1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * /proc/sys support 4 */ 5 #include <linux/init.h> 6 #include <linux/sysctl.h> 7 #include <linux/poll.h> 8 #include <linux/proc_fs.h> 9 #include <linux/printk.h> 10 #include <linux/security.h> 11 #include <linux/sched.h> 12 #include <linux/cred.h> 13 #include <linux/namei.h> 14 #include <linux/mm.h> 15 #include <linux/uio.h> 16 #include <linux/module.h> 17 #include <linux/bpf-cgroup.h> 18 #include <linux/mount.h> 19 #include <linux/kmemleak.h> 20 #include <linux/lockdep.h> 21 #include "internal.h" 22 23 #define list_for_each_table_entry(entry, header) \ 24 entry = header->ctl_table; \ 25 for (size_t i = 0 ; i < header->ctl_table_size; ++i, entry++) 26 27 static const struct dentry_operations proc_sys_dentry_operations; 28 static const struct file_operations proc_sys_file_operations; 29 static const struct inode_operations proc_sys_inode_operations; 30 static const struct file_operations proc_sys_dir_file_operations; 31 static const struct inode_operations proc_sys_dir_operations; 32 33 /* 34 * Support for permanently empty directories. 35 * Must be non-empty to avoid sharing an address with other tables. 36 */ 37 static const struct ctl_table sysctl_mount_point[] = { 38 { } 39 }; 40 41 /** 42 * register_sysctl_mount_point() - registers a sysctl mount point 43 * @path: path for the mount point 44 * 45 * Used to create a permanently empty directory to serve as mount point. 46 * There are some subtle but important permission checks this allows in the 47 * case of unprivileged mounts. 48 */ 49 struct ctl_table_header *register_sysctl_mount_point(const char *path) 50 { 51 return register_sysctl_sz(path, sysctl_mount_point, 0); 52 } 53 EXPORT_SYMBOL(register_sysctl_mount_point); 54 55 #define sysctl_is_perm_empty_ctl_header(hptr) \ 56 (hptr->type == SYSCTL_TABLE_TYPE_PERMANENTLY_EMPTY) 57 #define sysctl_set_perm_empty_ctl_header(hptr) \ 58 (hptr->type = SYSCTL_TABLE_TYPE_PERMANENTLY_EMPTY) 59 #define sysctl_clear_perm_empty_ctl_header(hptr) \ 60 (hptr->type = SYSCTL_TABLE_TYPE_DEFAULT) 61 62 void proc_sys_poll_notify(struct ctl_table_poll *poll) 63 { 64 if (!poll) 65 return; 66 67 atomic_inc(&poll->event); 68 wake_up_interruptible(&poll->wait); 69 } 70 71 static const struct ctl_table root_table[] = { 72 { 73 .procname = "", 74 .mode = S_IFDIR|S_IRUGO|S_IXUGO, 75 }, 76 }; 77 static struct ctl_table_root sysctl_table_root = { 78 .default_set.dir.header = { 79 {{.count = 1, 80 .nreg = 1, 81 .ctl_table = root_table }}, 82 .ctl_table_arg = root_table, 83 .root = &sysctl_table_root, 84 .set = &sysctl_table_root.default_set, 85 }, 86 }; 87 88 static DEFINE_SPINLOCK(sysctl_lock); 89 90 static void drop_sysctl_table(struct ctl_table_header *header); 91 static int sysctl_follow_link(struct ctl_table_header **phead, 92 const struct ctl_table **pentry); 93 static int insert_links(struct ctl_table_header *head); 94 static void put_links(struct ctl_table_header *header); 95 96 static void sysctl_print_dir(struct ctl_dir *dir) 97 { 98 if (dir->header.parent) 99 sysctl_print_dir(dir->header.parent); 100 pr_cont("%s/", dir->header.ctl_table[0].procname); 101 } 102 103 static int namecmp(const char *name1, int len1, const char *name2, int len2) 104 { 105 int cmp; 106 107 cmp = memcmp(name1, name2, min(len1, len2)); 108 if (cmp == 0) 109 cmp = len1 - len2; 110 return cmp; 111 } 112 113 static const struct ctl_table *find_entry(struct ctl_table_header **phead, 114 struct ctl_dir *dir, const char *name, int namelen) 115 { 116 struct ctl_table_header *head; 117 const struct ctl_table *entry; 118 struct rb_node *node = dir->root.rb_node; 119 120 lockdep_assert_held(&sysctl_lock); 121 122 while (node) 123 { 124 struct ctl_node *ctl_node; 125 const char *procname; 126 int cmp; 127 128 ctl_node = rb_entry(node, struct ctl_node, node); 129 head = ctl_node->header; 130 entry = &head->ctl_table[ctl_node - head->node]; 131 procname = entry->procname; 132 133 cmp = namecmp(name, namelen, procname, strlen(procname)); 134 if (cmp < 0) 135 node = node->rb_left; 136 else if (cmp > 0) 137 node = node->rb_right; 138 else { 139 *phead = head; 140 return entry; 141 } 142 } 143 return NULL; 144 } 145 146 static int insert_entry(struct ctl_table_header *head, const struct ctl_table *entry) 147 { 148 struct rb_node *node = &head->node[entry - head->ctl_table].node; 149 struct rb_node **p = &head->parent->root.rb_node; 150 struct rb_node *parent = NULL; 151 const char *name = entry->procname; 152 int namelen = strlen(name); 153 154 while (*p) { 155 struct ctl_table_header *parent_head; 156 const struct ctl_table *parent_entry; 157 struct ctl_node *parent_node; 158 const char *parent_name; 159 int cmp; 160 161 parent = *p; 162 parent_node = rb_entry(parent, struct ctl_node, node); 163 parent_head = parent_node->header; 164 parent_entry = &parent_head->ctl_table[parent_node - parent_head->node]; 165 parent_name = parent_entry->procname; 166 167 cmp = namecmp(name, namelen, parent_name, strlen(parent_name)); 168 if (cmp < 0) 169 p = &(*p)->rb_left; 170 else if (cmp > 0) 171 p = &(*p)->rb_right; 172 else { 173 pr_err("sysctl duplicate entry: "); 174 sysctl_print_dir(head->parent); 175 pr_cont("%s\n", entry->procname); 176 return -EEXIST; 177 } 178 } 179 180 rb_link_node(node, parent, p); 181 rb_insert_color(node, &head->parent->root); 182 return 0; 183 } 184 185 static void erase_entry(struct ctl_table_header *head, const struct ctl_table *entry) 186 { 187 struct rb_node *node = &head->node[entry - head->ctl_table].node; 188 189 rb_erase(node, &head->parent->root); 190 } 191 192 static void init_header(struct ctl_table_header *head, 193 struct ctl_table_root *root, struct ctl_table_set *set, 194 struct ctl_node *node, const struct ctl_table *table, size_t table_size) 195 { 196 head->ctl_table = table; 197 head->ctl_table_size = table_size; 198 head->ctl_table_arg = table; 199 head->used = 0; 200 head->count = 1; 201 head->nreg = 1; 202 head->unregistering = NULL; 203 head->root = root; 204 head->set = set; 205 head->parent = NULL; 206 head->node = node; 207 INIT_HLIST_HEAD(&head->inodes); 208 if (node) { 209 const struct ctl_table *entry; 210 211 list_for_each_table_entry(entry, head) { 212 node->header = head; 213 node++; 214 } 215 } 216 if (table == sysctl_mount_point) 217 sysctl_set_perm_empty_ctl_header(head); 