1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * linux/fs/proc/base.c 4 * 5 * Copyright (C) 1991, 1992 Linus Torvalds 6 * 7 * proc base directory handling functions 8 * 9 * 1999, Al Viro. Rewritten. Now it covers the whole per-process part. 10 * Instead of using magical inumbers to determine the kind of object 11 * we allocate and fill in-core inodes upon lookup. They don't even 12 * go into icache. We cache the reference to task_struct upon lookup too. 13 * Eventually it should become a filesystem in its own. We don't use the 14 * rest of procfs anymore. 15 * 16 * 17 * Changelog: 18 * 17-Jan-2005 19 * Allan Bezerra 20 * Bruna Moreira <bruna.moreira@indt.org.br> 21 * Edjard Mota <edjard.mota@indt.org.br> 22 * Ilias Biris <ilias.biris@indt.org.br> 23 * Mauricio Lin <mauricio.lin@indt.org.br> 24 * 25 * Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT 26 * 27 * A new process specific entry (smaps) included in /proc. It shows the 28 * size of rss for each memory area. The maps entry lacks information 29 * about physical memory size (rss) for each mapped file, i.e., 30 * rss information for executables and library files. 31 * This additional information is useful for any tools that need to know 32 * about physical memory consumption for a process specific library. 33 * 34 * Changelog: 35 * 21-Feb-2005 36 * Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT 37 * Pud inclusion in the page table walking. 38 * 39 * ChangeLog: 40 * 10-Mar-2005 41 * 10LE Instituto Nokia de Tecnologia - INdT: 42 * A better way to walks through the page table as suggested by Hugh Dickins. 43 * 44 * Simo Piiroinen <simo.piiroinen@nokia.com>: 45 * Smaps information related to shared, private, clean and dirty pages. 46 * 47 * Paul Mundt <paul.mundt@nokia.com>: 48 * Overall revision about smaps. 49 */ 50 51 #include <linux/uaccess.h> 52 53 #include <linux/errno.h> 54 #include <linux/time.h> 55 #include <linux/proc_fs.h> 56 #include <linux/stat.h> 57 #include <linux/task_io_accounting_ops.h> 58 #include <linux/init.h> 59 #include <linux/capability.h> 60 #include <linux/file.h> 61 #include <linux/fdtable.h> 62 #include <linux/string.h> 63 #include <linux/seq_file.h> 64 #include <linux/namei.h> 65 #include <linux/mnt_namespace.h> 66 #include <linux/mm.h> 67 #include <linux/swap.h> 68 #include <linux/rcupdate.h> 69 #include <linux/kallsyms.h> 70 #include <linux/stacktrace.h> 71 #include <linux/resource.h> 72 #include <linux/module.h> 73 #include <linux/mount.h> 74 #include <linux/security.h> 75 #include <linux/ptrace.h> 76 #include <linux/tracehook.h> 77 #include <linux/printk.h> 78 #include <linux/cache.h> 79 #include <linux/cgroup.h> 80 #include <linux/cpuset.h> 81 #include <linux/audit.h> 82 #include <linux/poll.h> 83 #include <linux/nsproxy.h> 84 #include <linux/oom.h> 85 #include <linux/elf.h> 86 #include <linux/pid_namespace.h> 87 #include <linux/user_namespace.h> 88 #include <linux/fs_struct.h> 89 #include <linux/slab.h> 90 #include <linux/sched/autogroup.h> 91 #include <linux/sched/mm.h> 92 #include <linux/sched/coredump.h> 93 #include <linux/sched/debug.h> 94 #include <linux/sched/stat.h> 95 #include <linux/flex_array.h> 96 #include <linux/posix-timers.h> 97 #include <trace/events/oom.h> 98 #include "internal.h" 99 #include "fd.h" 100 101 #include "../../lib/kstrtox.h" 102 103 /* NOTE: 104 * Implementing inode permission operations in /proc is almost 105 * certainly an error. Permission checks need to happen during 106 * each system call not at open time. The reason is that most of 107 * what we wish to check for permissions in /proc varies at runtime. 108 * 109 * The classic example of a problem is opening file descriptors 110 * in /proc for a task before it execs a suid executable. 111 */ 112 113 static u8 nlink_tid __ro_after_init; 114 static u8 nlink_tgid __ro_after_init; 115 116 struct pid_entry { 117 const char *name; 118 unsigned int len; 119 umode_t mode; 120 const struct inode_operations *iop; 121 const struct file_operations *fop; 122 union proc_op op; 123 }; 124 125 #define NOD(NAME, MODE, IOP, FOP, OP) { \ 126 .name = (NAME), \ 127 .len = sizeof(NAME) - 1, \ 128 .mode = MODE, \ 129 .iop = IOP, \ 130 .fop = FOP, \ 131 .op = OP, \ 132 } 133 134 #define DIR(NAME, MODE, iops, fops) \ 135 NOD(NAME, (S_IFDIR|(MODE)), &iops, &fops, {} ) 136 #define LNK(NAME, get_link) \ 137 NOD(NAME, (S_IFLNK|S_IRWXUGO), \ 138 &proc_pid_link_inode_operations, NULL, \ 139 { .proc_get_link = get_link } ) 140 #define REG(NAME, MODE, fops) \ 141 NOD(NAME, (S_IFREG|(MODE)), NULL, &fops, {}) 142 #define ONE(NAME, MODE, show) \ 143 NOD(NAME, (S_IFREG|(MODE)), \ 144 NULL, &proc_single_file_operations, \ 145 { .proc_show = show } ) 146 147 /* 148 * Count the number of hardlinks for the pid_entry table, excluding the . 149 * and .. links. 150 */ 151 static unsigned int __init pid_entry_nlink(const struct pid_entry *entries, 152 unsigned int n) 153 { 154 unsigned int i; 155 unsigned int count; 156 157 count = 2; 158 for (i = 0; i < n; ++i) { 159 if (S_ISDIR(entries[i].mode)) 160 ++count; 161 } 162 163 return count; 164 } 165 166 static int get_task_root(struct task_struct *task, struct path *root) 167 { 168 int result = -ENOENT; 169 170 task_lock(task); 171 if (task->fs) { 172 get_fs_root(task->fs, root); 173 result = 0; 174 } 175 task_unlock(task); 176 return result; 177 } 178 179 static int proc_cwd_link(struct dentry *dentry, struct path *path) 180 { 181 struct task_struct *task = get_proc_task(d_inode(dentry)); 182 int result = -ENOENT; 183 184 if (task) { 185 task_lock(task); 186 if (task->fs) { 187 get_fs_pwd(task->fs, path); 188 result = 0; 189 } 190 task_unlock(task); 191 put_task_struct(task); 192 } 193 return result; 194 } 195 196 static int proc_root_link(struct dentry *dentry, struct path *path) 197 { 198 struct task_struct *task = get_proc_task(d_inode(dentry)); 199 int result = -ENOENT; 200 201 if (task) { 202 result = get_task_root(task, path); 203 put_task_struct(task); 204 } 205 return result; 206 } 207 208 static ssize_t get_mm_cmdline(struct mm_struct *mm, char __user *buf, 209 size_t count, loff_t *ppos) 210 { 211 unsigned long arg_start, arg_end, env_start, env_end; 212 unsigned long pos, len; 213 char *page; 214 215 /* Check if process spawned far enough to have cmdline. */ 216 if (!mm->env_end) 217 return 0; 218 219 spin_lock(&mm->arg_lock); 220 arg_start = mm->arg_start; 221 arg_end = mm->arg_end; 222 env_start = mm->env_start; 223 env_end = mm->env_end; 224 spin_unlock(&mm->arg_lock); 225 226 if (arg_start >= arg_end) 227 return 0; 228 229 /* 230 * We have traditionally allowed the user to re-write 231 * the argument strings and overflow the end result 232 * into the environment section. But only do that if 233 * the environment area is contiguous to the arguments. 234 */ 235 if (env_start != arg_end || env_start >= env_end) 236 env_start = env_end = arg_end; 237 238 /* .. and limit it to a maximum of one page of slop */ 239 if (env_end >= arg_end + PAGE_SIZE) 240 env_end = arg_end + PAGE_SIZE - 1; 241 242 /* We're not going to care if "*ppos" has high bits set */ 243 pos = arg_start + *ppos; 244 245 /* .. but we do check the result is in the proper range */ 246 if (pos < arg_start || pos >= env_end) 247 return 0; 248 249 /* .. and we never go past env_end */ 250 if (env_end - pos < count) 251 count = env_end - pos; 252 253 page = (char *)__get_free_page(GFP_KERNEL); 254 if (!page) 255 return -ENOMEM; 256 257 len = 0; 258 while (count) { 259 int got; 260 size_t size = min_t(size_t, PAGE_SIZE, count); 261 long offset; 262 263 /* 264 * Are we already starting past the official end? 265 * We always include the last byte that is *supposed* 266 * to be NUL 267 */ 268 offset = (pos >= arg_end) ? pos - arg_end + 1 : 0; 269 270 got = access_remote_vm(mm, pos - offset, page, size + offset, FOLL_ANON); 271 if (got <= offset) 272 break; 273 got -= offset; 274 275 /* Don't walk past a NUL character once you hit arg_end */ 276 if (pos + got >= arg_end) { 277 int n = 0; 278 279 /* 280 * If we started before 'arg_end' but ended up 281 * at or after it, we start the NUL character 282 * check at arg_end-1 (where we expect the normal 283 * EOF to be). 284 * 285 * NOTE! This is smaller than 'got', because 286 * pos + got >= arg_end 287 */ 288 if (pos < arg_end) 289 n = arg_end - pos - 1; 290 291 /* Cut off at first NUL after 'n' */ 292 got = n + strnlen(page+n, offset+got-n); 293 if (got < offset) 294 break; 295 got -= offset; 296 297 /* Include the NUL if it existed */ 298 if (got < size) 299 got++; 300 } 301 302 got -= copy_to_user(buf, page+offset, got); 303 if (unlikely(!got)) { 304 if (!len) 305 len = -EFAULT; 306 break; 307 } 308 pos += got; 309 buf += got; 310 len += got; 311 count -= got; 312 } 313 314 free_page((unsigned long)page); 315 return len; 316 } 317 318 static ssize_t get_task_cmdline(struct task_struct *tsk, char __user *buf, 319 size_t count, loff_t *pos) 320 { 321 struct mm_struct *mm; 322 ssize_t ret; 323 324 mm = get_task_mm(tsk); 325 if (!mm) 326 return 0; 327 328 ret = get_mm_cmdline(mm, buf, count, pos); 329 mmput(mm); 330 return ret; 331 } 332 333 static ssize_t proc_pid_cmdline_read(struct file *file, char __user *buf, 334 size_t count, loff_t *pos) 335 { 336 struct task_struct *tsk; 337 ssize_t ret; 338 339 BUG_ON(*pos < 0); 340 341 tsk = get_proc_task(file_inode(file)); 342 if (!tsk) 343 return -ESRCH; 344 ret = get_task_cmdline(tsk, buf, count, pos); 345 put_task_struct(tsk); 346 if (ret > 0) 347 *pos += ret; 348 return ret; 349 } 350 351 static const struct file_operations proc_pid_cmdline_ops = { 352 .read = proc_pid_cmdline_read, 353 .llseek = generic_file_llseek, 354 }; 355 356 #ifdef CONFIG_KALLSYMS 357 /* 358 * Provides a wchan file via kallsyms in a proper one-value-per-file format. 359 * Returns the resolved symbol. If that fails, simply return the address. 360 */ 361 static int proc_pid_wchan(struct seq_file *m, struct pid_namespace *ns, 362 struct pid *pid, struct task_struct *task) 363 { 364 unsigned long wchan; 365 char symname[KSYM_NAME_LEN]; 366 367 if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS)) 368 goto print0; 369 370 wchan = get_wchan(task); 371 if (wchan && !lookup_symbol_name(wchan, symname)) { 372 seq_puts(m, symname); 373 return 0; 374 } 375 376 print0: 377 seq_putc(m, '0'); 378 return 0; 379 } 380 #endif /* CONFIG_KALLSYMS */ 381 382 static int lock_trace(struct task_struct *task) 383 { 384 int err = mutex_lock_killable(&task->signal->cred_guard_mutex); 385 if (err) 386 return err; 387 if (!ptrace_may_access(task, PTRACE_MODE_ATTACH_FSCREDS)) { 388 mutex_unlock(&task->signal->cred_guard_mutex); 389 return -EPERM; 390 } 391 return 0; 392 } 393 394 static void unlock_trace(struct task_struct *task) 395 { 396 mutex_unlock(&task->signal->cred_guard_mutex); 397 } 398 399 #ifdef CONFIG_STACKTRACE 400 401 #define MAX_STACK_TRACE_DEPTH 64 402 403 static int proc_pid_stack(struct seq_file *m, struct pid_namespace *ns, 404 struct pid *pid, struct task_struct *task) 405 { 406 struct stack_trace trace; 407 unsigned long *entries; 408 int err; 409 410 entries = kmalloc_array(MAX_STACK_TRACE_DEPTH, sizeof(*entries), 411 GFP_KERNEL); 412 if (!entries) 413 return -ENOMEM; 414 415 trace.nr_entries = 0; 416 trace.max_entries = MAX_STACK_TRACE_DEPTH; 417 trace.entries = entries; 418 trace.skip = 0; 419 420 err = lock_trace(task); 421 if (!err) { 422 unsigned int i; 423 424 save_stack_trace_tsk(task, &trace); 425 426 for (i = 0; i < trace.nr_entries; i++) { 427 seq_printf(m, "[<0>] %pB\n", (void *)entries[i]); 428 } 429 unlock_trace(task); 430 } 431 kfree(entries); 432 433 return err; 434 } 435 #endif 436 437 #ifdef CONFIG_SCHED_INFO 438 /* 439 * Provides /proc/PID/schedstat 440 */ 441 static int proc_pid_schedstat(struct seq_file *m, struct pid_namespace *ns, 442 struct pid *pid, struct task_struct *task) 443 { 444 if (unlikely(!sched_info_on())) 445 seq_printf(m, "0 0 0\n"); 446 else 447 seq_printf(m, "%llu %llu %lu\n", 448 (unsigned long long)task->se.sum_exec_runtime, 449 (unsigned long long)task->sched_info.run_delay, 450 task->sched_info.pcount); 451 452 return 0; 453 } 454 #endif 455 456 #ifdef CONFIG_LATENCYTOP 457 static int lstats_show_proc(struct seq_file *m, void *v) 458 { 459 int i; 460 struct inode *inode = m->private; 461 struct task_struct *task = get_proc_task(inode); 462 463 if (!task) 464 return -ESRCH; 465 seq_puts(m, "Latency Top version : v0.1\n"); 466 for (i = 0; i < LT_SAVECOUNT; i++) { 467 struct latency_record *lr = &task->latency_record[i]; 468 if (lr->backtrace[0]) { 469 int q; 470 seq_printf(m, "%i %li %li", 471 lr->count, lr->time, lr->max); 472 for (q = 0; q < LT_BACKTRACEDEPTH; q++) { 473 unsigned long bt = lr->backtrace[q]; 474 if (!bt) 475 break; 476 if (bt == ULONG_MAX) 477 break; 478 seq_printf(m, " %ps", (void *)bt); 479 } 480 seq_putc(m, '\n'); 481 } 482 483 } 484 put_task_struct(task); 485 return 0; 486 } 487 488 static int lstats_open(struct inode *inode, struct file *file) 489 { 490 return single_open(file, lstats_show_proc, inode); 491 } 492 493 static ssize_t lstats_write(struct file *file, const char __user *buf, 494 size_t count, loff_t *offs) 495 { 496 struct task_struct *task = get_proc_task(file_inode(file)); 497 498 if (!task) 499 return -ESRCH; 500 clear_all_latency_tracing(task); 501 put_task_struct(task); 502 503 return count; 504 } 505 506 static const struct file_operations proc_lstats_operations = { 507 .open = lstats_open, 508 .read = seq_read, 509 .write = lstats_write, 510 .llseek = seq_lseek, 511 .release = single_release, 512 }; 513 514 #endif 515 516 static int proc_oom_score(struct seq_file *m, struct pid_namespace *ns, 517 struct pid *pid, struct task_struct *task) 518 { 519 unsigned long totalpages = totalram_pages + total_swap_pages; 520 unsigned long points = 0; 521 522 points = oom_badness(task, NULL, NULL, totalpages) * 523 1000 / totalpages; 524 seq_printf(m, "%lu\n", points); 525 526 return 0; 527 } 528 529 struct limit_names { 530 const char *name; 531 const char *unit; 532 }; 533 534 static const struct limit_names lnames[RLIM_NLIMITS] = { 535 [RLIMIT_CPU] = {"Max cpu time", "seconds"}, 536 [RLIMIT_FSIZE] = {"Max file size", "bytes"}, 537 [RLIMIT_DATA] = {"Max data size", "bytes"}, 538 [RLIMIT_STACK] = {"Max stack size", "bytes"}, 539 [RLIMIT_CORE] = {"Max core file size", "bytes"}, 540 [RLIMIT_RSS] = {"Max resident set", "bytes"}, 541 [RLIMIT_NPROC] = {"Max processes", "processes"}, 542 [RLIMIT_NOFILE] = {"Max open files", "files"}, 543 [RLIMIT_MEMLOCK] = {"Max locked memory", "bytes"}, 544 [RLIMIT_AS] = {"Max address space", "bytes"}, 545 [RLIMIT_LOCKS] = {"Max file locks", "locks"}, 546 [RLIMIT_SIGPENDING] = {"Max pending signals", "signals"}, 547 [RLIMIT_MSGQUEUE] = {"Max msgqueue size", "bytes"}, 548 [RLIMIT_NICE] = {"Max nice priority", NULL}, 549 [RLIMIT_RTPRIO] = {"Max realtime priority", NULL}, 550 [RLIMIT_RTTIME] = {"Max realtime timeout", "us"}, 551 }; 552 553 /* Display limits for a process */ 554 static int proc_pid_limits(struct seq_file *m, struct pid_namespace *ns, 555 struct pid *pid, struct task_struct *task) 556 { 557 unsigned int i; 558 unsigned long flags; 559 560 struct rlimit rlim[RLIM_NLIMITS]; 561 562 if (!lock_task_sighand(task, &flags)) 563 return 0; 564 memcpy(rlim, task->signal->rlim, sizeof(struct rlimit) * RLIM_NLIMITS); 565 unlock_task_sighand(task, &flags); 566 567 /* 568 * print the file header 569 */ 570 seq_printf(m, "%-25s %-20s %-20s %-10s\n", 571 "Limit", "Soft Limit", "Hard Limit", "Units"); 572 573 for (i = 0; i < RLIM_NLIMITS; i++) { 574 if (rlim[i].rlim_cur == RLIM_INFINITY) 575 seq_printf(m, "%-25s %-20s ", 576 lnames[i].name, "unlimited"); 577 else 578 seq_printf(m, "%-25s %-20lu ", 579 lnames[i].name, rlim[i].rlim_cur); 580 581 if (rlim[i].rlim_max == RLIM_INFINITY) 582 seq_printf(m, "%-20s ", "unlimited"); 583 else 584 seq_printf(m, "%-20lu ", rlim[i].rlim_max); 585 586 if (lnames[i].unit) 587 seq_printf(m, "%-10s\n", lnames[i].unit); 588 else 589 seq_putc(m, '\n'); 590 } 591 592 return 0; 593 } 594 595 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK 596 static int proc_pid_syscall(struct seq_file *m, struct pid_namespace *ns, 597 struct pid *pid, struct task_struct *task) 598 { 599 long nr; 600 unsigned long args[6], sp, pc; 601 int res; 602 603 res = lock_trace(task); 604 if (res) 605 return res; 606 607 if (task_current_syscall(task, &nr, args, 6, &sp, &pc)) 608 seq_puts(m, "running\n"); 609 else if (nr < 0) 610 seq_printf(m, "%ld 0x%lx 0x%lx\n", nr, sp, pc); 611 else 612 seq_printf(m, 613 "%ld 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx\n", 614 nr, 615 args[0], args[1], args[2], args[3], args[4], args[5], 616 sp, pc); 617 unlock_trace(task); 618 619 return 0; 620 } 621 #endif /* CONFIG_HAVE_ARCH_TRACEHOOK */ 622 623 /************************************************************************/ 624 /* Here the fs part begins */ 625 /************************************************************************/ 626 627 /* permission checks */ 628 static int proc_fd_access_allowed(struct inode *inode) 629 { 630 struct task_struct *task; 631 int allowed = 0; 632 /* Allow access to a task's file descriptors if it is us or we 633 * may use ptrace attach to the process and find out that 634 * information. 635 */ 636 task = get_proc_task(inode); 637 if (task) { 638 allowed = ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS); 639 put_task_struct(task); 640 } 641 return allowed; 642 } 643 644 int proc_setattr(struct dentry *dentry, struct iattr *attr) 645 { 646 int error; 647 struct inode *inode = d_inode(dentry); 648 649 if (attr->ia_valid & ATTR_MODE) 650 return -EPERM; 651 652 error = setattr_prepare(dentry, attr); 653 if (error) 654 return error; 655 656 setattr_copy(inode, attr); 657 mark_inode_dirty(inode); 658 return 0; 659 } 660 661 /* 662 * May current process learn task's sched/cmdline info (for hide_pid_min=1) 663 * or euid/egid (for hide_pid_min=2)? 664 */ 665 static bool has_pid_permissions(struct pid_namespace *pid, 666 struct task_struct *task, 667 int hide_pid_min) 668 { 669 if (pid->hide_pid < hide_pid_min) 670 return true; 671 if (in_group_p(pid->pid_gid)) 672 return true; 673 return ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS); 674 } 675 676 677 static int proc_pid_permission(struct inode *inode, int mask) 678 { 679 struct pid_namespace *pid = proc_pid_ns(inode); 680 struct task_struct *task; 681 bool has_perms; 682 683 task = get_proc_task(inode); 684 if (!task) 685 return -ESRCH; 686 has_perms = has_pid_permissions(pid, task, HIDEPID_NO_ACCESS); 687 put_task_struct(task); 688 689 if (!has_perms) { 690 if (pid->hide_pid == HIDEPID_INVISIBLE) { 691 /* 692 * Let's make getdents(), stat(), and open() 693 * consistent with each other. If a process 694 * may not stat() a file, it shouldn't be seen 695 * in procfs at all. 696 */ 697 return -ENOENT; 698 } 699 700 return -EPERM; 701 } 702 return generic_permission(inode, mask); 703 } 704 705 706 707 static const struct inode_operations proc_def_inode_operations = { 708 .setattr = proc_setattr, 709 }; 710 711 static int proc_single_show(struct seq_file *m, void *v) 712 { 713 struct inode *inode = m->private; 714 struct pid_namespace *ns = proc_pid_ns(inode); 715 struct pid *pid = proc_pid(inode); 716 struct task_struct *task; 717 int ret; 718 719 task = get_pid_task(pid, PIDTYPE_PID); 720 if (!task) 721 return -ESRCH; 722 723 ret = PROC_I(inode)->op.proc_show(m, ns, pid, task); 724 725 put_task_struct(task); 726 return ret; 727 } 728 729 static int proc_single_open(struct inode *inode, struct file *filp) 730 { 731 return single_open(filp, proc_single_show, inode); 732 } 733 734 static const struct file_operations proc_single_file_operations = { 735 .open = proc_single_open, 736 .read = seq_read, 737 .llseek = seq_lseek, 738 .release = single_release, 739 }; 740 741 742 struct mm_struct *proc_mem_open(struct inode *inode, unsigned int mode) 743 { 744 struct task_struct *task = get_proc_task(inode); 745 struct mm_struct *mm = ERR_PTR(-ESRCH); 746 747 if (task) { 748 mm = mm_access(task, mode | PTRACE_MODE_FSCREDS); 749 put_task_struct(task); 750 751 if (!IS_ERR_OR_NULL(mm)) { 752 /* ensure this mm_struct can't be freed */ 753 mmgrab(mm); 754 /* but do not pin its memory */ 755 mmput(mm); 756 } 757 } 758 759 return mm; 760 } 761 762 static int __mem_open(struct inode *inode, struct file *file, unsigned int mode) 763 { 764 struct mm_struct *mm = proc_mem_open(inode, mode); 765 766 if (IS_ERR(mm)) 767 return PTR_ERR(mm); 768 769 file->private_data = mm; 770 return 0; 771 } 772 773 static int mem_open(struct inode *inode, struct file *file) 774 { 775 int ret = __mem_open(inode, file, PTRACE_MODE_ATTACH); 776 777 /* OK to pass negative loff_t, we can catch out-of-range */ 778 file->f_mode |= FMODE_UNSIGNED_OFFSET; 779 780 return ret; 781 } 782 783 static ssize_t mem_rw(struct file *file, char __user *buf, 784 size_t count, loff_t *ppos, int write) 785 { 786 struct mm_struct *mm = file->private_data; 787 unsigned long addr = *ppos; 788 ssize_t copied; 789 char *page; 790 unsigned int flags; 791 792 if (!mm) 793 return 0; 794 795 page = (char *)__get_free_page(GFP_KERNEL); 796 if (!page) 797 return -ENOMEM; 798 799 copied = 0; 800 if (!mmget_not_zero(mm)) 801 goto free; 802 803 flags = FOLL_FORCE | (write ? FOLL_WRITE : 0); 804 805 while (count > 0) { 806 int this_len = min_t(int, count, PAGE_SIZE); 807 808 if (write && copy_from_user(page, buf, this_len)) { 809 copied = -EFAULT; 810 break; 811 } 812 813 this_len = access_remote_vm(mm, addr, page, this_len, flags); 814 if (!this_len) { 815 if (!copied) 816 copied = -EIO; 817 break; 818 } 819 820 if (!write && copy_to_user(buf, page, this_len)) { 821 copied = -EFAULT; 822 break; 823 } 824 825 buf += this_len; 826 addr += this_len; 827 copied += this_len; 828 count -= this_len; 829 } 830 *ppos = addr; 831 832 mmput(mm); 833 free: 834 free_page((unsigned long) page); 835 return copied; 836 } 837 838 static ssize_t mem_read(struct file *file, char __user *buf, 839 size_t count, loff_t *ppos) 840 { 841 return mem_rw(file, buf, count, ppos, 0); 842 } 843 844 static ssize_t mem_write(struct file *file, const char __user *buf, 845 size_t count, loff_t *ppos) 846 { 847 return mem_rw(file, (char __user*)buf, count, ppos, 1); 848 } 849 850 loff_t mem_lseek(struct file *file, loff_t offset, int orig) 851 { 852 switch (orig) { 853 case 0: 854 file->f_pos = offset; 855 break; 856 case 1: 857 file->f_pos += offset; 858 break; 859 default: 860 return -EINVAL; 861 } 862 force_successful_syscall_return(); 863 return file->f_pos; 864 } 865 866 static int mem_release(struct inode *inode, struct file *file) 867 { 868 struct mm_struct *mm = file->private_data; 869 if (mm) 870 mmdrop(mm); 871 return 0; 872 } 873 874 static const struct file_operations proc_mem_operations = { 875 .llseek = mem_lseek, 876 .read = mem_read, 877 .write = mem_write, 878 .open = mem_open, 879 .release = mem_release, 880 }; 881 882 static int environ_open(struct inode *inode, struct file *file) 883 { 884 return __mem_open(inode, file, PTRACE_MODE_READ); 885 } 886 887 static ssize_t environ_read(struct file *file, char __user *buf, 888 size_t count, loff_t *ppos) 889 { 890 char *page; 891 unsigned long src = *ppos; 892 int ret = 0; 893 struct mm_struct *mm = file->private_data; 894 unsigned long env_start, env_end; 895 896 /* Ensure the process spawned far enough to have an environment. */ 897 if (!mm || !mm->env_end) 898 return 0; 899 900 page = (char *)__get_free_page(GFP_KERNEL); 901 if (!page) 902 return -ENOMEM; 903 904 ret = 0; 905 if (!mmget_not_zero(mm)) 906 goto free; 907 908 spin_lock(&mm->arg_lock); 909 env_start = mm->env_start; 910 env_end = mm->env_end; 911 spin_unlock(&mm->arg_lock); 912 913 while (count > 0) { 914 size_t this_len, max_len; 915 int retval; 916 917 if (src >= (env_end - env_start)) 918 break; 919 920 this_len = env_end - (env_start + src); 921 922 max_len = min_t(size_t, PAGE_SIZE, count); 923 this_len = min(max_len, this_len); 924 925 retval = access_remote_vm(mm, (env_start + src), page, this_len, FOLL_ANON); 926 927 if (retval <= 0) { 928 ret = retval; 929 break; 930 } 931 932 if (copy_to_user(buf, page, retval)) { 933 ret = -EFAULT; 934 break; 935 } 936 937 ret += retval; 938 src += retval; 939 buf += retval; 940 count -= retval; 941 } 942 *ppos = src; 943 mmput(mm); 944 945 free: 946 free_page((unsigned long) page); 947 return ret; 948 } 949 950 static const struct file_operations proc_environ_operations = { 951 .open = environ_open, 952 .read = environ_read, 953 .llseek = generic_file_llseek, 954 .release = mem_release, 955 }; 956 957 static int auxv_open(struct inode *inode, struct file *file) 958 { 959 return __mem_open(inode, file, PTRACE_MODE_READ_FSCREDS); 960 } 961 962 static ssize_t auxv_read(struct file *file, char __user *buf, 963 size_t count, loff_t *ppos) 964 { 965 struct mm_struct *mm = file->private_data; 966 unsigned int nwords = 0; 967 968 if (!mm) 969 return 0; 970 do { 971 nwords += 2; 972 } while (mm->saved_auxv[nwords - 2] != 0); /* AT_NULL */ 973 return simple_read_from_buffer(buf, count, ppos, mm->saved_auxv, 974 nwords * sizeof(mm->saved_auxv[0])); 975 } 976 977 static const struct file_operations proc_auxv_operations = { 978 .open = auxv_open, 979 .read = auxv_read, 980 .llseek = generic_file_llseek, 981 .release = mem_release, 982 }; 983 984 static ssize_t oom_adj_read(struct file *file, char __user *buf, size_t count, 985 loff_t *ppos) 986 { 987 struct task_struct *task = get_proc_task(file_inode(file)); 988 char buffer[PROC_NUMBUF]; 989 int oom_adj = OOM_ADJUST_MIN; 990 size_t len; 991 992 if (!task) 993 return -ESRCH; 994 if (task->signal->oom_score_adj == OOM_SCORE_ADJ_MAX) 995 oom_adj = OOM_ADJUST_MAX; 996 else 997 oom_adj = (task->signal->oom_score_adj * -OOM_DISABLE) / 998 OOM_SCORE_ADJ_MAX; 999 put_task_struct(task); 1000 len = snprintf(buffer, sizeof(buffer), "%d\n", oom_adj); 1001 return simple_read_from_buffer(buf, count, ppos, buffer, len); 1002 } 1003 1004 static int __set_oom_adj(struct file *file, int oom_adj, bool legacy) 1005 { 1006 static DEFINE_MUTEX(oom_adj_mutex); 1007 struct mm_struct *mm = NULL; 1008 struct task_struct *task; 1009 int err = 0; 1010 1011 task = get_proc_task(file_inode(file)); 1012 if (!task) 1013 return -ESRCH; 1014 1015 mutex_lock(&oom_adj_mutex); 1016 if (legacy) { 1017 if (oom_adj < task->signal->oom_score_adj && 1018 !capable(CAP_SYS_RESOURCE)) { 1019 err = -EACCES; 1020 goto err_unlock; 1021 } 1022 /* 1023 * /proc/pid/oom_adj is provided for legacy purposes, ask users to use 1024 * /proc/pid/oom_score_adj instead. 