1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * /proc/sys support 4 */ 5 #include <linux/init.h> 6 #include <linux/sysctl.h> 7 #include <linux/poll.h> 8 #include <linux/proc_fs.h> 9 #include <linux/printk.h> 10 #include <linux/security.h> 11 #include <linux/sched.h> 12 #include <linux/cred.h> 13 #include <linux/namei.h> 14 #include <linux/mm.h> 15 #include <linux/uio.h> 16 #include <linux/module.h> 17 #include <linux/bpf-cgroup.h> 18 #include <linux/mount.h> 19 #include <linux/kmemleak.h> 20 #include <linux/lockdep.h> 21 #include "internal.h" 22 23 #define list_for_each_table_entry(entry, header) \ 24 entry = header->ctl_table; \ 25 for (size_t i = 0 ; i < header->ctl_table_size; ++i, entry++) 26 27 static const struct dentry_operations proc_sys_dentry_operations; 28 static const struct file_operations proc_sys_file_operations; 29 static const struct inode_operations proc_sys_inode_operations; 30 static const struct file_operations proc_sys_dir_file_operations; 31 static const struct inode_operations proc_sys_dir_operations; 32 33 /* 34 * Support for permanently empty directories. 35 * Must be non-empty to avoid sharing an address with other tables. 36 */ 37 static const struct ctl_table sysctl_mount_point[] = { 38 { } 39 }; 40 41 /** 42 * register_sysctl_mount_point() - registers a sysctl mount point 43 * @path: path for the mount point 44 * 45 * Used to create a permanently empty directory to serve as mount point. 46 * There are some subtle but important permission checks this allows in the 47 * case of unprivileged mounts. 48 */ 49 struct ctl_table_header *register_sysctl_mount_point(const char *path) 50 { 51 return register_sysctl_sz(path, sysctl_mount_point, 0); 52 } 53 EXPORT_SYMBOL(register_sysctl_mount_point); 54 55 #define sysctl_is_perm_empty_ctl_header(hptr) \ 56 (hptr->type == SYSCTL_TABLE_TYPE_PERMANENTLY_EMPTY) 57 #define sysctl_set_perm_empty_ctl_header(hptr) \ 58 (hptr->type = SYSCTL_TABLE_TYPE_PERMANENTLY_EMPTY) 59 #define sysctl_clear_perm_empty_ctl_header(hptr) \ 60 (hptr->type = SYSCTL_TABLE_TYPE_DEFAULT) 61 62 void proc_sys_poll_notify(struct ctl_table_poll *poll) 63 { 64 if (!poll) 65 return; 66 67 atomic_inc(&poll->event); 68 wake_up_interruptible(&poll->wait); 69 } 70 71 static const struct ctl_table root_table[] = { 72 { 73 .procname = "", 74 .mode = S_IFDIR|S_IRUGO|S_IXUGO, 75 }, 76 }; 77 static struct ctl_table_root sysctl_table_root = { 78 .default_set.dir.header = { 79 {{.count = 1, 80 .nreg = 1, 81 .ctl_table = root_table }}, 82 .ctl_table_arg = root_table, 83 .root = &sysctl_table_root, 84 .set = &sysctl_table_root.default_set, 85 }, 86 }; 87 88 static DEFINE_SPINLOCK(sysctl_lock); 89 90 static void drop_sysctl_table(struct ctl_table_header *header); 91 static int sysctl_follow_link(struct ctl_table_header **phead, 92 const struct ctl_table **pentry); 93 static int insert_links(struct ctl_table_header *head); 94 static void put_links(struct ctl_table_header *header); 95 96 static void sysctl_print_dir(struct ctl_dir *dir) 97 { 98 if (dir->header.parent) 99 sysctl_print_dir(dir->header.parent); 100 pr_cont("%s/", dir->header.ctl_table[0].procname); 101 } 102 103 static int namecmp(const char *name1, int len1, const char *name2, int len2) 104 { 105 int cmp; 106 107 cmp = memcmp(name1, name2, min(len1, len2)); 108 if (cmp == 0) 109 cmp = len1 - len2; 110 return cmp; 111 } 112 113 static const struct ctl_table *find_entry(struct ctl_table_header **phead, 114 struct ctl_dir *dir, const char *name, int namelen) 115 { 116 struct ctl_table_header *head; 117 const struct ctl_table *entry; 118 struct rb_node *node = dir->root.rb_node; 119 120 lockdep_assert_held(&sysctl_lock); 121 122 while (node) 123 { 124 struct ctl_node *ctl_node; 125 const char *procname; 126 int cmp; 127 128 ctl_node = rb_entry(node, struct ctl_node, node); 129 head = ctl_node->header; 130 entry = &head->ctl_table[ctl_node - head->node]; 131 procname = entry->procname; 132 133 cmp = namecmp(name, namelen, procname, strlen(procname)); 134 if (cmp < 0) 135 node = node->rb_left; 136 else if (cmp > 0) 137 node = node->rb_right; 138 else { 139 *phead = head; 140 return entry; 141 } 142 } 143 return NULL; 144 } 145 146 static int insert_entry(struct ctl_table_header *head, const struct ctl_table *entry) 147 { 148 struct rb_node *node = &head->node[entry - head->ctl_table].node; 149 struct rb_node **p = &head->parent->root.rb_node; 150 struct rb_node *parent = NULL; 151 const char *name = entry->procname; 152 int namelen = strlen(name); 153 154 while (*p) { 155 struct ctl_table_header *parent_head; 156 const struct ctl_table *parent_entry; 157 struct ctl_node *parent_node; 158 const char *parent_name; 159 int cmp; 160 161 parent = *p; 162 parent_node = rb_entry(parent, struct ctl_node, node); 163 parent_head = parent_node->header; 164 parent_entry = &parent_head->ctl_table[parent_node - parent_head->node]; 165 parent_name = parent_entry->procname; 166 167 cmp = namecmp(name, namelen, parent_name, strlen(parent_name)); 168 if (cmp < 0) 169 p = &(*p)->rb_left; 170 else if (cmp > 0) 171 p = &(*p)->rb_right; 172 else { 173 pr_err("sysctl duplicate entry: "); 174 sysctl_print_dir(head->parent); 175 pr_cont("%s\n", entry->procname); 176 return -EEXIST; 177 } 178 } 179 180 rb_link_node(node, parent, p); 181 rb_insert_color(node, &head->parent->root); 182 return 0; 183 } 184 185 static void erase_entry(struct ctl_table_header *head, const struct ctl_table *entry) 186 { 187 struct rb_node *node = &head->node[entry - head->ctl_table].node; 188 189 rb_erase(node, &head->parent->root); 190 } 191 192 static void init_header(struct ctl_table_header *head, 193 struct ctl_table_root *root, struct ctl_table_set *set, 194 struct ctl_node *node, const struct ctl_table *table, size_t table_size) 195 { 196 head->ctl_table = table; 197 head->ctl_table_size = table_size; 198 head->ctl_table_arg = table; 199 head->used = 0; 200 head->count = 1; 201 head->nreg = 1; 202 head->unregistering = NULL; 203 head->root = root; 204 head->set = set; 205 head->parent = NULL; 206 head->node = node; 207 INIT_HLIST_HEAD(&head->inodes); 208 if (node) { 209 const struct ctl_table *entry; 210 211 list_for_each_table_entry(entry, head) { 212 node->header = head; 213 node++; 214 } 215 } 216 if (table == sysctl_mount_point) 217 