1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * linux/fs/proc/base.c 4 * 5 * Copyright (C) 1991, 1992 Linus Torvalds 6 * 7 * proc base directory handling functions 8 * 9 * 1999, Al Viro. Rewritten. Now it covers the whole per-process part. 10 * Instead of using magical inumbers to determine the kind of object 11 * we allocate and fill in-core inodes upon lookup. They don't even 12 * go into icache. We cache the reference to task_struct upon lookup too. 13 * Eventually it should become a filesystem in its own. We don't use the 14 * rest of procfs anymore. 15 * 16 * 17 * Changelog: 18 * 17-Jan-2005 19 * Allan Bezerra 20 * Bruna Moreira <bruna.moreira@indt.org.br> 21 * Edjard Mota <edjard.mota@indt.org.br> 22 * Ilias Biris <ilias.biris@indt.org.br> 23 * Mauricio Lin <mauricio.lin@indt.org.br> 24 * 25 * Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT 26 * 27 * A new process specific entry (smaps) included in /proc. It shows the 28 * size of rss for each memory area. The maps entry lacks information 29 * about physical memory size (rss) for each mapped file, i.e., 30 * rss information for executables and library files. 31 * This additional information is useful for any tools that need to know 32 * about physical memory consumption for a process specific library. 33 * 34 * Changelog: 35 * 21-Feb-2005 36 * Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT 37 * Pud inclusion in the page table walking. 38 * 39 * ChangeLog: 40 * 10-Mar-2005 41 * 10LE Instituto Nokia de Tecnologia - INdT: 42 * A better way to walks through the page table as suggested by Hugh Dickins. 43 * 44 * Simo Piiroinen <simo.piiroinen@nokia.com>: 45 * Smaps information related to shared, private, clean and dirty pages. 46 * 47 * Paul Mundt <paul.mundt@nokia.com>: 48 * Overall revision about smaps. 49 */ 50 51 #include <linux/uaccess.h> 52 53 #include <linux/errno.h> 54 #include <linux/time.h> 55 #include <linux/proc_fs.h> 56 #include <linux/stat.h> 57 #include <linux/task_io_accounting_ops.h> 58 #include <linux/init.h> 59 #include <linux/capability.h> 60 #include <linux/file.h> 61 #include <linux/fdtable.h> 62 #include <linux/generic-radix-tree.h> 63 #include <linux/string.h> 64 #include <linux/seq_file.h> 65 #include <linux/namei.h> 66 #include <linux/mnt_namespace.h> 67 #include <linux/mm.h> 68 #include <linux/swap.h> 69 #include <linux/rcupdate.h> 70 #include <linux/kallsyms.h> 71 #include <linux/stacktrace.h> 72 #include <linux/resource.h> 73 #include <linux/module.h> 74 #include <linux/mount.h> 75 #include <linux/security.h> 76 #include <linux/ptrace.h> 77 #include <linux/tracehook.h> 78 #include <linux/printk.h> 79 #include <linux/cache.h> 80 #include <linux/cgroup.h> 81 #include <linux/cpuset.h> 82 #include <linux/audit.h> 83 #include <linux/poll.h> 84 #include <linux/nsproxy.h> 85 #include <linux/oom.h> 86 #include <linux/elf.h> 87 #include <linux/pid_namespace.h> 88 #include <linux/user_namespace.h> 89 #include <linux/fs_struct.h> 90 #include <linux/slab.h> 91 #include <linux/sched/autogroup.h> 92 #include <linux/sched/mm.h> 93 #include <linux/sched/coredump.h> 94 #include <linux/sched/debug.h> 95 #include <linux/sched/stat.h> 96 #include <linux/posix-timers.h> 97 #include <linux/time_namespace.h> 98 #include <linux/resctrl.h> 99 #include <linux/cn_proc.h> 100 #include <trace/events/oom.h> 101 #include "internal.h" 102 #include "fd.h" 103 104 #include "../../lib/kstrtox.h" 105 106 /* NOTE: 107 * Implementing inode permission operations in /proc is almost 108 * certainly an error. Permission checks need to happen during 109 * each system call not at open time. The reason is that most of 110 * what we wish to check for permissions in /proc varies at runtime. 111 * 112 * The classic example of a problem is opening file descriptors 113 * in /proc for a task before it execs a suid executable. 114 */ 115 116 static u8 nlink_tid __ro_after_init; 117 static u8 nlink_tgid __ro_after_init; 118 119 struct pid_entry { 120 const char *name; 121 unsigned int len; 122 umode_t mode; 123 const struct inode_operations *iop; 124 const struct file_operations *fop; 125 union proc_op op; 126 }; 127 128 #define NOD(NAME, MODE, IOP, FOP, OP) { \ 129 .name = (NAME), \ 130 .len = sizeof(NAME) - 1, \ 131 .mode = MODE, \ 132 .iop = IOP, \ 133 .fop = FOP, \ 134 .op = OP, \ 135 } 136 137 #define DIR(NAME, MODE, iops, fops) \ 138 NOD(NAME, (S_IFDIR|(MODE)), &iops, &fops, {} ) 139 #define LNK(NAME, get_link) \ 140 NOD(NAME, (S_IFLNK|S_IRWXUGO), \ 141 &proc_pid_link_inode_operations, NULL, \ 142 { .proc_get_link = get_link } ) 143 #define REG(NAME, MODE, fops) \ 144 NOD(NAME, (S_IFREG|(MODE)), NULL, &fops, {}) 145 #define ONE(NAME, MODE, show) \ 146 NOD(NAME, (S_IFREG|(MODE)), \ 147 NULL, &proc_single_file_operations, \ 148 { .proc_show = show } ) 149 #define ATTR(LSM, NAME, MODE) \ 150 NOD(NAME, (S_IFREG|(MODE)), \ 151 NULL, &proc_pid_attr_operations, \ 152 { .lsm = LSM }) 153 154 /* 155 * Count the number of hardlinks for the pid_entry table, excluding the . 