xref: /linux/fs/proc/task_mmu.c (revision 04303f8ec14269b0ea2553863553bc7eaadca1f8)
1 #include <linux/mm.h>
2 #include <linux/vmacache.h>
3 #include <linux/hugetlb.h>
4 #include <linux/huge_mm.h>
5 #include <linux/mount.h>
6 #include <linux/seq_file.h>
7 #include <linux/highmem.h>
8 #include <linux/ptrace.h>
9 #include <linux/slab.h>
10 #include <linux/pagemap.h>
11 #include <linux/mempolicy.h>
12 #include <linux/rmap.h>
13 #include <linux/swap.h>
14 #include <linux/swapops.h>
15 #include <linux/mmu_notifier.h>
16 
17 #include <asm/elf.h>
18 #include <asm/uaccess.h>
19 #include <asm/tlbflush.h>
20 #include "internal.h"
21 
22 void task_mem(struct seq_file *m, struct mm_struct *mm)
23 {
24 	unsigned long data, text, lib, swap;
25 	unsigned long hiwater_vm, total_vm, hiwater_rss, total_rss;
26 
27 	/*
28 	 * Note: to minimize their overhead, mm maintains hiwater_vm and
29 	 * hiwater_rss only when about to *lower* total_vm or rss.  Any
30 	 * collector of these hiwater stats must therefore get total_vm
31 	 * and rss too, which will usually be the higher.  Barriers? not
32 	 * worth the effort, such snapshots can always be inconsistent.
33 	 */
34 	hiwater_vm = total_vm = mm->total_vm;
35 	if (hiwater_vm < mm->hiwater_vm)
36 		hiwater_vm = mm->hiwater_vm;
37 	hiwater_rss = total_rss = get_mm_rss(mm);
38 	if (hiwater_rss < mm->hiwater_rss)
39 		hiwater_rss = mm->hiwater_rss;
40 
41 	data = mm->total_vm - mm->shared_vm - mm->stack_vm;
42 	text = (PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK)) >> 10;
43 	lib = (mm->exec_vm << (PAGE_SHIFT-10)) - text;
44 	swap = get_mm_counter(mm, MM_SWAPENTS);
45 	seq_printf(m,
46 		"VmPeak:\t%8lu kB\n"
47 		"VmSize:\t%8lu kB\n"
48 		"VmLck:\t%8lu kB\n"
49 		"VmPin:\t%8lu kB\n"
50 		"VmHWM:\t%8lu kB\n"
51 		"VmRSS:\t%8lu kB\n"
52 		"VmData:\t%8lu kB\n"
53 		"VmStk:\t%8lu kB\n"
54 		"VmExe:\t%8lu kB\n"
55 		"VmLib:\t%8lu kB\n"
56 		"VmPTE:\t%8lu kB\n"
57 		"VmSwap:\t%8lu kB\n",
58 		hiwater_vm << (PAGE_SHIFT-10),
59 		total_vm << (PAGE_SHIFT-10),
60 		mm->locked_vm << (PAGE_SHIFT-10),
61 		mm->pinned_vm << (PAGE_SHIFT-10),
62 		hiwater_rss << (PAGE_SHIFT-10),
63 		total_rss << (PAGE_SHIFT-10),
64 		data << (PAGE_SHIFT-10),
65 		mm->stack_vm << (PAGE_SHIFT-10), text, lib,
66 		(PTRS_PER_PTE * sizeof(pte_t) *
67 		 atomic_long_read(&mm->nr_ptes)) >> 10,
68 		swap << (PAGE_SHIFT-10));
69 }
70 
71 unsigned long task_vsize(struct mm_struct *mm)
72 {
73 	return PAGE_SIZE * mm->total_vm;
74 }
75 
76 unsigned long task_statm(struct mm_struct *mm,
77 			 unsigned long *shared, unsigned long *text,
78 			 unsigned long *data, unsigned long *resident)
79 {
80 	*shared = get_mm_counter(mm, MM_FILEPAGES);
81 	*text = (PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK))
82 								>> PAGE_SHIFT;
83 	*data = mm->total_vm - mm->shared_vm;
84 	*resident = *shared + get_mm_counter(mm, MM_ANONPAGES);
85 	return mm->total_vm;
86 }
87 
88 #ifdef CONFIG_NUMA
89 /*
90  * Save get_task_policy() for show_numa_map().
91  */
92 static void hold_task_mempolicy(struct proc_maps_private *priv)
93 {
94 	struct task_struct *task = priv->task;
95 
96 	task_lock(task);
97 	priv->task_mempolicy = get_task_policy(task);
98 	mpol_get(priv->task_mempolicy);
99 	task_unlock(task);
100 }
101 static void release_task_mempolicy(struct proc_maps_private *priv)
102 {
103 	mpol_put(priv->task_mempolicy);
104 }
105 #else
106 static void hold_task_mempolicy(struct proc_maps_private *priv)
107 {
108 }
109 static void release_task_mempolicy(struct proc_maps_private *priv)
110 {
111 }
112 #endif
113 
114 static void vma_stop(struct proc_maps_private *priv)
115 {
116 	struct mm_struct *mm = priv->mm;
117 
118 	release_task_mempolicy(priv);
119 	up_read(&mm->mmap_sem);
120 	mmput(mm);
121 }
122 
123 static struct vm_area_struct *
124 m_next_vma(struct proc_maps_private *priv, struct vm_area_struct *vma)
125 {
126 	if (vma == priv->tail_vma)
127 		return NULL;
128 	return vma->vm_next ?: priv->tail_vma;
129 }
130 
131 static void m_cache_vma(struct seq_file *m, struct vm_area_struct *vma)
132 {
133 	if (m->count < m->size)	/* vma is copied successfully */
134 		m->version = m_next_vma(m->private, vma) ? vma->vm_start : -1UL;
135 }
136 
137 static void *m_start(struct seq_file *m, loff_t *ppos)
138 {
139 	struct proc_maps_private *priv = m->private;
140 	unsigned long last_addr = m->version;
141 	struct mm_struct *mm;
142 	struct vm_area_struct *vma;
143 	unsigned int pos = *ppos;
144 
145 	/* See m_cache_vma(). Zero at the start or after lseek. */
146 	if (last_addr == -1UL)
147 		return NULL;
148 
149 	priv->task = get_proc_task(priv->inode);
150 	if (!priv->task)
151 		return ERR_PTR(-ESRCH);
152 
153 	mm = priv->mm;
154 	if (!mm || !atomic_inc_not_zero(&mm->mm_users))
155 		return NULL;
156 
157 	down_read(&mm->mmap_sem);
158 	hold_task_mempolicy(priv);
159 	priv->tail_vma = get_gate_vma(mm);
160 
161 	if (last_addr) {
162 		vma = find_vma(mm, last_addr);
163 		if (vma && (vma = m_next_vma(priv, vma)))
164 			return vma;
165 	}
166 
167 	m->version = 0;
168 	if (pos < mm->map_count) {
169 		for (vma = mm->mmap; pos; pos--) {
170 			m->version = vma->vm_start;
171 			vma = vma->vm_next;
172 		}
173 		return vma;
174 	}
175 
176 	/* we do not bother to update m->version in this case */
177 	if (pos == mm->map_count && priv->tail_vma)
178 		return priv->tail_vma;
179 
180 	vma_stop(priv);
181 	return NULL;
182 }
183 
184 static void *m_next(struct seq_file *m, void *v, loff_t *pos)
185 {
186 	struct proc_maps_private *priv = m->private;
187 	struct vm_area_struct *next;
188 
189 	(*pos)++;
190 	next = m_next_vma(priv, v);
191 	if (!next)
192 		vma_stop(priv);
193 	return next;
194 }
195 
196 static void m_stop(struct seq_file *m, void *v)
197 {
198 	struct proc_maps_private *priv = m->private;
199 
200 	if (!IS_ERR_OR_NULL(v))
201 		vma_stop(priv);
202 	if (priv->task) {
203 		put_task_struct(priv->task);
204 		priv->task = NULL;
205 	}
206 }
207 