218 } 219 220 static void erase_header(struct ctl_table_header *head) 221 { 222 const struct ctl_table *entry; 223 224 list_for_each_table_entry(entry, head) 225 erase_entry(head, entry); 226 } 227 228 static int insert_header(struct ctl_dir *dir, struct ctl_table_header *header) 229 { 230 const struct ctl_table *entry; 231 struct ctl_table_header *dir_h = &dir->header; 232 int err; 233 234 235 /* Is this a permanently empty directory? */ 236 if (sysctl_is_perm_empty_ctl_header(dir_h)) 237 return -EROFS; 238 239 /* Am I creating a permanently empty directory? */ 240 if (sysctl_is_perm_empty_ctl_header(header)) { 241 if (!RB_EMPTY_ROOT(&dir->root)) 242 return -EINVAL; 243 sysctl_set_perm_empty_ctl_header(dir_h); 244 } 245 246 dir_h->nreg++; 247 header->parent = dir; 248 err = insert_links(header); 249 if (err) 250 goto fail_links; 251 list_for_each_table_entry(entry, header) { 252 err = insert_entry(header, entry); 253 if (err) 254 goto fail; 255 } 256 return 0; 257 fail: 258 erase_header(header); 259 put_links(header); 260 fail_links: 261 if (header->ctl_table == sysctl_mount_point) 262 sysctl_clear_perm_empty_ctl_header(dir_h); 263 header->parent = NULL; 264 drop_sysctl_table(dir_h); 265 return err; 266 } 267 268 static int use_table(struct ctl_table_header *p) 269 { 270 lockdep_assert_held(&sysctl_lock); 271 272 if (unlikely(p->unregistering)) 273 return 0; 274 p->used++; 275 return 1; 276 } 277 278 static void unuse_table(struct ctl_table_header *p) 279 { 280 lockdep_assert_held(&sysctl_lock); 281 282 if (!--p->used) 283 if (unlikely(p->unregistering)) 284 complete(p->unregistering); 285 } 286 287 static void proc_sys_invalidate_dcache(struct ctl_table_header *head) 288 { 289 proc_invalidate_siblings_dcache(&head->inodes, &sysctl_lock); 290 } 291 292 static void start_unregistering(struct ctl_table_header *p) 293 { 294 /* will reacquire if has to wait */ 295 lockdep_assert_held(&sysctl_lock); 296 297 /* 298 * if p->used is 0, nobody will ever touch that entry again; 299 * we'll eliminate all paths to it before dropping sysctl_lock 300 */ 301 if (unlikely(p->used)) { 302 struct completion wait; 303 init_completion(&wait); 304 p->unregistering = &wait; 305 spin_unlock(&sysctl_lock); 306 wait_for_completion(&wait); 307 } else { 308 /* anything non-NULL; we'll never dereference it */ 309 p->unregistering = ERR_PTR(-EINVAL); 310 spin_unlock(&sysctl_lock); 311 } 312 /* 313 * Invalidate dentries for unregistered sysctls: namespaced sysctls 314 * can have duplicate names and contaminate dcache very badly. 315 */ 316 proc_sys_invalidate_dcache(p); 317 /* 318 * do not remove from the list until nobody holds it; walking the 319 * list in do_sysctl() relies on that. 320 */ 321 spin_lock(&sysctl_lock); 322 erase_header(p); 323 } 324 325 static struct ctl_table_header *sysctl_head_grab(struct ctl_table_header *head) 326 { 327 BUG_ON(!head); 328 spin_lock(&sysctl_lock); 329 if (!use_table(head)) 330 head = ERR_PTR(-ENOENT); 331 spin_unlock(&sysctl_lock); 332 return head; 333 } 334 335 static void sysctl_head_finish(struct ctl_table_header *head) 336 { 337 if (!head) 338 return; 339 spin_lock(&sysctl_lock); 340 unuse_table(head); 341 spin_unlock(&sysctl_lock); 342 } 343 344 static struct ctl_table_set * 345 lookup_header_set(struct ctl_table_root *root) 346 { 347 struct ctl_table_set *set = &root->default_set; 348 if (root->lookup) 349 set = root->lookup(root); 350 return set; 351 } 352 353 static const struct ctl_table *lookup_entry(struct ctl_table_header **phead, 354 struct ctl_dir *dir, 355 const char *name, int namelen) 356 { 357 struct ctl_table_header *head; 358 const struct ctl_table *entry; 359 360 spin_lock(&sysctl_lock); 361 entry = find_entry(&head, dir, name, namelen); 362 if (entry && use_table(head)) 363 *phead = head; 364 else 365 entry = NULL; 366 spin_unlock(&sysctl_lock); 367 return entry; 368 } 369 370 static struct ctl_node *first_usable_entry(struct rb_node *node) 371 { 372 struct ctl_node *ctl_node; 373 374 for (;node; node = rb_next(node)) { 375 ctl_node = rb_entry(node, struct ctl_node, node); 376 if (use_table(ctl_node->header)) 377 return ctl_node; 378 } 379 return NULL; 380 } 381 382 static void first_entry(struct ctl_dir *dir, 383 struct ctl_table_header **phead, const struct ctl_table **pentry) 384 { 385 struct ctl_table_header *head = NULL; 386 const struct ctl_table *entry = NULL; 387 struct ctl_node *ctl_node; 388 389 spin_lock(&sysctl_lock); 390 ctl_node = first_usable_entry(rb_first(&dir->root)); 391 spin_unlock(&sysctl_lock); 392 if (ctl_node) { 393 head = ctl_node->header; 394 entry = &head->ctl_table[ctl_node - head->node]; 395 } 396 *phead = head; 397 *pentry = entry; 398 } 399 400 static void next_entry(struct ctl_table_header **phead, const struct ctl_table **pentry) 401 { 402 struct ctl_table_header *head = *phead; 403 const struct ctl_table *entry = *pentry; 404 struct ctl_node *ctl_node = &head->node[entry - head->ctl_table]; 405 406 spin_lock(&sysctl_lock); 407 unuse_table(head); 408 409 ctl_node = first_usable_entry(rb_next(&ctl_node->node)); 410 spin_unlock(&sysctl_lock); 411 head = NULL; 412 if (ctl_node) { 413 head = ctl_node->header; 414 entry = &head->ctl_table[ctl_node - head->node]; 415 } 416 *phead = head; 417 *pentry = entry; 418 } 419 420 /* 421 * sysctl_perm does NOT grant the superuser all rights automatically, because 422 * some sysctl variables are readonly even to root. 423 */ 424 425 static int test_perm(int mode, int op) 426 { 427 if (uid_eq(current_euid(), GLOBAL_ROOT_UID)) 428 mode >>= 6; 429 else if (in_egroup_p(GLOBAL_ROOT_GID)) 430 mode >>= 3; 431 if ((op & ~mode & (MAY_READ|MAY_WRITE|MAY_EXEC)) == 0) 432 return 0; 433 return -EACCES; 434 } 435 436 static int sysctl_perm(struct ctl_table_header *head, const struct ctl_table *table, int op) 437 { 438 struct ctl_table_root *root = head->root; 439 int mode; 440 441 if (root->permissions) 442 mode = root->permissions(head, table); 443 else 444 mode = table->mode; 445 446 return test_perm(mode, op); 447 } 448 449 static struct inode *proc_sys_make_inode(struct super_block *sb, 450 struct ctl_table_header *head, const struct ctl_table *table) 451 { 452 struct ctl_table_root *root = head->root; 453 struct inode *inode; 454 struct proc_inode *ei; 455 456 inode = new_inode(sb); 457 if (!inode) 