xref: /linux/fs/proc/base.c (revision f49f4ab95c301dbccad0efe85296d908b8ae7ad4)
1 /*
2  *  linux/fs/proc/base.c
3  *
4  *  Copyright (C) 1991, 1992 Linus Torvalds
5  *
6  *  proc base directory handling functions
7  *
8  *  1999, Al Viro. Rewritten. Now it covers the whole per-process part.
9  *  Instead of using magical inumbers to determine the kind of object
10  *  we allocate and fill in-core inodes upon lookup. They don't even
11  *  go into icache. We cache the reference to task_struct upon lookup too.
12  *  Eventually it should become a filesystem in its own. We don't use the
13  *  rest of procfs anymore.
14  *
15  *
16  *  Changelog:
17  *  17-Jan-2005
18  *  Allan Bezerra
19  *  Bruna Moreira <bruna.moreira@indt.org.br>
20  *  Edjard Mota <edjard.mota@indt.org.br>
21  *  Ilias Biris <ilias.biris@indt.org.br>
22  *  Mauricio Lin <mauricio.lin@indt.org.br>
23  *
24  *  Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT
25  *
26  *  A new process specific entry (smaps) included in /proc. It shows the
27  *  size of rss for each memory area. The maps entry lacks information
28  *  about physical memory size (rss) for each mapped file, i.e.,
29  *  rss information for executables and library files.
30  *  This additional information is useful for any tools that need to know
31  *  about physical memory consumption for a process specific library.
32  *
33  *  Changelog:
34  *  21-Feb-2005
35  *  Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT
36  *  Pud inclusion in the page table walking.
37  *
38  *  ChangeLog:
39  *  10-Mar-2005
40  *  10LE Instituto Nokia de Tecnologia - INdT:
41  *  A better way to walks through the page table as suggested by Hugh Dickins.
42  *
43  *  Simo Piiroinen <simo.piiroinen@nokia.com>:
44  *  Smaps information related to shared, private, clean and dirty pages.
45  *
46  *  Paul Mundt <paul.mundt@nokia.com>:
47  *  Overall revision about smaps.
48  */
49 
50 #include <asm/uaccess.h>
51 
52 #include <linux/errno.h>
53 #include <linux/time.h>
54 #include <linux/proc_fs.h>
55 #include <linux/stat.h>
56 #include <linux/task_io_accounting_ops.h>
57 #include <linux/init.h>
58 #include <linux/capability.h>
59 #include <linux/file.h>
60 #include <linux/fdtable.h>
61 #include <linux/string.h>
62 #include <linux/seq_file.h>
63 #include <linux/namei.h>
64 #include <linux/mnt_namespace.h>
65 #include <linux/mm.h>
66 #include <linux/swap.h>
67 #include <linux/rcupdate.h>
68 #include <linux/kallsyms.h>
69 #include <linux/stacktrace.h>
70 #include <linux/resource.h>
71 #include <linux/module.h>
72 #include <linux/mount.h>
73 #include <linux/security.h>
74 #include <linux/ptrace.h>
75 #include <linux/tracehook.h>
76 #include <linux/cgroup.h>
77 #include <linux/cpuset.h>
78 #include <linux/audit.h>
79 #include <linux/poll.h>
80 #include <linux/nsproxy.h>
81 #include <linux/oom.h>
82 #include <linux/elf.h>
83 #include <linux/pid_namespace.h>
84 #include <linux/user_namespace.h>
85 #include <linux/fs_struct.h>
86 #include <linux/slab.h>
87 #include <linux/flex_array.h>
88 #ifdef CONFIG_HARDWALL
89 #include <asm/hardwall.h>
90 #endif
91 #include <trace/events/oom.h>
92 #include "internal.h"
93 #include "fd.h"
94 
95 /* NOTE:
96  *	Implementing inode permission operations in /proc is almost
97  *	certainly an error.  Permission checks need to happen during
98  *	each system call not at open time.  The reason is that most of
99  *	what we wish to check for permissions in /proc varies at runtime.
100  *
101  *	The classic example of a problem is opening file descriptors
102  *	in /proc for a task before it execs a suid executable.
103  */
104 
105 struct pid_entry {
106 	char *name;
107 	int len;
108 	umode_t mode;
109 	const struct inode_operations *iop;
110 	const struct file_operations *fop;
111 	union proc_op op;
112 };
113 
114 #define NOD(NAME, MODE, IOP, FOP, OP) {			\
115 	.name = (NAME),					\
116 	.len  = sizeof(NAME) - 1,			\
117 	.mode = MODE,					\
118 	.iop  = IOP,					\
119 	.fop  = FOP,					\
120 	.op   = OP,					\
121 }
122 
123 #define DIR(NAME, MODE, iops, fops)	\
124 	NOD(NAME, (S_IFDIR|(MODE)), &iops, &fops, {} )
125 #define LNK(NAME, get_link)					\
126 	NOD(NAME, (S_IFLNK|S_IRWXUGO),				\
127 		&proc_pid_link_inode_operations, NULL,		\
128 		{ .proc_get_link = get_link } )
129 #define REG(NAME, MODE, fops)				\
130 	NOD(NAME, (S_IFREG|(MODE)), NULL, &fops, {})
131 #define INF(NAME, MODE, read)				\
132 	NOD(NAME, (S_IFREG|(MODE)), 			\
133 		NULL, &proc_info_file_operations,	\
134 		{ .proc_read = read } )
135 #define ONE(NAME, MODE, show)				\
136 	NOD(NAME, (S_IFREG|(MODE)), 			\
137 		NULL, &proc_single_file_operations,	\
138 		{ .proc_show = show } )
139 
140 /*
141  * Count the number of hardlinks for the pid_entry table, excluding the .
142  * and .. links.
143  */
144 static unsigned int pid_entry_count_dirs(const struct pid_entry *entries,
145 	unsigned int n)
146 {
147 	unsigned int i;
148 	unsigned int count;
149 
150 	count = 0;
151 	for (i = 0; i < n; ++i) {
152 		if (S_ISDIR(entries[i].mode))
153 			++count;
154 	}
155 
156 	return count;
157 }
158 
159 static int get_task_root(struct task_struct *task, struct path *root)
160 {
161 	int result = -ENOENT;
162 
163 	task_lock(task);
164 	if (task->fs) {
165 		get_fs_root(task->fs, root);
166 		result = 0;
167 	}
168 	task_unlock(task);
169 	return result;
170 }
171 
172 static int proc_cwd_link(struct dentry *dentry, struct path *path)
173 {
174 	struct task_struct *task = get_proc_task(dentry->d_inode);
175 	int result = -ENOENT;
176 
177 	if (task) {
178 		task_lock(task);
179 		if (task->fs) {
180 			get_fs_pwd(task->fs, path);
181 			result = 0;
182 		}
183 		task_unlock(task);
184 		put_task_struct(task);
185 	}
186 	return result;
187 }
188 
189 static int proc_root_link(struct dentry *dentry, struct path *path)
190 {
191 	struct task_struct *task = get_proc_task(dentry->d_inode);
192 	int result = -ENOENT;
193 
194 	if (task) {
195 		result = get_task_root(task, path);
196 		put_task_struct(task);
197 	}
198 	return result;
199 }
200 
201 static int proc_pid_cmdline(struct task_struct *task, char * buffer)
202 {
203 	int res = 0;
204 	unsigned int len;
205 	struct mm_struct *mm = get_task_mm(task);
206 	if (!mm)
207 		goto out;
208 	if (!mm->arg_end)
209 		goto out_mm;	/* Shh! No looking before we're done */
210 
211  	len = mm->arg_end - mm->arg_start;
212 
213 	if (len > PAGE_SIZE)
214 		len = PAGE_SIZE;
215 
216 	res = access_process_vm(task, mm->arg_start, buffer, len, 0);
217 
218 	// If the nul at the end of args has been overwritten, then
219 	// assume application is using setproctitle(3).
220 	if (res > 0 && buffer[res-1] != '\0' && len < PAGE_SIZE) {
221 		len = strnlen(buffer, res);
222 		if (len < res) {
223 		    res = len;
224 		} else {
225 			len = mm->env_end - mm->env_start;
226 			if (len > PAGE_SIZE - res)
227 				len = PAGE_SIZE - res;
228 			res += access_process_vm(task, mm->env_start, buffer+res, len, 0);
229 			res = strnlen(buffer, res);
230 		}
231 	}
232 out_mm:
233 	mmput(mm);
234 out:
235 	return res;
236 }
237 
238 static int proc_pid_auxv(struct task_struct *task, char *buffer)
239 {
240 	struct mm_struct *mm = mm_access(task, PTRACE_MODE_READ);
241 	int res = PTR_ERR(mm);
242 	if (mm && !IS_ERR(mm)) {
243 		unsigned int nwords = 0;
244 		do {
245 			nwords += 2;
246 		} while (mm->saved_auxv[nwords - 2] != 0); /* AT_NULL */
247 		res = nwords * sizeof(mm->saved_auxv[0]);
248 		if (res > PAGE_SIZE)
249 			res = PAGE_SIZE;
250 		memcpy(buffer, mm->saved_auxv, res);
251 		mmput(mm);
252 	}
253 	return res;
254 }
255 
256 
257 #ifdef CONFIG_KALLSYMS
258 /*
259  * Provides a wchan file via kallsyms in a proper one-value-per-file format.
260  * Returns the resolved symbol.  If that fails, simply return the address.
261  */
262 static int proc_pid_wchan(struct task_struct *task, char *buffer)
263 {
264 	unsigned long wchan;
265 	char symname[KSYM_NAME_LEN];
266 
267 	wchan = get_wchan(task);
268 
269 	if (lookup_symbol_name(wchan, symname) < 0)
270 		if (!ptrace_may_access(task, PTRACE_MODE_READ))
271 			return 0;
272 		else
273 			return sprintf(buffer, "%lu", wchan);
274 	else
275 		return sprintf(buffer, "%s", symname);
276 }
277 #endif /* CONFIG_KALLSYMS */
278 
279 static int lock_trace(struct task_struct *task)
280 {
281 	int err = mutex_lock_killable(&task->signal->cred_guard_mutex);
282 	if (err)
283 		return err;
284 	if (!ptrace_may_access(task, PTRACE_MODE_ATTACH)) {
285 		mutex_unlock(&task->signal->cred_guard_mutex);
286 		return -EPERM;
287 	}
288 	return 0;
289 }
290 
291 static void unlock_trace(struct task_struct *task)
292 {
293 	mutex_unlock(&task->signal->cred_guard_mutex);
294 }
295 
296 #ifdef CONFIG_STACKTRACE
297 
298 #define MAX_STACK_TRACE_DEPTH	64
299 
300 static int proc_pid_stack(struct seq_file *m, struct pid_namespace *ns,
301 			  struct pid *pid, struct task_struct *task)
302 {
303 	struct stack_trace trace;
304 	unsigned long *entries;
305 	int err;
306 	int i;
307 
308 	entries = kmalloc(MAX_STACK_TRACE_DEPTH * sizeof(*entries), GFP_KERNEL);
309 	if (!entries)
310 		return -ENOMEM;
311 
312 	trace.nr_entries	= 0;
313 	trace.max_entries	= MAX_STACK_TRACE_DEPTH;
314 	trace.entries		= entries;
315 	trace.skip		= 0;
316 
317 	err = lock_trace(task);
318 	if (!err) {
319 		save_stack_trace_tsk(task, &trace);
320 
321 		for (i = 0; i < trace.nr_entries; i++) {
322 			seq_printf(m, "[<%pK>] %pS\n",
323 				   (void *)entries[i], (void *)entries[i]);
324 		}
325 		unlock_trace(task);
326 	}
327 	kfree(entries);
328 
329 	return err;
330 }
331 #endif
332 
333 #ifdef CONFIG_SCHEDSTATS
334 /*
335  * Provides /proc/PID/schedstat
336  */
337 static int proc_pid_schedstat(struct task_struct *task, char *buffer)
338 {
339 	return sprintf(buffer, "%llu %llu %lu\n",
340 			(unsigned long long)task->se.sum_exec_runtime,
341 			(unsigned long long)task->sched_info.run_delay,
342 			task->sched_info.pcount);
343 }
344 #endif
345 
346 #ifdef CONFIG_LATENCYTOP
347 static int lstats_show_proc(struct seq_file *m, void *v)
348 {
349 	int i;
350 	struct inode *inode = m->private;
351 	struct task_struct *task = get_proc_task(inode);
352 
353 	if (!task)
354 		return -ESRCH;
355 	seq_puts(m, "Latency Top version : v0.1\n");
356 	for (i = 0; i < 32; i++) {
357 		struct latency_record *lr = &task->latency_record[i];
358 		if (lr->backtrace[0]) {
359 			int q;
360 			seq_printf(m, "%i %li %li",
361 				   lr->count, lr->time, lr->max);
362 			for (q = 0; q < LT_BACKTRACEDEPTH; q++) {
363 				unsigned long bt = lr->backtrace[q];
364 				if (!bt)
365 					break;
366 				if (bt == ULONG_MAX)
367 					break;
368 				seq_printf(m, " %ps", (void *)bt);
369 			}
370 			seq_putc(m, '\n');
371 		}
372 
373 	}
374 	put_task_struct(task);
375 	return 0;
376 }
377 
378 static int lstats_open(struct inode *inode, struct file *file)
379 {
380 	return single_open(file, lstats_show_proc, inode);
381 }
382 
383 static ssize_t lstats_write(struct file *file, const char __user *buf,
384 			    size_t count, loff_t *offs)
385 {
386 	struct task_struct *task = get_proc_task(file->f_dentry->d_inode);
387 
388 	if (!task)
389 		return -ESRCH;
390 	clear_all_latency_tracing(task);
391 	put_task_struct(task);
392 
393 	return count;
394 }
395 
396 static const struct file_operations proc_lstats_operations = {
397 	.open		= lstats_open,
398 	.read		= seq_read,
399 	.write		= lstats_write,
400 	.llseek		= seq_lseek,
401 	.release	= single_release,
402 };
403 
404 #endif
405 
406 static int proc_oom_score(struct task_struct *task, char *buffer)
407 {
408 	unsigned long totalpages = totalram_pages + total_swap_pages;
409 	unsigned long points = 0;
410 
411 	read_lock(&tasklist_lock);
412 	if (pid_alive(task))
413 		points = oom_badness(task, NULL, NULL, totalpages) *
414 						1000 / totalpages;
415 	read_unlock(&tasklist_lock);
416 	return sprintf(buffer, "%lu\n", points);
417 }
418 
419 struct limit_names {
420 	char *name;
421 	char *unit;
422 };
423 
424 static const struct limit_names lnames[RLIM_NLIMITS] = {
425 	[RLIMIT_CPU] = {"Max cpu time", "seconds"},
426 	[RLIMIT_FSIZE] = {"Max file size", "bytes"},
427 	[RLIMIT_DATA] = {"Max data size", "bytes"},
428 	[RLIMIT_STACK] = {"Max stack size", "bytes"},
429 	[RLIMIT_CORE] = {"Max core file size", "bytes"},
430 	[RLIMIT_RSS] = {"Max resident set", "bytes"},
431 	[RLIMIT_NPROC] = {"Max processes", "processes"},
432 	[RLIMIT_NOFILE] = {"Max open files", "files"},
433 	[RLIMIT_MEMLOCK] = {"Max locked memory", "bytes"},
434 	[RLIMIT_AS] = {"Max address space", "bytes"},
435 	[RLIMIT_LOCKS] = {"Max file locks", "locks"},
436 	[RLIMIT_SIGPENDING] = {"Max pending signals", "signals"},
437 	[RLIMIT_MSGQUEUE] = {"Max msgqueue size", "bytes"},
438 	[RLIMIT_NICE] = {"Max nice priority", NULL},
439 	[RLIMIT_RTPRIO] = {"Max realtime priority", NULL},
440 	[RLIMIT_RTTIME] = {"Max realtime timeout", "us"},
441 };
442 
443 /* Display limits for a process */
444 static int proc_pid_limits(struct task_struct *task, char *buffer)
445 {
446 	unsigned int i;
447 	int count = 0;
448 	unsigned long flags;
449 	char *bufptr = buffer;
450 
451 	struct rlimit rlim[RLIM_NLIMITS];
452 
453 	if (!lock_task_sighand(task, &flags))
454 		return 0;
455 	memcpy(rlim, task->signal->rlim, sizeof(struct rlimit) * RLIM_NLIMITS);
456 	unlock_task_sighand(task, &flags);
457 
458 	/*
459 	 * print the file header
460 	 */
461 	count += sprintf(&bufptr[count], "%-25s %-20s %-20s %-10s\n",
462 			"Limit", "Soft Limit", "Hard Limit", "Units");
463 
464 	for (i = 0; i < RLIM_NLIMITS; i++) {
465 		if (rlim[i].rlim_cur == RLIM_INFINITY)
466 			count += sprintf(&bufptr[count], "%-25s %-20s ",
467 					 lnames[i].name, "unlimited");
468 		else
469 			count += sprintf(&bufptr[count], "%-25s %-20lu ",
470 					 lnames[i].name, rlim[i].rlim_cur);
471 
472 		if (rlim[i].rlim_max == RLIM_INFINITY)
473 			count += sprintf(&bufptr[count], "%-20s ", "unlimited");
474 		else
475 			count += sprintf(&bufptr[count], "%-20lu ",
476 					 rlim[i].rlim_max);
477 
478 		if (lnames[i].unit)
479 			count += sprintf(&bufptr[count], "%-10s\n",
480 					 lnames[i].unit);
481 		else
482 			count += sprintf(&bufptr[count], "\n");
483 	}
484 
485 	return count;
486 }
487 
488 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK
489 static int proc_pid_syscall(struct task_struct *task, char *buffer)
490 {
491 	long nr;
492 	unsigned long args[6], sp, pc;
493 	int res = lock_trace(task);
494 	if (res)
495 		return res;
496 
497 	if (task_current_syscall(task, &nr, args, 6, &sp, &pc))
498 		res = sprintf(buffer, "running\n");
499 	else if (nr < 0)
500 		res = sprintf(buffer, "%ld 0x%lx 0x%lx\n", nr, sp, pc);
501 	else
502 		res = sprintf(buffer,
503 		       "%ld 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx\n",
504 		       nr,
505 		       args[0], args[1], args[2], args[3], args[4], args[5],
506 		       sp, pc);
507 	unlock_trace(task);
508 	return res;
509 }
510 #endif /* CONFIG_HAVE_ARCH_TRACEHOOK */
511 
512 /************************************************************************/
513 /*                       Here the fs part begins                        */
514 /************************************************************************/
515 
516 /* permission checks */
517 static int proc_fd_access_allowed(struct inode *inode)
518 {
519 	struct task_struct *task;
520 	int allowed = 0;
521 	/* Allow access to a task's file descriptors if it is us or we
522 	 * may use ptrace attach to the process and find out that
523 	 * information.