208 static int proc_maps_open(struct inode *inode, struct file *file,
209 			const struct seq_operations *ops, int psize)
210 {
211 	struct proc_maps_private *priv = __seq_open_private(file, ops, psize);
212 
213 	if (!priv)
214 		return -ENOMEM;
215 
216 	priv->inode = inode;
217 	priv->mm = proc_mem_open(inode, PTRACE_MODE_READ);
218 	if (IS_ERR(priv->mm)) {
219 		int err = PTR_ERR(priv->mm);
220 
221 		seq_release_private(inode, file);
222 		return err;
223 	}
224 
225 	return 0;
226 }
227 
228 static int proc_map_release(struct inode *inode, struct file *file)
229 {
230 	struct seq_file *seq = file->private_data;
231 	struct proc_maps_private *priv = seq->private;
232 
233 	if (priv->mm)
234 		mmdrop(priv->mm);
235 
236 	return seq_release_private(inode, file);
237 }
238 
239 static int do_maps_open(struct inode *inode, struct file *file,
240 			const struct seq_operations *ops)
241 {
242 	return proc_maps_open(inode, file, ops,
243 				sizeof(struct proc_maps_private));
244 }
245 
246 static pid_t pid_of_stack(struct proc_maps_private *priv,
247 				struct vm_area_struct *vma, bool is_pid)
248 {
249 	struct inode *inode = priv->inode;
250 	struct task_struct *task;
251 	pid_t ret = 0;
252 
253 	rcu_read_lock();
254 	task = pid_task(proc_pid(inode), PIDTYPE_PID);
255 	if (task) {
256 		task = task_of_stack(task, vma, is_pid);
257 		if (task)
258 			ret = task_pid_nr_ns(task, inode->i_sb->s_fs_info);
259 	}
260 	rcu_read_unlock();
261 
262 	return ret;
263 }
264 
265 static void
266 show_map_vma(struct seq_file *m, struct vm_area_struct *vma, int is_pid)
267 {
268 	struct mm_struct *mm = vma->vm_mm;
269 	struct file *file = vma->vm_file;
270 	struct proc_maps_private *priv = m->private;
271 	vm_flags_t flags = vma->vm_flags;
272 	unsigned long ino = 0;
273 	unsigned long long pgoff = 0;
274 	unsigned long start, end;
275 	dev_t dev = 0;
276 	const char *name = NULL;
277 
278 	if (file) {
279 		struct inode *inode = file_inode(vma->vm_file);
280 		dev = inode->i_sb->s_dev;
281 		ino = inode->i_ino;
282 		pgoff = ((loff_t)vma->vm_pgoff) << PAGE_SHIFT;
283 	}
284 
285 	/* We don't show the stack guard page in /proc/maps */
286 	start = vma->vm_start;
287 	if (stack_guard_page_start(vma, start))
288 		start += PAGE_SIZE;
289 	end = vma->vm_end;
290 	if (stack_guard_page_end(vma, end))
291 		end -= PAGE_SIZE;
292 
293 	seq_setwidth(m, 25 + sizeof(void *) * 6 - 1);
294 	seq_printf(m, "%08lx-%08lx %c%c%c%c %08llx %02x:%02x %lu ",
295 			start,
296 			end,
297 			flags & VM_READ ? 'r' : '-',
298 			flags & VM_WRITE ? 'w' : '-',
299 			flags & VM_EXEC ? 'x' : '-',
300 			flags & VM_MAYSHARE ? 's' : 'p',
301 			pgoff,
302 			MAJOR(dev), MINOR(dev), ino);
303 
304 	/*
305 	 * Print the dentry name for named mappings, and a
306 	 * special [heap] marker for the heap:
307 	 */
308 	if (file) {
309 		seq_pad(m, ' ');
310 		seq_path(m, &file->f_path, "\n");
311 		goto done;
312 	}
313 
314 	if (vma->vm_ops && vma->vm_ops->name) {
315 		name = vma->vm_ops->name(vma);
316 		if (name)
317 			goto done;
318 	}
319 
320 	name = arch_vma_name(vma);
321 	if (!name) {
322 		pid_t tid;
323 
324 		if (!mm) {
325 			name = "[vdso]";
326 			goto done;
327 		}
328 
329 		if (vma->vm_start <= mm->brk &&
330 		    vma->vm_end >= mm->start_brk) {
331 			name = "[heap]";
332 			goto done;
333 		}
334 
335 		tid = pid_of_stack(priv, vma, is_pid);
336 		if (tid != 0) {
337 			/*
338 			 * Thread stack in /proc/PID/task/TID/maps or
339 			 * the main process stack.
340 			 */
341 			if (!is_pid || (vma->vm_start <= mm->start_stack &&
342 			    vma->vm_end >= mm->start_stack)) {
343 				name = "[stack]";
344 			} else {
345 				/* Thread stack in /proc/PID/maps */
346 				seq_pad(m, ' ');
347 				seq_printf(m, "[stack:%d]", tid);
348 			}
349 		}
350 	}
351 
352 done:
353 	if (name) {
354 		seq_pad(m, ' ');
355 		seq_puts(m, name);
356 	}
357 	seq_putc(m, '\n');
358 }
359 
360 static int show_map(struct seq_file *m, void *v, int is_pid)
361 {
362 	show_map_vma(m, v, is_pid);
363 	m_cache_vma(m, v);
364 	return 0;
365 }
366 
367 static int show_pid_map(struct seq_file *m, void *v)
368 {
369 	return show_map(m, v, 1);
370 }
371 
372 static int show_tid_map(struct seq_file *m, void *v)
373 {
374 	return show_map(m, v, 0);
375 }
376 
377 static const struct seq_operations proc_pid_maps_op = {
378 	.start	= m_start,
379 	.next	= m_next,
380 	.stop	= m_stop,
381 	.show	= show_pid_map
382 };
383 
384 static const struct seq_operations proc_tid_maps_op = {
385 	.start	= m_start,
386 	.next	= m_next,
387 	.stop	= m_stop,
388 	.show	= show_tid_map
389 };
390 
391 static int pid_maps_open(struct inode *inode, struct file *file)
392 {
393 	return do_maps_open(inode, file, &proc_pid_maps_op);
394 }
395 
396 static int tid_maps_open(struct inode *inode, struct file *file)
397 {
398 	return do_maps_open(inode, file, &proc_tid_maps_op);
399 }
400 
401 const struct file_operations proc_pid_maps_operations = {
402 	.open		= pid_maps_open,
403 	.read		= seq_read,
404 	.llseek		= seq_lseek,
405 	.release	= proc_map_release,
406 };
407 
408 const struct file_operations proc_tid_maps_operations = {
409 	.open		= tid_maps_open,
410 	.read		= seq_read,
411 	.llseek		= seq_lseek,
412 	.release	= proc_map_release,
413 };
414 
415 /*
416  * Proportional Set Size(PSS): my share of RSS.
417  *
418  * PSS of a process is the count of pages it has in memory, where each
419  * page is divided by the number of processes sharing it.  So if a
420  * process has 1000 pages all to itself, and 1000 shared with one other
421  * process, its PSS will be 1500.
422  *
423  * To keep (accumulated) division errors low, we adopt a 64bit
424  * fixed-point pss counter to minimize division errors. So (pss >>
425  * PSS_SHIFT) would be the real byte count.
426  *
427  * A shift of 12 before division means (assuming 4K page size):
428  * 	- 1M 3-user-pages add up to 8KB errors;
429  * 	- supports mapcount up to 2^24, or 16M;
430  * 	- supports PSS up to 2^52 bytes, or 4PB.