156 * and .. links. 157 */ 158 static unsigned int __init pid_entry_nlink(const struct pid_entry *entries, 159 unsigned int n) 160 { 161 unsigned int i; 162 unsigned int count; 163 164 count = 2; 165 for (i = 0; i < n; ++i) { 166 if (S_ISDIR(entries[i].mode)) 167 ++count; 168 } 169 170 return count; 171 } 172 173 static int get_task_root(struct task_struct *task, struct path *root) 174 { 175 int result = -ENOENT; 176 177 task_lock(task); 178 if (task->fs) { 179 get_fs_root(task->fs, root); 180 result = 0; 181 } 182 task_unlock(task); 183 return result; 184 } 185 186 static int proc_cwd_link(struct dentry *dentry, struct path *path) 187 { 188 struct task_struct *task = get_proc_task(d_inode(dentry)); 189 int result = -ENOENT; 190 191 if (task) { 192 task_lock(task); 193 if (task->fs) { 194 get_fs_pwd(task->fs, path); 195 result = 0; 196 } 197 task_unlock(task); 198 put_task_struct(task); 199 } 200 return result; 201 } 202 203 static int proc_root_link(struct dentry *dentry, struct path *path) 204 { 205 struct task_struct *task = get_proc_task(d_inode(dentry)); 206 int result = -ENOENT; 207 208 if (task) { 209 result = get_task_root(task, path); 210 put_task_struct(task); 211 } 212 return result; 213 } 214 215 /* 216 * If the user used setproctitle(), we just get the string from 217 * user space at arg_start, and limit it to a maximum of one page. 218 */ 219 static ssize_t get_mm_proctitle(struct mm_struct *mm, char __user *buf, 220 size_t count, unsigned long pos, 221 unsigned long arg_start) 222 { 223 char *page; 224 int ret, got; 225 226 if (pos >= PAGE_SIZE) 227 return 0; 228 229 page = (char *)__get_free_page(GFP_KERNEL); 230 if (!page) 231 return -ENOMEM; 232 233 ret = 0; 234 got = access_remote_vm(mm, arg_start, page, PAGE_SIZE, FOLL_ANON); 235 if (got > 0) { 236 int len = strnlen(page, got); 237 238 /* Include the NUL character if it was found */ 239 if (len < got) 240 len++; 241 242 if (len > pos) { 243 len -= pos; 244 if (len > count) 245 len = count; 246 len -= copy_to_user(buf, page+pos, len); 247 if (!len) 248 len = -EFAULT; 249 ret = len; 250 } 251 } 252 free_page((unsigned long)page); 253 return ret; 254 } 255 256 static ssize_t get_mm_cmdline(struct mm_struct *mm, char __user *buf, 257 size_t count, loff_t *ppos) 258 { 259 unsigned long arg_start, arg_end, env_start, env_end; 260 unsigned long pos, len; 261 char *page, c; 262 263 /* Check if process spawned far enough to have cmdline. */ 264 if (!mm->env_end) 265 return 0; 266 267 spin_lock(&mm->arg_lock); 268 arg_start = mm->arg_start; 269 arg_end = mm->arg_end; 270 env_start = mm->env_start; 271 env_end = mm->env_end; 272 spin_unlock(&mm->arg_lock); 273 274 if (arg_start >= arg_end) 275 return 0; 276 277 /* 278 * We allow setproctitle() to overwrite the argument 279 * strings, and overflow past the original end. But 280 * only when it overflows into the environment area. 281 */ 282 if (env_start != arg_end || env_end < env_start) 283 env_start = env_end = arg_end; 284 len = env_end - arg_start; 285 286 /* We're not going to care if "*ppos" has high bits set */ 287 pos = *ppos; 288 if (pos >= len) 289 return 0; 290 if (count > len - pos) 291 count = len - pos; 292 if (!count) 293 return 0; 294 295 /* 296 * Magical special case: if the argv[] end byte is not 297 * zero, the user has overwritten it with setproctitle(3). 298 * 299 * Possible future enhancement: do this only once when 300 * pos is 0, and set a flag in the 'struct file'. 301 */ 302 if (access_remote_vm(mm, arg_end-1, &c, 1, FOLL_ANON) == 1 && c) 303 return get_mm_proctitle(mm, buf, count, pos, arg_start); 304 305 /* 306 * For the non-setproctitle() case we limit things strictly 307 * to the [arg_start, arg_end[ range. 308 */ 309 pos += arg_start; 310 if (pos < arg_start || pos >= arg_end) 311 return 0; 312 if (count > arg_end - pos) 313 count = arg_end - pos; 314 315 page = (char *)__get_free_page(GFP_KERNEL); 316 if (!page) 317 return -ENOMEM; 318 319 len = 0; 320 while (count) { 321 int got; 322 size_t size = min_t(size_t, PAGE_SIZE, count); 323 324 got = access_remote_vm(mm, pos, page, size, FOLL_ANON); 325 if (got <= 0) 326 break; 327 got -= copy_to_user(buf, page, got); 328 if (unlikely(!got)) { 329 if (!len) 330 len = -EFAULT; 331 break; 332 } 333 pos += got; 334 buf += got; 335 len += got; 336 count -= got; 337 } 338 339 free_page((unsigned long)page); 340 return len; 341 } 342 343 static ssize_t get_task_cmdline(struct task_struct *tsk, char __user *buf, 344 size_t count, loff_t *pos) 345 { 346 struct mm_struct *mm; 347 ssize_t ret; 348 349 mm = get_task_mm(tsk); 350 if (!mm) 351 return 0; 352 353 ret = get_mm_cmdline(mm, buf, count, pos); 354 mmput(mm); 355 return ret; 356 } 357 358 static ssize_t proc_pid_cmdline_read(struct file *file, char __user *buf, 359 size_t count, loff_t *pos) 360 { 361 struct task_struct *tsk; 362 ssize_t ret; 363 364 BUG_ON(*pos < 0); 365 366 tsk = get_proc_task(file_inode(file)); 367 if (!tsk) 368 return -ESRCH; 369 ret = get_task_cmdline(tsk, buf, count, pos); 370 put_task_struct(tsk); 371 if (ret > 0) 372 *pos += ret; 373 return ret; 374 } 375 376 static const struct file_operations proc_pid_cmdline_ops = { 377 .read = proc_pid_cmdline_read, 378 .llseek = generic_file_llseek, 379 }; 380 381 #ifdef CONFIG_KALLSYMS 382 /* 383 * Provides a wchan file via kallsyms in a proper one-value-per-file format. 