1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * linux/fs/proc/base.c 4 * 5 * Copyright (C) 1991, 1992 Linus Torvalds 6 * 7 * proc base directory handling functions 8 * 9 * 1999, Al Viro. Rewritten. Now it covers the whole per-process part. 10 * Instead of using magical inumbers to determine the kind of object 11 * we allocate and fill in-core inodes upon lookup. They don't even 12 * go into icache. We cache the reference to task_struct upon lookup too. 13 * Eventually it should become a filesystem in its own. We don't use the 14 * rest of procfs anymore. 15 * 16 * 17 * Changelog: 18 * 17-Jan-2005 19 * Allan Bezerra 20 * Bruna Moreira <bruna.moreira@indt.org.br> 21 * Edjard Mota <edjard.mota@indt.org.br> 22 * Ilias Biris <ilias.biris@indt.org.br> 23 * Mauricio Lin <mauricio.lin@indt.org.br> 24 * 25 * Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT 26 * 27 * A new process specific entry (smaps) included in /proc. It shows the 28 * size of rss for each memory area. The maps entry lacks information 29 * about physical memory size (rss) for each mapped file, i.e., 30 * rss information for executables and library files. 31 * This additional information is useful for any tools that need to know 32 * about physical memory consumption for a process specific library. 33 * 34 * Changelog: 35 * 21-Feb-2005 36 * Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT 37 * Pud inclusion in the page table walking. 38 * 39 * ChangeLog: 40 * 10-Mar-2005 41 * 10LE Instituto Nokia de Tecnologia - INdT: 42 * A better way to walks through the page table as suggested by Hugh Dickins. 43 * 44 * Simo Piiroinen <simo.piiroinen@nokia.com>: 45 * Smaps information related to shared, private, clean and dirty pages. 46 * 47 * Paul Mundt <paul.mundt@nokia.com>: 48 * Overall revision about smaps. 49 */ 50 51 #include <linux/uaccess.h> 52 53 #include <linux/errno.h> 54 #include <linux/time.h> 55 #include <linux/proc_fs.h> 56 #include <linux/stat.h> 57 #include <linux/task_io_accounting_ops.h> 58 #include <linux/init.h> 59 #include <linux/capability.h> 60 #include <linux/file.h> 61 #include <linux/generic-radix-tree.h> 62 #include <linux/string.h> 63 #include <linux/seq_file.h> 64 #include <linux/namei.h> 65 #include <linux/mnt_namespace.h> 66 #include <linux/mm.h> 67 #include <linux/swap.h> 68 #include <linux/rcupdate.h> 69 #include <linux/kallsyms.h> 70 #include <linux/stacktrace.h> 71 #include <linux/resource.h> 72 #include <linux/module.h> 73 #include <linux/mount.h> 74 #include <linux/security.h> 75 #include <linux/ptrace.h> 76 #include <linux/printk.h> 77 #include <linux/cache.h> 78 #include <linux/cgroup.h> 79 #include <linux/cpuset.h> 80 #include <linux/audit.h> 81 #include <linux/poll.h> 82 #include <linux/nsproxy.h> 83 #include <linux/oom.h> 84 #include <linux/elf.h> 85 #include <linux/pid_namespace.h> 86 #include <linux/user_namespace.h> 87 #include <linux/fs_parser.h> 88 #include <linux/fs_struct.h> 89 #include <linux/slab.h> 90 #include <linux/sched/autogroup.h> 91 #include <linux/sched/mm.h> 92 #include <linux/sched/coredump.h> 93 #include <linux/sched/debug.h> 94 #include <linux/sched/stat.h> 95 #include <linux/posix-timers.h> 96 #include <linux/time_namespace.h> 97 #include <linux/resctrl.h> 98 #include <linux/cn_proc.h> 99 #include <linux/ksm.h> 100 #include <uapi/linux/lsm.h> 101 #include <trace/events/oom.h> 102 #include "internal.h" 103 #include "fd.h" 104 105 #include "../../lib/kstrtox.h" 106 107 /* NOTE: 108 * Implementing inode permission operations in /proc is almost 109 * certainly an error. Permission checks need to happen during 110 * each system call not at open time. The reason is that most of 111 * what we wish to check for permissions in /proc varies at runtime. 112 * 113 * The classic example of a problem is opening file descriptors 114 * in /proc for a task before it execs a suid executable. 115 */ 116 117 static u8 nlink_tid __ro_after_init; 118 static u8 nlink_tgid __ro_after_init; 119 120 enum proc_mem_force { 121 PROC_MEM_FORCE_ALWAYS, 122 PROC_MEM_FORCE_PTRACE, 123 PROC_MEM_FORCE_NEVER 124 }; 125 126 static enum proc_mem_force proc_mem_force_override __ro_after_init = 127 IS_ENABLED(CONFIG_PROC_MEM_NO_FORCE) ? PROC_MEM_FORCE_NEVER : 128 IS_ENABLED(CONFIG_PROC_MEM_FORCE_PTRACE) ? PROC_MEM_FORCE_PTRACE : 129 PROC_MEM_FORCE_ALWAYS; 130 131 static const struct constant_table proc_mem_force_table[] __initconst = { 132 { "always", PROC_MEM_FORCE_ALWAYS }, 133 { "ptrace", PROC_MEM_FORCE_PTRACE }, 134 { "never", PROC_MEM_FORCE_NEVER }, 135 { } 136 }; 137 138 static int __init early_proc_mem_force_override(char *buf) 139 { 140 if (!buf) 141 return -EINVAL; 142 143 /* 144 * lookup_constant() defaults to proc_mem_force_override to preseve 145 * the initial Kconfig choice in case an invalid param gets passed. 146 */ 147 proc_mem_force_override = lookup_constant(proc_mem_force_table, 148 buf, proc_mem_force_override); 149 150 return 0; 151 } 152 early_param("proc_mem.force_override", early_proc_mem_force_override); 153 154 struct pid_entry { 155 const char *name; 156 unsigned int len; 157 umode_t mode; 158 const struct inode_operations *iop; 159 const struct file_operations *fop; 160 union proc_op op; 161 }; 162 163 #define NOD(NAME, MODE, IOP, FOP, OP) { \ 164 .name = (NAME), \ 165 .len = sizeof(NAME) - 1, \ 166 .mode = MODE, \ 167 .iop = IOP, \ 168 .fop = FOP, \ 169 .op = OP, \ 170 } 171 172 #define DIR(NAME, MODE, iops, fops) \ 173 NOD(NAME, (S_IFDIR|(MODE)), &iops, &fops, {} ) 174 #define LNK(NAME, get_link) \ 175 NOD(NAME, (S_IFLNK|S_IRWXUGO), \ 176 &proc_pid_link_inode_operations, NULL, \ 177 { .proc_get_link = get_link } ) 178 #define REG(NAME, MODE, fops) \ 179 NOD(NAME, (S_IFREG|(MODE)), NULL, &fops, {}) 180 #define ONE(NAME, MODE, show) \ 181 NOD(NAME, (S_IFREG|(MODE)), \ 182 NULL, &proc_single_file_operations, \ 183 { .proc_show = show } ) 184 #define ATTR(LSMID, NAME, MODE) \ 185 NOD(NAME, (S_IFREG|(MODE)), \ 186 NULL, &proc_pid_attr_operations, \ 187 { .lsmid = LSMID }) 188 189 /* 190 * Count the number of hardlinks for the pid_entry table, excluding the . 191 * and .. links. 192 */ 193 static unsigned int __init pid_entry_nlink(const struct pid_entry *entries, 194 unsigned int n) 195 { 196 unsigned int i; 197 unsigned int count; 198 199 count = 2; 200 for (i = 0; i < n; ++i) { 201 if (S_ISDIR(entries[i].mode)) 202 ++count; 203 } 204 205 return count; 206 } 207 208 static int get_task_root(struct task_struct *task, struct path *root) 209 { 210 int result = -ENOENT; 211 212 task_lock(task); 213 if (task->fs) { 214 get_fs_root(task->fs, root); 215 result = 0; 216 } 217 task_unlock(task); 218 return result; 219 } 220 221 static int proc_cwd_link(struct dentry *dentry, struct path *path) 222 { 223 struct task_struct *task = get_proc_task(d_inode(dentry)); 224 int result = -ENOENT; 225 226 if (task) { 227 task_lock(task); 228 if (task->fs) { 229 get_fs_pwd(task->fs, path); 230 result = 0; 231 } 232 task_unlock(task); 233 put_task_struct(task); 234 } 235 return result; 236 } 237 238 static int proc_root_link(struct dentry *dentry, struct path *path) 239 { 240 struct task_struct *task = get_proc_task(d_inode(dentry)); 241 int result = -ENOENT; 242 243 if (task) { 244 result = get_task_root(task, path); 245 put_task_struct(task); 246 } 247 return result; 248 } 249 250 /* 251 * If the user used setproctitle(), we just get the string from 252 * user space at arg_start, and limit it to a maximum of one page. 253 */ 254 static ssize_t get_mm_proctitle(struct mm_struct *mm, char __user *buf, 255 size_t count, unsigned long pos, 256 unsigned long arg_start) 257 { 258 char *page; 259 int ret, got; 260 261 if (pos >= PAGE_SIZE) 262 return 0; 263 264 page = (char *)__get_free_page(GFP_KERNEL); 265 if (!page) 266 return -ENOMEM; 267 268 ret = 0; 269 got = access_remote_vm(mm, arg_start, page, PAGE_SIZE, FOLL_ANON); 270 if (got > 0) { 271 int len = strnlen(page, got); 272 273 /* Include the NUL character if it was found */ 274 if (len < got) 275 len++; 276 277 if (len > pos) { 278 len -= pos; 279 if (len > count) 280 len = count; 281 len -= copy_to_user(buf, page+pos, len); 282 if (!len) 283 len = -EFAULT; 284 ret = len; 285 } 286 } 287 free_page((unsigned long)page); 288 return ret; 289 } 290 291 static ssize_t get_mm_cmdline(struct mm_struct *mm, char __user *buf, 292 size_t count, loff_t *ppos) 293 { 294 unsigned long arg_start, arg_end, env_start, env_end; 295 unsigned long pos, len; 296 char *page, c; 297 298 /* Check if process spawned far enough to have cmdline. */ 299 if (!mm->env_end) 300 return 0; 301 302 spin_lock(&mm->arg_lock); 303 arg_start = mm->arg_start; 304 arg_end = mm->arg_end; 305 env_start = mm->env_start; 306 env_end = mm->env_end; 307 spin_unlock(&mm->arg_lock); 308 309 if (arg_start >= arg_end) 310 return 0; 311 312 /* 313 * We allow setproctitle() to overwrite the argument 314 * strings, and overflow past the original end. But 315 * only when it overflows into the environment area. 316 */ 317 if (env_start != arg_end || env_end < env_start) 318 env_start = env_end = arg_end; 319 len = env_end - arg_start; 320 321 /* We're not going to care if "*ppos" has high bits set */ 322 pos = *ppos; 323 if (pos >= len) 324 return 0; 325 if (count > len - pos) 326 count = len - pos; 327 if (!count) 328 return 0; 329 330 /* 331 * Magical special case: if the argv[] end byte is not 332 * zero, the user has overwritten it with setproctitle(3). 333 * 334 * Possible future enhancement: do this only once when 335 * pos is 0, and set a flag in the 'struct file'. 336 */ 337 if (access_remote_vm(mm, arg_end-1, &c, 1, FOLL_ANON) == 1 && c) 338 return get_mm_proctitle(mm, buf, count, pos, arg_start); 339 340 /* 341 * For the non-setproctitle() case we limit things strictly 342 * to the [arg_start, arg_end[ range. 343 */ 344 pos += arg_start; 345 if (pos < arg_start || pos >= arg_end) 346 return 0; 347 if (count > arg_end - pos) 348 count = arg_end - pos; 349 350 page = (char *)__get_free_page(GFP_KERNEL); 351 if (!page) 352 return -ENOMEM; 353 354 len = 0; 355 while (count) { 356 int got; 357 size_t size = min_t(size_t, PAGE_SIZE, count); 358 359 got = access_remote_vm(mm, pos, page, size, FOLL_ANON); 360 if (got <= 0) 361 break; 362 got -= copy_to_user(buf, page, got); 363 if (unlikely(!got)) { 364 if (!len) 365 len = -EFAULT; 366 break; 367 } 368 pos += got; 369 buf += got; 370 len += got; 371 count -= got; 372 } 373 374 free_page((unsigned long)page); 375 return len; 376 } 377 378 static ssize_t get_task_cmdline(struct task_struct *tsk, char __user *buf, 379 size_t count, loff_t *pos) 380 { 381 struct mm_struct *mm; 382 ssize_t ret; 383 384 mm = get_task_mm(tsk); 385 if (!mm) 386 return 0; 387 388 ret = get_mm_cmdline(mm, buf, count, pos); 389 mmput(mm); 390 return ret; 391 } 392 393 static ssize_t proc_pid_cmdline_read(struct file *file, char __user *buf, 394 size_t count, loff_t *pos) 395 { 396 struct task_struct *tsk; 397 ssize_t ret; 398 399 BUG_ON(*pos < 0); 400 401 tsk = get_proc_task(file_inode(file)); 402 if (!tsk) 403 return -ESRCH; 404 ret = get_task_cmdline(tsk, buf, count, pos); 405 put_task_struct(tsk); 406 if (ret > 0) 407 *pos += ret; 408 return ret; 409 } 410 411 static const struct file_operations proc_pid_cmdline_ops = { 412 .read = proc_pid_cmdline_read, 413 .llseek = generic_file_llseek, 414 }; 415 416 #ifdef CONFIG_KALLSYMS 417 /* 418 * Provides a wchan file via kallsyms in a proper one-value-per-file format. 419 * Returns the resolved symbol. If that fails, simply return the address. 420 */ 421 static int proc_pid_wchan(struct seq_file *m, struct pid_namespace *ns, 422 struct pid *pid, struct task_struct *task) 423 { 424 unsigned long wchan; 425 char symname[KSYM_NAME_LEN]; 426 427 if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS)) 428 goto print0; 429 430 wchan = get_wchan(task); 431 if (wchan && !lookup_symbol_name(wchan, symname)) { 432 seq_puts(m, symname); 433 return 0; 434 } 435 436 print0: 437 seq_putc(m, '0'); 438 return 0; 439 } 440 #endif /* CONFIG_KALLSYMS */ 441 442 static int lock_trace(struct task_struct *task) 443 { 444 int err = down_read_killable(&task->signal->exec_update_lock); 445 if (err) 446 return err; 447 if (!ptrace_may_access(task, PTRACE_MODE_ATTACH_FSCREDS)) { 448 up_read(&task->signal->exec_update_lock); 449 return -EPERM; 450 } 451 return 0; 452 } 453 454 static void unlock_trace(struct task_struct *task) 455 { 456 up_read(&task->signal->exec_update_lock); 457 } 458 459 #ifdef CONFIG_STACKTRACE 460 461 #define MAX_STACK_TRACE_DEPTH 64 462 463 static int proc_pid_stack(struct seq_file *m, struct pid_namespace *ns, 464 struct pid *pid, struct task_struct *task) 465 { 466 unsigned long *entries; 467 int err; 468 469 /* 470 * The ability to racily run the kernel stack unwinder on a running task 471 * and then observe the unwinder output is scary; while it is useful for 472 * debugging kernel issues, it can also allow an attacker to leak kernel 473 * stack contents. 474 * Doing this in a manner that is at least safe from races would require 475 * some work to ensure that the remote task can not be scheduled; and 476 * even then, this would still expose the unwinder as local attack 477 * surface. 