1 /* 2 * proc/fs/generic.c --- generic routines for the proc-fs 3 * 4 * This file contains generic proc-fs routines for handling 5 * directories and files. 6 * 7 * Copyright (C) 1991, 1992 Linus Torvalds. 8 * Copyright (C) 1997 Theodore Ts'o 9 */ 10 11 #include <linux/errno.h> 12 #include <linux/time.h> 13 #include <linux/proc_fs.h> 14 #include <linux/stat.h> 15 #include <linux/module.h> 16 #include <linux/mount.h> 17 #include <linux/init.h> 18 #include <linux/idr.h> 19 #include <linux/namei.h> 20 #include <linux/bitops.h> 21 #include <linux/spinlock.h> 22 #include <linux/completion.h> 23 #include <asm/uaccess.h> 24 25 #include "internal.h" 26 27 DEFINE_SPINLOCK(proc_subdir_lock); 28 29 static int proc_match(int len, const char *name, struct proc_dir_entry *de) 30 { 31 if (de->namelen != len) 32 return 0; 33 return !memcmp(name, de->name, len); 34 } 35 36 /* buffer size is one page but our output routines use some slack for overruns */ 37 #define PROC_BLOCK_SIZE (PAGE_SIZE - 1024) 38 39 static ssize_t 40 __proc_file_read(struct file *file, char __user *buf, size_t nbytes, 41 loff_t *ppos) 42 { 43 struct inode * inode = file->f_path.dentry->d_inode; 44 char *page; 45 ssize_t retval=0; 46 int eof=0; 47 ssize_t n, count; 48 char *start; 49 struct proc_dir_entry * dp; 50 unsigned long long pos; 51 52 /* 53 * Gaah, please just use "seq_file" instead. The legacy /proc 54 * interfaces cut loff_t down to off_t for reads, and ignore 55 * the offset entirely for writes.. 56 */ 57 pos = *ppos; 58 if (pos > MAX_NON_LFS) 59 return 0; 60 if (nbytes > MAX_NON_LFS - pos) 61 nbytes = MAX_NON_LFS - pos; 62 63 dp = PDE(inode); 64 if (!(page = (char*) __get_free_page(GFP_TEMPORARY))) 65 return -ENOMEM; 66 67 while ((nbytes > 0) && !eof) { 68 count = min_t(size_t, PROC_BLOCK_SIZE, nbytes); 69 70 start = NULL; 71 if (dp->read_proc) { 72 /* 73 * How to be a proc read function 74 * ------------------------------ 75 * Prototype: 76 * int f(char *buffer, char **start, off_t offset, 77 * int count, int *peof, void *dat) 78 * 79 * Assume that the buffer is "count" bytes in size. 80 * 81 * If you know you have supplied all the data you 82 * have, set *peof. 83 * 84 * You have three ways to return data: 85 * 0) Leave *start = NULL. (This is the default.) 86 * Put the data of the requested offset at that 87 * offset within the buffer. Return the number (n) 88 * of bytes there are from the beginning of the 89 * buffer up to the last byte of data. If the 90 * number of supplied bytes (= n - offset) is 91 * greater than zero and you didn't signal eof 92 * and the reader is prepared to take more data 93 * you will be called again with the requested 94 * offset advanced by the number of bytes 95 * absorbed. This interface is useful for files 96 * no larger than the buffer. 97 * 1) Set *start = an unsigned long value less than 98 * the buffer address but greater than zero. 99 * Put the data of the requested offset at the 100 * beginning of the buffer. Return the number of 101 * bytes of data placed there. If this number is 102 * greater than zero and you didn't signal eof 103 * and the reader is prepared to take more data 104 * you will be called again with the requested 105 * offset advanced by *start. This interface is 106 * useful when you have a large file consisting 107 * of a series of blocks which you want to count 108 * and return as wholes. 