384 * Returns the resolved symbol. If that fails, simply return the address. 385 */ 386 static int proc_pid_wchan(struct seq_file *m, struct pid_namespace *ns, 387 struct pid *pid, struct task_struct *task) 388 { 389 unsigned long wchan; 390 char symname[KSYM_NAME_LEN]; 391 392 if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS)) 393 goto print0; 394 395 wchan = get_wchan(task); 396 if (wchan && !lookup_symbol_name(wchan, symname)) { 397 seq_puts(m, symname); 398 return 0; 399 } 400 401 print0: 402 seq_putc(m, '0'); 403 return 0; 404 } 405 #endif /* CONFIG_KALLSYMS */ 406 407 static int lock_trace(struct task_struct *task) 408 { 409 int err = down_read_killable(&task->signal->exec_update_lock); 410 if (err) 411 return err; 412 if (!ptrace_may_access(task, PTRACE_MODE_ATTACH_FSCREDS)) { 413 up_read(&task->signal->exec_update_lock); 414 return -EPERM; 415 } 416 return 0; 417 } 418 419 static void unlock_trace(struct task_struct *task) 420 { 421 up_read(&task->signal->exec_update_lock); 422 } 423 424 #ifdef CONFIG_STACKTRACE 425 426 #define MAX_STACK_TRACE_DEPTH 64 427 428 static int proc_pid_stack(struct seq_file *m, struct pid_namespace *ns, 429 struct pid *pid, struct task_struct *task) 430 { 431 unsigned long *entries; 432 int err; 433 434 /* 435 * The ability to racily run the kernel stack unwinder on a running task 436 * and then observe the unwinder output is scary; while it is useful for 437 * debugging kernel issues, it can also allow an attacker to leak kernel 438 * stack contents. 439 * Doing this in a manner that is at least safe from races would require 440 * some work to ensure that the remote task can not be scheduled; and 441 * even then, this would still expose the unwinder as local attack 442 * surface. 443 * Therefore, this interface is restricted to root. 444 */ 445 if (!file_ns_capable(m->file, &init_user_ns, CAP_SYS_ADMIN)) 446 return -EACCES; 447 448 entries = kmalloc_array(MAX_STACK_TRACE_DEPTH, sizeof(*entries), 449 GFP_KERNEL); 450 if (!entries) 451 return -ENOMEM; 452 453 err = lock_trace(task); 454 if (!err) { 455 unsigned int i, nr_entries; 456 457 nr_entries = stack_trace_save_tsk(task, entries, 458 MAX_STACK_TRACE_DEPTH, 0); 459 460 for (i = 0; i < nr_entries; i++) { 461 seq_printf(m, "[<0>] %pB\n", (void *)entries[i]); 462 } 463 464 unlock_trace(task); 465 } 466 kfree(entries); 467 468 return err; 469 } 470 #endif 471 472 #ifdef CONFIG_SCHED_INFO 473 /* 474 * Provides /proc/PID/schedstat 475 */ 476 static int proc_pid_schedstat(struct seq_file *m, struct pid_namespace *ns, 477 struct pid *pid, struct task_struct *task) 478 { 479 if (unlikely(!sched_info_on())) 480 seq_puts(m, "0 0 0\n"); 481 else 482 seq_printf(m, "%llu %llu %lu\n", 483 (unsigned long long)task->se.sum_exec_runtime, 484 (unsigned long long)task->sched_info.run_delay, 485 task->sched_info.pcount); 486 487 return 0; 488 } 489 #endif 490 491 #ifdef CONFIG_LATENCYTOP 492 static int lstats_show_proc(struct seq_file *m, void *v) 493 { 494 int i; 495 struct inode *inode = m->private; 496 struct task_struct *task = get_proc_task(inode); 497 498 if (!task) 499 return -ESRCH; 500 seq_puts(m, "Latency Top version : v0.1\n"); 501 for (i = 0; i < LT_SAVECOUNT; i++) { 502 struct latency_record *lr = &task->latency_record[i]; 503 if (lr->backtrace[0]) { 504 int q; 505 seq_printf(m, "%i %li %li", 506 lr->count, lr->time, lr->max); 507 for (q = 0; q < LT_BACKTRACEDEPTH; q++) { 508 unsigned long bt = lr->backtrace[q]; 509 510 if (!bt) 511 break; 512 seq_printf(m, " %ps", (void *)bt); 513 } 514 seq_putc(m, '\n'); 515 } 516 517 } 518 put_task_struct(task); 519 return 0; 520 } 521 522 static int lstats_open(struct inode *inode, struct file *file) 523 { 524 return single_open(file, lstats_show_proc, inode); 525 } 526 527 static ssize_t lstats_write(struct file *file, const char __user *buf, 528 size_t count, loff_t *offs) 529 { 530 struct task_struct *task = get_proc_task(file_inode(file)); 531 532 if (!task) 533 return -ESRCH; 534 clear_tsk_latency_tracing(task); 535 put_task_struct(task); 536 537 return count; 538 } 539 540 static const struct file_operations proc_lstats_operations = { 541 .open = lstats_open, 542 .read = seq_read, 543 .write = lstats_write, 544 .llseek = seq_lseek, 545 .release = single_release, 546 }; 547 548 #endif 549 550 static int proc_oom_score(struct seq_file *m, struct pid_namespace *ns, 551 struct pid *pid, struct task_struct *task) 552 { 553 unsigned long