458 return ERR_PTR(-ENOMEM); 459 460 inode->i_ino = get_next_ino(); 461 462 ei = PROC_I(inode); 463 464 spin_lock(&sysctl_lock); 465 if (unlikely(head->unregistering)) { 466 spin_unlock(&sysctl_lock); 467 iput(inode); 468 return ERR_PTR(-ENOENT); 469 } 470 ei->sysctl = head; 471 ei->sysctl_entry = table; 472 hlist_add_head_rcu(&ei->sibling_inodes, &head->inodes); 473 head->count++; 474 spin_unlock(&sysctl_lock); 475 476 simple_inode_init_ts(inode); 477 inode->i_mode = table->mode; 478 if (!S_ISDIR(table->mode)) { 479 inode->i_mode |= S_IFREG; 480 inode->i_op = &proc_sys_inode_operations; 481 inode->i_fop = &proc_sys_file_operations; 482 } else { 483 inode->i_mode |= S_IFDIR; 484 inode->i_op = &proc_sys_dir_operations; 485 inode->i_fop = &proc_sys_dir_file_operations; 486 if (sysctl_is_perm_empty_ctl_header(head)) 487 make_empty_dir_inode(inode); 488 } 489 490 inode->i_uid = GLOBAL_ROOT_UID; 491 inode->i_gid = GLOBAL_ROOT_GID; 492 if (root->set_ownership) 493 root->set_ownership(head, &inode->i_uid, &inode->i_gid); 494 495 return inode; 496 } 497 498 void proc_sys_evict_inode(struct inode *inode, struct ctl_table_header *head) 499 { 500 spin_lock(&sysctl_lock); 501 hlist_del_init_rcu(&PROC_I(inode)->sibling_inodes); 502 if (!--head->count) 503 kfree_rcu(head, rcu); 504 spin_unlock(&sysctl_lock); 505 } 506 507 static struct ctl_table_header *grab_header(struct inode *inode) 508 { 509 struct ctl_table_header *head = PROC_I(inode)->sysctl; 510 if (!head) 511 head = &sysctl_table_root.default_set.dir.header; 512 return sysctl_head_grab(head); 513 } 514 515 static struct dentry *proc_sys_lookup(struct inode *dir, struct dentry *dentry, 516 unsigned int flags) 517 { 518 struct ctl_table_header *head = grab_header(dir); 519 struct ctl_table_header *h = NULL; 520 const struct qstr *name = &dentry->d_name; 521 const struct ctl_table *p; 522 struct inode *inode; 523 struct dentry *err = ERR_PTR(-ENOENT); 524 struct ctl_dir *ctl_dir; 525 int ret; 526 527 if (IS_ERR(head)) 528 return ERR_CAST(head); 529 530 ctl_dir = container_of(head, struct ctl_dir, header); 531 532 p = lookup_entry(&h, ctl_dir, name->name, name->len); 533 if (!p) 534 goto out; 535 536 if (S_ISLNK(p->mode)) { 537 ret = sysctl_follow_link(&h, &p); 538 err = ERR_PTR(ret); 539 if (ret) 540 goto out; 541 } 542 543 d_set_d_op(dentry, &proc_sys_dentry_operations); 544 inode = proc_sys_make_inode(dir->i_sb, h ? h : head, p); 545 err = d_splice_alias(inode, dentry); 546 547 out: 548 if (h) 549 sysctl_head_finish(h); 550 sysctl_head_finish(head); 551 return err; 552 } 553 554 static ssize_t proc_sys_call_handler(struct kiocb *iocb, struct iov_iter *iter, 555 int write) 556 { 557 struct inode *inode = file_inode(iocb->ki_filp); 558 struct ctl_table_header *head = grab_header(inode); 559 const struct ctl_table *table = PROC_I(inode)->sysctl_entry; 560 size_t count = iov_iter_count(iter); 561 char *kbuf; 562 ssize_t error; 563 564 if (IS_ERR(head)) 565 return PTR_ERR(head); 566 567 /* 568 * At this point we know that the sysctl was not unregistered 569 * and won't be until we finish. 570 */ 571 error = -EPERM; 572 if (sysctl_perm(head, table, write ? MAY_WRITE : MAY_READ)) 573 goto out; 574 575 /* if that can happen at all, it should be -EINVAL, not -EISDIR */ 576 error = -EINVAL; 577 if (!table->proc_handler) 578 goto out; 579 580 /* don't even try if the size is too large */ 581 error = -ENOMEM; 582 if (count >= KMALLOC_MAX_SIZE) 583 goto out; 584 kbuf = kvzalloc(count + 1, GFP_KERNEL); 585 if (!kbuf) 586 goto out; 587 588 if (write) { 589 error = -EFAULT; 590 if (!copy_from_iter_full(kbuf, count, iter)) 591 goto out_free_buf; 592 kbuf[count] = '\0'; 593 } 594 595 error = BPF_CGROUP_RUN_PROG_SYSCTL(head, table, write, &kbuf, &count, 596 &iocb->ki_pos); 597 if (error) 598 goto out_free_buf; 599 600 /* careful: calling conventions are nasty here */ 601 error = table->proc_handler(table, write, kbuf, &count, &iocb->ki_pos); 602 if (error) 603 goto out_free_buf; 604 605 if (!write) { 606 error = -EFAULT; 607 if (copy_to_iter(kbuf, count, iter) < count) 608 goto out_free_buf; 609 } 610 611 error = count; 612 out_free_buf: 613 kvfree(kbuf); 614 out: 615 sysctl_head_finish(head); 616 617 return error; 618 } 619 620 static ssize_t proc_sys_read(struct kiocb *iocb, struct iov_iter *iter) 621 { 622 return proc_sys_call_handler(iocb, iter, 0); 623 } 624 625 static ssize_t proc_sys_write(struct kiocb *iocb, struct iov_iter *iter) 626 { 627 return proc_sys_call_handler(iocb, iter, 1); 628 } 629 630 static int proc_sys_open(struct inode *inode, struct file *filp) 631 { 632 struct ctl_table_header *head = grab_header(inode); 633 const struct ctl_table *table = PROC_I(inode)->sysctl_entry; 634 635 /* sysctl was unregistered */ 636 if (IS_ERR(head)) 637 return PTR_ERR(head); 638 639 if (table->poll) 640 filp->private_data = proc_sys_poll_event(table->poll); 641 642 sysctl_head_finish(head); 643 644 return 0; 645 } 646 647 static __poll_t proc_sys_poll(struct file *filp, poll_table *wait) 648 { 649 struct inode *inode = file_inode(filp); 650 struct ctl_table_header *head = grab_header(inode); 651 const struct ctl_table *table = PROC_I(inode)->sysctl_entry; 652 __poll_t ret = DEFAULT_POLLMASK; 653 unsigned long event; 654 655 /* sysctl was unregistered */ 656 if (IS_ERR(head)) 657 return EPOLLERR | EPOLLHUP; 658 659 if (!table->proc_handler) 660 goto out; 661 662 if (!table->poll) 663 goto out; 664 665 event = (unsigned long)filp->private_data; 666 poll_wait(filp, &table->poll->wait, wait); 667 668 if (event != atomic_read(&table->poll->event)) { 669 filp->private_data = proc_sys_poll_event(table->poll); 670 ret = EPOLLIN | EPOLLRDNORM | EPOLLERR | EPOLLPRI; 671 } 672 673 out: 674 sysctl_head_finish(head); 675 676 return ret; 677 } 678 679 static bool proc_sys_fill_cache(struct file *file, 680 struct dir_context *ctx, 681 struct ctl_table_header *head, 682 const struct ctl_table *table) 683 { 684 struct dentry *child, *dir = file->f_path.dentry; 685 struct inode *inode; 686 struct qstr qname; 687 ino_t ino = 0; 688 unsigned type = DT_UNKNOWN; 689 690 qname.name = table->procname; 691 qname.len = strlen(table->procname); 692 qname.hash = full_name_hash(dir, qname.name, qname.len); 693 694 child = d_lookup(dir, &qname); 695 if (!child) { 696 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq); 