524 	 */
525 	task = get_proc_task(inode);
526 	if (task) {
527 		allowed = ptrace_may_access(task, PTRACE_MODE_READ);
528 		put_task_struct(task);
529 	}
530 	return allowed;
531 }
532 
533 int proc_setattr(struct dentry *dentry, struct iattr *attr)
534 {
535 	int error;
536 	struct inode *inode = dentry->d_inode;
537 
538 	if (attr->ia_valid & ATTR_MODE)
539 		return -EPERM;
540 
541 	error = inode_change_ok(inode, attr);
542 	if (error)
543 		return error;
544 
545 	if ((attr->ia_valid & ATTR_SIZE) &&
546 	    attr->ia_size != i_size_read(inode)) {
547 		error = vmtruncate(inode, attr->ia_size);
548 		if (error)
549 			return error;
550 	}
551 
552 	setattr_copy(inode, attr);
553 	mark_inode_dirty(inode);
554 	return 0;
555 }
556 
557 /*
558  * May current process learn task's sched/cmdline info (for hide_pid_min=1)
559  * or euid/egid (for hide_pid_min=2)?
560  */
561 static bool has_pid_permissions(struct pid_namespace *pid,
562 				 struct task_struct *task,
563 				 int hide_pid_min)
564 {
565 	if (pid->hide_pid < hide_pid_min)
566 		return true;
567 	if (in_group_p(pid->pid_gid))
568 		return true;
569 	return ptrace_may_access(task, PTRACE_MODE_READ);
570 }
571 
572 
573 static int proc_pid_permission(struct inode *inode, int mask)
574 {
575 	struct pid_namespace *pid = inode->i_sb->s_fs_info;
576 	struct task_struct *task;
577 	bool has_perms;
578 
579 	task = get_proc_task(inode);
580 	if (!task)
581 		return -ESRCH;
582 	has_perms = has_pid_permissions(pid, task, 1);
583 	put_task_struct(task);
584 
585 	if (!has_perms) {
586 		if (pid->hide_pid == 2) {
587 			/*
588 			 * Let's make getdents(), stat(), and open()
589 			 * consistent with each other.  If a process
590 			 * may not stat() a file, it shouldn't be seen
591 			 * in procfs at all.
592 			 */
593 			return -ENOENT;
594 		}
595 
596 		return -EPERM;
597 	}
598 	return generic_permission(inode, mask);
599 }
600 
601 
602 
603 static const struct inode_operations proc_def_inode_operations = {
604 	.setattr	= proc_setattr,
605 };
606 
607 #define PROC_BLOCK_SIZE	(3*1024)		/* 4K page size but our output routines use some slack for overruns */
608 
609 static ssize_t proc_info_read(struct file * file, char __user * buf,
610 			  size_t count, loff_t *ppos)
611 {
612 	struct inode * inode = file->f_path.dentry->d_inode;
613 	unsigned long page;
614 	ssize_t length;
615 	struct task_struct *task = get_proc_task(inode);
616 
617 	length = -ESRCH;
618 	if (!task)
619 		goto out_no_task;
620 
621 	if (count > PROC_BLOCK_SIZE)
622 		count = PROC_BLOCK_SIZE;
623 
624 	length = -ENOMEM;
625 	if (!(page = __get_free_page(GFP_TEMPORARY)))
626 		goto out;
627 
628 	length = PROC_I(inode)->op.proc_read(task, (char*)page);
629 
630 	if (length >= 0)
631 		length = simple_read_from_buffer(buf, count, ppos, (char *)page, length);
632 	free_page(page);
633 out:
634 	put_task_struct(task);
635 out_no_task:
636 	return length;
637 }
638 
639 static const struct file_operations proc_info_file_operations = {
640 	.read		= proc_info_read,
641 	.llseek		= generic_file_llseek,
642 };
643 
644 static int proc_single_show(struct seq_file *m, void *v)
645 {
646 	struct inode *inode = m->private;
647 	struct pid_namespace *ns;
648 	struct pid *pid;
649 	struct task_struct *task;
650 	int ret;
651 
652 	ns = inode->i_sb->s_fs_info;
653 	pid = proc_pid(inode);
654 	task = get_pid_task(pid, PIDTYPE_PID);
655 	if (!task)
656 		return -ESRCH;
657 
658 	ret = PROC_I(inode)->op.proc_show(m, ns, pid, task);
659 
660 	put_task_struct(task);
661 	return ret;
662 }
663 
664 static int proc_single_open(struct inode *inode, struct file *filp)
665 {
666 	return single_open(filp, proc_single_show, inode);
667 }
668 
669 static const struct file_operations proc_single_file_operations = {
670 	.open		= proc_single_open,
671 	.read		= seq_read,
672 	.llseek		= seq_lseek,
673 	.release	= single_release,
674 };
675 
676 static int __mem_open(struct inode *inode, struct file *file, unsigned int mode)
677 {
678 	struct task_struct *task = get_proc_task(file->f_path.dentry->d_inode);
679 	struct mm_struct *mm;
680 
681 	if (!task)
682 		return -ESRCH;
683 
684 	mm = mm_access(task, mode);
685 	put_task_struct(task);
686 
687 	if (IS_ERR(mm))
688 		return PTR_ERR(mm);
689 
690 	if (mm) {
691 		/* ensure this mm_struct can't be freed */
692 		atomic_inc(&mm->mm_count);
693 		/* but do not pin its memory */
694 		mmput(mm);
695 	}
696 
697 	file->private_data = mm;
698 
699 	return 0;
700 }
701 
702 static int mem_open(struct inode *inode, struct file *file)
703 {
704 	int ret = __mem_open(inode, file, PTRACE_MODE_ATTACH);
705 
706 	/* OK to pass negative loff_t, we can catch out-of-range */
707 	file->f_mode |= FMODE_UNSIGNED_OFFSET;
708 
709 	return ret;
710 }
711 
712 static ssize_t mem_rw(struct file *file, char __user *buf,
713 			size_t count, loff_t *ppos, int write)
714 {
715 	struct mm_struct *mm = file->private_data;
716 	unsigned long addr = *ppos;
717 	ssize_t copied;
718 	char *page;
719 
720 	if (!mm)
721 		return 0;
722 
723 	page = (char *)__get_free_page(GFP_TEMPORARY);
724 	if (!page)
725 		return -ENOMEM;
726 
727 	copied = 0;
728 	if (!atomic_inc_not_zero(&mm->mm_users))
729 		goto free;
730 
731 	while (count > 0) {
732 		int this_len = min_t(int, count, PAGE_SIZE);
733 
734 		if (write && copy_from_user(page, buf, this_len)) {
735 			copied = -EFAULT;
736 			break;
737 		}
738 
739 		this_len = access_remote_vm(mm, addr, page, this_len, write);
740 		if (!this_len) {
741 			if (!copied)
742 				copied = -EIO;
743 			break;
744 		}
745 
746 		if (!write && copy_to_user(buf, page, this_len)) {
747 			copied = -EFAULT;
748 			break;
749 		}
750 
751 		buf += this_len;
752 		addr += this_len;
753 		copied += this_len;
754 		count -= this_len;
755 	}
756 	*ppos = addr;
757 
758 	mmput(mm);
759 free:
760 	free_page((unsigned long) page);
761 	return copied;
762 }
763 
764 static ssize_t mem_read(struct file *file, char __user *buf,
765 			size_t count, loff_t *ppos)
766 {
767 	return mem_rw(file, buf, count, ppos, 0);
768 }
769 
770 static ssize_t mem_write(struct file *file, const char __user *buf,
771 			 size_t count, loff_t *ppos)
772 {
773 	return mem_rw(file, (char __user*)buf, count, ppos, 1);
774 }
775 
776 loff_t mem_lseek(struct file *file, loff_t offset, int orig)
777 {
778 	switch (orig) {
779 	case 0:
780 		file->f_pos = offset;
781 		break;
782 	case 1:
783 		file->f_pos += offset;
784 		break;
785 	default:
786 		return -EINVAL;
787 	}
788 	force_successful_syscall_return();
789 	return file->f_pos;
790 }
791 
792 static int mem_release(struct inode *inode, struct file *file)
793 {
794 	struct mm_struct *mm = file->private_data;
795 	if (mm)
796 		mmdrop(mm);
797 	return 0;
798 }
799 
800 static const struct file_operations proc_mem_operations = {
801 	.llseek		= mem_lseek,
802 	.read		= mem_read,
803 	.write		= mem_write,
804 	.open		= mem_open,
805 	.release	= mem_release,
806 };
807 
808 static int environ_open(struct inode *inode, struct file *file)
809 {
810 	return __mem_open(inode, file, PTRACE_MODE_READ);
811 }
812 
813 static ssize_t environ_read(struct file *file, char __user *buf,
814 			size_t count, loff_t *ppos)
815 {
816 	char *page;
817 	unsigned long src = *ppos;
818 	int ret = 0;
819 	struct mm_struct *mm = file->private_data;
820 
821 	if (!mm)
822 		return 0;
823 
824 	page = (char *)__get_free_page(GFP_TEMPORARY);
825 	if (!page)
826 		return -ENOMEM;
827 
828 	ret = 0;
829 	if (!atomic_inc_not_zero(&mm->mm_users))
830 		goto free;
831 	while (count > 0) {
832 		size_t this_len, max_len;
833 		int retval;
834 
835 		if (src >= (mm->env_end - mm->env_start))
836 			break;
837 
838 		this_len = mm->env_end - (mm->env_start + src);
839 
840 		max_len = min_t(size_t, PAGE_SIZE, count);
841 		this_len = min(max_len, this_len);
842 
843 		retval = access_remote_vm(mm, (mm->env_start + src),
844 			page, this_len, 0);
845 
846 		if (retval <= 0) {
847 			ret = retval;
848 			break;
849 		}
850 
851 		if (copy_to_user(buf, page, retval)) {
852 			ret = -EFAULT;
853 			break;
854 		}
855 
856 		ret += retval;
857 		src += retval;
858 		buf += retval;
859 		count -= retval;
860 	}
861 	*ppos = src;
862 	mmput(mm);
863 
864 free:
865 	free_page((unsigned long) page);
866 	return ret;
867 }
868 
869 static const struct file_operations proc_environ_operations = {
870 	.open		= environ_open,
871 	.read		= environ_read,
872 	.llseek		= generic_file_llseek,
873 	.release	= mem_release,
874 };
875 
876 static ssize_t oom_score_adj_read(struct file *file, char __user *buf,
877 					size_t count, loff_t *ppos)
878 {
879 	struct task_struct *task = get_proc_task(file->f_path.dentry->d_inode);
880 	char buffer[PROC_NUMBUF];
881 	int oom_score_adj = OOM_SCORE_ADJ_MIN;
882 	unsigned long flags;
883 	size_t len;
884 
885 	if (!task)
886 		return -ESRCH;
887 	if (lock_task_sighand(task, &flags)) {
888 		oom_score_adj = task->signal->oom_score_adj;
889 		unlock_task_sighand(task, &flags);
890 	}
891 	put_task_struct(task);
892 	len = snprintf(buffer, sizeof(buffer), "%d\n", oom_score_adj);
893 	return simple_read_from_buffer(buf, count, ppos, buffer, len);
894 }
895 
896 static ssize_t oom_score_adj_write(struct file *file, const char __user *buf,
897 					size_t count, loff_t *ppos)
898 {
899 	struct task_struct *task;
900 	char buffer[PROC_NUMBUF];
901 	unsigned long flags;
902 	int oom_score_adj;
903 	int err;
904 
905 	memset(buffer, 0, sizeof(buffer));
906 	if (count > sizeof(buffer) - 1)
907 		count = sizeof(buffer) - 1;
908 	if (copy_from_user(buffer, buf, count)) {
909 		err = -EFAULT;
910 		goto out;
911 	}
912 
913 	err = kstrtoint(strstrip(buffer), 0, &oom_score_adj);
914 	if (err)
915 		goto out;
916 	if (oom_score_adj < OOM_SCORE_ADJ_MIN ||
917 			oom_score_adj > OOM_SCORE_ADJ_MAX) {
918 		err = -EINVAL;
919 		goto out;
920 	}
921 
922 	task = get_proc_task(file->f_path.dentry->d_inode);
923 	if (!task) {
924 		err = -ESRCH;
925 		goto out;
926 	}
927 
928 	task_lock(task);
929 	if (!task->mm) {
930 		err = -EINVAL;
931 		goto err_task_lock;
932 	}
933 
934 	if (!lock_task_sighand(task, &flags)) {
935 		err = -ESRCH;
936 		goto err_task_lock;
937 	}
938 
939 	if (oom_score_adj < task->signal->oom_score_adj_min &&
940 			!capable(CAP_SYS_RESOURCE)) {
941 		err = -EACCES;
942 		goto err_sighand;
943 	}
944 
945 	task->signal->oom_score_adj = oom_score_adj;
946 	if (has_capability_noaudit(current, CAP_SYS_RESOURCE))
947 		task->signal->oom_score_adj_min = oom_score_adj;
948 	trace_oom_score_adj_update(task);
949 
950 err_sighand:
951 	unlock_task_sighand(task, &flags);
952 err_task_lock:
953 	task_unlock(task);
954 	put_task_struct(task);
955 out:
956 	return err < 0 ? err : count;
957 }
958 
959 static const struct file_operations proc_oom_score_adj_operations = {
960 	.read		= oom_score_adj_read,
961 	.write		= oom_score_adj_write,
962 	.llseek		= default_llseek,
963 };
964 
965 #ifdef CONFIG_AUDITSYSCALL
966 #define TMPBUFLEN 21
967 static ssize_t proc_loginuid_read(struct file * file, char __user * buf,
968 				  size_t count, loff_t *ppos)
969 {
970 	struct inode * inode = file->f_path.dentry->d_inode;
971 	struct task_struct *task = get_proc_task(inode);
972 	ssize_t length;
973 	char tmpbuf[TMPBUFLEN];
974 
975 	if (!task)
976 		return -ESRCH;
977 	length = scnprintf(tmpbuf, TMPBUFLEN, "%u",
978 			   from_kuid(file->f_cred->user_ns,
979 				     audit_get_loginuid(task)));
