xref: /linux/fs/proc/base.c (revision e9f0878c4b2004ac19581274c1ae4c61ae3ca70e)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/fs/proc/base.c
4  *
5  *  Copyright (C) 1991, 1992 Linus Torvalds
6  *
7  *  proc base directory handling functions
8  *
9  *  1999, Al Viro. Rewritten. Now it covers the whole per-process part.
10  *  Instead of using magical inumbers to determine the kind of object
11  *  we allocate and fill in-core inodes upon lookup. They don't even
12  *  go into icache. We cache the reference to task_struct upon lookup too.
13  *  Eventually it should become a filesystem in its own. We don't use the
14  *  rest of procfs anymore.
15  *
16  *
17  *  Changelog:
18  *  17-Jan-2005
19  *  Allan Bezerra
20  *  Bruna Moreira <bruna.moreira@indt.org.br>
21  *  Edjard Mota <edjard.mota@indt.org.br>
22  *  Ilias Biris <ilias.biris@indt.org.br>
23  *  Mauricio Lin <mauricio.lin@indt.org.br>
24  *
25  *  Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT
26  *
27  *  A new process specific entry (smaps) included in /proc. It shows the
28  *  size of rss for each memory area. The maps entry lacks information
29  *  about physical memory size (rss) for each mapped file, i.e.,
30  *  rss information for executables and library files.
31  *  This additional information is useful for any tools that need to know
32  *  about physical memory consumption for a process specific library.
33  *
34  *  Changelog:
35  *  21-Feb-2005
36  *  Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT
37  *  Pud inclusion in the page table walking.
38  *
39  *  ChangeLog:
40  *  10-Mar-2005
41  *  10LE Instituto Nokia de Tecnologia - INdT:
42  *  A better way to walks through the page table as suggested by Hugh Dickins.
43  *
44  *  Simo Piiroinen <simo.piiroinen@nokia.com>:
45  *  Smaps information related to shared, private, clean and dirty pages.
46  *
47  *  Paul Mundt <paul.mundt@nokia.com>:
48  *  Overall revision about smaps.
49  */
50 
51 #include <linux/uaccess.h>
52 
53 #include <linux/errno.h>
54 #include <linux/time.h>
55 #include <linux/proc_fs.h>
56 #include <linux/stat.h>
57 #include <linux/task_io_accounting_ops.h>
58 #include <linux/init.h>
59 #include <linux/capability.h>
60 #include <linux/file.h>
61 #include <linux/fdtable.h>
62 #include <linux/string.h>
63 #include <linux/seq_file.h>
64 #include <linux/namei.h>
65 #include <linux/mnt_namespace.h>
66 #include <linux/mm.h>
67 #include <linux/swap.h>
68 #include <linux/rcupdate.h>
69 #include <linux/kallsyms.h>
70 #include <linux/stacktrace.h>
71 #include <linux/resource.h>
72 #include <linux/module.h>
73 #include <linux/mount.h>
74 #include <linux/security.h>
75 #include <linux/ptrace.h>
76 #include <linux/tracehook.h>
77 #include <linux/printk.h>
78 #include <linux/cache.h>
79 #include <linux/cgroup.h>
80 #include <linux/cpuset.h>
81 #include <linux/audit.h>
82 #include <linux/poll.h>
83 #include <linux/nsproxy.h>
84 #include <linux/oom.h>
85 #include <linux/elf.h>
86 #include <linux/pid_namespace.h>
87 #include <linux/user_namespace.h>
88 #include <linux/fs_struct.h>
89 #include <linux/slab.h>
90 #include <linux/sched/autogroup.h>
91 #include <linux/sched/mm.h>
92 #include <linux/sched/coredump.h>
93 #include <linux/sched/debug.h>
94 #include <linux/sched/stat.h>
95 #include <linux/flex_array.h>
96 #include <linux/posix-timers.h>
97 #include <trace/events/oom.h>
98 #include "internal.h"
99 #include "fd.h"
100 
101 #include "../../lib/kstrtox.h"
102 
103 /* NOTE:
104  *	Implementing inode permission operations in /proc is almost
105  *	certainly an error.  Permission checks need to happen during
106  *	each system call not at open time.  The reason is that most of
107  *	what we wish to check for permissions in /proc varies at runtime.
108  *
109  *	The classic example of a problem is opening file descriptors
110  *	in /proc for a task before it execs a suid executable.
111  */
112 
113 static u8 nlink_tid __ro_after_init;
114 static u8 nlink_tgid __ro_after_init;
115 
116 struct pid_entry {
117 	const char *name;
118 	unsigned int len;
119 	umode_t mode;
120 	const struct inode_operations *iop;
121 	const struct file_operations *fop;
122 	union proc_op op;
123 };
124 
125 #define NOD(NAME, MODE, IOP, FOP, OP) {			\
126 	.name = (NAME),					\
127 	.len  = sizeof(NAME) - 1,			\
128 	.mode = MODE,					\
129 	.iop  = IOP,					\
130 	.fop  = FOP,					\
131 	.op   = OP,					\
132 }
133 
134 #define DIR(NAME, MODE, iops, fops)	\
135 	NOD(NAME, (S_IFDIR|(MODE)), &iops, &fops, {} )
136 #define LNK(NAME, get_link)					\
137 	NOD(NAME, (S_IFLNK|S_IRWXUGO),				\
138 		&proc_pid_link_inode_operations, NULL,		\
139 		{ .proc_get_link = get_link } )
140 #define REG(NAME, MODE, fops)				\
141 	NOD(NAME, (S_IFREG|(MODE)), NULL, &fops, {})
142 #define ONE(NAME, MODE, show)				\
143 	NOD(NAME, (S_IFREG|(MODE)), 			\
144 		NULL, &proc_single_file_operations,	\
145 		{ .proc_show = show } )
146 
147 /*
148  * Count the number of hardlinks for the pid_entry table, excluding the .
149  * and .. links.
150  */
151 static unsigned int __init pid_entry_nlink(const struct pid_entry *entries,
152 	unsigned int n)
153 {
154 	unsigned int i;
155 	unsigned int count;
156 
157 	count = 2;
158 	for (i = 0; i < n; ++i) {
159 		if (S_ISDIR(entries[i].mode))
160 			++count;
161 	}
162 
163 	return count;
164 }
165 
166 static int get_task_root(struct task_struct *task, struct path *root)
167 {
168 	int result = -ENOENT;
169 
170 	task_lock(task);
171 	if (task->fs) {
172 		get_fs_root(task->fs, root);
173 		result = 0;
174 	}
175 	task_unlock(task);
176 	return result;
177 }
178 
179 static int proc_cwd_link(struct dentry *dentry, struct path *path)
180 {
181 	struct task_struct *task = get_proc_task(d_inode(dentry));
182 	int result = -ENOENT;
183 
184 	if (task) {
185 		task_lock(task);
186 		if (task->fs) {
187 			get_fs_pwd(task->fs, path);
188 			result = 0;
189 		}
190 		task_unlock(task);
191 		put_task_struct(task);
192 	}
193 	return result;
194 }
195 
196 static int proc_root_link(struct dentry *dentry, struct path *path)
197 {
198 	struct task_struct *task = get_proc_task(d_inode(dentry));
199 	int result = -ENOENT;
200 
201 	if (task) {
202 		result = get_task_root(task, path);
203 		put_task_struct(task);
204 	}
205 	return result;
206 }
207 
208 static ssize_t get_mm_cmdline(struct mm_struct *mm, char __user *buf,
209 			      size_t count, loff_t *ppos)
210 {
211 	unsigned long arg_start, arg_end, env_start, env_end;
212 	unsigned long pos, len;
213 	char *page;
214 
215 	/* Check if process spawned far enough to have cmdline. */
216 	if (!mm->env_end)
217 		return 0;
218 
219 	spin_lock(&mm->arg_lock);
220 	arg_start = mm->arg_start;
221 	arg_end = mm->arg_end;
222 	env_start = mm->env_start;
223 	env_end = mm->env_end;
224 	spin_unlock(&mm->arg_lock);
225 
226 	if (arg_start >= arg_end)
227 		return 0;
228 
229 	/*
230 	 * We have traditionally allowed the user to re-write
231 	 * the argument strings and overflow the end result
232 	 * into the environment section. But only do that if
233 	 * the environment area is contiguous to the arguments.
234 	 */
235 	if (env_start != arg_end || env_start >= env_end)
236 		env_start = env_end = arg_end;
237 
238 	/* .. and limit it to a maximum of one page of slop */
239 	if (env_end >= arg_end + PAGE_SIZE)
240 		env_end = arg_end + PAGE_SIZE - 1;
241 
242 	/* We're not going to care if "*ppos" has high bits set */
243 	pos = arg_start + *ppos;
244 
245 	/* .. but we do check the result is in the proper range */
246 	if (pos < arg_start || pos >= env_end)
247 		return 0;
248 
249 	/* .. and we never go past env_end */
250 	if (env_end - pos < count)
251 		count = env_end - pos;
252 
253 	page = (char *)__get_free_page(GFP_KERNEL);
254 	if (!page)
255 		return -ENOMEM;
256 
257 	len = 0;
258 	while (count) {
259 		int got;
260 		size_t size = min_t(size_t, PAGE_SIZE, count);
261 		long offset;
262 
263 		/*
264 		 * Are we already starting past the official end?
265 		 * We always include the last byte that is *supposed*
266 		 * to be NUL
267 		 */
268 		offset = (pos >= arg_end) ? pos - arg_end + 1 : 0;
269 
270 		got = access_remote_vm(mm, pos - offset, page, size + offset, FOLL_ANON);
271 		if (got <= offset)
272 			break;
273 		got -= offset;
274 
275 		/* Don't walk past a NUL character once you hit arg_end */
276 		if (pos + got >= arg_end) {
277 			int n = 0;
278 
279 			/*
280 			 * If we started before 'arg_end' but ended up
281 			 * at or after it, we start the NUL character
282 			 * check at arg_end-1 (where we expect the normal
283 			 * EOF to be).
284 			 *
285 			 * NOTE! This is smaller than 'got', because
286 			 * pos + got >= arg_end
287 			 */
288 			if (pos < arg_end)
289 				n = arg_end - pos - 1;
290 
291 			/* Cut off at first NUL after 'n' */
292 			got = n + strnlen(page+n, offset+got-n);
293 			if (got < offset)
294 				break;
295 			got -= offset;
296 
297 			/* Include the NUL if it existed */
298 			if (got < size)
299 				got++;
300 		}
301 
302 		got -= copy_to_user(buf, page+offset, got);
303 		if (unlikely(!got)) {
304 			if (!len)
305 				len = -EFAULT;
306 			break;
307 		}
308 		pos += got;
309 		buf += got;
310 		len += got;
311 		count -= got;
312 	}
313 
314 	free_page((unsigned long)page);
315 	return len;
316 }
317 
318 static ssize_t get_task_cmdline(struct task_struct *tsk, char __user *buf,
319 				size_t count, loff_t *pos)
320 {
321 	struct mm_struct *mm;
322 	ssize_t ret;
323 
324 	mm = get_task_mm(tsk);
325 	if (!mm)
326 		return 0;
327 
328 	ret = get_mm_cmdline(mm, buf, count, pos);
329 	mmput(mm);
330 	return ret;
331 }
332 
333 static ssize_t proc_pid_cmdline_read(struct file *file, char __user *buf,
334 				     size_t count, loff_t *pos)
335 {
336 	struct task_struct *tsk;
337 	ssize_t ret;
338 
339 	BUG_ON(*pos < 0);
340 
341 	tsk = get_proc_task(file_inode(file));
342 	if (!tsk)
343 		return -ESRCH;
344 	ret = get_task_cmdline(tsk, buf, count, pos);
345 	put_task_struct(tsk);
346 	if (ret > 0)
347 		*pos += ret;
348 	return ret;
349 }
350 
351 static const struct file_operations proc_pid_cmdline_ops = {
352 	.read	= proc_pid_cmdline_read,
353 	.llseek	= generic_file_llseek,
354 };
355 
356 #ifdef CONFIG_KALLSYMS
357 /*
358  * Provides a wchan file via kallsyms in a proper one-value-per-file format.
359  * Returns the resolved symbol.  If that fails, simply return the address.