1025 */ 1026 pr_warn_once("%s (%d): /proc/%d/oom_adj is deprecated, please use /proc/%d/oom_score_adj instead.\n", 1027 current->comm, task_pid_nr(current), task_pid_nr(task), 1028 task_pid_nr(task)); 1029 } else { 1030 if ((short)oom_adj < task->signal->oom_score_adj_min && 1031 !capable(CAP_SYS_RESOURCE)) { 1032 err = -EACCES; 1033 goto err_unlock; 1034 } 1035 } 1036 1037 /* 1038 * Make sure we will check other processes sharing the mm if this is 1039 * not vfrok which wants its own oom_score_adj. 1040 * pin the mm so it doesn't go away and get reused after task_unlock 1041 */ 1042 if (!task->vfork_done) { 1043 struct task_struct *p = find_lock_task_mm(task); 1044 1045 if (p) { 1046 if (atomic_read(&p->mm->mm_users) > 1) { 1047 mm = p->mm; 1048 mmgrab(mm); 1049 } 1050 task_unlock(p); 1051 } 1052 } 1053 1054 task->signal->oom_score_adj = oom_adj; 1055 if (!legacy && has_capability_noaudit(current, CAP_SYS_RESOURCE)) 1056 task->signal->oom_score_adj_min = (short)oom_adj; 1057 trace_oom_score_adj_update(task); 1058 1059 if (mm) { 1060 struct task_struct *p; 1061 1062 rcu_read_lock(); 1063 for_each_process(p) { 1064 if (same_thread_group(task, p)) 1065 continue; 1066 1067 /* do not touch kernel threads or the global init */ 1068 if (p->flags & PF_KTHREAD || is_global_init(p)) 1069 continue; 1070 1071 task_lock(p); 1072 if (!p->vfork_done && process_shares_mm(p, mm)) { 1073 pr_info("updating oom_score_adj for %d (%s) from %d to %d because it shares mm with %d (%s). Report if this is unexpected.\n", 1074 task_pid_nr(p), p->comm, 1075 p->signal->oom_score_adj, oom_adj, 1076 task_pid_nr(task), task->comm); 1077 p->signal->oom_score_adj = oom_adj; 1078 if (!legacy && has_capability_noaudit(current, CAP_SYS_RESOURCE)) 1079 p->signal->oom_score_adj_min = (short)oom_adj; 1080 } 1081 task_unlock(p); 1082 } 1083 rcu_read_unlock(); 1084 mmdrop(mm); 1085 } 1086 err_unlock: 1087 mutex_unlock(&oom_adj_mutex); 1088 put_task_struct(task); 1089 return err; 1090 } 1091 1092 /* 1093 * /proc/pid/oom_adj exists solely for backwards compatibility with previous 1094 * kernels. The effective policy is defined by oom_score_adj, which has a 1095 * different scale: oom_adj grew exponentially and oom_score_adj grows linearly. 1096 * Values written to oom_adj are simply mapped linearly to oom_score_adj. 1097 * Processes that become oom disabled via oom_adj will still be oom disabled 1098 * with this implementation. 1099 * 1100 * oom_adj cannot be removed since existing userspace binaries use it. 1101 */ 1102 static ssize_t oom_adj_write(struct file *file, const char __user *buf, 1103 size_t count, loff_t *ppos) 1104 { 1105 char buffer[PROC_NUMBUF]; 1106 int oom_adj; 1107 int err; 1108 1109 memset(buffer, 0, sizeof(buffer)); 1110 if (count > sizeof(buffer) - 1) 1111 count = sizeof(buffer) - 1; 1112 if (copy_from_user(buffer, buf, count)) { 1113 err = -EFAULT; 1114 goto out; 1115 } 1116 1117 err = kstrtoint(strstrip(buffer), 0, &oom_adj); 1118 if (err) 1119 goto out; 1120 if ((oom_adj < OOM_ADJUST_MIN || oom_adj > OOM_ADJUST_MAX) && 1121 oom_adj != OOM_DISABLE) { 1122 err = -EINVAL; 1123 goto out; 1124 } 1125 1126 /* 1127 * Scale /proc/pid/oom_score_adj appropriately ensuring that a maximum 1128 * value is always attainable. 1129 */ 1130 if (oom_adj == OOM_ADJUST_MAX) 1131 oom_adj = OOM_SCORE_ADJ_MAX; 1132 else 1133 oom_adj = (oom_adj * OOM_SCORE_ADJ_MAX) / -OOM_DISABLE; 1134 1135 err = __set_oom_adj(file, oom_adj, true); 1136 out: 1137 return err < 0 ? err : count; 1138 } 1139 1140 static const struct file_operations proc_oom_adj_operations = { 1141 .read = oom_adj_read, 1142 .write = oom_adj_write, 1143 .llseek = generic_file_llseek, 1144 }; 1145 1146 static ssize_t oom_score_adj_read(struct file *file, char __user *buf, 1147 size_t count, loff_t *ppos) 1148 { 1149 struct task_struct *task = get_proc_task(file_inode(file)); 1150 char buffer[PROC_NUMBUF]; 1151 short oom_score_adj = OOM_SCORE_ADJ_MIN; 1152 size_t len; 1153 1154 if (!task) 1155 return -ESRCH; 1156 oom_score_adj = task->signal->oom_score_adj; 1157 put_task_struct(task); 1158 len = snprintf(buffer, sizeof(buffer), "%hd\n", oom_score_adj); 1159 return simple_read_from_buffer(buf, count, ppos, buffer, len); 1160 } 1161 1162 static ssize_t oom_score_adj_write(struct file *file, const char __user *buf, 1163 size_t count, loff_t *ppos) 1164 { 1165 char buffer[PROC_NUMBUF]; 1166 int oom_score_adj; 1167 int err; 1168 1169 memset(buffer, 0, sizeof(buffer)); 1170 if (count > sizeof(buffer) - 1) 1171 count = sizeof(buffer) - 1; 1172 if (copy_from_user(buffer, buf, count)) { 1173 err = -EFAULT; 1174 goto out; 1175 } 1176 1177 err = kstrtoint(strstrip(buffer), 0, &oom_score_adj); 1178 if (err) 1179 goto out; 1180 if (oom_score_adj < OOM_SCORE_ADJ_MIN || 1181 oom_score_adj > OOM_SCORE_ADJ_MAX) { 1182 err = -EINVAL; 1183 goto out; 1184 } 1185 1186 err = __set_oom_adj(file, oom_score_adj, false); 1187 out: 1188 return err < 0 ? err : count; 1189 } 1190 1191 static const struct file_operations proc_oom_score_adj_operations = { 1192 .read = oom_score_adj_read, 1193 .write = oom_score_adj_write, 1194 .llseek = default_llseek, 1195 }; 1196 1197 #ifdef CONFIG_AUDITSYSCALL 1198 #define TMPBUFLEN 11 1199 static ssize_t proc_loginuid_read(struct file * file, char __user * buf, 1200 size_t count, loff_t *ppos) 1201 { 1202 struct inode * inode = file_inode(file); 1203 struct task_struct *task = get_proc_task(inode); 1204 ssize_t length; 1205 char tmpbuf[TMPBUFLEN]; 1206 1207 if (!task) 1208 return -ESRCH; 1209 length = scnprintf(tmpbuf, TMPBUFLEN, "%u", 1210 from_kuid(file->f_cred->user_ns, 1211 audit_get_loginuid(task))); 1212 put_task_struct(task); 1213 return simple_read_from_buffer(buf, count, ppos, tmpbuf, length); 1214 } 1215 1216 static ssize_t proc_loginuid_write(struct file * file, const char __user * buf, 1217 size_t count, loff_t *ppos) 1218 { 1219 struct inode * inode = file_inode(file); 1220 uid_t loginuid; 1221 kuid_t kloginuid; 1222 int rv; 1223 1224 rcu_read_lock(); 1225 if (current != pid_task(proc_pid(inode), PIDTYPE_PID)) { 1226 rcu_read_unlock(); 1227 return -EPERM; 1228 } 1229 rcu_read_unlock(); 1230 1231 if (*ppos != 0) { 1232 /* No partial writes. */ 1233 return -EINVAL; 1234 } 1235 1236 rv = kstrtou32_from_user(buf, count, 10, &loginuid); 1237 if (rv < 0) 1238 return rv; 1239 1240 /* is userspace tring to explicitly UNSET the loginuid? */ 1241 if (loginuid == AUDIT_UID_UNSET) { 1242 kloginuid = INVALID_UID; 1243 } else { 1244 kloginuid = make_kuid(file->f_cred->user_ns, loginuid); 1245 if (!uid_valid(kloginuid)) 1246 return -EINVAL; 1247 } 1248 1249 rv = audit_set_loginuid(kloginuid); 1250 if (rv < 0) 1251 return rv; 1252 return count; 1253 } 1254 1255 static const struct file_operations proc_loginuid_operations = { 1256 .read = proc_loginuid_read, 1257 .write = proc_loginuid_write, 1258 .llseek = generic_file_llseek, 1259 }; 1260 1261 static ssize_t proc_sessionid_read(struct file * file, char __user * buf, 1262 size_t count, loff_t *ppos) 1263 { 1264 struct inode * inode = file_inode(file); 1265 struct task_struct *task = get_proc_task(inode); 1266 ssize_t length; 1267 char tmpbuf[TMPBUFLEN]; 1268 1269 if (!task) 1270 return -ESRCH; 1271 length = scnprintf(tmpbuf, TMPBUFLEN, "%u", 1272 audit_get_sessionid(task)); 1273 put_task_struct(task); 1274 return simple_read_from_buffer(buf, count, ppos, tmpbuf, length); 1275 } 1276 1277 static const struct file_operations proc_sessionid_operations = { 1278 .read = proc_sessionid_read, 1279 .llseek = generic_file_llseek, 1280 }; 1281 #endif 1282 1283 #ifdef CONFIG_FAULT_INJECTION 1284 static ssize_t proc_fault_inject_read(struct file * file, char __user * buf, 1285 size_t count, loff_t *ppos) 1286 { 1287 struct task_struct *task = get_proc_task(file_inode(file)); 1288 char buffer[PROC_NUMBUF]; 1289 size_t len; 1290 int make_it_fail; 1291 1292 if (!task) 1293 return -ESRCH; 1294 make_it_fail = task->make_it_fail; 1295 put_task_struct(task); 1296 1297 len = snprintf(buffer, sizeof(buffer), "%i\n", make_it_fail); 1298 1299 return simple_read_from_buffer(buf, count, ppos, buffer, len); 1300 } 1301 1302 static ssize_t proc_fault_inject_write(struct file * file, 1303 const char __user * buf, size_t count, loff_t *ppos) 1304 { 1305 struct task_struct *task; 1306 char buffer[PROC_NUMBUF]; 1307 int make_it_fail; 1308 int rv; 1309 1310 if (!capable(CAP_SYS_RESOURCE)) 1311 return -EPERM; 1312 memset(buffer, 0, sizeof(buffer)); 1313 if (count > sizeof(buffer) - 1) 1314 count = sizeof(buffer) - 1; 1315 if (copy_from_user(buffer, buf, count)) 1316 return -EFAULT; 1317 rv = kstrtoint(strstrip(buffer), 0, &make_it_fail); 1318 if (rv < 0) 1319 return rv; 1320 if (make_it_fail < 0 || make_it_fail > 1) 1321 return -EINVAL; 1322 1323 task = get_proc_task(file_inode(file)); 1324 if (!task) 1325 return -ESRCH; 1326 task->make_it_fail = make_it_fail; 1327 put_task_struct(task); 1328 1329 return count; 1330 } 1331 1332 static const struct file_operations proc_fault_inject_operations = { 1333 .read = proc_fault_inject_read, 1334 .write = proc_fault_inject_write, 1335 .llseek = generic_file_llseek, 1336 }; 1337 1338 static ssize_t proc_fail_nth_write(struct file *file, const char __user *buf, 1339 size_t count, loff_t *ppos) 1340 { 1341 struct task_struct *task; 1342 int err; 1343 unsigned int n; 1344 1345 err = kstrtouint_from_user(buf, count, 0, &n); 1346 if (err) 1347 return err; 1348 1349 task = get_proc_task(file_inode(file)); 1350 if (!task) 1351 return -ESRCH; 1352 task->fail_nth = n; 1353 put_task_struct(task); 1354 1355 return count; 1356 } 1357 1358 static ssize_t proc_fail_nth_read(struct file *file, char __user *buf, 1359 size_t count, loff_t *ppos) 1360 { 1361 struct task_struct *task; 1362 char numbuf[PROC_NUMBUF]; 1363 ssize_t len; 1364 1365 task = get_proc_task(file_inode(file)); 1366 if (!task) 1367 return -ESRCH; 1368 len = snprintf(numbuf, sizeof(numbuf), "%u\n", task->fail_nth); 1369 put_task_struct(task); 1370 return simple_read_from_buffer(buf, count, ppos, numbuf, len); 1371 } 1372 1373 static const struct file_operations proc_fail_nth_operations = { 1374 .read = proc_fail_nth_read, 1375 .write = proc_fail_nth_write, 1376 }; 1377 #endif 1378 1379 1380 #ifdef CONFIG_SCHED_DEBUG 1381 /* 1382 * Print out various scheduling related per-task fields: 1383 */ 1384 static int sched_show(struct seq_file *m, void *v) 1385 { 1386 struct inode *inode = m->private; 1387 struct pid_namespace *ns = proc_pid_ns(inode); 1388 struct task_struct *p; 1389 1390 p = get_proc_task(inode); 1391 if (!p) 1392 return -ESRCH; 1393 proc_sched_show_task(p, ns, m); 1394 1395 put_task_struct(p); 1396 1397 return 0; 1398 } 1399 1400 static