry name for named mappings, and a
290 	 * special [heap] marker for the heap:
291 	 */
292 	if (file) {
293 		seq_pad(m, ' ');
294 		/*
295 		 * If user named this anon shared memory via
296 		 * prctl(PR_SET_VMA ..., use the provided name.
297 		 */
298 		if (anon_name)
299 			seq_printf(m, "[anon_shmem:%s]", anon_name->name);
300 		else
301 			seq_path(m, file_user_path(file), "\n");
302 		goto done;
303 	}
304 
305 	if (vma->vm_ops && vma->vm_ops->name) {
306 		name = vma->vm_ops->name(vma);
307 		if (name)
308 			goto done;
309 	}
310 
311 	name = arch_vma_name(vma);
312 	if (!name) {
313 		if (!mm) {
314 			name = "[vdso]";
315 			goto done;
316 		}
317 
318 		if (vma_is_initial_heap(vma)) {
319 			name = "[heap]";
320 			goto done;
321 		}
322 
323 		if (vma_is_initial_stack(vma)) {
324 			name = "[stack]";
325 			goto done;
326 		}
327 
328 		if (anon_name) {
329 			seq_pad(m, ' ');
330 			seq_printf(m, "[anon:%s]", anon_name->name);
331 		}
332 	}
333 
334 done:
335 	if (name) {
336 		seq_pad(m, ' ');
337 		seq_puts(m, name);
338 	}
339 	seq_putc(m, '\n');
340 }
341 
342 static int show_map(struct seq_file *m, void *v)
343 {
344 	show_map_vma(m, v);
345 	return 0;
346 }
347 
348 static const struct seq_operations proc_pid_maps_op = {
349 	.start	= m_start,
350 	.next	= m_next,
351 	.stop	= m_stop,
352 	.show	= show_map
353 };
354 
355 static int pid_maps_open(struct inode *inode, struct file *file)
356 {
357 	return do_maps_open(inode, file, &proc_pid_maps_op);
358 }
359 
360 const struct file_operations proc_pid_maps_operations = {
361 	.open		= pid_maps_open,
362 	.read		= seq_read,
363 	.llseek		= seq_lseek,
364 	.release	= proc_map_release,
365 };
366 
367 /*
368  * Proportional Set Size(PSS): my share of RSS.
369  *
370  * PSS of a process is the count of pages it has in memory, where each
371  * page is divided by the number of processes sharing it.  So if a
372  * process has 1000 pages all to itself, and 1000 shared with one other
373  * process, its PSS will be 1500.
374  *
375  * To keep (accumulated) division errors low, we adopt a 64bit
376  * fixed-point pss counter to minimize division errors. So (pss >>
377  * PSS_SHIFT) would be the real byte count.
378  *
379  * A shift of 12 before division means (assuming 4K page size):
380  * 	- 1M 3-user-pages add up to 8KB errors;
381  * 	- supports mapcount up to 2^24, or 16M;
382  * 	- supports PSS up to 2^52 bytes, or 4PB.
383  */
384 #define PSS_SHIFT 12
385 
386 #ifdef CONFIG_PROC_PAGE_MONITOR
387 struct mem_size_stats {
388 	unsigned long resident;
389 	unsigned long shared_clean;
390 	unsigned long shared_dirty;
391 	unsigned long private_clean;
392 	unsigned long private_dirty;
393 	unsigned long referenced;
394 	unsigned long anonymous;
395 	unsigned long lazyfree;
396 	unsigned long anonymous_thp;
397 	unsigned long shmem_thp;
398 	unsigned long file_thp;
399 	unsigned long swap;
400 	unsigned long shared_hugetlb;
401 	unsigned long private_hugetlb;
402 	unsigned long ksm;
403 	u64 pss;
404 	u64 pss_anon;
405 	u64 pss_file;
406 	u64 pss_shmem;
407 	u64 pss_dirty;
408 	u64 pss_locked;
409 	u64 swap_pss;
410 };
411 
412 static void smaps_page_accumulate(struct mem_size_stats *mss,
413 		struct page *page, unsigned long size, unsigned long pss,
414 		bool dirty, bool locked, bool private)
415 {
416 	mss->pss += pss;
417 
418 	if (PageAnon(page))
419 		mss->pss_anon += pss;
420 	else if (PageSwapBacked(page))
421 		mss->pss_shmem += pss;
422 	else
423 		mss->pss_file += pss;
424 
425 	if (locked)
426 		mss->pss_locked += pss;
427 
428 	if (dirty || PageDirty(page)) {
429 		mss->pss_dirty += pss;
430 		if (private)
431 			mss->private_dirty += size;
432 		else
433 			mss->shared_dirty += size;
434 	} else {
435 		if (private)
436 			mss->private_clean += size;
437 		else
438 			mss->shared_clean += size;
439 	}
440 }
441 
442 static void smaps_account(struct mem_size_stats *mss, struct page *page,
443 		bool compound, bool young, bool dirty, bool locked,
444 		bool migration)
445 {
446 	int i, nr = compound ? compound_nr(page) : 1;
447 	unsigned long size = nr * PAGE_SIZE;
448 
449 	/*
450 	 * First accumulate quantities that depend only on |size| and the type
451 	 * of the compound page.
452 	 */
453 	if (PageAnon(page)) {
454 		mss->anonymous += size;
455 		if (!PageSwapBacked(page) && !dirty && !PageDirty(page))
456 			mss->lazyfree += size;
457 	}
458 
459 	if (PageKsm(page))
460 		mss->ksm += size;
461 
462 	mss->resident += size;
463 	/* Accumulate the size in pages that have been accessed. */
464 	if (young || page_is_young(page) || PageReferenced(page))
465 		mss->referenced += size;
466 
467 	/*
468 	 * Then accumulate quantities that may depend on sharing, or that may
469 	 * differ page-by-page.
470 	 *
471 	 * page_count(page) == 1 guarantees the page is mapped exactly once.
472 	 * If any subpage of the compound page mapped with PTE it would elevate
473 	 * page_count().
474 	 *
475 	 * The page_mapcount() is called to get a snapshot of the mapcount.
476 	 * Without holding the page lock this snapshot can be slightly wrong as
477 	 * we cannot always read the mapcount atomically.  It is not safe to
478 	 * call page_mapcount() even with PTL held if the page is not mapped,
479 	 * especially for migration entries.  Treat regular migration entries
480 	 * as mapcount == 1.
481 	 */
482 	if ((page_count(page) == 1) || migration) {
483 		smaps_page_accumulate(mss, page, size, size << PSS_SHIFT, dirty,
484 			locked, true);
485 		return;
486 	}
487 	for (i = 0; i < nr; i++, page++) {
488 		int mapcount = page_mapcount(page);
489 		unsigned long pss = PAGE_SIZE << PSS_SHIFT;
490 		if (mapcount >= 2)
491 			pss /= mapcount;
492 		smaps_page_accumulate(mss, page, PAGE_SIZE, pss, dirty, locked,
493 				      mapcount < 2);
494 	}
495 }
496 
497 #ifdef CONFIG_SHMEM
498 static int smaps_pte_hole(unsigned long addr, unsigned long end,
499 			  __always_unused int depth, struct mm_walk *walk)
500 {
501 	struct mem_size_stats *mss = walk->private;
502 	struct vm_area_struct *vma = walk->vma;
503 
504 	mss->swap += shmem_partial_swap_usage(walk->vma->vm_file->f_mapping,
505 					      linear_page_index(vma, addr),
506 					      linear_page_index(vma, end));
507 
508 	return 0;
509 }
510 #else
511 #define smaps_pte_hole		NULL
512 #endif /* CONFIG_SHMEM */
513 
514 static void smaps_pte_hole_lookup(unsigned long addr, struct mm_walk *walk)
515 {
516 #ifdef CONFIG_SHMEM
517 	if (walk->ops->pte_hole) {
518 		/* depth is not used */
519 		smaps_pte_hole(addr, addr + PAGE_SIZE, 0, walk);
520 	}
521 #endif
522 }
523 
524 static void smaps_pte_entry(pte_t *pte, unsigned long addr,
525 		struct mm_walk *walk)
526 {
527 	struct mem_size_stats *mss = walk->private;
528 	struct vm_area_struct *vma = walk->vma;
529 	bool locked = !!(vma->vm_flags & VM_LOCKED);
530 	struct page *page = NULL;
531 	bool migration = false, young = false, dirty = false;
532 	pte_t ptent = ptep_get(pte);
533 
534 	if (pte_present(ptent)) {
535 		page = vm_normal_page(vma, addr, ptent);
536 		young = pte_young(ptent);
537 		dirty = pte_dirty(ptent);
538 	} else if (is_swap_pte(ptent)) {
539 		swp_entry_t swpent = pte_to_swp_entry(ptent);
540 
541 		if (!non_swap_entry(swpent)) {
542 			int mapcount;
543 
544 			mss->swap += PAGE_SIZE;
545 			mapcount = swp_swapcount(swpent);
546 			if (mapcount >= 2) {
547 				u64 pss_delta = (u64)PAGE_SIZE << PSS_SHIFT;
548 
549 				do_div(pss_delta, mapcount);
550 				mss->swap_pss += pss_delta;
551 			} else {
552 				mss->swap_pss += (u64)PAGE_SIZE << PSS_SHIFT;
553 			}
554 		} else if (is_pfn_swap_entry(swpent)) {
555 			if (is_migration_entry(swpent))
556 				migration = true;
557 			page = pfn_swap_entry_to_page(swpent);
558 		}
559 	} else {
560 		smaps_pte_hole_lookup(addr, walk);
561 		return;
562 	}
563 
564 	if (!page)
565 		return;
566 
567 	smaps_account(mss, page, false, young, dirty, locked, migration);
568 }
569 
570 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
571 static void smaps_pmd_entry(pmd_t *pmd, unsigned long addr,
572 		struct mm_walk *walk)
573 {
574 	struct mem_size_stats *mss = walk->private;
575 	struct vm_area_struct *vma = walk->vma;
576 	bool locked = !!(vma->vm_flags & VM_LOCKED);
577 	struct page *page = NULL;
578 	bool migration = false;
579 
580 	if (pmd_present(*pmd)) {
581 		page = vm_normal_page_pmd(vma, addr, *pmd);
582 	} else if (unlikely(thp_migration_supported() && is_swap_pmd(*pmd))) {
583 		swp_entry_t entry = pmd_to_swp_entry(*pmd);
584 
585 		if (is_migration_entry(entry)) {
586 			migration = true;
587 			page = pfn_swap_entry_to_page(entry);
588 		}
589 	}
590 	if (IS_ERR_OR_NULL(page))
591 		return;
592 	if (PageAnon(page))
593 		mss->anonymous_thp += HPAGE_PMD_SIZE;
594 	else if (PageSwapBacked(page))
595 		mss->shmem_thp += HPAGE_PMD_SIZE;
596 	else if (is_zone_device_page(page))
597 		/* pass */;
598 	else
599 		mss->file_thp += HPAGE_PMD_SIZE;
600 
601 	smaps_account(mss, page, true, pmd_young(*pmd), pmd_dirty(*pmd),
602 		      locked, migration);
603 }
604 #else
605 static void smaps_pmd_entry(pmd_t *pmd, unsigned long addr,
606 		struct mm_walk *walk)
607 {
608 }
609 #endif
610 
611 static int smaps_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
612 			   struct mm_walk *walk)
613 {
614 	struct vm_area_struct *vma = walk->vma;
615 	pte_t *pte;
616 	spinlock_t *ptl;
617 
618 	ptl = pmd_trans_huge_lock(pmd, vma);
619 	if (ptl) {
620 		smaps_pmd_entry(pmd, addr, walk);
621 		spin_unlock(ptl);
622 		goto out;
623 	}
624 
625 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
626 	if (!pte) {
627 		walk->action = ACTION_AGAIN;
628 		return 0;
629 	}
630 	for (; addr != end; pte++, addr += PAGE_SIZE)
631 		smaps_pte_entry(pte, addr, walk);
632 	pte_unmap_unlock(pte - 1, ptl);
633 out:
634 	cond_resched();
635 	return 0;
636 }
637 
638 static void show_smap_vma_flags(struct seq_file *m, struct vm_area_struct *vma)
639 {
640 	/*
641 	 * Don't forget to update Documentation/ on changes.