980 	put_task_struct(task);
981 	return simple_read_from_buffer(buf, count, ppos, tmpbuf, length);
982 }
983 
984 static ssize_t proc_loginuid_write(struct file * file, const char __user * buf,
985 				   size_t count, loff_t *ppos)
986 {
987 	struct inode * inode = file->f_path.dentry->d_inode;
988 	char *page, *tmp;
989 	ssize_t length;
990 	uid_t loginuid;
991 	kuid_t kloginuid;
992 
993 	rcu_read_lock();
994 	if (current != pid_task(proc_pid(inode), PIDTYPE_PID)) {
995 		rcu_read_unlock();
996 		return -EPERM;
997 	}
998 	rcu_read_unlock();
999 
1000 	if (count >= PAGE_SIZE)
1001 		count = PAGE_SIZE - 1;
1002 
1003 	if (*ppos != 0) {
1004 		/* No partial writes. */
1005 		return -EINVAL;
1006 	}
1007 	page = (char*)__get_free_page(GFP_TEMPORARY);
1008 	if (!page)
1009 		return -ENOMEM;
1010 	length = -EFAULT;
1011 	if (copy_from_user(page, buf, count))
1012 		goto out_free_page;
1013 
1014 	page[count] = '\0';
1015 	loginuid = simple_strtoul(page, &tmp, 10);
1016 	if (tmp == page) {
1017 		length = -EINVAL;
1018 		goto out_free_page;
1019 
1020 	}
1021 	kloginuid = make_kuid(file->f_cred->user_ns, loginuid);
1022 	if (!uid_valid(kloginuid)) {
1023 		length = -EINVAL;
1024 		goto out_free_page;
1025 	}
1026 
1027 	length = audit_set_loginuid(kloginuid);
1028 	if (likely(length == 0))
1029 		length = count;
1030 
1031 out_free_page:
1032 	free_page((unsigned long) page);
1033 	return length;
1034 }
1035 
1036 static const struct file_operations proc_loginuid_operations = {
1037 	.read		= proc_loginuid_read,
1038 	.write		= proc_loginuid_write,
1039 	.llseek		= generic_file_llseek,
1040 };
1041 
1042 static ssize_t proc_sessionid_read(struct file * file, char __user * buf,
1043 				  size_t count, loff_t *ppos)
1044 {
1045 	struct inode * inode = file->f_path.dentry->d_inode;
1046 	struct task_struct *task = get_proc_task(inode);
1047 	ssize_t length;
1048 	char tmpbuf[TMPBUFLEN];
1049 
1050 	if (!task)
1051 		return -ESRCH;
1052 	length = scnprintf(tmpbuf, TMPBUFLEN, "%u",
1053 				audit_get_sessionid(task));
1054 	put_task_struct(task);
1055 	return simple_read_from_buffer(buf, count, ppos, tmpbuf, length);
1056 }
1057 
1058 static const struct file_operations proc_sessionid_operations = {
1059 	.read		= proc_sessionid_read,
1060 	.llseek		= generic_file_llseek,
1061 };
1062 #endif
1063 
1064 #ifdef CONFIG_FAULT_INJECTION
1065 static ssize_t proc_fault_inject_read(struct file * file, char __user * buf,
1066 				      size_t count, loff_t *ppos)
1067 {
1068 	struct task_struct *task = get_proc_task(file->f_dentry->d_inode);
1069 	char buffer[PROC_NUMBUF];
1070 	size_t len;
1071 	int make_it_fail;
1072 
1073 	if (!task)
1074 		return -ESRCH;
1075 	make_it_fail = task->make_it_fail;
1076 	put_task_struct(task);
1077 
1078 	len = snprintf(buffer, sizeof(buffer), "%i\n", make_it_fail);
1079 
1080 	return simple_read_from_buffer(buf, count, ppos, buffer, len);
1081 }
1082 
1083 static ssize_t proc_fault_inject_write(struct file * file,
1084 			const char __user * buf, size_t count, loff_t *ppos)
1085 {
1086 	struct task_struct *task;
1087 	char buffer[PROC_NUMBUF], *end;
1088 	int make_it_fail;
1089 
1090 	if (!capable(CAP_SYS_RESOURCE))
1091 		return -EPERM;
1092 	memset(buffer, 0, sizeof(buffer));
1093 	if (count > sizeof(buffer) - 1)
1094 		count = sizeof(buffer) - 1;
1095 	if (copy_from_user(buffer, buf, count))
1096 		return -EFAULT;
1097 	make_it_fail = simple_strtol(strstrip(buffer), &end, 0);
1098 	if (*end)
1099 		return -EINVAL;
1100 	task = get_proc_task(file->f_dentry->d_inode);
1101 	if (!task)
1102 		return -ESRCH;
1103 	task->make_it_fail = make_it_fail;
1104 	put_task_struct(task);
1105 
1106 	return count;
1107 }
1108 
1109 static const struct file_operations proc_fault_inject_operations = {
1110 	.read		= proc_fault_inject_read,
1111 	.write		= proc_fault_inject_write,
1112 	.llseek		= generic_file_llseek,
1113 };
1114 #endif
1115 
1116 
1117 #ifdef CONFIG_SCHED_DEBUG
1118 /*
1119  * Print out various scheduling related per-task fields:
1120  */
1121 static int sched_show(struct seq_file *m, void *v)
1122 {
1123 	struct inode *inode = m->private;
1124 	struct task_struct *p;
1125 
1126 	p = get_proc_task(inode);
1127 	if (!p)
1128 		return -ESRCH;
1129 	proc_sched_show_task(p, m);
1130 
1131 	put_task_struct(p);
1132 
1133 	return 0;
1134 }
1135 
1136 static ssize_t
1137 sched_write(struct file *file, const char __user *buf,
1138 	    size_t count, loff_t *offset)
1139 {
1140 	struct inode *inode = file->f_path.dentry->d_inode;
1141 	struct task_struct *p;
1142 
1143 	p = get_proc_task(inode);
1144 	if (!p)
1145 		return -ESRCH;
1146 	proc_sched_set_task(p);
1147 
1148 	put_task_struct(p);
1149 
1150 	return count;
1151 }
1152 
1153 static int sched_open(struct inode *inode, struct file *filp)
1154 {
1155 	return single_open(filp, sched_show, inode);
1156 }
1157 
1158 static const struct file_operations proc_pid_sched_operations = {
1159 	.open		= sched_open,
1160 	.read		= seq_read,
1161 	.write		= sched_write,
1162 	.llseek		= seq_lseek,
1163 	.release	= single_release,
1164 };
1165 
1166 #endif
1167 
1168 #ifdef CONFIG_SCHED_AUTOGROUP
1169 /*
1170  * Print out autogroup related information:
1171  */
1172 static int sched_autogroup_show(struct seq_file *m, void *v)
1173 {
1174 	struct inode *inode = m->private;
1175 	struct task_struct *p;
1176 
1177 	p = get_proc_task(inode);
1178 	if (!p)
1179 		return -ESRCH;
1180 	proc_sched_autogroup_show_task(p, m);
1181 
1182 	put_task_struct(p);
1183 
1184 	return 0;
1185 }
1186 
1187 static ssize_t
1188 sched_autogroup_write(struct file *file, const char __user *buf,
1189 	    size_t count, loff_t *offset)
1190 {
1191 	struct inode *inode = file->f_path.dentry->d_inode;
1192 	struct task_struct *p;
1193 	char buffer[PROC_NUMBUF];
1194 	int nice;
1195 	int err;
1196 
1197 	memset(buffer, 0, sizeof(buffer));
1198 	if (count > sizeof(buffer) - 1)
1199 		count = sizeof(buffer) - 1;
1200 	if (copy_from_user(buffer, buf, count))
1201 		return -EFAULT;
1202 
1203 	err = kstrtoint(strstrip(buffer), 0, &nice);
1204 	if (err < 0)
1205 		return err;
1206 
1207 	p = get_proc_task(inode);
1208 	if (!p)
1209 		return -ESRCH;
1210 
1211 	err = proc_sched_autogroup_set_nice(p, nice);
1212 	if (err)
1213 		count = err;
1214 
1215 	put_task_struct(p);
1216 
1217 	return count;
1218 }
1219 
1220 static int sched_autogroup_open(struct inode *inode, struct file *filp)
1221 {
1222 	int ret;
1223 
1224 	ret = single_open(filp, sched_autogroup_show, NULL);
1225 	if (!ret) {
1226 		struct seq_file *m = filp->private_data;
1227 
1228 		m->private = inode;
1229 	}
1230 	return ret;
1231 }
1232 
1233 static const struct file_operations proc_pid_sched_autogroup_operations = {
1234 	.open		= sched_autogroup_open,
1235 	.read		= seq_read,
1236 	.write		= sched_autogroup_write,
1237 	.llseek		= seq_lseek,
1238 	.release	= single_release,
1239 };
1240 
1241 #endif /* CONFIG_SCHED_AUTOGROUP */
1242 
1243 static ssize_t comm_write(struct file *file, const char __user *buf,
1244 				size_t count, loff_t *offset)
1245 {
1246 	struct inode *inode = file->f_path.dentry->d_inode;
1247 	struct task_struct *p;
1248 	char buffer[TASK_COMM_LEN];
1249 
1250 	memset(buffer, 0, sizeof(buffer));
1251 	if (count > sizeof(buffer) - 1)
1252 		count = sizeof(buffer) - 1;
1253 	if (copy_from_user(buffer, buf, count))
1254 		return -EFAULT;
1255 
1256 	p = get_proc_task(inode);
1257 	if (!p)
1258 		return -ESRCH;
1259 
1260 	if (same_thread_group(current, p))
1261 		set_task_comm(p, buffer);
1262 	else
1263 		count = -EINVAL;
1264 
1265 	put_task_struct(p);
1266 
1267 	return count;
1268 }
1269 
1270 static int comm_show(struct seq_file *m, void *v)
1271 {
1272 	struct inode *inode = m->private;
1273 	struct task_struct *p;
1274 
1275 	p = get_proc_task(inode);
1276 	if (!p)
1277 		return -ESRCH;
1278 
1279 	task_lock(p);
1280 	seq_printf(m, "%s\n", p->comm);
1281 	task_unlock(p);
1282 
1283 	put_task_struct(p);
1284 
1285 	return 0;
1286 }
1287 
1288 static int comm_open(struct inode *inode, struct file *filp)
1289 {
1290 	return single_open(filp, comm_show, inode);
1291 }
1292 
1293 static const struct file_operations proc_pid_set_comm_operations = {
1294 	.open		= comm_open,
1295 	.read		= seq_read,
1296 	.write		= comm_write,
1297 	.llseek		= seq_lseek,
1298 	.release	= single_release,
1299 };
1300 
1301 static int proc_exe_link(struct dentry *dentry, struct path *exe_path)
1302 {
1303 	struct task_struct *task;
1304 	struct mm_struct *mm;
1305 	struct file *exe_file;
1306 
1307 	task = get_proc_task(dentry->d_inode);
1308 	if (!task)
1309 		return -ENOENT;
1310 	mm = get_task_mm(task);
1311 	put_task_struct(task);
1312 	if (!mm)
1313 		return -ENOENT;
1314 	exe_file = get_mm_exe_file(mm);
1315 	mmput(mm);
1316 	if (exe_file) {
1317 		*exe_path = exe_file->f_path;
1318 		path_get(&exe_file->f_path);
1319 		fput(exe_file);
1320 		return 0;
1321 	} else
1322 		return -ENOENT;
1323 }
1324 
1325 static void *proc_pid_follow_link(struct dentry *dentry, struct nameidata *nd)
1326 {
1327 	struct inode *inode = dentry->d_inode;
1328 	struct path path;
1329 	int error = -EACCES;
1330 
1331 	/* Are we allowed to snoop on the tasks file descriptors? */
1332 	if (!proc_fd_access_allowed(inode))
1333 		goto out;
1334 
1335 	error = PROC_I(inode)->op.proc_get_link(dentry, &path);
1336 	if (error)
1337 		goto out;
1338 
1339 	nd_jump_link(nd, &path);
1340 	return NULL;
1341 out:
1342 	return ERR_PTR(error);
1343 }
1344 
1345 static int do_proc_readlink(struct path *path, char __user *buffer, int buflen)
1346 {
1347 	char *tmp = (char*)__get_free_page(GFP_TEMPORARY);
1348 	char *pathname;
1349 	int len;
1350 
1351 	if (!tmp)
1352 		return -ENOMEM;
1353 
1354 	pathname = d_path(path, tmp, PAGE_SIZE);
1355 	len = PTR_ERR(pathname);
1356 	if (IS_ERR(pathname))
1357 		goto out;
1358 	len = tmp + PAGE_SIZE - 1 - pathname;
1359 
1360 	if (len > buflen)
1361 		len = buflen;
1362 	if (copy_to_user(buffer, pathname, len))
1363 		len = -EFAULT;
1364  out:
1365 	free_page((unsigned long)tmp);
1366 	return len;
1367 }
1368 
1369 static int proc_pid_readlink(struct dentry * dentry, char __user * buffer, int buflen)
1370 {
1371 	int error = -EACCES;
1372 	struct inode *inode = dentry->d_inode;
1373 	struct path path;
1374 
1375 	/* Are we allowed to snoop on the tasks file descriptors? */
1376 	if (!proc_fd_access_allowed(inode))
1377 		goto out;
1378 
1379 	error = PROC_I(inode)->op.proc_get_link(dentry, &path);
1380 	if (error)
1381 		goto out;
1382 
1383 	error = do_proc_readlink(&path, buffer, buflen);
1384 	path_put(&path);
1385 out:
1386 	return error;
1387 }
1388 
1389 const struct inode_operations proc_pid_link_inode_operations = {
1390 	.readlink	= proc_pid_readlink,
1391 	.follow_link	= proc_pid_follow_link,
1392 	.setattr	= proc_setattr,
1393 };
1394 
1395 
1396 /* building an inode */
1397 
1398 struct inode *proc_pid_make_inode(struct super_block * sb, struct task_struct *task)
1399 {
1400 	struct inode * inode;
1401 	struct proc_inode *ei;
1402 	const struct cred *cred;
1403 
1404 	/* We need a new inode */
1405 
1406 	inode = new_inode(sb);
1407 	if (!inode)
1408 		goto out;
1409 
1410 	/* Common stuff */
1411 	ei = PROC_I(inode);
1412 	inode->i_ino = get_next_ino();
1413 	inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
1414 	inode->i_op = &proc_def_inode_operations;
1415 
1416 	/*
1417 	 * grab the reference to task.