478 * Therefore, this interface is restricted to root. 479 */ 480 if (!file_ns_capable(m->file, &init_user_ns, CAP_SYS_ADMIN)) 481 return -EACCES; 482 483 entries = kmalloc_array(MAX_STACK_TRACE_DEPTH, sizeof(*entries), 484 GFP_KERNEL); 485 if (!entries) 486 return -ENOMEM; 487 488 err = lock_trace(task); 489 if (!err) { 490 unsigned int i, nr_entries; 491 492 nr_entries = stack_trace_save_tsk(task, entries, 493 MAX_STACK_TRACE_DEPTH, 0); 494 495 for (i = 0; i < nr_entries; i++) { 496 seq_printf(m, "[<0>] %pB\n", (void *)entries[i]); 497 } 498 499 unlock_trace(task); 500 } 501 kfree(entries); 502 503 return err; 504 } 505 #endif 506 507 #ifdef CONFIG_SCHED_INFO 508 /* 509 * Provides /proc/PID/schedstat 510 */ 511 static int proc_pid_schedstat(struct seq_file *m, struct pid_namespace *ns, 512 struct pid *pid, struct task_struct *task) 513 { 514 if (unlikely(!sched_info_on())) 515 seq_puts(m, "0 0 0\n"); 516 else 517 seq_printf(m, "%llu %llu %lu\n", 518 (unsigned long long)task->se.sum_exec_runtime, 519 (unsigned long long)task->sched_info.run_delay, 520 task->sched_info.pcount); 521 522 return 0; 523 } 524 #endif 525 526 #ifdef CONFIG_LATENCYTOP 527 static int lstats_show_proc(struct seq_file *m, void *v) 528 { 529 int i; 530 struct inode *inode = m->private; 531 struct task_struct *task = get_proc_task(inode); 532 533 if (!task) 534 return -ESRCH; 535 seq_puts(m, "Latency Top version : v0.1\n"); 536 for (i = 0; i < LT_SAVECOUNT; i++) { 537 struct latency_record *lr = &task->latency_record[i]; 538 if (lr->backtrace[0]) { 539 int q; 540 seq_printf(m, "%i %li %li", 541 lr->count, lr->time, lr->max); 542 for (q = 0; q < LT_BACKTRACEDEPTH; q++) { 543 unsigned long bt = lr->backtrace[q]; 544 545 if (!bt) 546 break; 547 seq_printf(m, " %ps", (void *)bt); 548 } 549 seq_putc(m, '\n'); 550 } 551 552 } 553 put_task_struct(task); 554 return 0; 555 } 556 557 static int lstats_open(struct inode *inode, struct file *file) 558 { 559 return single_open(file, lstats_show_proc, inode); 560 } 561 562 static ssize_t lstats_write(struct file *file, const char __user *buf, 563 size_t count, loff_t *offs) 564 { 565 struct task_struct *task = get_proc_task(file_inode(file)); 566 567 if (!task) 568 return -ESRCH; 569 clear_tsk_latency_tracing(task); 570 put_task_struct(task); 571 572 return count; 573 } 574 575 static const struct file_operations proc_lstats_operations = { 576 .open = lstats_open, 577 .read = seq_read, 578 .write = lstats_write, 579 .llseek = seq_lseek, 580 .release = single_release, 581 }; 582 583 #endif 584 585 static int proc_oom_score(struct seq_file *m, struct pid_namespace *ns, 586 struct pid *pid, struct task_struct *task) 587 { 588 unsigned long totalpages = totalram_pages() + total_swap_pages; 589 unsigned long points = 0; 590 long badness; 591 592 badness = oom_badness(task, totalpages); 593 /* 594 * Special case OOM_SCORE_ADJ_MIN for all others scale the 595 * badness value into [0, 2000] range which we have been 596 * exporting for a long time so userspace might depend on it. 597 */ 598 if (badness != LONG_MIN) 599 points = (1000 + badness * 1000 / (long)totalpages) * 2 / 3; 600 601 seq_printf(m, "%lu\n", points); 602 603 return 0; 604 } 605 606 struct limit_names { 607 const char *name; 608 const char *unit; 609 }; 610 611 static const struct limit_names lnames[RLIM_NLIMITS] = { 612 [RLIMIT_CPU] = {"Max cpu time", "seconds"}, 613 [RLIMIT_FSIZE] = {"Max file size", "bytes"}, 614 [RLIMIT_DATA] = {"Max data size", "bytes"}, 615 [RLIMIT_STACK] = {"Max stack size", "bytes"}, 616 [RLIMIT_CORE] = {"Max core file size", "bytes"}, 617 [RLIMIT_RSS] = {"Max resident set", "bytes"}, 618 [RLIMIT_NPROC] = {"Max processes", "processes"}, 619 [RLIMIT_NOFILE] = {"Max open files", "files"}, 620 [RLIMIT_MEMLOCK] = {"Max locked memory", "bytes"}, 621 [RLIMIT_AS] = {"Max address space", "bytes"}, 622 [RLIMIT_LOCKS] = {"Max file locks", "locks"}, 623 [RLIMIT_SIGPENDING] = {"Max pending signals", "signals"}, 624 [RLIMIT_MSGQUEUE] = {"Max msgqueue size", "bytes"}, 625 [RLIMIT_NICE] = {"Max nice priority", NULL}, 626 [RLIMIT_RTPRIO] = {"Max realtime priority", NULL}, 627 [RLIMIT_RTTIME] = {"Max realtime timeout", "us"}, 628 }; 629 630 /* Display limits for a process */ 631 static int proc_pid_limits(struct seq_file *m, struct pid_namespace *ns, 632 struct pid *pid, struct task_struct *task) 633 { 634 unsigned int i; 635 unsigned long flags; 636 637 struct rlimit rlim[RLIM_NLIMITS]; 638 639 if (!lock_task_sighand(task, &flags)) 640 return 0; 641 memcpy(rlim, task->signal->rlim, sizeof(struct rlimit) * RLIM_NLIMITS); 642 unlock_task_sighand(task, &flags); 643 644 /* 645 * print the file header 646 */ 647 seq_puts(m, "Limit " 648 "Soft Limit " 649 "Hard Limit " 650 "Units \n"); 651 652 for (i = 0; i < RLIM_NLIMITS; i++) { 653 if (rlim[i].rlim_cur == RLIM_INFINITY) 654 seq_printf(m, "%-25s %-20s ", 655 lnames[i].name, "unlimited"); 656 else 657 seq_printf(m, "%-25s %-20lu ", 658 lnames[i].name, rlim[i].rlim_cur); 659 660 if (rlim[i].rlim_max == RLIM_INFINITY) 661 seq_printf(m, "%-20s ", "unlimited"); 662 else 663 seq_printf(m, "%-20lu ", rlim[i].rlim_max); 664 665 if (lnames[i].unit) 666 seq_printf(m, "%-10s\n", lnames[i].unit); 667 else 668 seq_putc(m, '\n'); 669 } 670 671 return 0; 672 } 673 674 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK 675 static int proc_pid_syscall(struct seq_file *m, struct pid_namespace *ns, 676 struct pid *pid, struct task_struct *task) 677 { 678 struct syscall_info info; 679 u64 *args = &info.data.args[0]; 680 int res; 681 682 res = lock_trace(task); 683 if (res) 684 return res; 685 686 if (task_current_syscall(task, &info)) 687 seq_puts(m, "running\n"); 688 else if (info.data.nr < 0) 689 seq_printf(m, "%d 0x%llx 0x%llx\n", 690 info.data.nr, info.sp, info.data.instruction_pointer); 691 else 692 seq_printf(m, 693 "%d 0x%llx 0x%llx 0x%llx 0x%llx 0x%llx 0x%llx 0x%llx 0x%llx\n", 694 info.data.nr, 695 args[0], args[1], args[2], args[3], args[4], args[5], 696 info.sp, info.data.instruction_pointer); 697 unlock_trace(task); 698 699 return 0; 700 } 701 #endif /* CONFIG_HAVE_ARCH_TRACEHOOK */ 702 703 /************************************************************************/ 704 /* Here the fs part begins */ 705 /************************************************************************/ 706 707 /* permission checks */ 708 static bool proc_fd_access_allowed(struct inode *inode) 709 { 710 struct task_struct *task; 711 bool allowed = false; 712 /* Allow access to a task's file descriptors if it is us or we 713 * may use ptrace attach to the process and find out that 714 * information. 715 */ 716 task = get_proc_task(inode); 717 if (task) { 718 allowed = ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS); 719 put_task_struct(task); 720 } 721 return allowed; 722 } 723 724 int proc_setattr(struct mnt_idmap *idmap, struct dentry *dentry, 725 struct iattr *attr) 726 { 727 int error; 728 struct inode *inode = d_inode(dentry); 729 730 if (attr->ia_valid & ATTR_MODE) 731 return -EPERM; 732 733 error = setattr_prepare(&nop_mnt_idmap, dentry, attr); 734 if (error) 735 return error; 736 737 setattr_copy(&nop_mnt_idmap, inode, attr); 738 return 0; 739 } 740 741 /* 742 * May current process learn task's sched/cmdline info (for hide_pid_min=1) 743 * or euid/egid (for hide_pid_min=2)? 744 */ 745 static bool has_pid_permissions(struct proc_fs_info *fs_info, 746 struct task_struct *task, 747 enum proc_hidepid hide_pid_min) 748 { 749 /* 750 * If 'hidpid' mount option is set force a ptrace check, 751 * we indicate that we are using a filesystem syscall 752 * by passing PTRACE_MODE_READ_FSCREDS 753 */ 754 if (fs_info->hide_pid == HIDEPID_NOT_PTRACEABLE) 755 return ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS); 756 757 if (fs_info->hide_pid < hide_pid_min) 758 return true; 759 if (in_group_p(fs_info->pid_gid)) 760 return true; 761 return ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS); 762 } 763 764 765 static int proc_pid_permission(struct mnt_idmap *idmap, 766 struct inode *inode, int mask) 767 { 768 struct proc_fs_info *fs_info = proc_sb_info(inode->i_sb); 769 struct task_struct *task; 770 bool has_perms; 771 772 task = get_proc_task(inode); 773 if (!task) 774 return -ESRCH; 775 has_perms = has_pid_permissions(fs_info, task, HIDEPID_NO_ACCESS); 776 put_task_struct(task); 777 778 if (!has_perms) { 779 if (fs_info->hide_pid == HIDEPID_INVISIBLE) { 780 /* 781 * Let's make getdents(), stat(), and open() 782 * consistent with each other. If a process 783 * may not stat() a file, it shouldn't be seen 784 * in procfs at all. 785 */ 786 return -ENOENT; 787 } 788 789 return -EPERM; 790 } 791 return generic_permission(&nop_mnt_idmap, inode, mask); 792 } 793 794 795 796 static const struct inode_operations proc_def_inode_operations = { 797 .setattr = proc_setattr, 798 }; 799 800 static int proc_single_show(struct seq_file *m, void *v) 801 { 802 struct inode *inode = m->private; 803 struct pid_namespace *ns = proc_pid_ns(inode->i_sb); 804 struct pid *pid = proc_pid(inode); 805 struct task_struct *task; 806 int ret; 807 808 task = get_pid_task(pid, PIDTYPE_PID); 809 if (!task) 810 return -ESRCH; 811 812 ret = PROC_I(inode)->op.proc_show(m, ns, pid, task); 813 814 put_task_struct(task); 815 return ret; 816 } 817 818 static int proc_single_open(struct inode *inode, struct file *filp) 819 { 820 return single_open(filp, proc_single_show, inode); 821 } 822 823 static const struct file_operations proc_single_file_operations = { 824 .open = proc_single_open, 825 .read = seq_read, 826 .llseek = seq_lseek, 827 .release = single_release, 828 }; 829 830 831 struct mm_struct *proc_mem_open(struct inode *inode, unsigned int mode) 832 { 833 struct task_struct *task = get_proc_task(inode); 834 struct mm_struct *mm; 835 836 if (!task) 837 return ERR_PTR(-ESRCH); 838 839 mm = mm_access(task, mode | PTRACE_MODE_FSCREDS); 840 put_task_struct(task); 841 842 if (IS_ERR(mm)) 843 return mm == ERR_PTR(-ESRCH) ? NULL : mm; 844 845 /* ensure this mm_struct can't be freed */ 846 mmgrab(mm); 847 /* but do not pin its memory */ 848 mmput(mm); 849 850 return mm; 851 } 852 853 static int __mem_open(struct inode *inode, struct file *file, unsigned int mode) 854 { 855 struct mm_struct *mm = proc_mem_open(inode, mode); 856 857 if (IS_ERR(mm)) 858 return PTR_ERR(mm); 859 860 file->private_data = mm; 861 return 0; 862 } 863 864 static int mem_open(struct inode *inode, struct file *file) 865 { 866 if (WARN_ON_ONCE(!(file->f_op->fop_flags & FOP_UNSIGNED_OFFSET))) 867 return -EINVAL; 868 return __mem_open(inode, file, PTRACE_MODE_ATTACH); 869 } 870 871 static bool proc_mem_foll_force(struct file *file, struct mm_struct *mm) 872 { 873 struct task_struct *task; 874 bool ptrace_active = false; 875 876 switch (proc_mem_force_override) { 877 case PROC_MEM_FORCE_NEVER: 878 return false; 879 case PROC_MEM_FORCE_PTRACE: 880 task = get_proc_task(file_inode(file)); 881 if (task) { 882 ptrace_active = READ_ONCE(task->ptrace) && 883 READ_ONCE(task->mm) == mm && 884 READ_ONCE(task->parent) == current; 885 put_task_struct(task); 886 } 887 return ptrace_active; 888 default: 889 return true; 890 } 891 } 892 893 static ssize_t mem_rw(struct file *file, char __user *buf, 894 size_t count, loff_t *ppos, int write) 895 { 896 struct mm_struct *mm = file->private_data; 897 unsigned long addr = *ppos; 898 ssize_t copied; 899 char *page; 900 unsigned int flags; 901 902 if (!mm) 903 return 0; 904 905 page = (char *)__get_free_page(GFP_KERNEL); 906 if (!page) 907 return -ENOMEM; 908 909 copied = 0; 910 if (!mmget_not_zero(mm)) 911 goto free; 912 913 flags = write ? FOLL_WRITE : 0; 914 if (proc_mem_foll_force(file, mm)) 915 flags |= FOLL_FORCE; 916 917 while (count > 0) { 918 size_t this_len = min_t(size_t, count, PAGE_SIZE); 919 920 if (write && copy_from_user(page, buf, this_len)) { 921 copied = -EFAULT; 922 break; 923 } 924 925 this_len = access_remote_vm(mm, addr, page, this_len, flags); 926 if (!this_len) { 927 if (!copied) 928 copied = -EIO; 929 break; 930 } 931 932 if (!write && copy_to_user(buf, page, this_len)) { 933 copied = -EFAULT; 934 break; 935 } 936 937 buf += this_len; 938 addr += this_len; 939 copied += this_len; 940 count -= this_len; 941 } 942 *ppos = addr; 943 944 mmput(mm); 945 free: 946 free_page((unsigned long) page); 947 return copied; 948 } 949 950 static ssize_t mem_read(struct file *file, char __user *buf, 951 size_t count, loff_t *ppos) 952 { 953 return mem_rw(file, buf, count, ppos, 0); 954 } 955 956 static ssize_t mem_write(struct file *file, const char __user *buf, 957 size_t count, loff_t *ppos) 958 { 959 return mem_rw(file, (char __user*)buf, count, ppos, 1); 960 } 961 962 loff_t mem_lseek(struct file *file, loff_t offset, int orig) 963 { 964 switch (orig) { 965 case 0: 966 file->f_pos = offset; 967 break; 968 case 1: 969 file->f_pos += offset; 970 break; 971 default: 972 return -EINVAL; 973 } 974 force_successful_syscall_return(); 975 return file->f_pos; 976 } 977 978 static int mem_release(struct inode *inode, struct file *file) 979 { 980 struct mm_struct *mm = file->private_data; 981 if (mm) 982 mmdrop(mm); 983 return 0; 984 } 985 986 static const struct file_operations proc_mem_operations = { 987 .llseek = mem_lseek, 988 .read = mem_read, 989 .write = mem_write, 990 .open = mem_open, 991 .release = mem_release, 992 .fop_flags = FOP_UNSIGNED_OFFSET, 993 }; 994 995 static int environ_open(struct inode *inode, struct file *file) 996 { 997 return __mem_open(inode, file, PTRACE_MODE_READ); 998 } 999 1000 static ssize_t environ_read(struct file *file, char __user *buf, 1001 size_t count, loff_t *ppos) 1002 { 1003 char *page; 1004 unsigned long src = *ppos; 1005 int ret = 0; 1006 struct mm_struct *mm = file->private_data; 1007 unsigned long env_start, env_end; 1008 1009 /* Ensure the process spawned far enough to have an environment. */ 1010 if (!mm || !mm->env_end) 1011 return 0; 1012 1013 page = (char *)__get_free_page(GFP_KERNEL); 1014 if (!page) 1015 return -ENOMEM; 1016 1017 ret = 0; 1018 if (!mmget_not_zero(mm)) 1019 goto free; 1020 1021 spin_lock(&mm->arg_lock); 1022 env_start = mm->env_start; 1023 env_end = mm->env_end; 1024 spin_unlock(&mm->arg_lock); 1025 1026 while (count > 0) { 1027 size_t this_len, max_len; 1028 int retval; 1029 1030 if (src >= (env_end - env_start)) 1031 break; 1032 1033 this_len = env_end - (env_start + src); 1034 1035 max_len = min_t(size_t, PAGE_SIZE, count); 1036 this_len = min(max_len, this_len); 1037 1038 retval = access_remote_vm(mm, (env_start + src), page, this_len, FOLL_ANON); 1039 1040 if (retval <= 0) { 1041 ret = retval; 1042 break; 1043 } 1044 1045 if (copy_to_user(buf, page, retval)) { 1046 ret = -EFAULT; 1047 break; 1048 } 1049 1050 ret += retval; 1051 src += retval; 1052 buf += retval; 1053 count -= retval; 1054 } 1055 *ppos = src; 1056 mmput(mm); 1057 1058 free: 1059 free_page((unsigned