ssize_t 1401 sched_write(struct file *file, const char __user *buf, 1402 size_t count, loff_t *offset) 1403 { 1404 struct inode *inode = file_inode(file); 1405 struct task_struct *p; 1406 1407 p = get_proc_task(inode); 1408 if (!p) 1409 return -ESRCH; 1410 proc_sched_set_task(p); 1411 1412 put_task_struct(p); 1413 1414 return count; 1415 } 1416 1417 static int sched_open(struct inode *inode, struct file *filp) 1418 { 1419 return single_open(filp, sched_show, inode); 1420 } 1421 1422 static const struct file_operations proc_pid_sched_operations = { 1423 .open = sched_open, 1424 .read = seq_read, 1425 .write = sched_write, 1426 .llseek = seq_lseek, 1427 .release = single_release, 1428 }; 1429 1430 #endif 1431 1432 #ifdef CONFIG_SCHED_AUTOGROUP 1433 /* 1434 * Print out autogroup related information: 1435 */ 1436 static int sched_autogroup_show(struct seq_file *m, void *v) 1437 { 1438 struct inode *inode = m->private; 1439 struct task_struct *p; 1440 1441 p = get_proc_task(inode); 1442 if (!p) 1443 return -ESRCH; 1444 proc_sched_autogroup_show_task(p, m); 1445 1446 put_task_struct(p); 1447 1448 return 0; 1449 } 1450 1451 static ssize_t 1452 sched_autogroup_write(struct file *file, const char __user *buf, 1453 size_t count, loff_t *offset) 1454 { 1455 struct inode *inode = file_inode(file); 1456 struct task_struct *p; 1457 char buffer[PROC_NUMBUF]; 1458 int nice; 1459 int err; 1460 1461 memset(buffer, 0, sizeof(buffer)); 1462 if (count > sizeof(buffer) - 1) 1463 count = sizeof(buffer) - 1; 1464 if (copy_from_user(buffer, buf, count)) 1465 return -EFAULT; 1466 1467 err = kstrtoint(strstrip(buffer), 0, &nice); 1468 if (err < 0) 1469 return err; 1470 1471 p = get_proc_task(inode); 1472 if (!p) 1473 return -ESRCH; 1474 1475 err = proc_sched_autogroup_set_nice(p, nice); 1476 if (err) 1477 count = err; 1478 1479 put_task_struct(p); 1480 1481 return count; 1482 } 1483 1484 static int sched_autogroup_open(struct inode *inode, struct file *filp) 1485 { 1486 int ret; 1487 1488 ret = single_open(filp, sched_autogroup_show, NULL); 1489 if (!ret) { 1490 struct seq_file *m = filp->private_data; 1491 1492 m->private = inode; 1493 } 1494 return ret; 1495 } 1496 1497 static const struct file_operations proc_pid_sched_autogroup_operations = { 1498 .open = sched_autogroup_open, 1499 .read = seq_read, 1500 .write = sched_autogroup_write, 1501 .llseek = seq_lseek, 1502 .release = single_release, 1503 }; 1504 1505 #endif /* CONFIG_SCHED_AUTOGROUP */ 1506 1507 static ssize_t comm_write(struct file *file, const char __user *buf, 1508 size_t count, loff_t *offset) 1509 { 1510 struct inode *inode = file_inode(file); 1511 struct task_struct *p; 1512 char buffer[TASK_COMM_LEN]; 1513 const size_t maxlen = sizeof(buffer) - 1; 1514 1515 memset(buffer, 0, sizeof(buffer)); 1516 if (copy_from_user(buffer, buf, count > maxlen ? maxlen : count)) 1517 return -EFAULT; 1518 1519 p = get_proc_task(inode); 1520 if (!p) 1521 return -ESRCH; 1522 1523 if (same_thread_group(current, p)) 1524 set_task_comm(p, buffer); 1525 else 1526 count = -EINVAL; 1527 1528 put_task_struct(p); 1529 1530 return count; 1531 } 1532 1533 static int comm_show(struct seq_file *m, void *v) 1534 { 1535 struct inode *inode = m->private; 1536 struct task_struct *p; 1537 1538 p = get_proc_task(inode); 1539 if (!p) 1540 return -ESRCH; 1541 1542 proc_task_name(m, p, false); 1543 seq_putc(m, '\n'); 1544 1545 put_task_struct(p); 1546 1547 return 0; 1548 } 1549 1550 static int comm_open(struct inode *inode, struct file *filp) 1551 { 1552 return single_open(filp, comm_show, inode); 1553 } 1554 1555 static const struct file_operations proc_pid_set_comm_operations = { 1556 .open = comm_open, 1557 .read = seq_read, 1558 .write = comm_write, 1559 .llseek = seq_lseek, 1560 .release = single_release, 1561 }; 1562 1563 static int proc_exe_link(struct dentry *dentry, struct path *exe_path) 1564 { 1565 struct task_struct *task; 1566 struct file *exe_file; 1567 1568 task = get_proc_task(d_inode(dentry)); 1569 if (!task) 1570 return -ENOENT; 1571 exe_file = get_task_exe_file(task); 1572 put_task_struct(task); 1573 if (exe_file) { 1574 *exe_path = exe_file->f_path; 1575 path_get(&exe_file->f_path); 1576 fput(exe_file); 1577 return 0; 1578 } else 1579 return -ENOENT; 1580 } 1581 1582 static const char *proc_pid_get_link(struct dentry *dentry, 1583 struct inode *inode, 1584 struct delayed_call *done) 1585 { 1586 struct path path; 1587 int error = -EACCES; 1588 1589 if (!dentry) 1590 return ERR_PTR(-ECHILD); 1591 1592 /* Are we allowed to snoop on the tasks file descriptors? */ 1593 if (!proc_fd_access_allowed(inode)) 1594 goto out; 1595 1596 error = PROC_I(inode)->op.proc_get_link(dentry, &path); 1597 if (error) 1598 goto out; 1599 1600 nd_jump_link(&path); 1601 return NULL; 1602 out: 1603 return ERR_PTR(error); 1604 } 1605 1606 static int do_proc_readlink(struct path *path, char __user *buffer, int buflen) 1607 { 1608 char *tmp = (char *)__get_free_page(GFP_KERNEL); 1609 char *pathname; 1610 int len; 1611 1612 if (!tmp) 1613 return -ENOMEM; 1614 1615 pathname = d_path(path, tmp, PAGE_SIZE); 1616 len = PTR_ERR(pathname); 1617 if (IS_ERR(pathname)) 1618 goto out; 1619 len = tmp + PAGE_SIZE - 1 - pathname; 1620 1621 if (len > buflen) 1622 len = buflen; 1623 if (copy_to_user(buffer, pathname, len)) 1624 len = -EFAULT; 1625 out: 1626 free_page((unsigned long)tmp); 1627 return len; 1628 } 1629 1630 static int proc_pid_readlink(struct dentry * dentry, char __user * buffer, int buflen) 1631 { 1632 int error = -EACCES; 1633 struct inode *inode = d_inode(dentry); 1634 struct path path; 1635 1636 /* Are we allowed to snoop on the tasks file descriptors? */ 1637 if (!proc_fd_access_allowed(inode)) 1638 goto out; 1639 1640 error = PROC_I(inode)->op.proc_get_link(dentry, &path); 1641 if (error) 1642 goto out; 1643 1644 error = do_proc_readlink(&path, buffer, buflen); 1645 path_put(&path); 1646 out: 1647 return error; 1648 } 1649 1650 const struct inode_operations proc_pid_link_inode_operations = { 1651 .readlink = proc_pid_readlink, 1652 .get_link = proc_pid_get_link, 1653 .setattr = proc_setattr, 1654 }; 1655 1656 1657 /* building an inode */ 1658 1659 void task_dump_owner(struct task_struct *task, umode_t mode, 1660 kuid_t *ruid, kgid_t *rgid) 1661 { 1662 /* Depending on the state of dumpable compute who should own a 1663 * proc file for a task. 1664 */ 1665 const struct cred *cred; 1666 kuid_t uid; 1667 kgid_t gid; 1668 1669 if (unlikely(task->flags & PF_KTHREAD)) { 1670 *ruid = GLOBAL_ROOT_UID; 1671 *rgid = GLOBAL_ROOT_GID; 1672 return; 1673 } 1674 1675 /* Default to the tasks effective ownership */ 1676 rcu_read_lock(); 1677 cred = __task_cred(task); 1678 uid = cred->euid; 1679 gid = cred->egid; 1680 rcu_read_unlock(); 1681 1682 /* 1683 * Before the /proc/pid/status file was created the only way to read 1684 * the effective uid of a /process was to stat /proc/pid. Reading 1685 * /proc/pid/status is slow enough that procps and other packages 1686 * kept stating /proc/pid. To keep the rules in /proc simple I have 1687 * made this apply to all per process world readable and executable 1688 * directories. 1689 */ 1690 if (mode != (S_IFDIR|S_IRUGO|S_IXUGO)) { 1691 struct mm_struct *mm; 1692 task_lock(task); 1693 mm = task->mm; 1694 /* Make non-dumpable tasks owned by some root */ 1695 if (mm) { 1696 if (get_dumpable(mm) != SUID_DUMP_USER) { 1697 struct user_namespace *user_ns = mm->user_ns; 1698 1699 uid = make_kuid(user_ns, 0); 1700 if (!uid_valid(uid)) 1701 uid = GLOBAL_ROOT_UID; 1702 1703 gid = make_kgid(user_ns, 0); 1704 if (!gid_valid(gid)) 1705 gid = GLOBAL_ROOT_GID; 1706 } 1707 } else { 1708 uid = GLOBAL_ROOT_UID; 1709 gid = GLOBAL_ROOT_GID; 1710 } 1711 task_unlock(task); 1712 } 1713 *ruid = uid; 1714 *rgid = gid; 1715 } 1716 1717 struct inode *proc_pid_make_inode(struct super_block * sb, 1718 struct task_struct *task, umode_t mode) 1719 { 1720 struct inode * inode; 1721 struct proc_inode *ei; 1722 1723 /* We need a new inode */ 1724 1725 inode = new_inode(sb); 1726 if (!inode) 1727 goto out; 1728 1729 /* Common stuff */ 1730 ei = PROC_I(inode); 1731 inode->i_mode = mode; 1732 inode->i_ino = get_next_ino(); 1733 inode->i_mtime = inode->i_atime = inode->i_ctime = current_time(inode); 1734 inode->i_op = &proc_def_inode_operations; 1735 1736 /* 1737 * grab the reference to task. 1738 */ 1739 ei->pid = get_task_pid(task, PIDTYPE_PID); 1740 if (!ei->pid) 1741 goto out_unlock; 1742 1743 task_dump_owner(task, 0, &inode->i_uid, &inode->i_gid); 1744 security_task_to_inode(task, inode); 1745 1746 out: 1747 return inode; 1748 1749 out_unlock: 1750 iput(inode); 1751 return NULL; 1752 } 1753 1754 int pid_getattr(const struct path *path, struct kstat *stat, 1755 u32 request_mask, unsigned int query_flags) 1756 { 1757 struct inode *inode = d_inode(path->dentry); 1758 struct pid_namespace *pid = proc_pid_ns(inode); 1759 struct task_struct *task; 1760 1761 generic_fillattr(inode, stat); 1762 1763 stat->uid = GLOBAL_ROOT_UID; 1764 stat->gid = GLOBAL_ROOT_GID; 1765 rcu_read_lock(); 1766 task = pid_task(proc_pid(inode), PIDTYPE_PID); 1767 if (task) { 1768 if (!has_pid_permissions(pid, task, HIDEPID_INVISIBLE)) { 1769 rcu_read_unlock(); 1770 /* 1771 * This doesn't prevent learning whether PID exists, 1772 * it only makes getattr() consistent with readdir(). 1773 */ 1774 return -ENOENT; 1775 } 1776 task_dump_owner(task, inode->i_mode, &stat->uid, &stat->gid); 1777 } 1778 rcu_read_unlock(); 1779 return 0; 1780 } 1781 1782 /* dentry stuff */ 1783 1784 /* 1785 * Set <pid>/... inode ownership (can change due to setuid(), etc.) 1786 */ 1787 void pid_update_inode(struct task_struct *task, struct inode *inode) 1788 { 1789 task_dump_owner(task, inode->i_mode, &inode->i_uid, &inode->i_gid); 1790 1791 inode->i_mode &= ~(S_ISUID | S_ISGID); 1792 security_task_to_inode(task, inode); 1793 } 1794 1795 /* 1796 * Rewrite the inode's ownerships here because the owning task may have 1797 * performed a setuid(), etc. 1798 * 1799 */ 1800 static int pid_revalidate(struct dentry *dentry, unsigned int flags) 1801 { 1802 struct inode *inode; 1803 struct task_struct *task; 1804 1805 if (flags & LOOKUP_RCU) 1806 return -ECHILD; 1807 1808 inode = d_inode(dentry); 1809 task = get_proc_task(inode); 1810 1811 if (task) { 1812 pid_update_inode(task, inode); 1813 put_task_struct(task); 1814 return 1; 1815 } 1816 return 0; 1817 } 1818 1819 static inline bool proc_inode_is_dead(struct inode *inode) 1820 { 1821 return !proc_pid(inode)->tasks[PIDTYPE_PID].first; 1822 } 1823 1824 int pid_delete_dentry(const struct dentry *dentry) 1825 { 1826 /* Is the task we represent dead? 1827 * If so, then don't put the dentry on the lru list, 1828 * kill it immediately. 1829 */ 1830 return proc_inode_is_dead(d_inode(dentry)); 1831 } 1832 1833 const struct dentry_operations pid_dentry_operations = 1834 { 1835 .d_revalidate = pid_revalidate, 1836 .d_delete = pid_delete_dentry, 1837 }; 1838 1839 /* Lookups */ 1840 1841 /* 1842 * Fill a directory entry. 1843 * 1844 * If possible create the dcache entry and derive our inode number and 1845 * file type from dcache entry. 1846 * 1847 * Since all of the proc inode numbers are dynamically generated, the inode 1848 * numbers do not exist until the inode is cache. This means creating the 1849 * the dcache entry in readdir is necessary to keep the inode numbers 1850 * reported by readdir in sync with the inode numbers reported 1851 * by stat. 1852 */ 1853 bool proc_fill_cache(struct file *file, struct dir_context *ctx, 1854 const char *name, unsigned int len, 1855 instantiate_t instantiate, struct task_struct *task, const void *ptr) 1856 { 1857 struct dentry *child, *dir = file->f_path.dentry; 1858 struct qstr qname = QSTR_INIT(name, len); 1859 struct inode *inode; 1860 unsigned type = DT_UNKNOWN; 1861 ino_t ino = 1; 1862 1863 child = d_hash_and_lookup(dir, &qname); 1864 if (!child) { 1865 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq); 1866 child = d_alloc_parallel(dir, &qname, &wq); 1867 if (IS_ERR(child)) 1868 goto end_instantiate; 1869 if (d_in_lookup(child)) { 1870 struct dentry *res; 1871 res = instantiate(child, task, ptr); 1872 d_lookup_done(child); 1873 if (unlikely(res)) { 1874 dput(child); 1875 child = res; 1876 if (IS_ERR(child)) 1877 goto end_instantiate; 1878 } 1879 } 1880 } 1881 inode = d_inode(child); 1882 ino = inode->i_ino; 1883 type = inode->i_mode >> 12; 1884 dput(child); 1885 end_instantiate: 1886 return dir_emit(ctx, name, len, ino, type); 1887 } 1888 1889 /* 1890 * dname_to_vma_addr - maps a dentry name into two unsigned longs 1891 * which represent vma start and end addresses. 