431  */
432 #define PSS_SHIFT 12
433 
434 #ifdef CONFIG_PROC_PAGE_MONITOR
435 struct mem_size_stats {
436 	struct vm_area_struct *vma;
437 	unsigned long resident;
438 	unsigned long shared_clean;
439 	unsigned long shared_dirty;
440 	unsigned long private_clean;
441 	unsigned long private_dirty;
442 	unsigned long referenced;
443 	unsigned long anonymous;
444 	unsigned long anonymous_thp;
445 	unsigned long swap;
446 	u64 pss;
447 };
448 
449 static void smaps_account(struct mem_size_stats *mss, struct page *page,
450 		unsigned long size, bool young, bool dirty)
451 {
452 	int mapcount;
453 
454 	if (PageAnon(page))
455 		mss->anonymous += size;
456 
457 	mss->resident += size;
458 	/* Accumulate the size in pages that have been accessed. */
459 	if (young || PageReferenced(page))
460 		mss->referenced += size;
461 	mapcount = page_mapcount(page);
462 	if (mapcount >= 2) {
463 		u64 pss_delta;
464 
465 		if (dirty || PageDirty(page))
466 			mss->shared_dirty += size;
467 		else
468 			mss->shared_clean += size;
469 		pss_delta = (u64)size << PSS_SHIFT;
470 		do_div(pss_delta, mapcount);
471 		mss->pss += pss_delta;
472 	} else {
473 		if (dirty || PageDirty(page))
474 			mss->private_dirty += size;
475 		else
476 			mss->private_clean += size;
477 		mss->pss += (u64)size << PSS_SHIFT;
478 	}
479 }
480 
481 static void smaps_pte_entry(pte_t *pte, unsigned long addr,
482 		struct mm_walk *walk)
483 {
484 	struct mem_size_stats *mss = walk->private;
485 	struct vm_area_struct *vma = mss->vma;
486 	struct page *page = NULL;
487 
488 	if (pte_present(*pte)) {
489 		page = vm_normal_page(vma, addr, *pte);
490 	} else if (is_swap_pte(*pte)) {
491 		swp_entry_t swpent = pte_to_swp_entry(*pte);
492 
493 		if (!non_swap_entry(swpent))
494 			mss->swap += PAGE_SIZE;
495 		else if (is_migration_entry(swpent))
496 			page = migration_entry_to_page(swpent);
497 	}
498 
499 	if (!page)
500 		return;
501 	smaps_account(mss, page, PAGE_SIZE, pte_young(*pte), pte_dirty(*pte));
502 }
503 
504 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
505 static void smaps_pmd_entry(pmd_t *pmd, unsigned long addr,
506 		struct mm_walk *walk)
507 {
508 	struct mem_size_stats *mss = walk->private;
509 	struct vm_area_struct *vma = mss->vma;
510 	struct page *page;
511 
512 	/* FOLL_DUMP will return -EFAULT on huge zero page */
513 	page = follow_trans_huge_pmd(vma, addr, pmd, FOLL_DUMP);
514 	if (IS_ERR_OR_NULL(page))
515 		return;
516 	mss->anonymous_thp += HPAGE_PMD_SIZE;
517 	smaps_account(mss, page, HPAGE_PMD_SIZE,
518 			pmd_young(*pmd), pmd_dirty(*pmd));
519 }
520 #else
521 static void smaps_pmd_entry(pmd_t *pmd, unsigned long addr,
522 		struct mm_walk *walk)
523 {
524 }
525 #endif
526 
527 static int smaps_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
528 			   struct mm_walk *walk)
529 {
530 	struct mem_size_stats *mss = walk->private;
531 	struct vm_area_struct *vma = mss->vma;
532 	pte_t *pte;
533 	spinlock_t *ptl;
534 
535 	if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
536 		smaps_pmd_entry(pmd, addr, walk);
537 		spin_unlock(ptl);
538 		return 0;
539 	}
540 
541 	if (pmd_trans_unstable(pmd))
542 		return 0;
543 	/*
544 	 * The mmap_sem held all the way back in m_start() is what
545 	 * keeps khugepaged out of here and from collapsing things
546 	 * in here.
547 	 */
548 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
549 	for (; addr != end; pte++, addr += PAGE_SIZE)
550 		smaps_pte_entry(pte, addr, walk);
551 	pte_unmap_unlock(pte - 1, ptl);
552 	cond_resched();
553 	return 0;
554 }
555 
556 static void show_smap_vma_flags(struct seq_file *m, struct vm_area_struct *vma)
557 {
558 	/*
559 	 * Don't forget to update Documentation/ on changes.
560 	 */
561 	static const char mnemonics[BITS_PER_LONG][2] = {
562 		/*
563 		 * In case if we meet a flag we don't know about.
564 		 */
565 		[0 ... (BITS_PER_LONG-1)] = "??",
566 
567 		[ilog2(VM_READ)]	= "rd",
568 		[ilog2(VM_WRITE)]	= "wr",
569 		[ilog2(VM_EXEC)]	= "ex",
570 		[ilog2(VM_SHARED)]	= "sh",
571 		[ilog2(VM_MAYREAD)]	= "mr",
572 		[ilog2(VM_MAYWRITE)]	= "mw",
573 		[ilog2(VM_MAYEXEC)]	= "me",
574 		[ilog2(VM_MAYSHARE)]	= "ms",
575 		[ilog2(VM_GROWSDOWN)]	= "gd",
576 		[ilog2(VM_PFNMAP)]	= "pf",
577 		[ilog2(VM_DENYWRITE)]	= "dw",
578 #ifdef CONFIG_X86_INTEL_MPX
579 		[ilog2(VM_MPX)]		= "mp",
580 #endif
581 		[ilog2(VM_LOCKED)]	= "lo",
582 		[ilog2(VM_IO)]		= "io",
583 		[ilog2(VM_SEQ_READ)]	= "sr",
584 		[ilog2(VM_RAND_READ)]	= "rr",
585 		[ilog2(VM_DONTCOPY)]	= "dc",
586 		[ilog2(VM_DONTEXPAND)]	= "de",
587 		[ilog2(VM_ACCOUNT)]	= "ac",
588 		[ilog2(VM_NORESERVE)]	= "nr",
589 		[ilog2(VM_HUGETLB)]	= "ht",
590 		[ilog2(VM_ARCH_1)]	= "ar",
591 		[ilog2(VM_DONTDUMP)]	= "dd",
592 #ifdef CONFIG_MEM_SOFT_DIRTY
593 		[ilog2(VM_SOFTDIRTY)]	= "sd",
594 #endif
595 		[ilog2(VM_MIXEDMAP)]	= "mm",
596 		[ilog2(VM_HUGEPAGE)]	= "hg",
597 		[ilog2(VM_NOHUGEPAGE)]	= "nh",
598 		[ilog2(VM_MERGEABLE)]	= "mg",
599 	};
600 	size_t i;
601 
602 	seq_puts(m, "VmFlags: ");
603 	for (i = 0; i < BITS_PER_LONG; i++) {
604 		if (vma->vm_flags & (1UL << i)) {
605 			seq_printf(m, "%c%c ",
606 				   mnemonics[i][0], mnemonics[i][1]);
607 		}
608 	}
609 	seq_putc(m, '\n');
610 }
611 
612 static int show_smap(struct seq_file *m, void *v, int is_pid)
613 {
614 	struct vm_area_struct *vma = v;
615 	struct mem_size_stats mss;
616 	struct mm_walk smaps_walk = {
617 		.pmd_entry = smaps_pte_range,
618 		.mm = vma->vm_mm,
619 		.private = &mss,
620 	};
621 
622 	memset(&mss, 0, sizeof mss);
623 	mss.vma = vma;
624 	/* mmap_sem is held in m_start */
625 	if (vma->vm_mm && !is_vm_hugetlb_page(vma))
626 		walk_page_range(vma->vm_start, vma->vm_end, &smaps_walk);
627 
628 	show_map_vma(m, vma, is_pid);
629 
630 	seq_printf(m,
631 		   "Size:           %8lu kB\n"
632 		   "Rss:            %8lu kB\n"
633 		   "Pss:            %8lu kB\n"
634 		   "Shared_Clean:   %8lu kB\n"
635 		   "Shared_Dirty:   %8lu kB\n"
636 		   "Private_Clean:  %8lu kB\n"
637 		   "Private_Dirty:  %8lu kB\n"
638 		   "Referenced:     %8lu kB\n"
639 		   "Anonymous:      %8lu kB\n"
640 		   "AnonHugePages:  %8lu kB\n"
641 		   "Swap:           %8lu kB\n"
642 		   "KernelPageSize: %8lu kB\n"
643 		   "MMUPageSize:    %8lu kB\n"
644 		   "Locked:         %8lu kB\n",
645 		   (vma->vm_end - vma->vm_start) >> 10,
646 		   mss.resident >> 10,
647 		   (unsigned long)(mss.pss >> (10 + PSS_SHIFT)),
648 		   mss.shared_clean  >> 10,
649 		   mss.shared_dirty  >> 10,
650 		   mss.private_clean >> 10,
651 		   mss.private_dirty >> 10,
652 		   mss.referenced >> 10,
653 		   mss.anonymous >> 10,
654 		   mss.anonymous_thp >> 10,
655 		   mss.swap >> 10,
656 		   vma_kernel_pagesize(vma) >> 10,
657 		   vma_mmu_pagesize(vma) >> 10,
658 		   (vma->vm_flags & VM_LOCKED) ?