1418 	 */
1419 	ei->pid = get_task_pid(task, PIDTYPE_PID);
1420 	if (!ei->pid)
1421 		goto out_unlock;
1422 
1423 	if (task_dumpable(task)) {
1424 		rcu_read_lock();
1425 		cred = __task_cred(task);
1426 		inode->i_uid = cred->euid;
1427 		inode->i_gid = cred->egid;
1428 		rcu_read_unlock();
1429 	}
1430 	security_task_to_inode(task, inode);
1431 
1432 out:
1433 	return inode;
1434 
1435 out_unlock:
1436 	iput(inode);
1437 	return NULL;
1438 }
1439 
1440 int pid_getattr(struct vfsmount *mnt, struct dentry *dentry, struct kstat *stat)
1441 {
1442 	struct inode *inode = dentry->d_inode;
1443 	struct task_struct *task;
1444 	const struct cred *cred;
1445 	struct pid_namespace *pid = dentry->d_sb->s_fs_info;
1446 
1447 	generic_fillattr(inode, stat);
1448 
1449 	rcu_read_lock();
1450 	stat->uid = GLOBAL_ROOT_UID;
1451 	stat->gid = GLOBAL_ROOT_GID;
1452 	task = pid_task(proc_pid(inode), PIDTYPE_PID);
1453 	if (task) {
1454 		if (!has_pid_permissions(pid, task, 2)) {
1455 			rcu_read_unlock();
1456 			/*
1457 			 * This doesn't prevent learning whether PID exists,
1458 			 * it only makes getattr() consistent with readdir().
1459 			 */
1460 			return -ENOENT;
1461 		}
1462 		if ((inode->i_mode == (S_IFDIR|S_IRUGO|S_IXUGO)) ||
1463 		    task_dumpable(task)) {
1464 			cred = __task_cred(task);
1465 			stat->uid = cred->euid;
1466 			stat->gid = cred->egid;
1467 		}
1468 	}
1469 	rcu_read_unlock();
1470 	return 0;
1471 }
1472 
1473 /* dentry stuff */
1474 
1475 /*
1476  *	Exceptional case: normally we are not allowed to unhash a busy
1477  * directory. In this case, however, we can do it - no aliasing problems
1478  * due to the way we treat inodes.
1479  *
1480  * Rewrite the inode's ownerships here because the owning task may have
1481  * performed a setuid(), etc.
1482  *
1483  * Before the /proc/pid/status file was created the only way to read
1484  * the effective uid of a /process was to stat /proc/pid.  Reading
1485  * /proc/pid/status is slow enough that procps and other packages
1486  * kept stating /proc/pid.  To keep the rules in /proc simple I have
1487  * made this apply to all per process world readable and executable
1488  * directories.
1489  */
1490 int pid_revalidate(struct dentry *dentry, unsigned int flags)
1491 {
1492 	struct inode *inode;
1493 	struct task_struct *task;
1494 	const struct cred *cred;
1495 
1496 	if (flags & LOOKUP_RCU)
1497 		return -ECHILD;
1498 
1499 	inode = dentry->d_inode;
1500 	task = get_proc_task(inode);
1501 
1502 	if (task) {
1503 		if ((inode->i_mode == (S_IFDIR|S_IRUGO|S_IXUGO)) ||
1504 		    task_dumpable(task)) {
1505 			rcu_read_lock();
1506 			cred = __task_cred(task);
1507 			inode->i_uid = cred->euid;
1508 			inode->i_gid = cred->egid;
1509 			rcu_read_unlock();
1510 		} else {
1511 			inode->i_uid = GLOBAL_ROOT_UID;
1512 			inode->i_gid = GLOBAL_ROOT_GID;
1513 		}
1514 		inode->i_mode &= ~(S_ISUID | S_ISGID);
1515 		security_task_to_inode(task, inode);
1516 		put_task_struct(task);
1517 		return 1;
1518 	}
1519 	d_drop(dentry);
1520 	return 0;
1521 }
1522 
1523 const struct dentry_operations pid_dentry_operations =
1524 {
1525 	.d_revalidate	= pid_revalidate,
1526 	.d_delete	= pid_delete_dentry,
1527 };
1528 
1529 /* Lookups */
1530 
1531 /*
1532  * Fill a directory entry.
1533  *
1534  * If possible create the dcache entry and derive our inode number and
1535  * file type from dcache entry.
1536  *
1537  * Since all of the proc inode numbers are dynamically generated, the inode
1538  * numbers do not exist until the inode is cache.  This means creating the
1539  * the dcache entry in readdir is necessary to keep the inode numbers
1540  * reported by readdir in sync with the inode numbers reported
1541  * by stat.
1542  */
1543 int proc_fill_cache(struct file *filp, void *dirent, filldir_t filldir,
1544 	const char *name, int len,
1545 	instantiate_t instantiate, struct task_struct *task, const void *ptr)
1546 {
1547 	struct dentry *child, *dir = filp->f_path.dentry;
1548 	struct inode *inode;
1549 	struct qstr qname;
1550 	ino_t ino = 0;
1551 	unsigned type = DT_UNKNOWN;
1552 
1553 	qname.name = name;
1554 	qname.len  = len;
1555 	qname.hash = full_name_hash(name, len);
1556 
1557 	child = d_lookup(dir, &qname);
1558 	if (!child) {
1559 		struct dentry *new;
1560 		new = d_alloc(dir, &qname);
1561 		if (new) {
1562 			child = instantiate(dir->d_inode, new, task, ptr);
1563 			if (child)
1564 				dput(new);
1565 			else
1566 				child = new;
1567 		}
1568 	}
1569 	if (!child || IS_ERR(child) || !child->d_inode)
1570 		goto end_instantiate;
1571 	inode = child->d_inode;
1572 	if (inode) {
1573 		ino = inode->i_ino;
1574 		type = inode->i_mode >> 12;
1575 	}
1576 	dput(child);
1577 end_instantiate:
1578 	if (!ino)
1579 		ino = find_inode_number(dir, &qname);
1580 	if (!ino)
1581 		ino = 1;
1582 	return filldir(dirent, name, len, filp->f_pos, ino, type);
1583 }
1584 
1585 #ifdef CONFIG_CHECKPOINT_RESTORE
1586 
1587 /*
1588  * dname_to_vma_addr - maps a dentry name into two unsigned longs
1589  * which represent vma start and end addresses.
1590  */
1591 static int dname_to_vma_addr(struct dentry *dentry,
1592 			     unsigned long *start, unsigned long *end)
1593 {
1594 	if (sscanf(dentry->d_name.name, "%lx-%lx", start, end) != 2)
1595 		return -EINVAL;
1596 
1597 	return 0;
1598 }
1599 
1600 static int map_files_d_revalidate(struct dentry *dentry, unsigned int flags)
1601 {
1602 	unsigned long vm_start, vm_end;
1603 	bool exact_vma_exists = false;
1604 	struct mm_struct *mm = NULL;
1605 	struct task_struct *task;
1606 	const struct cred *cred;
1607 	struct inode *inode;
1608 	int status = 0;
1609 
1610 	if (flags & LOOKUP_RCU)
1611 		return -ECHILD;
1612 
1613 	if (!capable(CAP_SYS_ADMIN)) {
1614 		status = -EACCES;
1615 		goto out_notask;
1616 	}
1617 
1618 	inode = dentry->d_inode;
1619 	task = get_proc_task(inode);
1620 	if (!task)
1621 		goto out_notask;
1622 
1623 	mm = mm_access(task, PTRACE_MODE_READ);
1624 	if (IS_ERR_OR_NULL(mm))
1625 		goto out;
1626 
1627 	if (!dname_to_vma_addr(dentry, &vm_start, &vm_end)) {
1628 		down_read(&mm->mmap_sem);
1629 		exact_vma_exists = !!find_exact_vma(mm, vm_start, vm_end);
1630 		up_read(&mm->mmap_sem);
1631 	}
1632 
1633 	mmput(mm);
1634 
1635 	if (exact_vma_exists) {
1636 		if (task_dumpable(task)) {
1637 			rcu_read_lock();
1638 			cred = __task_cred(task);
1639 			inode->i_uid = cred->euid;
1640 			inode->i_gid = cred->egid;
1641 			rcu_read_unlock();
1642 		} else {
1643 			inode->i_uid = GLOBAL_ROOT_UID;
1644 			inode->i_gid = GLOBAL_ROOT_GID;
1645 		}
1646 		security_task_to_inode(task, inode);
1647 		status = 1;
1648 	}
1649 
1650 out:
1651 	put_task_struct(task);
1652 
1653 out_notask:
1654 	if (status <= 0)
1655 		d_drop(dentry);
1656 
1657 	return status;
1658 }
1659 
1660 static const struct dentry_operations tid_map_files_dentry_operations = {
1661 	.d_revalidate	= map_files_d_revalidate,
1662 	.d_delete	= pid_delete_dentry,
1663 };
1664 
1665 static int proc_map_files_get_link(struct dentry *dentry, struct path *path)
1666 {
1667 	unsigned long vm_start, vm_end;
1668 	struct vm_area_struct *vma;
1669 	struct task_struct *task;
1670 	struct mm_struct *mm;
1671 	int rc;
1672 
1673 	rc = -ENOENT;
1674 	task = get_proc_task(dentry->d_inode);
1675 	if (!task)
1676 		goto out;
1677 
1678 	mm = get_task_mm(task);
1679 	put_task_struct(task);
1680 	if (!mm)
1681 		goto out;
1682 
1683 	rc = dname_to_vma_addr(dentry, &vm_start, &vm_end);
1684 	if (rc)
1685 		goto out_mmput;
1686 
1687 	down_read(&mm->mmap_sem);
1688 	vma = find_exact_vma(mm, vm_start, vm_end);
1689 	if (vma && vma->vm_file) {
1690 		*path = vma->vm_file->f_path;
1691 		path_get(path);
1692 		rc = 0;
1693 	}
1694 	up_read(&mm->mmap_sem);
1695 
1696 out_mmput:
1697 	mmput(mm);
1698 out:
1699 	return rc;
1700 }
1701 
1702 struct map_files_info {
1703 	fmode_t		mode;
1704 	unsigned long	len;
1705 	unsigned char	name[4*sizeof(long)+2]; /* max: %lx-%lx\0 */
1706 };
1707 
1708 static struct dentry *
1709 proc_map_files_instantiate(struct inode *dir, struct dentry *dentry,
1710 			   struct task_struct *task, const void *ptr)
1711 {
1712 	fmode_t mode = (fmode_t)(unsigned long)ptr;
1713 	struct proc_inode *ei;
1714 	struct inode *inode;
1715 
1716 	inode = proc_pid_make_inode(dir->i_sb, task);
1717 	if (!inode)
1718 		return ERR_PTR(-ENOENT);
1719 
1720 	ei = PROC_I(inode);
1721 	ei->op.proc_get_link = proc_map_files_get_link;
1722 
1723 	inode->i_op = &proc_pid_link_inode_operations;
1724 	inode->i_size = 64;
1725 	inode->i_mode = S_IFLNK;
1726 
1727 	if (mode & FMODE_READ)
1728 		inode->i_mode |= S_IRUSR;
1729 	if (mode & FMODE_WRITE)
1730 		inode->i_mode |= S_IWUSR;
1731 
1732 	d_set_d_op(dentry, &tid_map_files_dentry_operations);
1733 	d_add(dentry, inode);
1734 
1735 	return NULL;
1736 }
1737 
1738 static struct dentry *proc_map_files_lookup(struct inode *dir,
1739 		struct dentry *dentry, unsigned int flags)
1740 {
1741 	unsigned long vm_start, vm_end;
1742 	struct vm_area_struct *vma;
1743 	struct task_struct *task;
1744 	struct dentry *result;
1745 	struct mm_struct *mm;
1746 
1747 	result = ERR_PTR(-EACCES);
1748 	if (!capable(CAP_SYS_ADMIN))
1749 		goto out;
1750 
1751 	result = ERR_PTR(-ENOENT);
1752 	task = get_proc_task(dir);
1753 	if (!task)
1754 		goto out;
1755 
1756 	result = ERR_PTR(-EACCES);
1757 	if (!ptrace_may_access(task, PTRACE_MODE_READ))
1758 		goto out_put_task;
1759 
1760 	result = ERR_PTR(-ENOENT);
1761 	if (dname_to_vma_addr(dentry, &vm_start, &vm_end))
1762 		goto out_put_task;
1763 
1764 	mm = get_task_mm(task);
1765 	if (!mm)
1766 		goto out_put_task;
1767 
1768 	down_read(&mm->mmap_sem);
1769 	vma = find_exact_vma(mm, vm_start, vm_end);
1770 	if (!vma)
1771 		goto out_no_vma;
1772 
1773 	result = proc_map_files_instantiate(dir, dentry, task,
1774 			(void *)(unsigned long)vma->vm_file->f_mode);
1775 
1776 out_no_vma:
1777 	up_read(&mm->mmap_sem);
1778 	mmput(mm);
1779 out_put_task:
1780 	put_task_struct(task);
1781 out:
1782 	return result;
1783 }
1784 
1785 static const struct inode_operations proc_map_files_inode_operations = {
1786 	.lookup		= proc_map_files_lookup,
1787 	.permission	= proc_fd_permission,
1788 	.setattr	= proc_setattr,
1789 };
1790 
1791 static int
1792 proc_map_files_readdir(struct file *filp, void *dirent, filldir_t filldir)
1793 {
1794 	struct dentry *dentry = filp->f_path.dentry;
1795 	struct inode *inode = dentry->d_inode;
1796 	struct vm_area_struct *vma;
1797 	struct task_struct *task;
1798 	struct mm_struct *mm;
1799 	ino_t ino;
1800 	int ret;
1801 
1802 	ret = -EACCES;
1803 	if (!capable(CAP_SYS_ADMIN))
1804 		goto out;
1805 
1806 	ret = -ENOENT;
1807 	task = get_proc_task(inode);
1808 	if (!task)
1809 		goto out;
1810 
1811 	ret = -EACCES;
1812 	if (!ptrace_may_access(task, PTRACE_MODE_READ))
1813 		goto out_put_task;
1814 
1815 	ret = 0;
1816 	switch (filp->f_pos) {
1817 	case 0:
1818 		ino = inode->i_ino;
1819 		if (filldir(dirent, ".", 1, 0, ino, DT_DIR) < 0)
1820 			goto out_put_task;
1821 		filp->f_pos++;
1822 	case 1:
1823 		ino = parent_ino(dentry);
1824 		if (filldir(dirent, "..", 2, 1, ino, DT_DIR) < 0)
1825 			goto out_put_task;
1826 		filp->f_pos++;
1827 	default:
1828 	{
1829 		unsigned long nr_files, pos, i;
1830 		struct flex_array *fa = NULL;
1831 		struct map_files_info info;
1832 		struct map_files_info *p;
1833 
1834 		mm = get_task_mm(task);
1835 		if (!mm)
1836 			goto out_put_task;
1837 		down_read(&mm->mmap_sem);
1838 
1839 		nr_files = 0;
1840 
1841 		/*
1842 		 * We need two passes here:
1843 		 *
1844 		 *  1) Collect vmas of mapped files with mmap_sem taken
1845 		 *  2) Release mmap_sem and instantiate entries
1846 		 *
1847 		 * otherwise we get lockdep complained, since filldir()
1848 		 * routine might require mmap_sem taken in might_fault().
