xref: /linux/fs/proc/task_mmu.c (revision 088e88be5a380cc4e81963a9a02815da465d144f)
1 // SPDX-License-Identifier: GPL-2.0
2 #include <linux/mm.h>
3 #include <linux/vmacache.h>
4 #include <linux/hugetlb.h>
5 #include <linux/huge_mm.h>
6 #include <linux/mount.h>
7 #include <linux/seq_file.h>
8 #include <linux/highmem.h>
9 #include <linux/ptrace.h>
10 #include <linux/slab.h>
11 #include <linux/pagemap.h>
12 #include <linux/mempolicy.h>
13 #include <linux/rmap.h>
14 #include <linux/swap.h>
15 #include <linux/sched/mm.h>
16 #include <linux/swapops.h>
17 #include <linux/mmu_notifier.h>
18 #include <linux/page_idle.h>
19 #include <linux/shmem_fs.h>
20 #include <linux/uaccess.h>
21 #include <linux/pkeys.h>
22 
23 #include <asm/elf.h>
24 #include <asm/tlb.h>
25 #include <asm/tlbflush.h>
26 #include "internal.h"
27 
28 #define SEQ_PUT_DEC(str, val) \
29 		seq_put_decimal_ull_width(m, str, (val) << (PAGE_SHIFT-10), 8)
30 void task_mem(struct seq_file *m, struct mm_struct *mm)
31 {
32 	unsigned long text, lib, swap, anon, file, shmem;
33 	unsigned long hiwater_vm, total_vm, hiwater_rss, total_rss;
34 
35 	anon = get_mm_counter(mm, MM_ANONPAGES);
36 	file = get_mm_counter(mm, MM_FILEPAGES);
37 	shmem = get_mm_counter(mm, MM_SHMEMPAGES);
38 
39 	/*
40 	 * Note: to minimize their overhead, mm maintains hiwater_vm and
41 	 * hiwater_rss only when about to *lower* total_vm or rss.  Any
42 	 * collector of these hiwater stats must therefore get total_vm
43 	 * and rss too, which will usually be the higher.  Barriers? not
44 	 * worth the effort, such snapshots can always be inconsistent.
45 	 */
46 	hiwater_vm = total_vm = mm->total_vm;
47 	if (hiwater_vm < mm->hiwater_vm)
48 		hiwater_vm = mm->hiwater_vm;
49 	hiwater_rss = total_rss = anon + file + shmem;
50 	if (hiwater_rss < mm->hiwater_rss)
51 		hiwater_rss = mm->hiwater_rss;
52 
53 	/* split executable areas between text and lib */
54 	text = PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK);
55 	text = min(text, mm->exec_vm << PAGE_SHIFT);
56 	lib = (mm->exec_vm << PAGE_SHIFT) - text;
57 
58 	swap = get_mm_counter(mm, MM_SWAPENTS);
59 	SEQ_PUT_DEC("VmPeak:\t", hiwater_vm);
60 	SEQ_PUT_DEC(" kB\nVmSize:\t", total_vm);
61 	SEQ_PUT_DEC(" kB\nVmLck:\t", mm->locked_vm);
62 	SEQ_PUT_DEC(" kB\nVmPin:\t", atomic64_read(&mm->pinned_vm));
63 	SEQ_PUT_DEC(" kB\nVmHWM:\t", hiwater_rss);
64 	SEQ_PUT_DEC(" kB\nVmRSS:\t", total_rss);
65 	SEQ_PUT_DEC(" kB\nRssAnon:\t", anon);
66 	SEQ_PUT_DEC(" kB\nRssFile:\t", file);
67 	SEQ_PUT_DEC(" kB\nRssShmem:\t", shmem);
68 	SEQ_PUT_DEC(" kB\nVmData:\t", mm->data_vm);
69 	SEQ_PUT_DEC(" kB\nVmStk:\t", mm->stack_vm);
70 	seq_put_decimal_ull_width(m,
71 		    " kB\nVmExe:\t", text >> 10, 8);
72 	seq_put_decimal_ull_width(m,
73 		    " kB\nVmLib:\t", lib >> 10, 8);
74 	seq_put_decimal_ull_width(m,
75 		    " kB\nVmPTE:\t", mm_pgtables_bytes(mm) >> 10, 8);
76 	SEQ_PUT_DEC(" kB\nVmSwap:\t", swap);
77 	seq_puts(m, " kB\n");
78 	hugetlb_report_usage(m, mm);
79 }
80 #undef SEQ_PUT_DEC
81 
82 unsigned long task_vsize(struct mm_struct *mm)
83 {
84 	return PAGE_SIZE * mm->total_vm;
85 }
86 
87 unsigned long task_statm(struct mm_struct *mm,
88 			 unsigned long *shared, unsigned long *text,
89 			 unsigned long *data, unsigned long *resident)
90 {
91 	*shared = get_mm_counter(mm, MM_FILEPAGES) +
92 			get_mm_counter(mm, MM_SHMEMPAGES);
93 	*text = (PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK))
94 								>> PAGE_SHIFT;
95 	*data = mm->data_vm + mm->stack_vm;
96 	*resident = *shared + get_mm_counter(mm, MM_ANONPAGES);
97 	return mm->total_vm;
98 }
99 
100 #ifdef CONFIG_NUMA
101 /*
102  * Save get_task_policy() for show_numa_map().
103  */
104 static void hold_task_mempolicy(struct proc_maps_private *priv)
105 {
106 	struct task_struct *task = priv->task;
107 
108 	task_lock(task);
109 	priv->task_mempolicy = get_task_policy(task);
110 	mpol_get(priv->task_mempolicy);
111 	task_unlock(task);
112 }
113 static void release_task_mempolicy(struct proc_maps_private *priv)
114 {
115 	mpol_put(priv->task_mempolicy);
116 }
117 #else
118 static void hold_task_mempolicy(struct proc_maps_private *priv)
119 {
120 }
121 static void release_task_mempolicy(struct proc_maps_private *priv)
122 {
123 }
124 #endif
125 
126 static void vma_stop(struct proc_maps_private *priv)
127 {
128 	struct mm_struct *mm = priv->mm;
129 
130 	release_task_mempolicy(priv);
131 	up_read(&mm->mmap_sem);
132 	mmput(mm);
133 }
134 
135 static struct vm_area_struct *
136 m_next_vma(struct proc_maps_private *priv, struct vm_area_struct *vma)
137 {
138 	if (vma == priv->tail_vma)
139 		return NULL;
140 	return vma->vm_next ?: priv->tail_vma;
141 }
142 
143 static void m_cache_vma(struct seq_file *m, struct vm_area_struct *vma)
144 {
145 	if (m->count < m->size)	/* vma is copied successfully */
146 		m->version = m_next_vma(m->private, vma) ? vma->vm_end : -1UL;
147 }
148 
149 static void *m_start(struct seq_file *m, loff_t *ppos)
150 {
151 	struct proc_maps_private *priv = m->private;
152 	unsigned long last_addr = m->version;
153 	struct mm_struct *mm;
154 	struct vm_area_struct *vma;
155 	unsigned int pos = *ppos;
156 
157 	/* See m_cache_vma(). Zero at the start or after lseek. */
158 	if (last_addr == -1UL)
159 		return NULL;
160 
161 	priv->task = get_proc_task(priv->inode);
162 	if (!priv->task)
163 		return ERR_PTR(-ESRCH);
164 
165 	mm = priv->mm;
166 	if (!mm || !mmget_not_zero(mm))
167 		return NULL;
168 
169 	if (down_read_killable(&mm->mmap_sem)) {
170 		mmput(mm);
171 		return ERR_PTR(-EINTR);
172 	}
173 
174 	hold_task_mempolicy(priv);
175 	priv->tail_vma = get_gate_vma(mm);
176 
177 	if (last_addr) {
178 		vma = find_vma(mm, last_addr - 1);
179 		if (vma && vma->vm_start <= last_addr)
180 			vma = m_next_vma(priv, vma);
181 		if (vma)
182 			return vma;
183 	}
184 
185 	m->version = 0;
186 	if (pos < mm->map_count) {
187 		for (vma = mm->mmap; pos; pos--) {
188 			m->version = vma->vm_start;
189 			vma = vma->vm_next;
190 		}
191 		return vma;
192 	}
193 
194 	/* we do not bother to update m->version in this case */
195 	if (pos == mm->map_count && priv->tail_vma)
196 		return priv->tail_vma;
197 
198 	vma_stop(priv);
199 	return NULL;
200 }
201 
202 static void *m_next(struct seq_file *m, void *v, loff_t *pos)
203 {
204 	struct proc_maps_private *priv = m->private;
205 	struct vm_area_struct *next;
206 
207 	(*pos)++;
208 	next = m_next_vma(priv, v);
209 	if (!next)
210 		vma_stop(priv);
211 	return next;
212 }
213 
214 static void m_stop(struct seq_file *m, void *v)
215 {
216 	struct proc_maps_private *priv = m->private;
217 
218 	if (!IS_ERR_OR_NULL(v))
219 		vma_stop(priv);
220 	if (priv->task) {
221 		put_task_struct(priv->task);
222 		priv->task = NULL;
223 	}
224 }
225 
226 static int proc_maps_open(struct inode *inode, struct file *file,
227 			const struct seq_operations *ops, int psize)
228 {
229 	struct proc_maps_private *priv = __seq_open_private(file, ops, psize);
230 
231 	if (!priv)
232 		return -ENOMEM;
233 
234 	priv->inode = inode;
235 	priv->mm = proc_mem_open(inode, PTRACE_MODE_READ);
236 	if (IS_ERR(priv->mm)) {
237 		int err = PTR_ERR(priv->mm);
238 
239 		seq_release_private(inode, file);
240 		return err;
241 	}
242 
243 	return 0;
244 }
245 
246 static int proc_map_release(struct inode *inode, struct file *file)
247 {
248 	struct seq_file *seq = file->private_data;
249 	struct proc_maps_private *priv = seq->private;
250 
251 	if (priv->mm)
252 		mmdrop(priv->mm);
253 
254 	return seq_release_private(inode, file);
255 }
256 
257 static int do_maps_open(struct inode *inode, struct file *file,
258 			const struct seq_operations *ops)
259 {
260 	return proc_maps_open(inode, file, ops,
261 				sizeof(struct proc_maps_private));
262 }
263 
264 /*
265  * Indicate if the VMA is a stack for the given task; for
266  * /proc/PID/maps that is the stack of the main task.