360  */
361 static int proc_pid_wchan(struct seq_file *m, struct pid_namespace *ns,
362 			  struct pid *pid, struct task_struct *task)
363 {
364 	unsigned long wchan;
365 	char symname[KSYM_NAME_LEN];
366 
367 	if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS))
368 		goto print0;
369 
370 	wchan = get_wchan(task);
371 	if (wchan && !lookup_symbol_name(wchan, symname)) {
372 		seq_puts(m, symname);
373 		return 0;
374 	}
375 
376 print0:
377 	seq_putc(m, '0');
378 	return 0;
379 }
380 #endif /* CONFIG_KALLSYMS */
381 
382 static int lock_trace(struct task_struct *task)
383 {
384 	int err = mutex_lock_killable(&task->signal->cred_guard_mutex);
385 	if (err)
386 		return err;
387 	if (!ptrace_may_access(task, PTRACE_MODE_ATTACH_FSCREDS)) {
388 		mutex_unlock(&task->signal->cred_guard_mutex);
389 		return -EPERM;
390 	}
391 	return 0;
392 }
393 
394 static void unlock_trace(struct task_struct *task)
395 {
396 	mutex_unlock(&task->signal->cred_guard_mutex);
397 }
398 
399 #ifdef CONFIG_STACKTRACE
400 
401 #define MAX_STACK_TRACE_DEPTH	64
402 
403 static int proc_pid_stack(struct seq_file *m, struct pid_namespace *ns,
404 			  struct pid *pid, struct task_struct *task)
405 {
406 	struct stack_trace trace;
407 	unsigned long *entries;
408 	int err;
409 
410 	entries = kmalloc_array(MAX_STACK_TRACE_DEPTH, sizeof(*entries),
411 				GFP_KERNEL);
412 	if (!entries)
413 		return -ENOMEM;
414 
415 	trace.nr_entries	= 0;
416 	trace.max_entries	= MAX_STACK_TRACE_DEPTH;
417 	trace.entries		= entries;
418 	trace.skip		= 0;
419 
420 	err = lock_trace(task);
421 	if (!err) {
422 		unsigned int i;
423 
424 		save_stack_trace_tsk(task, &trace);
425 
426 		for (i = 0; i < trace.nr_entries; i++) {
427 			seq_printf(m, "[<0>] %pB\n", (void *)entries[i]);
428 		}
429 		unlock_trace(task);
430 	}
431 	kfree(entries);
432 
433 	return err;
434 }
435 #endif
436 
437 #ifdef CONFIG_SCHED_INFO
438 /*
439  * Provides /proc/PID/schedstat
440  */
441 static int proc_pid_schedstat(struct seq_file *m, struct pid_namespace *ns,
442 			      struct pid *pid, struct task_struct *task)
443 {
444 	if (unlikely(!sched_info_on()))
445 		seq_printf(m, "0 0 0\n");
446 	else
447 		seq_printf(m, "%llu %llu %lu\n",
448 		   (unsigned long long)task->se.sum_exec_runtime,
449 		   (unsigned long long)task->sched_info.run_delay,
450 		   task->sched_info.pcount);
451 
452 	return 0;
453 }
454 #endif
455 
456 #ifdef CONFIG_LATENCYTOP
457 static int lstats_show_proc(struct seq_file *m, void *v)
458 {
459 	int i;
460 	struct inode *inode = m->private;
461 	struct task_struct *task = get_proc_task(inode);
462 
463 	if (!task)
464 		return -ESRCH;
465 	seq_puts(m, "Latency Top version : v0.1\n");
466 	for (i = 0; i < LT_SAVECOUNT; i++) {
467 		struct latency_record *lr = &task->latency_record[i];
468 		if (lr->backtrace[0]) {
469 			int q;
470 			seq_printf(m, "%i %li %li",
471 				   lr->count, lr->time, lr->max);
472 			for (q = 0; q < LT_BACKTRACEDEPTH; q++) {
473 				unsigned long bt = lr->backtrace[q];
474 				if (!bt)
475 					break;
476 				if (bt == ULONG_MAX)
477 					break;
478 				seq_printf(m, " %ps", (void *)bt);
479 			}
480 			seq_putc(m, '\n');
481 		}
482 
483 	}
484 	put_task_struct(task);
485 	return 0;
486 }
487 
488 static int lstats_open(struct inode *inode, struct file *file)
489 {
490 	return single_open(file, lstats_show_proc, inode);
491 }
492 
493 static ssize_t lstats_write(struct file *file, const char __user *buf,
494 			    size_t count, loff_t *offs)
495 {
496 	struct task_struct *task = get_proc_task(file_inode(file));
497 
498 	if (!task)
499 		return -ESRCH;
500 	clear_all_latency_tracing(task);
501 	put_task_struct(task);
502 
503 	return count;
504 }
505 
506 static const struct file_operations proc_lstats_operations = {
507 	.open		= lstats_open,
508 	.read		= seq_read,
509 	.write		= lstats_write,
510 	.llseek		= seq_lseek,
511 	.release	= single_release,
512 };
513 
514 #endif
515 
516 static int proc_oom_score(struct seq_file *m, struct pid_namespace *ns,
517 			  struct pid *pid, struct task_struct *task)
518 {
519 	unsigned long totalpages = totalram_pages + total_swap_pages;
520 	unsigned long points = 0;
521 
522 	points = oom_badness(task, NULL, NULL, totalpages) *
523 					1000 / totalpages;
524 	seq_printf(m, "%lu\n", points);
525 
526 	return 0;
527 }
528 
529 struct limit_names {
530 	const char *name;
531 	const char *unit;
532 };
533 
534 static const struct limit_names lnames[RLIM_NLIMITS] = {
535 	[RLIMIT_CPU] = {"Max cpu time", "seconds"},
536 	[RLIMIT_FSIZE] = {"Max file size", "bytes"},
537 	[RLIMIT_DATA] = {"Max data size", "bytes"},
538 	[RLIMIT_STACK] = {"Max stack size", "bytes"},
539 	[RLIMIT_CORE] = {"Max core file size", "bytes"},
540 	[RLIMIT_RSS] = {"Max resident set", "bytes"},
541 	[RLIMIT_NPROC] = {"Max processes", "processes"},
542 	[RLIMIT_NOFILE] = {"Max open files", "files"},
543 	[RLIMIT_MEMLOCK] = {"Max locked memory", "bytes"},
544 	[RLIMIT_AS] = {"Max address space", "bytes"},
545 	[RLIMIT_LOCKS] = {"Max file locks", "locks"},
546 	[RLIMIT_SIGPENDING] = {"Max pending signals", "signals"},
547 	[RLIMIT_MSGQUEUE] = {"Max msgqueue size", "bytes"},
548 	[RLIMIT_NICE] = {"Max nice priority", NULL},
549 	[RLIMIT_RTPRIO] = {"Max realtime priority", NULL},
550 	[RLIMIT_RTTIME] = {"Max realtime timeout", "us"},
551 };
552 
553 /* Display limits for a process */
554 static int proc_pid_limits(struct seq_file *m, struct pid_namespace *ns,
555 			   struct pid *pid, struct task_struct *task)
556 {
557 	unsigned int i;
558 	unsigned long flags;
559 
560 	struct rlimit rlim[RLIM_NLIMITS];
561 
562 	if (!lock_task_sighand(task, &flags))
563 		return 0;
564 	memcpy(rlim, task->signal->rlim, sizeof(struct rlimit) * RLIM_NLIMITS);
565 	unlock_task_sighand(task, &flags);
566 
567 	/*
568 	 * print the file header
569 	 */
570        seq_printf(m, "%-25s %-20s %-20s %-10s\n",
571 		  "Limit", "Soft Limit", "Hard Limit", "Units");
572 
573 	for (i = 0; i < RLIM_NLIMITS; i++) {
574 		if (rlim[i].rlim_cur == RLIM_INFINITY)
575 			seq_printf(m, "%-25s %-20s ",
576 				   lnames[i].name, "unlimited");
577 		else
578 			seq_printf(m, "%-25s %-20lu ",
579 				   lnames[i].name, rlim[i].rlim_cur);
580 
581 		if (rlim[i].rlim_max == RLIM_INFINITY)
582 			seq_printf(m, "%-20s ", "unlimited");
583 		else
584 			seq_printf(m, "%-20lu ", rlim[i].rlim_max);
585 
586 		if (lnames[i].unit)
587 			seq_printf(m, "%-10s\n", lnames[i].unit);
588 		else
589 			seq_putc(m, '\n');
590 	}
591 
592 	return 0;
593 }
594 
595 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK
596 static int proc_pid_syscall(struct seq_file *m, struct pid_namespace *ns,
597 			    struct pid *pid, struct task_struct *task)
598 {
599 	long nr;
600 	unsigned long args[6], sp, pc;
601 	int res;
602 
603 	res = lock_trace(task);
604 	if (res)
605 		return res;
606 
607 	if (task_current_syscall(task, &nr, args, 6, &sp, &pc))
608 		seq_puts(m, "running\n");
609 	else if (nr < 0)
610 		seq_printf(m, "%ld 0x%lx 0x%lx\n", nr, sp, pc);
611 	else
612 		seq_printf(m,
613 		       "%ld 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx\n",
614 		       nr,
615 		       args[0], args[1], args[2], args[3], args[4], args[5],
616 		       sp, pc);
617 	unlock_trace(task);
618 
619 	return 0;
620 }
621 #endif /* CONFIG_HAVE_ARCH_TRACEHOOK */
622 
623 /************************************************************************/
624 /*                       Here the fs part begins                        */
625 /************************************************************************/
626 
627 /* permission checks */
628 static int proc_fd_access_allowed(struct inode *inode)
629 {
630 	struct task_struct *task;
631 	int allowed = 0;
632 	/* Allow access to a task's file descriptors if it is us or we
633 	 * may use ptrace attach to the process and find out that
634 	 * information.
635 	 */
636 	task = get_proc_task(inode);
637 	if (task) {
638 		allowed = ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS);
639 		put_task_struct(task);
640 	}
641 	return allowed;
642 }
643 
644 int proc_setattr(struct dentry *dentry, struct iattr *attr)
645 {
646 	int error;
647 	struct inode *inode = d_inode(dentry);
648 
649 	if (attr->ia_valid & ATTR_MODE)
650 		return -EPERM;
651 
652 	error = setattr_prepare(dentry, attr);
653 	if (error)
654 		return error;
655 
656 	setattr_copy(inode, attr);
657 	mark_inode_dirty(inode);
658 	return 0;
659 }
660 
661 /*
662  * May current process learn task's sched/cmdline info (for hide_pid_min=1)
663  * or euid/egid (for hide_pid_min=2)?
664  */
665 static bool has_pid_permissions(struct pid_namespace *pid,
666 				 struct task_struct *task,
667 				 int hide_pid_min)
668 {
669 	if (pid->hide_pid < hide_pid_min)
670 		return true;
671 	if (in_group_p(pid->pid_gid))
672 		return true;
673 	return ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS);
674 }
675 
676 
677 static int proc_pid_permission(struct inode *inode, int mask)
678 {
679 	struct pid_namespace *pid = proc_pid_ns(inode);
680 	struct task_struct *task;
681 	bool has_perms;
682 
683 	task = get_proc_task(inode);
684 	if (!task)
685 		return -ESRCH;
686 	has_perms = has_pid_permissions(pid, task, HIDEPID_NO_ACCESS);
687 	put_task_struct(task);
688 
689 	if (!has_perms) {
690 		if (pid->hide_pid == HIDEPID_INVISIBLE) {
691 			/*
692 			 * Let's make getdents(), stat(), and open()
693 			 * consistent with each other.  If a process
694 			 * may not stat() a file, it shouldn't be seen
695 			 * in procfs at all.
696 			 */
697 			return -ENOENT;
698 		}
699 
700 		return -EPERM;
701 	}
702 	return generic_permission(inode, mask);
703 }
704 
705 
706 
707 static const struct inode_operations proc_def_inode_operations = {
708 	.setattr	= proc_setattr,
709 };
710 
711 static int proc_single_show(struct seq_file *m, void *v)
712 {
713 	struct inode *inode = m->private;
714 	struct pid_namespace *ns = proc_pid_ns(inode);
715 	struct pid *pid = proc_pid(inode);
716 	struct task_struct *task;
717 	int ret;
718 
719 	task = get_pid_task(pid, PIDTYPE_PID);
720 	if (!task)
721 		return -ESRCH;
722 
723 	ret = PROC_I(inode)->op.proc_show(m, ns, pid, task);
724 
725 	put_task_struct(task);
726 	return ret;
727 }
728 
729 static int proc_single_open(struct inode *inode, struct file *filp)
730 {
731 	return single_open(filp, proc_single_show, inode);
732 }
733 
734 static const struct file_operations proc_single_file_operations = {
735 	.open		= proc_single_open,
736 	.read		= seq_read,
737 	.llseek		= seq_lseek,
738 	.release	= single_release,
739 };
740 
741 
742 struct mm_struct *proc_mem_open(struct inode *inode, unsigned int mode)
743 {
744 	struct task_struct *task = get_proc_task(inode);
745 	struct mm_struct *mm = ERR_PTR(-ESRCH);
746 
747 	if (task) {
748 		mm = mm_access(task, mode | PTRACE_MODE_FSCREDS);
749 		put_task_struct(task);
750 
751 		if (!IS_ERR_OR_NULL(mm)) {
752 			/* ensure this mm_struct can't be freed */
753 			mmgrab(mm);
754 			/* but do not pin its memory */
755 			mmput(mm);
756 		}
757 	}
758 
759 	return mm;
760 }
761 
762 static int __mem_open(struct inode *inode, struct file *file, unsigned int mode)
763 {
764 	struct mm_struct *mm = proc_mem_open(inode, mode);
765 
766 	if (IS_ERR(mm))
767 		return PTR_ERR(mm);
768 
769 	file->private_data = mm;
770 	return 0;
771 }
772 
773 static int mem_open(struct inode *inode, struct file *file)
774 {
775 	int ret = __mem_open(inode, file, PTRACE_MODE_ATTACH);
776 
777 	/* OK to pass negative loff_t, we can catch out-of-range */
778 	file->f_mode |= FMODE_UNSIGNED_OFFSET;
779 
780 	return ret;
781 }
782 
783 static ssize_t mem_rw(struct file *file, char __user *buf,
784 			size_t count, loff_t *ppos, int write)
785 {
786 	struct mm_struct *mm = file->private_data;
787 	unsigned long addr = *ppos;
788 	ssize_t copied;
789 	char *page;
790 	unsigned int flags;
791 
792 	if (!mm)
793 		return 0;
794 
795 	page = (char *)__get_free_page(GFP_KERNEL);
796 	if (!page)
797 		return -ENOMEM;
798 
799 	copied = 0;
800 	if (!mmget_not_zero(mm))
801 		goto free;
802 
803 	flags = FOLL_FORCE | (write ? FOLL_WRITE : 0);
804 
805 	while (count > 0) {
806 		int this_len = min_t(int, count, PAGE_SIZE);
807 
808 		if (write && copy_from_user(page, buf, this_len)) {
809 			copied = -EFAULT;
810 			break;
811 		}
812 
813 		this_len = access_remote_vm(mm, addr, page, this_len, flags);
814 		if (!this_len) {
815 			if (!copied)
816 				copied = -EIO;
817 			break;
818 		}
819 
820 		if (!write && copy_to_user(buf, page, this_len)) {
821 			copied = -EFAULT;
822 			break;
823 		}
824 
825 		buf += this_len;
826 		addr += this_len;
827 		copied += this_len;
828 		count -= this_len;
829 	}
830 	*ppos = addr;
831 
832 	mmput(mm);
833 free:
834 	free_page((unsigned long) page);
835 	return copied;
836 }
837 
838 static ssize_t mem_read(struct file *file, char __user *buf,
839 			size_t count, loff_t *ppos)
840 {
841 	return mem_rw(file, buf, count, ppos, 0);
842 }
843 
844 static ssize_t mem_write(struct file *file, const char __user *buf,
845 			 size_t count, loff_t *ppos)
846 {
847 	return mem_rw(file, (char __user*)buf, count, ppos, 1);
848 }
849 
850 loff_t mem_lseek(struct file *file, loff_t offset, int orig)
851 {
852 	switch (orig) {
853 	case 0:
854 		file->f_pos = offset;
855 		break;
856 	case 1:
857 		file->f_pos += offset;
858 		break;
859 	default:
860 		return -EINVAL;
861 	}
862 	force_successful_syscall_return();
863 	return file->f_pos;
864 }
865 
866 static int mem_release(struct inode *inode, struct file *file)
867 {
868 	struct mm_struct *mm = file->private_data;
869 	if (mm)
870 		mmdrop(mm);
871 	return 0;
872 }
873 
874 static const struct file_operations proc_mem_operations = {
875 	.llseek		= mem_lseek,
876 	.read		= mem_read,
877 	.write		= mem_write,
878 	.open		= mem_open,
879 	.release	= mem_release,
880 };
881 
882 static int environ_open(struct inode *inode, struct file *file)
883 {
884 	return __mem_open(inode, file, PTRACE_MODE_READ);
885 }
886 
887 static ssize_t environ_read(struct file *file, char __user *buf,
888 			size_t count, loff_t *ppos)
889 {
890 	char *page;
891 	unsigned long src = *ppos;
892 	int ret = 0;
893 	struct mm_struct *mm = file->private_data;
894 	unsigned long env_start, env_end;
895 
896 	/* Ensure the process spawned far enough to have an environment. */
897 	if (!mm || !mm->env_end)
898 		return 0;
899 
900 	page = (char *)__get_free_page(GFP_KERNEL);
901 	if (!page)
902 		return -ENOMEM;
903 
904 	ret = 0;
905 	if (!mmget_not_zero(mm))
906 		goto free;
907 
908 	spin_lock(&mm->arg_lock);
909 	env_start = mm->env_start;
910 	env_end = mm->env_end;
911 	spin_unlock(&mm->arg_lock);
912 
913 	while (count > 0) {
914 		size_t this_len, max_len;
915 		int retval;
916 
917 		if (src >= (env_end - env_start))
918 			break;
919 
920 		this_len = env_end - (env_start + src);
921 
922 		max_len = min_t(size_t, PAGE_SIZE, count);
923 		this_len = min(max_len, this_len);
924 
925 		retval = access_remote_vm(mm, (env_start + src), page, this_len, FOLL_ANON);
926 
927 		if (retval <= 0) {
928 			ret = retval;
929 			break;
930 		}
931 
932 		if (copy_to_user(buf, page, retval)) {
933 			ret = -EFAULT;
934 			break;
935 		}
936 
937 		ret += retval;
938 		src += retval;
939 		buf += retval;
940 		count -= retval;
941 	}
942 	*ppos = src;
943 	mmput(mm);
944 
945 free:
946 	free_page((unsigned long) page);
947 	return ret;
948 }
949 
950 static const struct file_operations proc_environ_operations = {
951 	.open		= environ_open,
952 	.read		= environ_read,
953 	.llseek		= generic_file_llseek,
954 	.release	= mem_release,
955 };
956 
957 static int auxv_open(struct inode *inode, struct file *file)
958 {
959 	return __mem_open(inode, file, PTRACE_MODE_READ_FSCREDS);
960 }
961 
962 static ssize_t auxv_read(struct file *file, char __user *buf,
963 			size_t count, loff_t *ppos)
964 {
965 	struct mm_struct *mm = file->private_data;
966 	unsigned int nwords = 0;
967 
968 	if (!mm)
969 		return 0;
970 	do {
971 		nwords += 2;
972 	} while (mm->saved_auxv[nwords - 2] != 0); /* AT_NULL */
973 	return simple_read_from_buffer(buf, count, ppos, mm->saved_auxv,
974 				       nwords * sizeof(mm->saved_auxv[0]));
975 }
976 
977 static const struct file_operations proc_auxv_operations = {
978 	.open		= auxv_open,
979 	.read		= auxv_read,
980 	.llseek		= generic_file_llseek,
981 	.release	= mem_release,
982 };
983 
984 static ssize_t oom_adj_read(struct file *file, char __user *buf, size_t count,
985 			    loff_t *ppos)
986 {
987 	struct task_struct *task = get_proc_task(file_inode(file));
988 	char buffer[PROC_NUMBUF];
989 	int oom_adj = OOM_ADJUST_MIN;
990 	size_t len;
991 
992 	if (!task)
993 		return -ESRCH;
994 	if (task->signal->oom_score_adj == OOM_SCORE_ADJ_MAX)
995 		oom_adj = OOM_ADJUST_MAX;
996 	else
997 		oom_adj = (task->signal->oom_score_adj * -OOM_DISABLE) /
998 			  OOM_SCORE_ADJ_MAX;
999 	put_task_struct(task);
1000 	len = snprintf(buffer, sizeof(buffer), "%d\n", oom_adj);
1001 	return simple_read_from_buffer(buf, count, ppos, buffer, len);
1002 }
1003 
1004 static int __set_oom_adj(struct file *file, int oom_adj, bool legacy)
1005 {
1006 	static DEFINE_MUTEX(oom_adj_mutex);
1007 	struct mm_struct *mm = NULL;
1008 	struct task_struct *task;
1009 	int err = 0;
1010 
1011 	task = get_proc_task(file_inode(file));
1012 	if (!task)
1013 		return -ESRCH;
1014 
1015 	mutex_lock(&oom_adj_mutex);
1016 	if (legacy) {
1017 		if (oom_adj < task->signal->oom_score_adj &&
1018 				!capable(CAP_SYS_RESOURCE)) {
1019 			err = -EACCES;
1020 			goto err_unlock;
1021 		}
1022 		/*
1023 		 * /proc/pid/oom_adj is provided for legacy purposes, ask users to use
1024 		 * /proc/pid/oom_score_adj instead.