totalpages = totalram_pages() + total_swap_pages; 554 unsigned long points = 0; 555 long badness; 556 557 badness = oom_badness(task, totalpages); 558 /* 559 * Special case OOM_SCORE_ADJ_MIN for all others scale the 560 * badness value into [0, 2000] range which we have been 561 * exporting for a long time so userspace might depend on it. 562 */ 563 if (badness != LONG_MIN) 564 points = (1000 + badness * 1000 / (long)totalpages) * 2 / 3; 565 566 seq_printf(m, "%lu\n", points); 567 568 return 0; 569 } 570 571 struct limit_names { 572 const char *name; 573 const char *unit; 574 }; 575 576 static const struct limit_names lnames[RLIM_NLIMITS] = { 577 [RLIMIT_CPU] = {"Max cpu time", "seconds"}, 578 [RLIMIT_FSIZE] = {"Max file size", "bytes"}, 579 [RLIMIT_DATA] = {"Max data size", "bytes"}, 580 [RLIMIT_STACK] = {"Max stack size", "bytes"}, 581 [RLIMIT_CORE] = {"Max core file size", "bytes"}, 582 [RLIMIT_RSS] = {"Max resident set", "bytes"}, 583 [RLIMIT_NPROC] = {"Max processes", "processes"}, 584 [RLIMIT_NOFILE] = {"Max open files", "files"}, 585 [RLIMIT_MEMLOCK] = {"Max locked memory", "bytes"}, 586 [RLIMIT_AS] = {"Max address space", "bytes"}, 587 [RLIMIT_LOCKS] = {"Max file locks", "locks"}, 588 [RLIMIT_SIGPENDING] = {"Max pending signals", "signals"}, 589 [RLIMIT_MSGQUEUE] = {"Max msgqueue size", "bytes"}, 590 [RLIMIT_NICE] = {"Max nice priority", NULL}, 591 [RLIMIT_RTPRIO] = {"Max realtime priority", NULL}, 592 [RLIMIT_RTTIME] = {"Max realtime timeout", "us"}, 593 }; 594 595 /* Display limits for a process */ 596 static int proc_pid_limits(struct seq_file *m, struct pid_namespace *ns, 597 struct pid *pid, struct task_struct *task) 598 { 599 unsigned int i; 600 unsigned long flags; 601 602 struct rlimit rlim[RLIM_NLIMITS]; 603 604 if (!lock_task_sighand(task, &flags)) 605 return 0; 606 memcpy(rlim, task->signal->rlim, sizeof(struct rlimit) * RLIM_NLIMITS); 607 unlock_task_sighand(task, &flags); 608 609 /* 610 * print the file header 611 */ 612 seq_puts(m, "Limit " 613 "Soft Limit " 614 "Hard Limit " 615 "Units \n"); 616 617 for (i = 0; i < RLIM_NLIMITS; i++) { 618 if (rlim[i].rlim_cur == RLIM_INFINITY) 619 seq_printf(m, "%-25s %-20s ", 620 lnames[i].name, "unlimited"); 621 else 622 seq_printf(m, "%-25s %-20lu ", 623 lnames[i].name, rlim[i].rlim_cur); 624 625 if (rlim[i].rlim_max == RLIM_INFINITY) 626 seq_printf(m, "%-20s ", "unlimited"); 627 else 628 seq_printf(m, "%-20lu ", rlim[i].rlim_max); 629 630 if (lnames[i].unit) 631 seq_printf(m, "%-10s\n", lnames[i].unit); 632 else 633 seq_putc(m, '\n'); 634 } 635 636 return 0; 637 } 638 639 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK 640 static int proc_pid_syscall(struct seq_file *m, struct pid_namespace *ns, 641 struct pid *pid, struct task_struct *task) 642 { 643 struct syscall_info info; 644 u64 *args = &info.data.args[0]; 645 int res; 646 647 res = lock_trace(task); 648 if (res) 649 return res; 650 651 if (task_current_syscall(task, &info)) 652 seq_puts(m, "running\n"); 653 else if (info.data.nr < 0) 654 seq_printf(m, "%d 0x%llx 0x%llx\n", 655 info.data.nr, info.sp, info.data.instruction_pointer); 656 else 657 seq_printf(m, 658 "%d 0x%llx 0x%llx 0x%llx 0x%llx 0x%llx 0x%llx 0x%llx 0x%llx\n", 659 info.data.nr, 660 args[0], args[1], args[2], args[3], args[4], args[5], 661 info.sp, info.data.instruction_pointer); 662 unlock_trace(task); 663 664 return 0; 665 } 666 #endif /* CONFIG_HAVE_ARCH_TRACEHOOK */ 667 668 /************************************************************************/ 669 /* Here the fs part begins */ 670 /************************************************************************/ 671 672 /* permission checks */ 673 static int proc_fd_access_allowed(struct inode *inode) 674 { 675 struct task_struct *task; 676 int allowed = 0; 677 /* Allow access to a task's file descriptors if it is us or we 678 * may use ptrace attach to the process and find out that 679 * information. 680 */ 681 task = get_proc_task(inode); 682 if (task) { 683 allowed = ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS); 684 put_task_struct(task); 685 } 686 return allowed; 687 } 688 689 int proc_setattr(struct user_namespace *mnt_userns, struct dentry *dentry, 690 struct iattr *attr) 691 { 692 int error; 693 struct inode *inode = d_inode(dentry); 694 695 if (attr->ia_valid & ATTR_MODE) 696 return -EPERM; 697 698 error = setattr_prepare(&init_user_ns, dentry, attr); 699 if (error) 700 return error; 701 702 setattr_copy(&init_user_ns, inode, attr); 703 mark_inode_dirty(inode); 704 return 0; 705 } 706 707 /* 708 * May current process learn task's sched/cmdline info (for hide_pid_min=1) 709 * or euid/egid (for hide_pid_min=2)? 