267  */
268 static int is_stack(struct vm_area_struct *vma)
269 {
270 	/*
271 	 * We make no effort to guess what a given thread considers to be
272 	 * its "stack".  It's not even well-defined for programs written
273 	 * languages like Go.
274 	 */
275 	return vma->vm_start <= vma->vm_mm->start_stack &&
276 		vma->vm_end >= vma->vm_mm->start_stack;
277 }
278 
279 static void show_vma_header_prefix(struct seq_file *m,
280 				   unsigned long start, unsigned long end,
281 				   vm_flags_t flags, unsigned long long pgoff,
282 				   dev_t dev, unsigned long ino)
283 {
284 	seq_setwidth(m, 25 + sizeof(void *) * 6 - 1);
285 	seq_put_hex_ll(m, NULL, start, 8);
286 	seq_put_hex_ll(m, "-", end, 8);
287 	seq_putc(m, ' ');
288 	seq_putc(m, flags & VM_READ ? 'r' : '-');
289 	seq_putc(m, flags & VM_WRITE ? 'w' : '-');
290 	seq_putc(m, flags & VM_EXEC ? 'x' : '-');
291 	seq_putc(m, flags & VM_MAYSHARE ? 's' : 'p');
292 	seq_put_hex_ll(m, " ", pgoff, 8);
293 	seq_put_hex_ll(m, " ", MAJOR(dev), 2);
294 	seq_put_hex_ll(m, ":", MINOR(dev), 2);
295 	seq_put_decimal_ull(m, " ", ino);
296 	seq_putc(m, ' ');
297 }
298 
299 static void
300 show_map_vma(struct seq_file *m, struct vm_area_struct *vma)
301 {
302 	struct mm_struct *mm = vma->vm_mm;
303 	struct file *file = vma->vm_file;
304 	vm_flags_t flags = vma->vm_flags;
305 	unsigned long ino = 0;
306 	unsigned long long pgoff = 0;
307 	unsigned long start, end;
308 	dev_t dev = 0;
309 	const char *name = NULL;
310 
311 	if (file) {
312 		struct inode *inode = file_inode(vma->vm_file);
313 		dev = inode->i_sb->s_dev;
314 		ino = inode->i_ino;
315 		pgoff = ((loff_t)vma->vm_pgoff) << PAGE_SHIFT;
316 	}
317 
318 	start = vma->vm_start;
319 	end = vma->vm_end;
320 	show_vma_header_prefix(m, start, end, flags, pgoff, dev, ino);
321 
322 	/*
323 	 * Print the dentry name for named mappings, and a
324 	 * special [heap] marker for the heap:
325 	 */
326 	if (file) {
327 		seq_pad(m, ' ');
328 		seq_file_path(m, file, "\n");
329 		goto done;
330 	}
331 
332 	if (vma->vm_ops && vma->vm_ops->name) {
333 		name = vma->vm_ops->name(vma);
334 		if (name)
335 			goto done;
336 	}
337 
338 	name = arch_vma_name(vma);
339 	if (!name) {
340 		if (!mm) {
341 			name = "[vdso]";
342 			goto done;
343 		}
344 
345 		if (vma->vm_start <= mm->brk &&
346 		    vma->vm_end >= mm->start_brk) {
347 			name = "[heap]";
348 			goto done;
349 		}
350 
351 		if (is_stack(vma))
352 			name = "[stack]";
353 	}
354 
355 done:
356 	if (name) {
357 		seq_pad(m, ' ');
358 		seq_puts(m, name);
359 	}
360 	seq_putc(m, '\n');
361 }
362 
363 static int show_map(struct seq_file *m, void *v)
364 {
365 	show_map_vma(m, v);
366 	m_cache_vma(m, v);
367 	return 0;
368 }
369 
370 static const struct seq_operations proc_pid_maps_op = {
371 	.start	= m_start,
372 	.next	= m_next,
373 	.stop	= m_stop,
374 	.show	= show_map
375 };
376 
377 static int pid_maps_open(struct inode *inode, struct file *file)
378 {
379 	return do_maps_open(inode, file, &proc_pid_maps_op);
380 }
381 
382 const struct file_operations proc_pid_maps_operations = {
383 	.open		= pid_maps_open,
384 	.read		= seq_read,
385 	.llseek		= seq_lseek,
386 	.release	= proc_map_release,
387 };
388 
389 /*
390  * Proportional Set Size(PSS): my share of RSS.
391  *
392  * PSS of a process is the count of pages it has in memory, where each
393  * page is divided by the number of processes sharing it.  So if a
394  * process has 1000 pages all to itself, and 1000 shared with one other
395  * process, its PSS will be 1500.
396  *
397  * To keep (accumulated) division errors low, we adopt a 64bit
398  * fixed-point pss counter to minimize division errors. So (pss >>
399  * PSS_SHIFT) would be the real byte count.
400  *
401  * A shift of 12 before division means (assuming 4K page size):
402  * 	- 1M 3-user-pages add up to 8KB errors;
403  * 	- supports mapcount up to 2^24, or 16M;
404  * 	- supports PSS up to 2^52 bytes, or 4PB.
405  */
406 #define PSS_SHIFT 12
407 
408 #ifdef CONFIG_PROC_PAGE_MONITOR
409 struct mem_size_stats {
410 	unsigned long resident;
411 	unsigned long shared_clean;
412 	unsigned long shared_dirty;
413 	unsigned long private_clean;
414 	unsigned long private_dirty;
415 	unsigned long referenced;
416 	unsigned long anonymous;
417 	unsigned long lazyfree;
418 	unsigned long anonymous_thp;
419 	unsigned long shmem_thp;
420 	unsigned long swap;
421 	unsigned long shared_hugetlb;
422 	unsigned long private_hugetlb;
423 	u64 pss;
424 	u64 pss_anon;
425 	u64 pss_file;
426 	u64 pss_shmem;
427 	u64 pss_locked;
428 	u64 swap_pss;
429 	bool check_shmem_swap;
430 };
431 
432 static void smaps_page_accumulate(struct mem_size_stats *mss,
433 		struct page *page, unsigned long size, unsigned long pss,
434 		bool dirty, bool locked, bool private)
435 {
436 	mss->pss += pss;
437 
438 	if (PageAnon(page))
439 		mss->pss_anon += pss;
440 	else if (PageSwapBacked(page))
441 		mss->pss_shmem += pss;
442 	else
443 		mss->pss_file += pss;
444 
445 	if (locked)
446 		mss->pss_locked += pss;
447 
448 	if (dirty || PageDirty(page)) {
449 		if (private)
450 			mss->private_dirty += size;
451 		else
452 			mss->shared_dirty += size;
453 	} else {
454 		if (private)
455 			mss->private_clean += size;
456 		else
457 			mss->shared_clean += size;
458 	}
459 }
460 
461 static void smaps_account(struct mem_size_stats *mss, struct page *page,
462 		bool compound, bool young, bool dirty, bool locked)
463 {
464 	int i, nr = compound ? 1 << compound_order(page) : 1;
465 	unsigned long size = nr * PAGE_SIZE;
466 
467 	/*
468 	 * First accumulate quantities that depend only on |size| and the type
469 	 * of the compound page.
470 	 */
471 	if (PageAnon(page)) {
472 		mss->anonymous += size;
473 		if (!PageSwapBacked(page) && !dirty && !PageDirty(page))
474 			mss->lazyfree += size;
475 	}
476 
477 	mss->resident += size;
478 	/* Accumulate the size in pages that have been accessed. */
479 	if (young || page_is_young(page) || PageReferenced(page))
480 		mss->referenced += size;
481 
482 	/*
483 	 * Then accumulate quantities that may depend on sharing, or that may
484 	 * differ page-by-page.
485 	 *
486 	 * page_count(page) == 1 guarantees the page is mapped exactly once.
487 	 * If any subpage of the compound page mapped with PTE it would elevate
488 	 * page_count().