642 	 */
643 	static const char mnemonics[BITS_PER_LONG][2] = {
644 		/*
645 		 * In case if we meet a flag we don't know about.
646 		 */
647 		[0 ... (BITS_PER_LONG-1)] = "??",
648 
649 		[ilog2(VM_READ)]	= "rd",
650 		[ilog2(VM_WRITE)]	= "wr",
651 		[ilog2(VM_EXEC)]	= "ex",
652 		[ilog2(VM_SHARED)]	= "sh",
653 		[ilog2(VM_MAYREAD)]	= "mr",
654 		[ilog2(VM_MAYWRITE)]	= "mw",
655 		[ilog2(VM_MAYEXEC)]	= "me",
656 		[ilog2(VM_MAYSHARE)]	= "ms",
657 		[ilog2(VM_GROWSDOWN)]	= "gd",
658 		[ilog2(VM_PFNMAP)]	= "pf",
659 		[ilog2(VM_LOCKED)]	= "lo",
660 		[ilog2(VM_IO)]		= "io",
661 		[ilog2(VM_SEQ_READ)]	= "sr",
662 		[ilog2(VM_RAND_READ)]	= "rr",
663 		[ilog2(VM_DONTCOPY)]	= "dc",
664 		[ilog2(VM_DONTEXPAND)]	= "de",
665 		[ilog2(VM_LOCKONFAULT)]	= "lf",
666 		[ilog2(VM_ACCOUNT)]	= "ac",
667 		[ilog2(VM_NORESERVE)]	= "nr",
668 		[ilog2(VM_HUGETLB)]	= "ht",
669 		[ilog2(VM_SYNC)]	= "sf",
670 		[ilog2(VM_ARCH_1)]	= "ar",
671 		[ilog2(VM_WIPEONFORK)]	= "wf",
672 		[ilog2(VM_DONTDUMP)]	= "dd",
673 #ifdef CONFIG_ARM64_BTI
674 		[ilog2(VM_ARM64_BTI)]	= "bt",
675 #endif
676 #ifdef CONFIG_MEM_SOFT_DIRTY
677 		[ilog2(VM_SOFTDIRTY)]	= "sd",
678 #endif
679 		[ilog2(VM_MIXEDMAP)]	= "mm",
680 		[ilog2(VM_HUGEPAGE)]	= "hg",
681 		[ilog2(VM_NOHUGEPAGE)]	= "nh",
682 		[ilog2(VM_MERGEABLE)]	= "mg",
683 		[ilog2(VM_UFFD_MISSING)]= "um",
684 		[ilog2(VM_UFFD_WP)]	= "uw",
685 #ifdef CONFIG_ARM64_MTE
686 		[ilog2(VM_MTE)]		= "mt",
687 		[ilog2(VM_MTE_ALLOWED)]	= "",
688 #endif
689 #ifdef CONFIG_ARCH_HAS_PKEYS
690 		/* These come out via ProtectionKey: */
691 		[ilog2(VM_PKEY_BIT0)]	= "",
692 		[ilog2(VM_PKEY_BIT1)]	= "",
693 		[ilog2(VM_PKEY_BIT2)]	= "",
694 		[ilog2(VM_PKEY_BIT3)]	= "",
695 #if VM_PKEY_BIT4
696 		[ilog2(VM_PKEY_BIT4)]	= "",
697 #endif
698 #endif /* CONFIG_ARCH_HAS_PKEYS */
699 #ifdef CONFIG_HAVE_ARCH_USERFAULTFD_MINOR
700 		[ilog2(VM_UFFD_MINOR)]	= "ui",
701 #endif /* CONFIG_HAVE_ARCH_USERFAULTFD_MINOR */
702 #ifdef CONFIG_X86_USER_SHADOW_STACK
703 		[ilog2(VM_SHADOW_STACK)] = "ss",
704 #endif
705 	};
706 	size_t i;
707 
708 	seq_puts(m, "VmFlags: ");
709 	for (i = 0; i < BITS_PER_LONG; i++) {
710 		if (!mnemonics[i][0])
711 			continue;
712 		if (vma->vm_flags & (1UL << i)) {
713 			seq_putc(m, mnemonics[i][0]);
714 			seq_putc(m, mnemonics[i][1]);
715 			seq_putc(m, ' ');
716 		}
717 	}
718 	seq_putc(m, '\n');
719 }
720 
721 #ifdef CONFIG_HUGETLB_PAGE
722 static int smaps_hugetlb_range(pte_t *pte, unsigned long hmask,
723 				 unsigned long addr, unsigned long end,
724 				 struct mm_walk *walk)
725 {
726 	struct mem_size_stats *mss = walk->private;
727 	struct vm_area_struct *vma = walk->vma;
728 	struct page *page = NULL;
729 	pte_t ptent = ptep_get(pte);
730 
731 	if (pte_present(ptent)) {
732 		page = vm_normal_page(vma, addr, ptent);
733 	} else if (is_swap_pte(ptent)) {
734 		swp_entry_t swpent = pte_to_swp_entry(ptent);
735 
736 		if (is_pfn_swap_entry(swpent))
737 			page = pfn_swap_entry_to_page(swpent);
738 	}
739 	if (page) {
740 		if (page_mapcount(page) >= 2 || hugetlb_pmd_shared(pte))
741 			mss->shared_hugetlb += huge_page_size(hstate_vma(vma));
742 		else
743 			mss->private_hugetlb += huge_page_size(hstate_vma(vma));
744 	}
745 	return 0;
746 }
747 #else
748 #define smaps_hugetlb_range	NULL
749 #endif /* HUGETLB_PAGE */
750 
751 static const struct mm_walk_ops smaps_walk_ops = {
752 	.pmd_entry		= smaps_pte_range,
753 	.hugetlb_entry		= smaps_hugetlb_range,
754 	.walk_lock		= PGWALK_RDLOCK,
755 };
756 
757 static const struct mm_walk_ops smaps_shmem_walk_ops = {
758 	.pmd_entry		= smaps_pte_range,
759 	.hugetlb_entry		= smaps_hugetlb_range,
760 	.pte_hole		= smaps_pte_hole,
761 	.walk_lock		= PGWALK_RDLOCK,
762 };
763 
764 /*
765  * Gather mem stats from @vma with the indicated beginning
766  * address @start, and keep them in @mss.
767  *
768  * Use vm_start of @vma as the beginning address if @start is 0.
769  */
770 static void smap_gather_stats(struct vm_area_struct *vma,
771 		struct mem_size_stats *mss, unsigned long start)
772 {
773 	const struct mm_walk_ops *ops = &smaps_walk_ops;
774 
775 	/* Invalid start */
776 	if (start >= vma->vm_end)
777 		return;
778 
779 	if (vma->vm_file && shmem_mapping(vma->vm_file->f_mapping)) {
780 		/*
781 		 * For shared or readonly shmem mappings we know that all
782 		 * swapped out pages belong to the shmem object, and we can
783 		 * obtain the swap value much more efficiently. For private
784 		 * writable mappings, we might have COW pages that are
785 		 * not affected by the parent swapped out pages of the shmem
786 		 * object, so we have to distinguish them during the page walk.
787 		 * Unless we know that the shmem object (or the part mapped by
788 		 * our VMA) has no swapped out pages at all.
789 		 */
790 		unsigned long shmem_swapped = shmem_swap_usage(vma);
791 
792 		if (!start && (!shmem_swapped || (vma->vm_flags & VM_SHARED) ||
793 					!(vma->vm_flags & VM_WRITE))) {
794 			mss->swap += shmem_swapped;
795 		} else {
796 			ops = &smaps_shmem_walk_ops;
797 		}
798 	}
799 
800 	/* mmap_lock is held in m_start */
801 	if (!start)
802 		walk_page_vma(vma, ops, mss);
803 	else
804 		walk_page_range(vma->vm_mm, start, vma->vm_end, ops, mss);
805 }
806 
807 #define SEQ_PUT_DEC(str, val) \
808 		seq_put_decimal_ull_width(m, str, (val) >> 10, 8)
809 
810 /* Show the contents common for smaps and smaps_rollup */
811 static void __show_smap(struct seq_file *m, const struct mem_size_stats *mss,
812 	bool rollup_mode)
813 {
814 	SEQ_PUT_DEC("Rss:            ", mss->resident);
815 	SEQ_PUT_DEC(" kB\nPss:            ", mss->pss >> PSS_SHIFT);
816 	SEQ_PUT_DEC(" kB\nPss_Dirty:      ", mss->pss_dirty >> PSS_SHIFT);
817 	if (rollup_mode) {
818 		/*
819 		 * These are meaningful only for smaps_rollup, otherwise two of
820 		 * them are zero, and the other one is the same as Pss.
821 		 */
822 		SEQ_PUT_DEC(" kB\nPss_Anon:       ",
823 			mss->pss_anon >> PSS_SHIFT);
824 		SEQ_PUT_DEC(" kB\nPss_File:       ",
825 			mss->pss_file >> PSS_SHIFT);
826 		SEQ_PUT_DEC(" kB\nPss_Shmem:      ",
827 			mss->pss_shmem >> PSS_SHIFT);
828 	}
829 	SEQ_PUT_DEC(" kB\nShared_Clean:   ", mss->shared_clean);
830 	SEQ_PUT_DEC(" kB\nShared_Dirty:   ", mss->shared_dirty);
831 	SEQ_PUT_DEC(" kB\nPrivate_Clean:  ", mss->private_clean);
832 	SEQ_PUT_DEC(" kB\nPrivate_Dirty:  ", mss->private_dirty);
833 	SEQ_PUT_DEC(" kB\nReferenced:     ", mss->referenced);
834 	SEQ_PUT_DEC(" kB\nAnonymous:      ", mss->anonymous);
835 	SEQ_PUT_DEC(" kB\nKSM:            ", mss->ksm);
836 	SEQ_PUT_DEC(" kB\nLazyFree:       ", mss->lazyfree);
837 	SEQ_PUT_DEC(" kB\nAnonHugePages:  ", mss->anonymous_thp);
838 	SEQ_PUT_DEC(" kB\nShmemPmdMapped: ", mss->shmem_thp);
839 	SEQ_PUT_DEC(" kB\nFilePmdMapped:  ", mss->file_thp);
840 	SEQ_PUT_DEC(" kB\nShared_Hugetlb: ", mss->shared_hugetlb);
841 	seq_put_decimal_ull_width(m, " kB\nPrivate_Hugetlb: ",
842 				  mss->private_hugetlb >> 10, 7);
843 	SEQ_PUT_DEC(" kB\nSwap:           ", mss->swap);
844 	SEQ_PUT_DEC(" kB\nSwapPss:        ",
845 					mss->swap_pss >> PSS_SHIFT);
846 	SEQ_PUT_DEC(" kB\nLocked:         ",
847 					mss->pss_locked >> PSS_SHIFT);
848 	seq_puts(m, " kB\n");
849 }
850 
851 static int show_smap(struct seq_file *m, void *v)
852 {
853 	struct vm_area_struct *vma = v;
854 	struct mem_size_stats mss = {};
855 
856 	smap_gather_stats(vma, &mss, 0);
857 
858 	show_map_vma(m, vma);
859 
860 	SEQ_PUT_DEC("Size:           ", vma->vm_end - vma->vm_start);
861 	SEQ_PUT_DEC(" kB\nKernelPageSize: ", vma_kernel_pagesize(vma));
862 	SEQ_PUT_DEC(" kB\nMMUPageSize:    ", vma_mmu_pagesize(vma));
863 	seq_puts(m, " kB\n");
864 
865 	__show_smap(m, &mss, false);
866 
867 	seq_printf(m, "THPeligible:    %8u\n",
868 		   hugepage_vma_check(vma, vma->vm_flags, true, false, true));
869 
870 	if (arch_pkeys_enabled())
871 		seq_printf(m, "ProtectionKey:  %8u\n", vma_pkey(vma));
872 	show_smap_vma_flags(m, vma);
873 
874 	return 0;
875 }
876 
877 static int show_smaps_rollup(struct seq_file *m, void *v)
878 {
879 	struct proc_maps_private *priv = m->private;
880 	struct mem_size_stats mss = {};
881 	struct mm_struct *mm = priv->mm;
882 	struct vm_area_struct *vma;
883 	unsigned long vma_start = 0, last_vma_end = 0;
884 	int ret = 0;
885 	VMA_ITERATOR(vmi, mm, 0);
886 
887 	priv->task = get_proc_task(priv->inode);
888 	if (!priv->task)
889 		return -ESRCH;
890 
891 	if (!mm || !mmget_not_zero(mm)) {
892 		ret = -ESRCH;
893 		goto out_put_task;
894 	}
895 
896 	ret = mmap_read_lock_killable(mm);
897 	if (ret)
898 		goto out_put_mm;
899 
900 	hold_task_mempolicy(priv);
901 	vma = vma_next(&vmi);
902 
903 	if (unlikely(!vma))
904 		goto empty_set;
905 
906 	vma_start = vma->vm_start;
907 	do {
908 		smap_gather_stats(vma, &mss, 0);
909 		last_vma_end = vma->vm_end;
910 
911 		/*
912 		 * Release mmap_lock temporarily if someone wants to
913 		 * access it for write request.