1025 		 */
1026 		pr_warn_once("%s (%d): /proc/%d/oom_adj is deprecated, please use /proc/%d/oom_score_adj instead.\n",
1027 			  current->comm, task_pid_nr(current), task_pid_nr(task),
1028 			  task_pid_nr(task));
1029 	} else {
1030 		if ((short)oom_adj < task->signal->oom_score_adj_min &&
1031 				!capable(CAP_SYS_RESOURCE)) {
1032 			err = -EACCES;
1033 			goto err_unlock;
1034 		}
1035 	}
1036 
1037 	/*
1038 	 * Make sure we will check other processes sharing the mm if this is
1039 	 * not vfrok which wants its own oom_score_adj.
1040 	 * pin the mm so it doesn't go away and get reused after task_unlock
1041 	 */
1042 	if (!task->vfork_done) {
1043 		struct task_struct *p = find_lock_task_mm(task);
1044 
1045 		if (p) {
1046 			if (atomic_read(&p->mm->mm_users) > 1) {
1047 				mm = p->mm;
1048 				mmgrab(mm);
1049 			}
1050 			task_unlock(p);
1051 		}
1052 	}
1053 
1054 	task->signal->oom_score_adj = oom_adj;
1055 	if (!legacy && has_capability_noaudit(current, CAP_SYS_RESOURCE))
1056 		task->signal->oom_score_adj_min = (short)oom_adj;
1057 	trace_oom_score_adj_update(task);
1058 
1059 	if (mm) {
1060 		struct task_struct *p;
1061 
1062 		rcu_read_lock();
1063 		for_each_process(p) {
1064 			if (same_thread_group(task, p))
1065 				continue;
1066 
1067 			/* do not touch kernel threads or the global init */
1068 			if (p->flags & PF_KTHREAD || is_global_init(p))
1069 				continue;
1070 
1071 			task_lock(p);
1072 			if (!p->vfork_done && process_shares_mm(p, mm)) {
1073 				pr_info("updating oom_score_adj for %d (%s) from %d to %d because it shares mm with %d (%s). Report if this is unexpected.\n",
1074 						task_pid_nr(p), p->comm,
1075 						p->signal->oom_score_adj, oom_adj,
1076 						task_pid_nr(task), task->comm);
1077 				p->signal->oom_score_adj = oom_adj;
1078 				if (!legacy && has_capability_noaudit(current, CAP_SYS_RESOURCE))
1079 					p->signal->oom_score_adj_min = (short)oom_adj;
1080 			}
1081 			task_unlock(p);
1082 		}
1083 		rcu_read_unlock();
1084 		mmdrop(mm);
1085 	}
1086 err_unlock:
1087 	mutex_unlock(&oom_adj_mutex);
1088 	put_task_struct(task);
1089 	return err;
1090 }
1091 
1092 /*
1093  * /proc/pid/oom_adj exists solely for backwards compatibility with previous
1094  * kernels.  The effective policy is defined by oom_score_adj, which has a
1095  * different scale: oom_adj grew exponentially and oom_score_adj grows linearly.
1096  * Values written to oom_adj are simply mapped linearly to oom_score_adj.
1097  * Processes that become oom disabled via oom_adj will still be oom disabled
1098  * with this implementation.
1099  *
1100  * oom_adj cannot be removed since existing userspace binaries use it.
1101  */
1102 static ssize_t oom_adj_write(struct file *file, const char __user *buf,
1103 			     size_t count, loff_t *ppos)
1104 {
1105 	char buffer[PROC_NUMBUF];
1106 	int oom_adj;
1107 	int err;
1108 
1109 	memset(buffer, 0, sizeof(buffer));
1110 	if (count > sizeof(buffer) - 1)
1111 		count = sizeof(buffer) - 1;
1112 	if (copy_from_user(buffer, buf, count)) {
1113 		err = -EFAULT;
1114 		goto out;
1115 	}
1116 
1117 	err = kstrtoint(strstrip(buffer), 0, &oom_adj);
1118 	if (err)
1119 		goto out;
1120 	if ((oom_adj < OOM_ADJUST_MIN || oom_adj > OOM_ADJUST_MAX) &&
1121 	     oom_adj != OOM_DISABLE) {
1122 		err = -EINVAL;
1123 		goto out;
1124 	}
1125 
1126 	/*
1127 	 * Scale /proc/pid/oom_score_adj appropriately ensuring that a maximum
1128 	 * value is always attainable.
1129 	 */
1130 	if (oom_adj == OOM_ADJUST_MAX)
1131 		oom_adj = OOM_SCORE_ADJ_MAX;
1132 	else
1133 		oom_adj = (oom_adj * OOM_SCORE_ADJ_MAX) / -OOM_DISABLE;
1134 
1135 	err = __set_oom_adj(file, oom_adj, true);
1136 out:
1137 	return err < 0 ? err : count;
1138 }
1139 
1140 static const struct file_operations proc_oom_adj_operations = {
1141 	.read		= oom_adj_read,
1142 	.write		= oom_adj_write,
1143 	.llseek		= generic_file_llseek,
1144 };
1145 
1146 static ssize_t oom_score_adj_read(struct file *file, char __user *buf,
1147 					size_t count, loff_t *ppos)
1148 {
1149 	struct task_struct *task = get_proc_task(file_inode(file));
1150 	char buffer[PROC_NUMBUF];
1151 	short oom_score_adj = OOM_SCORE_ADJ_MIN;
1152 	size_t len;
1153 
1154 	if (!task)
1155 		return -ESRCH;
1156 	oom_score_adj = task->signal->oom_score_adj;
1157 	put_task_struct(task);
1158 	len = snprintf(buffer, sizeof(buffer), "%hd\n", oom_score_adj);
1159 	return simple_read_from_buffer(buf, count, ppos, buffer, len);
1160 }
1161 
1162 static ssize_t oom_score_adj_write(struct file *file, const char __user *buf,
1163 					size_t count, loff_t *ppos)
1164 {
1165 	char buffer[PROC_NUMBUF];
1166 	int oom_score_adj;
1167 	int err;
1168 
1169 	memset(buffer, 0, sizeof(buffer));
1170 	if (count > sizeof(buffer) - 1)
1171 		count = sizeof(buffer) - 1;
1172 	if (copy_from_user(buffer, buf, count)) {
1173 		err = -EFAULT;
1174 		goto out;
1175 	}
1176 
1177 	err = kstrtoint(strstrip(buffer), 0, &oom_score_adj);
1178 	if (err)
1179 		goto out;
1180 	if (oom_score_adj < OOM_SCORE_ADJ_MIN ||
1181 			oom_score_adj > OOM_SCORE_ADJ_MAX) {
1182 		err = -EINVAL;
1183 		goto out;
1184 	}
1185 
1186 	err = __set_oom_adj(file, oom_score_adj, false);
1187 out:
1188 	return err < 0 ? err : count;
1189 }
1190 
1191 static const struct file_operations proc_oom_score_adj_operations = {
1192 	.read		= oom_score_adj_read,
1193 	.write		= oom_score_adj_write,
1194 	.llseek		= default_llseek,
1195 };
1196 
1197 #ifdef CONFIG_AUDITSYSCALL
1198 #define TMPBUFLEN 11
1199 static ssize_t proc_loginuid_read(struct file * file, char __user * buf,
1200 				  size_t count, loff_t *ppos)
1201 {
1202 	struct inode * inode = file_inode(file);
1203 	struct task_struct *task = get_proc_task(inode);
1204 	ssize_t length;
1205 	char tmpbuf[TMPBUFLEN];
1206 
1207 	if (!task)
1208 		return -ESRCH;
1209 	length = scnprintf(tmpbuf, TMPBUFLEN, "%u",
1210 			   from_kuid(file->f_cred->user_ns,
1211 				     audit_get_loginuid(task)));
1212 	put_task_struct(task);
1213 	return simple_read_from_buffer(buf, count, ppos, tmpbuf, length);
1214 }
1215 
1216 static ssize_t proc_loginuid_write(struct file * file, const char __user * buf,
1217 				   size_t count, loff_t *ppos)
1218 {
1219 	struct inode * inode = file_inode(file);
1220 	uid_t loginuid;
1221 	kuid_t kloginuid;
1222 	int rv;
1223 
1224 	rcu_read_lock();
1225 	if (current != pid_task(proc_pid(inode), PIDTYPE_PID)) {
1226 		rcu_read_unlock();
1227 		return -EPERM;
1228 	}
1229 	rcu_read_unlock();
1230 
1231 	if (*ppos != 0) {
1232 		/* No partial writes. */
1233 		return -EINVAL;
1234 	}
1235 
1236 	rv = kstrtou32_from_user(buf, count, 10, &loginuid);
1237 	if (rv < 0)
1238 		return rv;
1239 
1240 	/* is userspace tring to explicitly UNSET the loginuid? */
1241 	if (loginuid == AUDIT_UID_UNSET) {
1242 		kloginuid = INVALID_UID;
1243 	} else {
1244 		kloginuid = make_kuid(file->f_cred->user_ns, loginuid);
1245 		if (!uid_valid(kloginuid))
1246 			return -EINVAL;
1247 	}
1248 
1249 	rv = audit_set_loginuid(kloginuid);
1250 	if (rv < 0)
1251 		return rv;
1252 	return count;
1253 }
1254 
1255 static const struct file_operations proc_loginuid_operations = {
1256 	.read		= proc_loginuid_read,
1257 	.write		= proc_loginuid_write,
1258 	.llseek		= generic_file_llseek,
1259 };
1260 
1261 static ssize_t proc_sessionid_read(struct file * file, char __user * buf,
1262 				  size_t count, loff_t *ppos)
1263 {
1264 	struct inode * inode = file_inode(file);
1265 	struct task_struct *task = get_proc_task(inode);
1266 	ssize_t length;
1267 	char tmpbuf[TMPBUFLEN];
1268 
1269 	if (!task)
1270 		return -ESRCH;
1271 	length = scnprintf(tmpbuf, TMPBUFLEN, "%u",
1272 				audit_get_sessionid(task));
1273 	put_task_struct(task);
1274 	return simple_read_from_buffer(buf, count, ppos, tmpbuf, length);
1275 }
1276 
1277 static const struct file_operations proc_sessionid_operations = {
1278 	.read		= proc_sessionid_read,
1279 	.llseek		= generic_file_llseek,
1280 };
1281 #endif
1282 
1283 #ifdef CONFIG_FAULT_INJECTION
1284 static ssize_t proc_fault_inject_read(struct file * file, char __user * buf,
1285 				      size_t count, loff_t *ppos)
1286 {
1287 	struct task_struct *task = get_proc_task(file_inode(file));
1288 	char buffer[PROC_NUMBUF];
1289 	size_t len;
1290 	int make_it_fail;
1291 
1292 	if (!task)
1293 		return -ESRCH;
1294 	make_it_fail = task->make_it_fail;
1295 	put_task_struct(task);
1296 
1297 	len = snprintf(buffer, sizeof(buffer), "%i\n", make_it_fail);
1298 
1299 	return simple_read_from_buffer(buf, count, ppos, buffer, len);
1300 }
1301 
1302 static ssize_t proc_fault_inject_write(struct file * file,
1303 			const char __user * buf, size_t count, loff_t *ppos)
1304 {
1305 	struct task_struct *task;
1306 	char buffer[PROC_NUMBUF];
1307 	int make_it_fail;
1308 	int rv;
1309 
1310 	if (!capable(CAP_SYS_RESOURCE))
1311 		return -EPERM;
1312 	memset(buffer, 0, sizeof(buffer));
1313 	if (count > sizeof(buffer) - 1)
1314 		count = sizeof(buffer) - 1;
1315 	if (copy_from_user(buffer, buf, count))
1316 		return -EFAULT;
1317 	rv = kstrtoint(strstrip(buffer), 0, &make_it_fail);
1318 	if (rv < 0)
1319 		return rv;
1320 	if (make_it_fail < 0 || make_it_fail > 1)
1321 		return -EINVAL;
1322 
1323 	task = get_proc_task(file_inode(file));
1324 	if (!task)
1325 		return -ESRCH;
1326 	task->make_it_fail = make_it_fail;
1327 	put_task_struct(task);
1328 
1329 	return count;
1330 }
1331 
1332 static const struct file_operations proc_fault_inject_operations = {
1333 	.read		= proc_fault_inject_read,
1334 	.write		= proc_fault_inject_write,
1335 	.llseek		= generic_file_llseek,
1336 };
1337 
1338 static ssize_t proc_fail_nth_write(struct file *file, const char __user *buf,
1339 				   size_t count, loff_t *ppos)
1340 {
1341 	struct task_struct *task;
1342 	int err;
1343 	unsigned int n;
1344 
1345 	err = kstrtouint_from_user(buf, count, 0, &n);
1346 	if (err)
1347 		return err;
1348 
1349 	task = get_proc_task(file_inode(file));
1350 	if (!task)
1351 		return -ESRCH;
1352 	task->fail_nth = n;
1353 	put_task_struct(task);
1354 
1355 	return count;
1356 }
1357 
1358 static ssize_t proc_fail_nth_read(struct file *file, char __user *buf,
1359 				  size_t count, loff_t *ppos)
1360 {
1361 	struct task_struct *task;
1362 	char numbuf[PROC_NUMBUF];
1363 	ssize_t len;
1364 
1365 	task = get_proc_task(file_inode(file));
1366 	if (!task)
1367 		return -ESRCH;
1368 	len = snprintf(numbuf, sizeof(numbuf), "%u\n", task->fail_nth);
1369 	put_task_struct(task);
1370 	return simple_read_from_buffer(buf, count, ppos, numbuf, len);
1371 }
1372 
1373 static const struct file_operations proc_fail_nth_operations = {
1374 	.read		= proc_fail_nth_read,
1375 	.write		= proc_fail_nth_write,
1376 };
1377 #endif
1378 
1379 
1380 #ifdef CONFIG_SCHED_DEBUG
1381 /*
1382  * Print out various scheduling related per-task fields:
1383  */
1384 static int sched_show(struct seq_file *m, void *v)
1385 {
1386 	struct inode *inode = m->private;
1387 	struct pid_namespace *ns = proc_pid_ns(inode);
1388 	struct task_struct *p;
1389 
1390 	p = get_proc_task(inode);
1391 	if (!p)
1392 		return -ESRCH;
1393 	proc_sched_show_task(p, ns, m);
1394 
1395 	put_task_struct(p);
1396 
1397 	return 0;
1398 }
1399 
1400 static ssize_t
1401 sched_write(struct file *file, const char __user *buf,
1402 	    size_t count, loff_t *offset)
1403 {
1404 	struct inode *inode = file_inode(file);
1405 	struct task_struct *p;
1406 
1407 	p = get_proc_task(inode);
1408 	if (!p)
1409 		return -ESRCH;
1410 	proc_sched_set_task(p);
1411 
1412 	put_task_struct(p);
1413 
1414 	return count;
1415 }
1416 
1417 static int sched_open(struct inode *inode, struct file *filp)
1418 {
1419 	return single_open(filp, sched_show, inode);
1420 }
1421 
1422 static const struct file_operations proc_pid_sched_operations = {
1423 	.open		= sched_open,
1424 	.read		= seq_read,
1425 	.write		= sched_write,
1426 	.llseek		= seq_lseek,
1427 	.release	= single_release,
1428 };
1429 
1430 #endif
1431 
1432 #ifdef CONFIG_SCHED_AUTOGROUP
1433 /*
1434  * Print out autogroup related information:
1435  */
1436 static int sched_autogroup_show(struct seq_file *m, void *v)
1437 {
1438 	struct inode *inode = m->private;
1439 	struct task_struct *p;