697 child = d_alloc_parallel(dir, &qname, &wq); 698 if (IS_ERR(child)) 699 return false; 700 if (d_in_lookup(child)) { 701 struct dentry *res; 702 d_set_d_op(child, &proc_sys_dentry_operations); 703 inode = proc_sys_make_inode(dir->d_sb, head, table); 704 res = d_splice_alias(inode, child); 705 d_lookup_done(child); 706 if (unlikely(res)) { 707 dput(child); 708 709 if (IS_ERR(res)) 710 return false; 711 712 child = res; 713 } 714 } 715 } 716 inode = d_inode(child); 717 ino = inode->i_ino; 718 type = inode->i_mode >> 12; 719 dput(child); 720 return dir_emit(ctx, qname.name, qname.len, ino, type); 721 } 722 723 static bool proc_sys_link_fill_cache(struct file *file, 724 struct dir_context *ctx, 725 struct ctl_table_header *head, 726 const struct ctl_table *table) 727 { 728 bool ret = true; 729 730 head = sysctl_head_grab(head); 731 if (IS_ERR(head)) 732 return false; 733 734 /* It is not an error if we can not follow the link ignore it */ 735 if (sysctl_follow_link(&head, &table)) 736 goto out; 737 738 ret = proc_sys_fill_cache(file, ctx, head, table); 739 out: 740 sysctl_head_finish(head); 741 return ret; 742 } 743 744 static int scan(struct ctl_table_header *head, const struct ctl_table *table, 745 unsigned long *pos, struct file *file, 746 struct dir_context *ctx) 747 { 748 bool res; 749 750 if ((*pos)++ < ctx->pos) 751 return true; 752 753 if (unlikely(S_ISLNK(table->mode))) 754 res = proc_sys_link_fill_cache(file, ctx, head, table); 755 else 756 res = proc_sys_fill_cache(file, ctx, head, table); 757 758 if (res) 759 ctx->pos = *pos; 760 761 return res; 762 } 763 764 static int proc_sys_readdir(struct file *file, struct dir_context *ctx) 765 { 766 struct ctl_table_header *head = grab_header(file_inode(file)); 767 struct ctl_table_header *h = NULL; 768 const struct ctl_table *entry; 769 struct ctl_dir *ctl_dir; 770 unsigned long pos; 771 772 if (IS_ERR(head)) 773 return PTR_ERR(head); 774 775 ctl_dir = container_of(head, struct ctl_dir, header); 776 777 if (!dir_emit_dots(file, ctx)) 778 goto out; 779 780 pos = 2; 781 782 for (first_entry(ctl_dir, &h, &entry); h; next_entry(&h, &entry)) { 783 if (!scan(h, entry, &pos, file, ctx)) { 784 sysctl_head_finish(h); 785 break; 786 } 787 } 788 out: 789 sysctl_head_finish(head); 790 return 0; 791 } 792 793 static int proc_sys_permission(struct mnt_idmap *idmap, 794 struct inode *inode, int mask) 795 { 796 /* 797 * sysctl entries that are not writeable, 798 * are _NOT_ writeable, capabilities or not. 799 */ 800 struct ctl_table_header *head; 801 const struct ctl_table *table; 802 int error; 803 804 /* Executable files are not allowed under /proc/sys/ */ 805 if ((mask & MAY_EXEC) && S_ISREG(inode->i_mode)) 806 return -EACCES; 807 808 head = grab_header(inode); 809 if (IS_ERR(head)) 810 return PTR_ERR(head); 811 812 table = PROC_I(inode)->sysctl_entry; 813 if (!table) /* global root - r-xr-xr-x */ 814 error = mask & MAY_WRITE ? -EACCES : 0; 815 else /* Use the permissions on the sysctl table entry */ 816 error = sysctl_perm(head, table, mask & ~MAY_NOT_BLOCK); 817 818 sysctl_head_finish(head); 819 return error; 820 } 821 822 static int proc_sys_setattr(struct mnt_idmap *idmap, 823 struct dentry *dentry, struct iattr *attr) 824 { 825 struct inode *inode = d_inode(dentry); 826 int error; 827 828 if (attr->ia_valid & (ATTR_MODE | ATTR_UID | ATTR_GID)) 829 return -EPERM; 830 831 error = setattr_prepare(&nop_mnt_idmap, dentry, attr); 832 if (error) 833 return error; 834 835 setattr_copy(&nop_mnt_idmap, inode, attr); 836 return 0; 837 } 838 839 static int proc_sys_getattr(struct mnt_idmap *idmap, 840 const struct path *path, struct kstat *stat, 841 u32 request_mask, unsigned int query_flags) 842 { 843 struct inode *inode = d_inode(path->dentry); 844 struct ctl_table_header *head = grab_header(inode); 845 const struct ctl_table *table = PROC_I(inode)->sysctl_entry; 846 847 if (IS_ERR(head)) 848 return PTR_ERR(head); 849 850 generic_fillattr(&nop_mnt_idmap, request_mask, inode, stat); 851 if (table) 852 stat->mode = (stat->mode & S_IFMT) | table->mode; 853 854 sysctl_head_finish(head); 855 return 0; 856 } 857 858 static const struct file_operations proc_sys_file_operations = { 859 .open = proc_sys_open, 860 .poll = proc_sys_poll, 861 .read_iter = proc_sys_read, 862 .write_iter = proc_sys_write, 863 .splice_read = copy_splice_read, 864 .splice_write = iter_file_splice_write, 865 .llseek = default_llseek, 866 }; 867 868 static const struct file_operations proc_sys_dir_file_operations = { 869 .read = generic_read_dir, 870 .iterate_shared = proc_sys_readdir, 871 .llseek = generic_file_llseek, 872 }; 873 874 static const struct inode_operations proc_sys_inode_operations = { 875 .permission = proc_sys_permission, 876 .setattr = proc_sys_setattr, 877 .getattr = proc_sys_getattr, 878 }; 879 880 static const struct inode_operations proc_sys_dir_operations = { 881 .lookup = proc_sys_lookup, 882 .permission = proc_sys_permission, 883 .setattr = proc_sys_setattr, 884 .getattr = proc_sys_getattr, 885 }; 886 887 static int proc_sys_revalidate(struct inode *dir, const struct qstr *name, 888 struct dentry *dentry, unsigned int flags) 889 { 890 if (flags & LOOKUP_RCU) 891 return -ECHILD; 892 return !PROC_I(d_inode(dentry))->sysctl->unregistering; 893 } 894 895 static int proc_sys_delete(const struct dentry *dentry) 896 { 897 return !!PROC_I(d_inode(dentry))->sysctl->unregistering; 898 } 899 900 static int sysctl_is_seen(struct ctl_table_header *p) 901 { 902 struct ctl_table_set *set = p->set; 903 int res; 904 spin_lock(&sysctl_lock); 905 if (p->unregistering) 906 res = 0; 907 else if (!set->is_seen) 908 res = 1; 909 else 910 res = set->is_seen(set); 911 spin_unlock(&sysctl_lock); 912 return res; 913 } 914 915 static int proc_sys_compare(const struct dentry *dentry, 916 unsigned int len, const char *str, const struct qstr *name) 917 { 918 struct ctl_table_header *head; 919 struct inode *inode; 920 921 if (name->len != len) 922 return 1; 923 if (memcmp(name->name, str, len)) 924 return 1; 925 926 // false positive is fine here - we'll recheck anyway 927 if (d_in_lookup(dentry)) 928 return 0; 929 930 inode = d_inode_rcu(dentry); 931 // we just might have run into dentry in the middle of __dentry_kill() 932 if (!inode) 933 return 1; 934 935 head = READ_ONCE(PROC_I(inode)->sysctl); 