1849 		 */
1850 
1851 		for (vma = mm->mmap, pos = 2; vma; vma = vma->vm_next) {
1852 			if (vma->vm_file && ++pos > filp->f_pos)
1853 				nr_files++;
1854 		}
1855 
1856 		if (nr_files) {
1857 			fa = flex_array_alloc(sizeof(info), nr_files,
1858 						GFP_KERNEL);
1859 			if (!fa || flex_array_prealloc(fa, 0, nr_files,
1860 							GFP_KERNEL)) {
1861 				ret = -ENOMEM;
1862 				if (fa)
1863 					flex_array_free(fa);
1864 				up_read(&mm->mmap_sem);
1865 				mmput(mm);
1866 				goto out_put_task;
1867 			}
1868 			for (i = 0, vma = mm->mmap, pos = 2; vma;
1869 					vma = vma->vm_next) {
1870 				if (!vma->vm_file)
1871 					continue;
1872 				if (++pos <= filp->f_pos)
1873 					continue;
1874 
1875 				info.mode = vma->vm_file->f_mode;
1876 				info.len = snprintf(info.name,
1877 						sizeof(info.name), "%lx-%lx",
1878 						vma->vm_start, vma->vm_end);
1879 				if (flex_array_put(fa, i++, &info, GFP_KERNEL))
1880 					BUG();
1881 			}
1882 		}
1883 		up_read(&mm->mmap_sem);
1884 
1885 		for (i = 0; i < nr_files; i++) {
1886 			p = flex_array_get(fa, i);
1887 			ret = proc_fill_cache(filp, dirent, filldir,
1888 					      p->name, p->len,
1889 					      proc_map_files_instantiate,
1890 					      task,
1891 					      (void *)(unsigned long)p->mode);
1892 			if (ret)
1893 				break;
1894 			filp->f_pos++;
1895 		}
1896 		if (fa)
1897 			flex_array_free(fa);
1898 		mmput(mm);
1899 	}
1900 	}
1901 
1902 out_put_task:
1903 	put_task_struct(task);
1904 out:
1905 	return ret;
1906 }
1907 
1908 static const struct file_operations proc_map_files_operations = {
1909 	.read		= generic_read_dir,
1910 	.readdir	= proc_map_files_readdir,
1911 	.llseek		= default_llseek,
1912 };
1913 
1914 #endif /* CONFIG_CHECKPOINT_RESTORE */
1915 
1916 static struct dentry *proc_pident_instantiate(struct inode *dir,
1917 	struct dentry *dentry, struct task_struct *task, const void *ptr)
1918 {
1919 	const struct pid_entry *p = ptr;
1920 	struct inode *inode;
1921 	struct proc_inode *ei;
1922 	struct dentry *error = ERR_PTR(-ENOENT);
1923 
1924 	inode = proc_pid_make_inode(dir->i_sb, task);
1925 	if (!inode)
1926 		goto out;
1927 
1928 	ei = PROC_I(inode);
1929 	inode->i_mode = p->mode;
1930 	if (S_ISDIR(inode->i_mode))
1931 		set_nlink(inode, 2);	/* Use getattr to fix if necessary */
1932 	if (p->iop)
1933 		inode->i_op = p->iop;
1934 	if (p->fop)
1935 		inode->i_fop = p->fop;
1936 	ei->op = p->op;
1937 	d_set_d_op(dentry, &pid_dentry_operations);
1938 	d_add(dentry, inode);
1939 	/* Close the race of the process dying before we return the dentry */
1940 	if (pid_revalidate(dentry, 0))
1941 		error = NULL;
1942 out:
1943 	return error;
1944 }
1945 
1946 static struct dentry *proc_pident_lookup(struct inode *dir,
1947 					 struct dentry *dentry,
1948 					 const struct pid_entry *ents,
1949 					 unsigned int nents)
1950 {
1951 	struct dentry *error;
1952 	struct task_struct *task = get_proc_task(dir);
1953 	const struct pid_entry *p, *last;
1954 
1955 	error = ERR_PTR(-ENOENT);
1956 
1957 	if (!task)
1958 		goto out_no_task;
1959 
1960 	/*
1961 	 * Yes, it does not scale. And it should not. Don't add
1962 	 * new entries into /proc/<tgid>/ without very good reasons.
1963 	 */
1964 	last = &ents[nents - 1];
1965 	for (p = ents; p <= last; p++) {
1966 		if (p->len != dentry->d_name.len)
1967 			continue;
1968 		if (!memcmp(dentry->d_name.name, p->name, p->len))
1969 			break;
1970 	}
1971 	if (p > last)
1972 		goto out;
1973 
1974 	error = proc_pident_instantiate(dir, dentry, task, p);
1975 out:
1976 	put_task_struct(task);
1977 out_no_task:
1978 	return error;
1979 }
1980 
1981 static int proc_pident_fill_cache(struct file *filp, void *dirent,
1982 	filldir_t filldir, struct task_struct *task, const struct pid_entry *p)
1983 {
1984 	return proc_fill_cache(filp, dirent, filldir, p->name, p->len,
1985 				proc_pident_instantiate, task, p);
1986 }
1987 
1988 static int proc_pident_readdir(struct file *filp,
1989 		void *dirent, filldir_t filldir,
1990 		const struct pid_entry *ents, unsigned int nents)
1991 {
1992 	int i;
1993 	struct dentry *dentry = filp->f_path.dentry;
1994 	struct inode *inode = dentry->d_inode;
1995 	struct task_struct *task = get_proc_task(inode);
1996 	const struct pid_entry *p, *last;
1997 	ino_t ino;
1998 	int ret;
1999 
2000 	ret = -ENOENT;
2001 	if (!task)
2002 		goto out_no_task;
2003 
2004 	ret = 0;
2005 	i = filp->f_pos;
2006 	switch (i) {
2007 	case 0:
2008 		ino = inode->i_ino;
2009 		if (filldir(dirent, ".", 1, i, ino, DT_DIR) < 0)
2010 			goto out;
2011 		i++;
2012 		filp->f_pos++;
2013 		/* fall through */
2014 	case 1:
2015 		ino = parent_ino(dentry);
2016 		if (filldir(dirent, "..", 2, i, ino, DT_DIR) < 0)
2017 			goto out;
2018 		i++;
2019 		filp->f_pos++;
2020 		/* fall through */
2021 	default:
2022 		i -= 2;
2023 		if (i >= nents) {
2024 			ret = 1;
2025 			goto out;
2026 		}
2027 		p = ents + i;
2028 		last = &ents[nents - 1];
2029 		while (p <= last) {
2030 			if (proc_pident_fill_cache(filp, dirent, filldir, task, p) < 0)
2031 				goto out;
2032 			filp->f_pos++;
2033 			p++;
2034 		}
2035 	}
2036 
2037 	ret = 1;
2038 out:
2039 	put_task_struct(task);
2040 out_no_task:
2041 	return ret;
2042 }
2043 
2044 #ifdef CONFIG_SECURITY
2045 static ssize_t proc_pid_attr_read(struct file * file, char __user * buf,
2046 				  size_t count, loff_t *ppos)
2047 {
2048 	struct inode * inode = file->f_path.dentry->d_inode;
2049 	char *p = NULL;
2050 	ssize_t length;
2051 	struct task_struct *task = get_proc_task(inode);
2052 
2053 	if (!task)
2054 		return -ESRCH;
2055 
2056 	length = security_getprocattr(task,
2057 				      (char*)file->f_path.dentry->d_name.name,
2058 				      &p);
2059 	put_task_struct(task);
2060 	if (length > 0)
2061 		length = simple_read_from_buffer(buf, count, ppos, p, length);
2062 	kfree(p);
2063 	return length;
2064 }
2065 
2066 static ssize_t proc_pid_attr_write(struct file * file, const char __user * buf,
2067 				   size_t count, loff_t *ppos)
2068 {
2069 	struct inode * inode = file->f_path.dentry->d_inode;
2070 	char *page;
2071 	ssize_t length;
2072 	struct task_struct *task = get_proc_task(inode);
2073 
2074 	length = -ESRCH;
2075 	if (!task)
2076 		goto out_no_task;
2077 	if (count > PAGE_SIZE)
2078 		count = PAGE_SIZE;
2079 
2080 	/* No partial writes. */
2081 	length = -EINVAL;
2082 	if (*ppos != 0)
2083 		goto out;
2084 
2085 	length = -ENOMEM;
2086 	page = (char*)__get_free_page(GFP_TEMPORARY);
2087 	if (!page)
2088 		goto out;
2089 
2090 	length = -EFAULT;
2091 	if (copy_from_user(page, buf, count))
2092 		goto out_free;
2093 
2094 	/* Guard against adverse ptrace interaction */
2095 	length = mutex_lock_interruptible(&task->signal->cred_guard_mutex);
2096 	if (length < 0)
2097 		goto out_free;
2098 
2099 	length = security_setprocattr(task,
2100 				      (char*)file->f_path.dentry->d_name.name,
2101 				      (void*)page, count);
2102 	mutex_unlock(&task->signal->cred_guard_mutex);
2103 out_free:
2104 	free_page((unsigned long) page);
2105 out:
2106 	put_task_struct(task);
2107 out_no_task:
2108 	return length;
2109 }
2110 
2111 static const struct file_operations proc_pid_attr_operations = {
2112 	.read		= proc_pid_attr_read,
2113 	.write		= proc_pid_attr_write,
2114 	.llseek		= generic_file_llseek,
2115 };
2116 
2117 static const struct pid_entry attr_dir_stuff[] = {
2118 	REG("current",    S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2119 	REG("prev",       S_IRUGO,	   proc_pid_attr_operations),
2120 	REG("exec",       S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2121 	REG("fscreate",   S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2122 	REG("keycreate",  S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2123 	REG("sockcreate", S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2124 };
2125 
2126 static int proc_attr_dir_readdir(struct file * filp,
2127 			     void * dirent, filldir_t filldir)
2128 {
2129 	return proc_pident_readdir(filp,dirent,filldir,
2130 				   attr_dir_stuff,ARRAY_SIZE(attr_dir_stuff));
2131 }
2132 
2133 static const struct file_operations proc_attr_dir_operations = {
2134 	.read		= generic_read_dir,
2135 	.readdir	= proc_attr_dir_readdir,
2136 	.llseek		= default_llseek,
2137 };
2138 
2139 static struct dentry *proc_attr_dir_lookup(struct inode *dir,
2140 				struct dentry *dentry, unsigned int flags)
2141 {
2142 	return proc_pident_lookup(dir, dentry,
2143 				  attr_dir_stuff, ARRAY_SIZE(attr_dir_stuff));
2144 }
2145 
2146 static const struct inode_operations proc_attr_dir_inode_operations = {
2147 	.lookup		= proc_attr_dir_lookup,
2148 	.getattr	= pid_getattr,
2149 	.setattr	= proc_setattr,
2150 };
2151 
2152 #endif
2153 
2154 #ifdef CONFIG_ELF_CORE
2155 static ssize_t proc_coredump_filter_read(struct file *file, char __user *buf,
2156 					 size_t count, loff_t *ppos)
2157 {
2158 	struct task_struct *task = get_proc_task(file->f_dentry->d_inode);
2159 	struct mm_struct *mm;
2160 	char buffer[PROC_NUMBUF];
2161 	size_t len;
2162 	int ret;
2163 
2164 	if (!task)
2165 		return -ESRCH;
2166 
2167 	ret = 0;
2168 	mm = get_task_mm(task);
2169 	if (mm) {
2170 		len = snprintf(buffer, sizeof(buffer), "%08lx\n",
2171 			       ((mm->flags & MMF_DUMP_FILTER_MASK) >>
2172 				MMF_DUMP_FILTER_SHIFT));
2173 		mmput(mm);
2174 		ret = simple_read_from_buffer(buf, count, ppos, buffer, len);
2175 	}
2176 
2177 	put_task_struct(task);
2178 
2179 	return ret;
2180 }
2181 
2182 static ssize_t proc_coredump_filter_write(struct file *file,
2183 					  const char __user *buf,
2184 					  size_t count,
2185 					  loff_t *ppos)
2186 {
2187 	struct task_struct *task;
2188 	struct mm_struct *mm;
2189 	char buffer[PROC_NUMBUF], *end;
2190 	unsigned int val;
2191 	int ret;
2192 	int i;
2193 	unsigned long mask;
2194 
2195 	ret = -EFAULT;
2196 	memset(buffer, 0, sizeof(buffer));
2197 	if (count > sizeof(buffer) - 1)
2198 		count = sizeof(buffer) - 1;
2199 	if (copy_from_user(buffer, buf, count))