109 * (Hack by Paul.Russell@rustcorp.com.au) 110 * 2) Set *start = an address within the buffer. 111 * Put the data of the requested offset at *start. 112 * Return the number of bytes of data placed there. 113 * If this number is greater than zero and you 114 * didn't signal eof and the reader is prepared to 115 * take more data you will be called again with the 116 * requested offset advanced by the number of bytes 117 * absorbed. 118 */ 119 n = dp->read_proc(page, &start, *ppos, 120 count, &eof, dp->data); 121 } else 122 break; 123 124 if (n == 0) /* end of file */ 125 break; 126 if (n < 0) { /* error */ 127 if (retval == 0) 128 retval = n; 129 break; 130 } 131 132 if (start == NULL) { 133 if (n > PAGE_SIZE) { 134 printk(KERN_ERR 135 "proc_file_read: Apparent buffer overflow!\n"); 136 n = PAGE_SIZE; 137 } 138 n -= *ppos; 139 if (n <= 0) 140 break; 141 if (n > count) 142 n = count; 143 start = page + *ppos; 144 } else if (start < page) { 145 if (n > PAGE_SIZE) { 146 printk(KERN_ERR 147 "proc_file_read: Apparent buffer overflow!\n"); 148 n = PAGE_SIZE; 149 } 150 if (n > count) { 151 /* 152 * Don't reduce n because doing so might 153 * cut off part of a data block. 154 */ 155 printk(KERN_WARNING 156 "proc_file_read: Read count exceeded\n"); 157 } 158 } else /* start >= page */ { 159 unsigned long startoff = (unsigned long)(start - page); 160 if (n > (PAGE_SIZE - startoff)) { 161 printk(KERN_ERR 162 "proc_file_read: Apparent buffer overflow!\n"); 163 n = PAGE_SIZE - startoff; 164 } 165 if (n > count) 166 n = count; 167 } 168 169 n -= copy_to_user(buf, start < page ? page : start, n); 170 if (n == 0) { 171 if (retval == 0) 172 retval = -EFAULT; 173 break; 174 } 175 176 *ppos += start < page ? (unsigned long)start : n; 177 nbytes -= n; 178 buf += n; 179 retval += n; 180 } 181 free_page((unsigned long) page); 182 return retval; 183 } 184 185 static ssize_t 186 proc_file_read(struct file *file, char __user *buf, size_t nbytes, 187 loff_t *ppos) 188 { 189 struct proc_dir_entry *pde = PDE(file->f_path.dentry->d_inode); 190 ssize_t rv = -EIO; 191 192 spin_lock(&pde->pde_unload_lock); 193 if (!pde->proc_fops) { 194 spin_unlock(&pde->pde_unload_lock); 195 return rv; 196 } 197 pde->pde_users++; 198 spin_unlock(&pde->pde_unload_lock); 199 200 rv = __proc_file_read(file, buf, nbytes, ppos); 201 202 pde_users_dec(pde); 203 return rv; 204 } 205 206 static ssize_t 207 proc_file_write(struct file *file, const char __user *buffer, 208 size_t count, loff_t *ppos) 209 { 210 struct proc_dir_entry *pde = PDE(file->f_path.dentry->d_inode); 211 ssize_t rv = -EIO; 212 213 if (pde->write_proc) { 214 spin_lock(&pde->pde_unload_lock); 215 if (!pde->proc_fops) { 216 spin_unlock(&pde->pde_unload_lock); 217 return rv; 218 } 219 pde->pde_users++; 220 spin_unlock(&pde->pde_unload_lock); 