sysctl_set_perm_empty_ctl_header(head); 218 } 219 220 static void erase_header(struct ctl_table_header *head) 221 { 222 const struct ctl_table *entry; 223 224 list_for_each_table_entry(entry, head) 225 erase_entry(head, entry); 226 } 227 228 static int insert_header(struct ctl_dir *dir, struct ctl_table_header *header) 229 { 230 const struct ctl_table *entry; 231 struct ctl_table_header *dir_h = &dir->header; 232 int err; 233 234 235 /* Is this a permanently empty directory? */ 236 if (sysctl_is_perm_empty_ctl_header(dir_h)) 237 return -EROFS; 238 239 /* Am I creating a permanently empty directory? */ 240 if (sysctl_is_perm_empty_ctl_header(header)) { 241 if (!RB_EMPTY_ROOT(&dir->root)) 242 return -EINVAL; 243 sysctl_set_perm_empty_ctl_header(dir_h); 244 } 245 246 dir_h->nreg++; 247 header->parent = dir; 248 err = insert_links(header); 249 if (err) 250 goto fail_links; 251 list_for_each_table_entry(entry, header) { 252 err = insert_entry(header, entry); 253 if (err) 254 goto fail; 255 } 256 return 0; 257 fail: 258 erase_header(header); 259 put_links(header); 260 fail_links: 261 if (header->ctl_table == sysctl_mount_point) 262 sysctl_clear_perm_empty_ctl_header(dir_h); 263 header->parent = NULL; 264 drop_sysctl_table(dir_h); 265 return err; 266 } 267 268 static int use_table(struct ctl_table_header *p) 269 { 270 lockdep_assert_held(&sysctl_lock); 271 272 if (unlikely(p->unregistering)) 273 return 0; 274 p->used++; 275 return 1; 276 } 277 278 static void unuse_table(struct ctl_table_header *p) 279 { 280 lockdep_assert_held(&sysctl_lock); 281 282 if (!--p->used) 283 if (unlikely(p->unregistering)) 284 complete(p->unregistering); 285 } 286 287 static void proc_sys_invalidate_dcache(struct ctl_table_header *head) 288 { 289 proc_invalidate_siblings_dcache(&head->inodes, &sysctl_lock); 290 } 291 292 static void start_unregistering(struct ctl_table_header *p) 293 { 294 /* will reacquire if has to wait */ 295 lockdep_assert_held(&sysctl_lock); 296 297 /* 298 * if p->used is 0, nobody will ever touch that entry again; 299 * we'll eliminate all paths to it before dropping sysctl_lock 300 */ 301 if (unlikely(p->used)) { 302 struct completion wait; 303 init_completion(&wait); 304 p->unregistering = &wait; 305 spin_unlock(&sysctl_lock); 306 wait_for_completion(&wait); 307 } else { 308 /* anything non-NULL; we'll never dereference it */ 309 p->unregistering = ERR_PTR(-EINVAL); 310 spin_unlock(&sysctl_lock); 311 } 312 /* 313 * Invalidate dentries for unregistered sysctls: namespaced sysctls 314 * can have duplicate names and contaminate dcache very badly. 315 */ 316 proc_sys_invalidate_dcache(p); 317 /* 318 * do not remove from the list until nobody holds it; walking the 319 * list in do_sysctl() relies on that. 320 */ 321 spin_lock(&sysctl_lock); 322 erase_header(p); 323 } 324 325 static struct ctl_table_header *sysctl_head_grab(struct ctl_table_header *head) 326 { 327 BUG_ON(!head); 328 spin_lock(&sysctl_lock); 329 if (!use_table(head)) 330 head = ERR_PTR(-ENOENT); 331 spin_unlock(&sysctl_lock); 332 return head; 333 } 334 335 static void sysctl_head_finish(struct ctl_table_header *head) 336 { 337 if (!head) 338 return; 339 spin_lock(&sysctl_lock); 340 unuse_table(head); 341 spin_unlock(&sysctl_lock); 342 } 343 344 static struct ctl_table_set * 345 lookup_header_set(struct ctl_table_root *root) 346 { 347 struct ctl_table_set *set = &root->default_set; 348 if (root->lookup) 349 set = root->lookup(root); 350 return set; 351 } 352 353 static const struct ctl_table *lookup_entry(struct ctl_table_header **phead, 354 struct ctl_dir *dir, 355 const char *name, int namelen) 356 { 357 struct ctl_table_header *head; 358 const struct ctl_table *entry; 359 360 spin_lock(&sysctl_lock); 361 entry = find_entry(&head, dir, name, namelen); 362 if (entry && use_table(head)) 363 *phead = head; 364 else 365 entry = NULL; 366 spin_unlock(&sysctl_lock); 367 return entry; 368 } 369 370 static struct ctl_node *first_usable_entry(struct rb_node *node) 371 { 372 struct ctl_node *ctl_node; 373 374 for (;node; node = rb_next(node)) { 375 ctl_node = rb_entry(node, struct ctl_node, node); 376 if (use_table(ctl_node->header)) 377 return ctl_node; 378 } 379 return NULL; 380 } 381 382 static void first_entry(struct ctl_dir *dir, 383 struct ctl_table_header **phead, const struct ctl_table **pentry) 384 { 385 struct ctl_table_header *head = NULL; 386 const struct ctl_table *entry = NULL; 387 struct ctl_node *ctl_node; 388 389 spin_lock(&sysctl_lock); 390 ctl_node = first_usable_entry(rb_first(&dir->root)); 391 spin_unlock(&sysctl_lock); 392 if (ctl_node) { 393 head = ctl_node->header; 394 entry = &head->ctl_table[ctl_node - head->node]; 395 } 396 *phead = head; 397 *pentry = entry; 398 } 399 400 static void next_entry(struct ctl_table_header **phead, const struct ctl_table **pentry) 401 { 402 struct ctl_table_header *head = *phead; 403 const struct ctl_table *entry = *pentry; 404 struct ctl_node *ctl_node = &head->node[entry - head->ctl_table]; 405 406 spin_lock(&sysctl_lock); 407 unuse_table(head); 408 409 ctl_node = first_usable_entry(rb_next(&ctl_node->node)); 410 spin_unlock(&sysctl_lock); 411 head = NULL; 412 if (ctl_node) { 413 head = ctl_node->header; 414 entry = &head->ctl_table[ctl_node - head->node]; 415 } 416 *phead = head; 417 *pentry = entry; 418 } 419 420 /* 421 * sysctl_perm does NOT grant the superuser all rights automatically, because 422 * some sysctl variables are readonly even to root. 423 */ 424 425 static int test_perm(int mode, int op) 426 { 427 if (uid_eq(current_euid(), GLOBAL_ROOT_UID)) 428 mode >>= 6; 429 else if (in_egroup_p(GLOBAL_ROOT_GID)) 430 mode >>= 3; 431 if ((op & ~mode & (MAY_READ|MAY_WRITE|MAY_EXEC)) == 0) 432 return 0; 433 return -EACCES; 434 } 435 436 static int sysctl_perm(struct ctl_table_header *head, const struct ctl_table *table, int op) 437 { 438 struct ctl_table_root *root = head->root; 439 int mode; 440 441 if (root->permissions) 442 mode = root->permissions(head, table); 443 else 444 mode = table->mode; 445 446 return test_perm(mode, op); 447 } 448 449 static struct inode *proc_sys_make_inode(struct super_block *sb, 450 struct ctl_table_header *head, const struct ctl_table *table) 451 { 452 struct ctl_table_root *root = head->root; 453 struct inode *inode; 454 struct proc_inode *ei; 455 456 inode = new_inode(sb); 457 if (!inode) 458 return ERR_PTR(-ENOMEM); 459 460 inode->i_ino = get_next_ino(); 461 462 ei = PROC_I(inode); 463 464 spin_lock(&sysctl_lock); 465 if (unlikely(head->unregistering)) { 466 spin_unlock(&sysctl_lock); 467 iput(inode); 468 return ERR_PTR(-ENOENT); 469 } 470 ei->sysctl = head; 471 ei->sysctl_entry = table; 472 hlist_add_head_rcu(&ei->sibling_inodes, &head->inodes); 473 head->count++; 474 spin_unlock(&sysctl_lock); 475 476 simple_inode_init_ts(inode); 477 inode->i_mode = table->mode; 478 if (!S_ISDIR(table->mode)) { 479 inode->i_mode |= S_IFREG; 480 inode->i_op = &proc_sys_inode_operations; 481 inode->i_fop = &proc_sys_file_operations; 482 } else { 483 inode->i_mode |= S_IFDIR; 484 inode->i_op = &proc_sys_dir_operations; 485 inode->i_fop = &proc_sys_dir_file_operations; 486 if (sysctl_is_perm_empty_ctl_header(head)) 487 make_empty_dir_inode(inode); 488 } 489 490 inode->i_uid = GLOBAL_ROOT_UID; 491 inode->i_gid = GLOBAL_ROOT_GID; 492 if (root->set_ownership) 493 root->set_ownership(head, &inode->i_uid, &inode->i_gid); 494 495 return inode; 496 } 497 498 void proc_sys_evict_inode(struct inode *inode, struct ctl_table_header *head) 499 { 500 spin_lock(&sysctl_lock); 501 hlist_del_init_rcu(&PROC_I(inode)->sibling_inodes); 502 if (!--head->count) 503 kfree_rcu(head, rcu); 504 spin_unlock(&sysctl_lock); 505 } 506 507 static struct ctl_table_header *grab_header(struct inode *inode) 508 { 509 struct ctl_table_header *head = PROC_I(inode)->sysctl; 510 if (!head) 511 head = &sysctl_table_root.default_set.dir.header; 512 return sysctl_head_grab(head); 513 } 514 515 static struct dentry *proc_sys_lookup(struct inode *dir, struct dentry *dentry, 516 unsigned int flags) 517 { 518 struct ctl_table_header *head = grab_header(dir); 519 struct ctl_table_header *h = NULL; 520 const struct qstr *name = &dentry->d_name; 521 const struct ctl_table *p; 522 struct inode *inode; 523 struct dentry *err = ERR_PTR(-ENOENT); 524 struct ctl_dir *ctl_dir; 525 int ret; 526 527 if (IS_ERR(head)) 528 return ERR_CAST(head); 529 530 ctl_dir = container_of(head, struct ctl_dir, header); 531 532 p = lookup_entry(&h, ctl_dir, name->name, name->len); 533 if (!p) 534 goto out; 535 536 if (S_ISLNK(p->mode)) { 537 ret = sysctl_follow_link(&h, &p); 538 err = ERR_PTR(ret); 539 if (ret) 540 goto out; 541 } 542 543 d_set_d_op(dentry, &proc_sys_dentry_operations); 544 inode = proc_sys_make_inode(dir->i_sb, h ? h : head, p); 545 err = d_splice_alias(inode, dentry); 546 547 out: 548 if (h) 549 sysctl_head_finish(h); 550 sysctl_head_finish(head); 551 return err; 552 } 553 554 static ssize_t proc_sys_call_handler(struct kiocb *iocb, struct iov_iter *iter, 555 int write) 556 { 557 struct inode *inode = file_inode(iocb->ki_filp); 558 struct ctl_table_header *head = grab_header(inode); 559 const struct ctl_table *table = PROC_I(inode)->sysctl_entry; 560 size_t count = iov_iter_count(iter); 561 char *kbuf; 562 ssize_t error; 563 564 if (IS_ERR(head)) 565 return PTR_ERR(head); 566 567 /* 568 * At this point we know that the sysctl was not unregistered 569 * and won't be until we finish. 570 */ 571 error = -EPERM; 572 if (sysctl_perm(head, table, write ? MAY_WRITE : MAY_READ)) 573 goto out; 574 575 /* if that can happen at all, it should be -EINVAL, not -EISDIR */ 576 error = -EINVAL; 577 if (!table->proc_handler) 578 goto out; 579 580 /* don't even try if the size is too large */ 581 error = -ENOMEM; 582 if (count >= KMALLOC_MAX_SIZE) 583 goto out; 584 kbuf = kvzalloc(count + 1, GFP_KERNEL); 585 if (!kbuf) 586 goto out; 587 588 if (write) { 589 error = -EFAULT; 590 if (!copy_from_iter_full(kbuf, count, iter)) 591 goto out_free_buf; 592 kbuf[count] = '\0'; 593 } 594 595 error = BPF_CGROUP_RUN_PROG_SYSCTL(head, table, write, &kbuf, &count, 596 &iocb->ki_pos); 597 if (error) 598 goto out_free_buf; 599 600 /* careful: calling conventions are nasty here */ 601 error = table->proc_handler(table, write, kbuf, &count, &iocb->ki_pos); 602 if (error) 603 goto out_free_buf; 604 605 if (!write) { 606 error = -EFAULT; 607 if (copy_to_iter(kbuf, count, iter) < count) 608 goto out_free_buf; 609 } 610 611 error = count; 612 out_free_buf: 613 kvfree(kbuf); 614 out: 615 sysctl_head_finish(head); 616 617 return error; 618 } 619 620 static ssize_t proc_sys_read(struct kiocb *iocb, struct iov_iter *iter) 621 { 622 return proc_sys_call_handler(iocb, iter, 0); 623 } 624 625 static ssize_t proc_sys_write(struct kiocb *iocb, struct iov_iter *iter) 626 { 627 return proc_sys_call_handler(iocb, iter, 1); 628 } 629 630 static int proc_sys_open(struct inode *inode, struct file *filp) 631 { 632 struct ctl_table_header *head = grab_header(inode); 633 const struct ctl_table *table = PROC_I(inode)->sysctl_entry; 634 635 /* sysctl was unregistered */ 636 if (IS_ERR(head)) 637 return PTR_ERR(head); 638 639 if (table->poll) 640 filp->private_data = proc_sys_poll_event(table->poll); 641 642 sysctl_head_finish(head); 643 644 return 0; 645 } 646 647 static __poll_t proc_sys_poll(struct file *filp, poll_table *wait) 648 { 649 struct inode *inode = file_inode(filp); 650 struct ctl_table_header *head = grab_header(inode); 651 const struct ctl_table *table = PROC_I(inode)->sysctl_entry; 652 __poll_t ret = DEFAULT_POLLMASK; 653 unsigned long event; 654 655 /* sysctl was unregistered */ 656 if (IS_ERR(head)) 657 return EPOLLERR | EPOLLHUP; 658 659 if (!table->proc_handler) 660 goto out; 661 662 if (!table->poll) 663 goto out; 664 665 event = (unsigned long)filp->private_data; 666 poll_wait(filp, &table->poll->wait, wait); 667 668 if (event != atomic_read(&table->poll->event)) { 669 filp->private_data = proc_sys_poll_event(table->poll); 670 ret = EPOLLIN | EPOLLRDNORM | EPOLLERR | EPOLLPRI; 671 } 672 673 out: 674 sysctl_head_finish(head); 675 676 return ret; 677 } 678 679 static bool proc_sys_fill_cache(struct file *file, 680 struct dir_context *ctx, 681 struct ctl_table_header *head, 682 const struct ctl_table *table) 683 { 684 struct dentry *child, *dir = file->f_path.dentry; 685 struct inode *inode; 686 struct qstr qname; 687 ino_t ino = 0; 688 unsigned type = DT_UNKNOWN; 689 690 qname.name = table->procname; 691 qname.len = strlen(table->procname); 692 qname.hash = full_name_hash(dir, qname.name, qname.len); 693 694 child = d_lookup(dir, &qname); 695 if (!child) { 