1440 
1441 	p = get_proc_task(inode);
1442 	if (!p)
1443 		return -ESRCH;
1444 	proc_sched_autogroup_show_task(p, m);
1445 
1446 	put_task_struct(p);
1447 
1448 	return 0;
1449 }
1450 
1451 static ssize_t
1452 sched_autogroup_write(struct file *file, const char __user *buf,
1453 	    size_t count, loff_t *offset)
1454 {
1455 	struct inode *inode = file_inode(file);
1456 	struct task_struct *p;
1457 	char buffer[PROC_NUMBUF];
1458 	int nice;
1459 	int err;
1460 
1461 	memset(buffer, 0, sizeof(buffer));
1462 	if (count > sizeof(buffer) - 1)
1463 		count = sizeof(buffer) - 1;
1464 	if (copy_from_user(buffer, buf, count))
1465 		return -EFAULT;
1466 
1467 	err = kstrtoint(strstrip(buffer), 0, &nice);
1468 	if (err < 0)
1469 		return err;
1470 
1471 	p = get_proc_task(inode);
1472 	if (!p)
1473 		return -ESRCH;
1474 
1475 	err = proc_sched_autogroup_set_nice(p, nice);
1476 	if (err)
1477 		count = err;
1478 
1479 	put_task_struct(p);
1480 
1481 	return count;
1482 }
1483 
1484 static int sched_autogroup_open(struct inode *inode, struct file *filp)
1485 {
1486 	int ret;
1487 
1488 	ret = single_open(filp, sched_autogroup_show, NULL);
1489 	if (!ret) {
1490 		struct seq_file *m = filp->private_data;
1491 
1492 		m->private = inode;
1493 	}
1494 	return ret;
1495 }
1496 
1497 static const struct file_operations proc_pid_sched_autogroup_operations = {
1498 	.open		= sched_autogroup_open,
1499 	.read		= seq_read,
1500 	.write		= sched_autogroup_write,
1501 	.llseek		= seq_lseek,
1502 	.release	= single_release,
1503 };
1504 
1505 #endif /* CONFIG_SCHED_AUTOGROUP */
1506 
1507 static ssize_t comm_write(struct file *file, const char __user *buf,
1508 				size_t count, loff_t *offset)
1509 {
1510 	struct inode *inode = file_inode(file);
1511 	struct task_struct *p;
1512 	char buffer[TASK_COMM_LEN];
1513 	const size_t maxlen = sizeof(buffer) - 1;
1514 
1515 	memset(buffer, 0, sizeof(buffer));
1516 	if (copy_from_user(buffer, buf, count > maxlen ? maxlen : count))
1517 		return -EFAULT;
1518 
1519 	p = get_proc_task(inode);
1520 	if (!p)
1521 		return -ESRCH;
1522 
1523 	if (same_thread_group(current, p))
1524 		set_task_comm(p, buffer);
1525 	else
1526 		count = -EINVAL;
1527 
1528 	put_task_struct(p);
1529 
1530 	return count;
1531 }
1532 
1533 static int comm_show(struct seq_file *m, void *v)
1534 {
1535 	struct inode *inode = m->private;
1536 	struct task_struct *p;
1537 
1538 	p = get_proc_task(inode);
1539 	if (!p)
1540 		return -ESRCH;
1541 
1542 	proc_task_name(m, p, false);
1543 	seq_putc(m, '\n');
1544 
1545 	put_task_struct(p);
1546 
1547 	return 0;
1548 }
1549 
1550 static int comm_open(struct inode *inode, struct file *filp)
1551 {
1552 	return single_open(filp, comm_show, inode);
1553 }
1554 
1555 static const struct file_operations proc_pid_set_comm_operations = {
1556 	.open		= comm_open,
1557 	.read		= seq_read,
1558 	.write		= comm_write,
1559 	.llseek		= seq_lseek,
1560 	.release	= single_release,
1561 };
1562 
1563 static int proc_exe_link(struct dentry *dentry, struct path *exe_path)
1564 {
1565 	struct task_struct *task;
1566 	struct file *exe_file;
1567 
1568 	task = get_proc_task(d_inode(dentry));
1569 	if (!task)
1570 		return -ENOENT;
1571 	exe_file = get_task_exe_file(task);
1572 	put_task_struct(task);
1573 	if (exe_file) {
1574 		*exe_path = exe_file->f_path;
1575 		path_get(&exe_file->f_path);
1576 		fput(exe_file);
1577 		return 0;
1578 	} else
1579 		return -ENOENT;
1580 }
1581 
1582 static const char *proc_pid_get_link(struct dentry *dentry,
1583 				     struct inode *inode,
1584 				     struct delayed_call *done)
1585 {
1586 	struct path path;
1587 	int error = -EACCES;
1588 
1589 	if (!dentry)
1590 		return ERR_PTR(-ECHILD);
1591 
1592 	/* Are we allowed to snoop on the tasks file descriptors? */
1593 	if (!proc_fd_access_allowed(inode))
1594 		goto out;
1595 
1596 	error = PROC_I(inode)->op.proc_get_link(dentry, &path);
1597 	if (error)
1598 		goto out;
1599 
1600 	nd_jump_link(&path);
1601 	return NULL;
1602 out:
1603 	return ERR_PTR(error);
1604 }
1605 
1606 static int do_proc_readlink(struct path *path, char __user *buffer, int buflen)
1607 {
1608 	char *tmp = (char *)__get_free_page(GFP_KERNEL);
1609 	char *pathname;
1610 	int len;
1611 
1612 	if (!tmp)
1613 		return -ENOMEM;
1614 
1615 	pathname = d_path(path, tmp, PAGE_SIZE);
1616 	len = PTR_ERR(pathname);
1617 	if (IS_ERR(pathname))
1618 		goto out;
1619 	len = tmp + PAGE_SIZE - 1 - pathname;
1620 
1621 	if (len > buflen)
1622 		len = buflen;
1623 	if (copy_to_user(buffer, pathname, len))
1624 		len = -EFAULT;
1625  out:
1626 	free_page((unsigned long)tmp);
1627 	return len;
1628 }
1629 
1630 static int proc_pid_readlink(struct dentry * dentry, char __user * buffer, int buflen)
1631 {
1632 	int error = -EACCES;
1633 	struct inode *inode = d_inode(dentry);
1634 	struct path path;
1635 
1636 	/* Are we allowed to snoop on the tasks file descriptors? */
1637 	if (!proc_fd_access_allowed(inode))
1638 		goto out;
1639 
1640 	error = PROC_I(inode)->op.proc_get_link(dentry, &path);
1641 	if (error)
1642 		goto out;
1643 
1644 	error = do_proc_readlink(&path, buffer, buflen);
1645 	path_put(&path);
1646 out:
1647 	return error;
1648 }
1649 
1650 const struct inode_operations proc_pid_link_inode_operations = {
1651 	.readlink	= proc_pid_readlink,
1652 	.get_link	= proc_pid_get_link,
1653 	.setattr	= proc_setattr,
1654 };
1655 
1656 
1657 /* building an inode */
1658 
1659 void task_dump_owner(struct task_struct *task, umode_t mode,
1660 		     kuid_t *ruid, kgid_t *rgid)
1661 {
1662 	/* Depending on the state of dumpable compute who should own a
1663 	 * proc file for a task.
1664 	 */
1665 	const struct cred *cred;
1666 	kuid_t uid;
1667 	kgid_t gid;
1668 
1669 	if (unlikely(task->flags & PF_KTHREAD)) {
1670 		*ruid = GLOBAL_ROOT_UID;
1671 		*rgid = GLOBAL_ROOT_GID;
1672 		return;
1673 	}
1674 
1675 	/* Default to the tasks effective ownership */
1676 	rcu_read_lock();
1677 	cred = __task_cred(task);
1678 	uid = cred->euid;
1679 	gid = cred->egid;
1680 	rcu_read_unlock();
1681 
1682 	/*
1683 	 * Before the /proc/pid/status file was created the only way to read
1684 	 * the effective uid of a /process was to stat /proc/pid.  Reading
1685 	 * /proc/pid/status is slow enough that procps and other packages
1686 	 * kept stating /proc/pid.  To keep the rules in /proc simple I have
1687 	 * made this apply to all per process world readable and executable
1688 	 * directories.
1689 	 */
1690 	if (mode != (S_IFDIR|S_IRUGO|S_IXUGO)) {
1691 		struct mm_struct *mm;
1692 		task_lock(task);
1693 		mm = task->mm;
1694 		/* Make non-dumpable tasks owned by some root */
1695 		if (mm) {
1696 			if (get_dumpable(mm) != SUID_DUMP_USER) {
1697 				struct user_namespace *user_ns = mm->user_ns;
1698 
1699 				uid = make_kuid(user_ns, 0);
1700 				if (!uid_valid(uid))
1701 					uid = GLOBAL_ROOT_UID;
1702 
1703 				gid = make_kgid(user_ns, 0);
1704 				if (!gid_valid(gid))
1705 					gid = GLOBAL_ROOT_GID;
1706 			}
1707 		} else {
1708 			uid = GLOBAL_ROOT_UID;
1709 			gid = GLOBAL_ROOT_GID;
1710 		}
1711 		task_unlock(task);
1712 	}
1713 	*ruid = uid;
1714 	*rgid = gid;
1715 }
1716 
1717 struct inode *proc_pid_make_inode(struct super_block * sb,
1718 				  struct task_struct *task, umode_t mode)
1719 {
1720 	struct inode * inode;
1721 	struct proc_inode *ei;
1722 
1723 	/* We need a new inode */
1724 
1725 	inode = new_inode(sb);
1726 	if (!inode)
1727 		goto out;
1728 
1729 	/* Common stuff */
1730 	ei = PROC_I(inode);
1731 	inode->i_mode = mode;
1732 	inode->i_ino = get_next_ino();
1733 	inode->i_mtime = inode->i_atime = inode->i_ctime = current_time(inode);
1734 	inode->i_op = &proc_def_inode_operations;
1735 
1736 	/*
1737 	 * grab the reference to task.
1738 	 */
1739 	ei->pid = get_task_pid(task, PIDTYPE_PID);
1740 	if (!ei->pid)
1741 		goto out_unlock;
1742 
1743 	task_dump_owner(task, 0, &inode->i_uid, &inode->i_gid);
1744 	security_task_to_inode(task, inode);
1745 
1746 out:
1747 	return inode;
1748 
1749 out_unlock:
1750 	iput(inode);
1751 	return NULL;
1752 }
1753 
1754 int pid_getattr(const struct path *path, struct kstat *stat,
1755 		u32 request_mask, unsigned int query_flags)
1756 {
1757 	struct inode *inode = d_inode(path->dentry);
1758 	struct pid_namespace *pid = proc_pid_ns(inode);
1759 	struct task_struct *task;
1760 
1761 	generic_fillattr(inode, stat);
1762 
1763 	stat->uid = GLOBAL_ROOT_UID;
1764 	stat->gid = GLOBAL_ROOT_GID;
1765 	rcu_read_lock();
1766 	task = pid_task(proc_pid(inode), PIDTYPE_PID);
1767 	if (task) {
1768 		if (!has_pid_permissions(pid, task, HIDEPID_INVISIBLE)) {
1769 			rcu_read_unlock();
1770 			/*
1771 			 * This doesn't prevent learning whether PID exists,
1772 			 * it only makes getattr() consistent with readdir().
1773 			 */
1774 			return -ENOENT;
1775 		}
1776 		task_dump_owner(task, inode->i_mode, &stat->uid, &stat->gid);
1777 	}
1778 	rcu_read_unlock();
1779 	return 0;
1780 }
1781 
1782 /* dentry stuff */
1783 
1784 /*
1785  * Set <pid>/... inode ownership (can change due to setuid(), etc.)
1786  */
1787 void pid_update_inode(struct task_struct *task, struct inode *inode)
1788 {
1789 	task_dump_owner(task, inode->i_mode, &inode->i_uid, &inode->i_gid);
1790 
1791 	inode->i_mode &= ~(S_ISUID | S_ISGID);
1792 	security_task_to_inode(task, inode);
1793 }
1794 
1795 /*
1796  * Rewrite the inode's ownerships here because the owning task may have
1797  * performed a setuid(), etc.
1798  *
1799  */
1800 static int pid_revalidate(struct dentry *dentry, unsigned int flags)
1801 {
1802 	struct inode *inode;
1803 	struct task_struct *task;
1804 
1805 	if (flags & LOOKUP_RCU)
1806 		return -ECHILD;
1807 
1808 	inode = d_inode(dentry);
1809 	task = get_proc_task(inode);
1810 
1811 	if (task) {
1812 		pid_update_inode(task, inode);
1813 		put_task_struct(task);
1814 		return 1;
1815 	}
1816 	return 0;
1817 }
1818 
1819 static inline bool proc_inode_is_dead(struct inode *inode)
1820 {
1821 	return !proc_pid(inode)->tasks[PIDTYPE_PID].first;
1822 }
1823 
1824 int pid_delete_dentry(const struct dentry *dentry)
1825 {
1826 	/* Is the task we represent dead?
1827 	 * If so, then don't put the dentry on the lru list,
1828 	 * kill it immediately.
1829 	 */
1830 	return proc_inode_is_dead(d_inode(dentry));
1831 }
1832 
1833 const struct dentry_operations pid_dentry_operations =
1834 {
1835 	.d_revalidate	= pid_revalidate,
1836 	.d_delete	= pid_delete_dentry,
1837 };
1838 
1839 /* Lookups */
1840 
1841 /*
1842  * Fill a directory entry.
1843  *
1844  * If possible create the dcache entry and derive our inode number and
1845  * file type from dcache entry.
1846  *
1847  * Since all of the proc inode numbers are dynamically generated, the inode
1848  * numbers do not exist until the inode is cache.  This means creating the
1849  * the dcache entry in readdir is necessary to keep the inode numbers
1850  * reported by readdir in sync with the inode numbers reported
1851  * by stat.
1852  */
1853 bool proc_fill_cache(struct file *file, struct dir_context *ctx,
1854 	const char *name, unsigned int len,
1855 	instantiate_t instantiate, struct task_struct *task, const void *ptr)
1856 {
1857 	struct dentry *child, *dir = file->f_path.dentry;
1858 	struct qstr qname = QSTR_INIT(name, len);
1859 	struct inode *inode;
1860 	unsigned type = DT_UNKNOWN;
1861 	ino_t ino = 1;
1862 
1863 	child = d_hash_and_lookup(dir, &qname);
1864 	if (!child) {
1865 		DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
1866 		child = d_alloc_parallel(dir, &qname, &wq);
1867 		if (IS_ERR(child))
1868 			goto end_instantiate;
1869 		if (d_in_lookup(child)) {
1870 			struct dentry *res;
1871 			res = instantiate(child, task, ptr);
1872 			d_lookup_done(child);
1873 			if (unlikely(res)) {
1874 				dput(child);
1875 				child = res;
1876 				if (IS_ERR(child))
1877 					goto end_instantiate;
1878 			}
1879 		}
1880 	}
1881 	inode = d_inode(child);
1882 	ino = inode->i_ino;
1883 	type = inode->i_mode >> 12;
1884 	dput(child);
1885 end_instantiate:
1886 	return dir_emit(ctx, name, len, ino, type);
1887 }
1888 
1889 /*
1890  * dname_to_vma_addr - maps a dentry name into two unsigned longs
1891  * which represent vma start and end addresses.
