xref: /linux/fs/proc/base.c (revision f7511d5f66f01fc451747b24e79f3ada7a3af9af)
1 /*
2  *  linux/fs/proc/base.c
3  *
4  *  Copyright (C) 1991, 1992 Linus Torvalds
5  *
6  *  proc base directory handling functions
7  *
8  *  1999, Al Viro. Rewritten. Now it covers the whole per-process part.
9  *  Instead of using magical inumbers to determine the kind of object
10  *  we allocate and fill in-core inodes upon lookup. They don't even
11  *  go into icache. We cache the reference to task_struct upon lookup too.
12  *  Eventually it should become a filesystem in its own. We don't use the
13  *  rest of procfs anymore.
14  *
15  *
16  *  Changelog:
17  *  17-Jan-2005
18  *  Allan Bezerra
19  *  Bruna Moreira <bruna.moreira@indt.org.br>
20  *  Edjard Mota <edjard.mota@indt.org.br>
21  *  Ilias Biris <ilias.biris@indt.org.br>
22  *  Mauricio Lin <mauricio.lin@indt.org.br>
23  *
24  *  Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT
25  *
26  *  A new process specific entry (smaps) included in /proc. It shows the
27  *  size of rss for each memory area. The maps entry lacks information
28  *  about physical memory size (rss) for each mapped file, i.e.,
29  *  rss information for executables and library files.
30  *  This additional information is useful for any tools that need to know
31  *  about physical memory consumption for a process specific library.
32  *
33  *  Changelog:
34  *  21-Feb-2005
35  *  Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT
36  *  Pud inclusion in the page table walking.
37  *
38  *  ChangeLog:
39  *  10-Mar-2005
40  *  10LE Instituto Nokia de Tecnologia - INdT:
41  *  A better way to walks through the page table as suggested by Hugh Dickins.
42  *
43  *  Simo Piiroinen <simo.piiroinen@nokia.com>:
44  *  Smaps information related to shared, private, clean and dirty pages.
45  *
46  *  Paul Mundt <paul.mundt@nokia.com>:
47  *  Overall revision about smaps.
48  */
49 
50 #include <asm/uaccess.h>
51 
52 #include <linux/errno.h>
53 #include <linux/time.h>
54 #include <linux/proc_fs.h>
55 #include <linux/stat.h>
56 #include <linux/init.h>
57 #include <linux/capability.h>
58 #include <linux/file.h>
59 #include <linux/string.h>
60 #include <linux/seq_file.h>
61 #include <linux/namei.h>
62 #include <linux/mnt_namespace.h>
63 #include <linux/mm.h>
64 #include <linux/rcupdate.h>
65 #include <linux/kallsyms.h>
66 #include <linux/resource.h>
67 #include <linux/module.h>
68 #include <linux/mount.h>
69 #include <linux/security.h>
70 #include <linux/ptrace.h>
71 #include <linux/cgroup.h>
72 #include <linux/cpuset.h>
73 #include <linux/audit.h>
74 #include <linux/poll.h>
75 #include <linux/nsproxy.h>
76 #include <linux/oom.h>
77 #include <linux/elf.h>
78 #include <linux/pid_namespace.h>
79 #include "internal.h"
80 
81 /* NOTE:
82  *	Implementing inode permission operations in /proc is almost
83  *	certainly an error.  Permission checks need to happen during
84  *	each system call not at open time.  The reason is that most of
85  *	what we wish to check for permissions in /proc varies at runtime.
86  *
87  *	The classic example of a problem is opening file descriptors
88  *	in /proc for a task before it execs a suid executable.
89  */
90 
91 struct pid_entry {
92 	char *name;
93 	int len;
94 	mode_t mode;
95 	const struct inode_operations *iop;
96 	const struct file_operations *fop;
97 	union proc_op op;
98 };
99 
100 #define NOD(NAME, MODE, IOP, FOP, OP) {			\
101 	.name = (NAME),					\
102 	.len  = sizeof(NAME) - 1,			\
103 	.mode = MODE,					\
104 	.iop  = IOP,					\
105 	.fop  = FOP,					\
106 	.op   = OP,					\
107 }
108 
109 #define DIR(NAME, MODE, OTYPE)							\
110 	NOD(NAME, (S_IFDIR|(MODE)),						\
111 		&proc_##OTYPE##_inode_operations, &proc_##OTYPE##_operations,	\
112 		{} )
113 #define LNK(NAME, OTYPE)					\
114 	NOD(NAME, (S_IFLNK|S_IRWXUGO),				\
115 		&proc_pid_link_inode_operations, NULL,		\
116 		{ .proc_get_link = &proc_##OTYPE##_link } )
117 #define REG(NAME, MODE, OTYPE)				\
118 	NOD(NAME, (S_IFREG|(MODE)), NULL,		\
119 		&proc_##OTYPE##_operations, {})
120 #define INF(NAME, MODE, OTYPE)				\
121 	NOD(NAME, (S_IFREG|(MODE)), 			\
122 		NULL, &proc_info_file_operations,	\
123 		{ .proc_read = &proc_##OTYPE } )
124 #define ONE(NAME, MODE, OTYPE)				\
125 	NOD(NAME, (S_IFREG|(MODE)), 			\
126 		NULL, &proc_single_file_operations,	\
127 		{ .proc_show = &proc_##OTYPE } )
128 
129 int maps_protect;
130 EXPORT_SYMBOL(maps_protect);
131 
132 static struct fs_struct *get_fs_struct(struct task_struct *task)
133 {
134 	struct fs_struct *fs;
135 	task_lock(task);
136 	fs = task->fs;
137 	if(fs)
138 		atomic_inc(&fs->count);
139 	task_unlock(task);
140 	return fs;
141 }
142 
143 static int get_nr_threads(struct task_struct *tsk)
144 {
145 	/* Must be called with the rcu_read_lock held */
146 	unsigned long flags;
147 	int count = 0;
148 
149 	if (lock_task_sighand(tsk, &flags)) {
150 		count = atomic_read(&tsk->signal->count);
151 		unlock_task_sighand(tsk, &flags);
152 	}
153 	return count;
154 }
155 
156 static int proc_cwd_link(struct inode *inode, struct path *path)
157 {
158 	struct task_struct *task = get_proc_task(inode);
159 	struct fs_struct *fs = NULL;
160 	int result = -ENOENT;
161 
162 	if (task) {
163 		fs = get_fs_struct(task);
164 		put_task_struct(task);
165 	}
166 	if (fs) {
167 		read_lock(&fs->lock);
168 		*path = fs->pwd;
169 		path_get(&fs->pwd);
170 		read_unlock(&fs->lock);
171 		result = 0;
172 		put_fs_struct(fs);
173 	}
174 	return result;
175 }
176 
177 static int proc_root_link(struct inode *inode, struct path *path)
178 {
179 	struct task_struct *task = get_proc_task(inode);
180 	struct fs_struct *fs = NULL;
181 	int result = -ENOENT;
182 
183 	if (task) {
184 		fs = get_fs_struct(task);
185 		put_task_struct(task);
186 	}
187 	if (fs) {
188 		read_lock(&fs->lock);
189 		*path = fs->root;
190 		path_get(&fs->root);
191 		read_unlock(&fs->lock);
192 		result = 0;
193 		put_fs_struct(fs);
194 	}
195 	return result;
196 }
197 
198 /*
199  * Return zero if current may access user memory in @task, -error if not.
200  */
201 static int check_mem_permission(struct task_struct *task)
202 {
203 	/*
204 	 * A task can always look at itself, in case it chooses
205 	 * to use system calls instead of load instructions.
206 	 */
207 	if (task == current)
208 		return 0;
209 
210 	/*
211 	 * If current is actively ptrace'ing, and would also be
212 	 * permitted to freshly attach with ptrace now, permit it.
213 	 */
214 	if (task->parent == current && (task->ptrace & PT_PTRACED) &&
215 	    task_is_stopped_or_traced(task) &&
216 	    ptrace_may_attach(task))
217 		return 0;
218 
219 	/*
220 	 * Noone else is allowed.
221 	 */
222 	return -EPERM;
223 }
224 
225 struct mm_struct *mm_for_maps(struct task_struct *task)
226 {
227 	struct mm_struct *mm = get_task_mm(task);
228 	if (!mm)
229 		return NULL;
230 	down_read(&mm->mmap_sem);
231 	task_lock(task);
232 	if (task->mm != mm)
233 		goto out;
234 	if (task->mm != current->mm && __ptrace_may_attach(task) < 0)
235 		goto out;
236 	task_unlock(task);
237 	return mm;
238 out:
239 	task_unlock(task);
240 	up_read(&mm->mmap_sem);
241 	mmput(mm);
242 	return NULL;
243 }
244 
245 static int proc_pid_cmdline(struct task_struct *task, char * buffer)
246 {
247 	int res = 0;
248 	unsigned int len;
249 	struct mm_struct *mm = get_task_mm(task);
250 	if (!mm)
251 		goto out;
252 	if (!mm->arg_end)
253 		goto out_mm;	/* Shh! No looking before we're done */
254 
255  	len = mm->arg_end - mm->arg_start;
256 
257 	if (len > PAGE_SIZE)
258 		len = PAGE_SIZE;
259 
260 	res = access_process_vm(task, mm->arg_start, buffer, len, 0);
261 
262 	// If the nul at the end of args has been overwritten, then
263 	// assume application is using setproctitle(3).
264 	if (res > 0 && buffer[res-1] != '\0' && len < PAGE_SIZE) {
265 		len = strnlen(buffer, res);
266 		if (len < res) {
267 		    res = len;
268 		} else {
269 			len = mm->env_end - mm->env_start;
270 			if (len > PAGE_SIZE - res)
271 				len = PAGE_SIZE - res;
272 			res += access_process_vm(task, mm->env_start, buffer+res, len, 0);
273 			res = strnlen(buffer, res);
274 		}
275 	}
276 out_mm:
277 	mmput(mm);
278 out:
279 	return res;
280 }
281 
282 static int proc_pid_auxv(struct task_struct *task, char *buffer)
283 {
284 	int res = 0;
285 	struct mm_struct *mm = get_task_mm(task);
286 	if (mm) {
287 		unsigned int nwords = 0;
288 		do
289 			nwords += 2;
290 		while (mm->saved_auxv[nwords - 2] != 0); /* AT_NULL */
291 		res = nwords * sizeof(mm->saved_auxv[0]);
292 		if (res > PAGE_SIZE)
293 			res = PAGE_SIZE;
294 		memcpy(buffer, mm->saved_auxv, res);
295 		mmput(mm);
296 	}
297 	return res;
298 }
299 
300 
301 #ifdef CONFIG_KALLSYMS
302 /*
303  * Provides a wchan file via kallsyms in a proper one-value-per-file format.
304  * Returns the resolved symbol.  If that fails, simply return the address.