659 			(unsigned long)(mss.pss >> (10 + PSS_SHIFT)) : 0);
660 
661 	show_smap_vma_flags(m, vma);
662 	m_cache_vma(m, vma);
663 	return 0;
664 }
665 
666 static int show_pid_smap(struct seq_file *m, void *v)
667 {
668 	return show_smap(m, v, 1);
669 }
670 
671 static int show_tid_smap(struct seq_file *m, void *v)
672 {
673 	return show_smap(m, v, 0);
674 }
675 
676 static const struct seq_operations proc_pid_smaps_op = {
677 	.start	= m_start,
678 	.next	= m_next,
679 	.stop	= m_stop,
680 	.show	= show_pid_smap
681 };
682 
683 static const struct seq_operations proc_tid_smaps_op = {
684 	.start	= m_start,
685 	.next	= m_next,
686 	.stop	= m_stop,
687 	.show	= show_tid_smap
688 };
689 
690 static int pid_smaps_open(struct inode *inode, struct file *file)
691 {
692 	return do_maps_open(inode, file, &proc_pid_smaps_op);
693 }
694 
695 static int tid_smaps_open(struct inode *inode, struct file *file)
696 {
697 	return do_maps_open(inode, file, &proc_tid_smaps_op);
698 }
699 
700 const struct file_operations proc_pid_smaps_operations = {
701 	.open		= pid_smaps_open,
702 	.read		= seq_read,
703 	.llseek		= seq_lseek,
704 	.release	= proc_map_release,
705 };
706 
707 const struct file_operations proc_tid_smaps_operations = {
708 	.open		= tid_smaps_open,
709 	.read		= seq_read,
710 	.llseek		= seq_lseek,
711 	.release	= proc_map_release,
712 };
713 
714 /*
715  * We do not want to have constant page-shift bits sitting in
716  * pagemap entries and are about to reuse them some time soon.
717  *
718  * Here's the "migration strategy":
719  * 1. when the system boots these bits remain what they are,
720  *    but a warning about future change is printed in log;
721  * 2. once anyone clears soft-dirty bits via clear_refs file,
722  *    these flag is set to denote, that user is aware of the
723  *    new API and those page-shift bits change their meaning.
724  *    The respective warning is printed in dmesg;
725  * 3. In a couple of releases we will remove all the mentions
726  *    of page-shift in pagemap entries.
727  */
728 
729 static bool soft_dirty_cleared __read_mostly;
730 
731 enum clear_refs_types {
732 	CLEAR_REFS_ALL = 1,
733 	CLEAR_REFS_ANON,
734 	CLEAR_REFS_MAPPED,
735 	CLEAR_REFS_SOFT_DIRTY,
736 	CLEAR_REFS_LAST,
737 };
738 
739 struct clear_refs_private {
740 	struct vm_area_struct *vma;
741 	enum clear_refs_types type;
742 };
743 
744 static inline void clear_soft_dirty(struct vm_area_struct *vma,
745 		unsigned long addr, pte_t *pte)
746 {
747 #ifdef CONFIG_MEM_SOFT_DIRTY
748 	/*
749 	 * The soft-dirty tracker uses #PF-s to catch writes
750 	 * to pages, so write-protect the pte as well. See the
751 	 * Documentation/vm/soft-dirty.txt for full description
752 	 * of how soft-dirty works.
753 	 */
754 	pte_t ptent = *pte;
755 
756 	if (pte_present(ptent)) {
757 		ptent = pte_wrprotect(ptent);
758 		ptent = pte_clear_flags(ptent, _PAGE_SOFT_DIRTY);
759 	} else if (is_swap_pte(ptent)) {
760 		ptent = pte_swp_clear_soft_dirty(ptent);
761 	}
762 
763 	set_pte_at(vma->vm_mm, addr, pte, ptent);
764 #endif
765 }
766 
767 static int clear_refs_pte_range(pmd_t *pmd, unsigned long addr,
768 				unsigned long end, struct mm_walk *walk)
769 {
770 	struct clear_refs_private *cp = walk->private;
771 	struct vm_area_struct *vma = cp->vma;
772 	pte_t *pte, ptent;
773 	spinlock_t *ptl;
774 	struct page *page;
775 
776 	split_huge_page_pmd(vma, addr, pmd);
777 	if (pmd_trans_unstable(pmd))
778 		return 0;
779 
780 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
781 	for (; addr != end; pte++, addr += PAGE_SIZE) {
782 		ptent = *pte;
783 
784 		if (cp->type == CLEAR_REFS_SOFT_DIRTY) {
785 			clear_soft_dirty(vma, addr, pte);
786 			continue;
787 		}
788 
789 		if (!pte_present(ptent))
790 			continue;
791 
792 		page = vm_normal_page(vma, addr, ptent);
793 		if (!page)
794 			continue;
795 
796 		/* Clear accessed and referenced bits. */
797 		ptep_test_and_clear_young(vma, addr, pte);
798 		ClearPageReferenced(page);
799 	}
800 	pte_unmap_unlock(pte - 1, ptl);
801 	cond_resched();
802 	return 0;
803 }
804 
805 static ssize_t clear_refs_write(struct file *file, const char __user *buf,
806 				size_t count, loff_t *ppos)
807 {
808 	struct task_struct *task;
809 	char buffer[PROC_NUMBUF];
810 	struct mm_struct *mm;
811 	struct vm_area_struct *vma;
812 	enum clear_refs_types type;
813 	int itype;
814 	int rv;
815 
816 	memset(buffer, 0, sizeof(buffer));
817 	if (count > sizeof(buffer) - 1)
818 		count = sizeof(buffer) - 1;
819 	if (copy_from_user(buffer, buf, count))
820 		return -EFAULT;
821 	rv = kstrtoint(strstrip(buffer), 10, &itype);
822 	if (rv < 0)
823 		return rv;
824 	type = (enum clear_refs_types)itype;
825 	if (type < CLEAR_REFS_ALL || type >= CLEAR_REFS_LAST)
826 		return -EINVAL;
827 
828 	if (type == CLEAR_REFS_SOFT_DIRTY) {
829 		soft_dirty_cleared = true;
830 		pr_warn_once("The pagemap bits 55-60 has changed their meaning!"