1892 */ 1893 static int dname_to_vma_addr(struct dentry *dentry, 1894 unsigned long *start, unsigned long *end) 1895 { 1896 const char *str = dentry->d_name.name; 1897 unsigned long long sval, eval; 1898 unsigned int len; 1899 1900 if (str[0] == '0' && str[1] != '-') 1901 return -EINVAL; 1902 len = _parse_integer(str, 16, &sval); 1903 if (len & KSTRTOX_OVERFLOW) 1904 return -EINVAL; 1905 if (sval != (unsigned long)sval) 1906 return -EINVAL; 1907 str += len; 1908 1909 if (*str != '-') 1910 return -EINVAL; 1911 str++; 1912 1913 if (str[0] == '0' && str[1]) 1914 return -EINVAL; 1915 len = _parse_integer(str, 16, &eval); 1916 if (len & KSTRTOX_OVERFLOW) 1917 return -EINVAL; 1918 if (eval != (unsigned long)eval) 1919 return -EINVAL; 1920 str += len; 1921 1922 if (*str != '\0') 1923 return -EINVAL; 1924 1925 *start = sval; 1926 *end = eval; 1927 1928 return 0; 1929 } 1930 1931 static int map_files_d_revalidate(struct dentry *dentry, unsigned int flags) 1932 { 1933 unsigned long vm_start, vm_end; 1934 bool exact_vma_exists = false; 1935 struct mm_struct *mm = NULL; 1936 struct task_struct *task; 1937 struct inode *inode; 1938 int status = 0; 1939 1940 if (flags & LOOKUP_RCU) 1941 return -ECHILD; 1942 1943 inode = d_inode(dentry); 1944 task = get_proc_task(inode); 1945 if (!task) 1946 goto out_notask; 1947 1948 mm = mm_access(task, PTRACE_MODE_READ_FSCREDS); 1949 if (IS_ERR_OR_NULL(mm)) 1950 goto out; 1951 1952 if (!dname_to_vma_addr(dentry, &vm_start, &vm_end)) { 1953 down_read(&mm->mmap_sem); 1954 exact_vma_exists = !!find_exact_vma(mm, vm_start, vm_end); 1955 up_read(&mm->mmap_sem); 1956 } 1957 1958 mmput(mm); 1959 1960 if (exact_vma_exists) { 1961 task_dump_owner(task, 0, &inode->i_uid, &inode->i_gid); 1962 1963 security_task_to_inode(task, inode); 1964 status = 1; 1965 } 1966 1967 out: 1968 put_task_struct(task); 1969 1970 out_notask: 1971 return status; 1972 } 1973 1974 static const struct dentry_operations tid_map_files_dentry_operations = { 1975 .d_revalidate = map_files_d_revalidate, 1976 .d_delete = pid_delete_dentry, 1977 }; 1978 1979 static int map_files_get_link(struct dentry *dentry, struct path *path) 1980 { 1981 unsigned long vm_start, vm_end; 1982 struct vm_area_struct *vma; 1983 struct task_struct *task; 1984 struct mm_struct *mm; 1985 int rc; 1986 1987 rc = -ENOENT; 1988 task = get_proc_task(d_inode(dentry)); 1989 if (!task) 1990 goto out; 1991 1992 mm = get_task_mm(task); 1993 put_task_struct(task); 1994 if (!mm) 1995 goto out; 1996 1997 rc = dname_to_vma_addr(dentry, &vm_start, &vm_end); 1998 if (rc) 1999 goto out_mmput; 2000 2001 rc = -ENOENT; 2002 down_read(&mm->mmap_sem); 2003 vma = find_exact_vma(mm, vm_start, vm_end); 2004 if (vma && vma->vm_file) { 2005 *path = vma->vm_file->f_path; 2006 path_get(path); 2007 rc = 0; 2008 } 2009 up_read(&mm->mmap_sem); 2010 2011 out_mmput: 2012 mmput(mm); 2013 out: 2014 return rc; 2015 } 2016 2017 struct map_files_info { 2018 unsigned long start; 2019 unsigned long end; 2020 fmode_t mode; 2021 }; 2022 2023 /* 2024 * Only allow CAP_SYS_ADMIN to follow the links, due to concerns about how the 2025 * symlinks may be used to bypass permissions on ancestor directories in the 2026 * path to the file in question. 2027 */ 2028 static const char * 2029 proc_map_files_get_link(struct dentry *dentry, 2030 struct inode *inode, 2031 struct delayed_call *done) 2032 { 2033 if (!capable(CAP_SYS_ADMIN)) 2034 return ERR_PTR(-EPERM); 2035 2036 return proc_pid_get_link(dentry, inode, done); 2037 } 2038 2039 /* 2040 * Identical to proc_pid_link_inode_operations except for get_link() 2041 */ 2042 static const struct inode_operations proc_map_files_link_inode_operations = { 2043 .readlink = proc_pid_readlink, 2044 .get_link = proc_map_files_get_link, 2045 .setattr = proc_setattr, 2046 }; 2047 2048 static struct dentry * 2049 proc_map_files_instantiate(struct dentry *dentry, 2050 struct task_struct *task, const void *ptr) 2051 { 2052 fmode_t mode = (fmode_t)(unsigned long)ptr; 2053 struct proc_inode *ei; 2054 struct inode *inode; 2055 2056 inode = proc_pid_make_inode(dentry->d_sb, task, S_IFLNK | 2057 ((mode & FMODE_READ ) ? S_IRUSR : 0) | 2058 ((mode & FMODE_WRITE) ? S_IWUSR : 0)); 2059 if (!inode) 2060 return ERR_PTR(-ENOENT); 2061 2062 ei = PROC_I(inode); 2063 ei->op.proc_get_link = map_files_get_link; 2064 2065 inode->i_op = &proc_map_files_link_inode_operations; 2066 inode->i_size = 64; 2067 2068 d_set_d_op(dentry, &tid_map_files_dentry_operations); 2069 return d_splice_alias(inode, dentry); 2070 } 2071 2072 static struct dentry *proc_map_files_lookup(struct inode *dir, 2073 struct dentry *dentry, unsigned int flags) 2074 { 2075 unsigned long vm_start, vm_end; 2076 struct vm_area_struct *vma; 2077 struct task_struct *task; 2078 struct dentry *result; 2079 struct mm_struct *mm; 2080 2081 result = ERR_PTR(-ENOENT); 2082 task = get_proc_task(dir); 2083 if (!task) 2084 goto out; 2085 2086 result = ERR_PTR(-EACCES); 2087 if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS)) 2088 goto out_put_task; 2089 2090 result = ERR_PTR(-ENOENT); 2091 if (dname_to_vma_addr(dentry, &vm_start, &vm_end)) 2092 goto out_put_task; 2093 2094 mm = get_task_mm(task); 2095 if (!mm) 2096 goto out_put_task; 2097 2098 down_read(&mm->mmap_sem); 2099 vma = find_exact_vma(mm, vm_start, vm_end); 2100 if (!vma) 2101 goto out_no_vma; 2102 2103 if (vma->vm_file) 2104 result = proc_map_files_instantiate(dentry, task, 2105 (void *)(unsigned long)vma->vm_file->f_mode); 2106 2107 out_no_vma: 2108 up_read(&mm->mmap_sem); 2109 mmput(mm); 2110 out_put_task: 2111 put_task_struct(task); 2112 out: 2113 return result; 2114 } 2115 2116 static const struct inode_operations proc_map_files_inode_operations = { 2117 .lookup = proc_map_files_lookup, 2118 .permission = proc_fd_permission, 2119 .setattr = proc_setattr, 2120 }; 2121 2122 static int 2123 proc_map_files_readdir(struct file *file, struct dir_context *ctx) 2124 { 2125 struct vm_area_struct *vma; 2126 struct task_struct *task; 2127 struct mm_struct *mm; 2128 unsigned long nr_files, pos, i; 2129 struct flex_array *fa = NULL; 2130 struct map_files_info info; 2131 struct map_files_info *p; 2132 int ret; 2133 2134 ret = -ENOENT; 2135 task = get_proc_task(file_inode(file)); 2136 if (!task) 2137 goto out; 2138 2139 ret = -EACCES; 2140 if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS)) 2141 goto out_put_task; 2142 2143 ret = 0; 2144 if (!dir_emit_dots(file, ctx)) 2145 goto out_put_task; 2146 2147 mm = get_task_mm(task); 2148 if (!mm) 2149 goto out_put_task; 2150 down_read(&mm->mmap_sem); 2151 2152 nr_files = 0; 2153 2154 /* 2155 * We need two passes here: 2156 * 2157 * 1) Collect vmas of mapped files with mmap_sem taken 2158 * 2) Release mmap_sem and instantiate entries 2159 * 2160 * otherwise we get lockdep complained, since filldir() 2161 * routine might require mmap_sem taken in might_fault(). 2162 */ 2163 2164 for (vma = mm->mmap, pos = 2; vma; vma = vma->vm_next) { 2165 if (vma->vm_file && ++pos > ctx->pos) 2166 nr_files++; 2167 } 2168 2169 if (nr_files) { 2170 fa = flex_array_alloc(sizeof(info), nr_files, 2171 GFP_KERNEL); 2172 if (!fa || flex_array_prealloc(fa, 0, nr_files, 2173 GFP_KERNEL)) { 2174 ret = -ENOMEM; 2175 if (fa) 2176 flex_array_free(fa); 2177 up_read(&mm->mmap_sem); 2178 mmput(mm); 2179 goto out_put_task; 2180 } 2181 for (i = 0, vma = mm->mmap, pos = 2; vma; 2182 vma = vma->vm_next) { 2183 if (!vma->vm_file) 2184 continue; 2185 if (++pos <= ctx->pos) 2186 continue; 2187 2188 info.start = vma->vm_start; 2189 info.end = vma->vm_end; 2190 info.mode = vma->vm_file->f_mode; 2191 if (flex_array_put(fa, i++, &info, GFP_KERNEL)) 2192 BUG(); 2193 } 2194 } 2195 up_read(&mm->mmap_sem); 2196 mmput(mm); 2197 2198 for (i = 0; i < nr_files; i++) { 2199 char buf[4 * sizeof(long) + 2]; /* max: %lx-%lx\0 */ 2200 unsigned int len; 2201 2202 p = flex_array_get(fa, i); 2203 len = snprintf(buf, sizeof(buf), "%lx-%lx", p->start, p->end); 2204 if (!proc_fill_cache(file, ctx, 2205 buf, len, 2206 proc_map_files_instantiate, 2207 task, 2208 (void *)(unsigned long)p->mode)) 2209 break; 2210 ctx->pos++; 2211 } 2212 if (fa) 2213 flex_array_free(fa); 2214 2215 out_put_task: 2216 put_task_struct(task); 2217 out: 2218 return ret; 2219 } 2220 2221 static const struct file_operations proc_map_files_operations = { 2222 .read = generic_read_dir, 2223 .iterate_shared = proc_map_files_readdir, 2224 .llseek = generic_file_llseek, 2225 }; 2226 2227 #if defined(CONFIG_CHECKPOINT_RESTORE) && defined(CONFIG_POSIX_TIMERS) 2228 struct timers_private { 2229 struct pid *pid; 2230 struct task_struct *task; 2231 struct sighand_struct *sighand; 2232 struct pid_namespace *ns; 2233 unsigned long flags; 2234 }; 2235 2236 static void *timers_start(struct seq_file *m, loff_t *pos) 2237 { 2238 struct timers_private *tp = m->private; 2239 2240 tp->task = get_pid_task(tp->pid, PIDTYPE_PID); 2241 if (!tp->task) 2242 return ERR_PTR(-ESRCH); 2243 2244 tp->sighand = lock_task_sighand(tp->task, &tp->flags); 2245 if (!tp->sighand) 2246 return ERR_PTR(-ESRCH); 2247 2248 return seq_list_start(&tp->task->signal->posix_timers, *pos); 2249 } 2250 2251 static void *timers_next(struct seq_file *m, void *v, loff_t *pos) 2252 { 2253 struct timers_private *tp = m->private; 2254 return seq_list_next(v, &tp->task->signal->posix_timers, pos); 2255 } 2256 2257 static void timers_stop(struct seq_file *m, void *v) 2258 { 2259 struct timers_private *tp = m->private; 2260 2261 if (tp->sighand) { 2262 unlock_task_sighand(tp->task, &tp->flags); 2263 tp->sighand = NULL; 2264 } 2265 2266 if (tp->task) { 2267 put_task_struct(tp->task); 2268 tp->task = NULL; 2269 } 2270 } 2271 2272 static int show_timer(struct seq_file *m, void *v) 2273 { 2274 struct k_itimer *timer; 2275 struct timers_private *tp = m->private; 2276 int notify; 2277 static const char * const nstr[] = { 2278 [SIGEV_SIGNAL] = "signal", 2279 [SIGEV_NONE] = "none", 2280 [SIGEV_THREAD] = "thread", 2281 }; 2282 2283 timer = list_entry((struct list_head *)v, struct k_itimer, list); 2284 notify = timer->it_sigev_notify; 2285 2286 seq_printf(m, "ID: %d\n", timer->it_id); 2287 seq_printf(m, "signal: %d/%px\n", 2288 timer->sigq->info.si_signo, 2289 timer->sigq->info.si_value.sival_ptr); 2290 seq_printf(m, "notify: %s/%s.%d\n", 2291 nstr[notify & ~SIGEV_THREAD_ID], 2292 (notify & SIGEV_THREAD_ID) ? "tid" : "pid", 2293 pid_nr_ns(timer->it_pid, tp->ns)); 2294 seq_printf(m, "ClockID: %d\n", timer->it_clock); 2295 2296 return 0; 2297 } 2298 2299 static const struct seq_operations proc_timers_seq_ops = { 2300 .start = timers_start, 2301 .next = timers_next, 2302 .stop = timers_stop, 2303 .show = show_timer, 2304 }; 2305 2306 static int proc_timers_open(struct inode *inode, struct file *file) 2307 { 2308 struct timers_private *tp; 2309 2310 tp = __seq_open_private(file, &proc_timers_seq_ops, 2311 sizeof(struct timers_private)); 2312 if (!tp) 2313 return -ENOMEM; 2314 2315 tp->pid = proc_pid(inode); 2316 tp->ns = proc_pid_ns(inode); 2317 return 0; 2318 } 2319 2320 static const struct file_operations proc_timers_operations = { 2321 .open = proc_timers_open, 2322 .read = seq_read, 2323 .llseek = seq_lseek, 2324 .release = seq_release_private, 2325 }; 2326 #endif 2327 2328 static ssize_t timerslack_ns_write(struct file *file, const char __user *buf, 2329 size_t count, loff_t *offset) 2330 { 2331 struct inode *inode = file_inode(file); 2332 struct task_struct *p; 2333 u64 slack_ns; 2334 int err; 2335 2336 err = kstrtoull_from_user(buf, count, 10, &slack_ns); 2337 if (err < 0) 2338 return err; 2339 2340 p = get_proc_task(inode); 2341 if (!p) 2342 return -ESRCH; 2343 2344 if (p != current) { 2345 if (!capable(CAP_SYS_NICE)) { 2346 count = -EPERM; 2347 goto out; 2348 } 2349 2350 err = security_task_setscheduler(p); 2351 if (err) { 2352 count = err; 2353 goto out; 2354 } 2355 } 2356 2357 task_lock(p); 2358 if (slack_ns == 0) 2359 p->timer_slack_ns = p->default_timer_slack_ns; 2360 else 2361 p->timer_slack_ns = slack_ns; 2362 task_unlock(p); 2363 2364 out: 2365 put_task_struct(p); 2366 2367 return count; 2368 } 2369 2370 static int timerslack_ns_show(struct seq_file *m, void *v) 2371 { 2372 struct inode *inode = m->private; 2373 struct task_struct *p; 2374 int err = 0; 2375 2376 p = get_proc_task(inode); 2377 if (!p) 