305  */
306 static int proc_pid_wchan(struct task_struct *task, char *buffer)
307 {
308 	unsigned long wchan;
309 	char symname[KSYM_NAME_LEN];
310 
311 	wchan = get_wchan(task);
312 
313 	if (lookup_symbol_name(wchan, symname) < 0)
314 		return sprintf(buffer, "%lu", wchan);
315 	else
316 		return sprintf(buffer, "%s", symname);
317 }
318 #endif /* CONFIG_KALLSYMS */
319 
320 #ifdef CONFIG_SCHEDSTATS
321 /*
322  * Provides /proc/PID/schedstat
323  */
324 static int proc_pid_schedstat(struct task_struct *task, char *buffer)
325 {
326 	return sprintf(buffer, "%llu %llu %lu\n",
327 			task->sched_info.cpu_time,
328 			task->sched_info.run_delay,
329 			task->sched_info.pcount);
330 }
331 #endif
332 
333 #ifdef CONFIG_LATENCYTOP
334 static int lstats_show_proc(struct seq_file *m, void *v)
335 {
336 	int i;
337 	struct inode *inode = m->private;
338 	struct task_struct *task = get_proc_task(inode);
339 
340 	if (!task)
341 		return -ESRCH;
342 	seq_puts(m, "Latency Top version : v0.1\n");
343 	for (i = 0; i < 32; i++) {
344 		if (task->latency_record[i].backtrace[0]) {
345 			int q;
346 			seq_printf(m, "%i %li %li ",
347 				task->latency_record[i].count,
348 				task->latency_record[i].time,
349 				task->latency_record[i].max);
350 			for (q = 0; q < LT_BACKTRACEDEPTH; q++) {
351 				char sym[KSYM_NAME_LEN];
352 				char *c;
353 				if (!task->latency_record[i].backtrace[q])
354 					break;
355 				if (task->latency_record[i].backtrace[q] == ULONG_MAX)
356 					break;
357 				sprint_symbol(sym, task->latency_record[i].backtrace[q]);
358 				c = strchr(sym, '+');
359 				if (c)
360 					*c = 0;
361 				seq_printf(m, "%s ", sym);
362 			}
363 			seq_printf(m, "\n");
364 		}
365 
366 	}
367 	put_task_struct(task);
368 	return 0;
369 }
370 
371 static int lstats_open(struct inode *inode, struct file *file)
372 {
373 	return single_open(file, lstats_show_proc, inode);
374 }
375 
376 static ssize_t lstats_write(struct file *file, const char __user *buf,
377 			    size_t count, loff_t *offs)
378 {
379 	struct task_struct *task = get_proc_task(file->f_dentry->d_inode);
380 
381 	if (!task)
382 		return -ESRCH;
383 	clear_all_latency_tracing(task);
384 	put_task_struct(task);
385 
386 	return count;
387 }
388 
389 static const struct file_operations proc_lstats_operations = {
390 	.open		= lstats_open,
391 	.read		= seq_read,
392 	.write		= lstats_write,
393 	.llseek		= seq_lseek,
394 	.release	= single_release,
395 };
396 
397 #endif
398 
399 /* The badness from the OOM killer */
400 unsigned long badness(struct task_struct *p, unsigned long uptime);
401 static int proc_oom_score(struct task_struct *task, char *buffer)
402 {
403 	unsigned long points;
404 	struct timespec uptime;
405 
406 	do_posix_clock_monotonic_gettime(&uptime);
407 	read_lock(&tasklist_lock);
408 	points = badness(task, uptime.tv_sec);
409 	read_unlock(&tasklist_lock);
410 	return sprintf(buffer, "%lu\n", points);
411 }
412 
413 struct limit_names {
414 	char *name;
415 	char *unit;
416 };
417 
418 static const struct limit_names lnames[RLIM_NLIMITS] = {
419 	[RLIMIT_CPU] = {"Max cpu time", "ms"},
420 	[RLIMIT_FSIZE] = {"Max file size", "bytes"},
421 	[RLIMIT_DATA] = {"Max data size", "bytes"},
422 	[RLIMIT_STACK] = {"Max stack size", "bytes"},
423 	[RLIMIT_CORE] = {"Max core file size", "bytes"},
424 	[RLIMIT_RSS] = {"Max resident set", "bytes"},
425 	[RLIMIT_NPROC] = {"Max processes", "processes"},
426 	[RLIMIT_NOFILE] = {"Max open files", "files"},
427 	[RLIMIT_MEMLOCK] = {"Max locked memory", "bytes"},
428 	[RLIMIT_AS] = {"Max address space", "bytes"},
429 	[RLIMIT_LOCKS] = {"Max file locks", "locks"},
430 	[RLIMIT_SIGPENDING] = {"Max pending signals", "signals"},
431 	[RLIMIT_MSGQUEUE] = {"Max msgqueue size", "bytes"},
432 	[RLIMIT_NICE] = {"Max nice priority", NULL},
433 	[RLIMIT_RTPRIO] = {"Max realtime priority", NULL},
434 	[RLIMIT_RTTIME] = {"Max realtime timeout", "us"},
435 };
436 
437 /* Display limits for a process */
438 static int proc_pid_limits(struct task_struct *task, char *buffer)
439 {
440 	unsigned int i;
441 	int count = 0;
442 	unsigned long flags;
443 	char *bufptr = buffer;
444 
445 	struct rlimit rlim[RLIM_NLIMITS];
446 
447 	rcu_read_lock();
448 	if (!lock_task_sighand(task,&flags)) {
449 		rcu_read_unlock();
450 		return 0;
451 	}
452 	memcpy(rlim, task->signal->rlim, sizeof(struct rlimit) * RLIM_NLIMITS);
453 	unlock_task_sighand(task, &flags);
454 	rcu_read_unlock();
455 
456 	/*
457 	 * print the file header
458 	 */
459 	count += sprintf(&bufptr[count], "%-25s %-20s %-20s %-10s\n",
460 			"Limit", "Soft Limit", "Hard Limit", "Units");
461 
462 	for (i = 0; i < RLIM_NLIMITS; i++) {
463 		if (rlim[i].rlim_cur == RLIM_INFINITY)
464 			count += sprintf(&bufptr[count], "%-25s %-20s ",
465 					 lnames[i].name, "unlimited");
466 		else
467 			count += sprintf(&bufptr[count], "%-25s %-20lu ",
468 					 lnames[i].name, rlim[i].rlim_cur);
469 
470 		if (rlim[i].rlim_max == RLIM_INFINITY)
471 			count += sprintf(&bufptr[count], "%-20s ", "unlimited");
472 		else
473 			count += sprintf(&bufptr[count], "%-20lu ",
474 					 rlim[i].rlim_max);
475 
476 		if (lnames[i].unit)
477 			count += sprintf(&bufptr[count], "%-10s\n",
478 					 lnames[i].unit);
479 		else
480 			count += sprintf(&bufptr[count], "\n");
481 	}
482 
483 	return count;
484 }
485 
486 /************************************************************************/
487 /*                       Here the fs part begins                        */
488 /************************************************************************/
489 
490 /* permission checks */
491 static int proc_fd_access_allowed(struct inode *inode)
492 {
493 	struct task_struct *task;
494 	int allowed = 0;
495 	/* Allow access to a task's file descriptors if it is us or we
496 	 * may use ptrace attach to the process and find out that
497 	 * information.
498 	 */
499 	task = get_proc_task(inode);
500 	if (task) {
501 		allowed = ptrace_may_attach(task);
502 		put_task_struct(task);
503 	}
504 	return allowed;
505 }
506 
507 static int proc_setattr(struct dentry *dentry, struct iattr *attr)
508 {
509 	int error;
510 	struct inode *inode = dentry->d_inode;
511 
512 	if (attr->ia_valid & ATTR_MODE)
513 		return -EPERM;
514 
515 	error = inode_change_ok(inode, attr);
516 	if (!error)
517 		error = inode_setattr(inode, attr);
518 	return error;
519 }
520 
521 static const struct inode_operations proc_def_inode_operations = {
522 	.setattr	= proc_setattr,
523 };
524 
525 static int mounts_open_common(struct inode *inode, struct file *file,
526 			      const struct seq_operations *op)
527 {
528 	struct task_struct *task = get_proc_task(inode);
529 	struct nsproxy *nsp;
530 	struct mnt_namespace *ns = NULL;
531 	struct fs_struct *fs = NULL;
532 	struct path root;
533 	struct proc_mounts *p;
534 	int ret = -EINVAL;
535 
536 	if (task) {
537 		rcu_read_lock();
538 		nsp = task_nsproxy(task);
539 		if (nsp) {
540 			ns = nsp->mnt_ns;
541 			if (ns)
542 				get_mnt_ns(ns);
543 		}
544 		rcu_read_unlock();
545 		if (ns)
546 			fs = get_fs_struct(task);
547 		put_task_struct(task);
548 	}
549 
550 	if (!ns)
551 		goto err;
552 	if (!fs)
553 		goto err_put_ns;
554 
555 	read_lock(&fs->lock);
556 	root = fs->root;
557 	path_get(&root);
558 	read_unlock(&fs->lock);
559 	put_fs_struct(fs);
560 
561 	ret = -ENOMEM;
562 	p = kmalloc(sizeof(struct proc_mounts), GFP_KERNEL);
563 	if (!p)
564 		goto err_put_path;
565 
566 	file->private_data = &p->m;
567 	ret = seq_open(file, op);
568 	if (ret)
569 		goto err_free;
570 
571 	p->m.private = p;
572 	p->ns = ns;
573 	p->root = root;
574 	p->event = ns->event;
575 
576 	return 0;
577 
578  err_free:
579 	kfree(p);
580  err_put_path:
581 	path_put(&root);
582  err_put_ns:
583 	put_mnt_ns(ns);
584  err:
585 	return ret;
586 }
587 
588 static int mounts_release(struct inode *inode, struct file *file)
589 {
590 	struct proc_mounts *p = file->private_data;
591 	path_put(&p->root);
592 	put_mnt_ns(p->ns);
593 	return seq_release(inode, file);
594 }
595 
596 static unsigned mounts_poll(struct file *file, poll_table *wait)
597 {
598 	struct proc_mounts *p = file->private_data;
599 	struct mnt_namespace *ns = p->ns;
600 	unsigned res = 0;
601 
602 	poll_wait(file, &ns->poll, wait);
603 
604 	spin_lock(&vfsmount_lock);
605 	if (p->event != ns->event) {
606 		p->event = ns->event;
607 		res = POLLERR;
608 	}
609 	spin_unlock(&vfsmount_lock);
610 
611 	return res;
612 }
613 
614 static int mounts_open(struct inode *inode, struct file *file)
615 {
616 	return mounts_open_common(inode, file, &mounts_op);
617 }
618 
619 static const struct file_operations proc_mounts_operations = {
620 	.open		= mounts_open,
621 	.read		= seq_read,
622 	.llseek		= seq_lseek,
623 	.release	= mounts_release,
624 	.poll		= mounts_poll,
625 };
626 
627 static int mountinfo_open(struct inode *inode, struct file *file)
628 {
629 	return mounts_open_common(inode, file, &mountinfo_op);
630 }
631 
632 static const struct file_operations proc_mountinfo_operations = {
633 	.open		= mountinfo_open,
634 	.read		= seq_read,
635 	.llseek		= seq_lseek,
636 	.release	= mounts_release,
637 	.poll		= mounts_poll,
638 };
639 
640 static int mountstats_open(struct inode *inode, struct file *file)
641 {
642 	return mounts_open_common(inode, file, &mountstats_op);
643 }
644 
645 static const struct file_operations proc_mountstats_operations = {
646 	.open		= mountstats_open,
647 	.read		= seq_read,
648 	.llseek		= seq_lseek,
649 	.release	= mounts_release,
650 };
651 
652 #define PROC_BLOCK_SIZE	(3*1024)		/* 4K page size but our output routines use some slack for overruns */
653 
654 static ssize_t proc_info_read(struct file * file, char __user * buf,
655 			  size_t count, loff_t *ppos)
656 {
657 	struct inode * inode = file->f_path.dentry->d_inode;
658 	unsigned long page;
659 	ssize_t length;
660 	struct task_struct *task = get_proc_task(inode);
661 
662 	length = -ESRCH;
663 	if (!task)
664 		goto out_no_task;
665 
666 	if (count > PROC_BLOCK_SIZE)
667 		count = PROC_BLOCK_SIZE;
668 
669 	length = -ENOMEM;
670 	if (!(page = __get_free_page(GFP_TEMPORARY)))
671 		goto out;
672 
673 	length = PROC_I(inode)->op.proc_read(task, (char*)page);
674 
675 	if (length >= 0)
676 		length = simple_read_from_buffer(buf, count, ppos, (char *)page, length);
677 	free_page(page);
678 out:
679 	put_task_struct(task);
680 out_no_task:
681 	return length;
682 }
683 
684 static const struct file_operations proc_info_file_operations = {
685 	.read		= proc_info_read,
686 };
687 
688 static int proc_single_show(struct seq_file *m, void *v)
689 {
690 	struct inode *inode = m->private;
691 	struct pid_namespace *ns;
692 	struct pid *pid;
693 	struct task_struct *task;
694 	int ret;
695 
696 	ns = inode->i_sb->s_fs_info;
697 	pid = proc_pid(inode);
698 	task = get_pid_task(pid, PIDTYPE_PID);
699 	if (!task)
700 		return -ESRCH;
701 
702 	ret = PROC_I(inode)->op.proc_show(m, ns, pid, task);
703 
704 	put_task_struct(task);
705 	return ret;
706 }
707 
708 static int proc_single_open(struct inode *inode, struct file *filp)
709 {
710 	int ret;
711 	ret = single_open(filp, proc_single_show, NULL);
712 	if (!ret) {
713 		struct seq_file *m = filp->private_data;
714 
715 		m->private = inode;
716 	}
717 	return ret;
718 }
719 
720 static const struct file_operations proc_single_file_operations = {
721 	.open		= proc_single_open,
722 	.read		= seq_read,
723 	.llseek		= seq_lseek,
724 	.release	= single_release,
725 };
726 
727 static int mem_open(struct inode* inode, struct file* file)
728 {
729 	file->private_data = (void*)((long)current->self_exec_id);
730 	return 0;
731 }
732 
733 static ssize_t mem_read(struct file * file, char __user * buf,
734 			size_t count, loff_t *ppos)
735 {
736 	struct task_struct *task = get_proc_task(file->f_path.dentry->d_inode);