1892  */
1893 static int dname_to_vma_addr(struct dentry *dentry,
1894 			     unsigned long *start, unsigned long *end)
1895 {
1896 	const char *str = dentry->d_name.name;
1897 	unsigned long long sval, eval;
1898 	unsigned int len;
1899 
1900 	if (str[0] == '0' && str[1] != '-')
1901 		return -EINVAL;
1902 	len = _parse_integer(str, 16, &sval);
1903 	if (len & KSTRTOX_OVERFLOW)
1904 		return -EINVAL;
1905 	if (sval != (unsigned long)sval)
1906 		return -EINVAL;
1907 	str += len;
1908 
1909 	if (*str != '-')
1910 		return -EINVAL;
1911 	str++;
1912 
1913 	if (str[0] == '0' && str[1])
1914 		return -EINVAL;
1915 	len = _parse_integer(str, 16, &eval);
1916 	if (len & KSTRTOX_OVERFLOW)
1917 		return -EINVAL;
1918 	if (eval != (unsigned long)eval)
1919 		return -EINVAL;
1920 	str += len;
1921 
1922 	if (*str != '\0')
1923 		return -EINVAL;
1924 
1925 	*start = sval;
1926 	*end = eval;
1927 
1928 	return 0;
1929 }
1930 
1931 static int map_files_d_revalidate(struct dentry *dentry, unsigned int flags)
1932 {
1933 	unsigned long vm_start, vm_end;
1934 	bool exact_vma_exists = false;
1935 	struct mm_struct *mm = NULL;
1936 	struct task_struct *task;
1937 	struct inode *inode;
1938 	int status = 0;
1939 
1940 	if (flags & LOOKUP_RCU)
1941 		return -ECHILD;
1942 
1943 	inode = d_inode(dentry);
1944 	task = get_proc_task(inode);
1945 	if (!task)
1946 		goto out_notask;
1947 
1948 	mm = mm_access(task, PTRACE_MODE_READ_FSCREDS);
1949 	if (IS_ERR_OR_NULL(mm))
1950 		goto out;
1951 
1952 	if (!dname_to_vma_addr(dentry, &vm_start, &vm_end)) {
1953 		down_read(&mm->mmap_sem);
1954 		exact_vma_exists = !!find_exact_vma(mm, vm_start, vm_end);
1955 		up_read(&mm->mmap_sem);
1956 	}
1957 
1958 	mmput(mm);
1959 
1960 	if (exact_vma_exists) {
1961 		task_dump_owner(task, 0, &inode->i_uid, &inode->i_gid);
1962 
1963 		security_task_to_inode(task, inode);
1964 		status = 1;
1965 	}
1966 
1967 out:
1968 	put_task_struct(task);
1969 
1970 out_notask:
1971 	return status;
1972 }
1973 
1974 static const struct dentry_operations tid_map_files_dentry_operations = {
1975 	.d_revalidate	= map_files_d_revalidate,
1976 	.d_delete	= pid_delete_dentry,
1977 };
1978 
1979 static int map_files_get_link(struct dentry *dentry, struct path *path)
1980 {
1981 	unsigned long vm_start, vm_end;
1982 	struct vm_area_struct *vma;
1983 	struct task_struct *task;
1984 	struct mm_struct *mm;
1985 	int rc;
1986 
1987 	rc = -ENOENT;
1988 	task = get_proc_task(d_inode(dentry));
1989 	if (!task)
1990 		goto out;
1991 
1992 	mm = get_task_mm(task);
1993 	put_task_struct(task);
1994 	if (!mm)
1995 		goto out;
1996 
1997 	rc = dname_to_vma_addr(dentry, &vm_start, &vm_end);
1998 	if (rc)
1999 		goto out_mmput;
2000 
2001 	rc = -ENOENT;
2002 	down_read(&mm->mmap_sem);
2003 	vma = find_exact_vma(mm, vm_start, vm_end);
2004 	if (vma && vma->vm_file) {
2005 		*path = vma->vm_file->f_path;
2006 		path_get(path);
2007 		rc = 0;
2008 	}
2009 	up_read(&mm->mmap_sem);
2010 
2011 out_mmput:
2012 	mmput(mm);
2013 out:
2014 	return rc;
2015 }
2016 
2017 struct map_files_info {
2018 	unsigned long	start;
2019 	unsigned long	end;
2020 	fmode_t		mode;
2021 };
2022 
2023 /*
2024  * Only allow CAP_SYS_ADMIN to follow the links, due to concerns about how the
2025  * symlinks may be used to bypass permissions on ancestor directories in the
2026  * path to the file in question.
2027  */
2028 static const char *
2029 proc_map_files_get_link(struct dentry *dentry,
2030 			struct inode *inode,
2031 		        struct delayed_call *done)
2032 {
2033 	if (!capable(CAP_SYS_ADMIN))
2034 		return ERR_PTR(-EPERM);
2035 
2036 	return proc_pid_get_link(dentry, inode, done);
2037 }
2038 
2039 /*
2040  * Identical to proc_pid_link_inode_operations except for get_link()
2041  */
2042 static const struct inode_operations proc_map_files_link_inode_operations = {
2043 	.readlink	= proc_pid_readlink,
2044 	.get_link	= proc_map_files_get_link,
2045 	.setattr	= proc_setattr,
2046 };
2047 
2048 static struct dentry *
2049 proc_map_files_instantiate(struct dentry *dentry,
2050 			   struct task_struct *task, const void *ptr)
2051 {
2052 	fmode_t mode = (fmode_t)(unsigned long)ptr;
2053 	struct proc_inode *ei;
2054 	struct inode *inode;
2055 
2056 	inode = proc_pid_make_inode(dentry->d_sb, task, S_IFLNK |
2057 				    ((mode & FMODE_READ ) ? S_IRUSR : 0) |
2058 				    ((mode & FMODE_WRITE) ? S_IWUSR : 0));
2059 	if (!inode)
2060 		return ERR_PTR(-ENOENT);
2061 
2062 	ei = PROC_I(inode);
2063 	ei->op.proc_get_link = map_files_get_link;
2064 
2065 	inode->i_op = &proc_map_files_link_inode_operations;
2066 	inode->i_size = 64;
2067 
2068 	d_set_d_op(dentry, &tid_map_files_dentry_operations);
2069 	return d_splice_alias(inode, dentry);
2070 }
2071 
2072 static struct dentry *proc_map_files_lookup(struct inode *dir,
2073 		struct dentry *dentry, unsigned int flags)
2074 {
2075 	unsigned long vm_start, vm_end;
2076 	struct vm_area_struct *vma;
2077 	struct task_struct *task;
2078 	struct dentry *result;
2079 	struct mm_struct *mm;
2080 
2081 	result = ERR_PTR(-ENOENT);
2082 	task = get_proc_task(dir);
2083 	if (!task)
2084 		goto out;
2085 
2086 	result = ERR_PTR(-EACCES);
2087 	if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS))
2088 		goto out_put_task;
2089 
2090 	result = ERR_PTR(-ENOENT);
2091 	if (dname_to_vma_addr(dentry, &vm_start, &vm_end))
2092 		goto out_put_task;
2093 
2094 	mm = get_task_mm(task);
2095 	if (!mm)
2096 		goto out_put_task;
2097 
2098 	down_read(&mm->mmap_sem);
2099 	vma = find_exact_vma(mm, vm_start, vm_end);
2100 	if (!vma)
2101 		goto out_no_vma;
2102 
2103 	if (vma->vm_file)
2104 		result = proc_map_files_instantiate(dentry, task,
2105 				(void *)(unsigned long)vma->vm_file->f_mode);
2106 
2107 out_no_vma:
2108 	up_read(&mm->mmap_sem);
2109 	mmput(mm);
2110 out_put_task:
2111 	put_task_struct(task);
2112 out:
2113 	return result;
2114 }
2115 
2116 static const struct inode_operations proc_map_files_inode_operations = {
2117 	.lookup		= proc_map_files_lookup,
2118 	.permission	= proc_fd_permission,
2119 	.setattr	= proc_setattr,
2120 };
2121 
2122 static int
2123 proc_map_files_readdir(struct file *file, struct dir_context *ctx)
2124 {
2125 	struct vm_area_struct *vma;
2126 	struct task_struct *task;
2127 	struct mm_struct *mm;
2128 	unsigned long nr_files, pos, i;
2129 	struct flex_array *fa = NULL;
2130 	struct map_files_info info;
2131 	struct map_files_info *p;
2132 	int ret;
2133 
2134 	ret = -ENOENT;
2135 	task = get_proc_task(file_inode(file));
2136 	if (!task)
2137 		goto out;
2138 
2139 	ret = -EACCES;
2140 	if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS))
2141 		goto out_put_task;
2142 
2143 	ret = 0;
2144 	if (!dir_emit_dots(file, ctx))
2145 		goto out_put_task;
2146 
2147 	mm = get_task_mm(task);
2148 	if (!mm)
2149 		goto out_put_task;
2150 	down_read(&mm->mmap_sem);
2151 
2152 	nr_files = 0;
2153 
2154 	/*
2155 	 * We need two passes here:
2156 	 *
2157 	 *  1) Collect vmas of mapped files with mmap_sem taken
2158 	 *  2) Release mmap_sem and instantiate entries
2159 	 *
2160 	 * otherwise we get lockdep complained, since filldir()
2161 	 * routine might require mmap_sem taken in might_fault().
2162 	 */
2163 
2164 	for (vma = mm->mmap, pos = 2; vma; vma = vma->vm_next) {
2165 		if (vma->vm_file && ++pos > ctx->pos)
2166 			nr_files++;
2167 	}
2168 
2169 	if (nr_files) {
2170 		fa = flex_array_alloc(sizeof(info), nr_files,
2171 					GFP_KERNEL);
2172 		if (!fa || flex_array_prealloc(fa, 0, nr_files,
2173 						GFP_KERNEL)) {
2174 			ret = -ENOMEM;
2175 			if (fa)
2176 				flex_array_free(fa);
2177 			up_read(&mm->mmap_sem);
2178 			mmput(mm);
2179 			goto out_put_task;
2180 		}
2181 		for (i = 0, vma = mm->mmap, pos = 2; vma;
2182 				vma = vma->vm_next) {
2183 			if (!vma->vm_file)
2184 				continue;
2185 			if (++pos <= ctx->pos)
2186 				continue;
2187 
2188 			info.start = vma->vm_start;
2189 			info.end = vma->vm_end;
2190 			info.mode = vma->vm_file->f_mode;
2191 			if (flex_array_put(fa, i++, &info, GFP_KERNEL))
2192 				BUG();
2193 		}
2194 	}
2195 	up_read(&mm->mmap_sem);
2196 	mmput(mm);
2197 
2198 	for (i = 0; i < nr_files; i++) {
2199 		char buf[4 * sizeof(long) + 2];	/* max: %lx-%lx\0 */
2200 		unsigned int len;
2201 
2202 		p = flex_array_get(fa, i);
2203 		len = snprintf(buf, sizeof(buf), "%lx-%lx", p->start, p->end);
2204 		if (!proc_fill_cache(file, ctx,
2205 				      buf, len,
2206 				      proc_map_files_instantiate,
2207 				      task,
2208 				      (void *)(unsigned long)p->mode))
2209 			break;
2210 		ctx->pos++;
2211 	}
2212 	if (fa)
2213 		flex_array_free(fa);
2214 
2215 out_put_task:
2216 	put_task_struct(task);
2217 out:
2218 	return ret;
2219 }
2220 
2221 static const struct file_operations proc_map_files_operations = {
2222 	.read		= generic_read_dir,
2223 	.iterate_shared	= proc_map_files_readdir,
2224 	.llseek		= generic_file_llseek,
2225 };
2226 
2227 #if defined(CONFIG_CHECKPOINT_RESTORE) && defined(CONFIG_POSIX_TIMERS)
2228 struct timers_private {
2229 	struct pid *pid;
2230 	struct task_struct *task;
2231 	struct sighand_struct *sighand;
2232 	struct pid_namespace *ns;
2233 	unsigned long flags;
2234 };
2235 
2236 static void *timers_start(struct seq_file *m, loff_t *pos)
2237 {
2238 	struct timers_private *tp = m->private;
2239 
2240 	tp->task = get_pid_task(tp->pid, PIDTYPE_PID);
2241 	if (!tp->task)
2242 		return ERR_PTR(-ESRCH);
2243 
2244 	tp->sighand = lock_task_sighand(tp->task, &tp->flags);
2245 	if (!tp->sighand)
2246 		return ERR_PTR(-ESRCH);
2247 
2248 	return seq_list_start(&tp->task->signal->posix_timers, *pos);
2249 }
2250 
2251 static void *timers_next(struct seq_file *m, void *v, loff_t *pos)
2252 {
2253 	struct timers_private *tp = m->private;
2254 	return seq_list_next(v, &tp->task->signal->posix_timers, pos);
2255 }
2256 
2257 static void timers_stop(struct seq_file *m, void *v)
2258 {
2259 	struct timers_private *tp = m->private;
2260 
2261 	if (tp->sighand) {
2262 		unlock_task_sighand(tp->task, &tp->flags);
2263 		tp->sighand = NULL;
2264 	}
2265 
2266 	if (tp->task) {
2267 		put_task_struct(tp->task);
2268 		tp->task = NULL;
2269 	}
2270 }
2271 
2272 static int show_timer(struct seq_file *m, void *v)
2273 {
2274 	struct k_itimer *timer;
2275 	struct timers_private *tp = m->private;
2276 	int notify;
2277 	static const char * const nstr[] = {
2278 		[SIGEV_SIGNAL] = "signal",
2279 		[SIGEV_NONE] = "none",
2280 		[SIGEV_THREAD] = "thread",
2281 	};
2282 
2283 	timer = list_entry((struct list_head *)v, struct k_itimer, list);
2284 	notify = timer->it_sigev_notify;
2285 
2286 	seq_printf(m, "ID: %d\n", timer->it_id);
2287 	seq_printf(m, "signal: %d/%px\n",
2288 		   timer->sigq->info.si_signo,
2289 		   timer->sigq->info.si_value.sival_ptr);
2290 	seq_printf(m, "notify: %s/%s.%d\n",
2291 		   nstr[notify & ~SIGEV_THREAD_ID],
2292 		   (notify & SIGEV_THREAD_ID) ? "tid" : "pid",
2293 		   pid_nr_ns(timer->it_pid, tp->ns));
2294 	seq_printf(m, "ClockID: %d\n", timer->it_clock);
2295 
2296 	return 0;
2297 }
2298 
2299 static const struct seq_operations proc_timers_seq_ops = {
2300 	.start	= timers_start,
2301 	.next	= timers_next,
2302 	.stop	= timers_stop,
2303 	.show	= show_timer,
2304 };
2305 
2306 static int proc_timers_open(struct inode *inode, struct file *file)
2307 {
2308 	struct timers_private *tp;
2309 
2310 	tp = __seq_open_private(file, &proc_timers_seq_ops,
2311 			sizeof(struct timers_private));
2312 	if (!tp)
2313 		return -ENOMEM;
2314 
2315 	tp->pid = proc_pid(inode);
2316 	tp->ns = proc_pid_ns(inode);
2317 	return 0;
2318 }
2319 
2320 static const struct file_operations proc_timers_operations = {
2321 	.open		= proc_timers_open,
2322 	.read		= seq_read,
2323 	.llseek		= seq_lseek,
2324 	.release	= seq_release_private,
2325 };
2326 #endif
2327 
2328 static ssize_t timerslack_ns_write(struct file *file, const char __user *buf,
2329 					size_t count, loff_t *offset)
2330 {
2331 	struct inode *inode = file_inode(file);
2332 	struct task_struct *p;
2333 	u64 slack_ns;
2334 	int err;
2335 
2336 	err = kstrtoull_from_user(buf, count, 10, &slack_ns);
2337 	if (err < 0)
2338 		return err;
2339 
2340 	p = get_proc_task(inode);
2341 	if (!p)
2342 		return -ESRCH;
2343 
2344 	if (p != current) {
2345 		if (!capable(CAP_SYS_NICE)) {
2346 			count = -EPERM;
2347 			goto out;
2348 		}
2349 
2350 		err = security_task_setscheduler(p);
2351 		if (err) {
2352 			count = err;
2353 			goto out;
2354 		}
2355 	}
2356 
2357 	task_lock(p);
2358 	if (slack_ns == 0)
2359 		p->timer_slack_ns = p->default_timer_slack_ns;
2360 	else
2361 		p->timer_slack_ns = slack_ns;
2362 	task_unlock(p);
2363 
2364 out:
2365 	put_task_struct(p);
2366 
2367 	return count;
2368 }
2369 
2370 static int timerslack_ns_show(struct seq_file *m, void *v)
2371 {
2372 	struct inode *inode = m->private;
2373 	struct task_struct *p;
2374 	int err = 0;
2375 
2376 	p = get_proc_task(inode);
2377 	if (!p)
2378 		return -ESRCH;
2379 
2380 	if (p != current) {
2381 
2382 		if (!capable(CAP_SYS_NICE)) {
2383 			err = -EPERM;
2384 			goto out;
2385 		}
2386 		err = security_task_getscheduler(p);
2387 		if (err)
2388 			goto out;
2389 	}
2390 
2391 	task_lock(p);
2392 	seq_printf(m, "%llu\n", p->timer_slack_ns);
2393 	task_unlock(p);
2394 
2395 out:
2396 	put_task_struct(p);
2397 
2398 	return err;
2399 }
2400 
2401 static int timerslack_ns_open(struct inode *inode, struct file *filp)
2402 {
2403 	return single_open(filp, timerslack_ns_show, inode);
2404 }
2405 
2406 static const struct file_operations proc_pid_set_timerslack_ns_operations = {
2407 	.open		= timerslack_ns_open,
2408 	.read		= seq_read,
2409 	.write		= timerslack_ns_write,
2410 	.llseek		= seq_lseek,
2411 	.release	= single_release,
2412 };
2413 
2414 static struct dentry *proc_pident_instantiate(struct dentry *dentry,
2415 	struct task_struct *task, const void *ptr)
2416 {
2417 	const struct pid_entry *p = ptr;
2418 	struct inode *inode;
2419 	struct proc_inode *ei;
2420 
2421 	inode = proc_pid_make_inode(dentry->d_sb, task, p->mode);
2422 	if (!inode)
2423 		return ERR_PTR(-ENOENT);
2424 
2425 	ei = PROC_I(inode);
2426 	if (S_ISDIR(inode->i_mode))
2427 		set_nlink(inode, 2);	/* Use getattr to fix if necessary */
2428 	if (p->iop)
2429 		inode->i_op = p->iop;
2430 	if (p->fop)
2431 		inode->i_fop = p->fop;
2432 	ei->op = p->op;
2433 	pid_update_inode(task, inode);
2434 	d_set_d_op(dentry, &pid_dentry_operations);
2435 	return d_splice_alias(inode, dentry);
2436 }
2437 
2438 static struct dentry *proc_pident_lookup(struct inode *dir,
2439 					 struct dentry *dentry,
2440 					 const struct pid_entry *ents,
2441 					 unsigned int nents)
2442 {
2443 	struct task_struct *task = get_proc_task(dir);
2444 	const struct pid_entry *p, *last;
2445 	struct dentry *res = ERR_PTR(-ENOENT);
2446 
2447 	if (!task)
2448 		goto out_no_task;
2449 
2450 	/*
2451 	 * Yes, it does not scale. And it should not. Don't add
2452 	 * new entries into /proc/<tgid>/ without very good reasons.