489 	 */
490 	if (page_count(page) == 1) {
491 		smaps_page_accumulate(mss, page, size, size << PSS_SHIFT, dirty,
492 			locked, true);
493 		return;
494 	}
495 	for (i = 0; i < nr; i++, page++) {
496 		int mapcount = page_mapcount(page);
497 		unsigned long pss = PAGE_SIZE << PSS_SHIFT;
498 		if (mapcount >= 2)
499 			pss /= mapcount;
500 		smaps_page_accumulate(mss, page, PAGE_SIZE, pss, dirty, locked,
501 				      mapcount < 2);
502 	}
503 }
504 
505 #ifdef CONFIG_SHMEM
506 static int smaps_pte_hole(unsigned long addr, unsigned long end,
507 		struct mm_walk *walk)
508 {
509 	struct mem_size_stats *mss = walk->private;
510 
511 	mss->swap += shmem_partial_swap_usage(
512 			walk->vma->vm_file->f_mapping, addr, end);
513 
514 	return 0;
515 }
516 #endif
517 
518 static void smaps_pte_entry(pte_t *pte, unsigned long addr,
519 		struct mm_walk *walk)
520 {
521 	struct mem_size_stats *mss = walk->private;
522 	struct vm_area_struct *vma = walk->vma;
523 	bool locked = !!(vma->vm_flags & VM_LOCKED);
524 	struct page *page = NULL;
525 
526 	if (pte_present(*pte)) {
527 		page = vm_normal_page(vma, addr, *pte);
528 	} else if (is_swap_pte(*pte)) {
529 		swp_entry_t swpent = pte_to_swp_entry(*pte);
530 
531 		if (!non_swap_entry(swpent)) {
532 			int mapcount;
533 
534 			mss->swap += PAGE_SIZE;
535 			mapcount = swp_swapcount(swpent);
536 			if (mapcount >= 2) {
537 				u64 pss_delta = (u64)PAGE_SIZE << PSS_SHIFT;
538 
539 				do_div(pss_delta, mapcount);
540 				mss->swap_pss += pss_delta;
541 			} else {
542 				mss->swap_pss += (u64)PAGE_SIZE << PSS_SHIFT;
543 			}
544 		} else if (is_migration_entry(swpent))
545 			page = migration_entry_to_page(swpent);
546 		else if (is_device_private_entry(swpent))
547 			page = device_private_entry_to_page(swpent);
548 	} else if (unlikely(IS_ENABLED(CONFIG_SHMEM) && mss->check_shmem_swap
549 							&& pte_none(*pte))) {
550 		page = find_get_entry(vma->vm_file->f_mapping,
551 						linear_page_index(vma, addr));
552 		if (!page)
553 			return;
554 
555 		if (xa_is_value(page))
556 			mss->swap += PAGE_SIZE;
557 		else
558 			put_page(page);
559 
560 		return;
561 	}
562 
563 	if (!page)
564 		return;
565 
566 	smaps_account(mss, page, false, pte_young(*pte), pte_dirty(*pte), locked);
567 }
568 
569 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
570 static void smaps_pmd_entry(pmd_t *pmd, unsigned long addr,
571 		struct mm_walk *walk)
572 {
573 	struct mem_size_stats *mss = walk->private;
574 	struct vm_area_struct *vma = walk->vma;
575 	bool locked = !!(vma->vm_flags & VM_LOCKED);
576 	struct page *page;
577 
578 	/* FOLL_DUMP will return -EFAULT on huge zero page */
579 	page = follow_trans_huge_pmd(vma, addr, pmd, FOLL_DUMP);
580 	if (IS_ERR_OR_NULL(page))
581 		return;
582 	if (PageAnon(page))
583 		mss->anonymous_thp += HPAGE_PMD_SIZE;
584 	else if (PageSwapBacked(page))
585 		mss->shmem_thp += HPAGE_PMD_SIZE;
586 	else if (is_zone_device_page(page))
587 		/* pass */;
588 	else
589 		VM_BUG_ON_PAGE(1, page);
590 	smaps_account(mss, page, true, pmd_young(*pmd), pmd_dirty(*pmd), locked);
591 }
592 #else
593 static void smaps_pmd_entry(pmd_t *pmd, unsigned long addr,
594 		struct mm_walk *walk)
595 {
596 }
597 #endif
598 
599 static int smaps_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
600 			   struct mm_walk *walk)
601 {
602 	struct vm_area_struct *vma = walk->vma;
603 	pte_t *pte;
604 	spinlock_t *ptl;
605 
606 	ptl = pmd_trans_huge_lock(pmd, vma);
607 	if (ptl) {
608 		if (pmd_present(*pmd))
609 			smaps_pmd_entry(pmd, addr, walk);
610 		spin_unlock(ptl);
611 		goto out;
612 	}
613 
614 	if (pmd_trans_unstable(pmd))
615 		goto out;
616 	/*
617 	 * The mmap_sem held all the way back in m_start() is what
618 	 * keeps khugepaged out of here and from collapsing things
619 	 * in here.
620 	 */
621 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
622 	for (; addr != end; pte++, addr += PAGE_SIZE)
623 		smaps_pte_entry(pte, addr, walk);
624 	pte_unmap_unlock(pte - 1, ptl);
625 out:
626 	cond_resched();
627 	return 0;
628 }
629 
630 static void show_smap_vma_flags(struct seq_file *m, struct vm_area_struct *vma)
631 {
632 	/*
633 	 * Don't forget to update Documentation/ on changes.
634 	 */
635 	static const char mnemonics[BITS_PER_LONG][2] = {
636 		/*
637 		 * In case if we meet a flag we don't know about.
638 		 */
639 		[0 ... (BITS_PER_LONG-1)] = "??",
640 
641 		[ilog2(VM_READ)]	= "rd",
642 		[ilog2(VM_WRITE)]	= "wr",
643 		[ilog2(VM_EXEC)]	= "ex",
644 		[ilog2(VM_SHARED)]	= "sh",
645 		[ilog2(VM_MAYREAD)]	= "mr",
646 		[ilog2(VM_MAYWRITE)]	= "mw",
647 		[ilog2(VM_MAYEXEC)]	= "me",
648 		[ilog2(VM_MAYSHARE)]	= "ms",
649 		[ilog2(VM_GROWSDOWN)]	= "gd",
650 		[ilog2(VM_PFNMAP)]	= "pf",
651 		[ilog2(VM_DENYWRITE)]	= "dw",
652 #ifdef CONFIG_X86_INTEL_MPX
653 		[ilog2(VM_MPX)]		= "mp",
654 #endif
655 		[ilog2(VM_LOCKED)]	= "lo",
656 		[ilog2(VM_IO)]		= "io",
657 		[ilog2(VM_SEQ_READ)]	= "sr",
658 		[ilog2(VM_RAND_READ)]	= "rr",
659 		[ilog2(VM_DONTCOPY)]	= "dc",
660 		[ilog2(VM_DONTEXPAND)]	= "de",
661 		[ilog2(VM_ACCOUNT)]	= "ac",
662 		[ilog2(VM_NORESERVE)]	= "nr",
663 		[ilog2(VM_HUGETLB)]	= "ht",
664 		[ilog2(VM_SYNC)]	= "sf",
665 		[ilog2(VM_ARCH_1)]	= "ar",
666 		[ilog2(VM_WIPEONFORK)]	= "wf",
667 		[ilog2(VM_DONTDUMP)]	= "dd",
668 #ifdef CONFIG_MEM_SOFT_DIRTY
669 		[ilog2(VM_SOFTDIRTY)]	= "sd",
670 #endif
671 		[ilog2(VM_MIXEDMAP)]	= "mm",
672 		[ilog2(VM_HUGEPAGE)]	= "hg",
673 		[ilog2(VM_NOHUGEPAGE)]	= "nh",
674 		[ilog2(VM_MERGEABLE)]	= "mg",
675 		[ilog2(VM_UFFD_MISSING)]= "um",
676 		[ilog2(VM_UFFD_WP)]	= "uw",
677 #ifdef CONFIG_ARCH_HAS_PKEYS
678 		/* These come out via ProtectionKey: */
679 		[ilog2(VM_PKEY_BIT0)]	= "",
680 		[ilog2(VM_PKEY_BIT1)]	= "",
681 		[ilog2(VM_PKEY_BIT2)]	= "",
682 		[ilog2(VM_PKEY_BIT3)]	= "",
683 #if VM_PKEY_BIT4
684 		[ilog2(VM_PKEY_BIT4)]	= "",
685 #endif
686 #endif /* CONFIG_ARCH_HAS_PKEYS */
687 	};
688 	size_t i;
689 
690 	seq_puts(m, "VmFlags: ");
691 	for (i = 0; i < BITS_PER_LONG; i++) {
692 		if (!mnemonics[i][0])
693 			continue;
694 		if (vma->vm_flags & (1UL << i)) {
695 			seq_putc(m, mnemonics[i][0]);
696 			seq_putc(m, mnemonics[i][1]);
697 			seq_putc(m, ' ');
698 		}
699 	}
700 	seq_putc(m, '\n');
701 }
702 
703 #ifdef CONFIG_HUGETLB_PAGE
704 static int smaps_hugetlb_range(pte_t *pte, unsigned long hmask,
705 				 unsigned long addr, unsigned long end,
706 				 struct mm_walk *walk)
707 {
708 	struct mem_size_stats *mss = walk->private;
709 	struct vm_area_struct *vma = walk->vma;
710 	struct page *page = NULL;
711 
712 	if (pte_present(*pte)) {
713 		page = vm_normal_page(vma, addr, *pte);
714 	} else if (is_swap_pte(*pte)) {
715 		swp_entry_t swpent = pte_to_swp_entry(*pte);
716 
717 		if (is_migration_entry(swpent))
718 			page = migration_entry_to_page(swpent);
719 		else if (is_device_private_entry(swpent))
720 			page = device_private_entry_to_page(swpent);
721 	}
722 	if (page) {
723 		int mapcount = page_mapcount(page);
724 
725 		if (mapcount >= 2)
726 			mss->shared_hugetlb += huge_page_size(hstate_vma(vma));
727 		else
728 			mss->private_hugetlb += huge_page_size(hstate_vma(vma));
729 	}
730 	return 0;
731 }
732 #endif /* HUGETLB_PAGE */
733 
734 static void smap_gather_stats(struct vm_area_struct *vma,
735 			     struct mem_size_stats *mss)
736 {
737 	struct mm_walk smaps_walk = {
738 		.pmd_entry = smaps_pte_range,
739 #ifdef CONFIG_HUGETLB_PAGE
740 		.hugetlb_entry = smaps_hugetlb_range,
741 #endif
742 		.mm = vma->vm_mm,
743 	};
744 
745 	smaps_walk.private = mss;
746 
747 #ifdef CONFIG_SHMEM
748 	/* In case of smaps_rollup, reset the value from previous vma */
749 	mss->check_shmem_swap = false;
750 	if (vma->vm_file && shmem_mapping(vma->vm_file->f_mapping)) {
751 		/*
752 		 * For shared or readonly shmem mappings we know that all
753 		 * swapped out pages belong to the shmem object, and we can
754 		 * obtain the swap value much more efficiently. For private
755 		 * writable mappings, we might have COW pages that are
756 		 * not affected by the parent swapped out pages of the shmem
757 		 * object, so we have to distinguish them during the page walk.