737 	char *page;
738 	unsigned long src = *ppos;
739 	int ret = -ESRCH;
740 	struct mm_struct *mm;
741 
742 	if (!task)
743 		goto out_no_task;
744 
745 	if (check_mem_permission(task))
746 		goto out;
747 
748 	ret = -ENOMEM;
749 	page = (char *)__get_free_page(GFP_TEMPORARY);
750 	if (!page)
751 		goto out;
752 
753 	ret = 0;
754 
755 	mm = get_task_mm(task);
756 	if (!mm)
757 		goto out_free;
758 
759 	ret = -EIO;
760 
761 	if (file->private_data != (void*)((long)current->self_exec_id))
762 		goto out_put;
763 
764 	ret = 0;
765 
766 	while (count > 0) {
767 		int this_len, retval;
768 
769 		this_len = (count > PAGE_SIZE) ? PAGE_SIZE : count;
770 		retval = access_process_vm(task, src, page, this_len, 0);
771 		if (!retval || check_mem_permission(task)) {
772 			if (!ret)
773 				ret = -EIO;
774 			break;
775 		}
776 
777 		if (copy_to_user(buf, page, retval)) {
778 			ret = -EFAULT;
779 			break;
780 		}
781 
782 		ret += retval;
783 		src += retval;
784 		buf += retval;
785 		count -= retval;
786 	}
787 	*ppos = src;
788 
789 out_put:
790 	mmput(mm);
791 out_free:
792 	free_page((unsigned long) page);
793 out:
794 	put_task_struct(task);
795 out_no_task:
796 	return ret;
797 }
798 
799 #define mem_write NULL
800 
801 #ifndef mem_write
802 /* This is a security hazard */
803 static ssize_t mem_write(struct file * file, const char __user *buf,
804 			 size_t count, loff_t *ppos)
805 {
806 	int copied;
807 	char *page;
808 	struct task_struct *task = get_proc_task(file->f_path.dentry->d_inode);
809 	unsigned long dst = *ppos;
810 
811 	copied = -ESRCH;
812 	if (!task)
813 		goto out_no_task;
814 
815 	if (check_mem_permission(task))
816 		goto out;
817 
818 	copied = -ENOMEM;
819 	page = (char *)__get_free_page(GFP_TEMPORARY);
820 	if (!page)
821 		goto out;
822 
823 	copied = 0;
824 	while (count > 0) {
825 		int this_len, retval;
826 
827 		this_len = (count > PAGE_SIZE) ? PAGE_SIZE : count;
828 		if (copy_from_user(page, buf, this_len)) {
829 			copied = -EFAULT;
830 			break;
831 		}
832 		retval = access_process_vm(task, dst, page, this_len, 1);
833 		if (!retval) {
834 			if (!copied)
835 				copied = -EIO;
836 			break;
837 		}
838 		copied += retval;
839 		buf += retval;
840 		dst += retval;
841 		count -= retval;
842 	}
843 	*ppos = dst;
844 	free_page((unsigned long) page);
845 out:
846 	put_task_struct(task);
847 out_no_task:
848 	return copied;
849 }
850 #endif
851 
852 loff_t mem_lseek(struct file *file, loff_t offset, int orig)
853 {
854 	switch (orig) {
855 	case 0:
856 		file->f_pos = offset;
857 		break;
858 	case 1:
859 		file->f_pos += offset;
860 		break;
861 	default:
862 		return -EINVAL;
863 	}
864 	force_successful_syscall_return();
865 	return file->f_pos;
866 }
867 
868 static const struct file_operations proc_mem_operations = {
869 	.llseek		= mem_lseek,
870 	.read		= mem_read,
871 	.write		= mem_write,
872 	.open		= mem_open,
873 };
874 
875 static ssize_t environ_read(struct file *file, char __user *buf,
876 			size_t count, loff_t *ppos)
877 {
878 	struct task_struct *task = get_proc_task(file->f_dentry->d_inode);
879 	char *page;
880 	unsigned long src = *ppos;
881 	int ret = -ESRCH;
882 	struct mm_struct *mm;
883 
884 	if (!task)
885 		goto out_no_task;
886 
887 	if (!ptrace_may_attach(task))
888 		goto out;
889 
890 	ret = -ENOMEM;
891 	page = (char *)__get_free_page(GFP_TEMPORARY);
892 	if (!page)
893 		goto out;
894 
895 	ret = 0;
896 
897 	mm = get_task_mm(task);
898 	if (!mm)
899 		goto out_free;
900 
901 	while (count > 0) {
902 		int this_len, retval, max_len;
903 
904 		this_len = mm->env_end - (mm->env_start + src);
905 
906 		if (this_len <= 0)
907 			break;
908 
909 		max_len = (count > PAGE_SIZE) ? PAGE_SIZE : count;
910 		this_len = (this_len > max_len) ? max_len : this_len;
911 
912 		retval = access_process_vm(task, (mm->env_start + src),
913 			page, this_len, 0);
914 
915 		if (retval <= 0) {
916 			ret = retval;
917 			break;
918 		}
919 
920 		if (copy_to_user(buf, page, retval)) {
921 			ret = -EFAULT;
922 			break;
923 		}
924 
925 		ret += retval;
926 		src += retval;
927 		buf += retval;
928 		count -= retval;
929 	}
930 	*ppos = src;
931 
932 	mmput(mm);
933 out_free:
934 	free_page((unsigned long) page);
935 out:
936 	put_task_struct(task);
937 out_no_task:
938 	return ret;
939 }
940 
941 static const struct file_operations proc_environ_operations = {
942 	.read		= environ_read,
943 };
944 
945 static ssize_t oom_adjust_read(struct file *file, char __user *buf,
946 				size_t count, loff_t *ppos)
947 {
948 	struct task_struct *task = get_proc_task(file->f_path.dentry->d_inode);
949 	char buffer[PROC_NUMBUF];
950 	size_t len;
951 	int oom_adjust;
952 
953 	if (!task)
954 		return -ESRCH;
955 	oom_adjust = task->oomkilladj;
956 	put_task_struct(task);
957 
958 	len = snprintf(buffer, sizeof(buffer), "%i\n", oom_adjust);
959 
960 	return simple_read_from_buffer(buf, count, ppos, buffer, len);
961 }
962 
963 static ssize_t oom_adjust_write(struct file *file, const char __user *buf,
964 				size_t count, loff_t *ppos)
965 {
966 	struct task_struct *task;
967 	char buffer[PROC_NUMBUF], *end;
968 	int oom_adjust;
969 
970 	memset(buffer, 0, sizeof(buffer));
971 	if (count > sizeof(buffer) - 1)
972 		count = sizeof(buffer) - 1;
973 	if (copy_from_user(buffer, buf, count))
974 		return -EFAULT;
975 	oom_adjust = simple_strtol(buffer, &end, 0);
976 	if ((oom_adjust < OOM_ADJUST_MIN || oom_adjust > OOM_ADJUST_MAX) &&
977 	     oom_adjust != OOM_DISABLE)
978 		return -EINVAL;
979 	if (*end == '\n')
980 		end++;
981 	task = get_proc_task(file->f_path.dentry->d_inode);
982 	if (!task)
983 		return -ESRCH;
984 	if (oom_adjust < task->oomkilladj && !capable(CAP_SYS_RESOURCE)) {
985 		put_task_struct(task);
986 		return -EACCES;
987 	}
988 	task->oomkilladj = oom_adjust;
989 	put_task_struct(task);
990 	if (end - buffer == 0)
991 		return -EIO;
992 	return end - buffer;
993 }
994 
995 static const struct file_operations proc_oom_adjust_operations = {
996 	.read		= oom_adjust_read,
997 	.write		= oom_adjust_write,
998 };
999 
1000 #ifdef CONFIG_AUDITSYSCALL
1001 #define TMPBUFLEN 21
1002 static ssize_t proc_loginuid_read(struct file * file, char __user * buf,
1003 				  size_t count, loff_t *ppos)
1004 {
1005 	struct inode * inode = file->f_path.dentry->d_inode;
1006 	struct task_struct *task = get_proc_task(inode);
1007 	ssize_t length;
1008 	char tmpbuf[TMPBUFLEN];
1009 
1010 	if (!task)
1011 		return -ESRCH;
1012 	length = scnprintf(tmpbuf, TMPBUFLEN, "%u",
1013 				audit_get_loginuid(task));
1014 	put_task_struct(task);
1015 	return simple_read_from_buffer(buf, count, ppos, tmpbuf, length);
1016 }
1017 
1018 static ssize_t proc_loginuid_write(struct file * file, const char __user * buf,
1019 				   size_t count, loff_t *ppos)
1020 {
1021 	struct inode * inode = file->f_path.dentry->d_inode;
1022 	char *page, *tmp;
1023 	ssize_t length;
1024 	uid_t loginuid;
1025 
1026 	if (!capable(CAP_AUDIT_CONTROL))
1027 		return -EPERM;
1028 
1029 	if (current != pid_task(proc_pid(inode), PIDTYPE_PID))
1030 		return -EPERM;
1031 
1032 	if (count >= PAGE_SIZE)
1033 		count = PAGE_SIZE - 1;
1034 
1035 	if (*ppos != 0) {
1036 		/* No partial writes. */
1037 		return -EINVAL;
1038 	}
1039 	page = (char*)__get_free_page(GFP_TEMPORARY);
1040 	if (!page)
1041 		return -ENOMEM;
1042 	length = -EFAULT;
1043 	if (copy_from_user(page, buf, count))
1044 		goto out_free_page;
1045 
1046 	page[count] = '\0';
1047 	loginuid = simple_strtoul(page, &tmp, 10);
1048 	if (tmp == page) {
1049 		length = -EINVAL;
1050 		goto out_free_page;
1051 
1052 	}
1053 	length = audit_set_loginuid(current, loginuid);
1054 	if (likely(length == 0))
1055 		length = count;
1056 
1057 out_free_page:
1058 	free_page((unsigned long) page);
1059 	return length;
1060 }
1061 
1062 static const struct file_operations proc_loginuid_operations = {
1063 	.read		= proc_loginuid_read,
1064 	.write		= proc_loginuid_write,
1065 };
1066 
1067 static ssize_t proc_sessionid_read(struct file * file, char __user * buf,
1068 				  size_t count, loff_t *ppos)
1069 {
1070 	struct inode * inode = file->f_path.dentry->d_inode;
1071 	struct task_struct *task = get_proc_task(inode);
1072 	ssize_t length;
1073 	char tmpbuf[TMPBUFLEN];
1074 
1075 	if (!task)
1076 		return -ESRCH;
1077 	length = scnprintf(tmpbuf, TMPBUFLEN, "%u",
1078 				audit_get_sessionid(task));
1079 	put_task_struct(task);
1080 	return simple_read_from_buffer(buf, count, ppos, tmpbuf, length);
1081 }
1082 
1083 static const struct file_operations proc_sessionid_operations = {
1084 	.read		= proc_sessionid_read,
1085 };
1086 #endif
1087 
1088 #ifdef CONFIG_FAULT_INJECTION
1089 static ssize_t proc_fault_inject_read(struct file * file, char __user * buf,
1090 				      size_t count, loff_t *ppos)
1091 {
1092 	struct task_struct *task = get_proc_task(file->f_dentry->d_inode);
1093 	char buffer[PROC_NUMBUF];
1094 	size_t len;
1095 	int make_it_fail;
1096 
1097 	if (!task)
1098 		return -ESRCH;
1099 	make_it_fail = task->make_it_fail;
1100 	put_task_struct(task);
1101 
1102 	len = snprintf(buffer, sizeof(buffer), "%i\n", make_it_fail);
1103 
1104 	return simple_read_from_buffer(buf, count, ppos, buffer, len);
1105 }
1106 
1107 static ssize_t proc_fault_inject_write(struct file * file,
1108 			const char __user * buf, size_t count, loff_t *ppos)
1109 {
1110 	struct task_struct *task;
1111 	char buffer[PROC_NUMBUF], *end;
1112 	int make_it_fail;
1113 
1114 	if (!capable(CAP_SYS_RESOURCE))
1115 		return -EPERM;
1116 	memset(buffer, 0, sizeof(buffer));
1117 	if (count > sizeof(buffer) - 1)
1118 		count = sizeof(buffer) - 1;
1119 	if (copy_from_user(buffer, buf, count))
1120 		return -EFAULT;
1121 	make_it_fail = simple_strtol(buffer, &end, 0);
1122 	if (*end == '\n')
1123 		end++;
1124 	task = get_proc_task(file->f_dentry->d_inode);
1125 	if (!task)
1126 		return -ESRCH;
1127 	task->make_it_fail = make_it_fail;
1128 	put_task_struct(task);
1129 	if (end - buffer == 0)
1130 		return -EIO;
1131 	return end - buffer;
1132 }
1133 
1134 static const struct file_operations proc_fault_inject_operations = {
1135 	.read		= proc_fault_inject_read,
1136 	.write		= proc_fault_inject_write,
1137 };
1138 #endif
1139 
1140 
1141 #ifdef CONFIG_SCHED_DEBUG
1142 /*
1143  * Print out various scheduling related per-task fields:
1144  */
1145 static int sched_show(struct seq_file *m, void *v)
1146 {
1147 	struct inode *inode = m->private;
1148 	struct task_struct *p;
1149 
1150 	WARN_ON(!inode);
1151 
1152 	p = get_proc_task(inode);
1153 	if (!p)
1154 		return -ESRCH;
1155 	proc_sched_show_task(p, m);
1156 
1157 	put_task_struct(p);
1158 
1159 	return 0;
1160 }
1161 
1162 static ssize_t
1163 sched_write(struct file *file, const char __user *buf,
1164 	    size_t count, loff_t *offset)
1165 {
1166 	struct inode *inode = file->f_path.dentry->d_inode;
1167 	struct task_struct *p;
1168 
1169 	WARN_ON(!inode);
1170 
1171 	p = get_proc_task(inode);
1172 	if (!p)
1173 		return -ESRCH;
1174 	proc_sched_set_task(p);
1175 
1176 	put_task_struct(p);
1177 
1178 	return count;
1179 }
1180 
1181 static int sched_open(struct inode *inode, struct file *filp)
1182 {
1183 	int ret;
1184 
1185 	ret = single_open(filp, sched_show, NULL);
1186 	if (!ret) {
1187 		struct seq_file *m = filp->private_data;
1188 
1189 		m->private = inode;
1190 	}
1191 	return ret;
1192 }
1193 
1194 static const struct file_operations proc_pid_sched_operations = {
1195 	.open		= sched_open,
1196 	.read		= seq_read,
1197 	.write		= sched_write,
1198 	.llseek		= seq_lseek,
1199 	.release	= single_release,
1200 };
1201 
1202 #endif
1203 
1204 /*
1205  * We added or removed a vma mapping the executable. The vmas are only mapped
1206  * during exec and are not mapped with the mmap system call.