831 			     " See the linux/Documentation/vm/pagemap.txt for "
832 			     "details.\n");
833 	}
834 
835 	task = get_proc_task(file_inode(file));
836 	if (!task)
837 		return -ESRCH;
838 	mm = get_task_mm(task);
839 	if (mm) {
840 		struct clear_refs_private cp = {
841 			.type = type,
842 		};
843 		struct mm_walk clear_refs_walk = {
844 			.pmd_entry = clear_refs_pte_range,
845 			.mm = mm,
846 			.private = &cp,
847 		};
848 		down_read(&mm->mmap_sem);
849 		if (type == CLEAR_REFS_SOFT_DIRTY) {
850 			for (vma = mm->mmap; vma; vma = vma->vm_next) {
851 				if (!(vma->vm_flags & VM_SOFTDIRTY))
852 					continue;
853 				up_read(&mm->mmap_sem);
854 				down_write(&mm->mmap_sem);
855 				for (vma = mm->mmap; vma; vma = vma->vm_next) {
856 					vma->vm_flags &= ~VM_SOFTDIRTY;
857 					vma_set_page_prot(vma);
858 				}
859 				downgrade_write(&mm->mmap_sem);
860 				break;
861 			}
862 			mmu_notifier_invalidate_range_start(mm, 0, -1);
863 		}
864 		for (vma = mm->mmap; vma; vma = vma->vm_next) {
865 			cp.vma = vma;
866 			if (is_vm_hugetlb_page(vma))
867 				continue;
868 			/*
869 			 * Writing 1 to /proc/pid/clear_refs affects all pages.
870 			 *
871 			 * Writing 2 to /proc/pid/clear_refs only affects
872 			 * Anonymous pages.
873 			 *
874 			 * Writing 3 to /proc/pid/clear_refs only affects file
875 			 * mapped pages.
876 			 *
877 			 * Writing 4 to /proc/pid/clear_refs affects all pages.
878 			 */
879 			if (type == CLEAR_REFS_ANON && vma->vm_file)
880 				continue;
881 			if (type == CLEAR_REFS_MAPPED && !vma->vm_file)
882 				continue;
883 			walk_page_range(vma->vm_start, vma->vm_end,
884 					&clear_refs_walk);
885 		}
886 		if (type == CLEAR_REFS_SOFT_DIRTY)
887 			mmu_notifier_invalidate_range_end(mm, 0, -1);
888 		flush_tlb_mm(mm);
889 		up_read(&mm->mmap_sem);
890 		mmput(mm);
891 	}
892 	put_task_struct(task);
893 
894 	return count;
895 }
896 
897 const struct file_operations proc_clear_refs_operations = {
898 	.write		= clear_refs_write,
899 	.llseek		= noop_llseek,
900 };
901 
902 typedef struct {
903 	u64 pme;
904 } pagemap_entry_t;
905 
906 struct pagemapread {
907 	int pos, len;		/* units: PM_ENTRY_BYTES, not bytes */
908 	pagemap_entry_t *buffer;
909 	bool v2;
910 };
911 
912 #define PAGEMAP_WALK_SIZE	(PMD_SIZE)
913 #define PAGEMAP_WALK_MASK	(PMD_MASK)
914 
915 #define PM_ENTRY_BYTES      sizeof(pagemap_entry_t)
916 #define PM_STATUS_BITS      3
917 #define PM_STATUS_OFFSET    (64 - PM_STATUS_BITS)
918 #define PM_STATUS_MASK      (((1LL << PM_STATUS_BITS) - 1) << PM_STATUS_OFFSET)
919 #define PM_STATUS(nr)       (((nr) << PM_STATUS_OFFSET) & PM_STATUS_MASK)
920 #define PM_PSHIFT_BITS      6
921 #define PM_PSHIFT_OFFSET    (PM_STATUS_OFFSET - PM_PSHIFT_BITS)
922 #define PM_PSHIFT_MASK      (((1LL << PM_PSHIFT_BITS) - 1) << PM_PSHIFT_OFFSET)
923 #define __PM_PSHIFT(x)      (((u64) (x) << PM_PSHIFT_OFFSET) & PM_PSHIFT_MASK)
924 #define PM_PFRAME_MASK      ((1LL << PM_PSHIFT_OFFSET) - 1)
925 #define PM_PFRAME(x)        ((x) & PM_PFRAME_MASK)
926 /* in "new" pagemap pshift bits are occupied with more status bits */
927 #define PM_STATUS2(v2, x)   (__PM_PSHIFT(v2 ? x : PAGE_SHIFT))
928 
929 #define __PM_SOFT_DIRTY      (1LL)
930 #define PM_PRESENT          PM_STATUS(4LL)
931 #define PM_SWAP             PM_STATUS(2LL)
932 #define PM_FILE             PM_STATUS(1LL)
933 #define PM_NOT_PRESENT(v2)  PM_STATUS2(v2, 0)
934 #define PM_END_OF_BUFFER    1
935 
936 static inline pagemap_entry_t make_pme(u64 val)
937 {
938 	return (pagemap_entry_t) { .pme = val };
939 }
940 
941 static int add_to_pagemap(unsigned long addr, pagemap_entry_t *pme,
942 			  struct pagemapread *pm)
943 {
944 	pm->buffer[pm->pos++] = *pme;
945 	if (pm->pos >= pm->len)
946 		return PM_END_OF_BUFFER;
947 	return 0;
948 }
949 
950 static int pagemap_pte_hole(unsigned long start, unsigned long end,
951 				struct mm_walk *walk)
952 {
953 	struct pagemapread *pm = walk->private;
954 	unsigned long addr = start;
955 	int err = 0;
956 
957 	while (addr < end) {
958 		struct vm_area_struct *vma = find_vma(walk->mm, addr);
959 		pagemap_entry_t pme = make_pme(PM_NOT_PRESENT(pm->v2));
960 		/* End of address space hole, which we mark as non-present. */
961 		unsigned long hole_end;
962 
963 		if (vma)
964 			hole_end = min(end, vma->vm_start);
965 		else
966 			hole_end = end;
967 
968 		for (; addr < hole_end; addr += PAGE_SIZE) {
969 			err = add_to_pagemap(addr, &pme, pm);
970 			if (err)
971 				goto out;
972 		}
973 
974 		if (!vma)
975 			break;
976 
977 		/* Addresses in the VMA. */
978 		if (vma->vm_flags & VM_SOFTDIRTY)
979 			pme.pme |= PM_STATUS2(pm->v2, __PM_SOFT_DIRTY);
980 		for (; addr < min(end, vma->vm_end); addr += PAGE_SIZE) {
981 			err = add_to_pagemap(addr, &pme, pm);
982 			if (err)
983 				goto out;
984 		}
985 	}
986 out:
987 	return err;
988 }
989 
990 static void pte_to_pagemap_entry(pagemap_entry_t *pme, struct pagemapread *pm,
991 		struct vm_area_struct *vma, unsigned long addr, pte_t pte)
992 {
993 	u64 frame, flags;
994 	struct page *page = NULL;
995 	int flags2 = 0;
996 
997 	if (pte_present(pte)) {
998 		frame = pte_pfn(pte);
999 		flags = PM_PRESENT;
1000 		page = vm_normal_page(vma, addr, pte);
1001 		if (pte_soft_dirty(pte))
1002 			flags2 |= __PM_SOFT_DIRTY;
1003 	} else if (is_swap_pte(pte)) {
1004 		swp_entry_t entry;
1005 		if (pte_swp_soft_dirty(pte))
1006 			flags2 |= __PM_SOFT_DIRTY;
1007 		entry = pte_to_swp_entry(pte);
1008 		frame = swp_type(entry) |
1009 			(swp_offset(entry) << MAX_SWAPFILES_SHIFT);
1010 		flags = PM_SWAP;
1011 		if (is_migration_entry(entry))
1012 			page = migration_entry_to_page(entry);
1013 	} else {
1014 		if (vma->vm_flags & VM_SOFTDIRTY)
1015 			flags2 |= __PM_SOFT_DIRTY;
1016 		*pme = make_pme(PM_NOT_PRESENT(pm->v2) | PM_STATUS2(pm->v2, flags2));
1017 		return;
1018 	}
1019 
1020 	if (page && !PageAnon(page))
1021 		flags |= PM_FILE;
1022 	if ((vma->vm_flags & VM_SOFTDIRTY))
1023 		flags2 |= __PM_SOFT_DIRTY;
1024 
1025 	*pme = make_pme(PM_PFRAME(frame) | PM_STATUS2(pm->v2, flags2) | flags);
1026 }
1027 
1028 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1029 static void thp_pmd_to_pagemap_entry(pagemap_entry_t *pme, struct pagemapread *pm,
1030 		pmd_t pmd, int offset, int pmd_flags2)
1031 {
1032 	/*
1033 	 * Currently pmd for thp is always present because thp can not be
1034 	 * swapped-out, migrated, or HWPOISONed (split in such cases instead.)