2200 		goto out_no_task;
2201 
2202 	ret = -EINVAL;
2203 	val = (unsigned int)simple_strtoul(buffer, &end, 0);
2204 	if (*end == '\n')
2205 		end++;
2206 	if (end - buffer == 0)
2207 		goto out_no_task;
2208 
2209 	ret = -ESRCH;
2210 	task = get_proc_task(file->f_dentry->d_inode);
2211 	if (!task)
2212 		goto out_no_task;
2213 
2214 	ret = end - buffer;
2215 	mm = get_task_mm(task);
2216 	if (!mm)
2217 		goto out_no_mm;
2218 
2219 	for (i = 0, mask = 1; i < MMF_DUMP_FILTER_BITS; i++, mask <<= 1) {
2220 		if (val & mask)
2221 			set_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags);
2222 		else
2223 			clear_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags);
2224 	}
2225 
2226 	mmput(mm);
2227  out_no_mm:
2228 	put_task_struct(task);
2229  out_no_task:
2230 	return ret;
2231 }
2232 
2233 static const struct file_operations proc_coredump_filter_operations = {
2234 	.read		= proc_coredump_filter_read,
2235 	.write		= proc_coredump_filter_write,
2236 	.llseek		= generic_file_llseek,
2237 };
2238 #endif
2239 
2240 /*
2241  * /proc/self:
2242  */
2243 static int proc_self_readlink(struct dentry *dentry, char __user *buffer,
2244 			      int buflen)
2245 {
2246 	struct pid_namespace *ns = dentry->d_sb->s_fs_info;
2247 	pid_t tgid = task_tgid_nr_ns(current, ns);
2248 	char tmp[PROC_NUMBUF];
2249 	if (!tgid)
2250 		return -ENOENT;
2251 	sprintf(tmp, "%d", tgid);
2252 	return vfs_readlink(dentry,buffer,buflen,tmp);
2253 }
2254 
2255 static void *proc_self_follow_link(struct dentry *dentry, struct nameidata *nd)
2256 {
2257 	struct pid_namespace *ns = dentry->d_sb->s_fs_info;
2258 	pid_t tgid = task_tgid_nr_ns(current, ns);
2259 	char *name = ERR_PTR(-ENOENT);
2260 	if (tgid) {
2261 		/* 11 for max length of signed int in decimal + NULL term */
2262 		name = kmalloc(12, GFP_KERNEL);
2263 		if (!name)
2264 			name = ERR_PTR(-ENOMEM);
2265 		else
2266 			sprintf(name, "%d", tgid);
2267 	}
2268 	nd_set_link(nd, name);
2269 	return NULL;
2270 }
2271 
2272 static void proc_self_put_link(struct dentry *dentry, struct nameidata *nd,
2273 				void *cookie)
2274 {
2275 	char *s = nd_get_link(nd);
2276 	if (!IS_ERR(s))
2277 		kfree(s);
2278 }
2279 
2280 static const struct inode_operations proc_self_inode_operations = {
2281 	.readlink	= proc_self_readlink,
2282 	.follow_link	= proc_self_follow_link,
2283 	.put_link	= proc_self_put_link,
2284 };
2285 
2286 /*
2287  * proc base
2288  *
2289  * These are the directory entries in the root directory of /proc
2290  * that properly belong to the /proc filesystem, as they describe
2291  * describe something that is process related.
2292  */
2293 static const struct pid_entry proc_base_stuff[] = {
2294 	NOD("self", S_IFLNK|S_IRWXUGO,
2295 		&proc_self_inode_operations, NULL, {}),
2296 };
2297 
2298 static struct dentry *proc_base_instantiate(struct inode *dir,
2299 	struct dentry *dentry, struct task_struct *task, const void *ptr)
2300 {
2301 	const struct pid_entry *p = ptr;
2302 	struct inode *inode;
2303 	struct proc_inode *ei;
2304 	struct dentry *error;
2305 
2306 	/* Allocate the inode */
2307 	error = ERR_PTR(-ENOMEM);
2308 	inode = new_inode(dir->i_sb);
2309 	if (!inode)
2310 		goto out;
2311 
2312 	/* Initialize the inode */
2313 	ei = PROC_I(inode);
2314 	inode->i_ino = get_next_ino();
2315 	inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
2316 
2317 	/*
2318 	 * grab the reference to the task.
2319 	 */
2320 	ei->pid = get_task_pid(task, PIDTYPE_PID);
2321 	if (!ei->pid)
2322 		goto out_iput;
2323 
2324 	inode->i_mode = p->mode;
2325 	if (S_ISDIR(inode->i_mode))
2326 		set_nlink(inode, 2);
2327 	if (S_ISLNK(inode->i_mode))
2328 		inode->i_size = 64;
2329 	if (p->iop)
2330 		inode->i_op = p->iop;
2331 	if (p->fop)
2332 		inode->i_fop = p->fop;
2333 	ei->op = p->op;
2334 	d_add(dentry, inode);
2335 	error = NULL;
2336 out:
2337 	return error;
2338 out_iput:
2339 	iput(inode);
2340 	goto out;
2341 }
2342 
2343 static struct dentry *proc_base_lookup(struct inode *dir, struct dentry *dentry)
2344 {
2345 	struct dentry *error;
2346 	struct task_struct *task = get_proc_task(dir);
2347 	const struct pid_entry *p, *last;
2348 
2349 	error = ERR_PTR(-ENOENT);
2350 
2351 	if (!task)
2352 		goto out_no_task;
2353 
2354 	/* Lookup the directory entry */
2355 	last = &proc_base_stuff[ARRAY_SIZE(proc_base_stuff) - 1];
2356 	for (p = proc_base_stuff; p <= last; p++) {
2357 		if (p->len != dentry->d_name.len)
2358 			continue;
2359 		if (!memcmp(dentry->d_name.name, p->name, p->len))
2360 			break;
2361 	}
2362 	if (p > last)
2363 		goto out;
2364 
2365 	error = proc_base_instantiate(dir, dentry, task, p);
2366 
2367 out:
2368 	put_task_struct(task);
2369 out_no_task:
2370 	return error;
2371 }
2372 
2373 static int proc_base_fill_cache(struct file *filp, void *dirent,
2374 	filldir_t filldir, struct task_struct *task, const struct pid_entry *p)
2375 {
2376 	return proc_fill_cache(filp, dirent, filldir, p->name, p->len,
2377 				proc_base_instantiate, task, p);
2378 }
2379 
2380 #ifdef CONFIG_TASK_IO_ACCOUNTING
2381 static int do_io_accounting(struct task_struct *task, char *buffer, int whole)
2382 {
2383 	struct task_io_accounting acct = task->ioac;
2384 	unsigned long flags;
2385 	int result;
2386 
2387 	result = mutex_lock_killable(&task->signal->cred_guard_mutex);
2388 	if (result)
2389 		return result;
2390 
2391 	if (!ptrace_may_access(task, PTRACE_MODE_READ)) {
2392 		result = -EACCES;
2393 		goto out_unlock;
2394 	}
2395 
2396 	if (whole && lock_task_sighand(task, &flags)) {
2397 		struct task_struct *t = task;
2398 
2399 		task_io_accounting_add(&acct, &task->signal->ioac);
2400 		while_each_thread(task, t)
2401 			task_io_accounting_add(&acct, &t->ioac);
2402 
2403 		unlock_task_sighand(task, &flags);
2404 	}
2405 	result = sprintf(buffer,
2406 			"rchar: %llu\n"
2407 			"wchar: %llu\n"
2408 			"syscr: %llu\n"
2409 			"syscw: %llu\n"
2410 			"read_bytes: %llu\n"
2411 			"write_bytes: %llu\n"
2412 			"cancelled_write_bytes: %llu\n",
2413 			(unsigned long long)acct.rchar,
2414 			(unsigned long long)acct.wchar,
2415 			(unsigned long long)acct.syscr,
2416 			(unsigned long long)acct.syscw,
2417 			(unsigned long long)acct.read_bytes,
2418 			(unsigned long long)acct.write_bytes,
2419 			(unsigned long long)acct.cancelled_write_bytes);
2420 out_unlock:
2421 	mutex_unlock(&task->signal->cred_guard_mutex);
2422 	return result;
2423 }
2424 
2425 static int proc_tid_io_accounting(struct task_struct *task, char *buffer)
2426 {
2427 	return do_io_accounting(task, buffer, 0);
2428 }
2429 
2430 static int proc_tgid_io_accounting(struct task_struct *task, char *buffer)
2431 {
2432 	return do_io_accounting(task, buffer, 1);
2433 }
2434 #endif /* CONFIG_TASK_IO_ACCOUNTING */
2435 
2436 #ifdef CONFIG_USER_NS
2437 static int proc_id_map_open(struct inode *inode, struct file *file,
2438 	struct seq_operations *seq_ops)
2439 {
2440 	struct user_namespace *ns = NULL;
2441 	struct task_struct *task;
2442 	struct seq_file *seq;
2443 	int ret = -EINVAL;
2444 
2445 	task = get_proc_task(inode);
2446 	if (task) {
2447 		rcu_read_lock();
2448 		ns = get_user_ns(task_cred_xxx(task, user_ns));
2449 		rcu_read_unlock();
2450 		put_task_struct(task);
2451 	}
2452 	if (!ns)
2453 		goto err;
2454 
2455 	ret = seq_open(file, seq_ops);
2456 	if (ret)
2457 		goto err_put_ns;
2458 
2459 	seq = file->private_data;
2460 	seq->private = ns;
2461 
2462 	return 0;
2463 err_put_ns:
2464 	put_user_ns(ns);
2465 err:
2466 	return ret;
2467 }
2468 
2469 static int proc_id_map_release(struct inode *inode, struct file *file)
2470 {
2471 	struct seq_file *seq = file->private_data;
2472 	struct user_namespace *ns = seq->private;
2473 	put_user_ns(ns);
2474 	return seq_release(inode, file);
2475 }
2476 
2477 static int proc_uid_map_open(struct inode *inode, struct file *file)
2478 {
2479 	return proc_id_map_open(inode, file, &proc_uid_seq_operations);
2480 }
2481 
2482 static int proc_gid_map_open(struct inode *inode, struct file *file)
2483 {
2484 	return proc_id_map_open(inode, file, &proc_gid_seq_operations);
2485 }
2486 
2487 static int proc_projid_map_open(struct inode *inode, struct file *file)
2488 {
2489 	return proc_id_map_open(inode, file, &proc_projid_seq_operations);
2490 }
2491 
2492 static const struct file_operations proc_uid_map_operations = {
2493 	.open		= proc_uid_map_open,
2494 	.write		= proc_uid_map_write,
2495 	.read		= seq_read,
2496 	.llseek		= seq_lseek,
2497 	.release	= proc_id_map_release,
2498 };
2499 
2500 static const struct file_operations proc_gid_map_operations = {
2501 	.open		= proc_gid_map_open,
2502 	.write		= proc_gid_map_write,
2503 	.read		= seq_read,
2504 	.llseek		= seq_lseek,
2505 	.release	= proc_id_map_release,
2506 };
2507 
2508 static const struct file_operations proc_projid_map_operations = {
2509 	.open		= proc_projid_map_open,
2510 	.write		= proc_projid_map_write,
2511 	.read		= seq_read,
2512 	.llseek		= seq_lseek,
2513 	.release	= proc_id_map_release,
2514 };
2515 #endif /* CONFIG_USER_NS */
2516 
2517 static int proc_pid_personality(struct seq_file *m, struct pid_namespace *ns,
2518 				struct pid *pid, struct task_struct *task)
2519 {
2520 	int err = lock_trace(task);
2521 	if (!err) {
2522 		seq_printf(m, "%08x\n", task->personality);
2523 		unlock_trace(task);
2524 	}
2525 	return err;
2526 }
2527 
2528 /*
2529  * Thread groups
2530  */
2531 static const struct file_operations proc_task_operations;
2532 static const struct inode_operations proc_task_inode_operations;
2533 
2534 static const struct pid_entry tgid_base_stuff[] = {
2535 	DIR("task",       S_IRUGO|S_IXUGO, proc_task_inode_operations, proc_task_operations),
2536 	DIR("fd",         S_IRUSR|S_IXUSR, proc_fd_inode_operations, proc_fd_operations),
2537 #ifdef CONFIG_CHECKPOINT_RESTORE
2538 	DIR("map_files",  S_IRUSR|S_IXUSR, proc_map_files_inode_operations, proc_map_files_operations),
2539 #endif
2540 	DIR("fdinfo",     S_IRUSR|S_IXUSR, proc_fdinfo_inode_operations, proc_fdinfo_operations),