2453 	 */
2454 	last = &ents[nents];
2455 	for (p = ents; p < last; p++) {
2456 		if (p->len != dentry->d_name.len)
2457 			continue;
2458 		if (!memcmp(dentry->d_name.name, p->name, p->len)) {
2459 			res = proc_pident_instantiate(dentry, task, p);
2460 			break;
2461 		}
2462 	}
2463 	put_task_struct(task);
2464 out_no_task:
2465 	return res;
2466 }
2467 
2468 static int proc_pident_readdir(struct file *file, struct dir_context *ctx,
2469 		const struct pid_entry *ents, unsigned int nents)
2470 {
2471 	struct task_struct *task = get_proc_task(file_inode(file));
2472 	const struct pid_entry *p;
2473 
2474 	if (!task)
2475 		return -ENOENT;
2476 
2477 	if (!dir_emit_dots(file, ctx))
2478 		goto out;
2479 
2480 	if (ctx->pos >= nents + 2)
2481 		goto out;
2482 
2483 	for (p = ents + (ctx->pos - 2); p < ents + nents; p++) {
2484 		if (!proc_fill_cache(file, ctx, p->name, p->len,
2485 				proc_pident_instantiate, task, p))
2486 			break;
2487 		ctx->pos++;
2488 	}
2489 out:
2490 	put_task_struct(task);
2491 	return 0;
2492 }
2493 
2494 #ifdef CONFIG_SECURITY
2495 static ssize_t proc_pid_attr_read(struct file * file, char __user * buf,
2496 				  size_t count, loff_t *ppos)
2497 {
2498 	struct inode * inode = file_inode(file);
2499 	char *p = NULL;
2500 	ssize_t length;
2501 	struct task_struct *task = get_proc_task(inode);
2502 
2503 	if (!task)
2504 		return -ESRCH;
2505 
2506 	length = security_getprocattr(task,
2507 				      (char*)file->f_path.dentry->d_name.name,
2508 				      &p);
2509 	put_task_struct(task);
2510 	if (length > 0)
2511 		length = simple_read_from_buffer(buf, count, ppos, p, length);
2512 	kfree(p);
2513 	return length;
2514 }
2515 
2516 static ssize_t proc_pid_attr_write(struct file * file, const char __user * buf,
2517 				   size_t count, loff_t *ppos)
2518 {
2519 	struct inode * inode = file_inode(file);
2520 	struct task_struct *task;
2521 	void *page;
2522 	int rv;
2523 
2524 	rcu_read_lock();
2525 	task = pid_task(proc_pid(inode), PIDTYPE_PID);
2526 	if (!task) {
2527 		rcu_read_unlock();
2528 		return -ESRCH;
2529 	}
2530 	/* A task may only write its own attributes. */
2531 	if (current != task) {
2532 		rcu_read_unlock();
2533 		return -EACCES;
2534 	}
2535 	rcu_read_unlock();
2536 
2537 	if (count > PAGE_SIZE)
2538 		count = PAGE_SIZE;
2539 
2540 	/* No partial writes. */
2541 	if (*ppos != 0)
2542 		return -EINVAL;
2543 
2544 	page = memdup_user(buf, count);
2545 	if (IS_ERR(page)) {
2546 		rv = PTR_ERR(page);
2547 		goto out;
2548 	}
2549 
2550 	/* Guard against adverse ptrace interaction */
2551 	rv = mutex_lock_interruptible(&current->signal->cred_guard_mutex);
2552 	if (rv < 0)
2553 		goto out_free;
2554 
2555 	rv = security_setprocattr(file->f_path.dentry->d_name.name, page, count);
2556 	mutex_unlock(&current->signal->cred_guard_mutex);
2557 out_free:
2558 	kfree(page);
2559 out:
2560 	return rv;
2561 }
2562 
2563 static const struct file_operations proc_pid_attr_operations = {
2564 	.read		= proc_pid_attr_read,
2565 	.write		= proc_pid_attr_write,
2566 	.llseek		= generic_file_llseek,
2567 };
2568 
2569 static const struct pid_entry attr_dir_stuff[] = {
2570 	REG("current",    S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2571 	REG("prev",       S_IRUGO,	   proc_pid_attr_operations),
2572 	REG("exec",       S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2573 	REG("fscreate",   S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2574 	REG("keycreate",  S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2575 	REG("sockcreate", S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2576 };
2577 
2578 static int proc_attr_dir_readdir(struct file *file, struct dir_context *ctx)
2579 {
2580 	return proc_pident_readdir(file, ctx,
2581 				   attr_dir_stuff, ARRAY_SIZE(attr_dir_stuff));
2582 }
2583 
2584 static const struct file_operations proc_attr_dir_operations = {
2585 	.read		= generic_read_dir,
2586 	.iterate_shared	= proc_attr_dir_readdir,
2587 	.llseek		= generic_file_llseek,
2588 };
2589 
2590 static struct dentry *proc_attr_dir_lookup(struct inode *dir,
2591 				struct dentry *dentry, unsigned int flags)
2592 {
2593 	return proc_pident_lookup(dir, dentry,
2594 				  attr_dir_stuff, ARRAY_SIZE(attr_dir_stuff));
2595 }
2596 
2597 static const struct inode_operations proc_attr_dir_inode_operations = {
2598 	.lookup		= proc_attr_dir_lookup,
2599 	.getattr	= pid_getattr,
2600 	.setattr	= proc_setattr,
2601 };
2602 
2603 #endif
2604 
2605 #ifdef CONFIG_ELF_CORE
2606 static ssize_t proc_coredump_filter_read(struct file *file, char __user *buf,
2607 					 size_t count, loff_t *ppos)
2608 {
2609 	struct task_struct *task = get_proc_task(file_inode(file));
2610 	struct mm_struct *mm;
2611 	char buffer[PROC_NUMBUF];
2612 	size_t len;
2613 	int ret;
2614 
2615 	if (!task)
2616 		return -ESRCH;
2617 
2618 	ret = 0;
2619 	mm = get_task_mm(task);
2620 	if (mm) {
2621 		len = snprintf(buffer, sizeof(buffer), "%08lx\n",
2622 			       ((mm->flags & MMF_DUMP_FILTER_MASK) >>
2623 				MMF_DUMP_FILTER_SHIFT));
2624 		mmput(mm);
2625 		ret = simple_read_from_buffer(buf, count, ppos, buffer, len);
2626 	}
2627 
2628 	put_task_struct(task);
2629 
2630 	return ret;
2631 }
2632 
2633 static ssize_t proc_coredump_filter_write(struct file *file,
2634 					  const char __user *buf,
2635 					  size_t count,
2636 					  loff_t *ppos)
2637 {
2638 	struct task_struct *task;
2639 	struct mm_struct *mm;
2640 	unsigned int val;
2641 	int ret;
2642 	int i;
2643 	unsigned long mask;
2644 
2645 	ret = kstrtouint_from_user(buf, count, 0, &val);
2646 	if (ret < 0)
2647 		return ret;
2648 
2649 	ret = -ESRCH;
2650 	task = get_proc_task(file_inode(file));
2651 	if (!task)
2652 		goto out_no_task;
2653 
2654 	mm = get_task_mm(task);
2655 	if (!mm)
2656 		goto out_no_mm;
2657 	ret = 0;
2658 
2659 	for (i = 0, mask = 1; i < MMF_DUMP_FILTER_BITS; i++, mask <<= 1) {
2660 		if (val & mask)
2661 			set_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags);
2662 		else
2663 			clear_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags);
2664 	}
2665 
2666 	mmput(mm);
2667  out_no_mm:
2668 	put_task_struct(task);
2669  out_no_task:
2670 	if (ret < 0)
2671 		return ret;
2672 	return count;
2673 }
2674 
2675 static const struct file_operations proc_coredump_filter_operations = {
2676 	.read		= proc_coredump_filter_read,
2677 	.write		= proc_coredump_filter_write,
2678 	.llseek		= generic_file_llseek,
2679 };
2680 #endif
2681 
2682 #ifdef CONFIG_TASK_IO_ACCOUNTING
2683 static int do_io_accounting(struct task_struct *task, struct seq_file *m, int whole)
2684 {
2685 	struct task_io_accounting acct = task->ioac;
2686 	unsigned long flags;
2687 	int result;
2688 
2689 	result = mutex_lock_killable(&task->signal->cred_guard_mutex);
2690 	if (result)
2691 		return result;
2692 
2693 	if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS)) {
2694 		result = -EACCES;
2695 		goto out_unlock;
2696 	}
2697 
2698 	if (whole && lock_task_sighand(task, &flags)) {
2699 		struct task_struct *t = task;
2700 
2701 		task_io_accounting_add(&acct, &task->signal->ioac);
2702 		while_each_thread(task, t)
2703 			task_io_accounting_add(&acct, &t->ioac);
2704 
2705 		unlock_task_sighand(task, &flags);
2706 	}
2707 	seq_printf(m,
2708 		   "rchar: %llu\n"
2709 		   "wchar: %llu\n"
2710 		   "syscr: %llu\n"
2711 		   "syscw: %llu\n"
2712 		   "read_bytes: %llu\n"
2713 		   "write_bytes: %llu\n"
2714 		   "cancelled_write_bytes: %llu\n",
2715 		   (unsigned long long)acct.rchar,
2716 		   (unsigned long long)acct.wchar,
2717 		   (unsigned long long)acct.syscr,
2718 		   (unsigned long long)acct.syscw,
2719 		   (unsigned long long)acct.read_bytes,
2720 		   (unsigned long long)acct.write_bytes,
2721 		   (unsigned long long)acct.cancelled_write_bytes);
2722 	result = 0;
2723 
2724 out_unlock:
2725 	mutex_unlock(&task->signal->cred_guard_mutex);
2726 	return result;
2727 }
2728 
2729 static int proc_tid_io_accounting(struct seq_file *m, struct pid_namespace *ns,
2730 				  struct pid *pid, struct task_struct *task)
2731 {
2732 	return do_io_accounting(task, m, 0);
2733 }
2734 
2735 static int proc_tgid_io_accounting(struct seq_file *m, struct pid_namespace *ns,
2736 				   struct pid *pid, struct task_struct *task)
2737 {
2738 	return do_io_accounting(task, m, 1);
2739 }
2740 #endif /* CONFIG_TASK_IO_ACCOUNTING */
2741 
2742 #ifdef CONFIG_USER_NS
2743 static int proc_id_map_open(struct inode *inode, struct file *file,
2744 	const struct seq_operations *seq_ops)
2745 {
2746 	struct user_namespace *ns = NULL;
2747 	struct task_struct *task;
2748 	struct seq_file *seq;
2749 	int ret = -EINVAL;
2750 
2751 	task = get_proc_task(inode);
2752 	if (task) {
2753 		rcu_read_lock();
2754 		ns = get_user_ns(task_cred_xxx(task, user_ns));
2755 		rcu_read_unlock();
2756 		put_task_struct(task);
2757 	}
2758 	if (!ns)
2759 		goto err;
2760 
2761 	ret = seq_open(file, seq_ops);
2762 	if (ret)
2763 		goto err_put_ns;
2764 
2765 	seq = file->private_data;
2766 	seq->private = ns;
2767 
2768 	return 0;
2769 err_put_ns:
2770 	put_user_ns(ns);
2771 err:
2772 	return ret;
2773 }
2774 
2775 static int proc_id_map_release(struct inode *inode, struct file *file)
2776 {
2777 	struct seq_file *seq = file->private_data;
2778 	struct user_namespace *ns = seq->private;
2779 	put_user_ns(ns);
2780 	return seq_release(inode, file);
2781 }
2782 
2783 static int proc_uid_map_open(struct inode *inode, struct file *file)
2784 {
2785 	return proc_id_map_open(inode, file, &proc_uid_seq_operations);
2786 }
2787 
2788 static int proc_gid_map_open(struct inode *inode, struct file *file)
2789 {
2790 	return proc_id_map_open(inode, file, &proc_gid_seq_operations);
2791 }
2792 
2793 static int proc_projid_map_open(struct inode *inode, struct file *file)
2794 {
2795 	return proc_id_map_open(inode, file, &proc_projid_seq_operations);
2796 }
2797 
2798 static const struct file_operations proc_uid_map_operations = {
2799 	.open		= proc_uid_map_open,
2800 	.write		= proc_uid_map_write,
2801 	.read		= seq_read,
2802 	.llseek		= seq_lseek,
2803 	.release	= proc_id_map_release,
2804 };
2805 
2806 static const struct file_operations proc_gid_map_operations = {
2807 	.open		= proc_gid_map_open,
2808 	.write		= proc_gid_map_write,
2809 	.read		= seq_read,
2810 	.llseek		= seq_lseek,
2811 	.release	= proc_id_map_release,
2812 };
2813 
2814 static const struct file_operations proc_projid_map_operations = {
2815 	.open		= proc_projid_map_open,
2816 	.write		= proc_projid_map_write,
2817 	.read		= seq_read,
2818 	.llseek		= seq_lseek,
2819 	.release	= proc_id_map_release,
2820 };
2821 
2822 static int proc_setgroups_open(struct inode *inode, struct file *file)
2823 {
2824 	struct user_namespace *ns = NULL;
2825 	struct task_struct *task;
2826 	int ret;
2827 
2828 	ret = -ESRCH;
2829 	task = get_proc_task(inode);
2830 	if (task) {
2831 		rcu_read_lock();
2832 		ns = get_user_ns(task_cred_xxx(task, user_ns));
2833 		rcu_read_unlock();
2834 		put_task_struct(task);
2835 	}
2836 	if (!ns)
2837 		goto err;
2838 
2839 	if (file->f_mode & FMODE_WRITE) {
2840 		ret = -EACCES;
2841 		if (!ns_capable(ns, CAP_SYS_ADMIN))
2842 			goto err_put_ns;
2843 	}
2844 
2845 	ret = single_open(file, &proc_setgroups_show, ns);
2846 	if (ret)
2847 		goto err_put_ns;
2848 
2849 	return 0;
2850 err_put_ns:
2851 	put_user_ns(ns);
2852 err:
2853 	return ret;
2854 }
2855 
2856 static int proc_setgroups_release(struct inode *inode, struct file *file)
2857 {
2858 	struct seq_file *seq = file->private_data;
2859 	struct user_namespace *ns = seq->private;
2860 	int ret = single_release(inode, file);
2861 	put_user_ns(ns);
2862 	return ret;
2863 }
2864 
2865 static const struct file_operations proc_setgroups_operations = {
2866 	.open		= proc_setgroups_open,
2867 	.write		= proc_setgroups_write,
2868 	.read		= seq_read,
2869 	.llseek		= seq_lseek,
2870 	.release	= proc_setgroups_release,
2871 };
2872 #endif /* CONFIG_USER_NS */
2873 
2874 static int proc_pid_personality(struct seq_file *m, struct pid_namespace *ns,
2875 				struct pid *pid, struct task_struct *task)
2876 {
2877 	int err = lock_trace(task);
2878 	if (!err) {
2879 		seq_printf(m, "%08x\n", task->personality);
2880 		unlock_trace(task);
2881 	}
2882 	return err;
2883 }
2884 
2885 #ifdef CONFIG_LIVEPATCH
2886 static int proc_pid_patch_state(struct seq_file *m, struct pid_namespace *ns,
2887 				struct pid *pid, struct task_struct *task)
2888 {
2889 	seq_printf(m, "%d\n", task->patch_state);
2890 	return 0;
2891 }