221 222 /* FIXME: does this routine need ppos? probably... */ 223 rv = pde->write_proc(file, buffer, count, pde->data); 224 pde_users_dec(pde); 225 } 226 return rv; 227 } 228 229 230 static loff_t 231 proc_file_lseek(struct file *file, loff_t offset, int orig) 232 { 233 loff_t retval = -EINVAL; 234 switch (orig) { 235 case 1: 236 offset += file->f_pos; 237 /* fallthrough */ 238 case 0: 239 if (offset < 0 || offset > MAX_NON_LFS) 240 break; 241 file->f_pos = retval = offset; 242 } 243 return retval; 244 } 245 246 static const struct file_operations proc_file_operations = { 247 .llseek = proc_file_lseek, 248 .read = proc_file_read, 249 .write = proc_file_write, 250 }; 251 252 static int proc_notify_change(struct dentry *dentry, struct iattr *iattr) 253 { 254 struct inode *inode = dentry->d_inode; 255 struct proc_dir_entry *de = PDE(inode); 256 int error; 257 258 error = inode_change_ok(inode, iattr); 259 if (error) 260 goto out; 261 262 error = inode_setattr(inode, iattr); 263 if (error) 264 goto out; 265 266 de->uid = inode->i_uid; 267 de->gid = inode->i_gid; 268 de->mode = inode->i_mode; 269 out: 270 return error; 271 } 272 273 static int proc_getattr(struct vfsmount *mnt, struct dentry *dentry, 274 struct kstat *stat) 275 { 276 struct inode *inode = dentry->d_inode; 277 struct proc_dir_entry *de = PROC_I(inode)->pde; 278 if (de && de->nlink) 279 inode->i_nlink = de->nlink; 280 281 generic_fillattr(inode, stat); 282 return 0; 283 } 284 285 static const struct inode_operations proc_file_inode_operations = { 286 .setattr = proc_notify_change, 287 }; 288 289 /* 290 * This function parses a name such as "tty/driver/serial", and 291 * returns the struct proc_dir_entry for "/proc/tty/driver", and 292 * returns "serial" in residual. 293 */ 294 static int xlate_proc_name(const char *name, 295 struct proc_dir_entry **ret, const char **residual) 296 { 297 const char *cp = name, *next; 298 struct proc_dir_entry *de; 299 int len; 300 int rtn = 0; 301 302 de = *ret; 303 if (!de) 304 de = &proc_root; 305 306 spin_lock(&proc_subdir_lock); 307 while (1) { 308 next = strchr(cp, '/'); 309 if (!next) 310 break; 311 312 len = next - cp; 313 for (de = de->subdir; de ; de = de->next) { 314 if (proc_match(len, cp, de)) 315 break; 316 } 317 if (!de) { 318 rtn = -ENOENT; 319 goto out; 320 } 321 cp += len + 1; 322 } 323 *residual = cp; 324 *ret = de; 325 out: 326 spin_unlock(&proc_subdir_lock); 327 return rtn; 328 } 329 330 static DEFINE_IDA(proc_inum_ida); 331 static DEFINE_SPINLOCK(proc_inum_lock); /* protects the above */ 332 333 #define PROC_DYNAMIC_FIRST 0xF0000000U 334 335 /* 336 * Return an inode number between PROC_DYNAMIC_FIRST and 337 * 0xffffffff, or zero on failure. 338 * 339 * Current inode allocations in the proc-fs (hex-numbers): 340 * 341 * 00000000 reserved 342 * 00000001-00000fff static entries (goners) 343 * 001 root-ino 344 * 345 * 00001000-00001fff unused 346 * 0001xxxx-7fffxxxx pid-dir entries for pid 1-7fff 347 * 80000000-efffffff unused 348 * f0000000-ffffffff dynamic entries 349 * 350 * Goal: 351 * Once we split the thing into several virtual filesystems, 352 * we will get rid of magical ranges (and this comment, BTW). 