long) page); 1060 return ret; 1061 } 1062 1063 static const struct file_operations proc_environ_operations = { 1064 .open = environ_open, 1065 .read = environ_read, 1066 .llseek = generic_file_llseek, 1067 .release = mem_release, 1068 }; 1069 1070 static int auxv_open(struct inode *inode, struct file *file) 1071 { 1072 return __mem_open(inode, file, PTRACE_MODE_READ_FSCREDS); 1073 } 1074 1075 static ssize_t auxv_read(struct file *file, char __user *buf, 1076 size_t count, loff_t *ppos) 1077 { 1078 struct mm_struct *mm = file->private_data; 1079 unsigned int nwords = 0; 1080 1081 if (!mm) 1082 return 0; 1083 do { 1084 nwords += 2; 1085 } while (mm->saved_auxv[nwords - 2] != 0); /* AT_NULL */ 1086 return simple_read_from_buffer(buf, count, ppos, mm->saved_auxv, 1087 nwords * sizeof(mm->saved_auxv[0])); 1088 } 1089 1090 static const struct file_operations proc_auxv_operations = { 1091 .open = auxv_open, 1092 .read = auxv_read, 1093 .llseek = generic_file_llseek, 1094 .release = mem_release, 1095 }; 1096 1097 static ssize_t oom_adj_read(struct file *file, char __user *buf, size_t count, 1098 loff_t *ppos) 1099 { 1100 struct task_struct *task = get_proc_task(file_inode(file)); 1101 char buffer[PROC_NUMBUF]; 1102 int oom_adj = OOM_ADJUST_MIN; 1103 size_t len; 1104 1105 if (!task) 1106 return -ESRCH; 1107 if (task->signal->oom_score_adj == OOM_SCORE_ADJ_MAX) 1108 oom_adj = OOM_ADJUST_MAX; 1109 else 1110 oom_adj = (task->signal->oom_score_adj * -OOM_DISABLE) / 1111 OOM_SCORE_ADJ_MAX; 1112 put_task_struct(task); 1113 if (oom_adj > OOM_ADJUST_MAX) 1114 oom_adj = OOM_ADJUST_MAX; 1115 len = snprintf(buffer, sizeof(buffer), "%d\n", oom_adj); 1116 return simple_read_from_buffer(buf, count, ppos, buffer, len); 1117 } 1118 1119 static int __set_oom_adj(struct file *file, int oom_adj, bool legacy) 1120 { 1121 struct mm_struct *mm = NULL; 1122 struct task_struct *task; 1123 int err = 0; 1124 1125 task = get_proc_task(file_inode(file)); 1126 if (!task) 1127 return -ESRCH; 1128 1129 mutex_lock(&oom_adj_mutex); 1130 if (legacy) { 1131 if (oom_adj < task->signal->oom_score_adj && 1132 !capable(CAP_SYS_RESOURCE)) { 1133 err = -EACCES; 1134 goto err_unlock; 1135 } 1136 /* 1137 * /proc/pid/oom_adj is provided for legacy purposes, ask users to use 1138 * /proc/pid/oom_score_adj instead. 1139 */ 1140 pr_warn_once("%s (%d): /proc/%d/oom_adj is deprecated, please use /proc/%d/oom_score_adj instead.\n", 1141 current->comm, task_pid_nr(current), task_pid_nr(task), 1142 task_pid_nr(task)); 1143 } else { 1144 if ((short)oom_adj < task->signal->oom_score_adj_min && 1145 !capable(CAP_SYS_RESOURCE)) { 1146 err = -EACCES; 1147 goto err_unlock; 1148 } 1149 } 1150 1151 /* 1152 * Make sure we will check other processes sharing the mm if this is 1153 * not vfrok which wants its own oom_score_adj. 1154 * pin the mm so it doesn't go away and get reused after task_unlock 1155 */ 1156 if (!task->vfork_done) { 1157 struct task_struct *p = find_lock_task_mm(task); 1158 1159 if (p) { 1160 if (test_bit(MMF_MULTIPROCESS, &p->mm->flags)) { 1161 mm = p->mm; 1162 mmgrab(mm); 1163 } 1164 task_unlock(p); 1165 } 1166 } 1167 1168 task->signal->oom_score_adj = oom_adj; 1169 if (!legacy && has_capability_noaudit(current, CAP_SYS_RESOURCE)) 1170 task->signal->oom_score_adj_min = (short)oom_adj; 1171 trace_oom_score_adj_update(task); 1172 1173 if (mm) { 1174 struct task_struct *p; 1175 1176 rcu_read_lock(); 1177 for_each_process(p) { 1178 if (same_thread_group(task, p)) 1179 continue; 1180 1181 /* do not touch kernel threads or the global init */ 1182 if (p->flags & PF_KTHREAD || is_global_init(p)) 1183 continue; 1184 1185 task_lock(p); 1186 if (!p->vfork_done && process_shares_mm(p, mm)) { 1187 p->signal->oom_score_adj = oom_adj; 1188 if (!legacy && has_capability_noaudit(current, CAP_SYS_RESOURCE)) 1189 p->signal->oom_score_adj_min = (short)oom_adj; 1190 } 1191 task_unlock(p); 1192 } 1193 rcu_read_unlock(); 1194 mmdrop(mm); 1195 } 1196 err_unlock: 1197 mutex_unlock(&oom_adj_mutex); 1198 put_task_struct(task); 1199 return err; 1200 } 1201 1202 /* 1203 * /proc/pid/oom_adj exists solely for backwards compatibility with previous 1204 * kernels. The effective policy is defined by oom_score_adj, which has a 1205 * different scale: oom_adj grew exponentially and oom_score_adj grows linearly. 1206 * Values written to oom_adj are simply mapped linearly to oom_score_adj. 1207 * Processes that become oom disabled via oom_adj will still be oom disabled 1208 * with this implementation. 1209 * 1210 * oom_adj cannot be removed since existing userspace binaries use it. 1211 */ 1212 static ssize_t oom_adj_write(struct file *file, const char __user *buf, 1213 size_t count, loff_t *ppos) 1214 { 1215 char buffer[PROC_NUMBUF] = {}; 1216 int oom_adj; 1217 int err; 1218 1219 if (count > sizeof(buffer) - 1) 1220 count = sizeof(buffer) - 1; 1221 if (copy_from_user(buffer, buf, count)) { 1222 err = -EFAULT; 1223 goto out; 1224 } 1225 1226 err = kstrtoint(strstrip(buffer), 0, &oom_adj); 1227 if (err) 1228 goto out; 1229 if ((oom_adj < OOM_ADJUST_MIN || oom_adj > OOM_ADJUST_MAX) && 1230 oom_adj != OOM_DISABLE) { 1231 err = -EINVAL; 1232 goto out; 1233 } 1234 1235 /* 1236 * Scale /proc/pid/oom_score_adj appropriately ensuring that a maximum 1237 * value is always attainable. 1238 */ 1239 if (oom_adj == OOM_ADJUST_MAX) 1240 oom_adj = OOM_SCORE_ADJ_MAX; 1241 else 1242 oom_adj = (oom_adj * OOM_SCORE_ADJ_MAX) / -OOM_DISABLE; 1243 1244 err = __set_oom_adj(file, oom_adj, true); 1245 out: 1246 return err < 0 ? err : count; 1247 } 1248 1249 static const struct file_operations proc_oom_adj_operations = { 1250 .read = oom_adj_read, 1251 .write = oom_adj_write, 1252 .llseek = generic_file_llseek, 1253 }; 1254 1255 static ssize_t oom_score_adj_read(struct file *file, char __user *buf, 1256 size_t count, loff_t *ppos) 1257 { 1258 struct task_struct *task = get_proc_task(file_inode(file)); 1259 char buffer[PROC_NUMBUF]; 1260 short oom_score_adj = OOM_SCORE_ADJ_MIN; 1261 size_t len; 1262 1263 if (!task) 1264 return -ESRCH; 1265 oom_score_adj = task->signal->oom_score_adj; 1266 put_task_struct(task); 1267 len = snprintf(buffer, sizeof(buffer), "%hd\n", oom_score_adj); 1268 return simple_read_from_buffer(buf, count, ppos, buffer, len); 1269 } 1270 1271 static ssize_t oom_score_adj_write(struct file *file, const char __user *buf, 1272 size_t count, loff_t *ppos) 1273 { 1274 char buffer[PROC_NUMBUF] = {}; 1275 int oom_score_adj; 1276 int err; 1277 1278 if (count > sizeof(buffer) - 1) 1279 count = sizeof(buffer) - 1; 1280 if (copy_from_user(buffer, buf, count)) { 1281 err = -EFAULT; 1282 goto out; 1283 } 1284 1285 err = kstrtoint(strstrip(buffer), 0, &oom_score_adj); 1286 if (err) 1287 goto out; 1288 if (oom_score_adj < OOM_SCORE_ADJ_MIN || 1289 oom_score_adj > OOM_SCORE_ADJ_MAX) { 1290 err = -EINVAL; 1291 goto out; 1292 } 1293 1294 err = __set_oom_adj(file, oom_score_adj, false); 1295 out: 1296 return err < 0 ? err : count; 1297 } 1298 1299 static const struct file_operations proc_oom_score_adj_operations = { 1300 .read = oom_score_adj_read, 1301 .write = oom_score_adj_write, 1302 .llseek = default_llseek, 1303 }; 1304 1305 #ifdef CONFIG_AUDIT 1306 #define TMPBUFLEN 11 1307 static ssize_t proc_loginuid_read(struct file * file, char __user * buf, 1308 size_t count, loff_t *ppos) 1309 { 1310 struct inode * inode = file_inode(file); 1311 struct task_struct *task = get_proc_task(inode); 1312 ssize_t length; 1313 char tmpbuf[TMPBUFLEN]; 1314 1315 if (!task) 1316 return -ESRCH; 1317 length = scnprintf(tmpbuf, TMPBUFLEN, "%u", 1318 from_kuid(file->f_cred->user_ns, 1319 audit_get_loginuid(task))); 1320 put_task_struct(task); 1321 return simple_read_from_buffer(buf, count, ppos, tmpbuf, length); 1322 } 1323 1324 static ssize_t proc_loginuid_write(struct file * file, const char __user * buf, 1325 size_t count, loff_t *ppos) 1326 { 1327 struct inode * inode = file_inode(file); 1328 uid_t loginuid; 1329 kuid_t kloginuid; 1330 int rv; 1331 1332 /* Don't let kthreads write their own loginuid */ 1333 if (current->flags & PF_KTHREAD) 1334 return -EPERM; 1335 1336 rcu_read_lock(); 1337 if (current != pid_task(proc_pid(inode), PIDTYPE_PID)) { 1338 rcu_read_unlock(); 1339 return -EPERM; 1340 } 1341 rcu_read_unlock(); 1342 1343 if (*ppos != 0) { 1344 /* No partial writes. */ 1345 return -EINVAL; 1346 } 1347 1348 rv = kstrtou32_from_user(buf, count, 10, &loginuid); 1349 if (rv < 0) 1350 return rv; 1351 1352 /* is userspace tring to explicitly UNSET the loginuid? */ 1353 if (loginuid == AUDIT_UID_UNSET) { 1354 kloginuid = INVALID_UID; 1355 } else { 1356 kloginuid = make_kuid(file->f_cred->user_ns, loginuid); 1357 if (!uid_valid(kloginuid)) 1358 return -EINVAL; 1359 } 1360 1361 rv = audit_set_loginuid(kloginuid); 1362 if (rv < 0) 1363 return rv; 1364 return count; 1365 } 1366 1367 static const struct file_operations proc_loginuid_operations = { 1368 .read = proc_loginuid_read, 1369 .write = proc_loginuid_write, 1370 .llseek = generic_file_llseek, 1371 }; 1372 1373 static ssize_t proc_sessionid_read(struct file * file, char __user * buf, 1374 size_t count, loff_t *ppos) 1375 { 1376 struct inode * inode = file_inode(file); 1377 struct task_struct *task = get_proc_task(inode); 1378 ssize_t length; 1379 char tmpbuf[TMPBUFLEN]; 1380 1381 if (!task) 1382 return -ESRCH; 1383 length = scnprintf(tmpbuf, TMPBUFLEN, "%u", 1384 audit_get_sessionid(task)); 1385 put_task_struct(task); 1386 return simple_read_from_buffer(buf, count, ppos, tmpbuf, length); 1387 } 1388 1389 static const struct file_operations proc_sessionid_operations = { 1390 .read = proc_sessionid_read, 1391 .llseek = generic_file_llseek, 1392 }; 1393 #endif 1394 1395 #ifdef CONFIG_FAULT_INJECTION 1396 static ssize_t proc_fault_inject_read(struct file * file, char __user * buf, 1397 size_t count, loff_t *ppos) 1398 { 1399 struct task_struct *task = get_proc_task(file_inode(file)); 1400 char buffer[PROC_NUMBUF]; 1401 size_t len; 1402 int make_it_fail; 1403 1404 if (!task) 1405 return -ESRCH; 1406 make_it_fail = task->make_it_fail; 1407 put_task_struct(task); 1408 1409 len = snprintf(buffer, sizeof(buffer), "%i\n", make_it_fail); 1410 1411 return simple_read_from_buffer(buf, count, ppos, buffer, len); 1412 } 1413 1414 static ssize_t proc_fault_inject_write(struct file * file, 1415 const char __user * buf, size_t count, loff_t *ppos) 1416 { 1417 struct task_struct *task; 1418 char buffer[PROC_NUMBUF] = {}; 1419 int make_it_fail; 1420 int rv; 1421 1422 if (!capable(CAP_SYS_RESOURCE)) 1423 return -EPERM; 1424 1425 if (count > sizeof(buffer) - 1) 1426 count = sizeof(buffer) - 1; 1427 if (copy_from_user(buffer, buf, count)) 1428 return -EFAULT; 1429 rv = kstrtoint(strstrip(buffer), 0, &make_it_fail); 1430 if (rv < 0) 1431 return rv; 1432 if (make_it_fail < 0 || make_it_fail > 1) 1433 return -EINVAL; 1434 1435 task = get_proc_task(file_inode(file)); 1436 if (!task) 1437 return -ESRCH; 1438 task->make_it_fail = make_it_fail; 1439 put_task_struct(task); 1440 1441 return count; 1442 } 1443 1444 static const struct file_operations proc_fault_inject_operations = { 1445 .read = proc_fault_inject_read, 1446 .write = proc_fault_inject_write, 1447 .llseek = generic_file_llseek, 1448 }; 1449 1450 static ssize_t proc_fail_nth_write(struct file *file, const char __user *buf, 1451 size_t count, loff_t *ppos) 1452 { 1453 struct task_struct *task; 1454 int err; 1455 unsigned int n; 1456 1457 err = kstrtouint_from_user(buf, count, 0, &n); 1458 if (err) 1459 return err; 1460 1461 task = get_proc_task(file_inode(file)); 1462 if (!task) 1463 return -ESRCH; 1464 task->fail_nth = n; 1465 put_task_struct(task); 1466 1467 return count; 1468 } 1469 1470 static ssize_t proc_fail_nth_read(struct file *file, char __user *buf, 1471 size_t count, loff_t *ppos) 1472 { 1473 struct task_struct *task; 1474 char numbuf[PROC_NUMBUF]; 1475 ssize_t len; 1476 1477 task = get_proc_task(file_inode(file)); 1478 if (!task) 1479 return -ESRCH; 1480 len = snprintf(numbuf, sizeof(numbuf), "%u\n", task->fail_nth); 1481 put_task_struct(task); 1482 return simple_read_from_buffer(buf, count, ppos, numbuf, len); 1483 } 1484 1485 static const struct file_operations proc_fail_nth_operations = { 1486 .read = proc_fail_nth_read, 1487 .write = proc_fail_nth_write, 1488 }; 1489 #endif 1490 1491 1492 /* 1493 * Print out various scheduling related per-task fields: 1494 */ 1495 static int sched_show(struct seq_file *m, void *v) 1496 { 1497 struct inode *inode = m->private; 1498 struct pid_namespace *ns = proc_pid_ns(inode->i_sb); 1499 struct task_struct *p; 1500 1501 p = get_proc_task(inode); 1502 if (!p) 1503 return -ESRCH; 1504 proc_sched_show_task(p, ns, m); 1505 1506 put_task_struct(p); 1507 1508 return 0; 1509 } 1510 1511 static ssize_t 1512 sched_write(struct file *file, const char __user *buf, 1513 size_t count, loff_t *offset) 1514 { 1515 struct inode *inode = file_inode(file); 1516 struct task_struct *p; 1517 1518 p = get_proc_task(inode); 1519 if (!p) 1520 return -ESRCH; 1521 proc_sched_set_task(p); 1522 1523 put_task_struct(p); 1524 1525 return count; 1526 } 1527 1528 static int sched_open(struct inode *inode, struct file *filp) 1529 { 1530 return single_open(filp, sched_show, inode); 1531 } 1532 1533 static const struct file_operations proc_pid_sched_operations = { 1534 .open = sched_open, 1535 .read = seq_read, 1536 .write = sched_write, 1537 .llseek = seq_lseek, 1538 .release = single_release, 1539 }; 1540 1541 #ifdef CONFIG_SCHED_AUTOGROUP 1542 /* 1543 * Print out autogroup related information: 1544 */ 1545 static int sched_autogroup_show(struct seq_file *m, void *v) 1546 { 1547 struct inode *inode = m->private; 1548 struct task_struct *p; 1549 1550 p = get_proc_task(inode); 1551 if (!p) 1552 return -ESRCH; 1553 proc_sched_autogroup_show_task(p, m); 1554 1555 put_task_struct(p); 1556 1557 return 0; 1558 } 1559 1560 static ssize_t 1561 sched_autogroup_write(struct file *file, const char __user *buf, 1562 size_t count, loff_t *offset) 1563 { 1564 struct inode *inode = file_inode(file); 