758 		 * Unless we know that the shmem object (or the part mapped by
759 		 * our VMA) has no swapped out pages at all.
760 		 */
761 		unsigned long shmem_swapped = shmem_swap_usage(vma);
762 
763 		if (!shmem_swapped || (vma->vm_flags & VM_SHARED) ||
764 					!(vma->vm_flags & VM_WRITE)) {
765 			mss->swap += shmem_swapped;
766 		} else {
767 			mss->check_shmem_swap = true;
768 			smaps_walk.pte_hole = smaps_pte_hole;
769 		}
770 	}
771 #endif
772 	/* mmap_sem is held in m_start */
773 	walk_page_vma(vma, &smaps_walk);
774 }
775 
776 #define SEQ_PUT_DEC(str, val) \
777 		seq_put_decimal_ull_width(m, str, (val) >> 10, 8)
778 
779 /* Show the contents common for smaps and smaps_rollup */
780 static void __show_smap(struct seq_file *m, const struct mem_size_stats *mss,
781 	bool rollup_mode)
782 {
783 	SEQ_PUT_DEC("Rss:            ", mss->resident);
784 	SEQ_PUT_DEC(" kB\nPss:            ", mss->pss >> PSS_SHIFT);
785 	if (rollup_mode) {
786 		/*
787 		 * These are meaningful only for smaps_rollup, otherwise two of
788 		 * them are zero, and the other one is the same as Pss.
789 		 */
790 		SEQ_PUT_DEC(" kB\nPss_Anon:       ",
791 			mss->pss_anon >> PSS_SHIFT);
792 		SEQ_PUT_DEC(" kB\nPss_File:       ",
793 			mss->pss_file >> PSS_SHIFT);
794 		SEQ_PUT_DEC(" kB\nPss_Shmem:      ",
795 			mss->pss_shmem >> PSS_SHIFT);
796 	}
797 	SEQ_PUT_DEC(" kB\nShared_Clean:   ", mss->shared_clean);
798 	SEQ_PUT_DEC(" kB\nShared_Dirty:   ", mss->shared_dirty);
799 	SEQ_PUT_DEC(" kB\nPrivate_Clean:  ", mss->private_clean);
800 	SEQ_PUT_DEC(" kB\nPrivate_Dirty:  ", mss->private_dirty);
801 	SEQ_PUT_DEC(" kB\nReferenced:     ", mss->referenced);
802 	SEQ_PUT_DEC(" kB\nAnonymous:      ", mss->anonymous);
803 	SEQ_PUT_DEC(" kB\nLazyFree:       ", mss->lazyfree);
804 	SEQ_PUT_DEC(" kB\nAnonHugePages:  ", mss->anonymous_thp);
805 	SEQ_PUT_DEC(" kB\nShmemPmdMapped: ", mss->shmem_thp);
806 	SEQ_PUT_DEC(" kB\nShared_Hugetlb: ", mss->shared_hugetlb);
807 	seq_put_decimal_ull_width(m, " kB\nPrivate_Hugetlb: ",
808 				  mss->private_hugetlb >> 10, 7);
809 	SEQ_PUT_DEC(" kB\nSwap:           ", mss->swap);
810 	SEQ_PUT_DEC(" kB\nSwapPss:        ",
811 					mss->swap_pss >> PSS_SHIFT);
812 	SEQ_PUT_DEC(" kB\nLocked:         ",
813 					mss->pss_locked >> PSS_SHIFT);
814 	seq_puts(m, " kB\n");
815 }
816 
817 static int show_smap(struct seq_file *m, void *v)
818 {
819 	struct vm_area_struct *vma = v;
820 	struct mem_size_stats mss;
821 
822 	memset(&mss, 0, sizeof(mss));
823 
824 	smap_gather_stats(vma, &mss);
825 
826 	show_map_vma(m, vma);
827 
828 	SEQ_PUT_DEC("Size:           ", vma->vm_end - vma->vm_start);
829 	SEQ_PUT_DEC(" kB\nKernelPageSize: ", vma_kernel_pagesize(vma));
830 	SEQ_PUT_DEC(" kB\nMMUPageSize:    ", vma_mmu_pagesize(vma));
831 	seq_puts(m, " kB\n");
832 
833 	__show_smap(m, &mss, false);
834 
835 	seq_printf(m, "THPeligible:		%d\n",
836 		   transparent_hugepage_enabled(vma));
837 
838 	if (arch_pkeys_enabled())
839 		seq_printf(m, "ProtectionKey:  %8u\n", vma_pkey(vma));
840 	show_smap_vma_flags(m, vma);
841 
842 	m_cache_vma(m, vma);
843 
844 	return 0;
845 }
846 
847 static int show_smaps_rollup(struct seq_file *m, void *v)
848 {
849 	struct proc_maps_private *priv = m->private;
850 	struct mem_size_stats mss;
851 	struct mm_struct *mm;
852 	struct vm_area_struct *vma;
853 	unsigned long last_vma_end = 0;
854 	int ret = 0;
855 
856 	priv->task = get_proc_task(priv->inode);
857 	if (!priv->task)
858 		return -ESRCH;
859 
860 	mm = priv->mm;
861 	if (!mm || !mmget_not_zero(mm)) {
862 		ret = -ESRCH;
863 		goto out_put_task;
864 	}
865 
866 	memset(&mss, 0, sizeof(mss));
867 
868 	ret = down_read_killable(&mm->mmap_sem);
869 	if (ret)
870 		goto out_put_mm;
871 
872 	hold_task_mempolicy(priv);
873 
874 	for (vma = priv->mm->mmap; vma; vma = vma->vm_next) {
875 		smap_gather_stats(vma, &mss);
876 		last_vma_end = vma->vm_end;
877 	}
878 
879 	show_vma_header_prefix(m, priv->mm->mmap->vm_start,
880 			       last_vma_end, 0, 0, 0, 0);
881 	seq_pad(m, ' ');
882 	seq_puts(m, "[rollup]\n");
883 
884 	__show_smap(m, &mss, true);
885 
886 	release_task_mempolicy(priv);
887 	up_read(&mm->mmap_sem);
888 
889 out_put_mm:
890 	mmput(mm);
891 out_put_task:
892 	put_task_struct(priv->task);
893 	priv->task = NULL;
894 
895 	return ret;
896 }
897 #undef SEQ_PUT_DEC
898 
899 static const struct seq_operations proc_pid_smaps_op = {
900 	.start	= m_start,
901 	.next	= m_next,
902 	.stop	= m_stop,
903 	.show	= show_smap
904 };
905 
906 static int pid_smaps_open(struct inode *inode, struct file *file)
907 {
908 	return do_maps_open(inode, file, &proc_pid_smaps_op);
909 }
910 
911 static int smaps_rollup_open(struct inode *inode, struct file *file)
912 {
913 	int ret;
914 	struct proc_maps_private *priv;
915 
916 	priv = kzalloc(sizeof(*priv), GFP_KERNEL_ACCOUNT);
917 	if (!priv)
918 		return -ENOMEM;
919 
920 	ret = single_open(file, show_smaps_rollup, priv);
921 	if (ret)
922 		goto out_free;
923 
924 	priv->inode = inode;
925 	priv->mm = proc_mem_open(inode, PTRACE_MODE_READ);
926 	if (IS_ERR(priv->mm)) {
927 		ret = PTR_ERR(priv->mm);
928 
929 		single_release(inode, file);
930 		goto out_free;
931 	}
932 
933 	return 0;
934 
935 out_free:
936 	kfree(priv);
937 	return ret;
938 }
939 
940 static int smaps_rollup_release(struct inode *inode, struct file *file)
941 {
942 	struct seq_file *seq = file->private_data;
943 	struct proc_maps_private *priv = seq->private;
944 
945 	if (priv->mm)
946 		mmdrop(priv->mm);
947 
948 	kfree(priv);
949 	return single_release(inode, file);
950 }
951 
952 const struct file_operations proc_pid_smaps_operations = {
953 	.open		= pid_smaps_open,
954 	.read		= seq_read,
955 	.llseek		= seq_lseek,
956 	.release	= proc_map_release,
957 };
958 
959 const struct file_operations proc_pid_smaps_rollup_operations = {
960 	.open		= smaps_rollup_open,
961 	.read		= seq_read,
962 	.llseek		= seq_lseek,
963 	.release	= smaps_rollup_release,
964 };
965 
966 enum clear_refs_types {
967 	CLEAR_REFS_ALL = 1,
968 	CLEAR_REFS_ANON,
969 	CLEAR_REFS_MAPPED,
970 	CLEAR_REFS_SOFT_DIRTY,
971 	CLEAR_REFS_MM_HIWATER_RSS,
972 	CLEAR_REFS_LAST,
973 };
974 
975 struct clear_refs_private {
976 	enum clear_refs_types type;
977 };
978 
979 #ifdef CONFIG_MEM_SOFT_DIRTY
980 static inline void clear_soft_dirty(struct vm_area_struct *vma,
981 		unsigned long addr, pte_t *pte)
982 {
983 	/*
984 	 * The soft-dirty tracker uses #PF-s to catch writes
985 	 * to pages, so write-protect the pte as well. See the
986 	 * Documentation/admin-guide/mm/soft-dirty.rst for full description
987 	 * of how soft-dirty works.