936 return !head || !sysctl_is_seen(head); 937 } 938 939 static const struct dentry_operations proc_sys_dentry_operations = { 940 .d_revalidate = proc_sys_revalidate, 941 .d_delete = proc_sys_delete, 942 .d_compare = proc_sys_compare, 943 }; 944 945 static struct ctl_dir *find_subdir(struct ctl_dir *dir, 946 const char *name, int namelen) 947 { 948 struct ctl_table_header *head; 949 const struct ctl_table *entry; 950 951 entry = find_entry(&head, dir, name, namelen); 952 if (!entry) 953 return ERR_PTR(-ENOENT); 954 if (!S_ISDIR(entry->mode)) 955 return ERR_PTR(-ENOTDIR); 956 return container_of(head, struct ctl_dir, header); 957 } 958 959 static struct ctl_dir *new_dir(struct ctl_table_set *set, 960 const char *name, int namelen) 961 { 962 struct ctl_table *table; 963 struct ctl_dir *new; 964 struct ctl_node *node; 965 char *new_name; 966 967 new = kzalloc(sizeof(*new) + sizeof(struct ctl_node) + 968 sizeof(struct ctl_table) + namelen + 1, 969 GFP_KERNEL); 970 if (!new) 971 return NULL; 972 973 node = (struct ctl_node *)(new + 1); 974 table = (struct ctl_table *)(node + 1); 975 new_name = (char *)(table + 1); 976 memcpy(new_name, name, namelen); 977 table[0].procname = new_name; 978 table[0].mode = S_IFDIR|S_IRUGO|S_IXUGO; 979 init_header(&new->header, set->dir.header.root, set, node, table, 1); 980 981 return new; 982 } 983 984 /** 985 * get_subdir - find or create a subdir with the specified name. 986 * @dir: Directory to create the subdirectory in 987 * @name: The name of the subdirectory to find or create 988 * @namelen: The length of name 989 * 990 * Takes a directory with an elevated reference count so we know that 991 * if we drop the lock the directory will not go away. Upon success 992 * the reference is moved from @dir to the returned subdirectory. 993 * Upon error an error code is returned and the reference on @dir is 994 * simply dropped. 995 */ 996 static struct ctl_dir *get_subdir(struct ctl_dir *dir, 997 const char *name, int namelen) 998 { 999 struct ctl_table_set *set = dir->header.set; 1000 struct ctl_dir *subdir, *new = NULL; 1001 int err; 1002 1003 spin_lock(&sysctl_lock); 1004 subdir = find_subdir(dir, name, namelen); 1005 if (!IS_ERR(subdir)) 1006 goto found; 1007 if (PTR_ERR(subdir) != -ENOENT) 1008 goto failed; 1009 1010 spin_unlock(&sysctl_lock); 1011 new = new_dir(set, name, namelen); 1012 spin_lock(&sysctl_lock); 1013 subdir = ERR_PTR(-ENOMEM); 1014 if (!new) 1015 goto failed; 1016 1017 /* Was the subdir added while we dropped the lock? */ 1018 subdir = find_subdir(dir, name, namelen); 1019 if (!IS_ERR(subdir)) 1020 goto found; 1021 if (PTR_ERR(subdir) != -ENOENT) 1022 goto failed; 1023 1024 /* Nope. Use the our freshly made directory entry. */ 1025 err = insert_header(dir, &new->header); 1026 subdir = ERR_PTR(err); 1027 if (err) 1028 goto failed; 1029 subdir = new; 1030 found: 1031 subdir->header.nreg++; 1032 failed: 1033 if (IS_ERR(subdir)) { 1034 pr_err("sysctl could not get directory: "); 1035 sysctl_print_dir(dir); 1036 pr_cont("%*.*s %ld\n", namelen, namelen, name, 1037 PTR_ERR(subdir)); 1038 } 1039 drop_sysctl_table(&dir->header); 1040 if (new) 1041 drop_sysctl_table(&new->header); 1042 spin_unlock(&sysctl_lock); 1043 return subdir; 1044 } 1045 1046 static struct ctl_dir *xlate_dir(struct ctl_table_set *set, struct ctl_dir *dir) 1047 { 1048 struct ctl_dir *parent; 1049 const char *procname; 1050 if (!dir->header.parent) 1051 return &set->dir; 1052 parent = xlate_dir(set, dir->header.parent); 1053 if (IS_ERR(parent)) 1054 return parent; 1055 procname = dir->header.ctl_table[0].procname; 1056 return find_subdir(parent, procname, strlen(procname)); 1057 } 1058 1059 static int sysctl_follow_link(struct ctl_table_header **phead, 1060 const struct ctl_table **pentry) 1061 { 1062 struct ctl_table_header *head; 1063 const struct ctl_table *entry; 1064 struct ctl_table_root *root; 1065 struct ctl_table_set *set; 1066 struct ctl_dir *dir; 1067 int ret; 1068 1069 spin_lock(&sysctl_lock); 1070 root = (*pentry)->data; 1071 set = lookup_header_set(root); 1072 dir = xlate_dir(set, (*phead)->parent); 1073 if (IS_ERR(dir)) 1074 ret = PTR_ERR(dir); 1075 else { 1076 const char *procname = (*pentry)->procname; 1077 head = NULL; 1078 entry = find_entry(&head, dir, procname, strlen(procname)); 1079 ret = -ENOENT; 1080 if (entry && use_table(head)) { 1081 unuse_table(*phead); 1082 *phead = head; 1083 *pentry = entry; 1084 ret = 0; 1085 } 1086 } 1087 1088 spin_unlock(&sysctl_lock); 1089 return ret; 1090 } 1091 1092 static int sysctl_err(const char *path, const struct ctl_table *table, char *fmt, ...) 1093 { 1094 struct va_format vaf; 1095 va_list args; 1096 1097 va_start(args, fmt); 1098 vaf.fmt = fmt; 1099 vaf.va = &args; 1100 1101 pr_err("sysctl table check failed: %s/%s %pV\n", 1102 path, table->procname, &vaf); 1103 1104 va_end(args); 1105 return -EINVAL; 1106 } 1107 1108 static int sysctl_check_table_array(const char *path, const struct ctl_table *table) 1109 { 1110 unsigned int extra; 1111 int err = 0; 1112 1113 if ((table->proc_handler == proc_douintvec) || 1114 (table->proc_handler == proc_douintvec_minmax)) { 1115 if (table->maxlen != sizeof(unsigned int)) 1116 err |= sysctl_err(path, table, "array not allowed"); 1117 } 1118 1119 if (table->proc_handler == proc_dou8vec_minmax) { 1120 if (table->maxlen != sizeof(u8)) 1121 err |= sysctl_err(path, table, "array not allowed"); 1122 1123 if (table->extra1) { 1124 extra = *(unsigned int *) table->extra1; 1125 if (extra > 255U) 1126 err |= sysctl_err(path, table, 1127 "range value too large for proc_dou8vec_minmax"); 1128 } 1129 if (table->extra2) { 1130 extra = *(unsigned int *) table->extra2; 1131 if (extra > 255U) 1132 err |= sysctl_err(path, table, 1133 "range value too large for proc_dou8vec_minmax"); 1134 } 1135 } 1136 1137 if (table->proc_handler == proc_dobool) { 1138 if (table->maxlen != sizeof(bool)) 1139 err |= sysctl_err(path, table, "array not allowed"); 1140 } 1141 1142 return err; 1143 } 1144 1145 static int sysctl_check_table(const char *path, struct ctl_table_header *header) 1146 { 1147 const struct ctl_table *entry; 1148 int err = 0; 1149 list_for_each_table_entry(entry, header) { 1150 if (!entry->procname) 1151 err |= sysctl_err(path, entry, "procname is null"); 1152 if ((entry->proc_handler == proc_dostring) || 