1565 struct task_struct *p; 1566 char buffer[PROC_NUMBUF] = {}; 1567 int nice; 1568 int err; 1569 1570 if (count > sizeof(buffer) - 1) 1571 count = sizeof(buffer) - 1; 1572 if (copy_from_user(buffer, buf, count)) 1573 return -EFAULT; 1574 1575 err = kstrtoint(strstrip(buffer), 0, &nice); 1576 if (err < 0) 1577 return err; 1578 1579 p = get_proc_task(inode); 1580 if (!p) 1581 return -ESRCH; 1582 1583 err = proc_sched_autogroup_set_nice(p, nice); 1584 if (err) 1585 count = err; 1586 1587 put_task_struct(p); 1588 1589 return count; 1590 } 1591 1592 static int sched_autogroup_open(struct inode *inode, struct file *filp) 1593 { 1594 int ret; 1595 1596 ret = single_open(filp, sched_autogroup_show, NULL); 1597 if (!ret) { 1598 struct seq_file *m = filp->private_data; 1599 1600 m->private = inode; 1601 } 1602 return ret; 1603 } 1604 1605 static const struct file_operations proc_pid_sched_autogroup_operations = { 1606 .open = sched_autogroup_open, 1607 .read = seq_read, 1608 .write = sched_autogroup_write, 1609 .llseek = seq_lseek, 1610 .release = single_release, 1611 }; 1612 1613 #endif /* CONFIG_SCHED_AUTOGROUP */ 1614 1615 #ifdef CONFIG_TIME_NS 1616 static int timens_offsets_show(struct seq_file *m, void *v) 1617 { 1618 struct task_struct *p; 1619 1620 p = get_proc_task(file_inode(m->file)); 1621 if (!p) 1622 return -ESRCH; 1623 proc_timens_show_offsets(p, m); 1624 1625 put_task_struct(p); 1626 1627 return 0; 1628 } 1629 1630 static ssize_t timens_offsets_write(struct file *file, const char __user *buf, 1631 size_t count, loff_t *ppos) 1632 { 1633 struct inode *inode = file_inode(file); 1634 struct proc_timens_offset offsets[2]; 1635 char *kbuf = NULL, *pos, *next_line; 1636 struct task_struct *p; 1637 int ret, noffsets; 1638 1639 /* Only allow < page size writes at the beginning of the file */ 1640 if ((*ppos != 0) || (count >= PAGE_SIZE)) 1641 return -EINVAL; 1642 1643 /* Slurp in the user data */ 1644 kbuf = memdup_user_nul(buf, count); 1645 if (IS_ERR(kbuf)) 1646 return PTR_ERR(kbuf); 1647 1648 /* Parse the user data */ 1649 ret = -EINVAL; 1650 noffsets = 0; 1651 for (pos = kbuf; pos; pos = next_line) { 1652 struct proc_timens_offset *off = &offsets[noffsets]; 1653 char clock[10]; 1654 int err; 1655 1656 /* Find the end of line and ensure we don't look past it */ 1657 next_line = strchr(pos, '\n'); 1658 if (next_line) { 1659 *next_line = '\0'; 1660 next_line++; 1661 if (*next_line == '\0') 1662 next_line = NULL; 1663 } 1664 1665 err = sscanf(pos, "%9s %lld %lu", clock, 1666 &off->val.tv_sec, &off->val.tv_nsec); 1667 if (err != 3 || off->val.tv_nsec >= NSEC_PER_SEC) 1668 goto out; 1669 1670 clock[sizeof(clock) - 1] = 0; 1671 if (strcmp(clock, "monotonic") == 0 || 1672 strcmp(clock, __stringify(CLOCK_MONOTONIC)) == 0) 1673 off->clockid = CLOCK_MONOTONIC; 1674 else if (strcmp(clock, "boottime") == 0 || 1675 strcmp(clock, __stringify(CLOCK_BOOTTIME)) == 0) 1676 off->clockid = CLOCK_BOOTTIME; 1677 else 1678 goto out; 1679 1680 noffsets++; 1681 if (noffsets == ARRAY_SIZE(offsets)) { 1682 if (next_line) 1683 count = next_line - kbuf; 1684 break; 1685 } 1686 } 1687 1688 ret = -ESRCH; 1689 p = get_proc_task(inode); 1690 if (!p) 1691 goto out; 1692 ret = proc_timens_set_offset(file, p, offsets, noffsets); 1693 put_task_struct(p); 1694 if (ret) 1695 goto out; 1696 1697 ret = count; 1698 out: 1699 kfree(kbuf); 1700 return ret; 1701 } 1702 1703 static int timens_offsets_open(struct inode *inode, struct file *filp) 1704 { 1705 return single_open(filp, timens_offsets_show, inode); 1706 } 1707 1708 static const struct file_operations proc_timens_offsets_operations = { 1709 .open = timens_offsets_open, 1710 .read = seq_read, 1711 .write = timens_offsets_write, 1712 .llseek = seq_lseek, 1713 .release = single_release, 1714 }; 1715 #endif /* CONFIG_TIME_NS */ 1716 1717 static ssize_t comm_write(struct file *file, const char __user *buf, 1718 size_t count, loff_t *offset) 1719 { 1720 struct inode *inode = file_inode(file); 1721 struct task_struct *p; 1722 char buffer[TASK_COMM_LEN] = {}; 1723 const size_t maxlen = sizeof(buffer) - 1; 1724 1725 if (copy_from_user(buffer, buf, count > maxlen ? maxlen : count)) 1726 return -EFAULT; 1727 1728 p = get_proc_task(inode); 1729 if (!p) 1730 return -ESRCH; 1731 1732 if (same_thread_group(current, p)) { 1733 set_task_comm(p, buffer); 1734 proc_comm_connector(p); 1735 } 1736 else 1737 count = -EINVAL; 1738 1739 put_task_struct(p); 1740 1741 return count; 1742 } 1743 1744 static int comm_show(struct seq_file *m, void *v) 1745 { 1746 struct inode *inode = m->private; 1747 struct task_struct *p; 1748 1749 p = get_proc_task(inode); 1750 if (!p) 1751 return -ESRCH; 1752 1753 proc_task_name(m, p, false); 1754 seq_putc(m, '\n'); 1755 1756 put_task_struct(p); 1757 1758 return 0; 1759 } 1760 1761 static int comm_open(struct inode *inode, struct file *filp) 1762 { 1763 return single_open(filp, comm_show, inode); 1764 } 1765 1766 static const struct file_operations proc_pid_set_comm_operations = { 1767 .open = comm_open, 1768 .read = seq_read, 1769 .write = comm_write, 1770 .llseek = seq_lseek, 1771 .release = single_release, 1772 }; 1773 1774 static int proc_exe_link(struct dentry *dentry, struct path *exe_path) 1775 { 1776 struct task_struct *task; 1777 struct file *exe_file; 1778 1779 task = get_proc_task(d_inode(dentry)); 1780 if (!task) 1781 return -ENOENT; 1782 exe_file = get_task_exe_file(task); 1783 put_task_struct(task); 1784 if (exe_file) { 1785 *exe_path = exe_file->f_path; 1786 path_get(&exe_file->f_path); 1787 fput(exe_file); 1788 return 0; 1789 } else 1790 return -ENOENT; 1791 } 1792 1793 static const char *proc_pid_get_link(struct dentry *dentry, 1794 struct inode *inode, 1795 struct delayed_call *done) 1796 { 1797 struct path path; 1798 int error = -EACCES; 1799 1800 if (!dentry) 1801 return ERR_PTR(-ECHILD); 1802 1803 /* Are we allowed to snoop on the tasks file descriptors? */ 1804 if (!proc_fd_access_allowed(inode)) 1805 goto out; 1806 1807 error = PROC_I(inode)->op.proc_get_link(dentry, &path); 1808 if (error) 1809 goto out; 1810 1811 error = nd_jump_link(&path); 1812 out: 1813 return ERR_PTR(error); 1814 } 1815 1816 static int do_proc_readlink(const struct path *path, char __user *buffer, int buflen) 1817 { 1818 char *tmp = kmalloc(PATH_MAX, GFP_KERNEL); 1819 char *pathname; 1820 int len; 1821 1822 if (!tmp) 1823 return -ENOMEM; 1824 1825 pathname = d_path(path, tmp, PATH_MAX); 1826 len = PTR_ERR(pathname); 1827 if (IS_ERR(pathname)) 1828 goto out; 1829 len = tmp + PATH_MAX - 1 - pathname; 1830 1831 if (len > buflen) 1832 len = buflen; 1833 if (copy_to_user(buffer, pathname, len)) 1834 len = -EFAULT; 1835 out: 1836 kfree(tmp); 1837 return len; 1838 } 1839 1840 static int proc_pid_readlink(struct dentry * dentry, char __user * buffer, int buflen) 1841 { 1842 int error = -EACCES; 1843 struct inode *inode = d_inode(dentry); 1844 struct path path; 1845 1846 /* Are we allowed to snoop on the tasks file descriptors? */ 1847 if (!proc_fd_access_allowed(inode)) 1848 goto out; 1849 1850 error = PROC_I(inode)->op.proc_get_link(dentry, &path); 1851 if (error) 1852 goto out; 1853 1854 error = do_proc_readlink(&path, buffer, buflen); 1855 path_put(&path); 1856 out: 1857 return error; 1858 } 1859 1860 const struct inode_operations proc_pid_link_inode_operations = { 1861 .readlink = proc_pid_readlink, 1862 .get_link = proc_pid_get_link, 1863 .setattr = proc_setattr, 1864 }; 1865 1866 1867 /* building an inode */ 1868 1869 void task_dump_owner(struct task_struct *task, umode_t mode, 1870 kuid_t *ruid, kgid_t *rgid) 1871 { 1872 /* Depending on the state of dumpable compute who should own a 1873 * proc file for a task. 1874 */ 1875 const struct cred *cred; 1876 kuid_t uid; 1877 kgid_t gid; 1878 1879 if (unlikely(task->flags & PF_KTHREAD)) { 1880 *ruid = GLOBAL_ROOT_UID; 1881 *rgid = GLOBAL_ROOT_GID; 1882 return; 1883 } 1884 1885 /* Default to the tasks effective ownership */ 1886 rcu_read_lock(); 1887 cred = __task_cred(task); 1888 uid = cred->euid; 1889 gid = cred->egid; 1890 rcu_read_unlock(); 1891 1892 /* 1893 * Before the /proc/pid/status file was created the only way to read 1894 * the effective uid of a /process was to stat /proc/pid. Reading 1895 * /proc/pid/status is slow enough that procps and other packages 1896 * kept stating /proc/pid. To keep the rules in /proc simple I have 1897 * made this apply to all per process world readable and executable 1898 * directories. 1899 */ 1900 if (mode != (S_IFDIR|S_IRUGO|S_IXUGO)) { 1901 struct mm_struct *mm; 1902 task_lock(task); 1903 mm = task->mm; 1904 /* Make non-dumpable tasks owned by some root */ 1905 if (mm) { 1906 if (get_dumpable(mm) != SUID_DUMP_USER) { 1907 struct user_namespace *user_ns = mm->user_ns; 1908 1909 uid = make_kuid(user_ns, 0); 1910 if (!uid_valid(uid)) 1911 uid = GLOBAL_ROOT_UID; 1912 1913 gid = make_kgid(user_ns, 0); 1914 if (!gid_valid(gid)) 1915 gid = GLOBAL_ROOT_GID; 1916 } 1917 } else { 1918 uid = GLOBAL_ROOT_UID; 1919 gid = GLOBAL_ROOT_GID; 1920 } 1921 task_unlock(task); 1922 } 1923 *ruid = uid; 1924 *rgid = gid; 1925 } 1926 1927 void proc_pid_evict_inode(struct proc_inode *ei) 1928 { 1929 struct pid *pid = ei->pid; 1930 1931 if (S_ISDIR(ei->vfs_inode.i_mode)) { 1932 spin_lock(&pid->lock); 1933 hlist_del_init_rcu(&ei->sibling_inodes); 1934 spin_unlock(&pid->lock); 1935 } 1936 } 1937 1938 struct inode *proc_pid_make_inode(struct super_block *sb, 1939 struct task_struct *task, umode_t mode) 1940 { 1941 struct inode * inode; 1942 struct proc_inode *ei; 1943 struct pid *pid; 1944 1945 /* We need a new inode */ 1946 1947 inode = new_inode(sb); 1948 if (!inode) 1949 goto out; 1950 1951 /* Common stuff */ 1952 ei = PROC_I(inode); 1953 inode->i_mode = mode; 1954 inode->i_ino = get_next_ino(); 1955 simple_inode_init_ts(inode); 1956 inode->i_op = &proc_def_inode_operations; 1957 1958 /* 1959 * grab the reference to task. 1960 */ 1961 pid = get_task_pid(task, PIDTYPE_PID); 1962 if (!pid) 1963 goto out_unlock; 1964 1965 /* Let the pid remember us for quick removal */ 1966 ei->pid = pid; 1967 1968 task_dump_owner(task, 0, &inode->i_uid, &inode->i_gid); 1969 security_task_to_inode(task, inode); 1970 1971 out: 1972 return inode; 1973 1974 out_unlock: 1975 iput(inode); 1976 return NULL; 1977 } 1978 1979 /* 1980 * Generating an inode and adding it into @pid->inodes, so that task will 1981 * invalidate inode's dentry before being released. 1982 * 1983 * This helper is used for creating dir-type entries under '/proc' and 1984 * '/proc/<tgid>/task'. Other entries(eg. fd, stat) under '/proc/<tgid>' 1985 * can be released by invalidating '/proc/<tgid>' dentry. 1986 * In theory, dentries under '/proc/<tgid>/task' can also be released by 1987 * invalidating '/proc/<tgid>' dentry, we reserve it to handle single 1988 * thread exiting situation: Any one of threads should invalidate its 1989 * '/proc/<tgid>/task/<pid>' dentry before released. 1990 */ 1991 static struct inode *proc_pid_make_base_inode(struct super_block *sb, 1992 struct task_struct *task, umode_t mode) 1993 { 1994 struct inode *inode; 1995 struct proc_inode *ei; 1996 struct pid *pid; 1997 1998 inode = proc_pid_make_inode(sb, task, mode); 1999 if (!inode) 2000 return NULL; 2001 2002 /* Let proc_flush_pid find this directory inode */ 2003 ei = PROC_I(inode); 2004 pid = ei->pid; 2005 spin_lock(&pid->lock); 2006 hlist_add_head_rcu(&ei->sibling_inodes, &pid->inodes); 2007 spin_unlock(&pid->lock); 2008 2009 return inode; 2010 } 2011 2012 int pid_getattr(struct mnt_idmap *idmap, const struct path *path, 2013 struct kstat *stat, u32 request_mask, unsigned int query_flags) 2014 { 2015 struct inode *inode = d_inode(path->dentry); 2016 struct proc_fs_info *fs_info = proc_sb_info(inode->i_sb); 2017 struct task_struct *task; 2018 2019 generic_fillattr(&nop_mnt_idmap, request_mask, inode, stat); 2020 2021 stat->uid = GLOBAL_ROOT_UID; 2022 stat->gid = GLOBAL_ROOT_GID; 2023 rcu_read_lock(); 2024 task = pid_task(proc_pid(inode), PIDTYPE_PID); 2025 if (task) { 2026 if (!has_pid_permissions(fs_info, task, HIDEPID_INVISIBLE)) { 2027 rcu_read_unlock(); 2028 /* 2029 * This doesn't prevent learning whether PID exists, 2030 * it only makes getattr() consistent with readdir(). 2031 */ 2032 return -ENOENT; 2033 } 2034 task_dump_owner(task, inode->i_mode, &stat->uid, &stat->gid); 2035 } 2036 rcu_read_unlock(); 2037 return 0; 2038 } 2039 2040 /* dentry stuff */ 2041 2042 /* 2043 * Set <pid>/... inode ownership (can change due to setuid(), etc.) 2044 */ 2045 void pid_update_inode(struct task_struct *task, struct inode *inode) 2046 { 2047 task_dump_owner(task, inode->i_mode, &inode->i_uid, &inode->i_gid); 2048 2049 inode->i_mode &= ~(S_ISUID | S_ISGID); 2050 security_task_to_inode(task, inode); 2051 } 2052 2053 /* 2054 * Rewrite the inode's ownerships here because the owning task may have 2055 * performed a setuid(), etc. 2056 * 2057 */ 2058 static int pid_revalidate(struct inode *dir, const struct qstr *name, 2059 struct dentry *dentry, unsigned int flags) 2060 { 2061 struct inode *inode; 2062 struct task_struct *task; 2063 int ret = 0; 2064 2065 rcu_read_lock(); 2066 inode = d_inode_rcu(dentry); 2067 if (!inode) 2068 goto out; 2069 task = pid_task(proc_pid(inode), PIDTYPE_PID); 2070 2071 if (task) { 2072 pid_update_inode(task, inode); 2073 ret = 1; 2074 } 2075 out: 2076 rcu_read_unlock(); 2077 return ret; 2078 } 2079 2080 static inline bool proc_inode_is_dead(struct inode *inode) 2081 { 2082 return !proc_pid(inode)->tasks[PIDTYPE_PID].first; 2083 } 2084 2085 int pid_delete_dentry(const struct dentry *dentry) 2086 { 2087 /* Is the task we represent dead? 2088 * If so, then don't put the dentry on the lru list, 2089 * kill it immediately. 2090 */ 2091 return proc_inode_is_dead(d_inode(dentry)); 2092 } 2093 2094 const struct dentry_operations pid_dentry_operations = 2095 { 2096 .d_revalidate = pid_revalidate, 2097 .d_delete = pid_delete_dentry, 2098 }; 2099 2100 /* Lookups */ 2101 2102 /* 2103 * Fill a directory entry. 