988 	 */
989 	pte_t ptent = *pte;
990 
991 	if (pte_present(ptent)) {
992 		pte_t old_pte;
993 
994 		old_pte = ptep_modify_prot_start(vma, addr, pte);
995 		ptent = pte_wrprotect(old_pte);
996 		ptent = pte_clear_soft_dirty(ptent);
997 		ptep_modify_prot_commit(vma, addr, pte, old_pte, ptent);
998 	} else if (is_swap_pte(ptent)) {
999 		ptent = pte_swp_clear_soft_dirty(ptent);
1000 		set_pte_at(vma->vm_mm, addr, pte, ptent);
1001 	}
1002 }
1003 #else
1004 static inline void clear_soft_dirty(struct vm_area_struct *vma,
1005 		unsigned long addr, pte_t *pte)
1006 {
1007 }
1008 #endif
1009 
1010 #if defined(CONFIG_MEM_SOFT_DIRTY) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
1011 static inline void clear_soft_dirty_pmd(struct vm_area_struct *vma,
1012 		unsigned long addr, pmd_t *pmdp)
1013 {
1014 	pmd_t old, pmd = *pmdp;
1015 
1016 	if (pmd_present(pmd)) {
1017 		/* See comment in change_huge_pmd() */
1018 		old = pmdp_invalidate(vma, addr, pmdp);
1019 		if (pmd_dirty(old))
1020 			pmd = pmd_mkdirty(pmd);
1021 		if (pmd_young(old))
1022 			pmd = pmd_mkyoung(pmd);
1023 
1024 		pmd = pmd_wrprotect(pmd);
1025 		pmd = pmd_clear_soft_dirty(pmd);
1026 
1027 		set_pmd_at(vma->vm_mm, addr, pmdp, pmd);
1028 	} else if (is_migration_entry(pmd_to_swp_entry(pmd))) {
1029 		pmd = pmd_swp_clear_soft_dirty(pmd);
1030 		set_pmd_at(vma->vm_mm, addr, pmdp, pmd);
1031 	}
1032 }
1033 #else
1034 static inline void clear_soft_dirty_pmd(struct vm_area_struct *vma,
1035 		unsigned long addr, pmd_t *pmdp)
1036 {
1037 }
1038 #endif
1039 
1040 static int clear_refs_pte_range(pmd_t *pmd, unsigned long addr,
1041 				unsigned long end, struct mm_walk *walk)
1042 {
1043 	struct clear_refs_private *cp = walk->private;
1044 	struct vm_area_struct *vma = walk->vma;
1045 	pte_t *pte, ptent;
1046 	spinlock_t *ptl;
1047 	struct page *page;
1048 
1049 	ptl = pmd_trans_huge_lock(pmd, vma);
1050 	if (ptl) {
1051 		if (cp->type == CLEAR_REFS_SOFT_DIRTY) {
1052 			clear_soft_dirty_pmd(vma, addr, pmd);
1053 			goto out;
1054 		}
1055 
1056 		if (!pmd_present(*pmd))
1057 			goto out;
1058 
1059 		page = pmd_page(*pmd);
1060 
1061 		/* Clear accessed and referenced bits. */
1062 		pmdp_test_and_clear_young(vma, addr, pmd);
1063 		test_and_clear_page_young(page);
1064 		ClearPageReferenced(page);
1065 out:
1066 		spin_unlock(ptl);
1067 		return 0;
1068 	}
1069 
1070 	if (pmd_trans_unstable(pmd))
1071 		return 0;
1072 
1073 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
1074 	for (; addr != end; pte++, addr += PAGE_SIZE) {
1075 		ptent = *pte;
1076 
1077 		if (cp->type == CLEAR_REFS_SOFT_DIRTY) {
1078 			clear_soft_dirty(vma, addr, pte);
1079 			continue;
1080 		}
1081 
1082 		if (!pte_present(ptent))
1083 			continue;
1084 
1085 		page = vm_normal_page(vma, addr, ptent);
1086 		if (!page)
1087 			continue;
1088 
1089 		/* Clear accessed and referenced bits. */
1090 		ptep_test_and_clear_young(vma, addr, pte);
1091 		test_and_clear_page_young(page);
1092 		ClearPageReferenced(page);
1093 	}
1094 	pte_unmap_unlock(pte - 1, ptl);
1095 	cond_resched();
1096 	return 0;
1097 }
1098 
1099 static int clear_refs_test_walk(unsigned long start, unsigned long end,
1100 				struct mm_walk *walk)
1101 {
1102 	struct clear_refs_private *cp = walk->private;
1103 	struct vm_area_struct *vma = walk->vma;
1104 
1105 	if (vma->vm_flags & VM_PFNMAP)
1106 		return 1;
1107 
1108 	/*
1109 	 * Writing 1 to /proc/pid/clear_refs affects all pages.
1110 	 * Writing 2 to /proc/pid/clear_refs only affects anonymous pages.
1111 	 * Writing 3 to /proc/pid/clear_refs only affects file mapped pages.
1112 	 * Writing 4 to /proc/pid/clear_refs affects all pages.
1113 	 */
1114 	if (cp->type == CLEAR_REFS_ANON && vma->vm_file)
1115 		return 1;
1116 	if (cp->type == CLEAR_REFS_MAPPED && !vma->vm_file)
1117 		return 1;
1118 	return 0;
1119 }
1120 
1121 static ssize_t clear_refs_write(struct file *file, const char __user *buf,
1122 				size_t count, loff_t *ppos)
1123 {
1124 	struct task_struct *task;
1125 	char buffer[PROC_NUMBUF];
1126 	struct mm_struct *mm;
1127 	struct vm_area_struct *vma;
1128 	enum clear_refs_types type;
1129 	struct mmu_gather tlb;
1130 	int itype;
1131 	int rv;
1132 
1133 	memset(buffer, 0, sizeof(buffer));
1134 	if (count > sizeof(buffer) - 1)
1135 		count = sizeof(buffer) - 1;
1136 	if (copy_from_user(buffer, buf, count))
1137 		return -EFAULT;
1138 	rv = kstrtoint(strstrip(buffer), 10, &itype);
1139 	if (rv < 0)
1140 		return rv;
1141 	type = (enum clear_refs_types)itype;
1142 	if (type < CLEAR_REFS_ALL || type >= CLEAR_REFS_LAST)
1143 		return -EINVAL;
1144 
1145 	task = get_proc_task(file_inode(file));
1146 	if (!task)
1147 		return -ESRCH;
1148 	mm = get_task_mm(task);
1149 	if (mm) {
1150 		struct mmu_notifier_range range;
1151 		struct clear_refs_private cp = {
1152 			.type = type,
1153 		};
1154 		struct mm_walk clear_refs_walk = {
1155 			.pmd_entry = clear_refs_pte_range,
1156 			.test_walk = clear_refs_test_walk,
1157 			.mm = mm,
1158 			.private = &cp,
1159 		};
1160 
1161 		if (type == CLEAR_REFS_MM_HIWATER_RSS) {
1162 			if (down_write_killable(&mm->mmap_sem)) {
1163 				count = -EINTR;
1164 				goto out_mm;
1165 			}
1166 
1167 			/*
1168 			 * Writing 5 to /proc/pid/clear_refs resets the peak
1169 			 * resident set size to this mm's current rss value.