353 */ 354 static unsigned int get_inode_number(void) 355 { 356 unsigned int i; 357 int error; 358 359 retry: 360 if (ida_pre_get(&proc_inum_ida, GFP_KERNEL) == 0) 361 return 0; 362 363 spin_lock(&proc_inum_lock); 364 error = ida_get_new(&proc_inum_ida, &i); 365 spin_unlock(&proc_inum_lock); 366 if (error == -EAGAIN) 367 goto retry; 368 else if (error) 369 return 0; 370 371 if (i > UINT_MAX - PROC_DYNAMIC_FIRST) { 372 spin_lock(&proc_inum_lock); 373 ida_remove(&proc_inum_ida, i); 374 spin_unlock(&proc_inum_lock); 375 return 0; 376 } 377 return PROC_DYNAMIC_FIRST + i; 378 } 379 380 static void release_inode_number(unsigned int inum) 381 { 382 spin_lock(&proc_inum_lock); 383 ida_remove(&proc_inum_ida, inum - PROC_DYNAMIC_FIRST); 384 spin_unlock(&proc_inum_lock); 385 } 386 387 static void *proc_follow_link(struct dentry *dentry, struct nameidata *nd) 388 { 389 nd_set_link(nd, PDE(dentry->d_inode)->data); 390 return NULL; 391 } 392 393 static const struct inode_operations proc_link_inode_operations = { 394 .readlink = generic_readlink, 395 .follow_link = proc_follow_link, 396 }; 397 398 /* 399 * As some entries in /proc are volatile, we want to 400 * get rid of unused dentries. This could be made 401 * smarter: we could keep a "volatile" flag in the 402 * inode to indicate which ones to keep. 403 */ 404 static int proc_delete_dentry(struct dentry * dentry) 405 { 406 return 1; 407 } 408 409 static const struct dentry_operations proc_dentry_operations = 410 { 411 .d_delete = proc_delete_dentry, 412 }; 413 414 /* 415 * Don't create negative dentries here, return -ENOENT by hand 416 * instead. 417 */ 418 struct dentry *proc_lookup_de(struct proc_dir_entry *de, struct inode *dir, 419 struct dentry *dentry) 420 { 421 struct inode *inode = NULL; 422 int error = -ENOENT; 423 424 spin_lock(&proc_subdir_lock); 425 for (de = de->subdir; de ; de = de->next) { 426 if (de->namelen != dentry->d_name.len) 427 continue; 428 if (!memcmp(dentry->d_name.name, de->name, de->namelen)) { 429 unsigned int ino; 430 431 ino = de->low_ino; 432 de_get(de); 433 spin_unlock(&proc_subdir_lock); 434 error = -EINVAL; 435 inode = proc_get_inode(dir->i_sb, ino, de); 436 goto out_unlock; 437 } 438 } 439 spin_unlock(&proc_subdir_lock); 440 out_unlock: 441 442 if (inode) { 443 dentry->d_op = &proc_dentry_operations; 444 d_add(dentry, inode); 445 return NULL; 446 } 447 if (de) 448 de_put(de); 449 return ERR_PTR(error); 450 } 451 452 struct dentry *proc_lookup(struct inode *dir, struct dentry *dentry, 453 struct nameidata *nd) 454 { 455 return proc_lookup_de(PDE(dir), dir, dentry); 456 } 457 458 /* 459 * This returns non-zero if at EOF, so that the /proc 460 * root directory can use this and check if it should 461 * continue with the <pid> entries.. 462 * 463 * Note that the VFS-layer doesn't care about the return 464 * value of the readdir() call, as long as it's non-negative 465 * for success.. 