1153 (entry->proc_handler == proc_dobool) || 1154 (entry->proc_handler == proc_dointvec) || 1155 (entry->proc_handler == proc_douintvec) || 1156 (entry->proc_handler == proc_douintvec_minmax) || 1157 (entry->proc_handler == proc_dointvec_minmax) || 1158 (entry->proc_handler == proc_dou8vec_minmax) || 1159 (entry->proc_handler == proc_dointvec_jiffies) || 1160 (entry->proc_handler == proc_dointvec_userhz_jiffies) || 1161 (entry->proc_handler == proc_dointvec_ms_jiffies) || 1162 (entry->proc_handler == proc_doulongvec_minmax) || 1163 (entry->proc_handler == proc_doulongvec_ms_jiffies_minmax)) { 1164 if (!entry->data) 1165 err |= sysctl_err(path, entry, "No data"); 1166 if (!entry->maxlen) 1167 err |= sysctl_err(path, entry, "No maxlen"); 1168 else 1169 err |= sysctl_check_table_array(path, entry); 1170 } 1171 if (!entry->proc_handler) 1172 err |= sysctl_err(path, entry, "No proc_handler"); 1173 1174 if ((entry->mode & (S_IRUGO|S_IWUGO)) != entry->mode) 1175 err |= sysctl_err(path, entry, "bogus .mode 0%o", 1176 entry->mode); 1177 } 1178 return err; 1179 } 1180 1181 static struct ctl_table_header *new_links(struct ctl_dir *dir, struct ctl_table_header *head) 1182 { 1183 struct ctl_table *link_table, *link; 1184 struct ctl_table_header *links; 1185 const struct ctl_table *entry; 1186 struct ctl_node *node; 1187 char *link_name; 1188 int name_bytes; 1189 1190 name_bytes = 0; 1191 list_for_each_table_entry(entry, head) { 1192 name_bytes += strlen(entry->procname) + 1; 1193 } 1194 1195 links = kzalloc(sizeof(struct ctl_table_header) + 1196 sizeof(struct ctl_node)*head->ctl_table_size + 1197 sizeof(struct ctl_table)*head->ctl_table_size + 1198 name_bytes, 1199 GFP_KERNEL); 1200 1201 if (!links) 1202 return NULL; 1203 1204 node = (struct ctl_node *)(links + 1); 1205 link_table = (struct ctl_table *)(node + head->ctl_table_size); 1206 link_name = (char *)(link_table + head->ctl_table_size); 1207 link = link_table; 1208 1209 list_for_each_table_entry(entry, head) { 1210 int len = strlen(entry->procname) + 1; 1211 memcpy(link_name, entry->procname, len); 1212 link->procname = link_name; 1213 link->mode = S_IFLNK|S_IRWXUGO; 1214 link->data = head->root; 1215 link_name += len; 1216 link++; 1217 } 1218 init_header(links, dir->header.root, dir->header.set, node, link_table, 1219 head->ctl_table_size); 1220 links->nreg = head->ctl_table_size; 1221 1222 return links; 1223 } 1224 1225 static bool get_links(struct ctl_dir *dir, 1226 struct ctl_table_header *header, 1227 struct ctl_table_root *link_root) 1228 { 1229 struct ctl_table_header *tmp_head; 1230 const struct ctl_table *entry, *link; 1231 1232 if (header->ctl_table_size == 0 || 1233 sysctl_is_perm_empty_ctl_header(header)) 1234 return true; 1235 1236 /* Are there links available for every entry in table? */ 1237 list_for_each_table_entry(entry, header) { 1238 const char *procname = entry->procname; 1239 link = find_entry(&tmp_head, dir, procname, strlen(procname)); 1240 if (!link) 1241 return false; 1242 if (S_ISDIR(link->mode) && S_ISDIR(entry->mode)) 1243 continue; 1244 if (S_ISLNK(link->mode) && (link->data == link_root)) 1245 continue; 1246 return false; 1247 } 1248 1249 /* The checks passed. Increase the registration count on the links */ 1250 list_for_each_table_entry(entry, header) { 1251 const char *procname = entry->procname; 1252 link = find_entry(&tmp_head, dir, procname, strlen(procname)); 1253 tmp_head->nreg++; 1254 } 1255 return true; 1256 } 1257 1258 static int insert_links(struct ctl_table_header *head) 1259 { 1260 struct ctl_table_set *root_set = &sysctl_table_root.default_set; 1261 struct ctl_dir *core_parent; 1262 struct ctl_table_header *links; 1263 int err; 1264 1265 if (head->set == root_set) 1266 return 0; 1267 1268 core_parent = xlate_dir(root_set, head->parent); 1269 if (IS_ERR(core_parent)) 1270 return 0; 1271 1272 if (get_links(core_parent, head, head->root)) 1273 return 0; 1274 1275 core_parent->header.nreg++; 1276 spin_unlock(&sysctl_lock); 1277 1278 links = new_links(core_parent, head); 1279 1280 spin_lock(&sysctl_lock); 1281 err = -ENOMEM; 1282 if (!links) 1283 goto out; 1284 1285 err = 0; 1286 if (get_links(core_parent, head, head->root)) { 1287 kfree(links); 1288 goto out; 1289 } 1290 1291 err = insert_header(core_parent, links); 1292 if (err) 1293 kfree(links); 1294 out: 1295 drop_sysctl_table(&core_parent->header); 1296 return err; 1297 } 1298 1299 /* Find the directory for the ctl_table. If one is not found create it. */ 1300 static struct ctl_dir *sysctl_mkdir_p(struct ctl_dir *dir, const char *path) 1301 { 1302 const char *name, *nextname; 1303 1304 for (name = path; name; name = nextname) { 1305 int namelen; 1306 nextname = strchr(name, '/'); 1307 if (nextname) { 1308 namelen = nextname - name; 1309 nextname++; 1310 } else { 1311 namelen = strlen(name); 1312 } 1313 if (namelen == 0) 1314 continue; 1315 1316 /* 1317 * namelen ensures if name is "foo/bar/yay" only foo is 1318 * registered first. We traverse as if using mkdir -p and 1319 * return a ctl_dir for the last directory entry. 1320 */ 1321 dir = get_subdir(dir, name, namelen); 1322 if (IS_ERR(dir)) 1323 break; 1324 } 1325 return dir; 1326 } 1327 1328 /** 1329 * __register_sysctl_table - register a leaf sysctl table 1330 * @set: Sysctl tree to register on 1331 * @path: The path to the directory the sysctl table is in. 1332 * 1333 * @table: the top-level table structure. This table should not be free'd 1334 * after registration. So it should not be used on stack. It can either 1335 * be a global or dynamically allocated by the caller and free'd later 1336 * after sysctl unregistration. 1337 * @table_size : The number of elements in table 1338 * 1339 * Register a sysctl table hierarchy. @table should be a filled in ctl_table 1340 * array. 1341 * 1342 * The members of the &struct ctl_table structure are used as follows: 1343 * procname - the name of the sysctl file under /proc/sys. Set to %NULL to not 1344 * enter a sysctl file 1345 * data - a pointer to data for use by proc_handler 1346 * maxlen - the maximum size in bytes of the data 1347 * mode - the file permissions for the /proc/sys file 1348 * type - Defines the target type (described in struct definition) 1349 * proc_handler - the text handler routine (described below) 1350 * 1351 * extra1, extra2 - extra pointers usable by the proc handler routines 1352 * XXX: we should eventually modify these to use long min / max [0] 1353 * [0] https://lkml.kernel.org/87zgpte9o4.fsf@email.froward.int.ebiederm.org 1354 * 1355 * Leaf nodes in the sysctl tree will be represented by a single file 1356 * under /proc; non-leaf nodes are not allowed. 