710 */ 711 static bool has_pid_permissions(struct proc_fs_info *fs_info, 712 struct task_struct *task, 713 enum proc_hidepid hide_pid_min) 714 { 715 /* 716 * If 'hidpid' mount option is set force a ptrace check, 717 * we indicate that we are using a filesystem syscall 718 * by passing PTRACE_MODE_READ_FSCREDS 719 */ 720 if (fs_info->hide_pid == HIDEPID_NOT_PTRACEABLE) 721 return ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS); 722 723 if (fs_info->hide_pid < hide_pid_min) 724 return true; 725 if (in_group_p(fs_info->pid_gid)) 726 return true; 727 return ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS); 728 } 729 730 731 static int proc_pid_permission(struct user_namespace *mnt_userns, 732 struct inode *inode, int mask) 733 { 734 struct proc_fs_info *fs_info = proc_sb_info(inode->i_sb); 735 struct task_struct *task; 736 bool has_perms; 737 738 task = get_proc_task(inode); 739 if (!task) 740 return -ESRCH; 741 has_perms = has_pid_permissions(fs_info, task, HIDEPID_NO_ACCESS); 742 put_task_struct(task); 743 744 if (!has_perms) { 745 if (fs_info->hide_pid == HIDEPID_INVISIBLE) { 746 /* 747 * Let's make getdents(), stat(), and open() 748 * consistent with each other. If a process 749 * may not stat() a file, it shouldn't be seen 750 * in procfs at all. 751 */ 752 return -ENOENT; 753 } 754 755 return -EPERM; 756 } 757 return generic_permission(&init_user_ns, inode, mask); 758 } 759 760 761 762 static const struct inode_operations proc_def_inode_operations = { 763 .setattr = proc_setattr, 764 }; 765 766 static int proc_single_show(struct seq_file *m, void *v) 767 { 768 struct inode *inode = m->private; 769 struct pid_namespace *ns = proc_pid_ns(inode->i_sb); 770 struct pid *pid = proc_pid(inode); 771 struct task_struct *task; 772 int ret; 773 774 task = get_pid_task(pid, PIDTYPE_PID); 775 if (!task) 776 return -ESRCH; 777 778 ret = PROC_I(inode)->op.proc_show(m, ns, pid, task); 779 780 put_task_struct(task); 781 return ret; 782 } 783 784 static int proc_single_open(struct inode *inode, struct file *filp) 785 { 786 return single_open(filp, proc_single_show, inode); 787 } 788 789 static const struct file_operations proc_single_file_operations = { 790 .open = proc_single_open, 791 .read = seq_read, 792 .llseek = seq_lseek, 793 .release = single_release, 794 }; 795 796 797 struct mm_struct *proc_mem_open(struct inode *inode, unsigned int mode) 798 { 799 struct task_struct *task = get_proc_task(inode); 800 struct mm_struct *mm = ERR_PTR(-ESRCH); 801 802 if (task) { 803 mm = mm_access(task, mode | PTRACE_MODE_FSCREDS); 804 put_task_struct(task); 805 806 if (!IS_ERR_OR_NULL(mm)) { 807 /* ensure this mm_struct can't be freed */ 808 mmgrab(mm); 809 /* but do not pin its memory */ 810 mmput(mm); 811 } 812 } 813 814 return mm; 815 } 816 817 static int __mem_open(struct inode *inode, struct file *file, unsigned int mode) 818 { 819 struct mm_struct *mm = proc_mem_open(inode, mode); 820 821 if (IS_ERR(mm)) 822 return PTR_ERR(mm); 823 824 file->private_data = mm; 825 return 0; 826 } 827 828 static int mem_open(struct inode *inode, struct file *file) 829 { 830 int ret = __mem_open(inode, file, PTRACE_MODE_ATTACH); 831 832 /* OK to pass negative loff_t, we can catch out-of-range */ 833 file->f_mode |= FMODE_UNSIGNED_OFFSET; 834 835 return ret; 836 } 837 838 static ssize_t mem_rw(struct file *file, char __user *buf, 839 size_t count, loff_t *ppos, int write) 840 { 841 struct mm_struct *mm = file->private_data; 842 unsigned long addr = *ppos; 843 ssize_t copied; 844 char *page; 845 unsigned int flags; 846 847 if (!mm) 848 return 0; 849 850 page = (char *)__get_free_page(GFP_KERNEL); 851 if (!page) 852 return -ENOMEM; 853 854 copied = 0; 855 if (!mmget_not_zero(mm)) 856 goto free; 857 858 flags = FOLL_FORCE | (write ? FOLL_WRITE : 0); 859 860 while (count > 0) { 861 size_t this_len = min_t(size_t, count, PAGE_SIZE); 862 863 if (write && copy_from_user(page, buf, this_len)) { 864 copied = -EFAULT; 865 break; 866 } 867 868 this_len = access_remote_vm(mm, addr, page, this_len, flags); 869 if (!this_len) { 870 if (!copied) 871 copied = -EIO; 872 break; 873 } 874 875 if (!write && copy_to_user(buf, page, this_len)) { 876 copied = -EFAULT; 877 break; 878 } 879 880 buf += this_len; 881 addr += this_len; 882 copied += this_len; 883 count -= this_len; 884 } 885 *ppos = addr; 886 887 mmput(mm); 888 free: 889 free_page((unsigned long) page); 890 return copied; 891 } 892 893 static ssize_t mem_read(struct file *file, char __user *buf, 894 size_t count, loff_t *ppos) 895 { 896 return mem_rw(file, buf, count, ppos, 0); 897 } 898 899 static ssize_t mem_write(struct file *file, const char __user *buf, 900 size_t count, loff_t *ppos) 901 { 902 return mem_rw(file, (char __user*)buf, count, ppos, 1); 903 } 904 905 loff_t mem_lseek(struct file *file, loff_t offset, int orig) 906 { 907 switch (orig) { 908 case 0: 909 file->f_pos = offset; 910 break; 911 case 1: 912 file->f_pos += offset; 913 break; 914 default: 915 return -EINVAL; 916 } 917 force_successful_syscall_return(); 918 return file->f_pos; 919 } 920 921 static int mem_release(struct inode *inode, struct file *file) 922 { 923 struct mm_struct *mm = file->private_data; 924 if (mm) 925 mmdrop(mm); 926 return 