466 */ 467 int proc_readdir_de(struct proc_dir_entry *de, struct file *filp, void *dirent, 468 filldir_t filldir) 469 { 470 unsigned int ino; 471 int i; 472 struct inode *inode = filp->f_path.dentry->d_inode; 473 int ret = 0; 474 475 ino = inode->i_ino; 476 i = filp->f_pos; 477 switch (i) { 478 case 0: 479 if (filldir(dirent, ".", 1, i, ino, DT_DIR) < 0) 480 goto out; 481 i++; 482 filp->f_pos++; 483 /* fall through */ 484 case 1: 485 if (filldir(dirent, "..", 2, i, 486 parent_ino(filp->f_path.dentry), 487 DT_DIR) < 0) 488 goto out; 489 i++; 490 filp->f_pos++; 491 /* fall through */ 492 default: 493 spin_lock(&proc_subdir_lock); 494 de = de->subdir; 495 i -= 2; 496 for (;;) { 497 if (!de) { 498 ret = 1; 499 spin_unlock(&proc_subdir_lock); 500 goto out; 501 } 502 if (!i) 503 break; 504 de = de->next; 505 i--; 506 } 507 508 do { 509 struct proc_dir_entry *next; 510 511 /* filldir passes info to user space */ 512 de_get(de); 513 spin_unlock(&proc_subdir_lock); 514 if (filldir(dirent, de->name, de->namelen, filp->f_pos, 515 de->low_ino, de->mode >> 12) < 0) { 516 de_put(de); 517 goto out; 518 } 519 spin_lock(&proc_subdir_lock); 520 filp->f_pos++; 521 next = de->next; 522 de_put(de); 523 de = next; 524 } while (de); 525 spin_unlock(&proc_subdir_lock); 526 } 527 ret = 1; 528 out: 529 return ret; 530 } 531 532 int proc_readdir(struct file *filp, void *dirent, filldir_t filldir) 533 { 534 struct inode *inode = filp->f_path.dentry->d_inode; 535 536 return proc_readdir_de(PDE(inode), filp, dirent, filldir); 537 } 538 539 /* 540 * These are the generic /proc directory operations. They 541 * use the in-memory "struct proc_dir_entry" tree to parse 542 * the /proc directory. 543 */ 544 static const struct file_operations proc_dir_operations = { 545 .llseek = generic_file_llseek, 546 .read = generic_read_dir, 547 .readdir = proc_readdir, 548 }; 549 550 /* 551 * proc directories can do almost nothing.. 552 */ 553 static const struct inode_operations proc_dir_inode_operations = { 554 .lookup = proc_lookup, 555 .getattr = proc_getattr, 556 .setattr = proc_notify_change, 557 }; 558 559 static int proc_register(struct proc_dir_entry * dir, struct proc_dir_entry * dp) 560 { 561 unsigned int i; 562 struct proc_dir_entry *tmp; 563 564 i = get_inode_number(); 565 if (i == 0) 566 return -EAGAIN; 567 dp->low_ino = i; 568 569 if (S_ISDIR(dp->mode)) { 570 if (dp->proc_iops == NULL) { 571 dp->proc_fops = &proc_dir_operations; 572 dp->proc_iops = &proc_dir_inode_operations; 573 } 574 dir->nlink++; 575 } else if (S_ISLNK(dp->mode)) { 576 if (dp->proc_iops == NULL) 577 dp->proc_iops = &proc_link_inode_operations; 578 } else if (S_ISREG(dp->mode)) { 579 if (dp->proc_fops == NULL) 580 dp->proc_fops = &proc_file_operations; 581 if (dp->proc_iops == NULL) 582 dp->proc_iops = &proc_file_inode_operations; 583 } 584 585 spin_lock(&proc_subdir_lock); 586 587 for (tmp = dir->subdir; tmp; tmp = tmp->next) 588 if (strcmp(tmp->name, dp->name) == 0) { 589 WARN(1, KERN_WARNING "proc_dir_entry '%s/%s' already registered\n", 590 dir->name, dp->name); 591 break; 592 } 593 594 dp->next = dir->subdir; 595 dp->parent = dir; 596 dir->subdir = dp; 597 