696 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq); 697 child = d_alloc_parallel(dir, &qname, &wq); 698 if (IS_ERR(child)) 699 return false; 700 if (d_in_lookup(child)) { 701 struct dentry *res; 702 d_set_d_op(child, &proc_sys_dentry_operations); 703 inode = proc_sys_make_inode(dir->d_sb, head, table); 704 res = d_splice_alias(inode, child); 705 d_lookup_done(child); 706 if (unlikely(res)) { 707 dput(child); 708 709 if (IS_ERR(res)) 710 return false; 711 712 child = res; 713 } 714 } 715 } 716 inode = d_inode(child); 717 ino = inode->i_ino; 718 type = inode->i_mode >> 12; 719 dput(child); 720 return dir_emit(ctx, qname.name, qname.len, ino, type); 721 } 722 723 static bool proc_sys_link_fill_cache(struct file *file, 724 struct dir_context *ctx, 725 struct ctl_table_header *head, 726 const struct ctl_table *table) 727 { 728 bool ret = true; 729 730 head = sysctl_head_grab(head); 731 if (IS_ERR(head)) 732 return false; 733 734 /* It is not an error if we can not follow the link ignore it */ 735 if (sysctl_follow_link(&head, &table)) 736 goto out; 737 738 ret = proc_sys_fill_cache(file, ctx, head, table); 739 out: 740 sysctl_head_finish(head); 741 return ret; 742 } 743 744 static int scan(struct ctl_table_header *head, const struct ctl_table *table, 745 unsigned long *pos, struct file *file, 746 struct dir_context *ctx) 747 { 748 bool res; 749 750 if ((*pos)++ < ctx->pos) 751 return true; 752 753 if (unlikely(S_ISLNK(table->mode))) 754 res = proc_sys_link_fill_cache(file, ctx, head, table); 755 else 756 res = proc_sys_fill_cache(file, ctx, head, table); 757 758 if (res) 759 ctx->pos = *pos; 760 761 return res; 762 } 763 764 static int proc_sys_readdir(struct file *file, struct dir_context *ctx) 765 { 766 struct ctl_table_header *head = grab_header(file_inode(file)); 767 struct ctl_table_header *h = NULL; 768 const struct ctl_table *entry; 769 struct ctl_dir *ctl_dir; 770 unsigned long pos; 771 772 if (IS_ERR(head)) 773 return PTR_ERR(head); 774 775 ctl_dir = container_of(head, struct ctl_dir, header); 776 777 if (!dir_emit_dots(file, ctx)) 778 goto out; 779 780 pos = 2; 781 782 for (first_entry(ctl_dir, &h, &entry); h; next_entry(&h, &entry)) { 783 if (!scan(h, entry, &pos, file, ctx)) { 784 sysctl_head_finish(h); 785 break; 786 } 787 } 788 out: 789 sysctl_head_finish(head); 790 return 0; 791 } 792 793 static int proc_sys_permission(struct mnt_idmap *idmap, 794 struct inode *inode, int mask) 795 { 796 /* 797 * sysctl entries that are not writeable, 798 * are _NOT_ writeable, capabilities or not. 799 */ 800 struct ctl_table_header *head; 801 const struct ctl_table *table; 802 int error; 803 804 /* Executable files are not allowed under /proc/sys/ */ 805 if ((mask & MAY_EXEC) && S_ISREG(inode->i_mode)) 806 return -EACCES; 807 808 head = grab_header(inode); 809 if (IS_ERR(head)) 810 return PTR_ERR(head); 811 812 table = PROC_I(inode)->sysctl_entry; 813 if (!table) /* global root - r-xr-xr-x */ 814 error = mask & MAY_WRITE ? -EACCES : 0; 815 else /* Use the permissions on the sysctl table entry */ 816 error = sysctl_perm(head, table, mask & ~MAY_NOT_BLOCK); 817 818 sysctl_head_finish(head); 819 return error; 820 } 821 822 static int proc_sys_setattr(struct mnt_idmap *idmap, 823 struct dentry *dentry, struct iattr *attr) 824 { 825 struct inode *inode = d_inode(dentry); 826 int error; 827 828 if (attr->ia_valid & (ATTR_MODE | ATTR_UID | ATTR_GID)) 829 return -EPERM; 830 831 error = setattr_prepare(&nop_mnt_idmap, dentry, attr); 832 if (error) 833 return error; 834 835 setattr_copy(&nop_mnt_idmap, inode, attr); 836 return 0; 837 } 838 839 static int proc_sys_getattr(struct mnt_idmap *idmap, 840 const struct path *path, struct kstat *stat, 841 u32 request_mask, unsigned int query_flags) 842 { 843 struct inode *inode = d_inode(path->dentry); 844 struct ctl_table_header *head = grab_header(inode); 845 const struct ctl_table *table = PROC_I(inode)->sysctl_entry; 846 847 if (IS_ERR(head)) 848 return PTR_ERR(head); 849 850 generic_fillattr(&nop_mnt_idmap, request_mask, inode, stat); 851 if (table) 852 stat->mode = (stat->mode & S_IFMT) | table->mode; 853 854 sysctl_head_finish(head); 855 return 0; 856 } 857 858 static const struct file_operations proc_sys_file_operations = { 859 .open = proc_sys_open, 860 .poll = proc_sys_poll, 861 .read_iter = proc_sys_read, 862 .write_iter = proc_sys_write, 863 .splice_read = copy_splice_read, 864 .splice_write = iter_file_splice_write, 865 .llseek = default_llseek, 866 }; 867 868 static const struct file_operations proc_sys_dir_file_operations = { 869 .read = generic_read_dir, 870 .iterate_shared = proc_sys_readdir, 871 .llseek = generic_file_llseek, 872 }; 873 874 static const struct inode_operations proc_sys_inode_operations = { 875 .permission = proc_sys_permission, 876 .setattr = proc_sys_setattr, 877 .getattr = proc_sys_getattr, 878 }; 879 880 static const struct inode_operations proc_sys_dir_operations = { 881 .lookup = proc_sys_lookup, 882 .permission = proc_sys_permission, 883 .setattr = proc_sys_setattr, 884 .getattr = proc_sys_getattr, 885 }; 886 887 static int proc_sys_revalidate(struct dentry *dentry, unsigned int flags) 888 { 889 if (flags & LOOKUP_RCU) 890 return -ECHILD; 891 return !PROC_I(d_inode(dentry))->sysctl->unregistering; 892 } 893 894 static int proc_sys_delete(const struct dentry *dentry) 895 { 896 return !!PROC_I(d_inode(dentry))->sysctl->unregistering; 897 } 898 899 static int sysctl_is_seen(struct ctl_table_header *p) 900 { 901 struct ctl_table_set *set = p->set; 902 int res; 903 spin_lock(&sysctl_lock); 904 if (p->unregistering) 905 res = 0; 906 else if (!set->is_seen) 907 res = 1; 908 else 909 res = set->is_seen(set); 910 spin_unlock(&sysctl_lock); 911 return res; 912 } 913 914 static int proc_sys_compare(const struct dentry *dentry, 915 unsigned int len, const char *str, const struct qstr *name) 916 { 917 struct ctl_table_header *head; 918 struct inode *inode; 919 920 /* Although proc doesn't have negative dentries, rcu-walk means 921 * that inode here can be NULL */ 922 /* AV: can it, indeed? */ 923 inode = d_inode_rcu(dentry); 924 if (!inode) 925 return 1; 926 if (name->len != len) 927 return 1; 928 if (memcmp(name->name, str, len)) 929 return 1; 930 head = rcu_dereference(PROC_I(inode)->sysctl); 931 return !head || !sysctl_is_seen(head); 