2104 * 2105 * If possible create the dcache entry and derive our inode number and 2106 * file type from dcache entry. 2107 * 2108 * Since all of the proc inode numbers are dynamically generated, the inode 2109 * numbers do not exist until the inode is cache. This means creating 2110 * the dcache entry in readdir is necessary to keep the inode numbers 2111 * reported by readdir in sync with the inode numbers reported 2112 * by stat. 2113 */ 2114 bool proc_fill_cache(struct file *file, struct dir_context *ctx, 2115 const char *name, unsigned int len, 2116 instantiate_t instantiate, struct task_struct *task, const void *ptr) 2117 { 2118 struct dentry *child, *dir = file->f_path.dentry; 2119 struct qstr qname = QSTR_INIT(name, len); 2120 struct inode *inode; 2121 unsigned type = DT_UNKNOWN; 2122 ino_t ino = 1; 2123 2124 child = d_hash_and_lookup(dir, &qname); 2125 if (!child) { 2126 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq); 2127 child = d_alloc_parallel(dir, &qname, &wq); 2128 if (IS_ERR(child)) 2129 goto end_instantiate; 2130 if (d_in_lookup(child)) { 2131 struct dentry *res; 2132 res = instantiate(child, task, ptr); 2133 d_lookup_done(child); 2134 if (unlikely(res)) { 2135 dput(child); 2136 child = res; 2137 if (IS_ERR(child)) 2138 goto end_instantiate; 2139 } 2140 } 2141 } 2142 inode = d_inode(child); 2143 ino = inode->i_ino; 2144 type = inode->i_mode >> 12; 2145 dput(child); 2146 end_instantiate: 2147 return dir_emit(ctx, name, len, ino, type); 2148 } 2149 2150 /* 2151 * dname_to_vma_addr - maps a dentry name into two unsigned longs 2152 * which represent vma start and end addresses. 2153 */ 2154 static int dname_to_vma_addr(struct dentry *dentry, 2155 unsigned long *start, unsigned long *end) 2156 { 2157 const char *str = dentry->d_name.name; 2158 unsigned long long sval, eval; 2159 unsigned int len; 2160 2161 if (str[0] == '0' && str[1] != '-') 2162 return -EINVAL; 2163 len = _parse_integer(str, 16, &sval); 2164 if (len & KSTRTOX_OVERFLOW) 2165 return -EINVAL; 2166 if (sval != (unsigned long)sval) 2167 return -EINVAL; 2168 str += len; 2169 2170 if (*str != '-') 2171 return -EINVAL; 2172 str++; 2173 2174 if (str[0] == '0' && str[1]) 2175 return -EINVAL; 2176 len = _parse_integer(str, 16, &eval); 2177 if (len & KSTRTOX_OVERFLOW) 2178 return -EINVAL; 2179 if (eval != (unsigned long)eval) 2180 return -EINVAL; 2181 str += len; 2182 2183 if (*str != '\0') 2184 return -EINVAL; 2185 2186 *start = sval; 2187 *end = eval; 2188 2189 return 0; 2190 } 2191 2192 static int map_files_d_revalidate(struct inode *dir, const struct qstr *name, 2193 struct dentry *dentry, unsigned int flags) 2194 { 2195 unsigned long vm_start, vm_end; 2196 bool exact_vma_exists = false; 2197 struct mm_struct *mm = NULL; 2198 struct task_struct *task; 2199 struct inode *inode; 2200 int status = 0; 2201 2202 if (flags & LOOKUP_RCU) 2203 return -ECHILD; 2204 2205 inode = d_inode(dentry); 2206 task = get_proc_task(inode); 2207 if (!task) 2208 goto out_notask; 2209 2210 mm = mm_access(task, PTRACE_MODE_READ_FSCREDS); 2211 if (IS_ERR(mm)) 2212 goto out; 2213 2214 if (!dname_to_vma_addr(dentry, &vm_start, &vm_end)) { 2215 status = mmap_read_lock_killable(mm); 2216 if (!status) { 2217 exact_vma_exists = !!find_exact_vma(mm, vm_start, 2218 vm_end); 2219 mmap_read_unlock(mm); 2220 } 2221 } 2222 2223 mmput(mm); 2224 2225 if (exact_vma_exists) { 2226 task_dump_owner(task, 0, &inode->i_uid, &inode->i_gid); 2227 2228 security_task_to_inode(task, inode); 2229 status = 1; 2230 } 2231 2232 out: 2233 put_task_struct(task); 2234 2235 out_notask: 2236 return status; 2237 } 2238 2239 static const struct dentry_operations tid_map_files_dentry_operations = { 2240 .d_revalidate = map_files_d_revalidate, 2241 .d_delete = pid_delete_dentry, 2242 }; 2243 2244 static int map_files_get_link(struct dentry *dentry, struct path *path) 2245 { 2246 unsigned long vm_start, vm_end; 2247 struct vm_area_struct *vma; 2248 struct task_struct *task; 2249 struct mm_struct *mm; 2250 int rc; 2251 2252 rc = -ENOENT; 2253 task = get_proc_task(d_inode(dentry)); 2254 if (!task) 2255 goto out; 2256 2257 mm = get_task_mm(task); 2258 put_task_struct(task); 2259 if (!mm) 2260 goto out; 2261 2262 rc = dname_to_vma_addr(dentry, &vm_start, &vm_end); 2263 if (rc) 2264 goto out_mmput; 2265 2266 rc = mmap_read_lock_killable(mm); 2267 if (rc) 2268 goto out_mmput; 2269 2270 rc = -ENOENT; 2271 vma = find_exact_vma(mm, vm_start, vm_end); 2272 if (vma && vma->vm_file) { 2273 *path = *file_user_path(vma->vm_file); 2274 path_get(path); 2275 rc = 0; 2276 } 2277 mmap_read_unlock(mm); 2278 2279 out_mmput: 2280 mmput(mm); 2281 out: 2282 return rc; 2283 } 2284 2285 struct map_files_info { 2286 unsigned long start; 2287 unsigned long end; 2288 fmode_t mode; 2289 }; 2290 2291 /* 2292 * Only allow CAP_SYS_ADMIN and CAP_CHECKPOINT_RESTORE to follow the links, due 2293 * to concerns about how the symlinks may be used to bypass permissions on 2294 * ancestor directories in the path to the file in question. 2295 */ 2296 static const char * 2297 proc_map_files_get_link(struct dentry *dentry, 2298 struct inode *inode, 2299 struct delayed_call *done) 2300 { 2301 if (!checkpoint_restore_ns_capable(&init_user_ns)) 2302 return ERR_PTR(-EPERM); 2303 2304 return proc_pid_get_link(dentry, inode, done); 2305 } 2306 2307 /* 2308 * Identical to proc_pid_link_inode_operations except for get_link() 2309 */ 2310 static const struct inode_operations proc_map_files_link_inode_operations = { 2311 .readlink = proc_pid_readlink, 2312 .get_link = proc_map_files_get_link, 2313 .setattr = proc_setattr, 2314 }; 2315 2316 static struct dentry * 2317 proc_map_files_instantiate(struct dentry *dentry, 2318 struct task_struct *task, const void *ptr) 2319 { 2320 fmode_t mode = (fmode_t)(unsigned long)ptr; 2321 struct proc_inode *ei; 2322 struct inode *inode; 2323 2324 inode = proc_pid_make_inode(dentry->d_sb, task, S_IFLNK | 2325 ((mode & FMODE_READ ) ? S_IRUSR : 0) | 2326 ((mode & FMODE_WRITE) ? S_IWUSR : 0)); 2327 if (!inode) 2328 return ERR_PTR(-ENOENT); 2329 2330 ei = PROC_I(inode); 2331 ei->op.proc_get_link = map_files_get_link; 2332 2333 inode->i_op = &proc_map_files_link_inode_operations; 2334 inode->i_size = 64; 2335 2336 return proc_splice_unmountable(inode, dentry, 2337 &tid_map_files_dentry_operations); 2338 } 2339 2340 static struct dentry *proc_map_files_lookup(struct inode *dir, 2341 struct dentry *dentry, unsigned int flags) 2342 { 2343 unsigned long vm_start, vm_end; 2344 struct vm_area_struct *vma; 2345 struct task_struct *task; 2346 struct dentry *result; 2347 struct mm_struct *mm; 2348 2349 result = ERR_PTR(-ENOENT); 2350 task = get_proc_task(dir); 2351 if (!task) 2352 goto out; 2353 2354 result = ERR_PTR(-EACCES); 2355 if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS)) 2356 goto out_put_task; 2357 2358 result = ERR_PTR(-ENOENT); 2359 if (dname_to_vma_addr(dentry, &vm_start, &vm_end)) 2360 goto out_put_task; 2361 2362 mm = get_task_mm(task); 2363 if (!mm) 2364 goto out_put_task; 2365 2366 result = ERR_PTR(-EINTR); 2367 if (mmap_read_lock_killable(mm)) 2368 goto out_put_mm; 2369 2370 result = ERR_PTR(-ENOENT); 2371 vma = find_exact_vma(mm, vm_start, vm_end); 2372 if (!vma) 2373 goto out_no_vma; 2374 2375 if (vma->vm_file) 2376 result = proc_map_files_instantiate(dentry, task, 2377 (void *)(unsigned long)vma->vm_file->f_mode); 2378 2379 out_no_vma: 2380 mmap_read_unlock(mm); 2381 out_put_mm: 2382 mmput(mm); 2383 out_put_task: 2384 put_task_struct(task); 2385 out: 2386 return result; 2387 } 2388 2389 static const struct inode_operations proc_map_files_inode_operations = { 2390 .lookup = proc_map_files_lookup, 2391 .permission = proc_fd_permission, 2392 .setattr = proc_setattr, 2393 }; 2394 2395 static int 2396 proc_map_files_readdir(struct file *file, struct dir_context *ctx) 2397 { 2398 struct vm_area_struct *vma; 2399 struct task_struct *task; 2400 struct mm_struct *mm; 2401 unsigned long nr_files, pos, i; 2402 GENRADIX(struct map_files_info) fa; 2403 struct map_files_info *p; 2404 int ret; 2405 struct vma_iterator vmi; 2406 2407 genradix_init(&fa); 2408 2409 ret = -ENOENT; 2410 task = get_proc_task(file_inode(file)); 2411 if (!task) 2412 goto out; 2413 2414 ret = -EACCES; 2415 if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS)) 2416 goto out_put_task; 2417 2418 ret = 0; 2419 if (!dir_emit_dots(file, ctx)) 2420 goto out_put_task; 2421 2422 mm = get_task_mm(task); 2423 if (!mm) 2424 goto out_put_task; 2425 2426 ret = mmap_read_lock_killable(mm); 2427 if (ret) { 2428 mmput(mm); 2429 goto out_put_task; 2430 } 2431 2432 nr_files = 0; 2433 2434 /* 2435 * We need two passes here: 2436 * 2437 * 1) Collect vmas of mapped files with mmap_lock taken 2438 * 2) Release mmap_lock and instantiate entries 2439 * 2440 * otherwise we get lockdep complained, since filldir() 2441 * routine might require mmap_lock taken in might_fault(). 2442 */ 2443 2444 pos = 2; 2445 vma_iter_init(&vmi, mm, 0); 2446 for_each_vma(vmi, vma) { 2447 if (!vma->vm_file) 2448 continue; 2449 if (++pos <= ctx->pos) 2450 continue; 2451 2452 p = genradix_ptr_alloc(&fa, nr_files++, GFP_KERNEL); 2453 if (!p) { 2454 ret = -ENOMEM; 2455 mmap_read_unlock(mm); 2456 mmput(mm); 2457 goto out_put_task; 2458 } 2459 2460 p->start = vma->vm_start; 2461 p->end = vma->vm_end; 2462 p->mode = vma->vm_file->f_mode; 2463 } 2464 mmap_read_unlock(mm); 2465 mmput(mm); 2466 2467 for (i = 0; i < nr_files; i++) { 2468 char buf[4 * sizeof(long) + 2]; /* max: %lx-%lx\0 */ 2469 unsigned int len; 2470 2471 p = genradix_ptr(&fa, i); 2472 len = snprintf(buf, sizeof(buf), "%lx-%lx", p->start, p->end); 2473 if (!proc_fill_cache(file, ctx, 2474 buf, len, 2475 proc_map_files_instantiate, 2476 task, 2477 (void *)(unsigned long)p->mode)) 2478 break; 2479 ctx->pos++; 2480 } 2481 2482 out_put_task: 2483 put_task_struct(task); 2484 out: 2485 genradix_free(&fa); 2486 return ret; 2487 } 2488 2489 static const struct file_operations proc_map_files_operations = { 2490 .read = generic_read_dir, 2491 .iterate_shared = proc_map_files_readdir, 2492 .llseek = generic_file_llseek, 2493 }; 2494 2495 #if defined(CONFIG_CHECKPOINT_RESTORE) && defined(CONFIG_POSIX_TIMERS) 2496 struct timers_private { 2497 struct pid *pid; 2498 struct task_struct *task; 2499 struct sighand_struct *sighand; 2500 struct pid_namespace *ns; 2501 unsigned long flags; 2502 }; 2503 2504 static void *timers_start(struct seq_file *m, loff_t *pos) 2505 { 2506 struct timers_private *tp = m->private; 2507 2508 tp->task = get_pid_task(tp->pid, PIDTYPE_PID); 2509 if (!tp->task) 2510 return ERR_PTR(-ESRCH); 2511 2512 tp->sighand = lock_task_sighand(tp->task, &tp->flags); 2513 if (!tp->sighand) 2514 return ERR_PTR(-ESRCH); 2515 2516 return seq_hlist_start(&tp->task->signal->posix_timers, *pos); 2517 } 2518 2519 static void *timers_next(struct seq_file *m, void *v, loff_t *pos) 2520 { 2521 struct timers_private *tp = m->private; 2522 return seq_hlist_next(v, &tp->task->signal->posix_timers, pos); 2523 } 2524 2525 static void timers_stop(struct seq_file *m, void *v) 2526 { 2527 struct timers_private *tp = m->private; 2528 2529 if (tp->sighand) { 2530 unlock_task_sighand(tp->task, &tp->flags); 2531 tp->sighand = NULL; 2532 } 2533 2534 if (tp->task) { 2535 put_task_struct(tp->task); 2536 tp->task = NULL; 2537 } 2538 } 2539 2540 static int show_timer(struct seq_file *m, void *v) 2541 { 2542 struct k_itimer *timer; 2543 struct timers_private *tp = m->private; 2544 int notify; 2545 static const char * const nstr[] = { 2546 [SIGEV_SIGNAL] = "signal", 2547 [SIGEV_NONE] = "none", 2548 [SIGEV_THREAD] = "thread", 2549 }; 2550 2551 timer = hlist_entry((struct hlist_node *)v, struct k_itimer, list); 2552 notify = timer->it_sigev_notify; 2553 2554 seq_printf(m, "ID: %d\n", timer->it_id); 2555 seq_printf(m, "signal: %d/%px\n", 2556 timer->sigq.info.si_signo, 2557 timer->sigq.info.si_value.sival_ptr); 2558 seq_printf(m, "notify: %s/%s.%d\n", 2559 nstr[notify & ~SIGEV_THREAD_ID], 2560 (notify & SIGEV_THREAD_ID) ? "tid" : "pid", 2561 pid_nr_ns(timer->it_pid, tp->ns)); 2562 seq_printf(m, "ClockID: %d\n", timer->it_clock); 2563 2564 return 0; 2565 } 2566 2567 static const struct seq_operations proc_timers_seq_ops = { 2568 .start = timers_start, 2569 .next = timers_next, 2570 .stop = timers_stop, 2571 .show = show_timer, 2572 }; 2573 2574 static int proc_timers_open(struct inode *inode, struct file *file) 2575 { 2576 struct timers_private *tp; 2577 2578 tp = __seq_open_private(file, &proc_timers_seq_ops, 2579 sizeof(struct timers_private)); 2580 if (!tp) 2581 return -ENOMEM; 2582 2583 tp->pid = proc_pid(inode); 2584 tp->ns = proc_pid_ns(inode->i_sb); 2585 return 0; 2586 } 2587 2588 static const struct file_operations proc_timers_operations = { 2589 .open = proc_timers_open, 2590 .read = seq_read, 2591 .llseek = seq_lseek, 2592 .release = seq_release_private, 2593 }; 2594 #endif 2595 2596 static ssize_t timerslack_ns_write(struct file *file, const char __user *buf, 2597 size_t count, loff_t *offset) 2598 { 2599 struct inode *inode = file_inode(file); 2600 struct task_struct *p; 2601 u64 slack_ns; 2602 int err; 2603 2604 err = kstrtoull_from_user(buf, count, 10, &slack_ns); 2605 if (err < 0) 2606 return err; 2607 2608 p = get_proc_task(inode); 2609 if (!p) 2610 return -ESRCH; 2611 2612 if (p != current) { 2613 rcu_read_lock(); 2614 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) { 2615 rcu_read_unlock(); 2616 count = -EPERM; 2617 goto out; 2618 } 2619 rcu_read_unlock(); 2620 2621 err = security_task_setscheduler(p); 2622 if (err) { 2623 count = err; 2624 goto out; 2625 } 2626 } 2627 2628 task_lock(p); 2629 if (rt_or_dl_task_policy(p)) 2630 slack_ns = 0; 2631 else if (slack_ns == 0) 2632 slack_ns = p->default_timer_slack_ns; 2633 p->timer_slack_ns = slack_ns; 2634 task_unlock(p); 2635 2636 out: 2637 put_task_struct(p); 2638 2639 return count; 2640 } 2641 2642 static int timerslack_ns_show(struct seq_file *m, void *v) 2643 { 2644 struct inode *inode = m->private; 2645 struct task_struct *p; 2646 int err = 0; 2647 2648 p = get_proc_task(inode); 2649 if (!p) 2650 return -ESRCH; 2651 2652 if (p != current) { 2653 rcu_read_lock(); 2654 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) { 2655 rcu_read_unlock(); 2656 err = -EPERM; 2657 goto out; 2658 } 2659 rcu_read_unlock(); 2660 2661 err = security_task_getscheduler(p); 2662 if (err) 2663 goto out; 2664 } 2665 2666 task_lock(p); 2667 seq_printf(m, "%llu\n", p->timer_slack_ns); 2668 task_unlock(p); 2669 2670 out: 2671 put_task_struct(p); 2672 2673 return err; 2674 } 2675 2676 static int timerslack_ns_open(struct inode *inode, struct file *filp) 2677 { 2678 return single_open(filp, timerslack_ns_show, inode); 2679 } 2680 2681 static const struct file_operations proc_pid_set_timerslack_ns_operations = { 2682 .open = timerslack_ns_open, 2683 .read = seq_read, 2684 .write = timerslack_ns_write, 2685 .llseek = seq_lseek, 2686 .release = single_release, 2687 }; 2688 2689 static struct dentry *proc_pident_instantiate(struct dentry *dentry, 2690 struct task_struct *task, const void *ptr) 2691 { 2692 const struct pid_entry *p = ptr; 2693 struct inode *inode; 2694 struct proc_inode *ei; 2695 2696 inode = proc_pid_make_inode(dentry->d_sb, task, p->mode); 2697 if (!inode) 2698 return ERR_PTR(-ENOENT); 2699 2700 ei = PROC_I(inode); 2701 if (S_ISDIR(inode->i_mode)) 2702 set_nlink(inode, 2); /* Use getattr to fix if necessary */ 2703 if (p->iop) 2704 inode->i_op = p->iop; 2705 if (p->fop) 2706 inode->i_fop = p->fop; 2707 ei->op = p->op; 2708 pid_update_inode(task, inode); 2709 d_set_d_op(dentry, &pid_dentry_operations); 2710 return d_splice_alias(inode, dentry); 2711 } 2712 2713 static struct dentry *proc_pident_lookup(struct inode *dir, 2714 struct dentry *dentry, 2715 const struct pid_entry *p, 2716 const struct pid_entry *end) 2717 { 2718 struct task_struct *task = get_proc_task(dir); 2719 struct dentry *res = ERR_PTR(-ENOENT); 2720 2721 if (!task) 2722 goto out_no_task; 2723 2724 /* 2725 * Yes, it does not scale. And it should not. Don't add 2726 * new entries into /proc/<tgid>/ without very good reasons. 