1207  * Callers must hold down_write() on the mm's mmap_sem for these
1208  */
1209 void added_exe_file_vma(struct mm_struct *mm)
1210 {
1211 	mm->num_exe_file_vmas++;
1212 }
1213 
1214 void removed_exe_file_vma(struct mm_struct *mm)
1215 {
1216 	mm->num_exe_file_vmas--;
1217 	if ((mm->num_exe_file_vmas == 0) && mm->exe_file){
1218 		fput(mm->exe_file);
1219 		mm->exe_file = NULL;
1220 	}
1221 
1222 }
1223 
1224 void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
1225 {
1226 	if (new_exe_file)
1227 		get_file(new_exe_file);
1228 	if (mm->exe_file)
1229 		fput(mm->exe_file);
1230 	mm->exe_file = new_exe_file;
1231 	mm->num_exe_file_vmas = 0;
1232 }
1233 
1234 struct file *get_mm_exe_file(struct mm_struct *mm)
1235 {
1236 	struct file *exe_file;
1237 
1238 	/* We need mmap_sem to protect against races with removal of
1239 	 * VM_EXECUTABLE vmas */
1240 	down_read(&mm->mmap_sem);
1241 	exe_file = mm->exe_file;
1242 	if (exe_file)
1243 		get_file(exe_file);
1244 	up_read(&mm->mmap_sem);
1245 	return exe_file;
1246 }
1247 
1248 void dup_mm_exe_file(struct mm_struct *oldmm, struct mm_struct *newmm)
1249 {
1250 	/* It's safe to write the exe_file pointer without exe_file_lock because
1251 	 * this is called during fork when the task is not yet in /proc */
1252 	newmm->exe_file = get_mm_exe_file(oldmm);
1253 }
1254 
1255 static int proc_exe_link(struct inode *inode, struct path *exe_path)
1256 {
1257 	struct task_struct *task;
1258 	struct mm_struct *mm;
1259 	struct file *exe_file;
1260 
1261 	task = get_proc_task(inode);
1262 	if (!task)
1263 		return -ENOENT;
1264 	mm = get_task_mm(task);
1265 	put_task_struct(task);
1266 	if (!mm)
1267 		return -ENOENT;
1268 	exe_file = get_mm_exe_file(mm);
1269 	mmput(mm);
1270 	if (exe_file) {
1271 		*exe_path = exe_file->f_path;
1272 		path_get(&exe_file->f_path);
1273 		fput(exe_file);
1274 		return 0;
1275 	} else
1276 		return -ENOENT;
1277 }
1278 
1279 static void *proc_pid_follow_link(struct dentry *dentry, struct nameidata *nd)
1280 {
1281 	struct inode *inode = dentry->d_inode;
1282 	int error = -EACCES;
1283 
1284 	/* We don't need a base pointer in the /proc filesystem */
1285 	path_put(&nd->path);
1286 
1287 	/* Are we allowed to snoop on the tasks file descriptors? */
1288 	if (!proc_fd_access_allowed(inode))
1289 		goto out;
1290 
1291 	error = PROC_I(inode)->op.proc_get_link(inode, &nd->path);
1292 	nd->last_type = LAST_BIND;
1293 out:
1294 	return ERR_PTR(error);
1295 }
1296 
1297 static int do_proc_readlink(struct path *path, char __user *buffer, int buflen)
1298 {
1299 	char *tmp = (char*)__get_free_page(GFP_TEMPORARY);
1300 	char *pathname;
1301 	int len;
1302 
1303 	if (!tmp)
1304 		return -ENOMEM;
1305 
1306 	pathname = d_path(path, tmp, PAGE_SIZE);
1307 	len = PTR_ERR(pathname);
1308 	if (IS_ERR(pathname))
1309 		goto out;
1310 	len = tmp + PAGE_SIZE - 1 - pathname;
1311 
1312 	if (len > buflen)
1313 		len = buflen;
1314 	if (copy_to_user(buffer, pathname, len))
1315 		len = -EFAULT;
1316  out:
1317 	free_page((unsigned long)tmp);
1318 	return len;
1319 }
1320 
1321 static int proc_pid_readlink(struct dentry * dentry, char __user * buffer, int buflen)
1322 {
1323 	int error = -EACCES;
1324 	struct inode *inode = dentry->d_inode;
1325 	struct path path;
1326 
1327 	/* Are we allowed to snoop on the tasks file descriptors? */
1328 	if (!proc_fd_access_allowed(inode))
1329 		goto out;
1330 
1331 	error = PROC_I(inode)->op.proc_get_link(inode, &path);
1332 	if (error)
1333 		goto out;
1334 
1335 	error = do_proc_readlink(&path, buffer, buflen);
1336 	path_put(&path);
1337 out:
1338 	return error;
1339 }
1340 
1341 static const struct inode_operations proc_pid_link_inode_operations = {
1342 	.readlink	= proc_pid_readlink,
1343 	.follow_link	= proc_pid_follow_link,
1344 	.setattr	= proc_setattr,
1345 };
1346 
1347 
1348 /* building an inode */
1349 
1350 static int task_dumpable(struct task_struct *task)
1351 {
1352 	int dumpable = 0;
1353 	struct mm_struct *mm;
1354 
1355 	task_lock(task);
1356 	mm = task->mm;
1357 	if (mm)
1358 		dumpable = get_dumpable(mm);
1359 	task_unlock(task);
1360 	if(dumpable == 1)
1361 		return 1;
1362 	return 0;
1363 }
1364 
1365 
1366 static struct inode *proc_pid_make_inode(struct super_block * sb, struct task_struct *task)
1367 {
1368 	struct inode * inode;
1369 	struct proc_inode *ei;
1370 
1371 	/* We need a new inode */
1372 
1373 	inode = new_inode(sb);
1374 	if (!inode)
1375 		goto out;
1376 
1377 	/* Common stuff */
1378 	ei = PROC_I(inode);
1379 	inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
1380 	inode->i_op = &proc_def_inode_operations;
1381 
1382 	/*
1383 	 * grab the reference to task.
1384 	 */
1385 	ei->pid = get_task_pid(task, PIDTYPE_PID);
1386 	if (!ei->pid)
1387 		goto out_unlock;
1388 
1389 	inode->i_uid = 0;
1390 	inode->i_gid = 0;
1391 	if (task_dumpable(task)) {
1392 		inode->i_uid = task->euid;
1393 		inode->i_gid = task->egid;
1394 	}
1395 	security_task_to_inode(task, inode);
1396 
1397 out:
1398 	return inode;
1399 
1400 out_unlock:
1401 	iput(inode);
1402 	return NULL;
1403 }
1404 
1405 static int pid_getattr(struct vfsmount *mnt, struct dentry *dentry, struct kstat *stat)
1406 {
1407 	struct inode *inode = dentry->d_inode;
1408 	struct task_struct *task;
1409 	generic_fillattr(inode, stat);
1410 
1411 	rcu_read_lock();
1412 	stat->uid = 0;
1413 	stat->gid = 0;
1414 	task = pid_task(proc_pid(inode), PIDTYPE_PID);
1415 	if (task) {
1416 		if ((inode->i_mode == (S_IFDIR|S_IRUGO|S_IXUGO)) ||
1417 		    task_dumpable(task)) {
1418 			stat->uid = task->euid;
1419 			stat->gid = task->egid;
1420 		}
1421 	}
1422 	rcu_read_unlock();
1423 	return 0;
1424 }
1425 
1426 /* dentry stuff */
1427 
1428 /*
1429  *	Exceptional case: normally we are not allowed to unhash a busy
1430  * directory. In this case, however, we can do it - no aliasing problems
1431  * due to the way we treat inodes.
1432  *
1433  * Rewrite the inode's ownerships here because the owning task may have
1434  * performed a setuid(), etc.
1435  *
1436  * Before the /proc/pid/status file was created the only way to read
1437  * the effective uid of a /process was to stat /proc/pid.  Reading
1438  * /proc/pid/status is slow enough that procps and other packages
1439  * kept stating /proc/pid.  To keep the rules in /proc simple I have
1440  * made this apply to all per process world readable and executable
1441  * directories.
1442  */
1443 static int pid_revalidate(struct dentry *dentry, struct nameidata *nd)
1444 {
1445 	struct inode *inode = dentry->d_inode;
1446 	struct task_struct *task = get_proc_task(inode);
1447 	if (task) {
1448 		if ((inode->i_mode == (S_IFDIR|S_IRUGO|S_IXUGO)) ||
1449 		    task_dumpable(task)) {
1450 			inode->i_uid = task->euid;
1451 			inode->i_gid = task->egid;
1452 		} else {
1453 			inode->i_uid = 0;
1454 			inode->i_gid = 0;
1455 		}
1456 		inode->i_mode &= ~(S_ISUID | S_ISGID);
1457 		security_task_to_inode(task, inode);
1458 		put_task_struct(task);
1459 		return 1;
1460 	}
1461 	d_drop(dentry);
1462 	return 0;
1463 }
1464 
1465 static int pid_delete_dentry(struct dentry * dentry)
1466 {
1467 	/* Is the task we represent dead?
1468 	 * If so, then don't put the dentry on the lru list,
1469 	 * kill it immediately.
1470 	 */
1471 	return !proc_pid(dentry->d_inode)->tasks[PIDTYPE_PID].first;
1472 }
1473 
1474 static struct dentry_operations pid_dentry_operations =
1475 {
1476 	.d_revalidate	= pid_revalidate,
1477 	.d_delete	= pid_delete_dentry,
1478 };
1479 
1480 /* Lookups */
1481 
1482 typedef struct dentry *instantiate_t(struct inode *, struct dentry *,
1483 				struct task_struct *, const void *);
1484 
1485 /*
1486  * Fill a directory entry.
1487  *
1488  * If possible create the dcache entry and derive our inode number and
1489  * file type from dcache entry.
1490  *
1491  * Since all of the proc inode numbers are dynamically generated, the inode
1492  * numbers do not exist until the inode is cache.  This means creating the
1493  * the dcache entry in readdir is necessary to keep the inode numbers
1494  * reported by readdir in sync with the inode numbers reported
1495  * by stat.
1496  */
1497 static int proc_fill_cache(struct file *filp, void *dirent, filldir_t filldir,
1498 	char *name, int len,
1499 	instantiate_t instantiate, struct task_struct *task, const void *ptr)
1500 {
1501 	struct dentry *child, *dir = filp->f_path.dentry;
1502 	struct inode *inode;
1503 	struct qstr qname;
1504 	ino_t ino = 0;
1505 	unsigned type = DT_UNKNOWN;
1506 
1507 	qname.name = name;
1508 	qname.len  = len;
1509 	qname.hash = full_name_hash(name, len);
1510 
1511 	child = d_lookup(dir, &qname);
1512 	if (!child) {
1513 		struct dentry *new;
1514 		new = d_alloc(dir, &qname);
1515 		if (new) {
1516 			child = instantiate(dir->d_inode, new, task, ptr);
1517 			if (child)
1518 				dput(new);
1519 			else
1520 				child = new;
1521 		}
1522 	}
1523 	if (!child || IS_ERR(child) || !child->d_inode)
1524 		goto end_instantiate;
1525 	inode = child->d_inode;
1526 	if (inode) {
1527 		ino = inode->i_ino;
1528 		type = inode->i_mode >> 12;
1529 	}
1530 	dput(child);
1531 end_instantiate:
1532 	if (!ino)
1533 		ino = find_inode_number(dir, &qname);
1534 	if (!ino)
1535 		ino = 1;
1536 	return filldir(dirent, name, len, filp->f_pos, ino, type);
1537 }
1538 
1539 static unsigned name_to_int(struct dentry *dentry)
1540 {
1541 	const char *name = dentry->d_name.name;
1542 	int len = dentry->d_name.len;
1543 	unsigned n = 0;
1544 
1545 	if (len > 1 && *name == '0')
1546 		goto out;
1547 	while (len-- > 0) {
1548 		unsigned c = *name++ - '0';
1549 		if (c > 9)
1550 			goto out;
1551 		if (n >= (~0U-9)/10)
1552 			goto out;
1553 		n *= 10;
1554 		n += c;
1555 	}
1556 	return n;
1557 out:
1558 	return ~0U;
1559 }
1560 
1561 #define PROC_FDINFO_MAX 64
1562 
1563 static int proc_fd_info(struct inode *inode, struct path *path, char *info)
1564 {
1565 	struct task_struct *task = get_proc_task(inode);
1566 	struct files_struct *files = NULL;
1567 	struct file *file;
1568 	int fd = proc_fd(inode);
1569 
1570 	if (task) {
1571 		files = get_files_struct(task);
1572 		put_task_struct(task);
1573 	}
1574 	if (files) {
1575 		/*
1576 		 * We are not taking a ref to the file structure, so we must
1577 		 * hold ->file_lock.
1578 		 */
1579 		spin_lock(&files->file_lock);
1580 		file = fcheck_files(files, fd);
1581 		if (file) {
1582 			if (path) {
1583 				*path = file->f_path;
1584 				path_get(&file->f_path);
1585 			}
1586 			if (info)
1587 				snprintf(info, PROC_FDINFO_MAX,
1588 					 "pos:\t%lli\n"
1589 					 "flags:\t0%o\n",
1590 					 (long long) file->f_pos,
1591 					 file->f_flags);
1592 			spin_unlock(&files->file_lock);
1593 			put_files_struct(files);
1594 			return 0;
1595 		}
1596 		spin_unlock(&files->file_lock);
1597 		put_files_struct(files);
1598 	}
1599 	return -ENOENT;
1600 }
1601 
1602 static int proc_fd_link(struct inode *inode, struct path *path)
1603 {
1604 	return proc_fd_info(inode, path, NULL);
1605 }
1606 
1607 static int tid_fd_revalidate(struct dentry *dentry, struct nameidata *nd)
1608 {
1609 	struct inode *inode = dentry->d_inode;
1610 	struct task_struct *task = get_proc_task(inode);
1611 	int fd = proc_fd(inode);
1612 	struct files_struct *files;
1613 
1614 	if (task) {
1615 		files = get_files_struct(task);
1616 		if (files) {
1617 			rcu_read_lock();
1618 			if (fcheck_files(files, fd)) {
1619 				rcu_read_unlock();
1620 				put_files_struct(files);
1621 				if (task_dumpable(task)) {
1622 					inode->i_uid = task->euid;
1623 					inode->i_gid = task->egid;
1624 				} else {
1625 					inode->i_uid = 0;
1626 					inode->i_gid = 0;
1627 				}
1628 				inode->i_mode &= ~(S_ISUID | S_ISGID);
1629 				security_task_to_inode(task, inode);
1630 				put_task_struct(task);
1631 				return 1;
1632 			}
1633 			rcu_read_unlock();
1634 			put_files_struct(files);
1635 		}
1636 		put_task_struct(task);
1637 	}
1638 	d_drop(dentry);
1639 	return 0;
1640 }
1641 
1642 static struct dentry_operations tid_fd_dentry_operations =
1643 {
1644 	.d_revalidate	= tid_fd_revalidate,
1645 	.d_delete	= pid_delete_dentry,
1646 };
1647 
1648 static struct dentry *proc_fd_instantiate(struct inode *dir,
1649 	struct dentry *dentry, struct task_struct *task, const void *ptr)
1650 {
1651 	unsigned fd = *(const unsigned *)ptr;
1652 	struct file *file;
1653 	struct files_struct *files;
1654  	struct inode *inode;
1655  	struct proc_inode *ei;
1656 	struct dentry *error = ERR_PTR(-ENOENT);
1657 
1658 	inode = proc_pid_make_inode(dir->i_sb, task);
1659 	if (!inode)
1660 		goto out;
1661 	ei = PROC_I(inode);
1662 	ei->fd = fd;
1663 	files = get_files_struct(task);
1664 	if (!files)
1665 		goto out_iput;
1666 	inode->i_mode = S_IFLNK;
1667 
1668 	/*
1669 	 * We are not taking a ref to the file structure, so we must
1670 	 * hold ->file_lock.