932 } 933 934 static const struct dentry_operations proc_sys_dentry_operations = { 935 .d_revalidate = proc_sys_revalidate, 936 .d_delete = proc_sys_delete, 937 .d_compare = proc_sys_compare, 938 }; 939 940 static struct ctl_dir *find_subdir(struct ctl_dir *dir, 941 const char *name, int namelen) 942 { 943 struct ctl_table_header *head; 944 const struct ctl_table *entry; 945 946 entry = find_entry(&head, dir, name, namelen); 947 if (!entry) 948 return ERR_PTR(-ENOENT); 949 if (!S_ISDIR(entry->mode)) 950 return ERR_PTR(-ENOTDIR); 951 return container_of(head, struct ctl_dir, header); 952 } 953 954 static struct ctl_dir *new_dir(struct ctl_table_set *set, 955 const char *name, int namelen) 956 { 957 struct ctl_table *table; 958 struct ctl_dir *new; 959 struct ctl_node *node; 960 char *new_name; 961 962 new = kzalloc(sizeof(*new) + sizeof(struct ctl_node) + 963 sizeof(struct ctl_table) + namelen + 1, 964 GFP_KERNEL); 965 if (!new) 966 return NULL; 967 968 node = (struct ctl_node *)(new + 1); 969 table = (struct ctl_table *)(node + 1); 970 new_name = (char *)(table + 1); 971 memcpy(new_name, name, namelen); 972 table[0].procname = new_name; 973 table[0].mode = S_IFDIR|S_IRUGO|S_IXUGO; 974 init_header(&new->header, set->dir.header.root, set, node, table, 1); 975 976 return new; 977 } 978 979 /** 980 * get_subdir - find or create a subdir with the specified name. 981 * @dir: Directory to create the subdirectory in 982 * @name: The name of the subdirectory to find or create 983 * @namelen: The length of name 984 * 985 * Takes a directory with an elevated reference count so we know that 986 * if we drop the lock the directory will not go away. Upon success 987 * the reference is moved from @dir to the returned subdirectory. 988 * Upon error an error code is returned and the reference on @dir is 989 * simply dropped. 990 */ 991 static struct ctl_dir *get_subdir(struct ctl_dir *dir, 992 const char *name, int namelen) 993 { 994 struct ctl_table_set *set = dir->header.set; 995 struct ctl_dir *subdir, *new = NULL; 996 int err; 997 998 spin_lock(&sysctl_lock); 999 subdir = find_subdir(dir, name, namelen); 1000 if (!IS_ERR(subdir)) 1001 goto found; 1002 if (PTR_ERR(subdir) != -ENOENT) 1003 goto failed; 1004 1005 spin_unlock(&sysctl_lock); 1006 new = new_dir(set, name, namelen); 1007 spin_lock(&sysctl_lock); 1008 subdir = ERR_PTR(-ENOMEM); 1009 if (!new) 1010 goto failed; 1011 1012 /* Was the subdir added while we dropped the lock? */ 1013 subdir = find_subdir(dir, name, namelen); 1014 if (!IS_ERR(subdir)) 1015 goto found; 1016 if (PTR_ERR(subdir) != -ENOENT) 1017 goto failed; 1018 1019 /* Nope. Use the our freshly made directory entry. */ 1020 err = insert_header(dir, &new->header); 1021 subdir = ERR_PTR(err); 1022 if (err) 1023 goto failed; 1024 subdir = new; 1025 found: 1026 subdir->header.nreg++; 1027 failed: 1028 if (IS_ERR(subdir)) { 1029 pr_err("sysctl could not get directory: "); 1030 sysctl_print_dir(dir); 1031 pr_cont("%*.*s %ld\n", namelen, namelen, name, 1032 PTR_ERR(subdir)); 1033 } 1034 drop_sysctl_table(&dir->header); 1035 if (new) 1036 drop_sysctl_table(&new->header); 1037 spin_unlock(&sysctl_lock); 1038 return subdir; 1039 } 1040 1041 static struct ctl_dir *xlate_dir(struct ctl_table_set *set, struct ctl_dir *dir) 1042 { 1043 struct ctl_dir *parent; 1044 const char *procname; 1045 if (!dir->header.parent) 1046 return &set->dir; 1047 parent = xlate_dir(set, dir->header.parent); 1048 if (IS_ERR(parent)) 1049 return parent; 1050 procname = dir->header.ctl_table[0].procname; 1051 return find_subdir(parent, procname, strlen(procname)); 1052 } 1053 1054 static int sysctl_follow_link(struct ctl_table_header **phead, 1055 const struct ctl_table **pentry) 1056 { 1057 struct ctl_table_header *head; 1058 const struct ctl_table *entry; 1059 struct ctl_table_root *root; 1060 struct ctl_table_set *set; 1061 struct ctl_dir *dir; 1062 int ret; 1063 1064 spin_lock(&sysctl_lock); 1065 root = (*pentry)->data; 1066 set = lookup_header_set(root); 1067 dir = xlate_dir(set, (*phead)->parent); 1068 if (IS_ERR(dir)) 1069 ret = PTR_ERR(dir); 1070 else { 1071 const char *procname = (*pentry)->procname; 1072 head = NULL; 1073 entry = find_entry(&head, dir, procname, strlen(procname)); 1074 ret = -ENOENT; 1075 if (entry && use_table(head)) { 1076 unuse_table(*phead); 1077 *phead = head; 1078 *pentry = entry; 1079 ret = 0; 1080 } 1081 } 1082 1083 spin_unlock(&sysctl_lock); 1084 return ret; 1085 } 1086 1087 static int sysctl_err(const char *path, const struct ctl_table *table, char *fmt, ...) 1088 { 1089 struct va_format vaf; 1090 va_list args; 1091 1092 va_start(args, fmt); 1093 vaf.fmt = fmt; 1094 vaf.va = &args; 1095 1096 pr_err("sysctl table check failed: %s/%s %pV\n", 1097 path, table->procname, &vaf); 1098 1099 va_end(args); 1100 return -EINVAL; 1101 } 1102 1103 static int sysctl_check_table_array(const char *path, const struct ctl_table *table) 1104 { 1105 unsigned int extra; 1106 int err = 0; 1107 1108 if ((table->proc_handler == proc_douintvec) || 1109 (table->proc_handler == proc_douintvec_minmax)) { 1110 if (table->maxlen != sizeof(unsigned int)) 1111 err |= sysctl_err(path, table, "array not allowed"); 1112 } 1113 1114 if (table->proc_handler == proc_dou8vec_minmax) { 1115 if (table->maxlen != sizeof(u8)) 1116 err |= sysctl_err(path, table, "array not allowed"); 1117 1118 if (table->extra1) { 1119 extra = *(unsigned int *) table->extra1; 1120 if (extra > 255U) 1121 err |= sysctl_err(path, table, 1122 "range value too large for proc_dou8vec_minmax"); 1123 } 1124 if (table->extra2) { 1125 extra = *(unsigned int *) table->extra2; 1126 if (extra > 255U) 1127 err |= sysctl_err(path, table, 1128 "range value too large for proc_dou8vec_minmax"); 1129 } 1130 } 1131 1132 if (table->proc_handler == proc_dobool) { 1133 if (table->maxlen != sizeof(bool)) 1134 err |= sysctl_err(path, table, "array not allowed"); 1135 } 1136 1137 return err; 1138 } 1139 1140 static int sysctl_check_table(const char *path, struct ctl_table_header *header) 1141 { 1142 const struct ctl_table *entry; 1143 int err = 0; 1144 list_for_each_table_entry(entry, header) { 1145 if (!entry->procname) 1146 err |= sysctl_err(path, entry, "procname is null"); 1147 if ((entry->proc_handler == proc_dostring) || 1148 (entry->proc_handler == proc_dobool) || 1149 (entry->proc_handler == proc_dointvec) || 1150 (entry->proc_handler == proc_douintvec) || 1151 (entry->proc_handler == proc_douintvec_minmax) || 1152 (entry->proc_handler == proc_dointvec_minmax) || 1153 (entry->proc_handler == proc_dou8vec_minmax) || 1154 (entry->proc_handler == proc_dointvec_jiffies) || 1155 (entry->proc_handler == proc_dointvec_userhz_jiffies) || 1156 (entry->proc_handler == proc_dointvec_ms_jiffies) || 1157 (entry->proc_handler == proc_doulongvec_minmax) || 1158 (entry->proc_handler == proc_doulongvec_ms_jiffies_minmax)) { 1159 if (!entry->data) 1160 err |= sysctl_err(path, entry, "No data"); 1161 if (!entry->maxlen) 1162 err |= sysctl_err(path, entry, "No maxlen"); 1163 else 1164 err |= sysctl_check_table_array(path, entry); 1165 } 1166 if (!entry->proc_handler) 1167 err |= sysctl_err(path, entry, "No proc_handler"); 1168 1169 if ((entry->mode & (S_IRUGO|S_IWUGO)) != entry->mode) 1170 err |= sysctl_err(path, entry, "bogus .mode 0%o", 1171 entry->mode); 1172 } 1173 return err; 1174 } 1175 1176 static struct ctl_table_header *new_links(struct ctl_dir *dir, struct ctl_table_header *head) 1177 { 1178 struct ctl_table *link_table, *link; 1179 struct ctl_table_header *links; 1180 const struct ctl_table *entry; 1181 struct ctl_node *node; 1182 char *link_name; 1183 int name_bytes; 1184 1185 name_bytes = 0; 1186 list_for_each_table_entry(entry, head) { 1187 name_bytes += strlen(entry->procname) + 1; 1188 } 1189 1190 links = kzalloc(sizeof(struct ctl_table_header) + 1191 sizeof(struct ctl_node)*head->ctl_table_size + 1192 sizeof(struct ctl_table)*head->ctl_table_size + 1193 name_bytes, 1194 GFP_KERNEL); 1195 1196 if (!links) 1197 return NULL; 1198 1199 node = (struct ctl_node *)(links + 1); 1200 link_table = (struct ctl_table *)(node + head->ctl_table_size); 1201 link_name = (char *)(link_table + head->ctl_table_size); 1202 link = link_table; 1203 1204 list_for_each_table_entry(entry, head) { 1205 int len = strlen(entry->procname) + 1; 1206 memcpy(link_name, entry->procname, len); 1207 link->procname = link_name; 1208 link->mode = S_IFLNK|S_IRWXUGO; 1209 link->data = head->root; 1210 link_name += len; 1211 link++; 1212 } 1213 init_header(links, dir->header.root, dir->header.set, node, link_table, 1214 head->ctl_table_size); 1215 links->nreg = head->ctl_table_size; 1216 1217 return links; 1218 } 1219 1220 static bool get_links(struct ctl_dir *dir, 1221 struct ctl_table_header *header, 1222 struct ctl_table_root *link_root) 1223 { 1224 struct ctl_table_header *tmp_head; 1225 const struct ctl_table *entry, *link; 1226 1227 if (header->ctl_table_size == 0 || 1228 sysctl_is_perm_empty_ctl_header(header)) 1229 return true; 1230 1231 /* Are there links available for every entry in table? */ 1232 list_for_each_table_entry(entry, header) { 1233 const char *procname = entry->procname; 1234 link = find_entry(&tmp_head, dir, procname, strlen(procname)); 1235 if (!link) 1236 return false; 1237 if (S_ISDIR(link->mode) && S_ISDIR(entry->mode)) 1238 continue; 1239 if (S_ISLNK(link->mode) && (link->data == link_root)) 1240 continue; 1241 return false; 1242 } 1243 1244 /* The checks passed. Increase the registration count on the links */ 1245 list_for_each_table_entry(entry, header) { 1246 const char *procname = entry->procname; 1247 link = find_entry(&tmp_head, dir, procname, strlen(procname)); 1248 tmp_head->nreg++; 1249 } 1250 return true; 1251 } 1252 1253 static int insert_links(struct ctl_table_header *head) 1254 { 1255 struct ctl_table_set *root_set = &sysctl_table_root.default_set; 1256 struct ctl_dir *core_parent; 1257 struct ctl_table_header *links; 1258 int err; 1259 1260 if (head->set == root_set) 1261 return 0; 1262 1263 core_parent = xlate_dir(root_set, head->parent); 1264 if (IS_ERR(core_parent)) 1265 return 0; 1266 1267 if (get_links(core_parent, head, head->root)) 1268 return 0; 1269 1270 core_parent->header.nreg++; 1271 spin_unlock(&sysctl_lock); 1272 1273 links = new_links(core_parent, head); 1274 1275 spin_lock(&sysctl_lock); 1276 err = -ENOMEM; 1277 if (!links) 1278 goto out; 1279 1280 err = 0; 1281 if (get_links(core_parent, head, head->root)) { 1282 kfree(links); 1283 goto out; 1284 } 1285 1286 err = insert_header(core_parent, links); 1287 if (err) 1288 kfree(links); 1289 out: 1290 drop_sysctl_table(&core_parent->header); 1291 return err; 1292 } 1293 1294 /* Find the directory for the ctl_table. If one is not found create it. */ 1295 static struct ctl_dir *sysctl_mkdir_p(struct ctl_dir *dir, const char *path) 1296 { 1297 const char *name, *nextname; 1298 1299 for (name = path; name; name = nextname) { 1300 int namelen; 1301 nextname = strchr(name, '/'); 1302 if (nextname) { 1303 namelen = nextname - name; 1304 nextname++; 1305 } else { 1306 namelen = strlen(name); 1307 } 1308 if (namelen == 0) 1309 continue; 1310 1311 /* 1312 * namelen ensures if name is "foo/bar/yay" only foo is 1313 * registered first. We traverse as if using mkdir -p and 1314 * return a ctl_dir for the last directory entry. 1315 */ 1316 dir = get_subdir(dir, name, namelen); 1317 if (IS_ERR(dir)) 1318 break; 1319 } 1320 return dir; 1321 } 1322 1323 /** 1324 * __register_sysctl_table - register a leaf sysctl table 1325 * @set: Sysctl tree to register on 1326 * @path: The path to the directory the sysctl table is in. 1327 * 1328 * @table: the top-level table structure. This table should not be free'd 1329 * after registration. So it should not be used on stack. It can either 1330 * be a global or dynamically allocated by the caller and free'd later 1331 * after sysctl unregistration. 1332 * @table_size : The number of elements in table 1333 * 1334 * Register a sysctl table hierarchy. @table should be a filled in ctl_table 1335 * array. 1336 * 1337 * The members of the &struct ctl_table structure are used as follows: 1338 * procname - the name of the sysctl file under /proc/sys. Set to %NULL to not 1339 * enter a sysctl file 1340 * data - a pointer to data for use by proc_handler 1341 * maxlen - the maximum size in bytes of the data 1342 * mode - the file permissions for the /proc/sys file 1343 * type - Defines the target type (described in struct definition) 1344 * proc_handler - the text handler routine (described below) 1345 * 1346 * extra1, extra2 - extra pointers usable by the proc handler routines 1347 * XXX: we should eventually modify these to use long min / max [0] 1348 * [0] https://lkml.kernel.org/87zgpte9o4.fsf@email.froward.int.ebiederm.org 1349 * 1350 * Leaf nodes in the sysctl tree will be represented by a single file 1351 * under /proc; non-leaf nodes are not allowed. 