2727 */ 2728 for (; p < end; p++) { 2729 if (p->len != dentry->d_name.len) 2730 continue; 2731 if (!memcmp(dentry->d_name.name, p->name, p->len)) { 2732 res = proc_pident_instantiate(dentry, task, p); 2733 break; 2734 } 2735 } 2736 put_task_struct(task); 2737 out_no_task: 2738 return res; 2739 } 2740 2741 static int proc_pident_readdir(struct file *file, struct dir_context *ctx, 2742 const struct pid_entry *ents, unsigned int nents) 2743 { 2744 struct task_struct *task = get_proc_task(file_inode(file)); 2745 const struct pid_entry *p; 2746 2747 if (!task) 2748 return -ENOENT; 2749 2750 if (!dir_emit_dots(file, ctx)) 2751 goto out; 2752 2753 if (ctx->pos >= nents + 2) 2754 goto out; 2755 2756 for (p = ents + (ctx->pos - 2); p < ents + nents; p++) { 2757 if (!proc_fill_cache(file, ctx, p->name, p->len, 2758 proc_pident_instantiate, task, p)) 2759 break; 2760 ctx->pos++; 2761 } 2762 out: 2763 put_task_struct(task); 2764 return 0; 2765 } 2766 2767 #ifdef CONFIG_SECURITY 2768 static int proc_pid_attr_open(struct inode *inode, struct file *file) 2769 { 2770 file->private_data = NULL; 2771 __mem_open(inode, file, PTRACE_MODE_READ_FSCREDS); 2772 return 0; 2773 } 2774 2775 static ssize_t proc_pid_attr_read(struct file * file, char __user * buf, 2776 size_t count, loff_t *ppos) 2777 { 2778 struct inode * inode = file_inode(file); 2779 char *p = NULL; 2780 ssize_t length; 2781 struct task_struct *task = get_proc_task(inode); 2782 2783 if (!task) 2784 return -ESRCH; 2785 2786 length = security_getprocattr(task, PROC_I(inode)->op.lsmid, 2787 file->f_path.dentry->d_name.name, 2788 &p); 2789 put_task_struct(task); 2790 if (length > 0) 2791 length = simple_read_from_buffer(buf, count, ppos, p, length); 2792 kfree(p); 2793 return length; 2794 } 2795 2796 static ssize_t proc_pid_attr_write(struct file * file, const char __user * buf, 2797 size_t count, loff_t *ppos) 2798 { 2799 struct inode * inode = file_inode(file); 2800 struct task_struct *task; 2801 void *page; 2802 int rv; 2803 2804 /* A task may only write when it was the opener. */ 2805 if (file->private_data != current->mm) 2806 return -EPERM; 2807 2808 rcu_read_lock(); 2809 task = pid_task(proc_pid(inode), PIDTYPE_PID); 2810 if (!task) { 2811 rcu_read_unlock(); 2812 return -ESRCH; 2813 } 2814 /* A task may only write its own attributes. */ 2815 if (current != task) { 2816 rcu_read_unlock(); 2817 return -EACCES; 2818 } 2819 /* Prevent changes to overridden credentials. */ 2820 if (current_cred() != current_real_cred()) { 2821 rcu_read_unlock(); 2822 return -EBUSY; 2823 } 2824 rcu_read_unlock(); 2825 2826 if (count > PAGE_SIZE) 2827 count = PAGE_SIZE; 2828 2829 /* No partial writes. */ 2830 if (*ppos != 0) 2831 return -EINVAL; 2832 2833 page = memdup_user(buf, count); 2834 if (IS_ERR(page)) { 2835 rv = PTR_ERR(page); 2836 goto out; 2837 } 2838 2839 /* Guard against adverse ptrace interaction */ 2840 rv = mutex_lock_interruptible(¤t->signal->cred_guard_mutex); 2841 if (rv < 0) 2842 goto out_free; 2843 2844 rv = security_setprocattr(PROC_I(inode)->op.lsmid, 2845 file->f_path.dentry->d_name.name, page, 2846 count); 2847 mutex_unlock(¤t->signal->cred_guard_mutex); 2848 out_free: 2849 kfree(page); 2850 out: 2851 return rv; 2852 } 2853 2854 static const struct file_operations proc_pid_attr_operations = { 2855 .open = proc_pid_attr_open, 2856 .read = proc_pid_attr_read, 2857 .write = proc_pid_attr_write, 2858 .llseek = generic_file_llseek, 2859 .release = mem_release, 2860 }; 2861 2862 #define LSM_DIR_OPS(LSM) \ 2863 static int proc_##LSM##_attr_dir_iterate(struct file *filp, \ 2864 struct dir_context *ctx) \ 2865 { \ 2866 return proc_pident_readdir(filp, ctx, \ 2867 LSM##_attr_dir_stuff, \ 2868 ARRAY_SIZE(LSM##_attr_dir_stuff)); \ 2869 } \ 2870 \ 2871 static const struct file_operations proc_##LSM##_attr_dir_ops = { \ 2872 .read = generic_read_dir, \ 2873 .iterate_shared = proc_##LSM##_attr_dir_iterate, \ 2874 .llseek = default_llseek, \ 2875 }; \ 2876 \ 2877 static struct dentry *proc_##LSM##_attr_dir_lookup(struct inode *dir, \ 2878 struct dentry *dentry, unsigned int flags) \ 2879 { \ 2880 return proc_pident_lookup(dir, dentry, \ 2881 LSM##_attr_dir_stuff, \ 2882 LSM##_attr_dir_stuff + ARRAY_SIZE(LSM##_attr_dir_stuff)); \ 2883 } \ 2884 \ 2885 static const struct inode_operations proc_##LSM##_attr_dir_inode_ops = { \ 2886 .lookup = proc_##LSM##_attr_dir_lookup, \ 2887 .getattr = pid_getattr, \ 2888 .setattr = proc_setattr, \ 2889 } 2890 2891 #ifdef CONFIG_SECURITY_SMACK 2892 static const struct pid_entry smack_attr_dir_stuff[] = { 2893 ATTR(LSM_ID_SMACK, "current", 0666), 2894 }; 2895 LSM_DIR_OPS(smack); 2896 #endif 2897 2898 #ifdef CONFIG_SECURITY_APPARMOR 2899 static const struct pid_entry apparmor_attr_dir_stuff[] = { 2900 ATTR(LSM_ID_APPARMOR, "current", 0666), 2901 ATTR(LSM_ID_APPARMOR, "prev", 0444), 2902 ATTR(LSM_ID_APPARMOR, "exec", 0666), 2903 }; 2904 LSM_DIR_OPS(apparmor); 2905 #endif 2906 2907 static const struct pid_entry attr_dir_stuff[] = { 2908 ATTR(LSM_ID_UNDEF, "current", 0666), 2909 ATTR(LSM_ID_UNDEF, "prev", 0444), 2910 ATTR(LSM_ID_UNDEF, "exec", 0666), 2911 ATTR(LSM_ID_UNDEF, "fscreate", 0666), 2912 ATTR(LSM_ID_UNDEF, "keycreate", 0666), 2913 ATTR(LSM_ID_UNDEF, "sockcreate", 0666), 2914 #ifdef CONFIG_SECURITY_SMACK 2915 DIR("smack", 0555, 2916 proc_smack_attr_dir_inode_ops, proc_smack_attr_dir_ops), 2917 #endif 2918 #ifdef CONFIG_SECURITY_APPARMOR 2919 DIR("apparmor", 0555, 2920 proc_apparmor_attr_dir_inode_ops, proc_apparmor_attr_dir_ops), 2921 #endif 2922 }; 2923 2924 static int proc_attr_dir_readdir(struct file *file, struct dir_context *ctx) 2925 { 2926 return proc_pident_readdir(file, ctx, 2927 attr_dir_stuff, ARRAY_SIZE(attr_dir_stuff)); 2928 } 2929 2930 static const struct file_operations proc_attr_dir_operations = { 2931 .read = generic_read_dir, 2932 .iterate_shared = proc_attr_dir_readdir, 2933 .llseek = generic_file_llseek, 2934 }; 2935 2936 static struct dentry *proc_attr_dir_lookup(struct inode *dir, 2937 struct dentry *dentry, unsigned int flags) 2938 { 2939 return proc_pident_lookup(dir, dentry, 2940 attr_dir_stuff, 2941 attr_dir_stuff + ARRAY_SIZE(attr_dir_stuff)); 2942 } 2943 2944 static const struct inode_operations proc_attr_dir_inode_operations = { 2945 .lookup = proc_attr_dir_lookup, 2946 .getattr = pid_getattr, 2947 .setattr = proc_setattr, 2948 }; 2949 2950 #endif 2951 2952 #ifdef CONFIG_ELF_CORE 2953 static ssize_t proc_coredump_filter_read(struct file *file, char __user *buf, 2954 size_t count, loff_t *ppos) 2955 { 2956 struct task_struct *task = get_proc_task(file_inode(file)); 2957 struct mm_struct *mm; 2958 char buffer[PROC_NUMBUF]; 2959 size_t len; 2960 int ret; 2961 2962 if (!task) 2963 return -ESRCH; 2964 2965 ret = 0; 2966 mm = get_task_mm(task); 2967 if (mm) { 2968 len = snprintf(buffer, sizeof(buffer), "%08lx\n", 2969 ((mm->flags & MMF_DUMP_FILTER_MASK) >> 2970 MMF_DUMP_FILTER_SHIFT)); 2971 mmput(mm); 2972 ret = simple_read_from_buffer(buf, count, ppos, buffer, len); 2973 } 2974 2975 put_task_struct(task); 2976 2977 return ret; 2978 } 2979 2980 static ssize_t proc_coredump_filter_write(struct file *file, 2981 const char __user *buf, 2982 size_t count, 2983 loff_t *ppos) 2984 { 2985 struct task_struct *task; 2986 struct mm_struct *mm; 2987 unsigned int val; 2988 int ret; 2989 int i; 2990 unsigned long mask; 2991 2992 ret = kstrtouint_from_user(buf, count, 0, &val); 2993 if (ret < 0) 2994 return ret; 2995 2996 ret = -ESRCH; 2997 task = get_proc_task(file_inode(file)); 2998 if (!task) 2999 goto out_no_task; 3000 3001 mm = get_task_mm(task); 3002 if (!mm) 3003 goto out_no_mm; 3004 ret = 0; 3005 3006 for (i = 0, mask = 1; i < MMF_DUMP_FILTER_BITS; i++, mask <<= 1) { 3007 if (val & mask) 3008 set_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags); 3009 else 3010 clear_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags); 3011 } 3012 3013 mmput(mm); 3014 out_no_mm: 3015 put_task_struct(task); 3016 out_no_task: 3017 if (ret < 0) 3018 return ret; 3019 return count; 3020 } 3021 3022 static const struct file_operations proc_coredump_filter_operations = { 3023 .read = proc_coredump_filter_read, 3024 .write = proc_coredump_filter_write, 3025 .llseek = generic_file_llseek, 3026 }; 3027 #endif 3028 3029 #ifdef CONFIG_TASK_IO_ACCOUNTING 3030 static int do_io_accounting(struct task_struct *task, struct seq_file *m, int whole) 3031 { 3032 struct task_io_accounting acct; 3033 int result; 3034 3035 result = down_read_killable(&task->signal->exec_update_lock); 3036 if (result) 3037 return result; 3038 3039 if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS)) { 3040 result = -EACCES; 3041 goto out_unlock; 3042 } 3043 3044 if (whole) { 3045 struct signal_struct *sig = task->signal; 3046 struct task_struct *t; 3047 unsigned int seq = 1; 3048 unsigned long flags; 3049 3050 rcu_read_lock(); 3051 do { 3052 seq++; /* 2 on the 1st/lockless path, otherwise odd */ 3053 flags = read_seqbegin_or_lock_irqsave(&sig->stats_lock, &seq); 3054 3055 acct = sig->ioac; 3056 __for_each_thread(sig, t) 3057 task_io_accounting_add(&acct, &t->ioac); 3058 3059 } while (need_seqretry(&sig->stats_lock, seq)); 3060 done_seqretry_irqrestore(&sig->stats_lock, seq, flags); 3061 rcu_read_unlock(); 3062 } else { 3063 acct = task->ioac; 3064 } 3065 3066 seq_printf(m, 3067 "rchar: %llu\n" 3068 "wchar: %llu\n" 3069 "syscr: %llu\n" 3070 "syscw: %llu\n" 3071 "read_bytes: %llu\n" 3072 "write_bytes: %llu\n" 3073 "cancelled_write_bytes: %llu\n", 3074 (unsigned long long)acct.rchar, 3075 (unsigned long long)acct.wchar, 3076 (unsigned long long)acct.syscr, 3077 (unsigned long long)acct.syscw, 3078 (unsigned long long)acct.read_bytes, 3079 (unsigned long long)acct.write_bytes, 3080 (unsigned long long)acct.cancelled_write_bytes); 3081 result = 0; 3082 3083 out_unlock: 3084 up_read(&task->signal->exec_update_lock); 3085 return result; 3086 } 3087 3088 static int proc_tid_io_accounting(struct seq_file *m, struct pid_namespace *ns, 3089 struct pid *pid, struct task_struct *task) 3090 { 3091 return do_io_accounting(task, m, 0); 3092 } 3093 3094 static int proc_tgid_io_accounting(struct seq_file *m, struct pid_namespace *ns, 3095 struct pid *pid, struct task_struct *task) 3096 { 3097 return do_io_accounting(task, m, 1); 3098 } 3099 #endif /* CONFIG_TASK_IO_ACCOUNTING */ 3100 3101 #ifdef CONFIG_USER_NS 3102 static int proc_id_map_open(struct inode *inode, struct file *file, 3103 const struct seq_operations *seq_ops) 3104 { 3105 struct user_namespace *ns = NULL; 3106 struct task_struct *task; 3107 struct seq_file *seq; 3108 int ret = -EINVAL; 3109 3110 task = get_proc_task(inode); 3111 if (task) { 3112 rcu_read_lock(); 3113 ns = get_user_ns(task_cred_xxx(task, user_ns)); 3114 rcu_read_unlock(); 3115 put_task_struct(task); 3116 } 3117 if (!ns) 3118 goto err; 3119 3120 ret = seq_open(file, seq_ops); 3121 if (ret) 3122 goto err_put_ns; 3123 3124 seq = file->private_data; 3125 seq->private = ns; 3126 3127 return 0; 3128 err_put_ns: 3129 put_user_ns(ns); 3130 err: 3131 return ret; 3132 } 3133 3134 static int proc_id_map_release(struct inode *inode, struct file *file) 3135 { 3136 struct seq_file *seq = file->private_data; 3137 struct user_namespace *ns = seq->private; 3138 put_user_ns(ns); 3139 return seq_release(inode, file); 3140 } 3141 3142 static int proc_uid_map_open(struct inode *inode, struct file *file) 3143 { 3144 return proc_id_map_open(inode, file, &proc_uid_seq_operations); 3145 } 3146 3147 static int proc_gid_map_open(struct inode *inode, struct file *file) 3148 { 3149 return proc_id_map_open(inode, file, &proc_gid_seq_operations); 3150 } 3151 3152 static int proc_projid_map_open(struct inode *inode, struct file *file) 3153 { 3154 return proc_id_map_open(inode, file, &proc_projid_seq_operations); 3155 } 3156 3157 static const struct file_operations proc_uid_map_operations = { 3158 .open = proc_uid_map_open, 3159 .write = proc_uid_map_write, 3160 .read = seq_read, 3161 .llseek = seq_lseek, 3162 .release = proc_id_map_release, 3163 }; 3164 3165 static