914 		 */
915 		if (mmap_lock_is_contended(mm)) {
916 			vma_iter_invalidate(&vmi);
917 			mmap_read_unlock(mm);
918 			ret = mmap_read_lock_killable(mm);
919 			if (ret) {
920 				release_task_mempolicy(priv);
921 				goto out_put_mm;
922 			}
923 
924 			/*
925 			 * After dropping the lock, there are four cases to
926 			 * consider. See the following example for explanation.
927 			 *
928 			 *   +------+------+-----------+
929 			 *   | VMA1 | VMA2 | VMA3      |
930 			 *   +------+------+-----------+
931 			 *   |      |      |           |
932 			 *  4k     8k     16k         400k
933 			 *
934 			 * Suppose we drop the lock after reading VMA2 due to
935 			 * contention, then we get:
936 			 *
937 			 *	last_vma_end = 16k
938 			 *
939 			 * 1) VMA2 is freed, but VMA3 exists:
940 			 *
941 			 *    vma_next(vmi) will return VMA3.
942 			 *    In this case, just continue from VMA3.
943 			 *
944 			 * 2) VMA2 still exists:
945 			 *
946 			 *    vma_next(vmi) will return VMA3.
947 			 *    In this case, just continue from VMA3.
948 			 *
949 			 * 3) No more VMAs can be found:
950 			 *
951 			 *    vma_next(vmi) will return NULL.
952 			 *    No more things to do, just break.
953 			 *
954 			 * 4) (last_vma_end - 1) is the middle of a vma (VMA'):
955 			 *
956 			 *    vma_next(vmi) will return VMA' whose range
957 			 *    contains last_vma_end.
958 			 *    Iterate VMA' from last_vma_end.
959 			 */
960 			vma = vma_next(&vmi);
961 			/* Case 3 above */
962 			if (!vma)
963 				break;
964 
965 			/* Case 1 and 2 above */
966 			if (vma->vm_start >= last_vma_end)
967 				continue;
968 
969 			/* Case 4 above */
970 			if (vma->vm_end > last_vma_end)
971 				smap_gather_stats(vma, &mss, last_vma_end);
972 		}
973 	} for_each_vma(vmi, vma);
974 
975 empty_set:
976 	show_vma_header_prefix(m, vma_start, last_vma_end, 0, 0, 0, 0);
977 	seq_pad(m, ' ');
978 	seq_puts(m, "[rollup]\n");
979 
980 	__show_smap(m, &mss, true);
981 
982 	release_task_mempolicy(priv);
983 	mmap_read_unlock(mm);
984 
985 out_put_mm:
986 	mmput(mm);
987 out_put_task:
988 	put_task_struct(priv->task);
989 	priv->task = NULL;
990 
991 	return ret;
992 }
993 #undef SEQ_PUT_DEC
994 
995 static const struct seq_operations proc_pid_smaps_op = {
996 	.start	= m_start,
997 	.next	= m_next,
998 	.stop	= m_stop,
999 	.show	= show_smap
1000 };
1001 
1002 static int pid_smaps_open(struct inode *inode, struct file *file)
1003 {
1004 	return do_maps_open(inode, file, &proc_pid_smaps_op);
1005 }
1006 
1007 static int smaps_rollup_open(struct inode *inode, struct file *file)
1008 {
1009 	int ret;
1010 	struct proc_maps_private *priv;
1011 
1012 	priv = kzalloc(sizeof(*priv), GFP_KERNEL_ACCOUNT);
1013 	if (!priv)
1014 		return -ENOMEM;
1015 
1016 	ret = single_open(file, show_smaps_rollup, priv);
1017 	if (ret)
1018 		goto out_free;
1019 
1020 	priv->inode = inode;
1021 	priv->mm = proc_mem_open(inode, PTRACE_MODE_READ);
1022 	if (IS_ERR(priv->mm)) {
1023 		ret = PTR_ERR(priv->mm);
1024 
1025 		single_release(inode, file);
1026 		goto out_free;
1027 	}
1028 
1029 	return 0;
1030 
1031 out_free:
1032 	kfree(priv);
1033 	return ret;
1034 }
1035 
1036 static int smaps_rollup_release(struct inode *inode, struct file *file)
1037 {
1038 	struct seq_file *seq = file->private_data;
1039 	struct proc_maps_private *priv = seq->private;
1040 
1041 	if (priv->mm)
1042 		mmdrop(priv->mm);
1043 
1044 	kfree(priv);
1045 	return single_release(inode, file);
1046 }
1047 
1048 const struct file_operations proc_pid_smaps_operations = {
1049 	.open		= pid_smaps_open,
1050 	.read		= seq_read,
1051 	.llseek		= seq_lseek,
1052 	.release	= proc_map_release,
1053 };
1054 
1055 const struct file_operations proc_pid_smaps_rollup_operations = {
1056 	.open		= smaps_rollup_open,
1057 	.read		= seq_read,
1058 	.llseek		= seq_lseek,
1059 	.release	= smaps_rollup_release,
1060 };
1061 
1062 enum clear_refs_types {
1063 	CLEAR_REFS_ALL = 1,
1064 	CLEAR_REFS_ANON,
1065 	CLEAR_REFS_MAPPED,
1066 	CLEAR_REFS_SOFT_DIRTY,
1067 	CLEAR_REFS_MM_HIWATER_RSS,
1068 	CLEAR_REFS_LAST,
1069 };
1070 
1071 struct clear_refs_private {
1072 	enum clear_refs_types type;
1073 };
1074 
1075 #ifdef CONFIG_MEM_SOFT_DIRTY
1076 
1077 static inline bool pte_is_pinned(struct vm_area_struct *vma, unsigned long addr, pte_t pte)
1078 {
1079 	struct page *page;
1080 
1081 	if (!pte_write(pte))
1082 		return false;
1083 	if (!is_cow_mapping(vma->vm_flags))
1084 		return false;
1085 	if (likely(!test_bit(MMF_HAS_PINNED, &vma->vm_mm->flags)))
1086 		return false;
1087 	page = vm_normal_page(vma, addr, pte);
1088 	if (!page)
1089 		return false;
1090 	return page_maybe_dma_pinned(page);
1091 }
1092 
1093 static inline void clear_soft_dirty(struct vm_area_struct *vma,
1094 		unsigned long addr, pte_t *pte)
1095 {
1096 	/*
1097 	 * The soft-dirty tracker uses #PF-s to catch writes
1098 	 * to pages, so write-protect the pte as well. See the
1099 	 * Documentation/admin-guide/mm/soft-dirty.rst for full description
1100 	 * of how soft-dirty works.
1101 	 */
1102 	pte_t ptent = ptep_get(pte);
1103 
1104 	if (pte_present(ptent)) {
1105 		pte_t old_pte;
1106 
1107 		if (pte_is_pinned(vma, addr, ptent))
1108 			return;
1109 		old_pte = ptep_modify_prot_start(vma, addr, pte);
1110 		ptent = pte_wrprotect(old_pte);
1111 		ptent = pte_clear_soft_dirty(ptent);
1112 		ptep_modify_prot_commit(vma, addr, pte, old_pte, ptent);
1113 	} else if (is_swap_pte(ptent)) {
1114 		ptent = pte_swp_clear_soft_dirty(ptent);
1115 		set_pte_at(vma->vm_mm, addr, pte, ptent);
1116 	}
1117 }
1118 #else
1119 static inline void clear_soft_dirty(struct vm_area_struct *vma,
1120 		unsigned long addr, pte_t *pte)
1121 {
1122 }
1123 #endif
1124 
1125 #if defined(CONFIG_MEM_SOFT_DIRTY) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
1126 static inline void clear_soft_dirty_pmd(struct vm_area_struct *vma,
1127 		unsigned long addr, pmd_t *pmdp)
1128 {
1129 	pmd_t old, pmd = *pmdp;
1130 
1131 	if (pmd_present(pmd)) {
1132 		/* See comment in change_huge_pmd() */
1133 		old = pmdp_invalidate(vma, addr, pmdp);
1134 		if (pmd_dirty(old))
1135 			pmd = pmd_mkdirty(pmd);
1136 		if (pmd_young(old))
1137 			pmd = pmd_mkyoung(pmd);
1138 
1139 		pmd = pmd_wrprotect(pmd);
1140 		pmd = pmd_clear_soft_dirty(pmd);
1141 
1142 		set_pmd_at(vma->vm_mm, addr, pmdp, pmd);
1143 	} else if (is_migration_entry(pmd_to_swp_entry(pmd))) {
1144 		pmd = pmd_swp_clear_soft_dirty(pmd);
1145 		set_pmd_at(vma->vm_mm, addr, pmdp, pmd);
1146 	}
1147 }
1148 #else
1149 static inline void clear_soft_dirty_pmd(struct vm_area_struct *vma,
1150 		unsigned long addr, pmd_t *pmdp)
1151 {
1152 }
1153 #endif
1154 
1155 static int clear_refs_pte_range(pmd_t *pmd, unsigned long addr,
1156 				unsigned long end, struct mm_walk *walk)
1157 {
1158 	struct clear_refs_private *cp = walk->private;
1159 	struct vm_area_struct *vma = walk->vma;
1160 	pte_t *pte, ptent;
1161 	spinlock_t *ptl;
1162 	struct page *page;
1163 
1164 	ptl = pmd_trans_huge_lock(pmd, vma);
1165 	if (ptl) {
1166 		if (cp->type == CLEAR_REFS_SOFT_DIRTY) {
1167 			clear_soft_dirty_pmd(vma, addr, pmd);
1168 			goto out;
1169 		}
1170 
1171 		if (!pmd_present(*pmd))
1172 			goto out;
1173 
1174 		page = pmd_page(*pmd);
1175 
1176 		/* Clear accessed and referenced bits. */
1177 		pmdp_test_and_clear_young(vma, addr, pmd);
1178 		test_and_clear_page_young(page);
1179 		ClearPageReferenced(page);
1180 out:
1181 		spin_unlock(ptl);
1182 		return 0;
1183 	}
1184 
1185 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
1186 	if (!pte) {
1187 		walk->action = ACTION_AGAIN;
1188 		return 0;
1189 	}
1190 	for (; addr != end; pte++, addr += PAGE_SIZE) {
1191 		ptent = ptep_get(pte);
1192 
1193 		if (cp->type == CLEAR_REFS_SOFT_DIRTY) {
1194 			clear_soft_dirty(vma, addr, pte);
1195 			continue;
1196 		}
1197 
1198 		if (!pte_present(ptent))
1199 			continue;
1200 
1201 		page = vm_normal_page(vma, addr, ptent);
1202 		if (!page)
1203 			continue;
1204 
1205 		/* Clear accessed and referenced bits. */
1206 		ptep_test_and_clear_young(vma, addr, pte);
1207 		test_and_clear_page_young(page);
1208 		ClearPageReferenced(page);
1209 	}
1210 	pte_unmap_unlock(pte - 1, ptl);
1211 	cond_resched();
1212 	return 0;
1213 }
1214 
1215 static int clear_refs_test_walk(unsigned long start, unsigned long end,
1216 				struct mm_walk *walk)
1217 {
1218 	struct clear_refs_private *cp = walk->private;
1219 	struct vm_area_struct *vma = walk->vma;
1220 
1221 	if (vma->vm_flags & VM_PFNMAP)
1222 		return 1;
1223 
1224 	/*
1225 	 * Writing 1 to /proc/pid/clear_refs affects all pages.