2541 	DIR("ns",	  S_IRUSR|S_IXUGO, proc_ns_dir_inode_operations, proc_ns_dir_operations),
2542 #ifdef CONFIG_NET
2543 	DIR("net",        S_IRUGO|S_IXUGO, proc_net_inode_operations, proc_net_operations),
2544 #endif
2545 	REG("environ",    S_IRUSR, proc_environ_operations),
2546 	INF("auxv",       S_IRUSR, proc_pid_auxv),
2547 	ONE("status",     S_IRUGO, proc_pid_status),
2548 	ONE("personality", S_IRUGO, proc_pid_personality),
2549 	INF("limits",	  S_IRUGO, proc_pid_limits),
2550 #ifdef CONFIG_SCHED_DEBUG
2551 	REG("sched",      S_IRUGO|S_IWUSR, proc_pid_sched_operations),
2552 #endif
2553 #ifdef CONFIG_SCHED_AUTOGROUP
2554 	REG("autogroup",  S_IRUGO|S_IWUSR, proc_pid_sched_autogroup_operations),
2555 #endif
2556 	REG("comm",      S_IRUGO|S_IWUSR, proc_pid_set_comm_operations),
2557 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK
2558 	INF("syscall",    S_IRUGO, proc_pid_syscall),
2559 #endif
2560 	INF("cmdline",    S_IRUGO, proc_pid_cmdline),
2561 	ONE("stat",       S_IRUGO, proc_tgid_stat),
2562 	ONE("statm",      S_IRUGO, proc_pid_statm),
2563 	REG("maps",       S_IRUGO, proc_pid_maps_operations),
2564 #ifdef CONFIG_NUMA
2565 	REG("numa_maps",  S_IRUGO, proc_pid_numa_maps_operations),
2566 #endif
2567 	REG("mem",        S_IRUSR|S_IWUSR, proc_mem_operations),
2568 	LNK("cwd",        proc_cwd_link),
2569 	LNK("root",       proc_root_link),
2570 	LNK("exe",        proc_exe_link),
2571 	REG("mounts",     S_IRUGO, proc_mounts_operations),
2572 	REG("mountinfo",  S_IRUGO, proc_mountinfo_operations),
2573 	REG("mountstats", S_IRUSR, proc_mountstats_operations),
2574 #ifdef CONFIG_PROC_PAGE_MONITOR
2575 	REG("clear_refs", S_IWUSR, proc_clear_refs_operations),
2576 	REG("smaps",      S_IRUGO, proc_pid_smaps_operations),
2577 	REG("pagemap",    S_IRUGO, proc_pagemap_operations),
2578 #endif
2579 #ifdef CONFIG_SECURITY
2580 	DIR("attr",       S_IRUGO|S_IXUGO, proc_attr_dir_inode_operations, proc_attr_dir_operations),
2581 #endif
2582 #ifdef CONFIG_KALLSYMS
2583 	INF("wchan",      S_IRUGO, proc_pid_wchan),
2584 #endif
2585 #ifdef CONFIG_STACKTRACE
2586 	ONE("stack",      S_IRUGO, proc_pid_stack),
2587 #endif
2588 #ifdef CONFIG_SCHEDSTATS
2589 	INF("schedstat",  S_IRUGO, proc_pid_schedstat),
2590 #endif
2591 #ifdef CONFIG_LATENCYTOP
2592 	REG("latency",  S_IRUGO, proc_lstats_operations),
2593 #endif
2594 #ifdef CONFIG_PROC_PID_CPUSET
2595 	REG("cpuset",     S_IRUGO, proc_cpuset_operations),
2596 #endif
2597 #ifdef CONFIG_CGROUPS
2598 	REG("cgroup",  S_IRUGO, proc_cgroup_operations),
2599 #endif
2600 	INF("oom_score",  S_IRUGO, proc_oom_score),
2601 	REG("oom_score_adj", S_IRUGO|S_IWUSR, proc_oom_score_adj_operations),
2602 #ifdef CONFIG_AUDITSYSCALL
2603 	REG("loginuid",   S_IWUSR|S_IRUGO, proc_loginuid_operations),
2604 	REG("sessionid",  S_IRUGO, proc_sessionid_operations),
2605 #endif
2606 #ifdef CONFIG_FAULT_INJECTION
2607 	REG("make-it-fail", S_IRUGO|S_IWUSR, proc_fault_inject_operations),
2608 #endif
2609 #ifdef CONFIG_ELF_CORE
2610 	REG("coredump_filter", S_IRUGO|S_IWUSR, proc_coredump_filter_operations),
2611 #endif
2612 #ifdef CONFIG_TASK_IO_ACCOUNTING
2613 	INF("io",	S_IRUSR, proc_tgid_io_accounting),
2614 #endif
2615 #ifdef CONFIG_HARDWALL
2616 	INF("hardwall",   S_IRUGO, proc_pid_hardwall),
2617 #endif
2618 #ifdef CONFIG_USER_NS
2619 	REG("uid_map",    S_IRUGO|S_IWUSR, proc_uid_map_operations),
2620 	REG("gid_map",    S_IRUGO|S_IWUSR, proc_gid_map_operations),
2621 	REG("projid_map", S_IRUGO|S_IWUSR, proc_projid_map_operations),
2622 #endif
2623 };
2624 
2625 static int proc_tgid_base_readdir(struct file * filp,
2626 			     void * dirent, filldir_t filldir)
2627 {
2628 	return proc_pident_readdir(filp,dirent,filldir,
2629 				   tgid_base_stuff,ARRAY_SIZE(tgid_base_stuff));
2630 }
2631 
2632 static const struct file_operations proc_tgid_base_operations = {
2633 	.read		= generic_read_dir,
2634 	.readdir	= proc_tgid_base_readdir,
2635 	.llseek		= default_llseek,
2636 };
2637 
2638 static struct dentry *proc_tgid_base_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
2639 {
2640 	return proc_pident_lookup(dir, dentry,
2641 				  tgid_base_stuff, ARRAY_SIZE(tgid_base_stuff));
2642 }
2643 
2644 static const struct inode_operations proc_tgid_base_inode_operations = {
2645 	.lookup		= proc_tgid_base_lookup,
2646 	.getattr	= pid_getattr,
2647 	.setattr	= proc_setattr,
2648 	.permission	= proc_pid_permission,
2649 };
2650 
2651 static void proc_flush_task_mnt(struct vfsmount *mnt, pid_t pid, pid_t tgid)
2652 {
2653 	struct dentry *dentry, *leader, *dir;
2654 	char buf[PROC_NUMBUF];
2655 	struct qstr name;
2656 
2657 	name.name = buf;
2658 	name.len = snprintf(buf, sizeof(buf), "%d", pid);
2659 	dentry = d_hash_and_lookup(mnt->mnt_root, &name);
2660 	if (dentry) {
2661 		shrink_dcache_parent(dentry);
2662 		d_drop(dentry);
2663 		dput(dentry);
2664 	}
2665 
2666 	name.name = buf;
2667 	name.len = snprintf(buf, sizeof(buf), "%d", tgid);
2668 	leader = d_hash_and_lookup(mnt->mnt_root, &name);
2669 	if (!leader)
2670 		goto out;
2671 
2672 	name.name = "task";
2673 	name.len = strlen(name.name);
2674 	dir = d_hash_and_lookup(leader, &name);
2675 	if (!dir)
2676 		goto out_put_leader;
2677 
2678 	name.name = buf;
2679 	name.len = snprintf(buf, sizeof(buf), "%d", pid);
2680 	dentry = d_hash_and_lookup(dir, &name);
2681 	if (dentry) {
2682 		shrink_dcache_parent(dentry);
2683 		d_drop(dentry);
2684 		dput(dentry);
2685 	}
2686 
2687 	dput(dir);
2688 out_put_leader:
2689 	dput(leader);
2690 out:
2691 	return;
2692 }
2693 
2694 /**
2695  * proc_flush_task -  Remove dcache entries for @task from the /proc dcache.
2696  * @task: task that should be flushed.
2697  *
2698  * When flushing dentries from proc, one needs to flush them from global
2699  * proc (proc_mnt) and from all the namespaces' procs this task was seen
2700  * in. This call is supposed to do all of this job.
2701  *
2702  * Looks in the dcache for
2703  * /proc/@pid
2704  * /proc/@tgid/task/@pid
2705  * if either directory is present flushes it and all of it'ts children
2706  * from the dcache.
2707  *
2708  * It is safe and reasonable to cache /proc entries for a task until
2709  * that task exits.  After that they just clog up the dcache with
2710  * useless entries, possibly causing useful dcache entries to be
2711  * flushed instead.  This routine is proved to flush those useless
2712  * dcache entries at process exit time.
2713  *
2714  * NOTE: This routine is just an optimization so it does not guarantee
2715  *       that no dcache entries will exist at process exit time it
2716  *       just makes it very unlikely that any will persist.
2717  */
2718 
2719 void proc_flush_task(struct task_struct *task)
2720 {
2721 	int i;
2722 	struct pid *pid, *tgid;
2723 	struct upid *upid;
2724 
2725 	pid = task_pid(task);
2726 	tgid = task_tgid(task);
2727 
2728 	for (i = 0; i <= pid->level; i++) {
2729 		upid = &pid->numbers[i];
2730 		proc_flush_task_mnt(upid->ns->proc_mnt, upid->nr,
2731 					tgid->numbers[i].nr);
2732 	}
2733 
2734 	upid = &pid->numbers[pid->level];
2735 	if (upid->nr == 1)
2736 		pid_ns_release_proc(upid->ns);
2737 }
2738 
2739 static struct dentry *proc_pid_instantiate(struct inode *dir,
2740 					   struct dentry * dentry,
2741 					   struct task_struct *task, const void *ptr)
2742 {
2743 	struct dentry *error = ERR_PTR(-ENOENT);
2744 	struct inode *inode;
2745 
2746 	inode = proc_pid_make_inode(dir->i_sb, task);
2747 	if (!inode)
2748 		goto out;
2749 
2750 	inode->i_mode = S_IFDIR|S_IRUGO|S_IXUGO;
2751 	inode->i_op = &proc_tgid_base_inode_operations;
2752 	inode->i_fop = &proc_tgid_base_operations;
2753 	inode->i_flags|=S_IMMUTABLE;
2754 
2755 	set_nlink(inode, 2 + pid_entry_count_dirs(tgid_base_stuff,
2756 						  ARRAY_SIZE(tgid_base_stuff)));
2757 
2758 	d_set_d_op(dentry, &pid_dentry_operations);
2759 
2760 	d_add(dentry, inode);
2761 	/* Close the race of the process dying before we return the dentry */
2762 	if (pid_revalidate(dentry, 0))
2763 		error = NULL;
2764 out:
2765 	return error;
2766 }
2767 
2768 struct dentry *proc_pid_lookup(struct inode *dir, struct dentry * dentry, unsigned int flags)
2769 {
2770 	struct dentry *result;
2771 	struct task_struct *task;
2772 	unsigned tgid;
2773 	struct pid_namespace *ns;
2774 
2775 	result = proc_base_lookup(dir, dentry);
2776 	if (!IS_ERR(result) || PTR_ERR(result) != -ENOENT)
2777 		goto out;
2778 
2779 	tgid = name_to_int(dentry);
2780 	if (tgid == ~0U)
2781 		goto out;
2782 
2783 	ns = dentry->d_sb->s_fs_info;
2784 	rcu_read_lock();
2785 	task = find_task_by_pid_ns(tgid, ns);
2786 	if (task)
2787 		get_task_struct(task);
2788 	rcu_read_unlock();
2789 	if (!task)
2790 		goto out;
2791 
2792 	result = proc_pid_instantiate(dir, dentry, task, NULL);
2793 	put_task_struct(task);
2794 out:
2795 	return result;
2796 }
2797 
2798 /*
2799  * Find the first task with tgid >= tgid
2800  *
2801  */
2802 struct tgid_iter {
2803 	unsigned int tgid;
2804 	struct task_struct *task;
2805 };
2806 static struct tgid_iter next_tgid(struct pid_namespace *ns, struct tgid_iter iter)
2807 {
2808 	struct pid *pid;
2809 
2810 	if (iter.task)
2811 		put_task_struct(iter.task);
2812 	rcu_read_lock();
2813 retry:
2814 	iter.task = NULL;
2815 	pid = find_ge_pid(iter.tgid, ns);
2816 	if (pid) {
2817 		iter.tgid = pid_nr_ns(pid, ns);
2818 		iter.task = pid_task(pid, PIDTYPE_PID);
2819 		/* What we to know is if the pid we have find is the
2820 		 * pid of a thread_group_leader.  Testing for task
2821 		 * being a thread_group_leader is the obvious thing
2822 		 * todo but there is a window when it fails, due to
2823 		 * the pid transfer logic in de_thread.
2824 		 *
2825 		 * So we perform the straight forward test of seeing
2826 		 * if the pid we have found is the pid of a thread
2827 		 * group leader, and don't worry if the task we have
2828 		 * found doesn't happen to be a thread group leader.
2829 		 * As we don't care in the case of readdir.