1671 	 */
1672 	spin_lock(&files->file_lock);
1673 	file = fcheck_files(files, fd);
1674 	if (!file)
1675 		goto out_unlock;
1676 	if (file->f_mode & 1)
1677 		inode->i_mode |= S_IRUSR | S_IXUSR;
1678 	if (file->f_mode & 2)
1679 		inode->i_mode |= S_IWUSR | S_IXUSR;
1680 	spin_unlock(&files->file_lock);
1681 	put_files_struct(files);
1682 
1683 	inode->i_op = &proc_pid_link_inode_operations;
1684 	inode->i_size = 64;
1685 	ei->op.proc_get_link = proc_fd_link;
1686 	dentry->d_op = &tid_fd_dentry_operations;
1687 	d_add(dentry, inode);
1688 	/* Close the race of the process dying before we return the dentry */
1689 	if (tid_fd_revalidate(dentry, NULL))
1690 		error = NULL;
1691 
1692  out:
1693 	return error;
1694 out_unlock:
1695 	spin_unlock(&files->file_lock);
1696 	put_files_struct(files);
1697 out_iput:
1698 	iput(inode);
1699 	goto out;
1700 }
1701 
1702 static struct dentry *proc_lookupfd_common(struct inode *dir,
1703 					   struct dentry *dentry,
1704 					   instantiate_t instantiate)
1705 {
1706 	struct task_struct *task = get_proc_task(dir);
1707 	unsigned fd = name_to_int(dentry);
1708 	struct dentry *result = ERR_PTR(-ENOENT);
1709 
1710 	if (!task)
1711 		goto out_no_task;
1712 	if (fd == ~0U)
1713 		goto out;
1714 
1715 	result = instantiate(dir, dentry, task, &fd);
1716 out:
1717 	put_task_struct(task);
1718 out_no_task:
1719 	return result;
1720 }
1721 
1722 static int proc_readfd_common(struct file * filp, void * dirent,
1723 			      filldir_t filldir, instantiate_t instantiate)
1724 {
1725 	struct dentry *dentry = filp->f_path.dentry;
1726 	struct inode *inode = dentry->d_inode;
1727 	struct task_struct *p = get_proc_task(inode);
1728 	unsigned int fd, ino;
1729 	int retval;
1730 	struct files_struct * files;
1731 
1732 	retval = -ENOENT;
1733 	if (!p)
1734 		goto out_no_task;
1735 	retval = 0;
1736 
1737 	fd = filp->f_pos;
1738 	switch (fd) {
1739 		case 0:
1740 			if (filldir(dirent, ".", 1, 0, inode->i_ino, DT_DIR) < 0)
1741 				goto out;
1742 			filp->f_pos++;
1743 		case 1:
1744 			ino = parent_ino(dentry);
1745 			if (filldir(dirent, "..", 2, 1, ino, DT_DIR) < 0)
1746 				goto out;
1747 			filp->f_pos++;
1748 		default:
1749 			files = get_files_struct(p);
1750 			if (!files)
1751 				goto out;
1752 			rcu_read_lock();
1753 			for (fd = filp->f_pos-2;
1754 			     fd < files_fdtable(files)->max_fds;
1755 			     fd++, filp->f_pos++) {
1756 				char name[PROC_NUMBUF];
1757 				int len;
1758 
1759 				if (!fcheck_files(files, fd))
1760 					continue;
1761 				rcu_read_unlock();
1762 
1763 				len = snprintf(name, sizeof(name), "%d", fd);
1764 				if (proc_fill_cache(filp, dirent, filldir,
1765 						    name, len, instantiate,
1766 						    p, &fd) < 0) {
1767 					rcu_read_lock();
1768 					break;
1769 				}
1770 				rcu_read_lock();
1771 			}
1772 			rcu_read_unlock();
1773 			put_files_struct(files);
1774 	}
1775 out:
1776 	put_task_struct(p);
1777 out_no_task:
1778 	return retval;
1779 }
1780 
1781 static struct dentry *proc_lookupfd(struct inode *dir, struct dentry *dentry,
1782 				    struct nameidata *nd)
1783 {
1784 	return proc_lookupfd_common(dir, dentry, proc_fd_instantiate);
1785 }
1786 
1787 static int proc_readfd(struct file *filp, void *dirent, filldir_t filldir)
1788 {
1789 	return proc_readfd_common(filp, dirent, filldir, proc_fd_instantiate);
1790 }
1791 
1792 static ssize_t proc_fdinfo_read(struct file *file, char __user *buf,
1793 				      size_t len, loff_t *ppos)
1794 {
1795 	char tmp[PROC_FDINFO_MAX];
1796 	int err = proc_fd_info(file->f_path.dentry->d_inode, NULL, tmp);
1797 	if (!err)
1798 		err = simple_read_from_buffer(buf, len, ppos, tmp, strlen(tmp));
1799 	return err;
1800 }
1801 
1802 static const struct file_operations proc_fdinfo_file_operations = {
1803 	.open		= nonseekable_open,
1804 	.read		= proc_fdinfo_read,
1805 };
1806 
1807 static const struct file_operations proc_fd_operations = {
1808 	.read		= generic_read_dir,
1809 	.readdir	= proc_readfd,
1810 };
1811 
1812 /*
1813  * /proc/pid/fd needs a special permission handler so that a process can still
1814  * access /proc/self/fd after it has executed a setuid().
1815  */
1816 static int proc_fd_permission(struct inode *inode, int mask,
1817 				struct nameidata *nd)
1818 {
1819 	int rv;
1820 
1821 	rv = generic_permission(inode, mask, NULL);
1822 	if (rv == 0)
1823 		return 0;
1824 	if (task_pid(current) == proc_pid(inode))
1825 		rv = 0;
1826 	return rv;
1827 }
1828 
1829 /*
1830  * proc directories can do almost nothing..
1831  */
1832 static const struct inode_operations proc_fd_inode_operations = {
1833 	.lookup		= proc_lookupfd,
1834 	.permission	= proc_fd_permission,
1835 	.setattr	= proc_setattr,
1836 };
1837 
1838 static struct dentry *proc_fdinfo_instantiate(struct inode *dir,
1839 	struct dentry *dentry, struct task_struct *task, const void *ptr)
1840 {
1841 	unsigned fd = *(unsigned *)ptr;
1842  	struct inode *inode;
1843  	struct proc_inode *ei;
1844 	struct dentry *error = ERR_PTR(-ENOENT);
1845 
1846 	inode = proc_pid_make_inode(dir->i_sb, task);
1847 	if (!inode)
1848 		goto out;
1849 	ei = PROC_I(inode);
1850 	ei->fd = fd;
1851 	inode->i_mode = S_IFREG | S_IRUSR;
1852 	inode->i_fop = &proc_fdinfo_file_operations;
1853 	dentry->d_op = &tid_fd_dentry_operations;
1854 	d_add(dentry, inode);
1855 	/* Close the race of the process dying before we return the dentry */
1856 	if (tid_fd_revalidate(dentry, NULL))
1857 		error = NULL;
1858 
1859  out:
1860 	return error;
1861 }
1862 
1863 static struct dentry *proc_lookupfdinfo(struct inode *dir,
1864 					struct dentry *dentry,
1865 					struct nameidata *nd)
1866 {
1867 	return proc_lookupfd_common(dir, dentry, proc_fdinfo_instantiate);
1868 }
1869 
1870 static int proc_readfdinfo(struct file *filp, void *dirent, filldir_t filldir)
1871 {
1872 	return proc_readfd_common(filp, dirent, filldir,
1873 				  proc_fdinfo_instantiate);
1874 }
1875 
1876 static const struct file_operations proc_fdinfo_operations = {
1877 	.read		= generic_read_dir,
1878 	.readdir	= proc_readfdinfo,
1879 };
1880 
1881 /*
1882  * proc directories can do almost nothing..
1883  */
1884 static const struct inode_operations proc_fdinfo_inode_operations = {
1885 	.lookup		= proc_lookupfdinfo,
1886 	.setattr	= proc_setattr,
1887 };
1888 
1889 
1890 static struct dentry *proc_pident_instantiate(struct inode *dir,
1891 	struct dentry *dentry, struct task_struct *task, const void *ptr)
1892 {
1893 	const struct pid_entry *p = ptr;
1894 	struct inode *inode;
1895 	struct proc_inode *ei;
1896 	struct dentry *error = ERR_PTR(-EINVAL);
1897 
1898 	inode = proc_pid_make_inode(dir->i_sb, task);
1899 	if (!inode)
1900 		goto out;
1901 
1902 	ei = PROC_I(inode);
1903 	inode->i_mode = p->mode;
1904 	if (S_ISDIR(inode->i_mode))
1905 		inode->i_nlink = 2;	/* Use getattr to fix if necessary */
1906 	if (p->iop)
1907 		inode->i_op = p->iop;
1908 	if (p->fop)
1909 		inode->i_fop = p->fop;
1910 	ei->op = p->op;
1911 	dentry->d_op = &pid_dentry_operations;
1912 	d_add(dentry, inode);
1913 	/* Close the race of the process dying before we return the dentry */
1914 	if (pid_revalidate(dentry, NULL))
1915 		error = NULL;
1916 out:
1917 	return error;
1918 }
1919 
1920 static struct dentry *proc_pident_lookup(struct inode *dir,
1921 					 struct dentry *dentry,
1922 					 const struct pid_entry *ents,
1923 					 unsigned int nents)
1924 {
1925 	struct inode *inode;
1926 	struct dentry *error;
1927 	struct task_struct *task = get_proc_task(dir);
1928 	const struct pid_entry *p, *last;
1929 
1930 	error = ERR_PTR(-ENOENT);
1931 	inode = NULL;
1932 
1933 	if (!task)
1934 		goto out_no_task;
1935 
1936 	/*
1937 	 * Yes, it does not scale. And it should not. Don't add
1938 	 * new entries into /proc/<tgid>/ without very good reasons.