2892 #endif /* CONFIG_LIVEPATCH */
2893 
2894 /*
2895  * Thread groups
2896  */
2897 static const struct file_operations proc_task_operations;
2898 static const struct inode_operations proc_task_inode_operations;
2899 
2900 static const struct pid_entry tgid_base_stuff[] = {
2901 	DIR("task",       S_IRUGO|S_IXUGO, proc_task_inode_operations, proc_task_operations),
2902 	DIR("fd",         S_IRUSR|S_IXUSR, proc_fd_inode_operations, proc_fd_operations),
2903 	DIR("map_files",  S_IRUSR|S_IXUSR, proc_map_files_inode_operations, proc_map_files_operations),
2904 	DIR("fdinfo",     S_IRUSR|S_IXUSR, proc_fdinfo_inode_operations, proc_fdinfo_operations),
2905 	DIR("ns",	  S_IRUSR|S_IXUGO, proc_ns_dir_inode_operations, proc_ns_dir_operations),
2906 #ifdef CONFIG_NET
2907 	DIR("net",        S_IRUGO|S_IXUGO, proc_net_inode_operations, proc_net_operations),
2908 #endif
2909 	REG("environ",    S_IRUSR, proc_environ_operations),
2910 	REG("auxv",       S_IRUSR, proc_auxv_operations),
2911 	ONE("status",     S_IRUGO, proc_pid_status),
2912 	ONE("personality", S_IRUSR, proc_pid_personality),
2913 	ONE("limits",	  S_IRUGO, proc_pid_limits),
2914 #ifdef CONFIG_SCHED_DEBUG
2915 	REG("sched",      S_IRUGO|S_IWUSR, proc_pid_sched_operations),
2916 #endif
2917 #ifdef CONFIG_SCHED_AUTOGROUP
2918 	REG("autogroup",  S_IRUGO|S_IWUSR, proc_pid_sched_autogroup_operations),
2919 #endif
2920 	REG("comm",      S_IRUGO|S_IWUSR, proc_pid_set_comm_operations),
2921 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK
2922 	ONE("syscall",    S_IRUSR, proc_pid_syscall),
2923 #endif
2924 	REG("cmdline",    S_IRUGO, proc_pid_cmdline_ops),
2925 	ONE("stat",       S_IRUGO, proc_tgid_stat),
2926 	ONE("statm",      S_IRUGO, proc_pid_statm),
2927 	REG("maps",       S_IRUGO, proc_pid_maps_operations),
2928 #ifdef CONFIG_NUMA
2929 	REG("numa_maps",  S_IRUGO, proc_pid_numa_maps_operations),
2930 #endif
2931 	REG("mem",        S_IRUSR|S_IWUSR, proc_mem_operations),
2932 	LNK("cwd",        proc_cwd_link),
2933 	LNK("root",       proc_root_link),
2934 	LNK("exe",        proc_exe_link),
2935 	REG("mounts",     S_IRUGO, proc_mounts_operations),
2936 	REG("mountinfo",  S_IRUGO, proc_mountinfo_operations),
2937 	REG("mountstats", S_IRUSR, proc_mountstats_operations),
2938 #ifdef CONFIG_PROC_PAGE_MONITOR
2939 	REG("clear_refs", S_IWUSR, proc_clear_refs_operations),
2940 	REG("smaps",      S_IRUGO, proc_pid_smaps_operations),
2941 	REG("smaps_rollup", S_IRUGO, proc_pid_smaps_rollup_operations),
2942 	REG("pagemap",    S_IRUSR, proc_pagemap_operations),
2943 #endif
2944 #ifdef CONFIG_SECURITY
2945 	DIR("attr",       S_IRUGO|S_IXUGO, proc_attr_dir_inode_operations, proc_attr_dir_operations),
2946 #endif
2947 #ifdef CONFIG_KALLSYMS
2948 	ONE("wchan",      S_IRUGO, proc_pid_wchan),
2949 #endif
2950 #ifdef CONFIG_STACKTRACE
2951 	ONE("stack",      S_IRUSR, proc_pid_stack),
2952 #endif
2953 #ifdef CONFIG_SCHED_INFO
2954 	ONE("schedstat",  S_IRUGO, proc_pid_schedstat),
2955 #endif
2956 #ifdef CONFIG_LATENCYTOP
2957 	REG("latency",  S_IRUGO, proc_lstats_operations),
2958 #endif
2959 #ifdef CONFIG_PROC_PID_CPUSET
2960 	ONE("cpuset",     S_IRUGO, proc_cpuset_show),
2961 #endif
2962 #ifdef CONFIG_CGROUPS
2963 	ONE("cgroup",  S_IRUGO, proc_cgroup_show),
2964 #endif
2965 	ONE("oom_score",  S_IRUGO, proc_oom_score),
2966 	REG("oom_adj",    S_IRUGO|S_IWUSR, proc_oom_adj_operations),
2967 	REG("oom_score_adj", S_IRUGO|S_IWUSR, proc_oom_score_adj_operations),
2968 #ifdef CONFIG_AUDITSYSCALL
2969 	REG("loginuid",   S_IWUSR|S_IRUGO, proc_loginuid_operations),
2970 	REG("sessionid",  S_IRUGO, proc_sessionid_operations),
2971 #endif
2972 #ifdef CONFIG_FAULT_INJECTION
2973 	REG("make-it-fail", S_IRUGO|S_IWUSR, proc_fault_inject_operations),
2974 	REG("fail-nth", 0644, proc_fail_nth_operations),
2975 #endif
2976 #ifdef CONFIG_ELF_CORE
2977 	REG("coredump_filter", S_IRUGO|S_IWUSR, proc_coredump_filter_operations),
2978 #endif
2979 #ifdef CONFIG_TASK_IO_ACCOUNTING
2980 	ONE("io",	S_IRUSR, proc_tgid_io_accounting),
2981 #endif
2982 #ifdef CONFIG_USER_NS
2983 	REG("uid_map",    S_IRUGO|S_IWUSR, proc_uid_map_operations),
2984 	REG("gid_map",    S_IRUGO|S_IWUSR, proc_gid_map_operations),
2985 	REG("projid_map", S_IRUGO|S_IWUSR, proc_projid_map_operations),
2986 	REG("setgroups",  S_IRUGO|S_IWUSR, proc_setgroups_operations),
2987 #endif
2988 #if defined(CONFIG_CHECKPOINT_RESTORE) && defined(CONFIG_POSIX_TIMERS)
2989 	REG("timers",	  S_IRUGO, proc_timers_operations),
2990 #endif
2991 	REG("timerslack_ns", S_IRUGO|S_IWUGO, proc_pid_set_timerslack_ns_operations),
2992 #ifdef CONFIG_LIVEPATCH
2993 	ONE("patch_state",  S_IRUSR, proc_pid_patch_state),
2994 #endif
2995 };
2996 
2997 static int proc_tgid_base_readdir(struct file *file, struct dir_context *ctx)
2998 {
2999 	return proc_pident_readdir(file, ctx,
3000 				   tgid_base_stuff, ARRAY_SIZE(tgid_base_stuff));
3001 }
3002 
3003 static const struct file_operations proc_tgid_base_operations = {
3004 	.read		= generic_read_dir,
3005 	.iterate_shared	= proc_tgid_base_readdir,
3006 	.llseek		= generic_file_llseek,
3007 };
3008 
3009 static struct dentry *proc_tgid_base_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
3010 {
3011 	return proc_pident_lookup(dir, dentry,
3012 				  tgid_base_stuff, ARRAY_SIZE(tgid_base_stuff));
3013 }
3014 
3015 static const struct inode_operations proc_tgid_base_inode_operations = {
3016 	.lookup		= proc_tgid_base_lookup,
3017 	.getattr	= pid_getattr,
3018 	.setattr	= proc_setattr,
3019 	.permission	= proc_pid_permission,
3020 };
3021 
3022 static void proc_flush_task_mnt(struct vfsmount *mnt, pid_t pid, pid_t tgid)
3023 {
3024 	struct dentry *dentry, *leader, *dir;
3025 	char buf[10 + 1];
3026 	struct qstr name;
3027 
3028 	name.name = buf;
3029 	name.len = snprintf(buf, sizeof(buf), "%u", pid);
3030 	/* no ->d_hash() rejects on procfs */
3031 	dentry = d_hash_and_lookup(mnt->mnt_root, &name);
3032 	if (dentry) {
3033 		d_invalidate(dentry);
3034 		dput(dentry);
3035 	}
3036 
3037 	if (pid == tgid)
3038 		return;
3039 
3040 	name.name = buf;
3041 	name.len = snprintf(buf, sizeof(buf), "%u", tgid);
3042 	leader = d_hash_and_lookup(mnt->mnt_root, &name);
3043 	if (!leader)
3044 		goto out;
3045 
3046 	name.name = "task";
3047 	name.len = strlen(name.name);
3048 	dir = d_hash_and_lookup(leader, &name);
3049 	if (!dir)
3050 		goto out_put_leader;
3051 
3052 	name.name = buf;
3053 	name.len = snprintf(buf, sizeof(buf), "%u", pid);
3054 	dentry = d_hash_and_lookup(dir, &name);
3055 	if (dentry) {
3056 		d_invalidate(dentry);
3057 		dput(dentry);
3058 	}
3059 
3060 	dput(dir);
3061 out_put_leader:
3062 	dput(leader);
3063 out:
3064 	return;
3065 }
3066 
3067 /**
3068  * proc_flush_task -  Remove dcache entries for @task from the /proc dcache.
3069  * @task: task that should be flushed.
3070  *
3071  * When flushing dentries from proc, one needs to flush them from global
3072  * proc (proc_mnt) and from all the namespaces' procs this task was seen
3073  * in. This call is supposed to do all of this job.
3074  *
3075  * Looks in the dcache for
3076  * /proc/@pid
3077  * /proc/@tgid/task/@pid
3078  * if either directory is present flushes it and all of it'ts children
3079  * from the dcache.
3080  *
3081  * It is safe and reasonable to cache /proc entries for a task until
3082  * that task exits.  After that they just clog up the dcache with
3083  * useless entries, possibly causing useful dcache entries to be
3084  * flushed instead.  This routine is proved to flush those useless
3085  * dcache entries at process exit time.
3086  *
3087  * NOTE: This routine is just an optimization so it does not guarantee
3088  *       that no dcache entries will exist at process exit time it
3089  *       just makes it very unlikely that any will persist.
3090  */
3091 
3092 void proc_flush_task(struct task_struct *task)
3093 {
3094 	int i;
3095 	struct pid *pid, *tgid;
3096 	struct upid *upid;
3097 
3098 	pid = task_pid(task);
3099 	tgid = task_tgid(task);
3100 
3101 	for (i = 0; i <= pid->level; i++) {
3102 		upid = &pid->numbers[i];
3103 		proc_flush_task_mnt(upid->ns->proc_mnt, upid->nr,
3104 					tgid->numbers[i].nr);
3105 	}
3106 }
3107 
3108 static struct dentry *proc_pid_instantiate(struct dentry * dentry,
3109 				   struct task_struct *task, const void *ptr)
3110 {
3111 	struct inode *inode;
3112 
3113 	inode = proc_pid_make_inode(dentry->d_sb, task, S_IFDIR | S_IRUGO | S_IXUGO);
3114 	if (!inode)
3115 		return ERR_PTR(-ENOENT);
3116 
3117 	inode->i_op = &proc_tgid_base_inode_operations;
3118 	inode->i_fop = &proc_tgid_base_operations;
3119 	inode->i_flags|=S_IMMUTABLE;
3120 
3121 	set_nlink(inode, nlink_tgid);
3122 	pid_update_inode(task, inode);
3123 
3124 	d_set_d_op(dentry, &pid_dentry_operations);
3125 	return d_splice_alias(inode, dentry);
3126 }
3127 
3128 struct dentry *proc_pid_lookup(struct inode *dir, struct dentry * dentry, unsigned int flags)
3129 {
3130 	struct task_struct *task;
3131 	unsigned tgid;
3132 	struct pid_namespace *ns;
3133 	struct dentry *result = ERR_PTR(-ENOENT);
3134 
3135 	tgid = name_to_int(&dentry->d_name);
3136 	if (tgid == ~0U)
3137 		goto out;
3138 
3139 	ns = dentry->d_sb->s_fs_info;
3140 	rcu_read_lock();
3141 	task = find_task_by_pid_ns(tgid, ns);
3142 	if (task)
3143 		get_task_struct(task);
3144 	rcu_read_unlock();
3145 	if (!task)
3146 		goto out;
3147 
3148 	result = proc_pid_instantiate(dentry, task, NULL);
3149 	put_task_struct(task);
3150 out:
3151 	return result;
3152 }
3153 
3154 /*
3155  * Find the first task with tgid >= tgid
3156  *
3157  */
3158 struct tgid_iter {
3159 	unsigned int tgid;
3160 	struct task_struct *task;
3161 };
3162 static struct tgid_iter next_tgid(struct pid_namespace *ns, struct tgid_iter iter)
3163 {
3164 	struct pid *pid;
3165 
3166 	if (iter.task)
3167 		put_task_struct(iter.task);
3168 	rcu_read_lock();
3169 retry:
3170 	iter.task = NULL;
3171 	pid = find_ge_pid(iter.tgid, ns);
3172 	if (pid) {
3173 		iter.tgid = pid_nr_ns(pid, ns);
3174 		iter.task = pid_task(pid, PIDTYPE_PID);
3175 		/* What we to know is if the pid we have find is the
3176 		 * pid of a thread_group_leader.  Testing for task
3177 		 * being a thread_group_leader is the obvious thing
3178 		 * todo but there is a window when it fails, due to
3179 		 * the pid transfer logic in de_thread.
3180 		 *
3181 		 * So we perform the straight forward test of seeing
3182 		 * if the pid we have found is the pid of a thread
3183 		 * group leader, and don't worry if the task we have
3184 		 * found doesn't happen to be a thread group leader.
3185 		 * As we don't care in the case of readdir.
3186 		 */
3187 		if (!iter.task || !has_group_leader_pid(iter.task)) {
3188 			iter.tgid += 1;
3189 			goto retry;
3190 		}
3191 		get_task_struct(iter.task);
3192 	}
3193 	rcu_read_unlock();
3194 	return iter;
3195 }
3196 
3197 #define TGID_OFFSET (FIRST_PROCESS_ENTRY + 2)
3198 
3199 /* for the /proc/ directory itself, after non-process stuff has been done */
3200 int proc_pid_readdir(struct file *file, struct dir_context *ctx)
3201 {
3202 	struct tgid_iter iter;
3203 	struct pid_namespace *ns = proc_pid_ns(file_inode(file));
3204 	loff_t pos = ctx->pos;
3205 
3206 	if (pos >= PID_MAX_LIMIT + TGID_OFFSET)
3207 		return 0;
3208 
3209 	if (pos == TGID_OFFSET - 2) {
3210 		struct inode *inode = d_inode(ns->proc_self);
3211 		if (!dir_emit(ctx, "self", 4, inode->i_ino, DT_LNK))
3212 			return 0;
3213 		ctx->pos = pos = pos + 1;
3214 	}
3215 	if (pos == TGID_OFFSET - 1) {
3216 		struct inode *inode = d_inode(ns->proc_thread_self);
3217 		if (!dir_emit(ctx, "thread-self", 11, inode->i_ino, DT_LNK))
3218 			return 0;
3219 		ctx->pos = pos = pos + 1;
3220 	}
3221 	iter.tgid = pos - TGID_OFFSET;
3222 	iter.task = NULL;
3223 	for (iter = next_tgid(ns, iter);
3224 	     iter.task;
3225 	     iter.tgid += 1, iter = next_tgid(ns, iter)) {
3226 		char name[10 + 1];
3227 		unsigned int len;
3228 
3229 		cond_resched();
3230 		if (!has_pid_permissions(ns, iter.task, HIDEPID_INVISIBLE))
3231 			continue;
3232 
3233 		len = snprintf(name, sizeof(name), "%u", iter.tgid);
3234 		ctx->pos = iter.tgid + TGID_OFFSET;
3235 		if (!proc_fill_cache(file, ctx, name, len,
3236 				     proc_pid_instantiate, iter.task, NULL)) {
3237 			put_task_struct(iter.task);
3238 			return 0;
3239 		}
3240 	}
3241 	ctx->pos = PID_MAX_LIMIT + TGID_OFFSET;
3242 	return 0;
3243 }
3244 
3245 /*
3246  * proc_tid_comm_permission is a special permission function exclusively
3247  * used for the node /proc/<pid>/task/<tid>/comm.