2830 		 */
2831 		if (!iter.task || !has_group_leader_pid(iter.task)) {
2832 			iter.tgid += 1;
2833 			goto retry;
2834 		}
2835 		get_task_struct(iter.task);
2836 	}
2837 	rcu_read_unlock();
2838 	return iter;
2839 }
2840 
2841 #define TGID_OFFSET (FIRST_PROCESS_ENTRY + ARRAY_SIZE(proc_base_stuff))
2842 
2843 static int proc_pid_fill_cache(struct file *filp, void *dirent, filldir_t filldir,
2844 	struct tgid_iter iter)
2845 {
2846 	char name[PROC_NUMBUF];
2847 	int len = snprintf(name, sizeof(name), "%d", iter.tgid);
2848 	return proc_fill_cache(filp, dirent, filldir, name, len,
2849 				proc_pid_instantiate, iter.task, NULL);
2850 }
2851 
2852 static int fake_filldir(void *buf, const char *name, int namelen,
2853 			loff_t offset, u64 ino, unsigned d_type)
2854 {
2855 	return 0;
2856 }
2857 
2858 /* for the /proc/ directory itself, after non-process stuff has been done */
2859 int proc_pid_readdir(struct file * filp, void * dirent, filldir_t filldir)
2860 {
2861 	unsigned int nr;
2862 	struct task_struct *reaper;
2863 	struct tgid_iter iter;
2864 	struct pid_namespace *ns;
2865 	filldir_t __filldir;
2866 
2867 	if (filp->f_pos >= PID_MAX_LIMIT + TGID_OFFSET)
2868 		goto out_no_task;
2869 	nr = filp->f_pos - FIRST_PROCESS_ENTRY;
2870 
2871 	reaper = get_proc_task(filp->f_path.dentry->d_inode);
2872 	if (!reaper)
2873 		goto out_no_task;
2874 
2875 	for (; nr < ARRAY_SIZE(proc_base_stuff); filp->f_pos++, nr++) {
2876 		const struct pid_entry *p = &proc_base_stuff[nr];
2877 		if (proc_base_fill_cache(filp, dirent, filldir, reaper, p) < 0)
2878 			goto out;
2879 	}
2880 
2881 	ns = filp->f_dentry->d_sb->s_fs_info;
2882 	iter.task = NULL;
2883 	iter.tgid = filp->f_pos - TGID_OFFSET;
2884 	for (iter = next_tgid(ns, iter);
2885 	     iter.task;
2886 	     iter.tgid += 1, iter = next_tgid(ns, iter)) {
2887 		if (has_pid_permissions(ns, iter.task, 2))
2888 			__filldir = filldir;
2889 		else
2890 			__filldir = fake_filldir;
2891 
2892 		filp->f_pos = iter.tgid + TGID_OFFSET;
2893 		if (proc_pid_fill_cache(filp, dirent, __filldir, iter) < 0) {
2894 			put_task_struct(iter.task);
2895 			goto out;
2896 		}
2897 	}
2898 	filp->f_pos = PID_MAX_LIMIT + TGID_OFFSET;
2899 out:
2900 	put_task_struct(reaper);
2901 out_no_task:
2902 	return 0;
2903 }
2904 
2905 /*
2906  * Tasks
2907  */
2908 static const struct pid_entry tid_base_stuff[] = {
2909 	DIR("fd",        S_IRUSR|S_IXUSR, proc_fd_inode_operations, proc_fd_operations),
2910 	DIR("fdinfo",    S_IRUSR|S_IXUSR, proc_fdinfo_inode_operations, proc_fdinfo_operations),
2911 	DIR("ns",	 S_IRUSR|S_IXUGO, proc_ns_dir_inode_operations, proc_ns_dir_operations),
2912 	REG("environ",   S_IRUSR, proc_environ_operations),
2913 	INF("auxv",      S_IRUSR, proc_pid_auxv),
2914 	ONE("status",    S_IRUGO, proc_pid_status),
2915 	ONE("personality", S_IRUGO, proc_pid_personality),
2916 	INF("limits",	 S_IRUGO, proc_pid_limits),
2917 #ifdef CONFIG_SCHED_DEBUG
2918 	REG("sched",     S_IRUGO|S_IWUSR, proc_pid_sched_operations),
2919 #endif
2920 	REG("comm",      S_IRUGO|S_IWUSR, proc_pid_set_comm_operations),
2921 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK
2922 	INF("syscall",   S_IRUGO, proc_pid_syscall),
2923 #endif
2924 	INF("cmdline",   S_IRUGO, proc_pid_cmdline),
2925 	ONE("stat",      S_IRUGO, proc_tid_stat),
2926 	ONE("statm",     S_IRUGO, proc_pid_statm),
2927 	REG("maps",      S_IRUGO, proc_tid_maps_operations),
2928 #ifdef CONFIG_CHECKPOINT_RESTORE
2929 	REG("children",  S_IRUGO, proc_tid_children_operations),
2930 #endif
2931 #ifdef CONFIG_NUMA
2932 	REG("numa_maps", S_IRUGO, proc_tid_numa_maps_operations),
2933 #endif
2934 	REG("mem",       S_IRUSR|S_IWUSR, proc_mem_operations),
2935 	LNK("cwd",       proc_cwd_link),
2936 	LNK("root",      proc_root_link),
2937 	LNK("exe",       proc_exe_link),
2938 	REG("mounts",    S_IRUGO, proc_mounts_operations),
2939 	REG("mountinfo",  S_IRUGO, proc_mountinfo_operations),
2940 #ifdef CONFIG_PROC_PAGE_MONITOR
2941 	REG("clear_refs", S_IWUSR, proc_clear_refs_operations),
2942 	REG("smaps",     S_IRUGO, proc_tid_smaps_operations),
2943 	REG("pagemap",    S_IRUGO, proc_pagemap_operations),
2944 #endif
2945 #ifdef CONFIG_SECURITY
2946 	DIR("attr",      S_IRUGO|S_IXUGO, proc_attr_dir_inode_operations, proc_attr_dir_operations),
2947 #endif
2948 #ifdef CONFIG_KALLSYMS
2949 	INF("wchan",     S_IRUGO, proc_pid_wchan),
2950 #endif
2951 #ifdef CONFIG_STACKTRACE
2952 	ONE("stack",      S_IRUGO, proc_pid_stack),
2953 #endif
2954 #ifdef CONFIG_SCHEDSTATS
2955 	INF("schedstat", S_IRUGO, proc_pid_schedstat),
2956 #endif
2957 #ifdef CONFIG_LATENCYTOP
2958 	REG("latency",  S_IRUGO, proc_lstats_operations),
2959 #endif
2960 #ifdef CONFIG_PROC_PID_CPUSET
2961 	REG("cpuset",    S_IRUGO, proc_cpuset_operations),
2962 #endif
2963 #ifdef CONFIG_CGROUPS
2964 	REG("cgroup",  S_IRUGO, proc_cgroup_operations),
2965 #endif
2966 	INF("oom_score", S_IRUGO, proc_oom_score),
2967 	REG("oom_score_adj", S_IRUGO|S_IWUSR, proc_oom_score_adj_operations),
2968 #ifdef CONFIG_AUDITSYSCALL
2969 	REG("loginuid",  S_IWUSR|S_IRUGO, proc_loginuid_operations),
2970 	REG("sessionid",  S_IRUGO, proc_sessionid_operations),
2971 #endif
2972 #ifdef CONFIG_FAULT_INJECTION
2973 	REG("make-it-fail", S_IRUGO|S_IWUSR, proc_fault_inject_operations),
2974 #endif
2975 #ifdef CONFIG_TASK_IO_ACCOUNTING
2976 	INF("io",	S_IRUSR, proc_tid_io_accounting),
2977 #endif
2978 #ifdef CONFIG_HARDWALL
2979 	INF("hardwall",   S_IRUGO, proc_pid_hardwall),
2980 #endif
2981 #ifdef CONFIG_USER_NS
2982 	REG("uid_map",    S_IRUGO|S_IWUSR, proc_uid_map_operations),
2983 	REG("gid_map",    S_IRUGO|S_IWUSR, proc_gid_map_operations),
2984 	REG("projid_map", S_IRUGO|S_IWUSR, proc_projid_map_operations),
2985 #endif
2986 };
2987 
2988 static int proc_tid_base_readdir(struct file * filp,
2989 			     void * dirent, filldir_t filldir)
2990 {
2991 	return proc_pident_readdir(filp,dirent,filldir,
2992 				   tid_base_stuff,ARRAY_SIZE(tid_base_stuff));
2993 }
2994 
2995 static struct dentry *proc_tid_base_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
2996 {
2997 	return proc_pident_lookup(dir, dentry,
2998 				  tid_base_stuff, ARRAY_SIZE(tid_base_stuff));
2999 }
3000 
3001 static const struct file_operations proc_tid_base_operations = {
3002 	.read		= generic_read_dir,
3003 	.readdir	= proc_tid_base_readdir,
3004 	.llseek		= default_llseek,
3005 };
3006 
3007 static const struct inode_operations proc_tid_base_inode_operations = {
3008 	.lookup		= proc_tid_base_lookup,
3009 	.getattr	= pid_getattr,
3010 	.setattr	= proc_setattr,
3011 };
3012 
3013 static struct dentry *proc_task_instantiate(struct inode *dir,
3014 	struct dentry *dentry, struct task_struct *task, const void *ptr)
3015 {
3016 	struct dentry *error = ERR_PTR(-ENOENT);
3017 	struct inode *inode;
3018 	inode = proc_pid_make_inode(dir->i_sb, task);
3019 
3020 	if (!inode)
3021 		goto out;
3022 	inode->i_mode = S_IFDIR|S_IRUGO|S_IXUGO;
3023 	inode->i_op = &proc_tid_base_inode_operations;
3024 	inode->i_fop = &proc_tid_base_operations;
3025 	inode->i_flags|=S_IMMUTABLE;
3026 
3027 	set_nlink(inode, 2 + pid_entry_count_dirs(tid_base_stuff,
3028 						  ARRAY_SIZE(tid_base_stuff)));
3029 
3030 	d_set_d_op(dentry, &pid_dentry_operations);
3031 
3032 	d_add(dentry, inode);
3033 	/* Close the race of the process dying before we return the dentry */
3034 	if (pid_revalidate(dentry, 0))
3035 		error = NULL;
3036 out:
3037 	return error;
3038 }
3039 
3040 static struct dentry *proc_task_lookup(struct inode *dir, struct dentry * dentry, unsigned int flags)
3041 {
3042 	struct dentry *result = ERR_PTR(-ENOENT);
3043 	struct task_struct *task;
3044 	struct task_struct *leader = get_proc_task(dir);
3045 	unsigned tid;
3046 	struct pid_namespace *ns;
3047 
3048 	if (!leader)
3049 		goto out_no_task;
3050 
3051 	tid = name_to_int(dentry);
3052 	if (tid == ~0U)
3053 		goto out;
3054 
3055 	ns = dentry->d_sb->s_fs_info;
3056 	rcu_read_lock();
3057 	task = find_task_by_pid_ns(tid, ns);
3058 	if (task)
3059 		get_task_struct(task);
3060 	rcu_read_unlock();
3061 	if (!task)
3062 		goto out;
3063 	if (!same_thread_group(leader, task))
3064 		goto out_drop_task;
3065 
3066 	result = proc_task_instantiate(dir, dentry, task, NULL);
3067 out_drop_task:
3068 	put_task_struct(task);
3069 out:
3070 	put_task_struct(leader);
3071 out_no_task:
3072 	return result;
3073 }
3074 
3075 /*
3076  * Find the first tid of a thread group to return to user space.
3077  *
3078  * Usually this is just the thread group leader, but if the users
3079  * buffer was too small or there was a seek into the middle of the
3080  * directory we have more work todo.
3081  *
3082  * In the case of a short read we start with find_task_by_pid.
3083  *
3084  * In the case of a seek we start with the leader and walk nr
3085  * threads past it.
3086  */
3087 static struct task_struct *first_tid(struct task_struct *leader,
3088 		int tid, int nr, struct pid_namespace *ns)
3089 {
3090 	struct task_struct *pos;
3091 
3092 	rcu_read_lock();
3093 	/* Attempt to start with the pid of a thread */
3094 	if (tid && (nr > 0)) {
3095 		pos = find_task_by_pid_ns(tid, ns);
3096 		if (pos && (pos->group_leader == leader))
3097 			goto found;
3098 	}
3099 
3100 	/* If nr exceeds the number of threads there is nothing todo */
3101 	pos = NULL;
3102 	if (nr && nr >= get_nr_threads(leader))
3103 		goto out;
3104 
3105 	/* If we haven't found our starting place yet start
3106 	 * with the leader and walk nr threads forward.
3107 	 */
3108 	for (pos = leader; nr > 0; --nr) {
3109 		pos = next_thread(pos);
3110 		if (pos == leader) {
3111 			pos = NULL;
3112 			goto out;
3113 		}
3114 	}
3115 found:
3116 	get_task_struct(pos);
3117 out:
3118 	rcu_read_unlock();
3119 	return pos;
3120 }
3121 
3122 /*
3123  * Find the next thread in the thread list.
3124  * Return NULL if there is an error or no next thread.
3125  *
3126  * The reference to the input task_struct is released.
3127  */
3128 static struct task_struct *next_tid(struct task_struct *start)
3129 {
3130 	struct task_struct *pos = NULL;
3131 	rcu_read_lock();
3132 	if (pid_alive(start)) {
3133 		pos = next_thread(start);
3134 		if (thread_group_leader(pos))
3135 			pos = NULL;
3136 		else
3137 			get_task_struct(pos);
3138 	}
3139 	rcu_read_unlock();
3140 	put_task_struct(start);
3141 	return pos;
3142 }
3143 
3144 static int proc_task_fill_cache(struct file *filp, void *dirent, filldir_t filldir,
3145 	struct task_struct *task, int tid)
3146 {
3147 	char name[PROC_NUMBUF];
3148 	int len = snprintf(name, sizeof(name), "%d", tid);
3149 	return proc_fill_cache(filp, dirent, filldir, name, len,
3150 				proc_task_instantiate, task, NULL);
3151 }
3152 
3153 /* for the /proc/TGID/task/ directories */
3154 static int proc_task_readdir(struct file * filp, void * dirent, filldir_t filldir)
3155 {
3156 	struct dentry *dentry = filp->f_path.dentry;
3157 	struct inode *inode = dentry->d_inode;
3158 	struct task_struct *leader = NULL;
3159 	struct task_struct *task;
3160 	int retval = -ENOENT;
3161 	ino_t ino;
3162 	int tid;
3163 	struct pid_namespace *ns;
3164 
3165 	task = get_proc_task(inode);
3166 	if (!task)
3167 		goto out_no_task;
3168 	rcu_read_lock();
3169 	if (pid_alive(task)) {
3170 		leader = task->group_leader;
3171 		get_task_struct(leader);
3172 	}
3173 	rcu_read_unlock();
3174 	put_task_struct(task);
3175 	if (!leader)
3176 		goto out_no_task;
3177 	retval = 0;
3178 
3179 	switch ((unsigned long)filp->f_pos) {
3180 	case 0:
3181 		ino = inode->i_ino;
3182 		if (filldir(dirent, ".", 1, filp->f_pos, ino, DT_DIR) < 0)
3183 			goto out;
3184 		filp->f_pos++;
3185 		/* fall through */
3186 	case 1:
3187 		ino = parent_ino(dentry);
3188 		if (filldir(dirent, "..", 2, filp->f_pos, ino, DT_DIR) < 0)
3189 			goto out;
3190 		filp->f_pos++;
3191 		/* fall through */
3192 	}
3193 
3194 	/* f_version caches the tgid value that the last readdir call couldn't
3195 	 * return. lseek aka telldir automagically resets f_version to 0.
3196 	 */
3197 	ns = filp->f_dentry->d_sb->s_fs_info;
3198 	tid = (int)filp->f_version;
3199 	filp->f_version = 0;
3200 	for (task = first_tid(leader, tid, filp->f_pos - 2, ns);
3201 	     task;
3202 	     task = next_tid(task), filp->f_pos++) {
3203 		tid = task_pid_nr_ns(task, ns);
3204 		if (proc_task_fill_cache(filp, dirent, filldir, task, tid) < 0) {
3205 			/* returning this tgid failed, save it as the first
3206 			 * pid for the next readir call */
3207 			filp->f_version = (u64)tid;
3208 			put_task_struct(task);
3209 			break;
3210 		}
3211 	}
3212 out:
3213 	put_task_struct(leader);
3214 out_no_task:
3215 	return retval;
3216 }
3217 
3218 static int proc_task_getattr(struct vfsmount *mnt, struct dentry *dentry, struct kstat *stat)
3219 {
3220 	struct inode *inode = dentry->d_inode;
3221 	struct task_struct *p = get_proc_task(inode);
3222 	generic_fillattr(inode, stat);
3223 
3224 	if (p) {
3225 		stat->nlink += get_nr_threads(p);
3226 		put_task_struct(p);
3227 	}
3228 
3229 	return 0;
3230 }
3231 
3232 static const struct inode_operations proc_task_inode_operations = {
3233 	.lookup		= proc_task_lookup,
3234 	.getattr	= proc_task_getattr,
3235 	.setattr	= proc_setattr,
3236 	.permission	= proc_pid_permission,
3237 };
3238 
3239 static const struct file_operations proc_task_operations = {
3240 	.read		= generic_read_dir,
3241 	.readdir	= proc_task_readdir,
3242 	.llseek		= default_llseek,
3243 };
3244