0; 927 } 928 929 static const struct file_operations proc_mem_operations = { 930 .llseek = mem_lseek, 931 .read = mem_read, 932 .write = mem_write, 933 .open = mem_open, 934 .release = mem_release, 935 }; 936 937 static int environ_open(struct inode *inode, struct file *file) 938 { 939 return __mem_open(inode, file, PTRACE_MODE_READ); 940 } 941 942 static ssize_t environ_read(struct file *file, char __user *buf, 943 size_t count, loff_t *ppos) 944 { 945 char *page; 946 unsigned long src = *ppos; 947 int ret = 0; 948 struct mm_struct *mm = file->private_data; 949 unsigned long env_start, env_end; 950 951 /* Ensure the process spawned far enough to have an environment. */ 952 if (!mm || !mm->env_end) 953 return 0; 954 955 page = (char *)__get_free_page(GFP_KERNEL); 956 if (!page) 957 return -ENOMEM; 958 959 ret = 0; 960 if (!mmget_not_zero(mm)) 961 goto free; 962 963 spin_lock(&mm->arg_lock); 964 env_start = mm->env_start; 965 env_end = mm->env_end; 966 spin_unlock(&mm->arg_lock); 967 968 while (count > 0) { 969 size_t this_len, max_len; 970 int retval; 971 972 if (src >= (env_end - env_start)) 973 break; 974 975 this_len = env_end - (env_start + src); 976 977 max_len = min_t(size_t, PAGE_SIZE, count); 978 this_len = min(max_len, this_len); 979 980 retval = access_remote_vm(mm, (env_start + src), page, this_len, FOLL_ANON); 981 982 if (retval <= 0) { 983 ret = retval; 984 break; 985 } 986 987 if (copy_to_user(buf, page, retval)) { 988 ret = -EFAULT; 989 break; 990 } 991 992 ret += retval; 993 src += retval; 994 buf += retval; 995 count -= retval; 996 } 997 *ppos = src; 998 mmput(mm); 999 1000 free: 1001 free_page((unsigned long) page); 1002 return ret; 1003 } 1004 1005 static const struct file_operations proc_environ_operations = { 1006 .open = environ_open, 1007 .read = environ_read, 1008 .llseek = generic_file_llseek, 1009 .release = mem_release, 1010 }; 1011 1012 static int auxv_open(struct inode *inode, struct file *file) 1013 { 1014 return __mem_open(inode, file, PTRACE_MODE_READ_FSCREDS); 1015 } 1016 1017 static ssize_t auxv_read(struct file *file, char __user *buf, 1018 size_t count, loff_t *ppos) 1019 { 1020 struct mm_struct *mm = file->private_data; 1021 unsigned int nwords = 0; 1022 1023 if (!mm) 1024 return 0; 1025 do { 1026 nwords += 2; 1027 } while (mm->saved_auxv[nwords - 2] != 0); /* AT_NULL */ 1028 return simple_read_from_buffer(buf, count, ppos, mm->saved_auxv, 1029 nwords * sizeof(mm->saved_auxv[0])); 1030 } 1031 1032 static const struct file_operations proc_auxv_operations = { 1033 .open = auxv_open, 1034 .read = auxv_read, 1035 .llseek = generic_file_llseek, 1036 .release = mem_release, 1037 }; 1038 1039 static ssize_t oom_adj_read(struct file *file, char __user *buf, size_t count, 1040 loff_t *ppos) 1041 { 1042 struct task_struct *task = get_proc_task(file_inode(file)); 1043 char buffer[PROC_NUMBUF]; 1044 int oom_adj = OOM_ADJUST_MIN; 1045 size_t len; 1046 1047 if (!task) 1048 return -ESRCH; 1049 if (task->signal->oom_score_adj == OOM_SCORE_ADJ_MAX) 1050 oom_adj = OOM_ADJUST_MAX; 1051 else 1052 oom_adj = (task->signal->oom_score_adj * -OOM_DISABLE) / 1053 OOM_SCORE_ADJ_MAX; 1054 put_task_struct(task); 1055 if (oom_adj > OOM_ADJUST_MAX) 1056 oom_adj = OOM_ADJUST_MAX; 1057 len = snprintf(buffer, sizeof(buffer), "%d\n", oom_adj); 1058 return simple_read_from_buffer(buf, count, ppos, buffer, len); 1059 } 1060 1061 static int __set_oom_adj(struct file *file, int oom_adj, bool legacy) 1062 { 1063 struct mm_struct *mm = NULL; 1064 struct task_struct *task; 1065 int err = 0; 1066 1067 task = get_proc_task(file_inode(file)); 1068 if (!task) 1069 return -ESRCH; 1070 1071 mutex_lock(&oom_adj_mutex); 1072 if (legacy) { 1073 if (oom_adj < task->signal->oom_score_adj && 1074 !capable(CAP_SYS_RESOURCE)) { 1075 err = -EACCES; 1076 goto err_unlock; 1077 } 1078 /* 1079 * /proc/pid/oom_adj is provided for legacy purposes, ask users to use 1080 * /proc/pid/oom_score_adj instead. 1081 */ 1082 pr_warn_once("%s (%d): /proc/%d/oom_adj is deprecated, please use /proc/%d/oom_score_adj instead.\n", 1083 current->comm, task_pid_nr(current), task_pid_nr(task), 1084 task_pid_nr(task)); 1085 } else { 1086 if ((short)oom_adj < task->signal->oom_score_adj_min && 1087 !capable(CAP_SYS_RESOURCE)) { 1088 err = -EACCES; 1089 goto err_unlock; 1090 } 1091 } 1092 1093 /* 1094 * Make sure we will check other processes sharing the mm if this is 1095 * not vfrok which wants its own oom_score_adj. 1096 * pin the mm so it doesn't go away and get reused after task_unlock 1097 */ 1098 if (!task->vfork_done) { 1099 struct task_struct *p = find_lock_task_mm(task); 1100 1101 if (p) { 1102 if (test_bit(MMF_MULTIPROCESS, &p->mm->flags)) { 1103 mm = p->mm; 1104 mmgrab(mm); 1105 } 1106 task_unlock(p); 1107 } 1108 } 1109 1110 task->signal->oom_score_adj = oom_adj; 1111 if (!legacy && has_capability_noaudit(current, CAP_SYS_RESOURCE)) 1112 task->signal->oom_score_adj_min = (short)oom_adj; 