1357 * 1358 * There must be a proc_handler routine for any terminal nodes. 1359 * Several default handlers are available to cover common cases - 1360 * 1361 * proc_dostring(), proc_dointvec(), proc_dointvec_jiffies(), 1362 * proc_dointvec_userhz_jiffies(), proc_dointvec_minmax(), 1363 * proc_doulongvec_ms_jiffies_minmax(), proc_doulongvec_minmax() 1364 * 1365 * It is the handler's job to read the input buffer from user memory 1366 * and process it. The handler should return 0 on success. 1367 * 1368 * This routine returns %NULL on a failure to register, and a pointer 1369 * to the table header on success. 1370 */ 1371 struct ctl_table_header *__register_sysctl_table( 1372 struct ctl_table_set *set, 1373 const char *path, const struct ctl_table *table, size_t table_size) 1374 { 1375 struct ctl_table_root *root = set->dir.header.root; 1376 struct ctl_table_header *header; 1377 struct ctl_dir *dir; 1378 struct ctl_node *node; 1379 1380 header = kzalloc(sizeof(struct ctl_table_header) + 1381 sizeof(struct ctl_node)*table_size, GFP_KERNEL_ACCOUNT); 1382 if (!header) 1383 return NULL; 1384 1385 node = (struct ctl_node *)(header + 1); 1386 init_header(header, root, set, node, table, table_size); 1387 if (sysctl_check_table(path, header)) 1388 goto fail; 1389 1390 spin_lock(&sysctl_lock); 1391 dir = &set->dir; 1392 /* Reference moved down the directory tree get_subdir */ 1393 dir->header.nreg++; 1394 spin_unlock(&sysctl_lock); 1395 1396 dir = sysctl_mkdir_p(dir, path); 1397 if (IS_ERR(dir)) 1398 goto fail; 1399 spin_lock(&sysctl_lock); 1400 if (insert_header(dir, header)) 1401 goto fail_put_dir_locked; 1402 1403 drop_sysctl_table(&dir->header); 1404 spin_unlock(&sysctl_lock); 1405 1406 return header; 1407 1408 fail_put_dir_locked: 1409 drop_sysctl_table(&dir->header); 1410 spin_unlock(&sysctl_lock); 1411 fail: 1412 kfree(header); 1413 return NULL; 1414 } 1415 1416 /** 1417 * register_sysctl_sz - register a sysctl table 1418 * @path: The path to the directory the sysctl table is in. If the path 1419 * doesn't exist we will create it for you. 1420 * @table: the table structure. The calller must ensure the life of the @table 1421 * will be kept during the lifetime use of the syctl. It must not be freed 1422 * until unregister_sysctl_table() is called with the given returned table 1423 * with this registration. If your code is non modular then you don't need 1424 * to call unregister_sysctl_table() and can instead use something like 1425 * register_sysctl_init() which does not care for the result of the syctl 1426 * registration. 1427 * @table_size: The number of elements in table. 1428 * 1429 * Register a sysctl table. @table should be a filled in ctl_table 1430 * array. A completely 0 filled entry terminates the table. 1431 * 1432 * See __register_sysctl_table for more details. 1433 */ 1434 struct ctl_table_header *register_sysctl_sz(const char *path, const struct ctl_table *table, 1435 size_t table_size) 1436 { 1437 return __register_sysctl_table(&sysctl_table_root.default_set, 1438 path, table, table_size); 1439 } 1440 EXPORT_SYMBOL(register_sysctl_sz); 1441 1442 /** 1443 * __register_sysctl_init() - register sysctl table to path 1444 * @path: path name for sysctl base. If that path doesn't exist we will create 1445 * it for you. 1446 * @table: This is the sysctl table that needs to be registered to the path. 1447 * The caller must ensure the life of the @table will be kept during the 1448 * lifetime use of the sysctl. 1449 * @table_name: The name of sysctl table, only used for log printing when 1450 * registration fails 1451 * @table_size: The number of elements in table 1452 * 1453 * The sysctl interface is used by userspace to query or modify at runtime 1454 * a predefined value set on a variable. These variables however have default 1455 * values pre-set. Code which depends on these variables will always work even 1456 * if register_sysctl() fails. If register_sysctl() fails you'd just loose the 1457 * ability to query or modify the sysctls dynamically at run time. Chances of 1458 * register_sysctl() failing on init are extremely low, and so for both reasons 1459 * this function does not return any error as it is used by initialization code. 1460 * 1461 * Context: if your base directory does not exist it will be created for you. 1462 */ 1463 void __init __register_sysctl_init(const char *path, const struct ctl_table *table, 1464 const char *table_name, size_t table_size) 1465 { 1466 struct ctl_table_header *hdr = register_sysctl_sz(path, table, table_size); 1467 1468 if (unlikely(!hdr)) { 1469 pr_err("failed when register_sysctl_sz %s to %s\n", table_name, path); 1470 return; 1471 } 1472 kmemleak_not_leak(hdr); 1473 } 1474 1475 static void put_links(struct ctl_table_header *header) 1476 { 1477 struct ctl_table_set *root_set = &sysctl_table_root.default_set; 1478 struct ctl_table_root *root = header->root; 1479 struct ctl_dir *parent = header->parent; 1480 struct ctl_dir *core_parent; 1481 const struct ctl_table *entry; 1482 1483 if (header->set == root_set) 1484 return; 1485 1486 core_parent = xlate_dir(root_set, parent); 1487 if (IS_ERR(core_parent)) 1488 return; 1489 1490 list_for_each_table_entry(entry, header) { 1491 struct ctl_table_header *link_head; 1492 const struct ctl_table *link; 1493 const char *name = entry->procname; 1494 1495 link = find_entry(&link_head, core_parent, name, strlen(name)); 1496 if (link && 1497 ((S_ISDIR(link->mode) && S_ISDIR(entry->mode)) || 1498 (S_ISLNK(link->mode) && (link->data == root)))) { 1499 drop_sysctl_table(link_head); 1500 } 1501 else { 1502 pr_err("sysctl link missing during unregister: "); 1503 sysctl_print_dir(parent); 1504 pr_cont("%s\n", name); 1505 } 1506 } 1507 } 1508 1509 static void drop_sysctl_table(struct ctl_table_header *header) 1510 { 1511 struct ctl_dir *parent = header->parent; 1512 1513 if (--header->nreg) 1514 return; 1515 1516 if (parent) { 1517 put_links(header); 1518 start_unregistering(header); 1519 } 1520 1521 if (!