1226 	 * Writing 2 to /proc/pid/clear_refs only affects anonymous pages.
1227 	 * Writing 3 to /proc/pid/clear_refs only affects file mapped pages.
1228 	 * Writing 4 to /proc/pid/clear_refs affects all pages.
1229 	 */
1230 	if (cp->type == CLEAR_REFS_ANON && vma->vm_file)
1231 		return 1;
1232 	if (cp->type == CLEAR_REFS_MAPPED && !vma->vm_file)
1233 		return 1;
1234 	return 0;
1235 }
1236 
1237 static const struct mm_walk_ops clear_refs_walk_ops = {
1238 	.pmd_entry		= clear_refs_pte_range,
1239 	.test_walk		= clear_refs_test_walk,
1240 	.walk_lock		= PGWALK_WRLOCK,
1241 };
1242 
1243 static ssize_t clear_refs_write(struct file *file, const char __user *buf,
1244 				size_t count, loff_t *ppos)
1245 {
1246 	struct task_struct *task;
1247 	char buffer[PROC_NUMBUF] = {};
1248 	struct mm_struct *mm;
1249 	struct vm_area_struct *vma;
1250 	enum clear_refs_types type;
1251 	int itype;
1252 	int rv;
1253 
1254 	if (count > sizeof(buffer) - 1)
1255 		count = sizeof(buffer) - 1;
1256 	if (copy_from_user(buffer, buf, count))
1257 		return -EFAULT;
1258 	rv = kstrtoint(strstrip(buffer), 10, &itype);
1259 	if (rv < 0)
1260 		return rv;
1261 	type = (enum clear_refs_types)itype;
1262 	if (type < CLEAR_REFS_ALL || type >= CLEAR_REFS_LAST)
1263 		return -EINVAL;
1264 
1265 	task = get_proc_task(file_inode(file));
1266 	if (!task)
1267 		return -ESRCH;
1268 	mm = get_task_mm(task);
1269 	if (mm) {
1270 		VMA_ITERATOR(vmi, mm, 0);
1271 		struct mmu_notifier_range range;
1272 		struct clear_refs_private cp = {
1273 			.type = type,
1274 		};
1275 
1276 		if (mmap_write_lock_killable(mm)) {
1277 			count = -EINTR;
1278 			goto out_mm;
1279 		}
1280 		if (type == CLEAR_REFS_MM_HIWATER_RSS) {
1281 			/*
1282 			 * Writing 5 to /proc/pid/clear_refs resets the peak
1283 			 * resident set size to this mm's current rss value.
1284 			 */
1285 			reset_mm_hiwater_rss(mm);
1286 			goto out_unlock;
1287 		}
1288 
1289 		if (type == CLEAR_REFS_SOFT_DIRTY) {
1290 			for_each_vma(vmi, vma) {
1291 				if (!(vma->vm_flags & VM_SOFTDIRTY))
1292 					continue;
1293 				vm_flags_clear(vma, VM_SOFTDIRTY);
1294 				vma_set_page_prot(vma);
1295 			}
1296 
1297 			inc_tlb_flush_pending(mm);
1298 			mmu_notifier_range_init(&range, MMU_NOTIFY_SOFT_DIRTY,
1299 						0, mm, 0, -1UL);
1300 			mmu_notifier_invalidate_range_start(&range);
1301 		}
1302 		walk_page_range(mm, 0, -1, &clear_refs_walk_ops, &cp);
1303 		if (type == CLEAR_REFS_SOFT_DIRTY) {
1304 			mmu_notifier_invalidate_range_end(&range);
1305 			flush_tlb_mm(mm);
1306 			dec_tlb_flush_pending(mm);
1307 		}
1308 out_unlock:
1309 		mmap_write_unlock(mm);
1310 out_mm:
1311 		mmput(mm);
1312 	}
1313 	put_task_struct(task);
1314 
1315 	return count;
1316 }
1317 
1318 const struct file_operations proc_clear_refs_operations = {
1319 	.write		= clear_refs_write,
1320 	.llseek		= noop_llseek,
1321 };
1322 
1323 typedef struct {
1324 	u64 pme;
1325 } pagemap_entry_t;
1326 
1327 struct pagemapread {
1328 	int pos, len;		/* units: PM_ENTRY_BYTES, not bytes */
1329 	pagemap_entry_t *buffer;
1330 	bool show_pfn;
1331 };
1332 
1333 #define PAGEMAP_WALK_SIZE	(PMD_SIZE)
1334 #define PAGEMAP_WALK_MASK	(PMD_MASK)
1335 
1336 #define PM_ENTRY_BYTES		sizeof(pagemap_entry_t)
1337 #define PM_PFRAME_BITS		55
1338 #define PM_PFRAME_MASK		GENMASK_ULL(PM_PFRAME_BITS - 1, 0)
1339 #define PM_SOFT_DIRTY		BIT_ULL(55)
1340 #define PM_MMAP_EXCLUSIVE	BIT_ULL(56)
1341 #define PM_UFFD_WP		BIT_ULL(57)
1342 #define PM_FILE			BIT_ULL(61)
1343 #define PM_SWAP			BIT_ULL(62)
1344 #define PM_PRESENT		BIT_ULL(63)
1345 
1346 #define PM_END_OF_BUFFER    1
1347 
1348 static inline pagemap_entry_t make_pme(u64 frame, u64 flags)
1349 {
1350 	return (pagemap_entry_t) { .pme = (frame & PM_PFRAME_MASK) | flags };
1351 }
1352 
1353 static int add_to_pagemap(unsigned long addr, pagemap_entry_t *pme,
1354 			  struct pagemapread *pm)
1355 {
1356 	pm->buffer[pm->pos++] = *pme;
1357 	if (pm->pos >= pm->len)
1358 		return PM_END_OF_BUFFER;
1359 	return 0;
1360 }
1361 
1362 static int pagemap_pte_hole(unsigned long start, unsigned long end,
1363 			    __always_unused int depth, struct mm_walk *walk)
1364 {
1365 	struct pagemapread *pm = walk->private;
1366 	unsigned long addr = start;
1367 	int err = 0;
1368 
1369 	while (addr < end) {
1370 		struct vm_area_struct *vma = find_vma(walk->mm, addr);
1371 		pagemap_entry_t pme = make_pme(0, 0);
1372 		/* End of address space hole, which we mark as non-present. */
1373 		unsigned long hole_end;
1374 
1375 		if (vma)
1376 			hole_end = min(end, vma->vm_start);
1377 		else
1378 			hole_end = end;
1379 
1380 		for (; addr < hole_end; addr += PAGE_SIZE) {
1381 			err = add_to_pagemap(addr, &pme, pm);
1382 			if (err)
1383 				goto out;
1384 		}
1385 
1386 		if (!vma)
1387 			break;
1388 
1389 		/* Addresses in the VMA. */
1390 		if (vma->vm_flags & VM_SOFTDIRTY)
1391 			pme = make_pme(0, PM_SOFT_DIRTY);
1392 		for (; addr < min(end, vma->vm_end); addr += PAGE_SIZE) {
1393 			err = add_to_pagemap(addr, &pme, pm);
1394 			if (err)
1395 				goto out;
1396 		}
1397 	}
1398 out:
1399 	return err;
1400 }
1401 
1402 static pagemap_entry_t pte_to_pagemap_entry(struct pagemapread *pm,
1403 		struct vm_area_struct *vma, unsigned long addr, pte_t pte)
1404 {
1405 	u64 frame = 0, flags = 0;
1406 	struct page *page = NULL;
1407 	bool migration = false;
1408 
1409 	if (pte_present(pte)) {
1410 		if (pm->show_pfn)
1411 			frame = pte_pfn(pte);
1412 		flags |= PM_PRESENT;
1413 		page = vm_normal_page(vma, addr, pte);
1414 		if (pte_soft_dirty(pte))
1415 			flags |= PM_SOFT_DIRTY;
1416 		if (pte_uffd_wp(pte))
1417 			flags |= PM_UFFD_WP;
1418 	} else if (is_swap_pte(pte)) {
1419 		swp_entry_t entry;
1420 		if (pte_swp_soft_dirty(pte))
1421 			flags |= PM_SOFT_DIRTY;
1422 		if (pte_swp_uffd_wp(pte))
1423 			flags |= PM_UFFD_WP;
1424 		entry = pte_to_swp_entry(pte);
1425 		if (pm->show_pfn) {
1426 			pgoff_t offset;
1427 			/*
1428 			 * For PFN swap offsets, keeping the offset field
1429 			 * to be PFN only to be compatible with old smaps.
1430 			 */
1431 			if (is_pfn_swap_entry(entry))
1432 				offset = swp_offset_pfn(entry);
1433 			else
1434 				offset = swp_offset(entry);
1435 			frame = swp_type(entry) |
1436 			    (offset << MAX_SWAPFILES_SHIFT);
1437 		}
1438 		flags |= PM_SWAP;
1439 		migration = is_migration_entry(entry);
1440 		if (is_pfn_swap_entry(entry))
1441 			page = pfn_swap_entry_to_page(entry);
1442 		if (pte_marker_entry_uffd_wp(entry))
1443 			flags |= PM_UFFD_WP;
1444 	}
1445 
1446 	if (page && !PageAnon(page))
1447 		flags |= PM_FILE;
1448 	if (page && !migration && page_mapcount(page) == 1)
1449 		flags |= PM_MMAP_EXCLUSIVE;
1450 	if (vma->vm_flags & VM_SOFTDIRTY)
1451 		flags |= PM_SOFT_DIRTY;
1452 
1453 	return make_pme(frame, flags);
1454 }
1455 
1456 static int pagemap_pmd_range(pmd_t *pmdp, unsigned long addr, unsigned long end,
1457 			     struct mm_walk *walk)
1458 {
1459 	struct vm_area_struct *vma = walk->vma;
1460 	struct pagemapread *pm = walk->private;
1461 	spinlock_t *ptl;
1462 	pte_t *pte, *orig_pte;
1463 	int err = 0;
1464 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1465 	bool migration = false;
1466 
1467 	ptl = pmd_trans_huge_lock(pmdp, vma);
1468 	if (ptl) {
1469 		u64 flags = 0, frame = 0;
1470 		pmd_t pmd = *pmdp;
1471 		struct page *page = NULL;
1472 
1473 		if (vma->vm_flags & VM_SOFTDIRTY)
1474 			flags |= PM_SOFT_DIRTY;
1475 
1476 		if (pmd_present(pmd)) {
1477 			page = pmd_page(pmd);
1478 
1479 			flags |= PM_PRESENT;
1480 			if (pmd_soft_dirty(pmd))
1481 				flags |= PM_SOFT_DIRTY;
1482 			if (pmd_uffd_wp(pmd))
1483 				flags |= PM_UFFD_WP;
1484 			if (pm->show_pfn)
1485 				frame = pmd_pfn(pmd) +
1486 					((addr & ~PMD_MASK) >> PAGE_SHIFT);
1487 		}
1488 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1489 		else if (is_swap_pmd(pmd)) {
1490 			swp_entry_t entry = pmd_to_swp_entry(pmd);
1491 			unsigned long offset;
1492 
1493 			if (pm->show_pfn) {
1494 				if (is_pfn_swap_entry(entry))
1495 					offset = swp_offset_pfn(entry);
1496 				else
1497 					offset = swp_offset(entry);
1498 				offset = offset +
1499 					((addr & ~PMD_MASK) >> PAGE_SHIFT);
1500 				frame = swp_type(entry) |
1501 					(offset << MAX_SWAPFILES_SHIFT);
1502 			}
1503 			flags |= PM_SWAP;
1504 			if (pmd_swp_soft_dirty(pmd))
1505 				flags |= PM_SOFT_DIRTY;
1506 			if (pmd_swp_uffd_wp(pmd))
1507 				flags |= PM_UFFD_WP;
1508 			VM_BUG_ON(!is_pmd_migration_entry(pmd));
1509 			migration = is_migration_entry(entry);
1510 			page = pfn_swap_entry_to_page(entry);
1511 		}
1512 #endif
1513 
1514 		if (page && !migration && page_mapcount(page) == 1)
1515 			flags |= PM_MMAP_EXCLUSIVE;
1516 
1517 		for (; addr != end; addr += PAGE_SIZE) {
1518 			pagemap_entry_t pme = make_pme(frame, flags);
1519 
1520 			err = add_to_pagemap(addr, &pme, pm);
1521 			if (err)
1522 				break;
1523 			if (pm->show_pfn) {
1524 				if (flags & PM_PRESENT)
1525 					frame++;
1526 				else if (flags & PM_SWAP)
1527 					frame += (1 << MAX_SWAPFILES_SHIFT);
1528 			}
1529 		}
1530 		spin_unlock(ptl);
1531 		return err;
1532 	}
1533 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1534 
1535 	/*
1536 	 * We can assume that @vma always points to a valid one and @end never
1537 	 * goes beyond vma->vm_end.