1113 trace_oom_score_adj_update(task); 1114 1115 if (mm) { 1116 struct task_struct *p; 1117 1118 rcu_read_lock(); 1119 for_each_process(p) { 1120 if (same_thread_group(task, p)) 1121 continue; 1122 1123 /* do not touch kernel threads or the global init */ 1124 if (p->flags & PF_KTHREAD || is_global_init(p)) 1125 continue; 1126 1127 task_lock(p); 1128 if (!p->vfork_done && process_shares_mm(p, mm)) { 1129 p->signal->oom_score_adj = oom_adj; 1130 if (!legacy && has_capability_noaudit(current, CAP_SYS_RESOURCE)) 1131 p->signal->oom_score_adj_min = (short)oom_adj; 1132 } 1133 task_unlock(p); 1134 } 1135 rcu_read_unlock(); 1136 mmdrop(mm); 1137 } 1138 err_unlock: 1139 mutex_unlock(&oom_adj_mutex); 1140 put_task_struct(task); 1141 return err; 1142 } 1143 1144 /* 1145 * /proc/pid/oom_adj exists solely for backwards compatibility with previous 1146 * kernels. The effective policy is defined by oom_score_adj, which has a 1147 * different scale: oom_adj grew exponentially and oom_score_adj grows linearly. 1148 * Values written to oom_adj are simply mapped linearly to oom_score_adj. 1149 * Processes that become oom disabled via oom_adj will still be oom disabled 1150 * with this implementation. 1151 * 1152 * oom_adj cannot be removed since existing userspace binaries use it. 1153 */ 1154 static ssize_t oom_adj_write(struct file *file, const char __user *buf, 1155 size_t count, loff_t *ppos) 1156 { 1157 char buffer[PROC_NUMBUF]; 1158 int oom_adj; 1159 int err; 1160 1161 memset(buffer, 0, sizeof(buffer)); 1162 if (count > sizeof(buffer) - 1) 1163 count = sizeof(buffer) - 1; 1164 if (copy_from_user(buffer, buf, count)) { 1165 err = -EFAULT; 1166 goto out; 1167 } 1168 1169 err = kstrtoint(strstrip(buffer), 0, &oom_adj); 1170 if (err) 1171 goto out; 1172 if ((oom_adj < OOM_ADJUST_MIN || oom_adj > OOM_ADJUST_MAX) && 1173 oom_adj != OOM_DISABLE) { 1174 err = -EINVAL; 1175 goto out; 1176 } 1177 1178 /* 1179 * Scale /proc/pid/oom_score_adj appropriately ensuring that a maximum 1180 * value is always attainable. 1181 */ 1182 if (oom_adj == OOM_ADJUST_MAX) 1183 oom_adj = OOM_SCORE_ADJ_MAX; 1184 else 1185 oom_adj = (oom_adj * OOM_SCORE_ADJ_MAX) / -OOM_DISABLE; 1186 1187 err = __set_oom_adj(file, oom_adj, true); 1188 out: 1189 return err < 0 ? err : count; 1190 } 1191 1192 static const struct file_operations proc_oom_adj_operations = { 1193 .read = oom_adj_read, 1194 .write = oom_adj_write, 1195 .llseek = generic_file_llseek, 1196 }; 1197 1198 static ssize_t oom_score_adj_read(struct file *file, char __user *buf, 1199 size_t count, loff_t *ppos) 1200 { 1201 struct task_struct *task = get_proc_task(file_inode(file)); 1202 char buffer[PROC_NUMBUF]; 1203 short oom_score_adj = OOM_SCORE_ADJ_MIN; 1204 size_t len; 1205 1206 if (!task) 1207 return -ESRCH; 1208 oom_score_adj = task->signal->oom_score_adj; 1209 put_task_struct(task); 1210 len = snprintf(buffer, sizeof(buffer), "%hd\n", oom_score_adj); 1211 return simple_read_from_buffer(buf, count, ppos, buffer, len); 1212 } 1213 1214 static ssize_t oom_score_adj_write(struct file *file, const char __user *buf, 1215 size_t count, loff_t *ppos) 1216 { 1217 char buffer[PROC_NUMBUF]; 1218 int oom_score_adj; 1219 int err; 1220 1221 memset(buffer, 0, sizeof(buffer)); 1222 if (count > sizeof(buffer) - 1) 1223 count = sizeof(buffer) - 1; 1224 if (copy_from_user(buffer, buf, count)) { 1225 err = -EFAULT; 1226 goto out; 1227 } 1228 1229 err = kstrtoint(strstrip(buffer), 0, &oom_score_adj); 1230 if (err) 1231 goto out; 1232 if (oom_score_adj < OOM_SCORE_ADJ_MIN || 1233 oom_score_adj > OOM_SCORE_ADJ_MAX) { 1234 err = -EINVAL; 1235 goto out; 1236 } 1237 1238 err = __set_oom_adj(file, oom_score_adj, false); 1239 out: 1240 return err < 0 ? err : count; 1241 } 1242 1243 static const struct file_operations proc_oom_score_adj_operations = { 1244 .read = oom_score_adj_read, 1245 .write = oom_score_adj_write, 1246 .llseek = default_llseek, 1247 }; 1248 1249 #ifdef CONFIG_AUDIT 1250 #define TMPBUFLEN 11 1251 static ssize_t proc_loginuid_read(struct file * file, char __user * buf, 1252 size_t count, loff_t *ppos) 1253 { 1254 struct inode * inode = file_inode(file); 1255 struct task_struct *task = get_proc_task(inode); 1256 ssize_t length; 1257 char tmpbuf[TMPBUFLEN]; 1258 1259 if (!task) 1260 return -ESRCH; 1261 length = scnprintf(tmpbuf, TMPBUFLEN, "%u", 1262 from_kuid(file->f_cred->user_ns, 1263 audit_get_loginuid(task))); 1264 put_task_struct(task); 1265 return simple_read_from_buffer(buf, count, ppos, tmpbuf, length); 1266 } 1267 1268 static ssize_t proc_loginuid_write(struct file * file, const char __user * buf, 1269 size_t count, loff_t *ppos) 1270 { 1271 struct inode * inode = file_inode(file); 1272 uid_t loginuid; 1273 kuid_t kloginuid; 1274 int rv; 1275 1276 /* Don't let kthreads write their own loginuid */ 1277 if (current->flags & PF_KTHREAD) 1278 return -EPERM; 1279 1280 rcu_read_lock(); 1281 if (current != pid_task(proc_pid(inode), PIDTYPE_PID)) { 