1170 			 */
1171 			reset_mm_hiwater_rss(mm);
1172 			up_write(&mm->mmap_sem);
1173 			goto out_mm;
1174 		}
1175 
1176 		if (down_read_killable(&mm->mmap_sem)) {
1177 			count = -EINTR;
1178 			goto out_mm;
1179 		}
1180 		tlb_gather_mmu(&tlb, mm, 0, -1);
1181 		if (type == CLEAR_REFS_SOFT_DIRTY) {
1182 			for (vma = mm->mmap; vma; vma = vma->vm_next) {
1183 				if (!(vma->vm_flags & VM_SOFTDIRTY))
1184 					continue;
1185 				up_read(&mm->mmap_sem);
1186 				if (down_write_killable(&mm->mmap_sem)) {
1187 					count = -EINTR;
1188 					goto out_mm;
1189 				}
1190 				/*
1191 				 * Avoid to modify vma->vm_flags
1192 				 * without locked ops while the
1193 				 * coredump reads the vm_flags.
1194 				 */
1195 				if (!mmget_still_valid(mm)) {
1196 					/*
1197 					 * Silently return "count"
1198 					 * like if get_task_mm()
1199 					 * failed. FIXME: should this
1200 					 * function have returned
1201 					 * -ESRCH if get_task_mm()
1202 					 * failed like if
1203 					 * get_proc_task() fails?
1204 					 */
1205 					up_write(&mm->mmap_sem);
1206 					goto out_mm;
1207 				}
1208 				for (vma = mm->mmap; vma; vma = vma->vm_next) {
1209 					vma->vm_flags &= ~VM_SOFTDIRTY;
1210 					vma_set_page_prot(vma);
1211 				}
1212 				downgrade_write(&mm->mmap_sem);
1213 				break;
1214 			}
1215 
1216 			mmu_notifier_range_init(&range, MMU_NOTIFY_SOFT_DIRTY,
1217 						0, NULL, mm, 0, -1UL);
1218 			mmu_notifier_invalidate_range_start(&range);
1219 		}
1220 		walk_page_range(0, mm->highest_vm_end, &clear_refs_walk);
1221 		if (type == CLEAR_REFS_SOFT_DIRTY)
1222 			mmu_notifier_invalidate_range_end(&range);
1223 		tlb_finish_mmu(&tlb, 0, -1);
1224 		up_read(&mm->mmap_sem);
1225 out_mm:
1226 		mmput(mm);
1227 	}
1228 	put_task_struct(task);
1229 
1230 	return count;
1231 }
1232 
1233 const struct file_operations proc_clear_refs_operations = {
1234 	.write		= clear_refs_write,
1235 	.llseek		= noop_llseek,
1236 };
1237 
1238 typedef struct {
1239 	u64 pme;
1240 } pagemap_entry_t;
1241 
1242 struct pagemapread {
1243 	int pos, len;		/* units: PM_ENTRY_BYTES, not bytes */
1244 	pagemap_entry_t *buffer;
1245 	bool show_pfn;
1246 };
1247 
1248 #define PAGEMAP_WALK_SIZE	(PMD_SIZE)
1249 #define PAGEMAP_WALK_MASK	(PMD_MASK)
1250 
1251 #define PM_ENTRY_BYTES		sizeof(pagemap_entry_t)
1252 #define PM_PFRAME_BITS		55
1253 #define PM_PFRAME_MASK		GENMASK_ULL(PM_PFRAME_BITS - 1, 0)
1254 #define PM_SOFT_DIRTY		BIT_ULL(55)
1255 #define PM_MMAP_EXCLUSIVE	BIT_ULL(56)
1256 #define PM_FILE			BIT_ULL(61)
1257 #define PM_SWAP			BIT_ULL(62)
1258 #define PM_PRESENT		BIT_ULL(63)
1259 
1260 #define PM_END_OF_BUFFER    1
1261 
1262 static inline pagemap_entry_t make_pme(u64 frame, u64 flags)
1263 {
1264 	return (pagemap_entry_t) { .pme = (frame & PM_PFRAME_MASK) | flags };
1265 }
1266 
1267 static int add_to_pagemap(unsigned long addr, pagemap_entry_t *pme,
1268 			  struct pagemapread *pm)
1269 {
1270 	pm->buffer[pm->pos++] = *pme;
1271 	if (pm->pos >= pm->len)
1272 		return PM_END_OF_BUFFER;
1273 	return 0;
1274 }
1275 
1276 static int pagemap_pte_hole(unsigned long start, unsigned long end,
1277 				struct mm_walk *walk)
1278 {
1279 	struct pagemapread *pm = walk->private;
1280 	unsigned long addr = start;
1281 	int err = 0;
1282 
1283 	while (addr < end) {
1284 		struct vm_area_struct *vma = find_vma(walk->mm, addr);
1285 		pagemap_entry_t pme = make_pme(0, 0);
1286 		/* End of address space hole, which we mark as non-present. */
1287 		unsigned long hole_end;
1288 
1289 		if (vma)
1290 			hole_end = min(end, vma->vm_start);
1291 		else
1292 			hole_end = end;
1293 
1294 		for (; addr < hole_end; addr += PAGE_SIZE) {
1295 			err = add_to_pagemap(addr, &pme, pm);
1296 			if (err)
1297 				goto out;
1298 		}
1299 
1300 		if (!vma)
1301 			break;
1302 
1303 		/* Addresses in the VMA. */
1304 		if (vma->vm_flags & VM_SOFTDIRTY)
1305 			pme = make_pme(0, PM_SOFT_DIRTY);
1306 		for (; addr < min(end, vma->vm_end); addr += PAGE_SIZE) {
1307 			err = add_to_pagemap(addr, &pme, pm);
1308 			if (err)
1309 				goto out;
1310 		}
1311 	}
1312 out:
1313 	return err;
1314 }
1315 
1316 static pagemap_entry_t pte_to_pagemap_entry(struct pagemapread *pm,
1317 		struct vm_area_struct *vma, unsigned long addr, pte_t pte)
1318 {
1319 	u64 frame = 0, flags = 0;
1320 	struct page *page = NULL;
1321 
1322 	if (pte_present(pte)) {
1323 		if (pm->show_pfn)
1324 			frame = pte_pfn(pte);
1325 		flags |= PM_PRESENT;
1326 		page = vm_normal_page(vma, addr, pte);
1327 		if (pte_soft_dirty(pte))
1328 			flags |= PM_SOFT_DIRTY;
1329 	} else if (is_swap_pte(pte)) {
1330 		swp_entry_t entry;
1331 		if (pte_swp_soft_dirty(pte))
1332 			flags |= PM_SOFT_DIRTY;
1333 		entry = pte_to_swp_entry(pte);
1334 		if (pm->show_pfn)
1335 			frame = swp_type(entry) |
1336 				(swp_offset(entry) << MAX_SWAPFILES_SHIFT);
1337 		flags |= PM_SWAP;
1338 		if (is_migration_entry(entry))
1339 			page = migration_entry_to_page(entry);
1340 
1341 		if (is_device_private_entry(entry))
1342 			page = device_private_entry_to_page(entry);
1343 	}
1344 
1345 	if (page && !PageAnon(page))
1346 		flags |= PM_FILE;
1347 	if (page && page_mapcount(page) == 1)
1348 		flags |= PM_MMAP_EXCLUSIVE;
1349 	if (vma->vm_flags & VM_SOFTDIRTY)
1350 		flags |= PM_SOFT_DIRTY;
1351 
1352 	return make_pme(frame, flags);
1353 }
1354 
1355 static int pagemap_pmd_range(pmd_t *pmdp, unsigned long addr, unsigned long end,
1356 			     struct mm_walk *walk)
1357 {
1358 	struct vm_area_struct *vma = walk->vma;
1359 	struct pagemapread *pm = walk->private;
1360 	spinlock_t *ptl;
1361 	pte_t *pte, *orig_pte;
1362 	int err = 0;
1363 
1364 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1365 	ptl = pmd_trans_huge_lock(pmdp, vma);
1366 	if (ptl) {
1367 		u64 flags = 0, frame = 0;
1368 		pmd_t pmd = *pmdp;
1369 		struct page *page = NULL;
1370 
1371 		if (vma->vm_flags & VM_SOFTDIRTY)
1372 			flags |= PM_SOFT_DIRTY;
1373 
1374 		if (pmd_present(pmd)) {
1375 			page = pmd_page(pmd);
1376 
1377 			flags |= PM_PRESENT;
1378 			if (pmd_soft_dirty(pmd))
1379 				flags |= PM_SOFT_DIRTY;
1380 			if (pm->show_pfn)
1381 				frame = pmd_pfn(pmd) +
1382 					((addr & ~PMD_MASK) >> PAGE_SHIFT);
1383 		}
1384 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1385 		else if (is_swap_pmd(pmd)) {
1386 			swp_entry_t entry = pmd_to_swp_entry(pmd);
1387 			unsigned long offset;
1388 
1389 			if (pm->show_pfn) {
1390 				offset = swp_offset(entry) +
1391 					((addr & ~PMD_MASK) >> PAGE_SHIFT);
1392 				frame = swp_type(entry) |
1393 					(offset << MAX_SWAPFILES_SHIFT);
1394 			}
1395 			flags |= PM_SWAP;
1396 			if (pmd_swp_soft_dirty(pmd))
1397 				flags |= PM_SOFT_DIRTY;
1398 			VM_BUG_ON(!is_pmd_migration_entry(pmd));
1399 			page = migration_entry_to_page(entry);
1400 		}
1401 #endif
1402 
1403 		if (page && page_mapcount(page) == 1)
1404 			flags |= PM_MMAP_EXCLUSIVE;
1405 
1406 		for (; addr != end; addr += PAGE_SIZE) {
1407 			pagemap_entry_t pme = make_pme(frame, flags);
1408 
1409 			err = add_to_pagemap(addr, &pme, pm);
1410 			if (err)
1411 				break;
1412 			if (pm->show_pfn) {
1413 				if (flags & PM_PRESENT)
1414 					frame++;
1415 				else if (flags & PM_SWAP)
1416 					frame += (1 << MAX_SWAPFILES_SHIFT);
1417 			}
1418 		}
1419 		spin_unlock(ptl);
1420 		return err;
1421 	}
1422 
1423 	if (pmd_trans_unstable(pmdp))
1424 		return 0;
1425 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1426 
1427 	/*
1428 	 * We can assume that @vma always points to a valid one and @end never
1429 	 * goes beyond vma->vm_end.