1538 	 */
1539 	orig_pte = pte = pte_offset_map_lock(walk->mm, pmdp, addr, &ptl);
1540 	if (!pte) {
1541 		walk->action = ACTION_AGAIN;
1542 		return err;
1543 	}
1544 	for (; addr < end; pte++, addr += PAGE_SIZE) {
1545 		pagemap_entry_t pme;
1546 
1547 		pme = pte_to_pagemap_entry(pm, vma, addr, ptep_get(pte));
1548 		err = add_to_pagemap(addr, &pme, pm);
1549 		if (err)
1550 			break;
1551 	}
1552 	pte_unmap_unlock(orig_pte, ptl);
1553 
1554 	cond_resched();
1555 
1556 	return err;
1557 }
1558 
1559 #ifdef CONFIG_HUGETLB_PAGE
1560 /* This function walks within one hugetlb entry in the single call */
1561 static int pagemap_hugetlb_range(pte_t *ptep, unsigned long hmask,
1562 				 unsigned long addr, unsigned long end,
1563 				 struct mm_walk *walk)
1564 {
1565 	struct pagemapread *pm = walk->private;
1566 	struct vm_area_struct *vma = walk->vma;
1567 	u64 flags = 0, frame = 0;
1568 	int err = 0;
1569 	pte_t pte;
1570 
1571 	if (vma->vm_flags & VM_SOFTDIRTY)
1572 		flags |= PM_SOFT_DIRTY;
1573 
1574 	pte = huge_ptep_get(ptep);
1575 	if (pte_present(pte)) {
1576 		struct page *page = pte_page(pte);
1577 
1578 		if (!PageAnon(page))
1579 			flags |= PM_FILE;
1580 
1581 		if (page_mapcount(page) == 1)
1582 			flags |= PM_MMAP_EXCLUSIVE;
1583 
1584 		if (huge_pte_uffd_wp(pte))
1585 			flags |= PM_UFFD_WP;
1586 
1587 		flags |= PM_PRESENT;
1588 		if (pm->show_pfn)
1589 			frame = pte_pfn(pte) +
1590 				((addr & ~hmask) >> PAGE_SHIFT);
1591 	} else if (pte_swp_uffd_wp_any(pte)) {
1592 		flags |= PM_UFFD_WP;
1593 	}
1594 
1595 	for (; addr != end; addr += PAGE_SIZE) {
1596 		pagemap_entry_t pme = make_pme(frame, flags);
1597 
1598 		err = add_to_pagemap(addr, &pme, pm);
1599 		if (err)
1600 			return err;
1601 		if (pm->show_pfn && (flags & PM_PRESENT))
1602 			frame++;
1603 	}
1604 
1605 	cond_resched();
1606 
1607 	return err;
1608 }
1609 #else
1610 #define pagemap_hugetlb_range	NULL
1611 #endif /* HUGETLB_PAGE */
1612 
1613 static const struct mm_walk_ops pagemap_ops = {
1614 	.pmd_entry	= pagemap_pmd_range,
1615 	.pte_hole	= pagemap_pte_hole,
1616 	.hugetlb_entry	= pagemap_hugetlb_range,
1617 	.walk_lock	= PGWALK_RDLOCK,
1618 };
1619 
1620 /*
1621  * /proc/pid/pagemap - an array mapping virtual pages to pfns
1622  *
1623  * For each page in the address space, this file contains one 64-bit entry
1624  * consisting of the following:
1625  *
1626  * Bits 0-54  page frame number (PFN) if present
1627  * Bits 0-4   swap type if swapped
1628  * Bits 5-54  swap offset if swapped
1629  * Bit  55    pte is soft-dirty (see Documentation/admin-guide/mm/soft-dirty.rst)
1630  * Bit  56    page exclusively mapped
1631  * Bit  57    pte is uffd-wp write-protected
1632  * Bits 58-60 zero
1633  * Bit  61    page is file-page or shared-anon
1634  * Bit  62    page swapped
1635  * Bit  63    page present
1636  *
1637  * If the page is not present but in swap, then the PFN contains an
1638  * encoding of the swap file number and the page's offset into the
1639  * swap. Unmapped pages return a null PFN. This allows determining
1640  * precisely which pages are mapped (or in swap) and comparing mapped
1641  * pages between processes.
1642  *
1643  * Efficient users of this interface will use /proc/pid/maps to
1644  * determine which areas of memory are actually mapped and llseek to
1645  * skip over unmapped regions.
1646  */
1647 static ssize_t pagemap_read(struct file *file, char __user *buf,
1648 			    size_t count, loff_t *ppos)
1649 {
1650 	struct mm_struct *mm = file->private_data;
1651 	struct pagemapread pm;
1652 	unsigned long src;
1653 	unsigned long svpfn;
1654 	unsigned long start_vaddr;
1655 	unsigned long end_vaddr;
1656 	int ret = 0, copied = 0;
1657 
1658 	if (!mm || !mmget_not_zero(mm))
1659 		goto out;
1660 
1661 	ret = -EINVAL;
1662 	/* file position must be aligned */
1663 	if ((*ppos % PM_ENTRY_BYTES) || (count % PM_ENTRY_BYTES))
1664 		goto out_mm;
1665 
1666 	ret = 0;
1667 	if (!count)
1668 		goto out_mm;
1669 
1670 	/* do not disclose physical addresses: attack vector */
1671 	pm.show_pfn = file_ns_capable(file, &init_user_ns, CAP_SYS_ADMIN);
1672 
1673 	pm.len = (PAGEMAP_WALK_SIZE >> PAGE_SHIFT);
1674 	pm.buffer = kmalloc_array(pm.len, PM_ENTRY_BYTES, GFP_KERNEL);
1675 	ret = -ENOMEM;
1676 	if (!pm.buffer)
1677 		goto out_mm;
1678 
1679 	src = *ppos;
1680 	svpfn = src / PM_ENTRY_BYTES;
1681 	end_vaddr = mm->task_size;
1682 
1683 	/* watch out for wraparound */
1684 	start_vaddr = end_vaddr;
1685 	if (svpfn <= (ULONG_MAX >> PAGE_SHIFT)) {
1686 		unsigned long end;
1687 
1688 		ret = mmap_read_lock_killable(mm);
1689 		if (ret)
1690 			goto out_free;
1691 		start_vaddr = untagged_addr_remote(mm, svpfn << PAGE_SHIFT);
1692 		mmap_read_unlock(mm);
1693 
1694 		end = start_vaddr + ((count / PM_ENTRY_BYTES) << PAGE_SHIFT);
1695 		if (end >= start_vaddr && end < mm->task_size)
1696 			end_vaddr = end;
1697 	}
1698 
1699 	/* Ensure the address is inside the task */
1700 	if (start_vaddr > mm->task_size)
1701 		start_vaddr = end_vaddr;
1702 
1703 	ret = 0;
1704 	while (count && (start_vaddr < end_vaddr)) {
1705 		int len;
1706 		unsigned long end;
1707 
1708 		pm.pos = 0;
1709 		end = (start_vaddr + PAGEMAP_WALK_SIZE) & PAGEMAP_WALK_MASK;
1710 		/* overflow ? */
1711 		if (end < start_vaddr || end > end_vaddr)
1712 			end = end_vaddr;
1713 		ret = mmap_read_lock_killable(mm);
1714 		if (ret)
1715 			goto out_free;
1716 		ret = walk_page_range(mm, start_vaddr, end, &pagemap_ops, &pm);
1717 		mmap_read_unlock(mm);
1718 		start_vaddr = end;
1719 
1720 		len = min(count, PM_ENTRY_BYTES * pm.pos);
1721 		if (copy_to_user(buf, pm.buffer, len)) {
1722 			ret = -EFAULT;
1723 			goto out_free;
1724 		}
1725 		copied += len;
1726 		buf += len;
1727 		count -= len;
1728 	}
1729 	*ppos += copied;
1730 	if (!ret || ret == PM_END_OF_BUFFER)
1731 		ret = copied;
1732 
1733 out_free:
1734 	kfree(pm.buffer);
1735 out_mm:
1736 	mmput(mm);
1737 out:
1738 	return ret;
1739 }
1740 
1741 static int pagemap_open(struct inode *inode, struct file *file)
1742 {
1743 	struct mm_struct *mm;
1744 
1745 	mm = proc_mem_open(inode, PTRACE_MODE_READ);
1746 	if (IS_ERR(mm))
1747 		return PTR_ERR(mm);
1748 	file->private_data = mm;
1749 	return 0;
1750 }
1751 
1752 static int pagemap_release(struct inode *inode, struct file *file)
1753 {
1754 	struct mm_struct *mm = file->private_data;
1755 
1756 	if (mm)
1757 		mmdrop(mm);
1758 	return 0;
1759 }
1760 
1761 #define PM_SCAN_CATEGORIES	(PAGE_IS_WPALLOWED | PAGE_IS_WRITTEN |	\
1762 				 PAGE_IS_FILE |	PAGE_IS_PRESENT |	\
1763 				 PAGE_IS_SWAPPED | PAGE_IS_PFNZERO |	\
1764 				 PAGE_IS_HUGE)
1765 #define PM_SCAN_FLAGS		(PM_SCAN_WP_MATCHING | PM_SCAN_CHECK_WPASYNC)
1766 
1767 struct pagemap_scan_private {
1768 	struct pm_scan_arg arg;
1769 	unsigned long masks_of_interest, cur_vma_category;
1770 	struct page_region *vec_buf;
1771 	unsigned long vec_buf_len, vec_buf_index, found_pages;
1772 	struct page_region __user *vec_out;
1773 };
1774 
1775 static unsigned long pagemap_page_category(struct pagemap_scan_private *p,
1776 					   struct vm_area_struct *vma,
1777 					   unsigned long addr, pte_t pte)
1778 {
1779 	unsigned long categories = 0;
1780 
1781 	if (pte_present(pte)) {
1782 		struct page *page;
1783 
1784 		categories |= PAGE_IS_PRESENT;
1785 		if (!pte_uffd_wp(pte))
1786 			categories |= PAGE_IS_WRITTEN;
1787 
1788 		if (p->masks_of_interest & PAGE_IS_FILE) {
1789 			page = vm_normal_page(vma, addr, pte);
1790 			if (page && !PageAnon(page))
1791 				categories |= PAGE_IS_FILE;
1792 		}
1793 
1794 		if (is_zero_pfn(pte_pfn(pte)))
1795 			categories |= PAGE_IS_PFNZERO;
1796 	} else if (is_swap_pte(pte)) {
1797 		swp_entry_t swp;
1798 
1799 		categories |= PAGE_IS_SWAPPED;
1800 		if (!pte_swp_uffd_wp_any(pte))
1801 			categories |= PAGE_IS_WRITTEN;
1802 
1803 		if (p->masks_of_interest & PAGE_IS_FILE) {
1804 			swp = pte_to_swp_entry(pte);
1805 			if (is_pfn_swap_entry(swp) &&
1806 			    !PageAnon(pfn_swap_entry_to_page(swp)))
1807 				categories |= PAGE_IS_FILE;
1808 		}
1809 	}
1810 
1811 	return categories;
1812 }
1813 
1814 static void make_uffd_wp_pte(struct vm_area_struct *vma,
1815 			     unsigned long addr, pte_t *pte)
1816 {
1817 	pte_t ptent = ptep_get(pte);
1818 
1819 	if (pte_present(ptent)) {
1820 		pte_t old_pte;
1821 
1822 		old_pte = ptep_modify_prot_start(vma, addr, pte);
1823 		ptent = pte_mkuffd_wp(ptent);