spin_unlock(&proc_subdir_lock); 598 599 return 0; 600 } 601 602 static struct proc_dir_entry *__proc_create(struct proc_dir_entry **parent, 603 const char *name, 604 mode_t mode, 605 nlink_t nlink) 606 { 607 struct proc_dir_entry *ent = NULL; 608 const char *fn = name; 609 int len; 610 611 /* make sure name is valid */ 612 if (!name || !strlen(name)) goto out; 613 614 if (xlate_proc_name(name, parent, &fn) != 0) 615 goto out; 616 617 /* At this point there must not be any '/' characters beyond *fn */ 618 if (strchr(fn, '/')) 619 goto out; 620 621 len = strlen(fn); 622 623 ent = kmalloc(sizeof(struct proc_dir_entry) + len + 1, GFP_KERNEL); 624 if (!ent) goto out; 625 626 memset(ent, 0, sizeof(struct proc_dir_entry)); 627 memcpy(((char *) ent) + sizeof(struct proc_dir_entry), fn, len + 1); 628 ent->name = ((char *) ent) + sizeof(*ent); 629 ent->namelen = len; 630 ent->mode = mode; 631 ent->nlink = nlink; 632 atomic_set(&ent->count, 1); 633 ent->pde_users = 0; 634 spin_lock_init(&ent->pde_unload_lock); 635 ent->pde_unload_completion = NULL; 636 INIT_LIST_HEAD(&ent->pde_openers); 637 out: 638 return ent; 639 } 640 641 struct proc_dir_entry *proc_symlink(const char *name, 642 struct proc_dir_entry *parent, const char *dest) 643 { 644 struct proc_dir_entry *ent; 645 646 ent = __proc_create(&parent, name, 647 (S_IFLNK | S_IRUGO | S_IWUGO | S_IXUGO),1); 648 649 if (ent) { 650 ent->data = kmalloc((ent->size=strlen(dest))+1, GFP_KERNEL); 651 if (ent->data) { 652 strcpy((char*)ent->data,dest); 653 if (proc_register(parent, ent) < 0) { 654 kfree(ent->data); 655 kfree(ent); 656 ent = NULL; 657 } 658 } else { 659 kfree(ent); 660 ent = NULL; 661 } 662 } 663 return ent; 664 } 665 666 struct proc_dir_entry *proc_mkdir_mode(const char *name, mode_t mode, 667 struct proc_dir_entry *parent) 668 { 669 struct proc_dir_entry *ent; 670 671 ent = __proc_create(&parent, name, S_IFDIR | mode, 2); 672 if (ent) { 673 if (proc_register(parent, ent) < 0) { 674 kfree(ent); 675 ent = NULL; 676 } 677 } 678 return ent; 679 } 680 681 struct proc_dir_entry *proc_net_mkdir(struct net *net, const char *name, 682 struct proc_dir_entry *parent) 683 { 684 struct proc_dir_entry *ent; 685 686 ent = __proc_create(&parent, name, S_IFDIR | S_IRUGO | S_IXUGO, 2); 687 if (ent) { 688 ent->data = net; 689 if (proc_register(parent, ent) < 0) { 690 kfree(ent); 691 ent = NULL; 692 } 693 } 694 return ent; 695 } 696 EXPORT_SYMBOL_GPL(proc_net_mkdir); 697 698 struct proc_dir_entry *proc_mkdir(const char *name, 699 struct proc_dir_entry *parent) 700 { 701 return proc_mkdir_mode(name, S_IRUGO | S_IXUGO, parent); 702 } 703 704 struct proc_dir_entry *create_proc_entry(const char *name, mode_t mode, 705 struct proc_dir_entry *parent) 706 { 707 struct proc_dir_entry *ent; 708 nlink_t nlink; 709 710 if (S_ISDIR(mode)) { 711 if ((mode & S_IALLUGO) == 0) 712 mode |= S_IRUGO | S_IXUGO; 713 nlink = 2; 714 } else { 715 if ((mode & S_IFMT) == 0) 716 mode |= S_IFREG; 717 if ((mode & S_IALLUGO) == 0) 718 mode |= S_IRUGO; 719 nlink = 1; 720 } 721 722 ent = __proc_create(&parent, name, mode, nlink); 