1035 	 * This if-check is just to prepare for future implementation.
1036 	 */
1037 	if (pmd_present(pmd))
1038 		*pme = make_pme(PM_PFRAME(pmd_pfn(pmd) + offset)
1039 				| PM_STATUS2(pm->v2, pmd_flags2) | PM_PRESENT);
1040 	else
1041 		*pme = make_pme(PM_NOT_PRESENT(pm->v2) | PM_STATUS2(pm->v2, pmd_flags2));
1042 }
1043 #else
1044 static inline void thp_pmd_to_pagemap_entry(pagemap_entry_t *pme, struct pagemapread *pm,
1045 		pmd_t pmd, int offset, int pmd_flags2)
1046 {
1047 }
1048 #endif
1049 
1050 static int pagemap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
1051 			     struct mm_walk *walk)
1052 {
1053 	struct vm_area_struct *vma;
1054 	struct pagemapread *pm = walk->private;
1055 	spinlock_t *ptl;
1056 	pte_t *pte;
1057 	int err = 0;
1058 
1059 	/* find the first VMA at or above 'addr' */
1060 	vma = find_vma(walk->mm, addr);
1061 	if (vma && pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
1062 		int pmd_flags2;
1063 
1064 		if ((vma->vm_flags & VM_SOFTDIRTY) || pmd_soft_dirty(*pmd))
1065 			pmd_flags2 = __PM_SOFT_DIRTY;
1066 		else
1067 			pmd_flags2 = 0;
1068 
1069 		for (; addr != end; addr += PAGE_SIZE) {
1070 			unsigned long offset;
1071 			pagemap_entry_t pme;
1072 
1073 			offset = (addr & ~PAGEMAP_WALK_MASK) >>
1074 					PAGE_SHIFT;
1075 			thp_pmd_to_pagemap_entry(&pme, pm, *pmd, offset, pmd_flags2);
1076 			err = add_to_pagemap(addr, &pme, pm);
1077 			if (err)
1078 				break;
1079 		}
1080 		spin_unlock(ptl);
1081 		return err;
1082 	}
1083 
1084 	if (pmd_trans_unstable(pmd))
1085 		return 0;
1086 
1087 	while (1) {
1088 		/* End of address space hole, which we mark as non-present. */
1089 		unsigned long hole_end;
1090 
1091 		if (vma)
1092 			hole_end = min(end, vma->vm_start);
1093 		else
1094 			hole_end = end;
1095 
1096 		for (; addr < hole_end; addr += PAGE_SIZE) {
1097 			pagemap_entry_t pme = make_pme(PM_NOT_PRESENT(pm->v2));
1098 
1099 			err = add_to_pagemap(addr, &pme, pm);
1100 			if (err)
1101 				return err;
1102 		}
1103 
1104 		if (!vma || vma->vm_start >= end)
1105 			break;
1106 		/*
1107 		 * We can't possibly be in a hugetlb VMA. In general,
1108 		 * for a mm_walk with a pmd_entry and a hugetlb_entry,
1109 		 * the pmd_entry can only be called on addresses in a
1110 		 * hugetlb if the walk starts in a non-hugetlb VMA and
1111 		 * spans a hugepage VMA. Since pagemap_read walks are
1112 		 * PMD-sized and PMD-aligned, this will never be true.
1113 		 */
1114 		BUG_ON(is_vm_hugetlb_page(vma));
1115 
1116 		/* Addresses in the VMA. */
1117 		for (; addr < min(end, vma->vm_end); addr += PAGE_SIZE) {
1118 			pagemap_entry_t pme;
1119 			pte = pte_offset_map(pmd, addr);
1120 			pte_to_pagemap_entry(&pme, pm, vma, addr, *pte);
1121 			pte_unmap(pte);
1122 			err = add_to_pagemap(addr, &pme, pm);
1123 			if (err)
1124 				return err;
1125 		}
1126 
1127 		if (addr == end)
1128 			break;
1129 
1130 		vma = find_vma(walk->mm, addr);
1131 	}
1132 
1133 	cond_resched();
1134 
1135 	return err;
1136 }
1137 
1138 #ifdef CONFIG_HUGETLB_PAGE
1139 static void huge_pte_to_pagemap_entry(pagemap_entry_t *pme, struct pagemapread *pm,
1140 					pte_t pte, int offset, int flags2)
1141 {
1142 	if (pte_present(pte))
1143 		*pme = make_pme(PM_PFRAME(pte_pfn(pte) + offset)	|
1144 				PM_STATUS2(pm->v2, flags2)		|
1145 				PM_PRESENT);
1146 	else
1147 		*pme = make_pme(PM_NOT_PRESENT(pm->v2)			|
1148 				PM_STATUS2(pm->v2, flags2));
1149 }
1150 
1151 /* This function walks within one hugetlb entry in the single call */
1152 static int pagemap_hugetlb_range(pte_t *pte, unsigned long hmask,
1153 				 unsigned long addr, unsigned long end,
1154 				 struct mm_walk *walk)
1155 {
1156 	struct pagemapread *pm = walk->private;
1157 	struct vm_area_struct *vma;
1158 	int err = 0;
1159 	int flags2;
1160 	pagemap_entry_t pme;
1161 
1162 	vma = find_vma(walk->mm, addr);
1163 	WARN_ON_ONCE(!vma);
1164 
1165 	if (vma && (vma->vm_flags & VM_SOFTDIRTY))
1166 		flags2 = __PM_SOFT_DIRTY;
1167 	else
1168 		flags2 = 0;
1169 
1170 	for (; addr != end; addr += PAGE_SIZE) {
1171 		int offset = (addr & ~hmask) >> PAGE_SHIFT;
1172 		huge_pte_to_pagemap_entry(&pme, pm, *pte, offset, flags2);
1173 		err = add_to_pagemap(addr, &pme, pm);
1174 		if (err)
1175 			return err;
1176 	}
1177 
1178 	cond_resched();
1179 
1180 	return err;
1181 }
1182 #endif /* HUGETLB_PAGE */
1183 
1184 /*
1185  * /proc/pid/pagemap - an array mapping virtual pages to pfns
1186  *
1187  * For each page in the address space, this file contains one 64-bit entry
1188  * consisting of the following:
1189  *
1190  * Bits 0-54  page frame number (PFN) if present
1191  * Bits 0-4   swap type if swapped
1192  * Bits 5-54  swap offset if swapped
1193  * Bits 55-60 page shift (page size = 1<<page shift)
1194  * Bit  61    page is file-page or shared-anon
1195  * Bit  62    page swapped
1196  * Bit  63    page present
1197  *
1198  * If the page is not present but in swap, then the PFN contains an
1199  * encoding of the swap file number and the page's offset into the
1200  * swap. Unmapped pages return a null PFN. This allows determining
1201  * precisely which pages are mapped (or in swap) and comparing mapped
1202  * pages between processes.