1939 	 */
1940 	last = &ents[nents - 1];
1941 	for (p = ents; p <= last; p++) {
1942 		if (p->len != dentry->d_name.len)
1943 			continue;
1944 		if (!memcmp(dentry->d_name.name, p->name, p->len))
1945 			break;
1946 	}
1947 	if (p > last)
1948 		goto out;
1949 
1950 	error = proc_pident_instantiate(dir, dentry, task, p);
1951 out:
1952 	put_task_struct(task);
1953 out_no_task:
1954 	return error;
1955 }
1956 
1957 static int proc_pident_fill_cache(struct file *filp, void *dirent,
1958 	filldir_t filldir, struct task_struct *task, const struct pid_entry *p)
1959 {
1960 	return proc_fill_cache(filp, dirent, filldir, p->name, p->len,
1961 				proc_pident_instantiate, task, p);
1962 }
1963 
1964 static int proc_pident_readdir(struct file *filp,
1965 		void *dirent, filldir_t filldir,
1966 		const struct pid_entry *ents, unsigned int nents)
1967 {
1968 	int i;
1969 	struct dentry *dentry = filp->f_path.dentry;
1970 	struct inode *inode = dentry->d_inode;
1971 	struct task_struct *task = get_proc_task(inode);
1972 	const struct pid_entry *p, *last;
1973 	ino_t ino;
1974 	int ret;
1975 
1976 	ret = -ENOENT;
1977 	if (!task)
1978 		goto out_no_task;
1979 
1980 	ret = 0;
1981 	i = filp->f_pos;
1982 	switch (i) {
1983 	case 0:
1984 		ino = inode->i_ino;
1985 		if (filldir(dirent, ".", 1, i, ino, DT_DIR) < 0)
1986 			goto out;
1987 		i++;
1988 		filp->f_pos++;
1989 		/* fall through */
1990 	case 1:
1991 		ino = parent_ino(dentry);
1992 		if (filldir(dirent, "..", 2, i, ino, DT_DIR) < 0)
1993 			goto out;
1994 		i++;
1995 		filp->f_pos++;
1996 		/* fall through */
1997 	default:
1998 		i -= 2;
1999 		if (i >= nents) {
2000 			ret = 1;
2001 			goto out;
2002 		}
2003 		p = ents + i;
2004 		last = &ents[nents - 1];
2005 		while (p <= last) {
2006 			if (proc_pident_fill_cache(filp, dirent, filldir, task, p) < 0)
2007 				goto out;
2008 			filp->f_pos++;
2009 			p++;
2010 		}
2011 	}
2012 
2013 	ret = 1;
2014 out:
2015 	put_task_struct(task);
2016 out_no_task:
2017 	return ret;
2018 }
2019 
2020 #ifdef CONFIG_SECURITY
2021 static ssize_t proc_pid_attr_read(struct file * file, char __user * buf,
2022 				  size_t count, loff_t *ppos)
2023 {
2024 	struct inode * inode = file->f_path.dentry->d_inode;
2025 	char *p = NULL;
2026 	ssize_t length;
2027 	struct task_struct *task = get_proc_task(inode);
2028 
2029 	if (!task)
2030 		return -ESRCH;
2031 
2032 	length = security_getprocattr(task,
2033 				      (char*)file->f_path.dentry->d_name.name,
2034 				      &p);
2035 	put_task_struct(task);
2036 	if (length > 0)
2037 		length = simple_read_from_buffer(buf, count, ppos, p, length);
2038 	kfree(p);
2039 	return length;
2040 }
2041 
2042 static ssize_t proc_pid_attr_write(struct file * file, const char __user * buf,
2043 				   size_t count, loff_t *ppos)
2044 {
2045 	struct inode * inode = file->f_path.dentry->d_inode;
2046 	char *page;
2047 	ssize_t length;
2048 	struct task_struct *task = get_proc_task(inode);
2049 
2050 	length = -ESRCH;
2051 	if (!task)
2052 		goto out_no_task;
2053 	if (count > PAGE_SIZE)
2054 		count = PAGE_SIZE;
2055 
2056 	/* No partial writes. */
2057 	length = -EINVAL;
2058 	if (*ppos != 0)
2059 		goto out;
2060 
2061 	length = -ENOMEM;
2062 	page = (char*)__get_free_page(GFP_TEMPORARY);
2063 	if (!page)
2064 		goto out;
2065 
2066 	length = -EFAULT;
2067 	if (copy_from_user(page, buf, count))
2068 		goto out_free;
2069 
2070 	length = security_setprocattr(task,
2071 				      (char*)file->f_path.dentry->d_name.name,
2072 				      (void*)page, count);
2073 out_free:
2074 	free_page((unsigned long) page);
2075 out:
2076 	put_task_struct(task);
2077 out_no_task:
2078 	return length;
2079 }
2080 
2081 static const struct file_operations proc_pid_attr_operations = {
2082 	.read		= proc_pid_attr_read,
2083 	.write		= proc_pid_attr_write,
2084 };
2085 
2086 static const struct pid_entry attr_dir_stuff[] = {
2087 	REG("current",    S_IRUGO|S_IWUGO, pid_attr),
2088 	REG("prev",       S_IRUGO,	   pid_attr),
2089 	REG("exec",       S_IRUGO|S_IWUGO, pid_attr),
2090 	REG("fscreate",   S_IRUGO|S_IWUGO, pid_attr),
2091 	REG("keycreate",  S_IRUGO|S_IWUGO, pid_attr),
2092 	REG("sockcreate", S_IRUGO|S_IWUGO, pid_attr),
2093 };
2094 
2095 static int proc_attr_dir_readdir(struct file * filp,
2096 			     void * dirent, filldir_t filldir)
2097 {
2098 	return proc_pident_readdir(filp,dirent,filldir,
2099 				   attr_dir_stuff,ARRAY_SIZE(attr_dir_stuff));
2100 }
2101 
2102 static const struct file_operations proc_attr_dir_operations = {
2103 	.read		= generic_read_dir,
2104 	.readdir	= proc_attr_dir_readdir,
2105 };
2106 
2107 static struct dentry *proc_attr_dir_lookup(struct inode *dir,
2108 				struct dentry *dentry, struct nameidata *nd)
2109 {
2110 	return proc_pident_lookup(dir, dentry,
2111 				  attr_dir_stuff, ARRAY_SIZE(attr_dir_stuff));
2112 }
2113 
2114 static const struct inode_operations proc_attr_dir_inode_operations = {
2115 	.lookup		= proc_attr_dir_lookup,
2116 	.getattr	= pid_getattr,
2117 	.setattr	= proc_setattr,
2118 };
2119 
2120 #endif
2121 
2122 #if defined(USE_ELF_CORE_DUMP) && defined(CONFIG_ELF_CORE)
2123 static ssize_t proc_coredump_filter_read(struct file *file, char __user *buf,
2124 					 size_t count, loff_t *ppos)
2125 {
2126 	struct task_struct *task = get_proc_task(file->f_dentry->d_inode);
2127 	struct mm_struct *mm;
2128 	char buffer[PROC_NUMBUF];
2129 	size_t len;
2130 	int ret;
2131 
2132 	if (!task)
2133 		return -ESRCH;
2134 
2135 	ret = 0;
2136 	mm = get_task_mm(task);
2137 	if (mm) {
2138 		len = snprintf(buffer, sizeof(buffer), "%08lx\n",
2139 			       ((mm->flags & MMF_DUMP_FILTER_MASK) >>
2140 				MMF_DUMP_FILTER_SHIFT));
2141 		mmput(mm);
2142 		ret = simple_read_from_buffer(buf, count, ppos, buffer, len);
2143 	}
2144 
2145 	put_task_struct(task);
2146 
2147 	return ret;
2148 }
2149 
2150 static ssize_t proc_coredump_filter_write(struct file *file,
2151 					  const char __user *buf,
2152 					  size_t count,
2153 					  loff_t *ppos)
2154 {
2155 	struct task_struct *task;
2156 	struct mm_struct *mm;
2157 	char buffer[PROC_NUMBUF], *end;
2158 	unsigned int val;
2159 	int ret;
2160 	int i;
2161 	unsigned long mask;
2162 
2163 	ret = -EFAULT;
2164 	memset(buffer, 0, sizeof(buffer));
2165 	if (count > sizeof(buffer) - 1)
2166 		count = sizeof(buffer) - 1;
2167 	if (copy_from_user(buffer, buf, count))
2168 		goto out_no_task;
2169 
2170 	ret = -EINVAL;
2171 	val = (unsigned int)simple_strtoul(buffer, &end, 0);
2172 	if (*end == '\n')
2173 		end++;
2174 	if (end - buffer == 0)
2175 		goto out_no_task;
2176 
2177 	ret = -ESRCH;
2178 	task = get_proc_task(file->f_dentry->d_inode);
2179 	if (!task)
2180 		goto out_no_task;
2181 
2182 	ret = end - buffer;
2183 	mm = get_task_mm(task);
2184 	if (!mm)
2185 		goto out_no_mm;
2186 
2187 	for (i = 0, mask = 1; i < MMF_DUMP_FILTER_BITS; i++, mask <<= 1) {
2188 		if (val & mask)
2189 			set_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags);
2190 		else
2191 			clear_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags);
2192 	}
2193 
2194 	mmput(mm);
2195  out_no_mm:
2196 	put_task_struct(task);
2197  out_no_task:
2198 	return ret;
2199 }
2200 
2201 static const struct file_operations proc_coredump_filter_operations = {
2202 	.read		= proc_coredump_filter_read,
2203 	.write		= proc_coredump_filter_write,
2204 };
2205 #endif
2206 
2207 /*
2208  * /proc/self:
2209  */
2210 static int proc_self_readlink(struct dentry *dentry, char __user *buffer,
2211 			      int buflen)
2212 {
2213 	struct pid_namespace *ns = dentry->d_sb->s_fs_info;
2214 	pid_t tgid = task_tgid_nr_ns(current, ns);
2215 	char tmp[PROC_NUMBUF];
2216 	if (!tgid)
2217 		return -ENOENT;
2218 	sprintf(tmp, "%d", tgid);
2219 	return vfs_readlink(dentry,buffer,buflen,tmp);
2220 }
2221 
2222 static void *proc_self_follow_link(struct dentry *dentry, struct nameidata *nd)
2223 {
2224 	struct pid_namespace *ns = dentry->d_sb->s_fs_info;
2225 	pid_t tgid = task_tgid_nr_ns(current, ns);
2226 	char tmp[PROC_NUMBUF];
2227 	if (!tgid)
2228 		return ERR_PTR(-ENOENT);
2229 	sprintf(tmp, "%d", task_tgid_nr_ns(current, ns));
2230 	return ERR_PTR(vfs_follow_link(nd,tmp));
2231 }
2232 
2233 static const struct inode_operations proc_self_inode_operations = {
2234 	.readlink	= proc_self_readlink,
2235 	.follow_link	= proc_self_follow_link,
2236 };
2237 
2238 /*
2239  * proc base
2240  *
2241  * These are the directory entries in the root directory of /proc
2242  * that properly belong to the /proc filesystem, as they describe
2243  * describe something that is process related.
2244  */
2245 static const struct pid_entry proc_base_stuff[] = {
2246 	NOD("self", S_IFLNK|S_IRWXUGO,
2247 		&proc_self_inode_operations, NULL, {}),
2248 };
2249 
2250 /*
2251  *	Exceptional case: normally we are not allowed to unhash a busy
2252  * directory. In this case, however, we can do it - no aliasing problems
2253  * due to the way we treat inodes.
2254  */
2255 static int proc_base_revalidate(struct dentry *dentry, struct nameidata *nd)
2256 {
2257 	struct inode *inode = dentry->d_inode;
2258 	struct task_struct *task = get_proc_task(inode);
2259 	if (task) {
2260 		put_task_struct(task);
2261 		return 1;
2262 	}
2263 	d_drop(dentry);
2264 	return 0;
2265 }
2266 
2267 static struct dentry_operations proc_base_dentry_operations =
2268 {
2269 	.d_revalidate	= proc_base_revalidate,
2270 	.d_delete	= pid_delete_dentry,
2271 };
2272 
2273 static struct dentry *proc_base_instantiate(struct inode *dir,
2274 	struct dentry *dentry, struct task_struct *task, const void *ptr)
2275 {
2276 	const struct pid_entry *p = ptr;
2277 	struct inode *inode;
2278 	struct proc_inode *ei;
2279 	struct dentry *error = ERR_PTR(-EINVAL);
2280 
2281 	/* Allocate the inode */
2282 	error = ERR_PTR(-ENOMEM);
2283 	inode = new_inode(dir->i_sb);
2284 	if (!inode)
2285 		goto out;
2286 
2287 	/* Initialize the inode */
2288 	ei = PROC_I(inode);
2289 	inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
2290 
2291 	/*
2292 	 * grab the reference to the task.