const struct file_operations proc_gid_map_operations = { 3166 .open = proc_gid_map_open, 3167 .write = proc_gid_map_write, 3168 .read = seq_read, 3169 .llseek = seq_lseek, 3170 .release = proc_id_map_release, 3171 }; 3172 3173 static const struct file_operations proc_projid_map_operations = { 3174 .open = proc_projid_map_open, 3175 .write = proc_projid_map_write, 3176 .read = seq_read, 3177 .llseek = seq_lseek, 3178 .release = proc_id_map_release, 3179 }; 3180 3181 static int proc_setgroups_open(struct inode *inode, struct file *file) 3182 { 3183 struct user_namespace *ns = NULL; 3184 struct task_struct *task; 3185 int ret; 3186 3187 ret = -ESRCH; 3188 task = get_proc_task(inode); 3189 if (task) { 3190 rcu_read_lock(); 3191 ns = get_user_ns(task_cred_xxx(task, user_ns)); 3192 rcu_read_unlock(); 3193 put_task_struct(task); 3194 } 3195 if (!ns) 3196 goto err; 3197 3198 if (file->f_mode & FMODE_WRITE) { 3199 ret = -EACCES; 3200 if (!ns_capable(ns, CAP_SYS_ADMIN)) 3201 goto err_put_ns; 3202 } 3203 3204 ret = single_open(file, &proc_setgroups_show, ns); 3205 if (ret) 3206 goto err_put_ns; 3207 3208 return 0; 3209 err_put_ns: 3210 put_user_ns(ns); 3211 err: 3212 return ret; 3213 } 3214 3215 static int proc_setgroups_release(struct inode *inode, struct file *file) 3216 { 3217 struct seq_file *seq = file->private_data; 3218 struct user_namespace *ns = seq->private; 3219 int ret = single_release(inode, file); 3220 put_user_ns(ns); 3221 return ret; 3222 } 3223 3224 static const struct file_operations proc_setgroups_operations = { 3225 .open = proc_setgroups_open, 3226 .write = proc_setgroups_write, 3227 .read = seq_read, 3228 .llseek = seq_lseek, 3229 .release = proc_setgroups_release, 3230 }; 3231 #endif /* CONFIG_USER_NS */ 3232 3233 static int proc_pid_personality(struct seq_file *m, struct pid_namespace *ns, 3234 struct pid *pid, struct task_struct *task) 3235 { 3236 int err = lock_trace(task); 3237 if (!err) { 3238 seq_printf(m, "%08x\n", task->personality); 3239 unlock_trace(task); 3240 } 3241 return err; 3242 } 3243 3244 #ifdef CONFIG_LIVEPATCH 3245 static int proc_pid_patch_state(struct seq_file *m, struct pid_namespace *ns, 3246 struct pid *pid, struct task_struct *task) 3247 { 3248 seq_printf(m, "%d\n", task->patch_state); 3249 return 0; 3250 } 3251 #endif /* CONFIG_LIVEPATCH */ 3252 3253 #ifdef CONFIG_KSM 3254 static int proc_pid_ksm_merging_pages(struct seq_file *m, struct pid_namespace *ns, 3255 struct pid *pid, struct task_struct *task) 3256 { 3257 struct mm_struct *mm; 3258 3259 mm = get_task_mm(task); 3260 if (mm) { 3261 seq_printf(m, "%lu\n", mm->ksm_merging_pages); 3262 mmput(mm); 3263 } 3264 3265 return 0; 3266 } 3267 static int proc_pid_ksm_stat(struct seq_file *m, struct pid_namespace *ns, 3268 struct pid *pid, struct task_struct *task) 3269 { 3270 struct mm_struct *mm; 3271 int ret = 0; 3272 3273 mm = get_task_mm(task); 3274 if (mm) { 3275 seq_printf(m, "ksm_rmap_items %lu\n", mm->ksm_rmap_items); 3276 seq_printf(m, "ksm_zero_pages %ld\n", mm_ksm_zero_pages(mm)); 3277 seq_printf(m, "ksm_merging_pages %lu\n", mm->ksm_merging_pages); 3278 seq_printf(m, "ksm_process_profit %ld\n", ksm_process_profit(mm)); 3279 seq_printf(m, "ksm_merge_any: %s\n", 3280 test_bit(MMF_VM_MERGE_ANY, &mm->flags) ? "yes" : "no"); 3281 ret = mmap_read_lock_killable(mm); 3282 if (ret) { 3283 mmput(mm); 3284 return ret; 3285 } 3286 seq_printf(m, "ksm_mergeable: %s\n", 3287 ksm_process_mergeable(mm) ? "yes" : "no"); 3288 mmap_read_unlock(mm); 3289 mmput(mm); 3290 } 3291 3292 return 0; 3293 } 3294 #endif /* CONFIG_KSM */ 3295 3296 #ifdef CONFIG_STACKLEAK_METRICS 3297 static int proc_stack_depth(struct seq_file *m, struct pid_namespace *ns, 3298 struct pid *pid, struct task_struct *task) 3299 { 3300 unsigned long prev_depth = THREAD_SIZE - 3301 (task->prev_lowest_stack & (THREAD_SIZE - 1)); 3302 unsigned long depth = THREAD_SIZE - 3303 (task->lowest_stack & (THREAD_SIZE - 1)); 3304 3305 seq_printf(m, "previous stack depth: %lu\nstack depth: %lu\n", 3306 prev_depth, depth); 3307 return 0; 3308 } 3309 #endif /* CONFIG_STACKLEAK_METRICS */ 3310 3311 /* 3312 * Thread groups 3313 */ 3314 static const struct file_operations proc_task_operations; 3315 static const struct inode_operations proc_task_inode_operations; 3316 3317 static const struct pid_entry tgid_base_stuff[] = { 3318 DIR("task", S_IRUGO|S_IXUGO, proc_task_inode_operations, proc_task_operations), 3319 DIR("fd", S_IRUSR|S_IXUSR, proc_fd_inode_operations, proc_fd_operations), 3320 DIR("map_files", S_IRUSR|S_IXUSR, proc_map_files_inode_operations, proc_map_files_operations), 3321 DIR("fdinfo", S_IRUGO|S_IXUGO, proc_fdinfo_inode_operations, proc_fdinfo_operations), 3322 DIR("ns", S_IRUSR|S_IXUGO, proc_ns_dir_inode_operations, proc_ns_dir_operations), 3323 #ifdef CONFIG_NET 3324 DIR("net", S_IRUGO|S_IXUGO, proc_net_inode_operations, proc_net_operations), 3325 #endif 3326 REG("environ", S_IRUSR, proc_environ_operations), 3327 REG("auxv", S_IRUSR, proc_auxv_operations), 3328 ONE("status", S_IRUGO, proc_pid_status), 3329 ONE("personality", S_IRUSR, proc_pid_personality), 3330 ONE("limits", S_IRUGO, proc_pid_limits), 3331 REG("sched", S_IRUGO|S_IWUSR, proc_pid_sched_operations), 3332 #ifdef CONFIG_SCHED_AUTOGROUP 3333 REG("autogroup", S_IRUGO|S_IWUSR, proc_pid_sched_autogroup_operations), 3334 #endif 3335 #ifdef CONFIG_TIME_NS 3336 REG("timens_offsets", S_IRUGO|S_IWUSR, proc_timens_offsets_operations), 3337 #endif 3338 REG("comm", S_IRUGO|S_IWUSR, proc_pid_set_comm_operations), 3339 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK 3340 ONE("syscall", S_IRUSR, proc_pid_syscall), 3341 #endif 3342 REG("cmdline", S_IRUGO, proc_pid_cmdline_ops), 3343 ONE("stat", S_IRUGO, proc_tgid_stat), 3344 ONE("statm", S_IRUGO, proc_pid_statm), 3345 REG("maps", S_IRUGO, proc_pid_maps_operations), 3346 #ifdef CONFIG_NUMA 3347 REG("numa_maps", S_IRUGO, proc_pid_numa_maps_operations), 3348 #endif 3349 REG("mem", S_IRUSR|S_IWUSR, proc_mem_operations), 3350 LNK("cwd", proc_cwd_link), 3351 LNK("root", proc_root_link), 3352 LNK("exe", proc_exe_link), 3353 REG("mounts", S_IRUGO, proc_mounts_operations), 3354 REG("mountinfo", S_IRUGO, proc_mountinfo_operations), 3355 REG("mountstats", S_IRUSR, proc_mountstats_operations), 3356 #ifdef CONFIG_PROC_PAGE_MONITOR 3357 REG("clear_refs", S_IWUSR, proc_clear_refs_operations), 3358 REG("smaps", S_IRUGO, proc_pid_smaps_operations), 3359 REG("smaps_rollup", S_IRUGO, proc_pid_smaps_rollup_operations), 3360 REG("pagemap", S_IRUSR, proc_pagemap_operations), 3361 #endif 3362 #ifdef CONFIG_SECURITY 3363 DIR("attr", S_IRUGO|S_IXUGO, proc_attr_dir_inode_operations, proc_attr_dir_operations), 3364 #endif 3365 #ifdef CONFIG_KALLSYMS 3366 ONE("wchan", S_IRUGO, proc_pid_wchan), 3367 #endif 3368 #ifdef CONFIG_STACKTRACE 3369 ONE("stack", S_IRUSR, proc_pid_stack), 3370 #endif 3371 #ifdef CONFIG_SCHED_INFO 3372 ONE("schedstat", S_IRUGO, proc_pid_schedstat), 3373 #endif 3374 #ifdef CONFIG_LATENCYTOP 3375 REG("latency", S_IRUGO, proc_lstats_operations), 3376 #endif 3377 #ifdef CONFIG_PROC_PID_CPUSET 3378 ONE("cpuset", S_IRUGO, proc_cpuset_show), 3379 #endif 3380 #ifdef CONFIG_CGROUPS 3381 ONE("cgroup", S_IRUGO, proc_cgroup_show), 3382 #endif 3383 #ifdef CONFIG_PROC_CPU_RESCTRL 3384 ONE("cpu_resctrl_groups", S_IRUGO, proc_resctrl_show), 3385 #endif 3386 ONE("oom_score", S_IRUGO, proc_oom_score), 3387 REG("oom_adj", S_IRUGO|S_IWUSR, proc_oom_adj_operations), 3388 REG("oom_score_adj", S_IRUGO|S_IWUSR, proc_oom_score_adj_operations), 3389 #ifdef CONFIG_AUDIT 3390 REG("loginuid", S_IWUSR|S_IRUGO, proc_loginuid_operations), 3391 REG("sessionid", S_IRUGO, proc_sessionid_operations), 3392 #endif 3393 #ifdef CONFIG_FAULT_INJECTION 3394 REG("make-it-fail", S_IRUGO|S_IWUSR, proc_fault_inject_operations), 3395 REG("fail-nth", 0644, proc_fail_nth_operations), 3396 #endif 3397 #ifdef CONFIG_ELF_CORE 3398 REG("coredump_filter", S_IRUGO|S_IWUSR, proc_coredump_filter_operations), 3399 #endif 3400 #ifdef CONFIG_TASK_IO_ACCOUNTING 3401 ONE("io", S_IRUSR, proc_tgid_io_accounting), 3402 #endif 3403 #ifdef CONFIG_USER_NS 3404 REG("uid_map", S_IRUGO|S_IWUSR, proc_uid_map_operations), 3405 REG("gid_map", S_IRUGO|S_IWUSR, proc_gid_map_operations), 3406 REG("projid_map", S_IRUGO|S_IWUSR, proc_projid_map_operations), 3407 REG("setgroups", S_IRUGO|S_IWUSR, proc_setgroups_operations), 3408 #endif 3409 #if defined(CONFIG_CHECKPOINT_RESTORE) && defined(CONFIG_POSIX_TIMERS) 3410 REG("timers", S_IRUGO, proc_timers_operations), 3411 #endif 3412 REG("timerslack_ns", S_IRUGO|S_IWUGO, proc_pid_set_timerslack_ns_operations), 3413 #ifdef CONFIG_LIVEPATCH 3414 ONE("patch_state", S_IRUSR, proc_pid_patch_state), 3415 #endif 3416 #ifdef CONFIG_STACKLEAK_METRICS 3417 ONE("stack_depth", S_IRUGO, proc_stack_depth), 3418 #endif 3419 #ifdef CONFIG_PROC_PID_ARCH_STATUS 3420 ONE("arch_status", S_IRUGO, proc_pid_arch_status), 3421 #endif 3422 #ifdef CONFIG_SECCOMP_CACHE_DEBUG 3423 ONE("seccomp_cache", S_IRUSR, proc_pid_seccomp_cache), 3424 #endif 3425 #ifdef CONFIG_KSM 3426 ONE("ksm_merging_pages", S_IRUSR, proc_pid_ksm_merging_pages), 3427 ONE("ksm_stat", S_IRUSR, proc_pid_ksm_stat), 3428 #endif 3429 }; 3430 3431 static int proc_tgid_base_readdir(struct file *file, struct dir_context *ctx) 3432 { 3433 return proc_pident_readdir(file, ctx, 3434 tgid_base_stuff, ARRAY_SIZE(tgid_base_stuff)); 3435 } 3436 3437 static const struct file_operations proc_tgid_base_operations = { 3438 .read = generic_read_dir, 3439 .iterate_shared = proc_tgid_base_readdir, 3440 .llseek = generic_file_llseek, 3441 }; 3442 3443 struct pid *tgid_pidfd_to_pid(const struct file *file) 3444 { 3445 if (file->f_op != &proc_tgid_base_operations) 3446 return ERR_PTR(-EBADF); 3447 3448 return proc_pid(file_inode(file)); 3449 } 3450 3451 static struct dentry *proc_tgid_base_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags) 3452 { 3453 return proc_pident_lookup(dir, dentry, 3454 tgid_base_stuff, 3455 tgid_base_stuff + ARRAY_SIZE(tgid_base_stuff)); 3456 } 3457 3458 static const struct inode_operations proc_tgid_base_inode_operations = { 3459 .lookup = proc_tgid_base_lookup, 3460 .getattr = pid_getattr, 3461 .setattr = proc_setattr, 3462 .permission = proc_pid_permission, 3463 }; 3464 3465 /** 3466 * proc_flush_pid - Remove dcache entries for @pid from the /proc dcache. 3467 * @pid: pid that should be flushed. 3468 * 3469 * This function walks a list of inodes (that belong to any proc 3470 * filesystem) that are attached to the pid and flushes them from 3471 * the dentry cache. 3472 * 3473 * It is safe and reasonable to cache /proc entries for a task until 3474 * that task exits. After that they just clog up the dcache with 3475 * useless entries, possibly causing useful dcache entries to be 3476 * flushed instead. This routine is provided to flush those useless 3477 * dcache entries when a process is reaped. 3478 * 3479 * NOTE: This routine is just an optimization so it does not guarantee 3480 * that no dcache entries will exist after a process is reaped 3481 * it just makes it very unlikely that any will persist. 3482 */ 3483 3484 void proc_flush_pid(struct pid *pid) 3485 { 3486 proc_invalidate_siblings_dcache(&pid->inodes, &pid->lock); 3487 } 3488 3489 static struct dentry *proc_pid_instantiate(struct dentry * dentry, 3490 struct task_struct *task, const void *ptr) 3491 { 3492 struct inode *inode; 3493 3494 inode = proc_pid_make_base_inode(dentry->d_sb, task, 3495 S_IFDIR | S_IRUGO | S_IXUGO); 3496 if (!inode) 3497 return ERR_PTR(-ENOENT); 3498 3499 inode->i_op = &proc_tgid_base_inode_operations; 3500 inode->i_fop = &proc_tgid_base_operations; 3501 inode->i_flags|=S_IMMUTABLE; 3502 3503 set_nlink(inode, nlink_tgid); 3504 pid_update_inode(task, inode); 3505 3506 d_set_d_op(dentry, &pid_dentry_operations); 3507 return d_splice_alias(inode, dentry); 3508 } 3509 3510 struct dentry *proc_pid_lookup(struct dentry *dentry, unsigned int flags) 3511 { 3512 struct task_struct *task; 3513 unsigned tgid; 3514 struct proc_fs_info *fs_info; 3515 struct pid_namespace *ns; 3516 struct dentry *result = ERR_PTR(-ENOENT); 3517 3518 tgid = name_to_int(&dentry->d_name); 3519 if (tgid == ~0U) 3520 goto out; 3521 3522 fs_info = proc_sb_info(dentry->d_sb); 3523 ns = fs_info->pid_ns; 3524 rcu_read_lock(); 3525 task = find_task_by_pid_ns(tgid, ns); 3526 if (task) 3527 get_task_struct(task); 3528 rcu_read_unlock(); 3529 if (!task) 3530 goto out; 3531 3532 /* Limit procfs to only ptraceable tasks */ 3533 if (fs_info->hide_pid == HIDEPID_NOT_PTRACEABLE) { 3534 if (!has_pid_permissions(fs_info, task, HIDEPID_NO_ACCESS)) 3535 goto out_put_task; 3536 } 3537 3538 result = proc_pid_instantiate(dentry, task, NULL); 3539 out_put_task: 3540 put_task_struct(task); 3541 out: 3542 return result; 3543 } 3544 3545 /* 3546 * Find the first task with tgid >= tgid 3547 * 3548 */ 3549 struct tgid_iter { 3550 unsigned int tgid; 3551 struct task_struct *task; 3552 }; 3553 static struct tgid_iter next_tgid(struct pid_namespace *ns, struct tgid_iter iter) 3554 { 3555 struct pid *pid; 3556 3557 if (iter.task) 3558 put_task_struct(iter.task); 3559 rcu_read_lock(); 3560 retry: 3561 iter.task = NULL; 3562 pid = find_ge_pid(iter.tgid, ns); 3563 if (pid) { 3564 iter.tgid = pid_nr_ns(pid, ns); 3565 iter.task = pid_task(pid, PIDTYPE_TGID); 3566 if (!iter.task) { 3567 iter.tgid += 1; 3568 goto retry; 3569 } 3570 get_task_struct(iter.task); 3571 } 3572 rcu_read_unlock(); 3573 return iter; 3574 } 3575 3576 #define TGID_OFFSET (FIRST_PROCESS_ENTRY + 2) 3577 3578 /* for the /proc/ directory itself, after non-process stuff has been done */ 3579 int proc_pid_readdir(struct file *file, struct dir_context *ctx) 3580 { 3581 struct tgid_iter iter; 3582 struct proc_fs_info *fs_info = proc_sb_info(file_inode(file)->i_sb); 3583 struct pid_namespace *ns = proc_pid_ns(file_inode(file)->i_sb); 3584 loff_t pos = ctx->pos; 3585 3586 if (pos >= PID_MAX_LIMIT + TGID_OFFSET) 3587 return 0; 3588 3589 if (pos == TGID_OFFSET - 2) { 3590 struct inode *inode = d_inode(fs_info->proc_self); 3591 if (!dir_emit(ctx, "self", 4, inode->i_ino, DT_LNK)) 3592 return 0; 3593 ctx->pos = pos = pos + 1; 3594 } 3595 if (pos == TGID_OFFSET - 1) { 3596 struct inode *inode = d_inode(fs_info->proc_thread_self); 3597 if (!dir_emit(ctx, "thread-self", 11, inode->i_ino, DT_LNK)) 3598 return 0; 3599 ctx->pos = pos = pos + 1; 3600 } 3601 iter.tgid = pos - TGID_OFFSET; 3602 iter.task = NULL; 3603 for (iter = next_tgid(ns, iter); 3604 iter.task; 3605 iter.tgid += 1, iter = next_tgid(ns, iter)) { 3606 char name[10 + 1]; 3607 unsigned int len; 3608 3609 cond_resched(); 3610 if (!has_pid_permissions(fs_info, iter.task, HIDEPID_INVISIBLE)) 3611 continue; 3612 3613 len = snprintf(name, sizeof(name), "%u", iter.tgid); 3614 ctx->pos = iter.tgid + TGID_OFFSET; 3615 if (!proc_fill_cache(file, ctx, name, len, 3616 proc_pid_instantiate, iter.task, NULL)) { 3617 put_task_struct(iter.task); 3618 return 0; 3619 } 3620 } 3621 ctx->pos = PID_MAX_LIMIT + TGID_OFFSET; 3622 return 0; 3623 } 3624 3625 /* 3626 * proc_tid_comm_permission is a special permission function exclusively 3627 * used for the node /proc/<pid>/task/<tid>/comm. 3628 * It bypasses generic permission checks in the case where a task of the same 3629 * task group attempts to access the node. 3630 * The rationale behind this is that glibc and bionic access this node for 3631 * cross thread naming (pthread_set/getname_np(!self)). However, if 3632 * PR_SET_DUMPABLE gets set to 0 this node among others becomes uid=0 gid=0, 3633 * which locks out the cross thread naming implementation. 