1203  *
1204  * Efficient users of this interface will use /proc/pid/maps to
1205  * determine which areas of memory are actually mapped and llseek to
1206  * skip over unmapped regions.
1207  */
1208 static ssize_t pagemap_read(struct file *file, char __user *buf,
1209 			    size_t count, loff_t *ppos)
1210 {
1211 	struct task_struct *task = get_proc_task(file_inode(file));
1212 	struct mm_struct *mm;
1213 	struct pagemapread pm;
1214 	int ret = -ESRCH;
1215 	struct mm_walk pagemap_walk = {};
1216 	unsigned long src;
1217 	unsigned long svpfn;
1218 	unsigned long start_vaddr;
1219 	unsigned long end_vaddr;
1220 	int copied = 0;
1221 
1222 	if (!task)
1223 		goto out;
1224 
1225 	ret = -EINVAL;
1226 	/* file position must be aligned */
1227 	if ((*ppos % PM_ENTRY_BYTES) || (count % PM_ENTRY_BYTES))
1228 		goto out_task;
1229 
1230 	ret = 0;
1231 	if (!count)
1232 		goto out_task;
1233 
1234 	pm.v2 = soft_dirty_cleared;
1235 	pm.len = (PAGEMAP_WALK_SIZE >> PAGE_SHIFT);
1236 	pm.buffer = kmalloc(pm.len * PM_ENTRY_BYTES, GFP_TEMPORARY);
1237 	ret = -ENOMEM;
1238 	if (!pm.buffer)
1239 		goto out_task;
1240 
1241 	mm = mm_access(task, PTRACE_MODE_READ);
1242 	ret = PTR_ERR(mm);
1243 	if (!mm || IS_ERR(mm))
1244 		goto out_free;
1245 
1246 	pagemap_walk.pmd_entry = pagemap_pte_range;
1247 	pagemap_walk.pte_hole = pagemap_pte_hole;
1248 #ifdef CONFIG_HUGETLB_PAGE
1249 	pagemap_walk.hugetlb_entry = pagemap_hugetlb_range;
1250 #endif
1251 	pagemap_walk.mm = mm;
1252 	pagemap_walk.private = &pm;
1253 
1254 	src = *ppos;
1255 	svpfn = src / PM_ENTRY_BYTES;
1256 	start_vaddr = svpfn << PAGE_SHIFT;
1257 	end_vaddr = TASK_SIZE_OF(task);
1258 
1259 	/* watch out for wraparound */
1260 	if (svpfn > TASK_SIZE_OF(task) >> PAGE_SHIFT)
1261 		start_vaddr = end_vaddr;
1262 
1263 	/*
1264 	 * The odds are that this will stop walking way
1265 	 * before end_vaddr, because the length of the
1266 	 * user buffer is tracked in "pm", and the walk
1267 	 * will stop when we hit the end of the buffer.
1268 	 */
1269 	ret = 0;
1270 	while (count && (start_vaddr < end_vaddr)) {
1271 		int len;
1272 		unsigned long end;
1273 
1274 		pm.pos = 0;
1275 		end = (start_vaddr + PAGEMAP_WALK_SIZE) & PAGEMAP_WALK_MASK;
1276 		/* overflow ? */
1277 		if (end < start_vaddr || end > end_vaddr)
1278 			end = end_vaddr;
1279 		down_read(&mm->mmap_sem);
1280 		ret = walk_page_range(start_vaddr, end, &pagemap_walk);
1281 		up_read(&mm->mmap_sem);
1282 		start_vaddr = end;
1283 
1284 		len = min(count, PM_ENTRY_BYTES * pm.pos);
1285 		if (copy_to_user(buf, pm.buffer, len)) {
1286 			ret = -EFAULT;
1287 			goto out_mm;
1288 		}
1289 		copied += len;
1290 		buf += len;
1291 		count -= len;
1292 	}
1293 	*ppos += copied;
1294 	if (!ret || ret == PM_END_OF_BUFFER)
1295 		ret = copied;
1296 
1297 out_mm:
1298 	mmput(mm);
1299 out_free:
1300 	kfree(pm.buffer);
1301 out_task:
1302 	put_task_struct(task);
1303 out:
1304 	return ret;
1305 }
1306 
1307 static int pagemap_open(struct inode *inode, struct file *file)
1308 {
1309 	pr_warn_once("Bits 55-60 of /proc/PID/pagemap entries are about "
1310 			"to stop being page-shift some time soon. See the "
1311 			"linux/Documentation/vm/pagemap.txt for details.\n");
1312 	return 0;
1313 }
1314 
1315 const struct file_operations proc_pagemap_operations = {
1316 	.llseek		= mem_lseek, /* borrow this */
1317 	.read		= pagemap_read,
1318 	.open		= pagemap_open,
1319 };
1320 #endif /* CONFIG_PROC_PAGE_MONITOR */
1321 
1322 #ifdef CONFIG_NUMA
1323 
1324 struct numa_maps {
1325 	struct vm_area_struct *vma;
1326 	unsigned long pages;
1327 	unsigned long anon;
1328 	unsigned long active;
1329 	unsigned long writeback;
1330 	unsigned long mapcount_max;
1331 	unsigned long dirty;
1332 	unsigned long swapcache;
1333 	unsigned long node[MAX_NUMNODES];
1334 };
1335 
1336 struct numa_maps_private {
1337 	struct proc_maps_private proc_maps;
1338 	struct numa_maps md;
1339 };
1340 
1341 static void gather_stats(struct page *page, struct numa_maps *md, int pte_dirty,
1342 			unsigned long nr_pages)
1343 {
1344 	int count = page_mapcount(page);
1345 
1346 	md->pages += nr_pages;
1347 	if (pte_dirty || PageDirty(page))
1348 		md->dirty += nr_pages;
1349 
1350 	if (PageSwapCache(page))
1351 		md->swapcache += nr_pages;
1352 
1353 	if (PageActive(page) || PageUnevictable(page))
1354 		md->active += nr_pages;
1355 
1356 	if (PageWriteback(page))
1357 		md->writeback += nr_pages;
1358 
1359 	if (PageAnon(page))
1360 		md->anon += nr_pages;
1361 
1362 	if (count > md->mapcount_max)
1363 		md->mapcount_max = count;
1364 
1365 	md->node[page_to_nid(page)] += nr_pages;
1366 }
1367 
1368 static struct page *can_gather_numa_stats(pte_t pte, struct vm_area_struct *vma,
1369 		unsigned long addr)
1370 {
1371 	struct page *page;
1372 	int nid;
1373 
1374 	if (!pte_present(pte))
1375 		return NULL;
1376 
1377 	page = vm_normal_page(vma, addr, pte);
1378 	if (!page)
1379 		return NULL;
1380 
1381 	if (PageReserved(page))
1382 		return NULL;
1383 
1384 	nid = page_to_nid(page);
1385 	if (!node_isset(nid, node_states[N_MEMORY]))
1386 		return NULL;
1387 
1388 	return page;
1389 }
1390 
1391 static int gather_pte_stats(pmd_t *pmd, unsigned long addr,
1392 		unsigned long end, struct mm_walk *walk)
1393 {
1394 	struct numa_maps *md;
1395 	spinlock_t *ptl;
1396 	pte_t *orig_pte;
1397 	pte_t *pte;
1398 
1399 	md = walk->private;
1400 
1401 	if (pmd_trans_huge_lock(pmd, md->vma, &ptl) == 1) {
1402 		pte_t huge_pte = *(pte_t *)pmd;
1403 		struct page *page;
1404 
1405 		page = can_gather_numa_stats(huge_pte, md->vma, addr);
1406 		if (page)
1407 			gather_stats(page, md, pte_dirty(huge_pte),
1408 				     HPAGE_PMD_SIZE/PAGE_SIZE);
1409 		spin_unlock(ptl);
1410 		return 0;
1411 	}
1412 
1413 	if (pmd_trans_unstable(pmd))
1414 		return 0;
1415 	orig_pte = pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
1416 	do {
1417 		struct page *page = can_gather_numa_stats(*pte, md->vma, addr);
1418 		if (!page)
1419 			continue;
1420 		gather_stats(page, md, pte_dirty(*pte), 1);
1421 
1422 	} while (pte++, addr += PAGE_SIZE, addr != end);
1423 	pte_unmap_unlock(orig_pte, ptl);
1424 	return 0;
1425 }
1426 #ifdef CONFIG_HUGETLB_PAGE
1427 static int gather_hugetbl_stats(pte_t *pte, unsigned long hmask,
1428 		unsigned long addr, unsigned long end, struct mm_walk *walk)
1429 {
1430 	struct numa_maps *md;
1431 	struct page *page;
1432 
1433 	if (!pte_present(*pte))
1434 		return 0;
1435 
1436 	page = pte_page(*pte);
1437 	if (!page)
1438 		return 0;
1439 
1440 	md = walk->private;
1441 	gather_stats(page, md, pte_dirty(*pte), 1);
1442 	return 0;
1443 }
1444 
1445 #else
1446 static int gather_hugetbl_stats(pte_t *pte, unsigned long hmask,
1447 		unsigned long addr, unsigned long end, struct mm_walk *walk)
1448 {
1449 	return 0;
1450 }
1451 #endif
1452 
1453 /*
1454  * Display pages allocated per node and memory policy via /proc.