3248  * It bypasses generic permission checks in the case where a task of the same
3249  * task group attempts to access the node.
3250  * The rationale behind this is that glibc and bionic access this node for
3251  * cross thread naming (pthread_set/getname_np(!self)). However, if
3252  * PR_SET_DUMPABLE gets set to 0 this node among others becomes uid=0 gid=0,
3253  * which locks out the cross thread naming implementation.
3254  * This function makes sure that the node is always accessible for members of
3255  * same thread group.
3256  */
3257 static int proc_tid_comm_permission(struct inode *inode, int mask)
3258 {
3259 	bool is_same_tgroup;
3260 	struct task_struct *task;
3261 
3262 	task = get_proc_task(inode);
3263 	if (!task)
3264 		return -ESRCH;
3265 	is_same_tgroup = same_thread_group(current, task);
3266 	put_task_struct(task);
3267 
3268 	if (likely(is_same_tgroup && !(mask & MAY_EXEC))) {
3269 		/* This file (/proc/<pid>/task/<tid>/comm) can always be
3270 		 * read or written by the members of the corresponding
3271 		 * thread group.
3272 		 */
3273 		return 0;
3274 	}
3275 
3276 	return generic_permission(inode, mask);
3277 }
3278 
3279 static const struct inode_operations proc_tid_comm_inode_operations = {
3280 		.permission = proc_tid_comm_permission,
3281 };
3282 
3283 /*
3284  * Tasks
3285  */
3286 static const struct pid_entry tid_base_stuff[] = {
3287 	DIR("fd",        S_IRUSR|S_IXUSR, proc_fd_inode_operations, proc_fd_operations),
3288 	DIR("fdinfo",    S_IRUSR|S_IXUSR, proc_fdinfo_inode_operations, proc_fdinfo_operations),
3289 	DIR("ns",	 S_IRUSR|S_IXUGO, proc_ns_dir_inode_operations, proc_ns_dir_operations),
3290 #ifdef CONFIG_NET
3291 	DIR("net",        S_IRUGO|S_IXUGO, proc_net_inode_operations, proc_net_operations),
3292 #endif
3293 	REG("environ",   S_IRUSR, proc_environ_operations),
3294 	REG("auxv",      S_IRUSR, proc_auxv_operations),
3295 	ONE("status",    S_IRUGO, proc_pid_status),
3296 	ONE("personality", S_IRUSR, proc_pid_personality),
3297 	ONE("limits",	 S_IRUGO, proc_pid_limits),
3298 #ifdef CONFIG_SCHED_DEBUG
3299 	REG("sched",     S_IRUGO|S_IWUSR, proc_pid_sched_operations),
3300 #endif
3301 	NOD("comm",      S_IFREG|S_IRUGO|S_IWUSR,
3302 			 &proc_tid_comm_inode_operations,
3303 			 &proc_pid_set_comm_operations, {}),
3304 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK
3305 	ONE("syscall",   S_IRUSR, proc_pid_syscall),
3306 #endif
3307 	REG("cmdline",   S_IRUGO, proc_pid_cmdline_ops),
3308 	ONE("stat",      S_IRUGO, proc_tid_stat),
3309 	ONE("statm",     S_IRUGO, proc_pid_statm),
3310 	REG("maps",      S_IRUGO, proc_pid_maps_operations),
3311 #ifdef CONFIG_PROC_CHILDREN
3312 	REG("children",  S_IRUGO, proc_tid_children_operations),
3313 #endif
3314 #ifdef CONFIG_NUMA
3315 	REG("numa_maps", S_IRUGO, proc_pid_numa_maps_operations),
3316 #endif
3317 	REG("mem",       S_IRUSR|S_IWUSR, proc_mem_operations),
3318 	LNK("cwd",       proc_cwd_link),
3319 	LNK("root",      proc_root_link),
3320 	LNK("exe",       proc_exe_link),
3321 	REG("mounts",    S_IRUGO, proc_mounts_operations),
3322 	REG("mountinfo",  S_IRUGO, proc_mountinfo_operations),
3323 #ifdef CONFIG_PROC_PAGE_MONITOR
3324 	REG("clear_refs", S_IWUSR, proc_clear_refs_operations),
3325 	REG("smaps",     S_IRUGO, proc_pid_smaps_operations),
3326 	REG("smaps_rollup", S_IRUGO, proc_pid_smaps_rollup_operations),
3327 	REG("pagemap",    S_IRUSR, proc_pagemap_operations),
3328 #endif
3329 #ifdef CONFIG_SECURITY
3330 	DIR("attr",      S_IRUGO|S_IXUGO, proc_attr_dir_inode_operations, proc_attr_dir_operations),
3331 #endif
3332 #ifdef CONFIG_KALLSYMS
3333 	ONE("wchan",     S_IRUGO, proc_pid_wchan),
3334 #endif
3335 #ifdef CONFIG_STACKTRACE
3336 	ONE("stack",      S_IRUSR, proc_pid_stack),
3337 #endif
3338 #ifdef CONFIG_SCHED_INFO
3339 	ONE("schedstat", S_IRUGO, proc_pid_schedstat),
3340 #endif
3341 #ifdef CONFIG_LATENCYTOP
3342 	REG("latency",  S_IRUGO, proc_lstats_operations),
3343 #endif
3344 #ifdef CONFIG_PROC_PID_CPUSET
3345 	ONE("cpuset",    S_IRUGO, proc_cpuset_show),
3346 #endif
3347 #ifdef CONFIG_CGROUPS
3348 	ONE("cgroup",  S_IRUGO, proc_cgroup_show),
3349 #endif
3350 	ONE("oom_score", S_IRUGO, proc_oom_score),
3351 	REG("oom_adj",   S_IRUGO|S_IWUSR, proc_oom_adj_operations),
3352 	REG("oom_score_adj", S_IRUGO|S_IWUSR, proc_oom_score_adj_operations),
3353 #ifdef CONFIG_AUDITSYSCALL
3354 	REG("loginuid",  S_IWUSR|S_IRUGO, proc_loginuid_operations),
3355 	REG("sessionid",  S_IRUGO, proc_sessionid_operations),
3356 #endif
3357 #ifdef CONFIG_FAULT_INJECTION
3358 	REG("make-it-fail", S_IRUGO|S_IWUSR, proc_fault_inject_operations),
3359 	REG("fail-nth", 0644, proc_fail_nth_operations),
3360 #endif
3361 #ifdef CONFIG_TASK_IO_ACCOUNTING
3362 	ONE("io",	S_IRUSR, proc_tid_io_accounting),
3363 #endif
3364 #ifdef CONFIG_USER_NS
3365 	REG("uid_map",    S_IRUGO|S_IWUSR, proc_uid_map_operations),
3366 	REG("gid_map",    S_IRUGO|S_IWUSR, proc_gid_map_operations),
3367 	REG("projid_map", S_IRUGO|S_IWUSR, proc_projid_map_operations),
3368 	REG("setgroups",  S_IRUGO|S_IWUSR, proc_setgroups_operations),
3369 #endif
3370 #ifdef CONFIG_LIVEPATCH
3371 	ONE("patch_state",  S_IRUSR, proc_pid_patch_state),
3372 #endif
3373 };
3374 
3375 static int proc_tid_base_readdir(struct file *file, struct dir_context *ctx)
3376 {
3377 	return proc_pident_readdir(file, ctx,
3378 				   tid_base_stuff, ARRAY_SIZE(tid_base_stuff));
3379 }
3380 
3381 static struct dentry *proc_tid_base_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
3382 {
3383 	return proc_pident_lookup(dir, dentry,
3384 				  tid_base_stuff, ARRAY_SIZE(tid_base_stuff));
3385 }
3386 
3387 static const struct file_operations proc_tid_base_operations = {
3388 	.read		= generic_read_dir,
3389 	.iterate_shared	= proc_tid_base_readdir,
3390 	.llseek		= generic_file_llseek,
3391 };
3392 
3393 static const struct inode_operations proc_tid_base_inode_operations = {
3394 	.lookup		= proc_tid_base_lookup,
3395 	.getattr	= pid_getattr,
3396 	.setattr	= proc_setattr,
3397 };
3398 
3399 static struct dentry *proc_task_instantiate(struct dentry *dentry,
3400 	struct task_struct *task, const void *ptr)
3401 {
3402 	struct inode *inode;
3403 	inode = proc_pid_make_inode(dentry->d_sb, task, S_IFDIR | S_IRUGO | S_IXUGO);
3404 	if (!inode)
3405 		return ERR_PTR(-ENOENT);
3406 
3407 	inode->i_op = &proc_tid_base_inode_operations;
3408 	inode->i_fop = &proc_tid_base_operations;
3409 	inode->i_flags |= S_IMMUTABLE;
3410 
3411 	set_nlink(inode, nlink_tid);
3412 	pid_update_inode(task, inode);
3413 
3414 	d_set_d_op(dentry, &pid_dentry_operations);
3415 	return d_splice_alias(inode, dentry);
3416 }
3417 
3418 static struct dentry *proc_task_lookup(struct inode *dir, struct dentry * dentry, unsigned int flags)
3419 {
3420 	struct task_struct *task;
3421 	struct task_struct *leader = get_proc_task(dir);
3422 	unsigned tid;
3423 	struct pid_namespace *ns;
3424 	struct dentry *result = ERR_PTR(-ENOENT);
3425 
3426 	if (!leader)
3427 		goto out_no_task;
3428 
3429 	tid = name_to_int(&dentry->d_name);
3430 	if (tid == ~0U)
3431 		goto out;
3432 
3433 	ns = dentry->d_sb->s_fs_info;
3434 	rcu_read_lock();
3435 	task = find_task_by_pid_ns(tid, ns);
3436 	if (task)
3437 		get_task_struct(task);
3438 	rcu_read_unlock();
3439 	if (!task)
3440 		goto out;
3441 	if (!same_thread_group(leader, task))
3442 		goto out_drop_task;
3443 
3444 	result = proc_task_instantiate(dentry, task, NULL);
3445 out_drop_task:
3446 	put_task_struct(task);
3447 out:
3448 	put_task_struct(leader);
3449 out_no_task:
3450 	return result;
3451 }
3452 
3453 /*
3454  * Find the first tid of a thread group to return to user space.
3455  *
3456  * Usually this is just the thread group leader, but if the users
3457  * buffer was too small or there was a seek into the middle of the
3458  * directory we have more work todo.
3459  *
3460  * In the case of a short read we start with find_task_by_pid.
3461  *
3462  * In the case of a seek we start with the leader and walk nr
3463  * threads past it.
3464  */
3465 static struct task_struct *first_tid(struct pid *pid, int tid, loff_t f_pos,
3466 					struct pid_namespace *ns)
3467 {
3468 	struct task_struct *pos, *task;
3469 	unsigned long nr = f_pos;
3470 
3471 	if (nr != f_pos)	/* 32bit overflow? */
3472 		return NULL;
3473 
3474 	rcu_read_lock();
3475 	task = pid_task(pid, PIDTYPE_PID);
3476 	if (!task)
3477 		goto fail;
3478 
3479 	/* Attempt to start with the tid of a thread */
3480 	if (tid && nr) {
3481 		pos = find_task_by_pid_ns(tid, ns);
3482 		if (pos && same_thread_group(pos, task))
3483 			goto found;
3484 	}
3485 
3486 	/* If nr exceeds the number of threads there is nothing todo */
3487 	if (nr >= get_nr_threads(task))
3488 		goto fail;
3489 
3490 	/* If we haven't found our starting place yet start
3491 	 * with the leader and walk nr threads forward.
3492 	 */
3493 	pos = task = task->group_leader;
3494 	do {
3495 		if (!nr--)
3496 			goto found;
3497 	} while_each_thread(task, pos);
3498 fail:
3499 	pos = NULL;
3500 	goto out;
3501 found:
3502 	get_task_struct(pos);
3503 out:
3504 	rcu_read_unlock();
3505 	return pos;
3506 }
3507 
3508 /*
3509  * Find the next thread in the thread list.
3510  * Return NULL if there is an error or no next thread.
3511  *
3512  * The reference to the input task_struct is released.
3513  */
3514 static struct task_struct *next_tid(struct task_struct *start)
3515 {
3516 	struct task_struct *pos = NULL;
3517 	rcu_read_lock();
3518 	if (pid_alive(start)) {
3519 		pos = next_thread(start);
3520 		if (thread_group_leader(pos))
3521 			pos = NULL;
3522 		else
3523 			get_task_struct(pos);
3524 	}
3525 	rcu_read_unlock();
3526 	put_task_struct(start);
3527 	return pos;
3528 }
3529 
3530 /* for the /proc/TGID/task/ directories */
3531 static int proc_task_readdir(struct file *file, struct dir_context *ctx)
3532 {
3533 	struct inode *inode = file_inode(file);
3534 	struct task_struct *task;
3535 	struct pid_namespace *ns;
3536 	int tid;
3537 
3538 	if (proc_inode_is_dead(inode))
3539 		return -ENOENT;
3540 
3541 	if (!dir_emit_dots(file, ctx))
3542 		return 0;
3543 
3544 	/* f_version caches the tgid value that the last readdir call couldn't
3545 	 * return. lseek aka telldir automagically resets f_version to 0.
3546 	 */
3547 	ns = proc_pid_ns(inode);
3548 	tid = (int)file->f_version;
3549 	file->f_version = 0;
3550 	for (task = first_tid(proc_pid(inode), tid, ctx->pos - 2, ns);
3551 	     task;
3552 	     task = next_tid(task), ctx->pos++) {
3553 		char name[10 + 1];
3554 		unsigned int len;
3555 		tid = task_pid_nr_ns(task, ns);
3556 		len = snprintf(name, sizeof(name), "%u", tid);
3557 		if (!proc_fill_cache(file, ctx, name, len,
3558 				proc_task_instantiate, task, NULL)) {
3559 			/* returning this tgid failed, save it as the first
3560 			 * pid for the next readir call */
3561 			file->f_version = (u64)tid;
3562 			put_task_struct(task);
3563 			break;
3564 		}
3565 	}
3566 
3567 	return 0;
3568 }
3569 
3570 static int proc_task_getattr(const struct path *path, struct kstat *stat,
3571 			     u32 request_mask, unsigned int query_flags)
3572 {
3573 	struct inode *inode = d_inode(path->dentry);
3574 	struct task_struct *p = get_proc_task(inode);
3575 	generic_fillattr(inode, stat);
3576 
3577 	if (p) {
3578 		stat->nlink += get_nr_threads(p);
3579 		put_task_struct(p);
3580 	}
3581 
3582 	return 0;
3583 }
3584 
3585 static const struct inode_operations proc_task_inode_operations = {
3586 	.lookup		= proc_task_lookup,
3587 	.getattr	= proc_task_getattr,
3588 	.setattr	= proc_setattr,
3589 	.permission	= proc_pid_permission,
3590 };
3591 
3592 static const struct file_operations proc_task_operations = {
3593 	.read		= generic_read_dir,
3594 	.iterate_shared	= proc_task_readdir,
3595 	.llseek		= generic_file_llseek,
3596 };
3597 
3598 void __init set_proc_pid_nlink(void)
3599 {
3600 	nlink_tid = pid_entry_nlink(tid_base_stuff, ARRAY_SIZE(tid_base_stuff));
3601 	nlink_tgid = pid_entry_nlink(tgid_base_stuff, ARRAY_SIZE(tgid_base_stuff));
3602 }
3603