1352 * 1353 * There must be a proc_handler routine for any terminal nodes. 1354 * Several default handlers are available to cover common cases - 1355 * 1356 * proc_dostring(), proc_dointvec(), proc_dointvec_jiffies(), 1357 * proc_dointvec_userhz_jiffies(), proc_dointvec_minmax(), 1358 * proc_doulongvec_ms_jiffies_minmax(), proc_doulongvec_minmax() 1359 * 1360 * It is the handler's job to read the input buffer from user memory 1361 * and process it. The handler should return 0 on success. 1362 * 1363 * This routine returns %NULL on a failure to register, and a pointer 1364 * to the table header on success. 1365 */ 1366 struct ctl_table_header *__register_sysctl_table( 1367 struct ctl_table_set *set, 1368 const char *path, const struct ctl_table *table, size_t table_size) 1369 { 1370 struct ctl_table_root *root = set->dir.header.root; 1371 struct ctl_table_header *header; 1372 struct ctl_dir *dir; 1373 struct ctl_node *node; 1374 1375 header = kzalloc(sizeof(struct ctl_table_header) + 1376 sizeof(struct ctl_node)*table_size, GFP_KERNEL_ACCOUNT); 1377 if (!header) 1378 return NULL; 1379 1380 node = (struct ctl_node *)(header + 1); 1381 init_header(header, root, set, node, table, table_size); 1382 if (sysctl_check_table(path, header)) 1383 goto fail; 1384 1385 spin_lock(&sysctl_lock); 1386 dir = &set->dir; 1387 /* Reference moved down the directory tree get_subdir */ 1388 dir->header.nreg++; 1389 spin_unlock(&sysctl_lock); 1390 1391 dir = sysctl_mkdir_p(dir, path); 1392 if (IS_ERR(dir)) 1393 goto fail; 1394 spin_lock(&sysctl_lock); 1395 if (insert_header(dir, header)) 1396 goto fail_put_dir_locked; 1397 1398 drop_sysctl_table(&dir->header); 1399 spin_unlock(&sysctl_lock); 1400 1401 return header; 1402 1403 fail_put_dir_locked: 1404 drop_sysctl_table(&dir->header); 1405 spin_unlock(&sysctl_lock); 1406 fail: 1407 kfree(header); 1408 return NULL; 1409 } 1410 1411 /** 1412 * register_sysctl_sz - register a sysctl table 1413 * @path: The path to the directory the sysctl table is in. If the path 1414 * doesn't exist we will create it for you. 1415 * @table: the table structure. The calller must ensure the life of the @table 1416 * will be kept during the lifetime use of the syctl. It must not be freed 1417 * until unregister_sysctl_table() is called with the given returned table 1418 * with this registration. If your code is non modular then you don't need 1419 * to call unregister_sysctl_table() and can instead use something like 1420 * register_sysctl_init() which does not care for the result of the syctl 1421 * registration. 1422 * @table_size: The number of elements in table. 1423 * 1424 * Register a sysctl table. @table should be a filled in ctl_table 1425 * array. A completely 0 filled entry terminates the table. 1426 * 1427 * See __register_sysctl_table for more details. 1428 */ 1429 struct ctl_table_header *register_sysctl_sz(const char *path, const struct ctl_table *table, 1430 size_t table_size) 1431 { 1432 return __register_sysctl_table(&sysctl_table_root.default_set, 1433 path, table, table_size); 1434 } 1435 EXPORT_SYMBOL(register_sysctl_sz); 1436 1437 /** 1438 * __register_sysctl_init() - register sysctl table to path 1439 * @path: path name for sysctl base. If that path doesn't exist we will create 1440 * it for you. 1441 * @table: This is the sysctl table that needs to be registered to the path. 1442 * The caller must ensure the life of the @table will be kept during the 1443 * lifetime use of the sysctl. 1444 * @table_name: The name of sysctl table, only used for log printing when 1445 * registration fails 1446 * @table_size: The number of elements in table 1447 * 1448 * The sysctl interface is used by userspace to query or modify at runtime 1449 * a predefined value set on a variable. These variables however have default 1450 * values pre-set. Code which depends on these variables will always work even 1451 * if register_sysctl() fails. If register_sysctl() fails you'd just loose the 1452 * ability to query or modify the sysctls dynamically at run time. Chances of 1453 * register_sysctl() failing on init are extremely low, and so for both reasons 1454 * this function does not return any error as it is used by initialization code. 1455 * 1456 * Context: if your base directory does not exist it will be created for you. 1457 */ 1458 void __init __register_sysctl_init(const char *path, const struct ctl_table *table, 1459 const char *table_name, size_t table_size) 1460 { 1461 struct ctl_table_header *hdr = register_sysctl_sz(path, table, table_size); 1462 1463 if (unlikely(!hdr)) { 1464 pr_err("failed when register_sysctl_sz %s to %s\n", table_name, path); 1465 return; 1466 } 1467 kmemleak_not_leak(hdr); 1468 } 1469 1470 static void put_links(struct ctl_table_header *header) 1471 { 1472 struct ctl_table_set *root_set = &sysctl_table_root.default_set; 1473 struct ctl_table_root *root = header->root; 1474 struct ctl_dir *parent = header->parent; 1475 struct ctl_dir *core_parent; 1476 const struct ctl_table *entry; 1477 1478 if (header->set == root_set) 1479 return; 1480 1481 core_parent = xlate_dir(root_set, parent); 1482 if (IS_ERR(core_parent)) 1483 return; 1484 1485 list_for_each_table_entry(entry, header) { 1486 struct ctl_table_header *link_head; 1487 const struct ctl_table *link; 1488 const char *name = entry->procname; 1489 1490 link = find_entry(&link_head, core_parent, name, strlen(name)); 1491 if (link && 1492 ((S_ISDIR(link->mode) && S_ISDIR(entry->mode)) || 1493 (S_ISLNK(link->mode) && (link->data == root)))) { 1494 drop_sysctl_table(link_head); 1495 } 1496 else { 1497 pr_err("sysctl link missing during unregister: "); 1498 sysctl_print_dir(parent); 1499 pr_cont("%s\n", name); 1500 } 1501 } 1502 } 1503 1504 static void drop_sysctl_table(struct ctl_table_header *header) 1505 { 1506 struct ctl_dir *parent = header->parent; 1507 1508 if (--header->nreg) 1509 return; 1510 1511 if (parent) { 1512 put_links(header); 1513 start_unregistering(header); 1514 } 1515 1516 if (!