1455  */
1456 static int show_numa_map(struct seq_file *m, void *v, int is_pid)
1457 {
1458 	struct numa_maps_private *numa_priv = m->private;
1459 	struct proc_maps_private *proc_priv = &numa_priv->proc_maps;
1460 	struct vm_area_struct *vma = v;
1461 	struct numa_maps *md = &numa_priv->md;
1462 	struct file *file = vma->vm_file;
1463 	struct mm_struct *mm = vma->vm_mm;
1464 	struct mm_walk walk = {};
1465 	struct mempolicy *pol;
1466 	char buffer[64];
1467 	int nid;
1468 
1469 	if (!mm)
1470 		return 0;
1471 
1472 	/* Ensure we start with an empty set of numa_maps statistics. */
1473 	memset(md, 0, sizeof(*md));
1474 
1475 	md->vma = vma;
1476 
1477 	walk.hugetlb_entry = gather_hugetbl_stats;
1478 	walk.pmd_entry = gather_pte_stats;
1479 	walk.private = md;
1480 	walk.mm = mm;
1481 
1482 	pol = __get_vma_policy(vma, vma->vm_start);
1483 	if (pol) {
1484 		mpol_to_str(buffer, sizeof(buffer), pol);
1485 		mpol_cond_put(pol);
1486 	} else {
1487 		mpol_to_str(buffer, sizeof(buffer), proc_priv->task_mempolicy);
1488 	}
1489 
1490 	seq_printf(m, "%08lx %s", vma->vm_start, buffer);
1491 
1492 	if (file) {
1493 		seq_puts(m, " file=");
1494 		seq_path(m, &file->f_path, "\n\t= ");
1495 	} else if (vma->vm_start <= mm->brk && vma->vm_end >= mm->start_brk) {
1496 		seq_puts(m, " heap");
1497 	} else {
1498 		pid_t tid = pid_of_stack(proc_priv, vma, is_pid);
1499 		if (tid != 0) {
1500 			/*
1501 			 * Thread stack in /proc/PID/task/TID/maps or
1502 			 * the main process stack.
1503 			 */
1504 			if (!is_pid || (vma->vm_start <= mm->start_stack &&
1505 			    vma->vm_end >= mm->start_stack))
1506 				seq_puts(m, " stack");
1507 			else
1508 				seq_printf(m, " stack:%d", tid);
1509 		}
1510 	}
1511 
1512 	if (is_vm_hugetlb_page(vma))
1513 		seq_puts(m, " huge");
1514 
1515 	walk_page_range(vma->vm_start, vma->vm_end, &walk);
1516 
1517 	if (!md->pages)
1518 		goto out;
1519 
1520 	if (md->anon)
1521 		seq_printf(m, " anon=%lu", md->anon);
1522 
1523 	if (md->dirty)
1524 		seq_printf(m, " dirty=%lu", md->dirty);
1525 
1526 	if (md->pages != md->anon && md->pages != md->dirty)
1527 		seq_printf(m, " mapped=%lu", md->pages);
1528 
1529 	if (md->mapcount_max > 1)
1530 		seq_printf(m, " mapmax=%lu", md->mapcount_max);
1531 
1532 	if (md->swapcache)
1533 		seq_printf(m, " swapcache=%lu", md->swapcache);
1534 
1535 	if (md->active < md->pages && !is_vm_hugetlb_page(vma))
1536 		seq_printf(m, " active=%lu", md->active);
1537 
1538 	if (md->writeback)
1539 		seq_printf(m, " writeback=%lu", md->writeback);
1540 
1541 	for_each_node_state(nid, N_MEMORY)
1542 		if (md->node[nid])
1543 			seq_printf(m, " N%d=%lu", nid, md->node[nid]);
1544 out:
1545 	seq_putc(m, '\n');
1546 	m_cache_vma(m, vma);
1547 	return 0;
1548 }
1549 
1550 static int show_pid_numa_map(struct seq_file *m, void *v)
1551 {
1552 	return show_numa_map(m, v, 1);
1553 }
1554 
1555 static int show_tid_numa_map(struct seq_file *m, void *v)
1556 {
1557 	return show_numa_map(m, v, 0);
1558 }
1559 
1560 static const struct seq_operations proc_pid_numa_maps_op = {
1561 	.start  = m_start,
1562 	.next   = m_next,
1563 	.stop   = m_stop,
1564 	.show   = show_pid_numa_map,
1565 };
1566 
1567 static const struct seq_operations proc_tid_numa_maps_op = {
1568 	.start  = m_start,
1569 	.next   = m_next,
1570 	.stop   = m_stop,
1571 	.show   = show_tid_numa_map,
1572 };
1573 
1574 static int numa_maps_open(struct inode *inode, struct file *file,
1575 			  const struct seq_operations *ops)
1576 {
1577 	return proc_maps_open(inode, file, ops,
1578 				sizeof(struct numa_maps_private));
1579 }
1580 
1581 static int pid_numa_maps_open(struct inode *inode, struct file *file)
1582 {
1583 	return numa_maps_open(inode, file, &proc_pid_numa_maps_op);
1584 }
1585 
1586 static int tid_numa_maps_open(struct inode *inode, struct file *file)
1587 {
1588 	return numa_maps_open(inode, file, &proc_tid_numa_maps_op);
1589 }
1590 
1591 const struct file_operations proc_pid_numa_maps_operations = {
1592 	.open		= pid_numa_maps_open,
1593 	.read		= seq_read,
1594 	.llseek		= seq_lseek,
1595 	.release	= proc_map_release,
1596 };
1597 
1598 const struct file_operations proc_tid_numa_maps_operations = {
1599 	.open		= tid_numa_maps_open,
1600 	.read		= seq_read,
1601 	.llseek		= seq_lseek,
1602 	.release	= proc_map_release,
1603 };
1604 #endif /* CONFIG_NUMA */
1605