2378 return -ESRCH; 2379 2380 if (p != current) { 2381 2382 if (!capable(CAP_SYS_NICE)) { 2383 err = -EPERM; 2384 goto out; 2385 } 2386 err = security_task_getscheduler(p); 2387 if (err) 2388 goto out; 2389 } 2390 2391 task_lock(p); 2392 seq_printf(m, "%llu\n", p->timer_slack_ns); 2393 task_unlock(p); 2394 2395 out: 2396 put_task_struct(p); 2397 2398 return err; 2399 } 2400 2401 static int timerslack_ns_open(struct inode *inode, struct file *filp) 2402 { 2403 return single_open(filp, timerslack_ns_show, inode); 2404 } 2405 2406 static const struct file_operations proc_pid_set_timerslack_ns_operations = { 2407 .open = timerslack_ns_open, 2408 .read = seq_read, 2409 .write = timerslack_ns_write, 2410 .llseek = seq_lseek, 2411 .release = single_release, 2412 }; 2413 2414 static struct dentry *proc_pident_instantiate(struct dentry *dentry, 2415 struct task_struct *task, const void *ptr) 2416 { 2417 const struct pid_entry *p = ptr; 2418 struct inode *inode; 2419 struct proc_inode *ei; 2420 2421 inode = proc_pid_make_inode(dentry->d_sb, task, p->mode); 2422 if (!inode) 2423 return ERR_PTR(-ENOENT); 2424 2425 ei = PROC_I(inode); 2426 if (S_ISDIR(inode->i_mode)) 2427 set_nlink(inode, 2); /* Use getattr to fix if necessary */ 2428 if (p->iop) 2429 inode->i_op = p->iop; 2430 if (p->fop) 2431 inode->i_fop = p->fop; 2432 ei->op = p->op; 2433 pid_update_inode(task, inode); 2434 d_set_d_op(dentry, &pid_dentry_operations); 2435 return d_splice_alias(inode, dentry); 2436 } 2437 2438 static struct dentry *proc_pident_lookup(struct inode *dir, 2439 struct dentry *dentry, 2440 const struct pid_entry *ents, 2441 unsigned int nents) 2442 { 2443 struct task_struct *task = get_proc_task(dir); 2444 const struct pid_entry *p, *last; 2445 struct dentry *res = ERR_PTR(-ENOENT); 2446 2447 if (!task) 2448 goto out_no_task; 2449 2450 /* 2451 * Yes, it does not scale. And it should not. Don't add 2452 * new entries into /proc/<tgid>/ without very good reasons. 2453 */ 2454 last = &ents[nents]; 2455 for (p = ents; p < last; p++) { 2456 if (p->len != dentry->d_name.len) 2457 continue; 2458 if (!memcmp(dentry->d_name.name, p->name, p->len)) { 2459 res = proc_pident_instantiate(dentry, task, p); 2460 break; 2461 } 2462 } 2463 put_task_struct(task); 2464 out_no_task: 2465 return res; 2466 } 2467 2468 static int proc_pident_readdir(struct file *file, struct dir_context *ctx, 2469 const struct pid_entry *ents, unsigned int nents) 2470 { 2471 struct task_struct *task = get_proc_task(file_inode(file)); 2472 const struct pid_entry *p; 2473 2474 if (!task) 2475 return -ENOENT; 2476 2477 if (!dir_emit_dots(file, ctx)) 2478 goto out; 2479 2480 if (ctx->pos >= nents + 2) 2481 goto out; 2482 2483 for (p = ents + (ctx->pos - 2); p < ents + nents; p++) { 2484 if (!proc_fill_cache(file, ctx, p->name, p->len, 2485 proc_pident_instantiate, task, p)) 2486 break; 2487 ctx->pos++; 2488 } 2489 out: 2490 put_task_struct(task); 2491 return 0; 2492 } 2493 2494 #ifdef CONFIG_SECURITY 2495 static ssize_t proc_pid_attr_read(struct file * file, char __user * buf, 2496 size_t count, loff_t *ppos) 2497 { 2498 struct inode * inode = file_inode(file); 2499 char *p = NULL; 2500 ssize_t length; 2501 struct task_struct *task = get_proc_task(inode); 2502 2503 if (!task) 2504 return -ESRCH; 2505 2506 length = security_getprocattr(task, 2507 (char*)file->f_path.dentry->d_name.name, 2508 &p); 2509 put_task_struct(task); 2510 if (length > 0) 2511 length = simple_read_from_buffer(buf, count, ppos, p, length); 2512 kfree(p); 2513 return length; 2514 } 2515 2516 static ssize_t proc_pid_attr_write(struct file * file, const char __user * buf, 2517 size_t count, loff_t *ppos) 2518 { 2519 struct inode * inode = file_inode(file); 2520 struct task_struct *task; 2521 void *page; 2522 int rv; 2523 2524 rcu_read_lock(); 2525 task = pid_task(proc_pid(inode), PIDTYPE_PID); 2526 if (!task) { 2527 rcu_read_unlock(); 2528 return -ESRCH; 2529 } 2530 /* A task may only write its own attributes. */ 2531 if (current != task) { 2532 rcu_read_unlock(); 2533 return -EACCES; 2534 } 2535 rcu_read_unlock(); 2536 2537 if (count > PAGE_SIZE) 2538 count = PAGE_SIZE; 2539 2540 /* No partial writes. */ 2541 if (*ppos != 0) 2542 return -EINVAL; 2543 2544 page = memdup_user(buf, count); 2545 if (IS_ERR(page)) { 2546 rv = PTR_ERR(page); 2547 goto out; 2548 } 2549 2550 /* Guard against adverse ptrace interaction */ 2551 rv = mutex_lock_interruptible(¤t->signal->cred_guard_mutex); 2552 if (rv < 0) 2553 goto out_free; 2554 2555 rv = security_setprocattr(file->f_path.dentry->d_name.name, page, count); 2556 mutex_unlock(¤t->signal->cred_guard_mutex); 2557 out_free: 2558 kfree(page); 2559 out: 2560 return rv; 2561 } 2562 2563 static const struct file_operations proc_pid_attr_operations = { 2564 .read = proc_pid_attr_read, 2565 .write = proc_pid_attr_write, 2566 .llseek = generic_file_llseek, 2567 }; 2568 2569 static const struct pid_entry attr_dir_stuff[] = { 2570 REG("current", S_IRUGO|S_IWUGO, proc_pid_attr_operations), 2571 REG("prev", S_IRUGO, proc_pid_attr_operations), 2572 REG("exec", S_IRUGO|S_IWUGO, proc_pid_attr_operations), 2573 REG("fscreate", S_IRUGO|S_IWUGO, proc_pid_attr_operations), 2574 REG("keycreate", S_IRUGO|S_IWUGO, proc_pid_attr_operations), 2575 REG("sockcreate", S_IRUGO|S_IWUGO, proc_pid_attr_operations), 2576 }; 2577 2578 static int proc_attr_dir_readdir(struct file *file, struct dir_context *ctx) 2579 { 2580 return proc_pident_readdir(file, ctx, 2581 attr_dir_stuff, ARRAY_SIZE(attr_dir_stuff)); 2582 } 2583 2584 static const struct file_operations proc_attr_dir_operations = { 2585 .read = generic_read_dir, 2586 .iterate_shared = proc_attr_dir_readdir, 2587 .llseek = generic_file_llseek, 2588 }; 2589 2590 static struct dentry *proc_attr_dir_lookup(struct inode *dir, 2591 struct dentry *dentry, unsigned int flags) 2592 { 2593 return proc_pident_lookup(dir, dentry, 2594 attr_dir_stuff, ARRAY_SIZE(attr_dir_stuff)); 2595 } 2596 2597 static const struct inode_operations proc_attr_dir_inode_operations = { 2598 .lookup = proc_attr_dir_lookup, 2599 .getattr = pid_getattr, 2600 .setattr = proc_setattr, 2601 }; 2602 2603 #endif 2604 2605 #ifdef CONFIG_ELF_CORE 2606 static ssize_t proc_coredump_filter_read(struct file *file, char __user *buf, 2607 size_t count, loff_t *ppos) 2608 { 2609 struct task_struct *task = get_proc_task(file_inode(file)); 2610 struct mm_struct *mm; 2611 char buffer[PROC_NUMBUF]; 2612 size_t len; 2613 int ret; 2614 2615 if (!task) 2616 return -ESRCH; 2617 2618 ret = 0; 2619 mm = get_task_mm(task); 2620 if (mm) { 2621 len = snprintf(buffer, sizeof(buffer), "%08lx\n", 2622 ((mm->flags & MMF_DUMP_FILTER_MASK) >> 2623 MMF_DUMP_FILTER_SHIFT)); 2624 mmput(mm); 2625 ret = simple_read_from_buffer(buf, count, ppos, buffer, len); 2626 } 2627 2628 put_task_struct(task); 2629 2630 return ret; 2631 } 2632 2633 static ssize_t proc_coredump_filter_write(struct file *file, 2634 const char __user *buf, 2635 size_t count, 2636 loff_t *ppos) 2637 { 2638 struct task_struct *task; 2639 struct mm_struct *mm; 2640 unsigned int val; 2641 int ret; 2642 int i; 2643 unsigned long mask; 2644 2645 ret = kstrtouint_from_user(buf, count, 0, &val); 2646 if (ret < 0) 2647 return ret; 2648 2649 ret = -ESRCH; 2650 task = get_proc_task(file_inode(file)); 2651 if (!task) 2652 goto out_no_task; 2653 2654 mm = get_task_mm(task); 2655 if (!mm) 2656 goto out_no_mm; 2657 ret = 0; 2658 2659 for (i = 0, mask = 1; i < MMF_DUMP_FILTER_BITS; i++, mask <<= 1) { 2660 if (val & mask) 2661 set_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags); 2662 else 2663 clear_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags); 2664 } 2665 2666 mmput(mm); 2667 out_no_mm: 2668 put_task_struct(task); 2669 out_no_task: 2670 if (ret < 0) 2671 return ret; 2672 return count; 2673 } 2674 2675 static const struct file_operations proc_coredump_filter_operations = { 2676 .read = proc_coredump_filter_read, 2677 .write = proc_coredump_filter_write, 2678 .llseek = generic_file_llseek, 2679 }; 2680 #endif 2681 2682 #ifdef CONFIG_TASK_IO_ACCOUNTING 2683 static int do_io_accounting(struct task_struct *task, struct seq_file *m, int whole) 2684 { 2685 struct task_io_accounting acct = task->ioac; 2686 unsigned long flags; 2687 int result; 2688 2689 result = mutex_lock_killable(&task->signal->cred_guard_mutex); 2690 if (result) 2691 return result; 2692 2693 if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS)) { 2694 result = -EACCES; 2695 goto out_unlock; 2696 } 2697 2698 if (whole && lock_task_sighand(task, &flags)) { 2699 struct task_struct *t = task; 2700 2701 task_io_accounting_add(&acct, &task->signal->ioac); 2702 while_each_thread(task, t) 2703 task_io_accounting_add(&acct, &t->ioac); 2704 2705 unlock_task_sighand(task, &flags); 2706 } 2707 seq_printf(m, 2708 "rchar: %llu\n" 2709 "wchar: %llu\n" 2710 "syscr: %llu\n" 2711 "syscw: %llu\n" 2712 "read_bytes: %llu\n" 2713 "write_bytes: %llu\n" 2714 "cancelled_write_bytes: %llu\n", 2715 (unsigned long long)acct.rchar, 2716 (unsigned long long)acct.wchar, 2717 (unsigned long long)acct.syscr, 2718 (unsigned long long)acct.syscw, 2719 (unsigned long long)acct.read_bytes, 2720 (unsigned long long)acct.write_bytes, 2721 (unsigned long long)acct.cancelled_write_bytes); 2722 result = 0; 2723 2724 out_unlock: 2725 mutex_unlock(&task->signal->cred_guard_mutex); 2726 return result; 2727 } 2728 2729 static int proc_tid_io_accounting(struct seq_file *m, struct pid_namespace *ns, 2730 struct pid *pid, struct task_struct *task) 2731 { 2732 return do_io_accounting(task, m, 0); 2733 } 2734 2735 static int proc_tgid_io_accounting(struct seq_file *m, struct pid_namespace *ns, 2736 struct pid *pid, struct task_struct *task) 2737 { 2738 return do_io_accounting(task, m, 1); 2739 } 2740 #endif /* CONFIG_TASK_IO_ACCOUNTING */ 2741 2742 #ifdef CONFIG_USER_NS 2743 static int proc_id_map_open(struct inode *inode, struct file *file, 2744 const struct seq_operations *seq_ops) 2745 { 2746 struct user_namespace *ns = NULL; 2747 struct task_struct *task; 2748 struct seq_file *seq; 2749 int ret = -EINVAL; 2750 2751 task = get_proc_task(inode); 2752 if (task) { 2753 rcu_read_lock(); 2754 ns = get_user_ns(task_cred_xxx(task, user_ns)); 2755 rcu_read_unlock(); 2756 put_task_struct(task); 2757 } 2758 if (!ns) 2759 goto err; 2760 2761 ret = seq_open(file, seq_ops); 2762 if (ret) 2763 goto err_put_ns; 2764 2765 seq = file->private_data; 2766 seq->private = ns; 2767 2768 return 0; 2769 err_put_ns: 2770 put_user_ns(ns); 2771 err: 2772 return ret; 2773 } 2774 2775 static int proc_id_map_release(struct inode *inode, struct file *file) 2776 { 2777 struct seq_file *seq = file->private_data; 2778 struct user_namespace *ns = seq->private; 2779 put_user_ns(ns); 2780 return seq_release(inode, file); 2781 } 2782 2783 static int proc_uid_map_open(struct inode *inode, struct file *file) 2784 { 2785 return proc_id_map_open(inode, file, &proc_uid_seq_operations); 2786 } 2787 2788 static int proc_gid_map_open(struct inode *inode, struct file *file) 2789 { 2790 return proc_id_map_open(inode, file, &proc_gid_seq_operations); 2791 } 2792 2793 static int proc_projid_map_open(struct inode *inode, struct file *file) 2794 { 2795 return proc_id_map_open(inode, file, &proc_projid_seq_operations); 2796 } 2797 2798 static const struct file_operations proc_uid_map_operations = { 2799 .open = proc_uid_map_open, 2800 .write = proc_uid_map_write, 2801 .read = seq_read, 2802 .llseek = seq_lseek, 2803 .release = proc_id_map_release, 2804 }; 2805 2806 static const struct file_operations proc_gid_map_operations = { 2807 .open = proc_gid_map_open, 2808 .write = proc_gid_map_write, 2809 .read = seq_read, 2810 .llseek = seq_lseek, 2811 .release = proc_id_map_release, 2812 }; 2813 2814 static const struct file_operations proc_projid_map_operations = { 2815 .open = proc_projid_map_open, 2816 .write = proc_projid_map_write, 2817 .read = seq_read, 2818 .llseek = seq_lseek, 2819 .release = proc_id_map_release, 2820 }; 2821 2822 static int proc_setgroups_open(struct inode *inode, struct file *file) 2823 { 2824 struct user_namespace *ns = NULL; 2825 struct task_struct *task; 2826 int ret; 2827 2828 ret = -ESRCH; 2829 task = get_proc_task(inode); 2830 if (task) { 2831 rcu_read_lock(); 2832 ns = get_user_ns(task_cred_xxx(task, user_ns)); 2833 rcu_read_unlock(); 2834 put_task_struct(task); 2835 } 2836 if (!ns) 2837 goto err; 2838 2839 if (file->f_mode & FMODE_WRITE) { 2840 ret = -EACCES; 2841 if (!ns_capable(ns, CAP_SYS_ADMIN)) 2842 goto err_put_ns; 2843 } 2844 2845 ret = single_open(file, &proc_setgroups_show, ns); 2846 if (ret) 2847 goto err_put_ns; 2848 2849 return 0; 2850 err_put_ns: 2851 put_user_ns(ns); 2852 err: 2853 return ret; 2854 } 2855 2856 static int proc_setgroups_release(struct inode *inode, struct file *file) 2857 { 2858 struct seq_file *seq = file->private_data; 2859 struct user_namespace *ns = seq->private; 2860 int ret = single_release(inode, file); 2861 put_user_ns(ns); 2862 return ret; 2863 } 2864 2865 static const struct file_operations proc_setgroups_operations = { 2866 .open = proc_setgroups_open, 2867 .write = proc_setgroups_write, 2868 .read = seq_read, 2869 .llseek = seq_lseek, 2870 .release = proc_setgroups_release, 2871 }; 2872 #endif /* CONFIG_USER_NS */ 2873 2874 static int proc_pid_personality(struct seq_file *m, struct pid_namespace *ns, 2875 struct pid *pid, struct task_struct *task) 2876 { 2877 int err = lock_trace(task); 2878 if (!err) { 2879 seq_printf(m, "%08x\n", task->personality); 2880 unlock_trace(task); 2881 } 2882 return err; 2883 } 2884 2885 #ifdef CONFIG_LIVEPATCH 2886 static int proc_pid_patch_state(struct seq_file *m, struct pid_namespace *ns, 2887 struct pid *pid, struct task_struct *task) 2888 { 2889 seq_printf(m, "%d\n", task->patch_state); 2890 return 0; 2891 } 2892 #endif /* CONFIG_LIVEPATCH */ 2893 2894 /* 2895 * Thread groups 2896 */ 2897 static const struct file_operations proc_task_operations; 2898 static const struct inode_operations proc_task_inode_operations; 2899 2900 static const struct pid_entry tgid_base_stuff[] = { 2901 DIR("task", S_IRUGO|S_IXUGO, proc_task_inode_operations, proc_task_operations), 2902 DIR("fd", S_IRUSR|S_IXUSR, proc_fd_inode_operations, proc_fd_operations), 2903 DIR("map_files", S_IRUSR|S_IXUSR, proc_map_files_inode_operations, proc_map_files_operations), 2904 DIR("fdinfo", S_IRUSR|S_IXUSR, proc_fdinfo_inode_operations, proc_fdinfo_operations), 2905 DIR("ns", S_IRUSR|S_IXUGO, proc_ns_dir_inode_operations, proc_ns_dir_operations), 2906 #ifdef CONFIG_NET 2907 DIR("net", S_IRUGO|S_IXUGO, proc_net_inode_operations, proc_net_operations), 2908 #endif 2909 REG("environ", S_IRUSR, proc_environ_operations), 2910 REG("auxv", S_IRUSR, proc_auxv_operations), 2911 ONE("status", S_IRUGO, proc_pid_status), 2912 ONE("personality", S_IRUSR, proc_pid_personality), 2913 ONE("limits", S_IRUGO, proc_pid_limits), 2914 #ifdef CONFIG_SCHED_DEBUG 2915 REG("sched", S_IRUGO|S_IWUSR, proc_pid_sched_operations), 2916 #endif 2917 #ifdef CONFIG_SCHED_AUTOGROUP 2918 REG("autogroup", S_IRUGO|S_IWUSR, proc_pid_sched_autogroup_operations), 2919 #endif 2920 REG("comm", S_IRUGO|S_IWUSR, proc_pid_set_comm_operations), 2921 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK 2922 ONE("syscall", S_IRUSR, proc_pid_syscall), 2923 #endif 2924 REG("cmdline", S_IRUGO, proc_pid_cmdline_ops), 2925 ONE("stat", S_IRUGO, proc_tgid_stat), 2926 ONE("statm", S_IRUGO, proc_pid_statm), 2927 REG("maps", S_IRUGO, proc_pid_maps_operations), 2928 #ifdef CONFIG_NUMA 2929 REG("numa_maps", S_IRUGO, proc_pid_numa_maps_operations), 2930 #endif 2931 REG("mem", S_IRUSR|S_IWUSR, proc_mem_operations), 2932 LNK("cwd", proc_cwd_link), 2933 LNK("root", proc_root_link), 2934 LNK("exe", proc_exe_link), 2935 REG("mounts", S_IRUGO, proc_mounts_operations), 2936 REG("mountinfo", S_IRUGO, proc_mountinfo_operations), 2937 REG("mountstats", S_IRUSR, proc_mountstats_operations), 2938 #ifdef CONFIG_PROC_PAGE_MONITOR 2939 REG("clear_refs", S_IWUSR, proc_clear_refs_operations), 2940 REG("smaps", S_IRUGO, proc_pid_smaps_operations), 2941 REG("smaps_rollup", S_IRUGO, proc_pid_smaps_rollup_operations), 2942 REG("pagemap", S_IRUSR, proc_pagemap_operations), 2943 #endif 2944 #ifdef CONFIG_SECURITY 2945 DIR("attr", S_IRUGO|S_IXUGO, proc_attr_dir_inode_operations, proc_attr_dir_operations), 2946 #endif 2947 #ifdef CONFIG_KALLSYMS 2948 ONE("wchan", S_IRUGO, proc_pid_wchan), 2949 #endif 2950 #ifdef CONFIG_STACKTRACE 2951 ONE("stack", S_IRUSR, proc_pid_stack), 2952 #endif 2953 #ifdef CONFIG_SCHED_INFO 2954 ONE("schedstat", S_IRUGO, proc_pid_schedstat), 2955 #endif 2956 #ifdef CONFIG_LATENCYTOP 2957 REG("latency", S_IRUGO, proc_lstats_operations), 2958 #endif 2959 #ifdef CONFIG_PROC_PID_CPUSET 2960 ONE("cpuset", S_IRUGO, proc_cpuset_show), 2961 #endif 2962 #ifdef CONFIG_CGROUPS 2963 ONE("cgroup", S_IRUGO, proc_cgroup_show), 2964 #endif 2965 ONE("oom_score", S_IRUGO, proc_oom_score), 2966 REG("oom_adj", S_IRUGO|S_IWUSR, proc_oom_adj_operations), 2967 REG("oom_score_adj", S_IRUGO|S_IWUSR, proc_oom_score_adj_operations), 2968 #ifdef CONFIG_AUDITSYSCALL 2969 REG("loginuid", S_IWUSR|S_IRUGO, proc_loginuid_operations), 2970 REG("sessionid", S_IRUGO, proc_sessionid_operations), 2971 #endif 2972 #ifdef CONFIG_FAULT_INJECTION 2973 REG("make-it-fail", S_IRUGO|S_IWUSR, proc_fault_inject_operations), 2974 REG("fail-nth", 0644, proc_fail_nth_operations), 2975 #endif 2976 #ifdef CONFIG_ELF_CORE 2977 REG("coredump_filter", S_IRUGO|S_IWUSR, proc_coredump_filter_operations), 2978 #endif 2979 #ifdef CONFIG_TASK_IO_ACCOUNTING 2980 ONE("io", S_IRUSR, proc_tgid_io_accounting), 2981 #endif 2982 #ifdef CONFIG_USER_NS 2983 REG("uid_map", S_IRUGO|S_IWUSR, proc_uid_map_operations), 2984 REG("gid_map", S_IRUGO|S_IWUSR, proc_gid_map_operations), 2985 REG("projid_map", S_IRUGO|S_IWUSR, proc_projid_map_operations), 2986 REG("setgroups", S_IRUGO|S_IWUSR, proc_setgroups_operations), 2987 #endif 2988 #if defined(CONFIG_CHECKPOINT_RESTORE) && defined(CONFIG_POSIX_TIMERS) 2989 REG("timers", S_IRUGO, proc_timers_operations), 2990 #endif 2991 REG("timerslack_ns", S_IRUGO|S_IWUGO, proc_pid_set_timerslack_ns_operations), 2992 #ifdef CONFIG_LIVEPATCH 2993 ONE("patch_state", S_IRUSR, proc_pid_patch_state), 2994 #endif 2995 }; 2996 2997 static int proc_tgid_base_readdir(struct file *file, struct dir_context *ctx) 2998 { 2999 return proc_pident_readdir(file, ctx, 3000 tgid_base_stuff, ARRAY_SIZE(tgid_base_stuff)); 3001 } 3002 3003 static const struct file_operations proc_tgid_base_operations = { 3004 .read = generic_read_dir, 3005 .iterate_shared = proc_tgid_base_readdir, 3006 .llseek = generic_file_llseek, 3007 }; 3008 3009 static struct dentry *proc_tgid_base_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags) 3010 { 3011 return proc_pident_lookup(dir, dentry, 3012 tgid_base_stuff, ARRAY_SIZE(tgid_base_stuff)); 3013 } 3014 3015 static const struct inode_operations proc_tgid_base_inode_operations = { 3016 .lookup = proc_tgid_base_lookup, 3017 .getattr = pid_getattr, 3018 .setattr = proc_setattr, 3019 .permission = proc_pid_permission, 3020 }; 3021 3022 static void proc_flush_task_mnt(struct vfsmount *mnt, pid_t pid, pid_t tgid) 3023 { 3024 struct dentry *dentry, *leader, *dir; 3025 char buf[10 + 1]; 3026 struct qstr name; 3027 3028 name.name = buf; 3029 name.len = snprintf(buf, sizeof(buf), "%u", pid); 3030 /* no ->d_hash() rejects on procfs */ 3031 dentry = d_hash_and_lookup(mnt->mnt_root, &name); 3032 if (dentry) { 3033 d_invalidate(dentry); 3034 dput(dentry); 3035 } 3036 3037 if (pid == tgid) 3038 return; 3039 3040 name.name = buf; 3041 name.len = snprintf(buf, sizeof(buf), "%u", tgid); 3042 leader = d_hash_and_lookup(mnt->mnt_root, &name); 3043 if (!leader) 3044 goto out; 3045 3046 name.name = "task"; 3047 name.len = strlen(name.name); 3048 dir = d_hash_and_lookup(leader, &name); 3049 if (!dir) 3050 goto out_put_leader; 3051 3052 name.name = buf; 3053 name.len = snprintf(buf, sizeof(buf), "%u", pid); 3054 dentry = d_hash_and_lookup(dir, &name); 3055 if (dentry) { 3056 d_invalidate(dentry); 3057 dput(dentry); 3058 } 3059 3060 dput(dir); 3061 out_put_leader: 3062 dput(leader); 3063 out: 3064 return; 3065 } 3066 3067 /** 3068 * proc_flush_task - Remove dcache entries for @task from the /proc dcache. 3069 * @task: task that should be flushed. 3070 * 3071 * When flushing dentries from proc, one needs to flush them from global 3072 * proc (proc_mnt) and from all the namespaces' procs this task was seen 3073 * in. This call is supposed to do all of this job. 3074 * 3075 * Looks in the dcache for 3076 * /proc/@pid 3077 * /proc/@tgid/task/@pid 3078 * if either directory is present flushes it and all of it'ts children 3079 * from the dcache. 3080 * 3081 * It is safe and reasonable to cache /proc entries for a task until 3082 * that task exits. After that they just clog up the dcache with 3083 * useless entries, possibly causing useful dcache entries to be 3084 * flushed instead. This routine is proved to flush those useless 3085 * dcache entries at process exit time. 3086 * 3087 * NOTE: This routine is just an optimization so it does not guarantee 3088 * that no dcache entries will exist at process exit time it 3089 * just makes it very unlikely that any will persist. 3090 */ 3091 3092 void proc_flush_task(struct task_struct *task) 3093 { 3094 int i; 3095 struct pid *pid, *tgid; 3096 struct upid *upid; 3097 3098 pid = task_pid(task); 3099 tgid = task_tgid(task); 3100 3101 for (i = 0; i <= pid->level; i++) { 3102 upid = &pid->numbers[i]; 3103 proc_flush_task_mnt(upid->ns->proc_mnt, upid->nr, 3104 tgid->numbers[i].nr); 3105 } 3106 } 3107 3108 static struct dentry *proc_pid_instantiate(struct dentry * dentry, 3109 struct task_struct *task, const void *ptr) 3110 { 3111 struct inode *inode; 3112 3113 inode = proc_pid_make_inode(dentry->d_sb, task, S_IFDIR | S_IRUGO | S_IXUGO); 3114 if (!inode) 3115 return ERR_PTR(-ENOENT); 3116 3117 inode->i_op = &proc_tgid_base_inode_operations; 3118 inode->i_fop = &proc_tgid_base_operations; 3119 inode->i_flags|=S_IMMUTABLE; 3120 3121 set_nlink(inode, nlink_tgid); 3122 pid_update_inode(task, inode); 3123 3124 d_set_d_op(dentry, &pid_dentry_operations); 3125 return d_splice_alias(inode, dentry); 3126 } 3127 3128 struct dentry *proc_pid_lookup(struct inode *dir, struct dentry * dentry, unsigned int flags) 3129 { 3130 struct task_struct *task; 3131 unsigned tgid; 3132 struct pid_namespace *ns; 3133 struct dentry *result = ERR_PTR(-ENOENT); 3134 3135 tgid = name_to_int(&dentry->d_name); 3136 if (tgid == ~0U) 3137 goto out; 3138 3139 ns = dentry->d_sb->s_fs_info; 3140 rcu_read_lock(); 3141 task = find_task_by_pid_ns(tgid, ns); 3142 if (task) 3143 get_task_struct(task); 3144 rcu_read_unlock(); 3145 if (!task) 3146 goto out; 3147 3148 result = proc_pid_instantiate(dentry, task, NULL); 3149 put_task_struct(task); 3150 out: 3151 return result; 3152 } 3153 3154 /* 3155 * Find the first task with tgid >= tgid 3156 * 3157 */ 3158 struct tgid_iter { 3159 unsigned int tgid; 3160 struct task_struct *task; 3161 }; 3162 static struct tgid_iter next_tgid(struct pid_namespace *ns, struct tgid_iter iter) 3163 { 3164 struct pid *pid; 3165 3166 if (iter.task) 3167 put_task_struct(iter.task); 3168 rcu_read_lock(); 3169 retry: 3170 iter.task = NULL; 3171 pid = find_ge_pid(iter.tgid, ns); 3172 if (pid) { 3173 iter.tgid = pid_nr_ns(pid, ns); 3174 iter.task = pid_task(pid, PIDTYPE_PID); 3175 /* What we to know is if the pid we have find is the 3176 * pid of a thread_group_leader. Testing for task 3177 * being a thread_group_leader is the obvious thing 3178 * todo but there is a window when it fails, due to 3179 * the pid transfer logic in de_thread. 3180 * 3181 * So we perform the straight forward test of seeing 3182 * if the pid we have found is the pid of a thread 3183 * group leader, and don't worry if the task we have 3184 * found doesn't happen to be a thread group leader. 3185 * As we don't care in the case of readdir. 