1430 	 */
1431 	orig_pte = pte = pte_offset_map_lock(walk->mm, pmdp, addr, &ptl);
1432 	for (; addr < end; pte++, addr += PAGE_SIZE) {
1433 		pagemap_entry_t pme;
1434 
1435 		pme = pte_to_pagemap_entry(pm, vma, addr, *pte);
1436 		err = add_to_pagemap(addr, &pme, pm);
1437 		if (err)
1438 			break;
1439 	}
1440 	pte_unmap_unlock(orig_pte, ptl);
1441 
1442 	cond_resched();
1443 
1444 	return err;
1445 }
1446 
1447 #ifdef CONFIG_HUGETLB_PAGE
1448 /* This function walks within one hugetlb entry in the single call */
1449 static int pagemap_hugetlb_range(pte_t *ptep, unsigned long hmask,
1450 				 unsigned long addr, unsigned long end,
1451 				 struct mm_walk *walk)
1452 {
1453 	struct pagemapread *pm = walk->private;
1454 	struct vm_area_struct *vma = walk->vma;
1455 	u64 flags = 0, frame = 0;
1456 	int err = 0;
1457 	pte_t pte;
1458 
1459 	if (vma->vm_flags & VM_SOFTDIRTY)
1460 		flags |= PM_SOFT_DIRTY;
1461 
1462 	pte = huge_ptep_get(ptep);
1463 	if (pte_present(pte)) {
1464 		struct page *page = pte_page(pte);
1465 
1466 		if (!PageAnon(page))
1467 			flags |= PM_FILE;
1468 
1469 		if (page_mapcount(page) == 1)
1470 			flags |= PM_MMAP_EXCLUSIVE;
1471 
1472 		flags |= PM_PRESENT;
1473 		if (pm->show_pfn)
1474 			frame = pte_pfn(pte) +
1475 				((addr & ~hmask) >> PAGE_SHIFT);
1476 	}
1477 
1478 	for (; addr != end; addr += PAGE_SIZE) {
1479 		pagemap_entry_t pme = make_pme(frame, flags);
1480 
1481 		err = add_to_pagemap(addr, &pme, pm);
1482 		if (err)
1483 			return err;
1484 		if (pm->show_pfn && (flags & PM_PRESENT))
1485 			frame++;
1486 	}
1487 
1488 	cond_resched();
1489 
1490 	return err;
1491 }
1492 #endif /* HUGETLB_PAGE */
1493 
1494 /*
1495  * /proc/pid/pagemap - an array mapping virtual pages to pfns
1496  *
1497  * For each page in the address space, this file contains one 64-bit entry
1498  * consisting of the following:
1499  *
1500  * Bits 0-54  page frame number (PFN) if present
1501  * Bits 0-4   swap type if swapped
1502  * Bits 5-54  swap offset if swapped
1503  * Bit  55    pte is soft-dirty (see Documentation/admin-guide/mm/soft-dirty.rst)
1504  * Bit  56    page exclusively mapped
1505  * Bits 57-60 zero
1506  * Bit  61    page is file-page or shared-anon
1507  * Bit  62    page swapped
1508  * Bit  63    page present
1509  *
1510  * If the page is not present but in swap, then the PFN contains an
1511  * encoding of the swap file number and the page's offset into the
1512  * swap. Unmapped pages return a null PFN. This allows determining
1513  * precisely which pages are mapped (or in swap) and comparing mapped
1514  * pages between processes.
1515  *
1516  * Efficient users of this interface will use /proc/pid/maps to
1517  * determine which areas of memory are actually mapped and llseek to
1518  * skip over unmapped regions.
1519  */
1520 static ssize_t pagemap_read(struct file *file, char __user *buf,
1521 			    size_t count, loff_t *ppos)
1522 {
1523 	struct mm_struct *mm = file->private_data;
1524 	struct pagemapread pm;
1525 	struct mm_walk pagemap_walk = {};
1526 	unsigned long src;
1527 	unsigned long svpfn;
1528 	unsigned long start_vaddr;
1529 	unsigned long end_vaddr;
1530 	int ret = 0, copied = 0;
1531 
1532 	if (!mm || !mmget_not_zero(mm))
1533 		goto out;
1534 
1535 	ret = -EINVAL;
1536 	/* file position must be aligned */
1537 	if ((*ppos % PM_ENTRY_BYTES) || (count % PM_ENTRY_BYTES))
1538 		goto out_mm;
1539 
1540 	ret = 0;
1541 	if (!count)
1542 		goto out_mm;
1543 
1544 	/* do not disclose physical addresses: attack vector */
1545 	pm.show_pfn = file_ns_capable(file, &init_user_ns, CAP_SYS_ADMIN);
1546 
1547 	pm.len = (PAGEMAP_WALK_SIZE >> PAGE_SHIFT);
1548 	pm.buffer = kmalloc_array(pm.len, PM_ENTRY_BYTES, GFP_KERNEL);
1549 	ret = -ENOMEM;
1550 	if (!pm.buffer)
1551 		goto out_mm;
1552 
1553 	pagemap_walk.pmd_entry = pagemap_pmd_range;
1554 	pagemap_walk.pte_hole = pagemap_pte_hole;
1555 #ifdef CONFIG_HUGETLB_PAGE
1556 	pagemap_walk.hugetlb_entry = pagemap_hugetlb_range;
1557 #endif
1558 	pagemap_walk.mm = mm;
1559 	pagemap_walk.private = &pm;
1560 
1561 	src = *ppos;
1562 	svpfn = src / PM_ENTRY_BYTES;
1563 	start_vaddr = svpfn << PAGE_SHIFT;
1564 	end_vaddr = mm->task_size;
1565 
1566 	/* watch out for wraparound */
1567 	if (svpfn > mm->task_size >> PAGE_SHIFT)
1568 		start_vaddr = end_vaddr;
1569 
1570 	/*
1571 	 * The odds are that this will stop walking way
1572 	 * before end_vaddr, because the length of the
1573 	 * user buffer is tracked in "pm", and the walk
1574 	 * will stop when we hit the end of the buffer.