2293 	 */
2294 	ei->pid = get_task_pid(task, PIDTYPE_PID);
2295 	if (!ei->pid)
2296 		goto out_iput;
2297 
2298 	inode->i_uid = 0;
2299 	inode->i_gid = 0;
2300 	inode->i_mode = p->mode;
2301 	if (S_ISDIR(inode->i_mode))
2302 		inode->i_nlink = 2;
2303 	if (S_ISLNK(inode->i_mode))
2304 		inode->i_size = 64;
2305 	if (p->iop)
2306 		inode->i_op = p->iop;
2307 	if (p->fop)
2308 		inode->i_fop = p->fop;
2309 	ei->op = p->op;
2310 	dentry->d_op = &proc_base_dentry_operations;
2311 	d_add(dentry, inode);
2312 	error = NULL;
2313 out:
2314 	return error;
2315 out_iput:
2316 	iput(inode);
2317 	goto out;
2318 }
2319 
2320 static struct dentry *proc_base_lookup(struct inode *dir, struct dentry *dentry)
2321 {
2322 	struct dentry *error;
2323 	struct task_struct *task = get_proc_task(dir);
2324 	const struct pid_entry *p, *last;
2325 
2326 	error = ERR_PTR(-ENOENT);
2327 
2328 	if (!task)
2329 		goto out_no_task;
2330 
2331 	/* Lookup the directory entry */
2332 	last = &proc_base_stuff[ARRAY_SIZE(proc_base_stuff) - 1];
2333 	for (p = proc_base_stuff; p <= last; p++) {
2334 		if (p->len != dentry->d_name.len)
2335 			continue;
2336 		if (!memcmp(dentry->d_name.name, p->name, p->len))
2337 			break;
2338 	}
2339 	if (p > last)
2340 		goto out;
2341 
2342 	error = proc_base_instantiate(dir, dentry, task, p);
2343 
2344 out:
2345 	put_task_struct(task);
2346 out_no_task:
2347 	return error;
2348 }
2349 
2350 static int proc_base_fill_cache(struct file *filp, void *dirent,
2351 	filldir_t filldir, struct task_struct *task, const struct pid_entry *p)
2352 {
2353 	return proc_fill_cache(filp, dirent, filldir, p->name, p->len,
2354 				proc_base_instantiate, task, p);
2355 }
2356 
2357 #ifdef CONFIG_TASK_IO_ACCOUNTING
2358 static int proc_pid_io_accounting(struct task_struct *task, char *buffer)
2359 {
2360 	return sprintf(buffer,
2361 #ifdef CONFIG_TASK_XACCT
2362 			"rchar: %llu\n"
2363 			"wchar: %llu\n"
2364 			"syscr: %llu\n"
2365 			"syscw: %llu\n"
2366 #endif
2367 			"read_bytes: %llu\n"
2368 			"write_bytes: %llu\n"
2369 			"cancelled_write_bytes: %llu\n",
2370 #ifdef CONFIG_TASK_XACCT
2371 			(unsigned long long)task->rchar,
2372 			(unsigned long long)task->wchar,
2373 			(unsigned long long)task->syscr,
2374 			(unsigned long long)task->syscw,
2375 #endif
2376 			(unsigned long long)task->ioac.read_bytes,
2377 			(unsigned long long)task->ioac.write_bytes,
2378 			(unsigned long long)task->ioac.cancelled_write_bytes);
2379 }
2380 #endif
2381 
2382 /*
2383  * Thread groups
2384  */
2385 static const struct file_operations proc_task_operations;
2386 static const struct inode_operations proc_task_inode_operations;
2387 
2388 static const struct pid_entry tgid_base_stuff[] = {
2389 	DIR("task",       S_IRUGO|S_IXUGO, task),
2390 	DIR("fd",         S_IRUSR|S_IXUSR, fd),
2391 	DIR("fdinfo",     S_IRUSR|S_IXUSR, fdinfo),
2392 #ifdef CONFIG_NET
2393 	DIR("net",        S_IRUGO|S_IXUGO, net),
2394 #endif
2395 	REG("environ",    S_IRUSR, environ),
2396 	INF("auxv",       S_IRUSR, pid_auxv),
2397 	ONE("status",     S_IRUGO, pid_status),
2398 	INF("limits",	  S_IRUSR, pid_limits),
2399 #ifdef CONFIG_SCHED_DEBUG
2400 	REG("sched",      S_IRUGO|S_IWUSR, pid_sched),
2401 #endif
2402 	INF("cmdline",    S_IRUGO, pid_cmdline),
2403 	ONE("stat",       S_IRUGO, tgid_stat),
2404 	ONE("statm",      S_IRUGO, pid_statm),
2405 	REG("maps",       S_IRUGO, maps),
2406 #ifdef CONFIG_NUMA
2407 	REG("numa_maps",  S_IRUGO, numa_maps),
2408 #endif
2409 	REG("mem",        S_IRUSR|S_IWUSR, mem),
2410 	LNK("cwd",        cwd),
2411 	LNK("root",       root),
2412 	LNK("exe",        exe),
2413 	REG("mounts",     S_IRUGO, mounts),
2414 	REG("mountinfo",  S_IRUGO, mountinfo),
2415 	REG("mountstats", S_IRUSR, mountstats),
2416 #ifdef CONFIG_PROC_PAGE_MONITOR
2417 	REG("clear_refs", S_IWUSR, clear_refs),
2418 	REG("smaps",      S_IRUGO, smaps),
2419 	REG("pagemap",    S_IRUSR, pagemap),
2420 #endif
2421 #ifdef CONFIG_SECURITY
2422 	DIR("attr",       S_IRUGO|S_IXUGO, attr_dir),
2423 #endif
2424 #ifdef CONFIG_KALLSYMS
2425 	INF("wchan",      S_IRUGO, pid_wchan),
2426 #endif
2427 #ifdef CONFIG_SCHEDSTATS
2428 	INF("schedstat",  S_IRUGO, pid_schedstat),
2429 #endif
2430 #ifdef CONFIG_LATENCYTOP
2431 	REG("latency",  S_IRUGO, lstats),
2432 #endif
2433 #ifdef CONFIG_PROC_PID_CPUSET
2434 	REG("cpuset",     S_IRUGO, cpuset),
2435 #endif
2436 #ifdef CONFIG_CGROUPS
2437 	REG("cgroup",  S_IRUGO, cgroup),
2438 #endif
2439 	INF("oom_score",  S_IRUGO, oom_score),
2440 	REG("oom_adj",    S_IRUGO|S_IWUSR, oom_adjust),
2441 #ifdef CONFIG_AUDITSYSCALL
2442 	REG("loginuid",   S_IWUSR|S_IRUGO, loginuid),
2443 	REG("sessionid",  S_IRUSR, sessionid),
2444 #endif
2445 #ifdef CONFIG_FAULT_INJECTION
2446 	REG("make-it-fail", S_IRUGO|S_IWUSR, fault_inject),
2447 #endif
2448 #if defined(USE_ELF_CORE_DUMP) && defined(CONFIG_ELF_CORE)
2449 	REG("coredump_filter", S_IRUGO|S_IWUSR, coredump_filter),
2450 #endif
2451 #ifdef CONFIG_TASK_IO_ACCOUNTING
2452 	INF("io",	S_IRUGO, pid_io_accounting),
2453 #endif
2454 };
2455 
2456 static int proc_tgid_base_readdir(struct file * filp,
2457 			     void * dirent, filldir_t filldir)
2458 {
2459 	return proc_pident_readdir(filp,dirent,filldir,
2460 				   tgid_base_stuff,ARRAY_SIZE(tgid_base_stuff));
2461 }
2462 
2463 static const struct file_operations proc_tgid_base_operations = {
2464 	.read		= generic_read_dir,
2465 	.readdir	= proc_tgid_base_readdir,
2466 };
2467 
2468 static struct dentry *proc_tgid_base_lookup(struct inode *dir, struct dentry *dentry, struct nameidata *nd){
2469 	return proc_pident_lookup(dir, dentry,
2470 				  tgid_base_stuff, ARRAY_SIZE(tgid_base_stuff));
2471 }
2472 
2473 static const struct inode_operations proc_tgid_base_inode_operations = {
2474 	.lookup		= proc_tgid_base_lookup,
2475 	.getattr	= pid_getattr,
2476 	.setattr	= proc_setattr,
2477 };
2478 
2479 static void proc_flush_task_mnt(struct vfsmount *mnt, pid_t pid, pid_t tgid)
2480 {
2481 	struct dentry *dentry, *leader, *dir;
2482 	char buf[PROC_NUMBUF];
2483 	struct qstr name;
2484 
2485 	name.name = buf;
2486 	name.len = snprintf(buf, sizeof(buf), "%d", pid);
2487 	dentry = d_hash_and_lookup(mnt->mnt_root, &name);
2488 	if (dentry) {
2489 		if (!(current->flags & PF_EXITING))
2490 			shrink_dcache_parent(dentry);
2491 		d_drop(dentry);
2492 		dput(dentry);
2493 	}
2494 
2495 	if (tgid == 0)
2496 		goto out;
2497 
2498 	name.name = buf;
2499 	name.len = snprintf(buf, sizeof(buf), "%d", tgid);
2500 	leader = d_hash_and_lookup(mnt->mnt_root, &name);
2501 	if (!leader)
2502 		goto out;
2503 
2504 	name.name = "task";
2505 	name.len = strlen(name.name);
2506 	dir = d_hash_and_lookup(leader, &name);
2507 	if (!dir)
2508 		goto out_put_leader;
2509 
2510 	name.name = buf;
2511 	name.len = snprintf(buf, sizeof(buf), "%d", pid);
2512 	dentry = d_hash_and_lookup(dir, &name);
2513 	if (dentry) {
2514 		shrink_dcache_parent(dentry);
2515 		d_drop(dentry);
2516 		dput(dentry);
2517 	}
2518 
2519 	dput(dir);
2520 out_put_leader:
2521 	dput(leader);
2522 out:
2523 	return;
2524 }
2525 
2526 /**
2527  * proc_flush_task -  Remove dcache entries for @task from the /proc dcache.
2528  * @task: task that should be flushed.
2529  *
2530  * When flushing dentries from proc, one needs to flush them from global
2531  * proc (proc_mnt) and from all the namespaces' procs this task was seen
2532  * in. This call is supposed to do all of this job.
2533  *
2534  * Looks in the dcache for
2535  * /proc/@pid
2536  * /proc/@tgid/task/@pid
2537  * if either directory is present flushes it and all of it'ts children
2538  * from the dcache.
2539  *
2540  * It is safe and reasonable to cache /proc entries for a task until
2541  * that task exits.  After that they just clog up the dcache with
2542  * useless entries, possibly causing useful dcache entries to be
2543  * flushed instead.  This routine is proved to flush those useless
2544  * dcache entries at process exit time.
2545  *
2546  * NOTE: This routine is just an optimization so it does not guarantee
2547  *       that no dcache entries will exist at process exit time it
2548  *       just makes it very unlikely that any will persist.
2549  */
2550 
2551 void proc_flush_task(struct task_struct *task)
2552 {
2553 	int i;
2554 	struct pid *pid, *tgid = NULL;
2555 	struct upid *upid;
2556 
2557 	pid = task_pid(task);
2558 	if (thread_group_leader(task))
2559 		tgid = task_tgid(task);
2560 
2561 	for (i = 0; i <= pid->level; i++) {
2562 		upid = &pid->numbers[i];
2563 		proc_flush_task_mnt(upid->ns->proc_mnt, upid->nr,
2564 			tgid ? tgid->numbers[i].nr : 0);
2565 	}
2566 
2567 	upid = &pid->numbers[pid->level];
2568 	if (upid->nr == 1)
2569 		pid_ns_release_proc(upid->ns);
2570 }
2571 
2572 static struct dentry *proc_pid_instantiate(struct inode *dir,
2573 					   struct dentry * dentry,
2574 					   struct task_struct *task, const void *ptr)
2575 {
2576 	struct dentry *error = ERR_PTR(-ENOENT);
2577 	struct inode *inode;
2578 
2579 	inode = proc_pid_make_inode(dir->i_sb, task);
2580 	if (!inode)
2581 		goto out;
2582 
2583 	inode->i_mode = S_IFDIR|S_IRUGO|S_IXUGO;
2584 	inode->i_op = &proc_tgid_base_inode_operations;
2585 	inode->i_fop = &proc_tgid_base_operations;
2586 	inode->i_flags|=S_IMMUTABLE;
2587 	inode->i_nlink = 5;
2588 #ifdef CONFIG_SECURITY
2589 	inode->i_nlink += 1;
2590 #endif
2591 
2592 	dentry->d_op = &pid_dentry_operations;
2593 
2594 	d_add(dentry, inode);
2595 	/* Close the race of the process dying before we return the dentry */
2596 	if (pid_revalidate(dentry, NULL))
2597 		error = NULL;
2598 out:
2599 	return error;
2600 }
2601 
2602 struct dentry *proc_pid_lookup(struct inode *dir, struct dentry * dentry, struct nameidata *nd)
2603 {
2604 	struct dentry *result = ERR_PTR(-ENOENT);
2605 	struct task_struct *task;
2606 	unsigned tgid;
2607 	struct pid_namespace *ns;
2608 
2609 	result = proc_base_lookup(dir, dentry);
2610 	if (!IS_ERR(result) || PTR_ERR(result) != -ENOENT)
2611 		goto out;
2612 
2613 	tgid = name_to_int(dentry);
2614 	if (tgid == ~0U)
2615 		goto out;
2616 
2617 	ns = dentry->d_sb->s_fs_info;
2618 	rcu_read_lock();
2619 	task = find_task_by_pid_ns(tgid, ns);
2620 	if (task)
2621 		get_task_struct(task);
2622 	rcu_read_unlock();
2623 	if (!task)
2624 		goto out;
2625 
2626 	result = proc_pid_instantiate(dir, dentry, task, NULL);
2627 	put_task_struct(task);
2628 out:
2629 	return result;
2630 }
2631 
2632 /*
2633  * Find the first task with tgid >= tgid
2634  *
2635  */
2636 struct tgid_iter {
2637 	unsigned int tgid;
2638 	struct task_struct *task;
2639 };
2640 static struct tgid_iter next_tgid(struct pid_namespace *ns, struct tgid_iter iter)
2641 {
2642 	struct pid *pid;
2643 
2644 	if (iter.task)
2645 		put_task_struct(iter.task);
2646 	rcu_read_lock();
2647 retry:
2648 	iter.task = NULL;
2649 	pid = find_ge_pid(iter.tgid, ns);
2650 	if (pid) {
2651 		iter.tgid = pid_nr_ns(pid, ns);
2652 		iter.task = pid_task(pid, PIDTYPE_PID);
2653 		/* What we to know is if the pid we have find is the
2654 		 * pid of a thread_group_leader.  Testing for task
2655 		 * being a thread_group_leader is the obvious thing
2656 		 * todo but there is a window when it fails, due to
2657 		 * the pid transfer logic in de_thread.
2658 		 *
2659 		 * So we perform the straight forward test of seeing
2660 		 * if the pid we have found is the pid of a thread
2661 		 * group leader, and don't worry if the task we have
2662 		 * found doesn't happen to be a thread group leader.
2663 		 * As we don't care in the case of readdir.