--header->count) 1522 kfree_rcu(header, rcu); 1523 1524 if (parent) 1525 drop_sysctl_table(&parent->header); 1526 } 1527 1528 /** 1529 * unregister_sysctl_table - unregister a sysctl table hierarchy 1530 * @header: the header returned from register_sysctl or __register_sysctl_table 1531 * 1532 * Unregisters the sysctl table and all children. proc entries may not 1533 * actually be removed until they are no longer used by anyone. 1534 */ 1535 void unregister_sysctl_table(struct ctl_table_header * header) 1536 { 1537 might_sleep(); 1538 1539 if (header == NULL) 1540 return; 1541 1542 spin_lock(&sysctl_lock); 1543 drop_sysctl_table(header); 1544 spin_unlock(&sysctl_lock); 1545 } 1546 EXPORT_SYMBOL(unregister_sysctl_table); 1547 1548 void setup_sysctl_set(struct ctl_table_set *set, 1549 struct ctl_table_root *root, 1550 int (*is_seen)(struct ctl_table_set *)) 1551 { 1552 memset(set, 0, sizeof(*set)); 1553 set->is_seen = is_seen; 1554 init_header(&set->dir.header, root, set, NULL, root_table, 1); 1555 } 1556 1557 void retire_sysctl_set(struct ctl_table_set *set) 1558 { 1559 WARN_ON(!RB_EMPTY_ROOT(&set->dir.root)); 1560 } 1561 1562 int __init proc_sys_init(void) 1563 { 1564 struct proc_dir_entry *proc_sys_root; 1565 1566 proc_sys_root = proc_mkdir("sys", NULL); 1567 proc_sys_root->proc_iops = &proc_sys_dir_operations; 1568 proc_sys_root->proc_dir_ops = &proc_sys_dir_file_operations; 1569 proc_sys_root->nlink = 0; 1570 1571 return sysctl_init_bases(); 1572 } 1573 1574 struct sysctl_alias { 1575 const char *kernel_param; 1576 const char *sysctl_param; 1577 }; 1578 1579 /* 1580 * Historically some settings had both sysctl and a command line parameter. 1581 * With the generic sysctl. parameter support, we can handle them at a single 1582 * place and only keep the historical name for compatibility. This is not meant 1583 * to add brand new aliases. When adding existing aliases, consider whether 1584 * the possibly different moment of changing the value (e.g. from early_param 1585 * to the moment do_sysctl_args() is called) is an issue for the specific 1586 * parameter. 1587 */ 1588 static const struct sysctl_alias sysctl_aliases[] = { 1589 {"hardlockup_all_cpu_backtrace", "kernel.hardlockup_all_cpu_backtrace" }, 1590 {"hung_task_panic", "kernel.hung_task_panic" }, 1591 {"numa_zonelist_order", "vm.numa_zonelist_order" }, 1592 {"softlockup_all_cpu_backtrace", "kernel.softlockup_all_cpu_backtrace" }, 1593 { } 1594 }; 1595 1596 static const char *sysctl_find_alias(char *param) 1597 { 1598 const struct sysctl_alias *alias; 1599 1600 for (alias = &sysctl_aliases[0]; alias->kernel_param != NULL; alias++) { 1601 if (strcmp(alias->kernel_param, param) == 0) 1602 return alias->sysctl_param; 1603 } 1604 1605 return NULL; 1606 } 1607 1608 bool sysctl_is_alias(char *param) 1609 { 1610 const char *alias = sysctl_find_alias(param); 1611 1612 return alias != NULL; 1613 } 1614 1615 /* Set sysctl value passed on kernel command line. */ 1616 static int process_sysctl_arg(char *param, char *val, 1617 const char *unused, void *arg) 1618 { 1619 char *path; 1620 struct vfsmount **proc_mnt = arg; 1621 struct file_system_type *proc_fs_type; 1622 struct file *file; 1623 int len; 1624 int err; 1625 loff_t pos = 0; 1626 ssize_t wret; 1627 1628 if (strncmp(param, "sysctl", sizeof("sysctl") - 1) == 0) { 1629 param += sizeof("sysctl") - 1; 1630 1631 if (param[0] != '/' && param[0] != '.') 1632 return 0; 1633 1634 param++; 1635 } else { 1636 param = (char *) sysctl_find_alias(param); 1637 if (!param) 1638 return 0; 1639 } 1640 1641 if (!val) 1642 return -EINVAL; 1643 len = strlen(val); 1644 if (len == 0) 1645 return -EINVAL; 1646 1647 /* 1648 * To set sysctl options, we use a temporary mount of proc, look up the 1649 * respective sys/ file and write to it. To avoid mounting it when no 1650 * options were given, we mount it only when the first sysctl option is 1651 * found. Why not a persistent mount? There are problems with a 1652 * persistent mount of proc in that it forces userspace not to use any 1653 * proc mount options. 1654 */ 1655 if (!*proc_mnt) { 1656 proc_fs_type = get_fs_type("proc"); 1657 if (!proc_fs_type) { 1658 pr_err("Failed to find procfs to set sysctl from command line\n"); 1659 return 0; 1660 } 1661 *proc_mnt = kern_mount(proc_fs_type); 1662 put_filesystem(proc_fs_type); 1663 if (IS_ERR(*proc_mnt)) { 1664 pr_err("Failed to mount procfs to set sysctl from command line\n"); 1665 return 0; 1666 } 1667 } 1668 1669 path = kasprintf(GFP_KERNEL, "sys/%s", param); 1670 if (!path) 1671 panic("%s: Failed to allocate path for %s\n", __func__, param); 1672 strreplace(path, '.', '/'); 1673 1674 file = file_open_root_mnt(*proc_mnt, path, O_WRONLY, 0); 1675 if (IS_ERR(file)) { 1676 err = PTR_ERR(file); 1677 if (err == -ENOENT) 1678 pr_err("Failed to set sysctl parameter '%s=%s': parameter not found\n", 1679 param, val); 1680 else if (err == -EACCES) 1681 pr_err("Failed to set sysctl parameter '%s=%s': permission denied (read-only?)\n", 1682 param, val); 1683 else 1684 pr_err("Error %pe opening proc file to set sysctl parameter '%s=%s'\n", 1685 file, param, val); 1686 goto out; 1687 } 1688 wret = kernel_write(file, val, len, &pos); 1689 if (wret < 0) { 1690 err = wret; 1691 if (err == -EINVAL) 1692 pr_err("Failed to set sysctl parameter '%s=%s': invalid value\n", 1693 param, val); 1694 else 1695 pr_err("Error %pe writing to proc file to set sysctl parameter '%s=%s'\n", 1696 ERR_PTR(err), param, val); 1697 } else if (wret != len) { 1698 pr_err("Wrote only %zd bytes of %d writing to proc file %s to set sysctl parameter '%s=%s\n", 1699 wret, len, path, param, val); 1700 } 1701 1702 err = filp_close(file, NULL); 1703 if (err) 1704 pr_err("Error %pe closing proc file to set sysctl parameter '%s=%s\n", 1705 ERR_PTR(err), param, val); 1706 out: 1707 kfree(path); 1708 return 0; 1709 } 1710 1711 void do_sysctl_args(void) 1712 { 1713 char *command_line; 1714 struct vfsmount *proc_mnt = NULL; 1715 1716 command_line = kstrdup(saved_command_line, GFP_KERNEL); 1717 if (!command_line) 1718 panic("%s: Failed to allocate copy of command line\n", __func__); 1719 1720 parse_args("Setting sysctl args", command_line, 1721 NULL, 0, -1, -1, &proc_mnt, process_sysctl_arg); 1722 1723 if (proc_mnt) 1724 kern_unmount(proc_mnt); 1725 1726 kfree(command_line); 1727 } 1728