3634 * This function makes sure that the node is always accessible for members of 3635 * same thread group. 3636 */ 3637 static int proc_tid_comm_permission(struct mnt_idmap *idmap, 3638 struct inode *inode, int mask) 3639 { 3640 bool is_same_tgroup; 3641 struct task_struct *task; 3642 3643 task = get_proc_task(inode); 3644 if (!task) 3645 return -ESRCH; 3646 is_same_tgroup = same_thread_group(current, task); 3647 put_task_struct(task); 3648 3649 if (likely(is_same_tgroup && !(mask & MAY_EXEC))) { 3650 /* This file (/proc/<pid>/task/<tid>/comm) can always be 3651 * read or written by the members of the corresponding 3652 * thread group. 3653 */ 3654 return 0; 3655 } 3656 3657 return generic_permission(&nop_mnt_idmap, inode, mask); 3658 } 3659 3660 static const struct inode_operations proc_tid_comm_inode_operations = { 3661 .setattr = proc_setattr, 3662 .permission = proc_tid_comm_permission, 3663 }; 3664 3665 /* 3666 * Tasks 3667 */ 3668 static const struct pid_entry tid_base_stuff[] = { 3669 DIR("fd", S_IRUSR|S_IXUSR, proc_fd_inode_operations, proc_fd_operations), 3670 DIR("fdinfo", S_IRUGO|S_IXUGO, proc_fdinfo_inode_operations, proc_fdinfo_operations), 3671 DIR("ns", S_IRUSR|S_IXUGO, proc_ns_dir_inode_operations, proc_ns_dir_operations), 3672 #ifdef CONFIG_NET 3673 DIR("net", S_IRUGO|S_IXUGO, proc_net_inode_operations, proc_net_operations), 3674 #endif 3675 REG("environ", S_IRUSR, proc_environ_operations), 3676 REG("auxv", S_IRUSR, proc_auxv_operations), 3677 ONE("status", S_IRUGO, proc_pid_status), 3678 ONE("personality", S_IRUSR, proc_pid_personality), 3679 ONE("limits", S_IRUGO, proc_pid_limits), 3680 REG("sched", S_IRUGO|S_IWUSR, proc_pid_sched_operations), 3681 NOD("comm", S_IFREG|S_IRUGO|S_IWUSR, 3682 &proc_tid_comm_inode_operations, 3683 &proc_pid_set_comm_operations, {}), 3684 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK 3685 ONE("syscall", S_IRUSR, proc_pid_syscall), 3686 #endif 3687 REG("cmdline", S_IRUGO, proc_pid_cmdline_ops), 3688 ONE("stat", S_IRUGO, proc_tid_stat), 3689 ONE("statm", S_IRUGO, proc_pid_statm), 3690 REG("maps", S_IRUGO, proc_pid_maps_operations), 3691 #ifdef CONFIG_PROC_CHILDREN 3692 REG("children", S_IRUGO, proc_tid_children_operations), 3693 #endif 3694 #ifdef CONFIG_NUMA 3695 REG("numa_maps", S_IRUGO, proc_pid_numa_maps_operations), 3696 #endif 3697 REG("mem", S_IRUSR|S_IWUSR, proc_mem_operations), 3698 LNK("cwd", proc_cwd_link), 3699 LNK("root", proc_root_link), 3700 LNK("exe", proc_exe_link), 3701 REG("mounts", S_IRUGO, proc_mounts_operations), 3702 REG("mountinfo", S_IRUGO, proc_mountinfo_operations), 3703 #ifdef CONFIG_PROC_PAGE_MONITOR 3704 REG("clear_refs", S_IWUSR, proc_clear_refs_operations), 3705 REG("smaps", S_IRUGO, proc_pid_smaps_operations), 3706 REG("smaps_rollup", S_IRUGO, proc_pid_smaps_rollup_operations), 3707 REG("pagemap", S_IRUSR, proc_pagemap_operations), 3708 #endif 3709 #ifdef CONFIG_SECURITY 3710 DIR("attr", S_IRUGO|S_IXUGO, proc_attr_dir_inode_operations, proc_attr_dir_operations), 3711 #endif 3712 #ifdef CONFIG_KALLSYMS 3713 ONE("wchan", S_IRUGO, proc_pid_wchan), 3714 #endif 3715 #ifdef CONFIG_STACKTRACE 3716 ONE("stack", S_IRUSR, proc_pid_stack), 3717 #endif 3718 #ifdef CONFIG_SCHED_INFO 3719 ONE("schedstat", S_IRUGO, proc_pid_schedstat), 3720 #endif 3721 #ifdef CONFIG_LATENCYTOP 3722 REG("latency", S_IRUGO, proc_lstats_operations), 3723 #endif 3724 #ifdef CONFIG_PROC_PID_CPUSET 3725 ONE("cpuset", S_IRUGO, proc_cpuset_show), 3726 #endif 3727 #ifdef CONFIG_CGROUPS 3728 ONE("cgroup", S_IRUGO, proc_cgroup_show), 3729 #endif 3730 #ifdef CONFIG_PROC_CPU_RESCTRL 3731 ONE("cpu_resctrl_groups", S_IRUGO, proc_resctrl_show), 3732 #endif 3733 ONE("oom_score", S_IRUGO, proc_oom_score), 3734 REG("oom_adj", S_IRUGO|S_IWUSR, proc_oom_adj_operations), 3735 REG("oom_score_adj", S_IRUGO|S_IWUSR, proc_oom_score_adj_operations), 3736 #ifdef CONFIG_AUDIT 3737 REG("loginuid", S_IWUSR|S_IRUGO, proc_loginuid_operations), 3738 REG("sessionid", S_IRUGO, proc_sessionid_operations), 3739 #endif 3740 #ifdef CONFIG_FAULT_INJECTION 3741 REG("make-it-fail", S_IRUGO|S_IWUSR, proc_fault_inject_operations), 3742 REG("fail-nth", 0644, proc_fail_nth_operations), 3743 #endif 3744 #ifdef CONFIG_TASK_IO_ACCOUNTING 3745 ONE("io", S_IRUSR, proc_tid_io_accounting), 3746 #endif 3747 #ifdef CONFIG_USER_NS 3748 REG("uid_map", S_IRUGO|S_IWUSR, proc_uid_map_operations), 3749 REG("gid_map", S_IRUGO|S_IWUSR, proc_gid_map_operations), 3750 REG("projid_map", S_IRUGO|S_IWUSR, proc_projid_map_operations), 3751 REG("setgroups", S_IRUGO|S_IWUSR, proc_setgroups_operations), 3752 #endif 3753 #ifdef CONFIG_LIVEPATCH 3754 ONE("patch_state", S_IRUSR, proc_pid_patch_state), 3755 #endif 3756 #ifdef CONFIG_PROC_PID_ARCH_STATUS 3757 ONE("arch_status", S_IRUGO, proc_pid_arch_status), 3758 #endif 3759 #ifdef CONFIG_SECCOMP_CACHE_DEBUG 3760 ONE("seccomp_cache", S_IRUSR, proc_pid_seccomp_cache), 3761 #endif 3762 #ifdef CONFIG_KSM 3763 ONE("ksm_merging_pages", S_IRUSR, proc_pid_ksm_merging_pages), 3764 ONE("ksm_stat", S_IRUSR, proc_pid_ksm_stat), 3765 #endif 3766 }; 3767 3768 static int proc_tid_base_readdir(struct file *file, struct dir_context *ctx) 3769 { 3770 return proc_pident_readdir(file, ctx, 3771 tid_base_stuff, ARRAY_SIZE(tid_base_stuff)); 3772 } 3773 3774 static struct dentry *proc_tid_base_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags) 3775 { 3776 return proc_pident_lookup(dir, dentry, 3777 tid_base_stuff, 3778 tid_base_stuff + ARRAY_SIZE(tid_base_stuff)); 3779 } 3780 3781 static const struct file_operations proc_tid_base_operations = { 3782 .read = generic_read_dir, 3783 .iterate_shared = proc_tid_base_readdir, 3784 .llseek = generic_file_llseek, 3785 }; 3786 3787 static const struct inode_operations proc_tid_base_inode_operations = { 3788 .lookup = proc_tid_base_lookup, 3789 .getattr = pid_getattr, 3790 .setattr = proc_setattr, 3791 }; 3792 3793 static struct dentry *proc_task_instantiate(struct dentry *dentry, 3794 struct task_struct *task, const void *ptr) 3795 { 3796 struct inode *inode; 3797 inode = proc_pid_make_base_inode(dentry->d_sb, task, 3798 S_IFDIR | S_IRUGO | S_IXUGO); 3799 if (!inode) 3800 return ERR_PTR(-ENOENT); 3801 3802 inode->i_op = &proc_tid_base_inode_operations; 3803 inode->i_fop = &proc_tid_base_operations; 3804 inode->i_flags |= S_IMMUTABLE; 3805 3806 set_nlink(inode, nlink_tid); 3807 pid_update_inode(task, inode); 3808 3809 d_set_d_op(dentry, &pid_dentry_operations); 3810 return d_splice_alias(inode, dentry); 3811 } 3812 3813 static struct dentry *proc_task_lookup(struct inode *dir, struct dentry * dentry, unsigned int flags) 3814 { 3815 struct task_struct *task; 3816 struct task_struct *leader = get_proc_task(dir); 3817 unsigned tid; 3818 struct proc_fs_info *fs_info; 3819 struct pid_namespace *ns; 3820 struct dentry *result = ERR_PTR(-ENOENT); 3821 3822 if (!leader) 3823 goto out_no_task; 3824 3825 tid = name_to_int(&dentry->d_name); 3826 if (tid == ~0U) 3827 goto out; 3828 3829 fs_info = proc_sb_info(dentry->d_sb); 3830 ns = fs_info->pid_ns; 3831 rcu_read_lock(); 3832 task = find_task_by_pid_ns(tid, ns); 3833 if (task) 3834 get_task_struct(task); 3835 rcu_read_unlock(); 3836 if (!task) 3837 goto out; 3838 if (!same_thread_group(leader, task)) 3839 goto out_drop_task; 3840 3841 result = proc_task_instantiate(dentry, task, NULL); 3842 out_drop_task: 3843 put_task_struct(task); 3844 out: 3845 put_task_struct(leader); 3846 out_no_task: 3847 return result; 3848 } 3849 3850 /* 3851 * Find the first tid of a thread group to return to user space. 3852 * 3853 * Usually this is just the thread group leader, but if the users 3854 * buffer was too small or there was a seek into the middle of the 3855 * directory we have more work todo. 3856 * 3857 * In the case of a short read we start with find_task_by_pid. 3858 * 3859 * In the case of a seek we start with the leader and walk nr 3860 * threads past it. 3861 */ 3862 static struct task_struct *first_tid(struct pid *pid, int tid, loff_t f_pos, 3863 struct pid_namespace *ns) 3864 { 3865 struct task_struct *pos, *task; 3866 unsigned long nr = f_pos; 3867 3868 if (nr != f_pos) /* 32bit overflow? */ 3869 return NULL; 3870 3871 rcu_read_lock(); 3872 task = pid_task(pid, PIDTYPE_PID); 3873 if (!task) 3874 goto fail; 3875 3876 /* Attempt to start with the tid of a thread */ 3877 if (tid && nr) { 3878 pos = find_task_by_pid_ns(tid, ns); 3879 if (pos && same_thread_group(pos, task)) 3880 goto found; 3881 } 3882 3883 /* If nr exceeds the number of threads there is nothing todo */ 3884 if (nr >= get_nr_threads(task)) 3885 goto fail; 3886 3887 /* If we haven't found our starting place yet start 3888 * with the leader and walk nr threads forward. 3889 */ 3890 for_each_thread(task, pos) { 3891 if (!nr--) 3892 goto found; 3893 } 3894 fail: 3895 pos = NULL; 3896 goto out; 3897 found: 3898 get_task_struct(pos); 3899 out: 3900 rcu_read_unlock(); 3901 return pos; 3902 } 3903 3904 /* 3905 * Find the next thread in the thread list. 3906 * Return NULL if there is an error or no next thread. 3907 * 3908 * The reference to the input task_struct is released. 3909 */ 3910 static struct task_struct *next_tid(struct task_struct *start) 3911 { 3912 struct task_struct *pos = NULL; 3913 rcu_read_lock(); 3914 if (pid_alive(start)) { 3915 pos = __next_thread(start); 3916 if (pos) 3917 get_task_struct(pos); 3918 } 3919 rcu_read_unlock(); 3920 put_task_struct(start); 3921 return pos; 3922 } 3923 3924 /* for the /proc/TGID/task/ directories */ 3925 static int proc_task_readdir(struct file *file, struct dir_context *ctx) 3926 { 3927 struct inode *inode = file_inode(file); 3928 struct task_struct *task; 3929 struct pid_namespace *ns; 3930 int tid; 3931 3932 if (proc_inode_is_dead(inode)) 3933 return -ENOENT; 3934 3935 if (!dir_emit_dots(file, ctx)) 3936 return 0; 3937 3938 /* We cache the tgid value that the last readdir call couldn't 3939 * return and lseek resets it to 0. 3940 */ 3941 ns = proc_pid_ns(inode->i_sb); 3942 tid = (int)(intptr_t)file->private_data; 3943 file->private_data = NULL; 3944 for (task = first_tid(proc_pid(inode), tid, ctx->pos - 2, ns); 3945 task; 3946 task = next_tid(task), ctx->pos++) { 3947 char name[10 + 1]; 3948 unsigned int len; 3949 3950 tid = task_pid_nr_ns(task, ns); 3951 if (!tid) 3952 continue; /* The task has just exited. */ 3953 len = snprintf(name, sizeof(name), "%u", tid); 3954 if (!proc_fill_cache(file, ctx, name, len, 3955 proc_task_instantiate, task, NULL)) { 3956 /* returning this tgid failed, save it as the first 3957 * pid for the next readir call */ 3958 file->private_data = (void *)(intptr_t)tid; 3959 put_task_struct(task); 3960 break; 3961 } 3962 } 3963 3964 return 0; 3965 } 3966 3967 static int proc_task_getattr(struct mnt_idmap *idmap, 3968 const struct path *path, struct kstat *stat, 3969 u32 request_mask, unsigned int query_flags) 3970 { 3971 struct inode *inode = d_inode(path->dentry); 3972 struct task_struct *p = get_proc_task(inode); 3973 generic_fillattr(&nop_mnt_idmap, request_mask, inode, stat); 3974 3975 if (p) { 3976 stat->nlink += get_nr_threads(p); 3977 put_task_struct(p); 3978 } 3979 3980 return 0; 3981 } 3982 3983 /* 3984 * proc_task_readdir() set @file->private_data to a positive integer 3985 * value, so casting that to u64 is safe. generic_llseek_cookie() will 3986 * set @cookie to 0, so casting to an int is safe. The WARN_ON_ONCE() is 3987 * here to catch any unexpected change in behavior either in 3988 * proc_task_readdir() or generic_llseek_cookie(). 3989 */ 3990 static loff_t proc_dir_llseek(struct file *file, loff_t offset, int whence) 3991 { 3992 u64 cookie = (u64)(intptr_t)file->private_data; 3993 loff_t off; 3994 3995 off = generic_llseek_cookie(file, offset, whence, &cookie); 3996 WARN_ON_ONCE(cookie > INT_MAX); 3997 file->private_data = (void *)(intptr_t)cookie; /* serialized by f_pos_lock */ 3998 return off; 3999 } 4000 4001 static const struct inode_operations proc_task_inode_operations = { 4002 .lookup = proc_task_lookup, 4003 .getattr = proc_task_getattr, 4004 .setattr = proc_setattr, 4005 .permission = proc_pid_permission, 4006 }; 4007 4008 static const struct file_operations proc_task_operations = { 4009 .read = generic_read_dir, 4010 .iterate_shared = proc_task_readdir, 4011 .llseek = proc_dir_llseek, 4012 }; 4013 4014 void __init set_proc_pid_nlink(void) 4015 { 4016 nlink_tid = pid_entry_nlink(tid_base_stuff, ARRAY_SIZE(tid_base_stuff)); 4017 nlink_tgid = pid_entry_nlink(tgid_base_stuff, ARRAY_SIZE(tgid_base_stuff)); 4018 } 4019