723 if (ent) { 724 if (proc_register(parent, ent) < 0) { 725 kfree(ent); 726 ent = NULL; 727 } 728 } 729 return ent; 730 } 731 732 struct proc_dir_entry *proc_create_data(const char *name, mode_t mode, 733 struct proc_dir_entry *parent, 734 const struct file_operations *proc_fops, 735 void *data) 736 { 737 struct proc_dir_entry *pde; 738 nlink_t nlink; 739 740 if (S_ISDIR(mode)) { 741 if ((mode & S_IALLUGO) == 0) 742 mode |= S_IRUGO | S_IXUGO; 743 nlink = 2; 744 } else { 745 if ((mode & S_IFMT) == 0) 746 mode |= S_IFREG; 747 if ((mode & S_IALLUGO) == 0) 748 mode |= S_IRUGO; 749 nlink = 1; 750 } 751 752 pde = __proc_create(&parent, name, mode, nlink); 753 if (!pde) 754 goto out; 755 pde->proc_fops = proc_fops; 756 pde->data = data; 757 if (proc_register(parent, pde) < 0) 758 goto out_free; 759 return pde; 760 out_free: 761 kfree(pde); 762 out: 763 return NULL; 764 } 765 766 void free_proc_entry(struct proc_dir_entry *de) 767 { 768 unsigned int ino = de->low_ino; 769 770 if (ino < PROC_DYNAMIC_FIRST) 771 return; 772 773 release_inode_number(ino); 774 775 if (S_ISLNK(de->mode)) 776 kfree(de->data); 777 kfree(de); 778 } 779 780 /* 781 * Remove a /proc entry and free it if it's not currently in use. 782 */ 783 void remove_proc_entry(const char *name, struct proc_dir_entry *parent) 784 { 785 struct proc_dir_entry **p; 786 struct proc_dir_entry *de = NULL; 787 const char *fn = name; 788 int len; 789 790 if (xlate_proc_name(name, &parent, &fn) != 0) 791 return; 792 len = strlen(fn); 793 794 spin_lock(&proc_subdir_lock); 795 for (p = &parent->subdir; *p; p=&(*p)->next ) { 796 if (proc_match(len, fn, *p)) { 797 de = *p; 798 *p = de->next; 799 de->next = NULL; 800 break; 801 } 802 } 803 spin_unlock(&proc_subdir_lock); 804 if (!de) 805 return; 806 807 spin_lock(&de->pde_unload_lock); 808 /* 809 * Stop accepting new callers into module. If you're 810 * dynamically allocating ->proc_fops, save a pointer somewhere. 811 */ 812 de->proc_fops = NULL; 813 /* Wait until all existing callers into module are done. */ 814 if (de->pde_users > 0) { 815 DECLARE_COMPLETION_ONSTACK(c); 816 817 if (!de->pde_unload_completion) 818 de->pde_unload_completion = &c; 819 820 spin_unlock(&de->pde_unload_lock); 821 822 wait_for_completion(de->pde_unload_completion); 823 824 goto continue_removing; 825 } 826 spin_unlock(&de->pde_unload_lock); 827 828 continue_removing: 829 spin_lock(&de->pde_unload_lock); 830 while (!list_empty(&de->pde_openers)) { 831 struct pde_opener *pdeo; 832 833 pdeo = list_first_entry(&de->pde_openers, struct pde_opener, lh); 834 list_del(&pdeo->lh); 835 spin_unlock(&de->pde_unload_lock); 836 pdeo->release(pdeo->inode, pdeo->file); 837 kfree(pdeo); 838 spin_lock(&de->pde_unload_lock); 839 } 840 spin_unlock(&de->pde_unload_lock); 841 842 if (S_ISDIR(de->mode)) 843 parent->nlink--; 844 de->nlink = 0; 845 WARN(de->subdir, KERN_WARNING "%s: removing non-empty directory " 846 "'%s/%s', leaking at least '%s'\n", __func__, 847 de->parent->name, de->name, de->subdir->name); 848 if (atomic_dec_and_test(&de->count)) 849 free_proc_entry(de); 850 } 851