1824 		ptep_modify_prot_commit(vma, addr, pte, old_pte, ptent);
1825 	} else if (is_swap_pte(ptent)) {
1826 		ptent = pte_swp_mkuffd_wp(ptent);
1827 		set_pte_at(vma->vm_mm, addr, pte, ptent);
1828 	} else {
1829 		set_pte_at(vma->vm_mm, addr, pte,
1830 			   make_pte_marker(PTE_MARKER_UFFD_WP));
1831 	}
1832 }
1833 
1834 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1835 static unsigned long pagemap_thp_category(struct pagemap_scan_private *p,
1836 					  struct vm_area_struct *vma,
1837 					  unsigned long addr, pmd_t pmd)
1838 {
1839 	unsigned long categories = PAGE_IS_HUGE;
1840 
1841 	if (pmd_present(pmd)) {
1842 		struct page *page;
1843 
1844 		categories |= PAGE_IS_PRESENT;
1845 		if (!pmd_uffd_wp(pmd))
1846 			categories |= PAGE_IS_WRITTEN;
1847 
1848 		if (p->masks_of_interest & PAGE_IS_FILE) {
1849 			page = vm_normal_page_pmd(vma, addr, pmd);
1850 			if (page && !PageAnon(page))
1851 				categories |= PAGE_IS_FILE;
1852 		}
1853 
1854 		if (is_zero_pfn(pmd_pfn(pmd)))
1855 			categories |= PAGE_IS_PFNZERO;
1856 	} else if (is_swap_pmd(pmd)) {
1857 		swp_entry_t swp;
1858 
1859 		categories |= PAGE_IS_SWAPPED;
1860 		if (!pmd_swp_uffd_wp(pmd))
1861 			categories |= PAGE_IS_WRITTEN;
1862 
1863 		if (p->masks_of_interest & PAGE_IS_FILE) {
1864 			swp = pmd_to_swp_entry(pmd);
1865 			if (is_pfn_swap_entry(swp) &&
1866 			    !PageAnon(pfn_swap_entry_to_page(swp)))
1867 				categories |= PAGE_IS_FILE;
1868 		}
1869 	}
1870 
1871 	return categories;
1872 }
1873 
1874 static void make_uffd_wp_pmd(struct vm_area_struct *vma,
1875 			     unsigned long addr, pmd_t *pmdp)
1876 {
1877 	pmd_t old, pmd = *pmdp;
1878 
1879 	if (pmd_present(pmd)) {
1880 		old = pmdp_invalidate_ad(vma, addr, pmdp);
1881 		pmd = pmd_mkuffd_wp(old);
1882 		set_pmd_at(vma->vm_mm, addr, pmdp, pmd);
1883 	} else if (is_migration_entry(pmd_to_swp_entry(pmd))) {
1884 		pmd = pmd_swp_mkuffd_wp(pmd);
1885 		set_pmd_at(vma->vm_mm, addr, pmdp, pmd);
1886 	}
1887 }
1888 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1889 
1890 #ifdef CONFIG_HUGETLB_PAGE
1891 static unsigned long pagemap_hugetlb_category(pte_t pte)
1892 {
1893 	unsigned long categories = PAGE_IS_HUGE;
1894 
1895 	/*
1896 	 * According to pagemap_hugetlb_range(), file-backed HugeTLB
1897 	 * page cannot be swapped. So PAGE_IS_FILE is not checked for
1898 	 * swapped pages.
1899 	 */
1900 	if (pte_present(pte)) {
1901 		categories |= PAGE_IS_PRESENT;
1902 		if (!huge_pte_uffd_wp(pte))
1903 			categories |= PAGE_IS_WRITTEN;
1904 		if (!PageAnon(pte_page(pte)))
1905 			categories |= PAGE_IS_FILE;
1906 		if (is_zero_pfn(pte_pfn(pte)))
1907 			categories |= PAGE_IS_PFNZERO;
1908 	} else if (is_swap_pte(pte)) {
1909 		categories |= PAGE_IS_SWAPPED;
1910 		if (!pte_swp_uffd_wp_any(pte))
1911 			categories |= PAGE_IS_WRITTEN;
1912 	}
1913 
1914 	return categories;
1915 }
1916 
1917 static void make_uffd_wp_huge_pte(struct vm_area_struct *vma,
1918 				  unsigned long addr, pte_t *ptep,
1919 				  pte_t ptent)
1920 {
1921 	unsigned long psize;
1922 
1923 	if (is_hugetlb_entry_hwpoisoned(ptent) || is_pte_marker(ptent))
1924 		return;
1925 
1926 	psize = huge_page_size(hstate_vma(vma));
1927 
1928 	if (is_hugetlb_entry_migration(ptent))
1929 		set_huge_pte_at(vma->vm_mm, addr, ptep,
1930 				pte_swp_mkuffd_wp(ptent), psize);
1931 	else if (!huge_pte_none(ptent))
1932 		huge_ptep_modify_prot_commit(vma, addr, ptep, ptent,
1933 					     huge_pte_mkuffd_wp(ptent));
1934 	else
1935 		set_huge_pte_at(vma->vm_mm, addr, ptep,
1936 				make_pte_marker(PTE_MARKER_UFFD_WP), psize);
1937 }
1938 #endif /* CONFIG_HUGETLB_PAGE */
1939 
1940 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLB_PAGE)
1941 static void pagemap_scan_backout_range(struct pagemap_scan_private *p,
1942 				       unsigned long addr, unsigned long end)
1943 {
1944 	struct page_region *cur_buf = &p->vec_buf[p->vec_buf_index];
1945 
1946 	if (cur_buf->start != addr)
1947 		cur_buf->end = addr;
1948 	else
1949 		cur_buf->start = cur_buf->end = 0;
1950 
1951 	p->found_pages -= (end - addr) / PAGE_SIZE;
1952 }
1953 #endif
1954 
1955 static bool pagemap_scan_is_interesting_page(unsigned long categories,
1956 					     const struct pagemap_scan_private *p)
1957 {
1958 	categories ^= p->arg.category_inverted;
1959 	if ((categories & p->arg.category_mask) != p->arg.category_mask)
1960 		return false;
1961 	if (p->arg.category_anyof_mask && !(categories & p->arg.category_anyof_mask))
1962 		return false;
1963 
1964 	return true;
1965 }
1966 
1967 static bool pagemap_scan_is_interesting_vma(unsigned long categories,
1968 					    const struct pagemap_scan_private *p)
1969 {
1970 	unsigned long required = p->arg.category_mask & PAGE_IS_WPALLOWED;
1971 
1972 	categories ^= p->arg.category_inverted;
1973 	if ((categories & required) != required)
1974 		return false;
1975 
1976 	return true;
1977 }
1978 
1979 static int pagemap_scan_test_walk(unsigned long start, unsigned long end,
1980 				  struct mm_walk *walk)
1981 {
1982 	struct pagemap_scan_private *p = walk->private;
1983 	struct vm_area_struct *vma = walk->vma;
1984 	unsigned long vma_category = 0;
1985 
1986 	if (userfaultfd_wp_async(vma) && userfaultfd_wp_use_markers(vma))
1987 		vma_category |= PAGE_IS_WPALLOWED;
1988 	else if (p->arg.flags & PM_SCAN_CHECK_WPASYNC)
1989 		return -EPERM;
1990 
1991 	if (vma->vm_flags & VM_PFNMAP)
1992 		return 1;
1993 
1994 	if (!pagemap_scan_is_interesting_vma(vma_category, p))
1995 		return 1;
1996 
1997 	p->cur_vma_category = vma_category;
1998 
1999 	return 0;
2000 }
2001 
2002 static bool pagemap_scan_push_range(unsigned long categories,
2003 				    struct pagemap_scan_private *p,
2004 				    unsigned long addr, unsigned long end)
2005 {
2006 	struct page_region *cur_buf = &p->vec_buf[p->vec_buf_index];
2007 
2008 	/*
2009 	 * When there is no output buffer provided at all, the sentinel values
2010 	 * won't match here. There is no other way for `cur_buf->end` to be
2011 	 * non-zero other than it being non-empty.
2012 	 */
2013 	if (addr == cur_buf->end && categories == cur_buf->categories) {
2014 		cur_buf->end = end;
2015 		return true;
2016 	}
2017 
2018 	if (cur_buf->end) {
2019 		if (p->vec_buf_index >= p->vec_buf_len - 1)
2020 			return false;
2021 
2022 		cur_buf = &p->vec_buf[++p->vec_buf_index];
2023 	}
2024 
2025 	cur_buf->start = addr;
2026 	cur_buf->end = end;
2027 	cur_buf->categories = categories;
2028 
2029 	return true;
2030 }
2031 
2032 static int pagemap_scan_output(unsigned long categories,
2033 			       struct pagemap_scan_private *p,
2034 			       unsigned long addr, unsigned long *end)
2035 {
2036 	unsigned long n_pages, total_pages;
2037 	int ret = 0;
2038 
2039 	if (!p->vec_buf)
2040 		return 0;
2041 
2042 	categories &= p->arg.return_mask;
2043 
2044 	n_pages = (*end - addr) / PAGE_SIZE;
2045 	if (check_add_overflow(p->found_pages, n_pages, &total_pages) ||
2046 	    total_pages > p->arg.max_pages) {
2047 		size_t n_too_much = total_pages - p->arg.max_pages;
2048 		*end -= n_too_much * PAGE_SIZE;
2049 		n_pages -= n_too_much;
2050 		ret = -ENOSPC;
2051 	}
2052 
2053 	if (!pagemap_scan_push_range(categories, p, addr, *end)) {
2054 		*end = addr;
2055 		n_pages = 0;
2056 		ret = -ENOSPC;
2057 	}
2058 
2059 	p->found_pages += n_pages;
2060 	if (ret)
2061 		p->arg.walk_end = *end;
2062 
2063 	return ret;
2064 }
2065 
2066 static int pagemap_scan_thp_entry(pmd_t *pmd, unsigned long start,
2067 				  unsigned long end, struct mm_walk *walk)
2068 {
2069 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2070 	struct pagemap_scan_private *p = walk->private;
2071 	struct vm_area_struct *vma = walk->vma;
2072 	unsigned long categories;
2073 	spinlock_t *ptl;
2074 	int ret = 0;
2075 
2076 	ptl = pmd_trans_huge_lock(pmd, vma);
2077 	if (!ptl)
2078 		return -ENOENT;
2079 
2080 	categories = p->cur_vma_category |
2081 		     pagemap_thp_category(p, vma, start, *pmd);
2082 
2083 	if (!pagemap_scan_is_interesting_page(categories, p))
2084 		goto out_unlock;
2085 
2086 	ret = pagemap_scan_output(categories, p, start, &end);
2087 	if (start == end)
2088 		goto out_unlock;
2089 
2090 	if (~p->arg.flags & PM_SCAN_WP_MATCHING)
2091 		goto out_unlock;
2092 	if (~categories & PAGE_IS_WRITTEN)
2093 		goto out_unlock;
2094 
2095 	/*
2096 	 * Break huge page into small pages if the WP operation
2097 	 * needs to be performed on a portion of the huge page.