--header->count) 1517 kfree_rcu(header, rcu); 1518 1519 if (parent) 1520 drop_sysctl_table(&parent->header); 1521 } 1522 1523 /** 1524 * unregister_sysctl_table - unregister a sysctl table hierarchy 1525 * @header: the header returned from register_sysctl or __register_sysctl_table 1526 * 1527 * Unregisters the sysctl table and all children. proc entries may not 1528 * actually be removed until they are no longer used by anyone. 1529 */ 1530 void unregister_sysctl_table(struct ctl_table_header * header) 1531 { 1532 might_sleep(); 1533 1534 if (header == NULL) 1535 return; 1536 1537 spin_lock(&sysctl_lock); 1538 drop_sysctl_table(header); 1539 spin_unlock(&sysctl_lock); 1540 } 1541 EXPORT_SYMBOL(unregister_sysctl_table); 1542 1543 void setup_sysctl_set(struct ctl_table_set *set, 1544 struct ctl_table_root *root, 1545 int (*is_seen)(struct ctl_table_set *)) 1546 { 1547 memset(set, 0, sizeof(*set)); 1548 set->is_seen = is_seen; 1549 init_header(&set->dir.header, root, set, NULL, root_table, 1); 1550 } 1551 1552 void retire_sysctl_set(struct ctl_table_set *set) 1553 { 1554 WARN_ON(!RB_EMPTY_ROOT(&set->dir.root)); 1555 } 1556 1557 int __init proc_sys_init(void) 1558 { 1559 struct proc_dir_entry *proc_sys_root; 1560 1561 proc_sys_root = proc_mkdir("sys", NULL); 1562 proc_sys_root->proc_iops = &proc_sys_dir_operations; 1563 proc_sys_root->proc_dir_ops = &proc_sys_dir_file_operations; 1564 proc_sys_root->nlink = 0; 1565 1566 return sysctl_init_bases(); 1567 } 1568 1569 struct sysctl_alias { 1570 const char *kernel_param; 1571 const char *sysctl_param; 1572 }; 1573 1574 /* 1575 * Historically some settings had both sysctl and a command line parameter. 1576 * With the generic sysctl. parameter support, we can handle them at a single 1577 * place and only keep the historical name for compatibility. This is not meant 1578 * to add brand new aliases. When adding existing aliases, consider whether 1579 * the possibly different moment of changing the value (e.g. from early_param 1580 * to the moment do_sysctl_args() is called) is an issue for the specific 1581 * parameter. 1582 */ 1583 static const struct sysctl_alias sysctl_aliases[] = { 1584 {"hardlockup_all_cpu_backtrace", "kernel.hardlockup_all_cpu_backtrace" }, 1585 {"hung_task_panic", "kernel.hung_task_panic" }, 1586 {"numa_zonelist_order", "vm.numa_zonelist_order" }, 1587 {"softlockup_all_cpu_backtrace", "kernel.softlockup_all_cpu_backtrace" }, 1588 { } 1589 }; 1590 1591 static const char *sysctl_find_alias(char *param) 1592 { 1593 const struct sysctl_alias *alias; 1594 1595 for (alias = &sysctl_aliases[0]; alias->kernel_param != NULL; alias++) { 1596 if (strcmp(alias->kernel_param, param) == 0) 1597 return alias->sysctl_param; 1598 } 1599 1600 return NULL; 1601 } 1602 1603 bool sysctl_is_alias(char *param) 1604 { 1605 const char *alias = sysctl_find_alias(param); 1606 1607 return alias != NULL; 1608 } 1609 1610 /* Set sysctl value passed on kernel command line. */ 1611 static int process_sysctl_arg(char *param, char *val, 1612 const char *unused, void *arg) 1613 { 1614 char *path; 1615 struct vfsmount **proc_mnt = arg; 1616 struct file_system_type *proc_fs_type; 1617 struct file *file; 1618 int len; 1619 int err; 1620 loff_t pos = 0; 1621 ssize_t wret; 1622 1623 if (strncmp(param, "sysctl", sizeof("sysctl") - 1) == 0) { 1624 param += sizeof("sysctl") - 1; 1625 1626 if (param[0] != '/' && param[0] != '.') 1627 return 0; 1628 1629 param++; 1630 } else { 1631 param = (char *) sysctl_find_alias(param); 1632 if (!param) 1633 return 0; 1634 } 1635 1636 if (!val) 1637 return -EINVAL; 1638 len = strlen(val); 1639 if (len == 0) 1640 return -EINVAL; 1641 1642 /* 1643 * To set sysctl options, we use a temporary mount of proc, look up the 1644 * respective sys/ file and write to it. To avoid mounting it when no 1645 * options were given, we mount it only when the first sysctl option is 1646 * found. Why not a persistent mount? There are problems with a 1647 * persistent mount of proc in that it forces userspace not to use any 1648 * proc mount options. 1649 */ 1650 if (!*proc_mnt) { 1651 proc_fs_type = get_fs_type("proc"); 1652 if (!proc_fs_type) { 1653 pr_err("Failed to find procfs to set sysctl from command line\n"); 1654 return 0; 1655 } 1656 *proc_mnt = kern_mount(proc_fs_type); 1657 put_filesystem(proc_fs_type); 1658 if (IS_ERR(*proc_mnt)) { 1659 pr_err("Failed to mount procfs to set sysctl from command line\n"); 1660 return 0; 1661 } 1662 } 1663 1664 path = kasprintf(GFP_KERNEL, "sys/%s", param); 1665 if (!path) 1666 panic("%s: Failed to allocate path for %s\n", __func__, param); 1667 strreplace(path, '.', '/'); 1668 1669 file = file_open_root_mnt(*proc_mnt, path, O_WRONLY, 0); 1670 if (IS_ERR(file)) { 1671 err = PTR_ERR(file); 1672 if (err == -ENOENT) 1673 pr_err("Failed to set sysctl parameter '%s=%s': parameter not found\n", 1674 param, val); 1675 else if (err == -EACCES) 1676 pr_err("Failed to set sysctl parameter '%s=%s': permission denied (read-only?)\n", 1677 param, val); 1678 else 1679 pr_err("Error %pe opening proc file to set sysctl parameter '%s=%s'\n", 1680 file, param, val); 1681 goto out; 1682 } 1683 wret = kernel_write(file, val, len, &pos); 1684 if (wret < 0) { 1685 err = wret; 1686 if (err == -EINVAL) 1687 pr_err("Failed to set sysctl parameter '%s=%s': invalid value\n", 1688 param, val); 1689 else 1690 pr_err("Error %pe writing to proc file to set sysctl parameter '%s=%s'\n", 1691 ERR_PTR(err), param, val); 1692 } else if (wret != len) { 1693 pr_err("Wrote only %zd bytes of %d writing to proc file %s to set sysctl parameter '%s=%s\n", 1694 wret, len, path, param, val); 1695 } 1696 1697 err = filp_close(file, NULL); 1698 if (err) 1699 pr_err("Error %pe closing proc file to set sysctl parameter '%s=%s\n", 1700 ERR_PTR(err), param, val); 1701 out: 1702 kfree(path); 1703 return 0; 1704 } 1705 1706 void do_sysctl_args(void) 1707 { 1708 char *command_line; 1709 struct vfsmount *proc_mnt = NULL; 1710 1711 command_line = kstrdup(saved_command_line, GFP_KERNEL); 1712 if (!command_line) 1713 panic("%s: Failed to allocate copy of command line\n", __func__); 1714 1715 parse_args("Setting sysctl args", command_line, 1716 NULL, 0, -1, -1, &proc_mnt, process_sysctl_arg); 1717 1718 if (proc_mnt) 1719 kern_unmount(proc_mnt); 1720 1721 kfree(command_line); 1722 } 1723