2664 		 */
2665 		if (!iter.task || !has_group_leader_pid(iter.task)) {
2666 			iter.tgid += 1;
2667 			goto retry;
2668 		}
2669 		get_task_struct(iter.task);
2670 	}
2671 	rcu_read_unlock();
2672 	return iter;
2673 }
2674 
2675 #define TGID_OFFSET (FIRST_PROCESS_ENTRY + ARRAY_SIZE(proc_base_stuff))
2676 
2677 static int proc_pid_fill_cache(struct file *filp, void *dirent, filldir_t filldir,
2678 	struct tgid_iter iter)
2679 {
2680 	char name[PROC_NUMBUF];
2681 	int len = snprintf(name, sizeof(name), "%d", iter.tgid);
2682 	return proc_fill_cache(filp, dirent, filldir, name, len,
2683 				proc_pid_instantiate, iter.task, NULL);
2684 }
2685 
2686 /* for the /proc/ directory itself, after non-process stuff has been done */
2687 int proc_pid_readdir(struct file * filp, void * dirent, filldir_t filldir)
2688 {
2689 	unsigned int nr = filp->f_pos - FIRST_PROCESS_ENTRY;
2690 	struct task_struct *reaper = get_proc_task(filp->f_path.dentry->d_inode);
2691 	struct tgid_iter iter;
2692 	struct pid_namespace *ns;
2693 
2694 	if (!reaper)
2695 		goto out_no_task;
2696 
2697 	for (; nr < ARRAY_SIZE(proc_base_stuff); filp->f_pos++, nr++) {
2698 		const struct pid_entry *p = &proc_base_stuff[nr];
2699 		if (proc_base_fill_cache(filp, dirent, filldir, reaper, p) < 0)
2700 			goto out;
2701 	}
2702 
2703 	ns = filp->f_dentry->d_sb->s_fs_info;
2704 	iter.task = NULL;
2705 	iter.tgid = filp->f_pos - TGID_OFFSET;
2706 	for (iter = next_tgid(ns, iter);
2707 	     iter.task;
2708 	     iter.tgid += 1, iter = next_tgid(ns, iter)) {
2709 		filp->f_pos = iter.tgid + TGID_OFFSET;
2710 		if (proc_pid_fill_cache(filp, dirent, filldir, iter) < 0) {
2711 			put_task_struct(iter.task);
2712 			goto out;
2713 		}
2714 	}
2715 	filp->f_pos = PID_MAX_LIMIT + TGID_OFFSET;
2716 out:
2717 	put_task_struct(reaper);
2718 out_no_task:
2719 	return 0;
2720 }
2721 
2722 /*
2723  * Tasks
2724  */
2725 static const struct pid_entry tid_base_stuff[] = {
2726 	DIR("fd",        S_IRUSR|S_IXUSR, fd),
2727 	DIR("fdinfo",    S_IRUSR|S_IXUSR, fdinfo),
2728 	REG("environ",   S_IRUSR, environ),
2729 	INF("auxv",      S_IRUSR, pid_auxv),
2730 	ONE("status",    S_IRUGO, pid_status),
2731 	INF("limits",	 S_IRUSR, pid_limits),
2732 #ifdef CONFIG_SCHED_DEBUG
2733 	REG("sched",     S_IRUGO|S_IWUSR, pid_sched),
2734 #endif
2735 	INF("cmdline",   S_IRUGO, pid_cmdline),
2736 	ONE("stat",      S_IRUGO, tid_stat),
2737 	ONE("statm",     S_IRUGO, pid_statm),
2738 	REG("maps",      S_IRUGO, maps),
2739 #ifdef CONFIG_NUMA
2740 	REG("numa_maps", S_IRUGO, numa_maps),
2741 #endif
2742 	REG("mem",       S_IRUSR|S_IWUSR, mem),
2743 	LNK("cwd",       cwd),
2744 	LNK("root",      root),
2745 	LNK("exe",       exe),
2746 	REG("mounts",    S_IRUGO, mounts),
2747 	REG("mountinfo",  S_IRUGO, mountinfo),
2748 #ifdef CONFIG_PROC_PAGE_MONITOR
2749 	REG("clear_refs", S_IWUSR, clear_refs),
2750 	REG("smaps",     S_IRUGO, smaps),
2751 	REG("pagemap",    S_IRUSR, pagemap),
2752 #endif
2753 #ifdef CONFIG_SECURITY
2754 	DIR("attr",      S_IRUGO|S_IXUGO, attr_dir),
2755 #endif
2756 #ifdef CONFIG_KALLSYMS
2757 	INF("wchan",     S_IRUGO, pid_wchan),
2758 #endif
2759 #ifdef CONFIG_SCHEDSTATS
2760 	INF("schedstat", S_IRUGO, pid_schedstat),
2761 #endif
2762 #ifdef CONFIG_LATENCYTOP
2763 	REG("latency",  S_IRUGO, lstats),
2764 #endif
2765 #ifdef CONFIG_PROC_PID_CPUSET
2766 	REG("cpuset",    S_IRUGO, cpuset),
2767 #endif
2768 #ifdef CONFIG_CGROUPS
2769 	REG("cgroup",  S_IRUGO, cgroup),
2770 #endif
2771 	INF("oom_score", S_IRUGO, oom_score),
2772 	REG("oom_adj",   S_IRUGO|S_IWUSR, oom_adjust),
2773 #ifdef CONFIG_AUDITSYSCALL
2774 	REG("loginuid",  S_IWUSR|S_IRUGO, loginuid),
2775 	REG("sessionid",  S_IRUSR, sessionid),
2776 #endif
2777 #ifdef CONFIG_FAULT_INJECTION
2778 	REG("make-it-fail", S_IRUGO|S_IWUSR, fault_inject),
2779 #endif
2780 };
2781 
2782 static int proc_tid_base_readdir(struct file * filp,
2783 			     void * dirent, filldir_t filldir)
2784 {
2785 	return proc_pident_readdir(filp,dirent,filldir,
2786 				   tid_base_stuff,ARRAY_SIZE(tid_base_stuff));
2787 }
2788 
2789 static struct dentry *proc_tid_base_lookup(struct inode *dir, struct dentry *dentry, struct nameidata *nd){
2790 	return proc_pident_lookup(dir, dentry,
2791 				  tid_base_stuff, ARRAY_SIZE(tid_base_stuff));
2792 }
2793 
2794 static const struct file_operations proc_tid_base_operations = {
2795 	.read		= generic_read_dir,
2796 	.readdir	= proc_tid_base_readdir,
2797 };
2798 
2799 static const struct inode_operations proc_tid_base_inode_operations = {
2800 	.lookup		= proc_tid_base_lookup,
2801 	.getattr	= pid_getattr,
2802 	.setattr	= proc_setattr,
2803 };
2804 
2805 static struct dentry *proc_task_instantiate(struct inode *dir,
2806 	struct dentry *dentry, struct task_struct *task, const void *ptr)
2807 {
2808 	struct dentry *error = ERR_PTR(-ENOENT);
2809 	struct inode *inode;
2810 	inode = proc_pid_make_inode(dir->i_sb, task);
2811 
2812 	if (!inode)
2813 		goto out;
2814 	inode->i_mode = S_IFDIR|S_IRUGO|S_IXUGO;
2815 	inode->i_op = &proc_tid_base_inode_operations;
2816 	inode->i_fop = &proc_tid_base_operations;
2817 	inode->i_flags|=S_IMMUTABLE;
2818 	inode->i_nlink = 4;
2819 #ifdef CONFIG_SECURITY
2820 	inode->i_nlink += 1;
2821 #endif
2822 
2823 	dentry->d_op = &pid_dentry_operations;
2824 
2825 	d_add(dentry, inode);
2826 	/* Close the race of the process dying before we return the dentry */
2827 	if (pid_revalidate(dentry, NULL))
2828 		error = NULL;
2829 out:
2830 	return error;
2831 }
2832 
2833 static struct dentry *proc_task_lookup(struct inode *dir, struct dentry * dentry, struct nameidata *nd)
2834 {
2835 	struct dentry *result = ERR_PTR(-ENOENT);
2836 	struct task_struct *task;
2837 	struct task_struct *leader = get_proc_task(dir);
2838 	unsigned tid;
2839 	struct pid_namespace *ns;
2840 
2841 	if (!leader)
2842 		goto out_no_task;
2843 
2844 	tid = name_to_int(dentry);
2845 	if (tid == ~0U)
2846 		goto out;
2847 
2848 	ns = dentry->d_sb->s_fs_info;
2849 	rcu_read_lock();
2850 	task = find_task_by_pid_ns(tid, ns);
2851 	if (task)
2852 		get_task_struct(task);
2853 	rcu_read_unlock();
2854 	if (!task)
2855 		goto out;
2856 	if (!same_thread_group(leader, task))
2857 		goto out_drop_task;
2858 
2859 	result = proc_task_instantiate(dir, dentry, task, NULL);
2860 out_drop_task:
2861 	put_task_struct(task);
2862 out:
2863 	put_task_struct(leader);
2864 out_no_task:
2865 	return result;
2866 }
2867 
2868 /*
2869  * Find the first tid of a thread group to return to user space.
2870  *
2871  * Usually this is just the thread group leader, but if the users
2872  * buffer was too small or there was a seek into the middle of the
2873  * directory we have more work todo.
2874  *
2875  * In the case of a short read we start with find_task_by_pid.
2876  *
2877  * In the case of a seek we start with the leader and walk nr
2878  * threads past it.
2879  */
2880 static struct task_struct *first_tid(struct task_struct *leader,
2881 		int tid, int nr, struct pid_namespace *ns)
2882 {
2883 	struct task_struct *pos;
2884 
2885 	rcu_read_lock();
2886 	/* Attempt to start with the pid of a thread */
2887 	if (tid && (nr > 0)) {
2888 		pos = find_task_by_pid_ns(tid, ns);
2889 		if (pos && (pos->group_leader == leader))
2890 			goto found;
2891 	}
2892 
2893 	/* If nr exceeds the number of threads there is nothing todo */
2894 	pos = NULL;
2895 	if (nr && nr >= get_nr_threads(leader))
2896 		goto out;
2897 
2898 	/* If we haven't found our starting place yet start
2899 	 * with the leader and walk nr threads forward.
2900 	 */
2901 	for (pos = leader; nr > 0; --nr) {
2902 		pos = next_thread(pos);
2903 		if (pos == leader) {
2904 			pos = NULL;
2905 			goto out;
2906 		}
2907 	}
2908 found:
2909 	get_task_struct(pos);
2910 out:
2911 	rcu_read_unlock();
2912 	return pos;
2913 }
2914 
2915 /*
2916  * Find the next thread in the thread list.
2917  * Return NULL if there is an error or no next thread.
2918  *
2919  * The reference to the input task_struct is released.
2920  */
2921 static struct task_struct *next_tid(struct task_struct *start)
2922 {
2923 	struct task_struct *pos = NULL;
2924 	rcu_read_lock();
2925 	if (pid_alive(start)) {
2926 		pos = next_thread(start);
2927 		if (thread_group_leader(pos))
2928 			pos = NULL;
2929 		else
2930 			get_task_struct(pos);
2931 	}
2932 	rcu_read_unlock();
2933 	put_task_struct(start);
2934 	return pos;
2935 }
2936 
2937 static int proc_task_fill_cache(struct file *filp, void *dirent, filldir_t filldir,
2938 	struct task_struct *task, int tid)
2939 {
2940 	char name[PROC_NUMBUF];
2941 	int len = snprintf(name, sizeof(name), "%d", tid);
2942 	return proc_fill_cache(filp, dirent, filldir, name, len,
2943 				proc_task_instantiate, task, NULL);
2944 }
2945 
2946 /* for the /proc/TGID/task/ directories */
2947 static int proc_task_readdir(struct file * filp, void * dirent, filldir_t filldir)
2948 {
2949 	struct dentry *dentry = filp->f_path.dentry;
2950 	struct inode *inode = dentry->d_inode;
2951 	struct task_struct *leader = NULL;
2952 	struct task_struct *task;
2953 	int retval = -ENOENT;
2954 	ino_t ino;
2955 	int tid;
2956 	unsigned long pos = filp->f_pos;  /* avoiding "long long" filp->f_pos */
2957 	struct pid_namespace *ns;
2958 
2959 	task = get_proc_task(inode);
2960 	if (!task)
2961 		goto out_no_task;
2962 	rcu_read_lock();
2963 	if (pid_alive(task)) {
2964 		leader = task->group_leader;
2965 		get_task_struct(leader);
2966 	}
2967 	rcu_read_unlock();
2968 	put_task_struct(task);
2969 	if (!leader)
2970 		goto out_no_task;
2971 	retval = 0;
2972 
2973 	switch (pos) {
2974 	case 0:
2975 		ino = inode->i_ino;
2976 		if (filldir(dirent, ".", 1, pos, ino, DT_DIR) < 0)
2977 			goto out;
2978 		pos++;
2979 		/* fall through */
2980 	case 1:
2981 		ino = parent_ino(dentry);
2982 		if (filldir(dirent, "..", 2, pos, ino, DT_DIR) < 0)
2983 			goto out;
2984 		pos++;
2985 		/* fall through */
2986 	}
2987 
2988 	/* f_version caches the tgid value that the last readdir call couldn't
2989 	 * return. lseek aka telldir automagically resets f_version to 0.
2990 	 */
2991 	ns = filp->f_dentry->d_sb->s_fs_info;
2992 	tid = (int)filp->f_version;
2993 	filp->f_version = 0;
2994 	for (task = first_tid(leader, tid, pos - 2, ns);
2995 	     task;
2996 	     task = next_tid(task), pos++) {
2997 		tid = task_pid_nr_ns(task, ns);
2998 		if (proc_task_fill_cache(filp, dirent, filldir, task, tid) < 0) {
2999 			/* returning this tgid failed, save it as the first
3000 			 * pid for the next readir call */
3001 			filp->f_version = (u64)tid;
3002 			put_task_struct(task);
3003 			break;
3004 		}
3005 	}
3006 out:
3007 	filp->f_pos = pos;
3008 	put_task_struct(leader);
3009 out_no_task:
3010 	return retval;
3011 }
3012 
3013 static int proc_task_getattr(struct vfsmount *mnt, struct dentry *dentry, struct kstat *stat)
3014 {
3015 	struct inode *inode = dentry->d_inode;
3016 	struct task_struct *p = get_proc_task(inode);
3017 	generic_fillattr(inode, stat);
3018 
3019 	if (p) {
3020 		rcu_read_lock();
3021 		stat->nlink += get_nr_threads(p);
3022 		rcu_read_unlock();
3023 		put_task_struct(p);
3024 	}
3025 
3026 	return 0;
3027 }
3028 
3029 static const struct inode_operations proc_task_inode_operations = {
3030 	.lookup		= proc_task_lookup,
3031 	.getattr	= proc_task_getattr,
3032 	.setattr	= proc_setattr,
3033 };
3034 
3035 static const struct file_operations proc_task_operations = {
3036 	.read		= generic_read_dir,
3037 	.readdir	= proc_task_readdir,
3038 };
3039