3186 */ 3187 if (!iter.task || !has_group_leader_pid(iter.task)) { 3188 iter.tgid += 1; 3189 goto retry; 3190 } 3191 get_task_struct(iter.task); 3192 } 3193 rcu_read_unlock(); 3194 return iter; 3195 } 3196 3197 #define TGID_OFFSET (FIRST_PROCESS_ENTRY + 2) 3198 3199 /* for the /proc/ directory itself, after non-process stuff has been done */ 3200 int proc_pid_readdir(struct file *file, struct dir_context *ctx) 3201 { 3202 struct tgid_iter iter; 3203 struct pid_namespace *ns = proc_pid_ns(file_inode(file)); 3204 loff_t pos = ctx->pos; 3205 3206 if (pos >= PID_MAX_LIMIT + TGID_OFFSET) 3207 return 0; 3208 3209 if (pos == TGID_OFFSET - 2) { 3210 struct inode *inode = d_inode(ns->proc_self); 3211 if (!dir_emit(ctx, "self", 4, inode->i_ino, DT_LNK)) 3212 return 0; 3213 ctx->pos = pos = pos + 1; 3214 } 3215 if (pos == TGID_OFFSET - 1) { 3216 struct inode *inode = d_inode(ns->proc_thread_self); 3217 if (!dir_emit(ctx, "thread-self", 11, inode->i_ino, DT_LNK)) 3218 return 0; 3219 ctx->pos = pos = pos + 1; 3220 } 3221 iter.tgid = pos - TGID_OFFSET; 3222 iter.task = NULL; 3223 for (iter = next_tgid(ns, iter); 3224 iter.task; 3225 iter.tgid += 1, iter = next_tgid(ns, iter)) { 3226 char name[10 + 1]; 3227 unsigned int len; 3228 3229 cond_resched(); 3230 if (!has_pid_permissions(ns, iter.task, HIDEPID_INVISIBLE)) 3231 continue; 3232 3233 len = snprintf(name, sizeof(name), "%u", iter.tgid); 3234 ctx->pos = iter.tgid + TGID_OFFSET; 3235 if (!proc_fill_cache(file, ctx, name, len, 3236 proc_pid_instantiate, iter.task, NULL)) { 3237 put_task_struct(iter.task); 3238 return 0; 3239 } 3240 } 3241 ctx->pos = PID_MAX_LIMIT + TGID_OFFSET; 3242 return 0; 3243 } 3244 3245 /* 3246 * proc_tid_comm_permission is a special permission function exclusively 3247 * used for the node /proc/<pid>/task/<tid>/comm. 3248 * It bypasses generic permission checks in the case where a task of the same 3249 * task group attempts to access the node. 3250 * The rationale behind this is that glibc and bionic access this node for 3251 * cross thread naming (pthread_set/getname_np(!self)). However, if 3252 * PR_SET_DUMPABLE gets set to 0 this node among others becomes uid=0 gid=0, 3253 * which locks out the cross thread naming implementation. 3254 * This function makes sure that the node is always accessible for members of 3255 * same thread group. 3256 */ 3257 static int proc_tid_comm_permission(struct inode *inode, int mask) 3258 { 3259 bool is_same_tgroup; 3260 struct task_struct *task; 3261 3262 task = get_proc_task(inode); 3263 if (!task) 3264 return -ESRCH; 3265 is_same_tgroup = same_thread_group(current, task); 3266 put_task_struct(task); 3267 3268 if (likely(is_same_tgroup && !(mask & MAY_EXEC))) { 3269 /* This file (/proc/<pid>/task/<tid>/comm) can always be 3270 * read or written by the members of the corresponding 3271 * thread group. 3272 */ 3273 return 0; 3274 } 3275 3276 return generic_permission(inode, mask); 3277 } 3278 3279 static const struct inode_operations proc_tid_comm_inode_operations = { 3280 .permission = proc_tid_comm_permission, 3281 }; 3282 3283 /* 3284 * Tasks 3285 */ 3286 static const struct pid_entry tid_base_stuff[] = { 3287 DIR("fd", S_IRUSR|S_IXUSR, proc_fd_inode_operations, proc_fd_operations), 3288 DIR("fdinfo", S_IRUSR|S_IXUSR, proc_fdinfo_inode_operations, proc_fdinfo_operations), 3289 DIR("ns", S_IRUSR|S_IXUGO, proc_ns_dir_inode_operations, proc_ns_dir_operations), 3290 #ifdef CONFIG_NET 3291 DIR("net", S_IRUGO|S_IXUGO, proc_net_inode_operations, proc_net_operations), 3292 #endif 3293 REG("environ", S_IRUSR, proc_environ_operations), 3294 REG("auxv", S_IRUSR, proc_auxv_operations), 3295 ONE("status", S_IRUGO, proc_pid_status), 3296 ONE("personality", S_IRUSR, proc_pid_personality), 3297 ONE("limits", S_IRUGO, proc_pid_limits), 3298 #ifdef CONFIG_SCHED_DEBUG 3299 REG("sched", S_IRUGO|S_IWUSR, proc_pid_sched_operations), 3300 #endif 3301 NOD("comm", S_IFREG|S_IRUGO|S_IWUSR, 3302 &proc_tid_comm_inode_operations, 3303 &proc_pid_set_comm_operations, {}), 3304 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK 3305 ONE("syscall", S_IRUSR, proc_pid_syscall), 3306 #endif 3307 REG("cmdline", S_IRUGO, proc_pid_cmdline_ops), 3308 ONE("stat", S_IRUGO, proc_tid_stat), 3309 ONE("statm", S_IRUGO, proc_pid_statm), 3310 REG("maps", S_IRUGO, proc_pid_maps_operations), 3311 #ifdef CONFIG_PROC_CHILDREN 3312 REG("children", S_IRUGO, proc_tid_children_operations), 3313 #endif 3314 #ifdef CONFIG_NUMA 3315 REG("numa_maps", S_IRUGO, proc_pid_numa_maps_operations), 3316 #endif 3317 REG("mem", S_IRUSR|S_IWUSR, proc_mem_operations), 3318 LNK("cwd", proc_cwd_link), 3319 LNK("root", proc_root_link), 3320 LNK("exe", proc_exe_link), 3321 REG("mounts", S_IRUGO, proc_mounts_operations), 3322 REG("mountinfo", S_IRUGO, proc_mountinfo_operations), 3323 #ifdef CONFIG_PROC_PAGE_MONITOR 3324 REG("clear_refs", S_IWUSR, proc_clear_refs_operations), 3325 REG("smaps", S_IRUGO, proc_pid_smaps_operations), 3326 REG("smaps_rollup", S_IRUGO, proc_pid_smaps_rollup_operations), 3327 REG("pagemap", S_IRUSR, proc_pagemap_operations), 3328 #endif 3329 #ifdef CONFIG_SECURITY 3330 DIR("attr", S_IRUGO|S_IXUGO, proc_attr_dir_inode_operations, proc_attr_dir_operations), 3331 #endif 3332 #ifdef CONFIG_KALLSYMS 3333 ONE("wchan", S_IRUGO, proc_pid_wchan), 3334 #endif 3335 #ifdef CONFIG_STACKTRACE 3336 ONE("stack", S_IRUSR, proc_pid_stack), 3337 #endif 3338 #ifdef CONFIG_SCHED_INFO 3339 ONE("schedstat", S_IRUGO, proc_pid_schedstat), 3340 #endif 3341 #ifdef CONFIG_LATENCYTOP 3342 REG("latency", S_IRUGO, proc_lstats_operations), 3343 #endif 3344 #ifdef CONFIG_PROC_PID_CPUSET 3345 ONE("cpuset", S_IRUGO, proc_cpuset_show), 3346 #endif 3347 #ifdef CONFIG_CGROUPS 3348 ONE("cgroup", S_IRUGO, proc_cgroup_show), 3349 #endif 3350 ONE("oom_score", S_IRUGO, proc_oom_score), 3351 REG("oom_adj", S_IRUGO|S_IWUSR, proc_oom_adj_operations), 3352 REG("oom_score_adj", S_IRUGO|S_IWUSR, proc_oom_score_adj_operations), 3353 #ifdef CONFIG_AUDITSYSCALL 3354 REG("loginuid", S_IWUSR|S_IRUGO, proc_loginuid_operations), 3355 REG("sessionid", S_IRUGO, proc_sessionid_operations), 3356 #endif 3357 #ifdef CONFIG_FAULT_INJECTION 3358 REG("make-it-fail", S_IRUGO|S_IWUSR, proc_fault_inject_operations), 3359 REG("fail-nth", 0644, proc_fail_nth_operations), 3360 #endif 3361 #ifdef CONFIG_TASK_IO_ACCOUNTING 3362 ONE("io", S_IRUSR, proc_tid_io_accounting), 3363 #endif 3364 #ifdef CONFIG_USER_NS 3365 REG("uid_map", S_IRUGO|S_IWUSR, proc_uid_map_operations), 3366 REG("gid_map", S_IRUGO|S_IWUSR, proc_gid_map_operations), 3367 REG("projid_map", S_IRUGO|S_IWUSR, proc_projid_map_operations), 3368 REG("setgroups", S_IRUGO|S_IWUSR, proc_setgroups_operations), 3369 #endif 3370 #ifdef CONFIG_LIVEPATCH 3371 ONE("patch_state", S_IRUSR, proc_pid_patch_state), 3372 #endif 3373 }; 3374 3375 static int proc_tid_base_readdir(struct file *file, struct dir_context *ctx) 3376 { 3377 return proc_pident_readdir(file, ctx, 3378 tid_base_stuff, ARRAY_SIZE(tid_base_stuff)); 3379 } 3380 3381 static struct dentry *proc_tid_base_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags) 3382 { 3383 return proc_pident_lookup(dir, dentry, 3384 tid_base_stuff, ARRAY_SIZE(tid_base_stuff)); 3385 } 3386 3387 static const struct file_operations proc_tid_base_operations = { 3388 .read = generic_read_dir, 3389 .iterate_shared = proc_tid_base_readdir, 3390 .llseek = generic_file_llseek, 3391 }; 3392 3393 static const struct inode_operations proc_tid_base_inode_operations = { 3394 .lookup = proc_tid_base_lookup, 3395 .getattr = pid_getattr, 3396 .setattr = proc_setattr, 3397 }; 3398 3399 static struct dentry *proc_task_instantiate(struct dentry *dentry, 3400 struct task_struct *task, const void *ptr) 3401 { 3402 struct inode *inode; 3403 inode = proc_pid_make_inode(dentry->d_sb, task, S_IFDIR | S_IRUGO | S_IXUGO); 3404 if (!inode) 3405 return ERR_PTR(-ENOENT); 3406 3407 inode->i_op = &proc_tid_base_inode_operations; 3408 inode->i_fop = &proc_tid_base_operations; 3409 inode->i_flags |= S_IMMUTABLE; 3410 3411 set_nlink(inode, nlink_tid); 3412 pid_update_inode(task, inode); 3413 3414 d_set_d_op(dentry, &pid_dentry_operations); 3415 return d_splice_alias(inode, dentry); 3416 } 3417 3418 static struct dentry *proc_task_lookup(struct inode *dir, struct dentry * dentry, unsigned int flags) 3419 { 3420 struct task_struct *task; 3421 struct task_struct *leader = get_proc_task(dir); 3422 unsigned tid; 3423 struct pid_namespace *ns; 3424 struct dentry *result = ERR_PTR(-ENOENT); 3425 3426 if (!leader) 3427 goto out_no_task; 3428 3429 tid = name_to_int(&dentry->d_name); 3430 if (tid == ~0U) 3431 goto out; 3432 3433 ns = dentry->d_sb->s_fs_info; 3434 rcu_read_lock(); 3435 task = find_task_by_pid_ns(tid, ns); 3436 if (task) 3437 get_task_struct(task); 3438 rcu_read_unlock(); 3439 if (!task) 3440 goto out; 3441 if (!same_thread_group(leader, task)) 3442 goto out_drop_task; 3443 3444 result = proc_task_instantiate(dentry, task, NULL); 3445 out_drop_task: 3446 put_task_struct(task); 3447 out: 3448 put_task_struct(leader); 3449 out_no_task: 3450 return result; 3451 } 3452 3453 /* 3454 * Find the first tid of a thread group to return to user space. 3455 * 3456 * Usually this is just the thread group leader, but if the users 3457 * buffer was too small or there was a seek into the middle of the 3458 * directory we have more work todo. 3459 * 3460 * In the case of a short read we start with find_task_by_pid. 3461 * 3462 * In the case of a seek we start with the leader and walk nr 3463 * threads past it. 3464 */ 3465 static struct task_struct *first_tid(struct pid *pid, int tid, loff_t f_pos, 3466 struct pid_namespace *ns) 3467 { 3468 struct task_struct *pos, *task; 3469 unsigned long nr = f_pos; 3470 3471 if (nr != f_pos) /* 32bit overflow? */ 3472 return NULL; 3473 3474 rcu_read_lock(); 3475 task = pid_task(pid, PIDTYPE_PID); 3476 if (!task) 3477 goto fail; 3478 3479 /* Attempt to start with the tid of a thread */ 3480 if (tid && nr) { 3481 pos = find_task_by_pid_ns(tid, ns); 3482 if (pos && same_thread_group(pos, task)) 3483 goto found; 3484 } 3485 3486 /* If nr exceeds the number of threads there is nothing todo */ 3487 if (nr >= get_nr_threads(task)) 3488 goto fail; 3489 3490 /* If we haven't found our starting place yet start 3491 * with the leader and walk nr threads forward. 3492 */ 3493 pos = task = task->group_leader; 3494 do { 3495 if (!nr--) 3496 goto found; 3497 } while_each_thread(task, pos); 3498 fail: 3499 pos = NULL; 3500 goto out; 3501 found: 3502 get_task_struct(pos); 3503 out: 3504 rcu_read_unlock(); 3505 return pos; 3506 } 3507 3508 /* 3509 * Find the next thread in the thread list. 3510 * Return NULL if there is an error or no next thread. 3511 * 3512 * The reference to the input task_struct is released. 3513 */ 3514 static struct task_struct *next_tid(struct task_struct *start) 3515 { 3516 struct task_struct *pos = NULL; 3517 rcu_read_lock(); 3518 if (pid_alive(start)) { 3519 pos = next_thread(start); 3520 if (thread_group_leader(pos)) 3521 pos = NULL; 3522 else 3523 get_task_struct(pos); 3524 } 3525 rcu_read_unlock(); 3526 put_task_struct(start); 3527 return pos; 3528 } 3529 3530 /* for the /proc/TGID/task/ directories */ 3531 static int proc_task_readdir(struct file *file, struct dir_context *ctx) 3532 { 3533 struct inode *inode = file_inode(file); 3534 struct task_struct *task; 3535 struct pid_namespace *ns; 3536 int tid; 3537 3538 if (proc_inode_is_dead(inode)) 3539 return -ENOENT; 3540 3541 if (!dir_emit_dots(file, ctx)) 3542 return 0; 3543 3544 /* f_version caches the tgid value that the last readdir call couldn't 3545 * return. lseek aka telldir automagically resets f_version to 0. 3546 */ 3547 ns = proc_pid_ns(inode); 3548 tid = (int)file->f_version; 3549 file->f_version = 0; 3550 for (task = first_tid(proc_pid(inode), tid, ctx->pos - 2, ns); 3551 task; 3552 task = next_tid(task), ctx->pos++) { 3553 char name[10 + 1]; 3554 unsigned int len; 3555 tid = task_pid_nr_ns(task, ns); 3556 len = snprintf(name, sizeof(name), "%u", tid); 3557 if (!proc_fill_cache(file, ctx, name, len, 3558 proc_task_instantiate, task, NULL)) { 3559 /* returning this tgid failed, save it as the first 3560 * pid for the next readir call */ 3561 file->f_version = (u64)tid; 3562 put_task_struct(task); 3563 break; 3564 } 3565 } 3566 3567 return 0; 3568 } 3569 3570 static int proc_task_getattr(const struct path *path, struct kstat *stat, 3571 u32 request_mask, unsigned int query_flags) 3572 { 3573 struct inode *inode = d_inode(path->dentry); 3574 struct task_struct *p = get_proc_task(inode); 3575 generic_fillattr(inode, stat); 3576 3577 if (p) { 3578 stat->nlink += get_nr_threads(p); 3579 put_task_struct(p); 3580 } 3581 3582 return 0; 3583 } 3584 3585 static const struct inode_operations proc_task_inode_operations = { 3586 .lookup = proc_task_lookup, 3587 .getattr = proc_task_getattr, 3588 .setattr = proc_setattr, 3589 .permission = proc_pid_permission, 3590 }; 3591 3592 static const struct file_operations proc_task_operations = { 3593 .read = generic_read_dir, 3594 .iterate_shared = proc_task_readdir, 3595 .llseek = generic_file_llseek, 3596 }; 3597 3598 void __init set_proc_pid_nlink(void) 3599 { 3600 nlink_tid = pid_entry_nlink(tid_base_stuff, ARRAY_SIZE(tid_base_stuff)); 3601 nlink_tgid = pid_entry_nlink(tgid_base_stuff, ARRAY_SIZE(tgid_base_stuff)); 3602 } 3603