2098 	 */
2099 	if (end != start + HPAGE_SIZE) {
2100 		spin_unlock(ptl);
2101 		split_huge_pmd(vma, pmd, start);
2102 		pagemap_scan_backout_range(p, start, end);
2103 		/* Report as if there was no THP */
2104 		return -ENOENT;
2105 	}
2106 
2107 	make_uffd_wp_pmd(vma, start, pmd);
2108 	flush_tlb_range(vma, start, end);
2109 out_unlock:
2110 	spin_unlock(ptl);
2111 	return ret;
2112 #else /* !CONFIG_TRANSPARENT_HUGEPAGE */
2113 	return -ENOENT;
2114 #endif
2115 }
2116 
2117 static int pagemap_scan_pmd_entry(pmd_t *pmd, unsigned long start,
2118 				  unsigned long end, struct mm_walk *walk)
2119 {
2120 	struct pagemap_scan_private *p = walk->private;
2121 	struct vm_area_struct *vma = walk->vma;
2122 	unsigned long addr, flush_end = 0;
2123 	pte_t *pte, *start_pte;
2124 	spinlock_t *ptl;
2125 	int ret;
2126 
2127 	arch_enter_lazy_mmu_mode();
2128 
2129 	ret = pagemap_scan_thp_entry(pmd, start, end, walk);
2130 	if (ret != -ENOENT) {
2131 		arch_leave_lazy_mmu_mode();
2132 		return ret;
2133 	}
2134 
2135 	ret = 0;
2136 	start_pte = pte = pte_offset_map_lock(vma->vm_mm, pmd, start, &ptl);
2137 	if (!pte) {
2138 		arch_leave_lazy_mmu_mode();
2139 		walk->action = ACTION_AGAIN;
2140 		return 0;
2141 	}
2142 
2143 	if (!p->vec_out) {
2144 		/* Fast path for performing exclusive WP */
2145 		for (addr = start; addr != end; pte++, addr += PAGE_SIZE) {
2146 			if (pte_uffd_wp(ptep_get(pte)))
2147 				continue;
2148 			make_uffd_wp_pte(vma, addr, pte);
2149 			if (!flush_end)
2150 				start = addr;
2151 			flush_end = addr + PAGE_SIZE;
2152 		}
2153 		goto flush_and_return;
2154 	}
2155 
2156 	if (!p->arg.category_anyof_mask && !p->arg.category_inverted &&
2157 	    p->arg.category_mask == PAGE_IS_WRITTEN &&
2158 	    p->arg.return_mask == PAGE_IS_WRITTEN) {
2159 		for (addr = start; addr < end; pte++, addr += PAGE_SIZE) {
2160 			unsigned long next = addr + PAGE_SIZE;
2161 
2162 			if (pte_uffd_wp(ptep_get(pte)))
2163 				continue;
2164 			ret = pagemap_scan_output(p->cur_vma_category | PAGE_IS_WRITTEN,
2165 						  p, addr, &next);
2166 			if (next == addr)
2167 				break;
2168 			if (~p->arg.flags & PM_SCAN_WP_MATCHING)
2169 				continue;
2170 			make_uffd_wp_pte(vma, addr, pte);
2171 			if (!flush_end)
2172 				start = addr;
2173 			flush_end = next;
2174 		}
2175 		goto flush_and_return;
2176 	}
2177 
2178 	for (addr = start; addr != end; pte++, addr += PAGE_SIZE) {
2179 		unsigned long categories = p->cur_vma_category |
2180 					   pagemap_page_category(p, vma, addr, ptep_get(pte));
2181 		unsigned long next = addr + PAGE_SIZE;
2182 
2183 		if (!pagemap_scan_is_interesting_page(categories, p))
2184 			continue;
2185 
2186 		ret = pagemap_scan_output(categories, p, addr, &next);
2187 		if (next == addr)
2188 			break;
2189 
2190 		if (~p->arg.flags & PM_SCAN_WP_MATCHING)
2191 			continue;
2192 		if (~categories & PAGE_IS_WRITTEN)
2193 			continue;
2194 
2195 		make_uffd_wp_pte(vma, addr, pte);
2196 		if (!flush_end)
2197 			start = addr;
2198 		flush_end = next;
2199 	}
2200 
2201 flush_and_return:
2202 	if (flush_end)
2203 		flush_tlb_range(vma, start, addr);
2204 
2205 	pte_unmap_unlock(start_pte, ptl);
2206 	arch_leave_lazy_mmu_mode();
2207 
2208 	cond_resched();
2209 	return ret;
2210 }
2211 
2212 #ifdef CONFIG_HUGETLB_PAGE
2213 static int pagemap_scan_hugetlb_entry(pte_t *ptep, unsigned long hmask,
2214 				      unsigned long start, unsigned long end,
2215 				      struct mm_walk *walk)
2216 {
2217 	struct pagemap_scan_private *p = walk->private;
2218 	struct vm_area_struct *vma = walk->vma;
2219 	unsigned long categories;
2220 	spinlock_t *ptl;
2221 	int ret = 0;
2222 	pte_t pte;
2223 
2224 	if (~p->arg.flags & PM_SCAN_WP_MATCHING) {
2225 		/* Go the short route when not write-protecting pages. */
2226 
2227 		pte = huge_ptep_get(ptep);
2228 		categories = p->cur_vma_category | pagemap_hugetlb_category(pte);
2229 
2230 		if (!pagemap_scan_is_interesting_page(categories, p))
2231 			return 0;
2232 
2233 		return pagemap_scan_output(categories, p, start, &end);
2234 	}
2235 
2236 	i_mmap_lock_write(vma->vm_file->f_mapping);
2237 	ptl = huge_pte_lock(hstate_vma(vma), vma->vm_mm, ptep);
2238 
2239 	pte = huge_ptep_get(ptep);
2240 	categories = p->cur_vma_category | pagemap_hugetlb_category(pte);
2241 
2242 	if (!pagemap_scan_is_interesting_page(categories, p))
2243 		goto out_unlock;
2244 
2245 	ret = pagemap_scan_output(categories, p, start, &end);
2246 	if (start == end)
2247 		goto out_unlock;
2248 
2249 	if (~categories & PAGE_IS_WRITTEN)
2250 		goto out_unlock;
2251 
2252 	if (end != start + HPAGE_SIZE) {
2253 		/* Partial HugeTLB page WP isn't possible. */
2254 		pagemap_scan_backout_range(p, start, end);
2255 		p->arg.walk_end = start;
2256 		ret = 0;
2257 		goto out_unlock;
2258 	}
2259 
2260 	make_uffd_wp_huge_pte(vma, start, ptep, pte);
2261 	flush_hugetlb_tlb_range(vma, start, end);
2262 
2263 out_unlock:
2264 	spin_unlock(ptl);
2265 	i_mmap_unlock_write(vma->vm_file->f_mapping);
2266 
2267 	return ret;
2268 }
2269 #else
2270 #define pagemap_scan_hugetlb_entry NULL
2271 #endif
2272 
2273 static int pagemap_scan_pte_hole(unsigned long addr, unsigned long end,
2274 				 int depth, struct mm_walk *walk)
2275 {
2276 	struct pagemap_scan_private *p = walk->private;
2277 	struct vm_area_struct *vma = walk->vma;
2278 	int ret, err;
2279 
2280 	if (!vma || !pagemap_scan_is_interesting_page(p->cur_vma_category, p))
2281 		return 0;
2282 
2283 	ret = pagemap_scan_output(p->cur_vma_category, p, addr, &end);
2284 	if (addr == end)
2285 		return ret;
2286 
2287 	if (~p->arg.flags & PM_SCAN_WP_MATCHING)
2288 		return ret;
2289 
2290 	err = uffd_wp_range(vma, addr, end - addr, true);
2291 	if (err < 0)
2292 		ret = err;
2293 
2294 	return ret;
2295 }
2296 
2297 static const struct mm_walk_ops pagemap_scan_ops = {
2298 	.test_walk = pagemap_scan_test_walk,
2299 	.pmd_entry = pagemap_scan_pmd_entry,
2300 	.pte_hole = pagemap_scan_pte_hole,
2301 	.hugetlb_entry = pagemap_scan_hugetlb_entry,
2302 };
2303 
2304 static int pagemap_scan_get_args(struct pm_scan_arg *arg,
2305 				 unsigned long uarg)
2306 {
2307 	if (copy_from_user(arg, (void __user *)uarg, sizeof(*arg)))
2308 		return -EFAULT;
2309 
2310 	if (arg->size != sizeof(struct pm_scan_arg))
2311 		return -EINVAL;
2312 
2313 	/* Validate requested features */
2314 	if (arg->flags & ~PM_SCAN_FLAGS)
2315 		return -EINVAL;
2316 	if ((arg->category_inverted | arg->category_mask |
2317 	     arg->category_anyof_mask | arg->return_mask) & ~PM_SCAN_CATEGORIES)
2318 		return -EINVAL;
2319 
2320 	arg->start = untagged_addr((unsigned long)arg->start);
2321 	arg->end = untagged_addr((unsigned long)arg->end);
2322 	arg->vec = untagged_addr((unsigned long)arg->vec);
2323 
2324 	/* Validate memory pointers */
2325 	if (!IS_ALIGNED(arg->start, PAGE_SIZE))
2326 		return -EINVAL;
2327 	if (!access_ok((void __user *)(long)arg->start, arg->end - arg->start))
2328 		return -EFAULT;
2329 	if (!arg->vec && arg->vec_len)
2330 		return -EINVAL;
2331 	if (arg->vec && !access_ok((void __user *)(long)arg->vec,
2332 			      arg->vec_len * sizeof(struct page_region)))
2333 		return -EFAULT;
2334 
2335 	/* Fixup default values */
2336 	arg->end = ALIGN(arg->end, PAGE_SIZE);
2337 	arg->walk_end = 0;
2338 	if (!arg->max_pages)
2339 		arg->max_pages = ULONG_MAX;
2340 
2341 	return 0;
2342 }
2343 
2344 static int pagemap_scan_writeback_args(struct pm_scan_arg *arg,
2345 				       unsigned long uargl)
2346 {
2347 	struct pm_scan_arg __user *uarg	= (void __user *)uargl;
2348 
2349 	if (copy_to_user(&uarg->walk_end, &arg->walk_end, sizeof(arg->walk_end)))
2350 		return -EFAULT;
2351 
2352 	return 0;
2353 }
2354 
2355 static int pagemap_scan_init_bounce_buffer(struct pagemap_scan_private *p)
2356 {
2357 	if (!p->arg.vec_len)
2358 		return 0;
2359 
2360 	p->vec_buf_len = min_t(size_t, PAGEMAP_WALK_SIZE >> PAGE_SHIFT,
2361 			       p->arg.vec_len);
2362 	p->vec_buf = kmalloc_array(p->vec_buf_len, sizeof(*p->vec_buf),
2363 				   GFP_KERNEL);
2364 	if (!p->vec_buf)
2365 		return -ENOMEM;
2366 
2367 	p->vec_buf->start = p->vec_buf->end = 0;
2368 	p->vec_out = (struct page_region __user *)(long)p->arg.vec;
2369 
2370 	return 0;
2371 }
2372 
2373 static long pagemap_scan_flush_buffer(struct pagemap_scan_private *p)
2374 {
2375 	const struct page_region *buf = p->vec_buf;
2376 	long n = p->vec_buf_index;
2377 
2378 	if (!p->vec_buf)
2379 		return 0;
2380 
2381 	if (buf[n].end != buf[n].start)
2382 		n++;
2383 
2384 	if (!n)
2385 		return 0;
2386 
2387 	if (copy_to_user(p->vec_out, buf, n * sizeof(*buf)))
2388 		return -EFAULT;
2389 
2390 	p->arg.vec_len -= n;
2391 	p->vec_out += n;
2392 
2393 	p->vec_buf_index = 0;
2394 	p->vec_buf_len = min_t(size_t, p->vec_buf_len, p->arg.vec_len);
2395 	p->vec_buf->start = p->vec_buf->end = 0;
2396 
2397 	return n;
2398 }
2399 
2400 static long do_pagemap_scan(struct mm_struct *mm, unsigned long uarg)
2401 {
2402 	struct mmu_notifier_range range;
2403 	struct pagemap_scan_private p = {0};
2404 	unsigned long walk_start;
2405 	size_t n_ranges_out = 0;
2406 	int ret;
2407 
2408 	ret = pagemap_scan_get_args(&p.arg, uarg);
2409 	if (ret)
2410 		return ret;
2411 
2412 	p.masks_of_interest = p.arg.category_mask | p.arg.category_anyof_mask |
2413 			      p.arg.return_mask;
2414 	ret = pagemap_scan_init_bounce_buffer(&p);
2415 	if (ret)
2416 		return ret;
2417 