1575 	 */
1576 	ret = 0;
1577 	while (count && (start_vaddr < end_vaddr)) {
1578 		int len;
1579 		unsigned long end;
1580 
1581 		pm.pos = 0;
1582 		end = (start_vaddr + PAGEMAP_WALK_SIZE) & PAGEMAP_WALK_MASK;
1583 		/* overflow ? */
1584 		if (end < start_vaddr || end > end_vaddr)
1585 			end = end_vaddr;
1586 		ret = down_read_killable(&mm->mmap_sem);
1587 		if (ret)
1588 			goto out_free;
1589 		ret = walk_page_range(start_vaddr, end, &pagemap_walk);
1590 		up_read(&mm->mmap_sem);
1591 		start_vaddr = end;
1592 
1593 		len = min(count, PM_ENTRY_BYTES * pm.pos);
1594 		if (copy_to_user(buf, pm.buffer, len)) {
1595 			ret = -EFAULT;
1596 			goto out_free;
1597 		}
1598 		copied += len;
1599 		buf += len;
1600 		count -= len;
1601 	}
1602 	*ppos += copied;
1603 	if (!ret || ret == PM_END_OF_BUFFER)
1604 		ret = copied;
1605 
1606 out_free:
1607 	kfree(pm.buffer);
1608 out_mm:
1609 	mmput(mm);
1610 out:
1611 	return ret;
1612 }
1613 
1614 static int pagemap_open(struct inode *inode, struct file *file)
1615 {
1616 	struct mm_struct *mm;
1617 
1618 	mm = proc_mem_open(inode, PTRACE_MODE_READ);
1619 	if (IS_ERR(mm))
1620 		return PTR_ERR(mm);
1621 	file->private_data = mm;
1622 	return 0;
1623 }
1624 
1625 static int pagemap_release(struct inode *inode, struct file *file)
1626 {
1627 	struct mm_struct *mm = file->private_data;
1628 
1629 	if (mm)
1630 		mmdrop(mm);
1631 	return 0;
1632 }
1633 
1634 const struct file_operations proc_pagemap_operations = {
1635 	.llseek		= mem_lseek, /* borrow this */
1636 	.read		= pagemap_read,
1637 	.open		= pagemap_open,
1638 	.release	= pagemap_release,
1639 };
1640 #endif /* CONFIG_PROC_PAGE_MONITOR */
1641 
1642 #ifdef CONFIG_NUMA
1643 
1644 struct numa_maps {
1645 	unsigned long pages;
1646 	unsigned long anon;
1647 	unsigned long active;
1648 	unsigned long writeback;
1649 	unsigned long mapcount_max;
1650 	unsigned long dirty;
1651 	unsigned long swapcache;
1652 	unsigned long node[MAX_NUMNODES];
1653 };
1654 
1655 struct numa_maps_private {
1656 	struct proc_maps_private proc_maps;
1657 	struct numa_maps md;
1658 };
1659 
1660 static void gather_stats(struct page *page, struct numa_maps *md, int pte_dirty,
1661 			unsigned long nr_pages)
1662 {
1663 	int count = page_mapcount(page);
1664 
1665 	md->pages += nr_pages;
1666 	if (pte_dirty || PageDirty(page))
1667 		md->dirty += nr_pages;
1668 
1669 	if (PageSwapCache(page))
1670 		md->swapcache += nr_pages;
1671 
1672 	if (PageActive(page) || PageUnevictable(page))
1673 		md->active += nr_pages;
1674 
1675 	if (PageWriteback(page))
1676 		md->writeback += nr_pages;
1677 
1678 	if (PageAnon(page))
1679 		md->anon += nr_pages;
1680 
1681 	if (count > md->mapcount_max)
1682 		md->mapcount_max = count;
1683 
1684 	md->node[page_to_nid(page)] += nr_pages;
1685 }
1686 
1687 static struct page *can_gather_numa_stats(pte_t pte, struct vm_area_struct *vma,
1688 		unsigned long addr)
1689 {
1690 	struct page *page;
1691 	int nid;
1692 
1693 	if (!pte_present(pte))
1694 		return NULL;
1695 
1696 	page = vm_normal_page(vma, addr, pte);
1697 	if (!page)
1698 		return NULL;
1699 
1700 	if (PageReserved(page))
1701 		return NULL;
1702 
1703 	nid = page_to_nid(page);
1704 	if (!node_isset(nid, node_states[N_MEMORY]))
1705 		return NULL;
1706 
1707 	return page;
1708 }
1709 
1710 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1711 static struct page *can_gather_numa_stats_pmd(pmd_t pmd,
1712 					      struct vm_area_struct *vma,
1713 					      unsigned long addr)
1714 {
1715 	struct page *page;
1716 	int nid;
1717 
1718 	if (!pmd_present(pmd))
1719 		return NULL;
1720 
1721 	page = vm_normal_page_pmd(vma, addr, pmd);
1722 	if (!page)
1723 		return NULL;
1724 
1725 	if (PageReserved(page))
1726 		return NULL;
1727 
1728 	nid = page_to_nid(page);
1729 	if (!node_isset(nid, node_states[N_MEMORY]))
1730 		return NULL;
1731 
1732 	return page;
1733 }
1734 #endif
1735 
1736 static int gather_pte_stats(pmd_t *pmd, unsigned long addr,
1737 		unsigned long end, struct mm_walk *walk)
1738 {
1739 	struct numa_maps *md = walk->private;
1740 	struct vm_area_struct *vma = walk->vma;
1741 	spinlock_t *ptl;
1742 	pte_t *orig_pte;
1743 	pte_t *pte;
1744 
1745 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1746 	ptl = pmd_trans_huge_lock(pmd, vma);
1747 	if (ptl) {
1748 		struct page *page;
1749 
1750 		page = can_gather_numa_stats_pmd(*pmd, vma, addr);
1751 		if (page)
1752 			gather_stats(page, md, pmd_dirty(*pmd),
1753 				     HPAGE_PMD_SIZE/PAGE_SIZE);
1754 		spin_unlock(ptl);
1755 		return 0;
1756 	}
1757 
1758 	if (pmd_trans_unstable(pmd))
1759 		return 0;
1760 #endif
1761 	orig_pte = pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
1762 	do {
1763 		struct page *page = can_gather_numa_stats(*pte, vma, addr);
1764 		if (!page)
1765 			continue;
1766 		gather_stats(page, md, pte_dirty(*pte), 1);
1767 
1768 	} while (pte++, addr += PAGE_SIZE, addr != end);
1769 	pte_unmap_unlock(orig_pte, ptl);
1770 	cond_resched();
1771 	return 0;
1772 }
1773 #ifdef CONFIG_HUGETLB_PAGE
1774 static int gather_hugetlb_stats(pte_t *pte, unsigned long hmask,
1775 		unsigned long addr, unsigned long end, struct mm_walk *walk)
1776 {
1777 	pte_t huge_pte = huge_ptep_get(pte);
1778 	struct numa_maps *md;
1779 	struct page *page;
1780 
1781 	if (!pte_present(huge_pte))
1782 		return 0;
1783 
1784 	page = pte_page(huge_pte);
1785 	if (!page)
1786 		return 0;
1787 
1788 	md = walk->private;
1789 	gather_stats(page, md, pte_dirty(huge_pte), 1);
1790 	return 0;
1791 }
1792 
1793 #else
1794 static int gather_hugetlb_stats(pte_t *pte, unsigned long hmask,
1795 		unsigned long addr, unsigned long end, struct mm_walk *walk)
1796 {
1797 	return 0;
1798 }
1799 #endif
1800 
1801 /*
1802  * Display pages allocated per node and memory policy via /proc.
1803  */
1804 static int show_numa_map(struct seq_file *m, void *v)
1805 {
1806 	struct numa_maps_private *numa_priv = m->private;
1807 	struct proc_maps_private *proc_priv = &numa_priv->proc_maps;
1808 	struct vm_area_struct *vma = v;
1809 	struct numa_maps *md = &numa_priv->md;
1810 	struct file *file = vma->vm_file;
1811 	struct mm_struct *mm = vma->vm_mm;
1812 	struct mm_walk walk = {
1813 		.hugetlb_entry = gather_hugetlb_stats,
1814 		.pmd_entry = gather_pte_stats,
1815 		.private = md,
1816 		.mm = mm,
1817 	};
1818 	struct mempolicy *pol;
1819 	char buffer[64];
1820 	int nid;
1821 
1822 	if (!mm)
1823 		return 0;
1824 
1825 	/* Ensure we start with an empty set of numa_maps statistics. */
1826 	memset(md, 0, sizeof(*md));
1827 
1828 	pol = __get_vma_policy(vma, vma->vm_start);
1829 	if (pol) {
1830 		mpol_to_str(buffer, sizeof(buffer), pol);
1831 		mpol_cond_put(pol);
1832 	} else {
1833 		mpol_to_str(buffer, sizeof(buffer), proc_priv->task_mempolicy);
1834 	}
1835 
1836 	seq_printf(m, "%08lx %s", vma->vm_start, buffer);
1837 
1838 	if (file) {
1839 		seq_puts(m, " file=");
1840 		seq_file_path(m, file, "\n\t= ");
1841 	} else if (vma->vm_start <= mm->brk && vma->vm_end >= mm->start_brk) {
1842 		seq_puts(m, " heap");
1843 	} else if (is_stack(vma)) {
1844 		seq_puts(m, " stack");
1845 	}
1846 
1847 	if (is_vm_hugetlb_page(vma))
1848 		seq_puts(m, " huge");
1849 
1850 	/* mmap_sem is held by m_start */
1851 	walk_page_vma(vma, &walk);
1852 
1853 	if (!md->pages)
1854 		goto out;
1855 
1856 	if (md->anon)
1857 		seq_printf(m, " anon=%lu", md->anon);
1858 
1859 	if (md->dirty)
1860 		seq_printf(m, " dirty=%lu", md->dirty);
1861 
1862 	if (md->pages != md->anon && md->pages != md->dirty)
1863 		seq_printf(m, " mapped=%lu", md->pages);
1864 
1865 	if (md->mapcount_max > 1)
1866 		seq_printf(m, " mapmax=%lu", md->mapcount_max);
1867 
1868 	if (md->swapcache)
1869 		seq_printf(m, " swapcache=%lu", md->swapcache);
1870 
1871 	if (md->active < md->pages && !is_vm_hugetlb_page(vma))
1872 		seq_printf(m, " active=%lu", md->active);
1873 
1874 	if (md->writeback)
1875 		seq_printf(m, " writeback=%lu", md->writeback);
1876 
1877 	for_each_node_state(nid, N_MEMORY)
1878 		if (md->node[nid])
1879 			seq_printf(m, " N%d=%lu", nid, md->node[nid]);
1880 
1881 	seq_printf(m, " kernelpagesize_kB=%lu", vma_kernel_pagesize(vma) >> 10);
1882 out:
1883 	seq_putc(m, '\n');
1884 	m_cache_vma(m, vma);
1885 	return 0;
1886 }
1887 
1888 static const struct seq_operations proc_pid_numa_maps_op = {
1889 	.start  = m_start,
1890 	.next   = m_next,
1891 	.stop   = m_stop,
1892 	.show   = show_numa_map,
1893 };
1894 
1895 static int pid_numa_maps_open(struct inode *inode, struct file *file)
1896 {
1897 	return proc_maps_open(inode, file, &proc_pid_numa_maps_op,
1898 				sizeof(struct numa_maps_private));
1899 }
1900 
1901 const struct file_operations proc_pid_numa_maps_operations = {
1902 	.open		= pid_numa_maps_open,
1903 	.read		= seq_read,
1904 	.llseek		= seq_lseek,
1905 	.release	= proc_map_release,
1906 };
1907 
1908 #endif /* CONFIG_NUMA */
1909