2418 	/* Protection change for the range is going to happen. */
2419 	if (p.arg.flags & PM_SCAN_WP_MATCHING) {
2420 		mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_VMA, 0,
2421 					mm, p.arg.start, p.arg.end);
2422 		mmu_notifier_invalidate_range_start(&range);
2423 	}
2424 
2425 	for (walk_start = p.arg.start; walk_start < p.arg.end;
2426 			walk_start = p.arg.walk_end) {
2427 		long n_out;
2428 
2429 		if (fatal_signal_pending(current)) {
2430 			ret = -EINTR;
2431 			break;
2432 		}
2433 
2434 		ret = mmap_read_lock_killable(mm);
2435 		if (ret)
2436 			break;
2437 		ret = walk_page_range(mm, walk_start, p.arg.end,
2438 				      &pagemap_scan_ops, &p);
2439 		mmap_read_unlock(mm);
2440 
2441 		n_out = pagemap_scan_flush_buffer(&p);
2442 		if (n_out < 0)
2443 			ret = n_out;
2444 		else
2445 			n_ranges_out += n_out;
2446 
2447 		if (ret != -ENOSPC)
2448 			break;
2449 
2450 		if (p.arg.vec_len == 0 || p.found_pages == p.arg.max_pages)
2451 			break;
2452 	}
2453 
2454 	/* ENOSPC signifies early stop (buffer full) from the walk. */
2455 	if (!ret || ret == -ENOSPC)
2456 		ret = n_ranges_out;
2457 
2458 	/* The walk_end isn't set when ret is zero */
2459 	if (!p.arg.walk_end)
2460 		p.arg.walk_end = p.arg.end;
2461 	if (pagemap_scan_writeback_args(&p.arg, uarg))
2462 		ret = -EFAULT;
2463 
2464 	if (p.arg.flags & PM_SCAN_WP_MATCHING)
2465 		mmu_notifier_invalidate_range_end(&range);
2466 
2467 	kfree(p.vec_buf);
2468 	return ret;
2469 }
2470 
2471 static long do_pagemap_cmd(struct file *file, unsigned int cmd,
2472 			   unsigned long arg)
2473 {
2474 	struct mm_struct *mm = file->private_data;
2475 
2476 	switch (cmd) {
2477 	case PAGEMAP_SCAN:
2478 		return do_pagemap_scan(mm, arg);
2479 
2480 	default:
2481 		return -EINVAL;
2482 	}
2483 }
2484 
2485 const struct file_operations proc_pagemap_operations = {
2486 	.llseek		= mem_lseek, /* borrow this */
2487 	.read		= pagemap_read,
2488 	.open		= pagemap_open,
2489 	.release	= pagemap_release,
2490 	.unlocked_ioctl = do_pagemap_cmd,
2491 	.compat_ioctl	= do_pagemap_cmd,
2492 };
2493 #endif /* CONFIG_PROC_PAGE_MONITOR */
2494 
2495 #ifdef CONFIG_NUMA
2496 
2497 struct numa_maps {
2498 	unsigned long pages;
2499 	unsigned long anon;
2500 	unsigned long active;
2501 	unsigned long writeback;
2502 	unsigned long mapcount_max;
2503 	unsigned long dirty;
2504 	unsigned long swapcache;
2505 	unsigned long node[MAX_NUMNODES];
2506 };
2507 
2508 struct numa_maps_private {
2509 	struct proc_maps_private proc_maps;
2510 	struct numa_maps md;
2511 };
2512 
2513 static void gather_stats(struct page *page, struct numa_maps *md, int pte_dirty,
2514 			unsigned long nr_pages)
2515 {
2516 	int count = page_mapcount(page);
2517 
2518 	md->pages += nr_pages;
2519 	if (pte_dirty || PageDirty(page))
2520 		md->dirty += nr_pages;
2521 
2522 	if (PageSwapCache(page))
2523 		md->swapcache += nr_pages;
2524 
2525 	if (PageActive(page) || PageUnevictable(page))
2526 		md->active += nr_pages;
2527 
2528 	if (PageWriteback(page))
2529 		md->writeback += nr_pages;
2530 
2531 	if (PageAnon(page))
2532 		md->anon += nr_pages;
2533 
2534 	if (count > md->mapcount_max)
2535 		md->mapcount_max = count;
2536 
2537 	md->node[page_to_nid(page)] += nr_pages;
2538 }
2539 
2540 static struct page *can_gather_numa_stats(pte_t pte, struct vm_area_struct *vma,
2541 		unsigned long addr)
2542 {
2543 	struct page *page;
2544 	int nid;
2545 
2546 	if (!pte_present(pte))
2547 		return NULL;
2548 
2549 	page = vm_normal_page(vma, addr, pte);
2550 	if (!page || is_zone_device_page(page))
2551 		return NULL;
2552 
2553 	if (PageReserved(page))
2554 		return NULL;
2555 
2556 	nid = page_to_nid(page);
2557 	if (!node_isset(nid, node_states[N_MEMORY]))
2558 		return NULL;
2559 
2560 	return page;
2561 }
2562 
2563 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2564 static struct page *can_gather_numa_stats_pmd(pmd_t pmd,
2565 					      struct vm_area_struct *vma,
2566 					      unsigned long addr)
2567 {
2568 	struct page *page;
2569 	int nid;
2570 
2571 	if (!pmd_present(pmd))
2572 		return NULL;
2573 
2574 	page = vm_normal_page_pmd(vma, addr, pmd);
2575 	if (!page)
2576 		return NULL;
2577 
2578 	if (PageReserved(page))
2579 		return NULL;
2580 
2581 	nid = page_to_nid(page);
2582 	if (!node_isset(nid, node_states[N_MEMORY]))
2583 		return NULL;
2584 
2585 	return page;
2586 }
2587 #endif
2588 
2589 static int gather_pte_stats(pmd_t *pmd, unsigned long addr,
2590 		unsigned long end, struct mm_walk *walk)
2591 {
2592 	struct numa_maps *md = walk->private;
2593 	struct vm_area_struct *vma = walk->vma;
2594 	spinlock_t *ptl;
2595 	pte_t *orig_pte;
2596 	pte_t *pte;
2597 
2598 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2599 	ptl = pmd_trans_huge_lock(pmd, vma);
2600 	if (ptl) {
2601 		struct page *page;
2602 
2603 		page = can_gather_numa_stats_pmd(*pmd, vma, addr);
2604 		if (page)
2605 			gather_stats(page, md, pmd_dirty(*pmd),
2606 				     HPAGE_PMD_SIZE/PAGE_SIZE);
2607 		spin_unlock(ptl);
2608 		return 0;
2609 	}
2610 #endif
2611 	orig_pte = pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
2612 	if (!pte) {
2613 		walk->action = ACTION_AGAIN;
2614 		return 0;
2615 	}
2616 	do {
2617 		pte_t ptent = ptep_get(pte);
2618 		struct page *page = can_gather_numa_stats(ptent, vma, addr);
2619 		if (!page)
2620 			continue;
2621 		gather_stats(page, md, pte_dirty(ptent), 1);
2622 
2623 	} while (pte++, addr += PAGE_SIZE, addr != end);
2624 	pte_unmap_unlock(orig_pte, ptl);
2625 	cond_resched();
2626 	return 0;
2627 }
2628 #ifdef CONFIG_HUGETLB_PAGE
2629 static int gather_hugetlb_stats(pte_t *pte, unsigned long hmask,
2630 		unsigned long addr, unsigned long end, struct mm_walk *walk)
2631 {
2632 	pte_t huge_pte = huge_ptep_get(pte);
2633 	struct numa_maps *md;
2634 	struct page *page;
2635 
2636 	if (!pte_present(huge_pte))
2637 		return 0;
2638 
2639 	page = pte_page(huge_pte);
2640 
2641 	md = walk->private;
2642 	gather_stats(page, md, pte_dirty(huge_pte), 1);
2643 	return 0;
2644 }
2645 
2646 #else
2647 static int gather_hugetlb_stats(pte_t *pte, unsigned long hmask,
2648 		unsigned long addr, unsigned long end, struct mm_walk *walk)
2649 {
2650 	return 0;
2651 }
2652 #endif
2653 
2654 static const struct mm_walk_ops show_numa_ops = {
2655 	.hugetlb_entry = gather_hugetlb_stats,
2656 	.pmd_entry = gather_pte_stats,
2657 	.walk_lock = PGWALK_RDLOCK,
2658 };
2659 
2660 /*
2661  * Display pages allocated per node and memory policy via /proc.
2662  */
2663 static int show_numa_map(struct seq_file *m, void *v)
2664 {
2665 	struct numa_maps_private *numa_priv = m->private;
2666 	struct proc_maps_private *proc_priv = &numa_priv->proc_maps;
2667 	struct vm_area_struct *vma = v;
2668 	struct numa_maps *md = &numa_priv->md;
2669 	struct file *file = vma->vm_file;
2670 	struct mm_struct *mm = vma->vm_mm;
2671 	char buffer[64];
2672 	struct mempolicy *pol;
2673 	pgoff_t ilx;
2674 	int nid;
2675 
2676 	if (!mm)
2677 		return 0;
2678 
2679 	/* Ensure we start with an empty set of numa_maps statistics. */
2680 	memset(md, 0, sizeof(*md));
2681 
2682 	pol = __get_vma_policy(vma, vma->vm_start, &ilx);
2683 	if (pol) {
2684 		mpol_to_str(buffer, sizeof(buffer), pol);
2685 		mpol_cond_put(pol);
2686 	} else {
2687 		mpol_to_str(buffer, sizeof(buffer), proc_priv->task_mempolicy);
2688 	}
2689 
2690 	seq_printf(m, "%08lx %s", vma->vm_start, buffer);
2691 
2692 	if (file) {
2693 		seq_puts(m, " file=");
2694 		seq_path(m, file_user_path(file), "\n\t= ");
2695 	} else if (vma_is_initial_heap(vma)) {
2696 		seq_puts(m, " heap");
2697 	} else if (vma_is_initial_stack(vma)) {
2698 		seq_puts(m, " stack");
2699 	}
2700 
2701 	if (is_vm_hugetlb_page(vma))
2702 		seq_puts(m, " huge");
2703 
2704 	/* mmap_lock is held by m_start */
2705 	walk_page_vma(vma, &show_numa_ops, md);
2706 
2707 	if (!md->pages)
2708 		goto out;
2709 
2710 	if (md->anon)
2711 		seq_printf(m, " anon=%lu", md->anon);
2712 
2713 	if (md->dirty)
2714 		seq_printf(m, " dirty=%lu", md->dirty);
2715 
2716 	if (md->pages != md->anon && md->pages != md->dirty)
2717 		seq_printf(m, " mapped=%lu", md->pages);
2718 
2719 	if (md->mapcount_max > 1)
2720 		seq_printf(m, " mapmax=%lu", md->mapcount_max);
2721 
2722 	if (md->swapcache)
2723 		seq_printf(m, " swapcache=%lu", md->swapcache);
2724 
2725 	if (md->active < md->pages && !is_vm_hugetlb_page(vma))
2726 		seq_printf(m, " active=%lu", md->active);
2727 
2728 	if (md->writeback)
2729 		seq_printf(m, " writeback=%lu", md->writeback);
2730 
2731 	for_each_node_state(nid, N_MEMORY)
2732 		if (md->node[nid])
2733 			seq_printf(m, " N%d=%lu", nid, md->node[nid]);
2734 
2735 	seq_printf(m, " kernelpagesize_kB=%lu", vma_kernel_pagesize(vma) >> 10);
2736 out:
2737 	seq_putc(m, '\n');
2738 	return 0;
2739 }
2740 
2741 static const struct seq_operations proc_pid_numa_maps_op = {
2742 	.start  = m_start,
2743 	.next   = m_next,
2744 	.stop   = m_stop,
2745 	.show   = show_numa_map,
2746 };
2747 
2748 static int pid_numa_maps_open(struct inode *inode, struct file *file)
2749 {
2750 	return proc_maps_open(inode, file, &proc_pid_numa_maps_op,
2751 				sizeof(struct numa_maps_private));
2752 }
2753 
2754 const struct file_operations proc_pid_numa_maps_operations = {
2755 	.open		= pid_numa_maps_open,
2756 	.read		= seq_read,
2757 	.llseek		= seq_lseek,
2758 	.release	= proc_map_release,
2759 };
2760 
2761 #endif /* CONFIG_NUMA */
2762