1282 rcu_read_unlock(); 1283 return -EPERM; 1284 } 1285 rcu_read_unlock(); 1286 1287 if (*ppos != 0) { 1288 /* No partial writes. */ 1289 return -EINVAL; 1290 } 1291 1292 rv = kstrtou32_from_user(buf, count, 10, &loginuid); 1293 if (rv < 0) 1294 return rv; 1295 1296 /* is userspace tring to explicitly UNSET the loginuid? */ 1297 if (loginuid == AUDIT_UID_UNSET) { 1298 kloginuid = INVALID_UID; 1299 } else { 1300 kloginuid = make_kuid(file->f_cred->user_ns, loginuid); 1301 if (!uid_valid(kloginuid)) 1302 return -EINVAL; 1303 } 1304 1305 rv = audit_set_loginuid(kloginuid); 1306 if (rv < 0) 1307 return rv; 1308 return count; 1309 } 1310 1311 static const struct file_operations proc_loginuid_operations = { 1312 .read = proc_loginuid_read, 1313 .write = proc_loginuid_write, 1314 .llseek = generic_file_llseek, 1315 }; 1316 1317 static ssize_t proc_sessionid_read(struct file * file, char __user * buf, 1318 size_t count, loff_t *ppos) 1319 { 1320 struct inode * inode = file_inode(file); 1321 struct task_struct *task = get_proc_task(inode); 1322 ssize_t length; 1323 char tmpbuf[TMPBUFLEN]; 1324 1325 if (!task) 1326 return -ESRCH; 1327 length = scnprintf(tmpbuf, TMPBUFLEN, "%u", 1328 audit_get_sessionid(task)); 1329 put_task_struct(task); 1330 return simple_read_from_buffer(buf, count, ppos, tmpbuf, length); 1331 } 1332 1333 static const struct file_operations proc_sessionid_operations = { 1334 .read = proc_sessionid_read, 1335 .llseek = generic_file_llseek, 1336 }; 1337 #endif 1338 1339 #ifdef CONFIG_FAULT_INJECTION 1340 static ssize_t proc_fault_inject_read(struct file * file, char __user * buf, 1341 size_t count, loff_t *ppos) 1342 { 1343 struct task_struct *task = get_proc_task(file_inode(file)); 1344 char buffer[PROC_NUMBUF]; 1345 size_t len; 1346 int make_it_fail; 1347 1348 if (!task) 1349 return -ESRCH; 1350 make_it_fail = task->make_it_fail; 1351 put_task_struct(task); 1352 1353 len = snprintf(buffer, sizeof(buffer), "%i\n", make_it_fail); 1354 1355 return simple_read_from_buffer(buf, count, ppos, buffer, len); 1356 } 1357 1358 static ssize_t proc_fault_inject_write(struct file * file, 1359 const char __user * buf, size_t count, loff_t *ppos) 1360 { 1361 struct task_struct *task; 1362 char buffer[PROC_NUMBUF]; 1363 int make_it_fail; 1364 int rv; 1365 1366 if (!capable(CAP_SYS_RESOURCE)) 1367 return -EPERM; 1368 memset(buffer, 0, sizeof(buffer)); 1369 if (count > sizeof(buffer) - 1) 1370 count = sizeof(buffer) - 1; 1371 if (copy_from_user(buffer, buf, count)) 1372 return -EFAULT; 1373 rv = kstrtoint(strstrip(buffer), 0, &make_it_fail); 1374 if (rv < 0) 1375 return rv; 1376 if (make_it_fail < 0 || make_it_fail > 1) 1377 return -EINVAL; 1378 1379 task = get_proc_task(file_inode(file)); 1380 if (!task) 1381 return -ESRCH; 1382 task->make_it_fail = make_it_fail; 1383 put_task_struct(task); 1384 1385 return count; 1386 } 1387 1388 static const struct file_operations proc_fault_inject_operations = { 1389 .read = proc_fault_inject_read, 1390 .write = proc_fault_inject_write, 1391 .llseek = generic_file_llseek, 1392 }; 1393 1394 static ssize_t proc_fail_nth_write(struct file *file, const char __user *buf, 1395 size_t count, loff_t *ppos) 1396 { 1397 struct task_struct *task; 1398 int err; 1399 unsigned int n; 1400 1401 err = kstrtouint_from_user(buf, count, 0, &n); 1402 if (err) 1403 return err; 1404 1405 task = get_proc_task(file_inode(file)); 1406 if (!task) 1407 return -ESRCH; 1408 task->fail_nth = n; 1409 put_task_struct(task); 1410 1411 return count; 1412 } 1413 1414 static ssize_t proc_fail_nth_read(struct file *file, char __user *buf, 1415 size_t count, loff_t *ppos) 1416 { 1417 struct task_struct *task; 1418 char numbuf[PROC_NUMBUF]; 1419 ssize_t len; 1420 1421 task = get_proc_task(file_inode(file)); 1422 if (!task) 1423 return -ESRCH; 1424 len = snprintf(numbuf, sizeof(numbuf), "%u\n", task->fail_nth); 1425 put_task_struct(task); 1426 return simple_read_from_buffer(buf, count, ppos, numbuf, len); 1427 } 1428 1429 static const struct file_operations proc_fail_nth_operations = { 1430 .read = proc_fail_nth_read, 1431 .write = proc_fail_nth_write, 1432 }; 1433 #endif 1434 1435 1436 #ifdef CONFIG_SCHED_DEBUG 1437 /* 1438 * Print out various scheduling related per-task fields: 1439 */ 1440 static int sched_show(struct seq_file *m, void *v) 1441 { 1442 struct inode *inode = m->private; 1443 struct pid_namespace *ns = proc_pid_ns(inode->i_sb); 1444 struct task_struct *p; 1445 1446 p = get_proc_task(inode); 1447 if (!p) 1448 return -ESRCH; 1449 proc_sched_show_task(p, ns, m); 1450 1451 put_task_struct(p); 1452 1453 return 0; 1454 } 1455 1456 static ssize_t 1457 sched_write(struct file *file, const char __user *buf, 1458 size_t count, loff_t *offset) 1459 { 1460 struct inode *inode = file_inode(file); 1461 struct task_struct *p; 1462 1463 p = get_proc_task(inode); 1464 if (!p) 1465 return -ESRCH; 1466 proc_sched_set_task(p); 1467 1468 put_task_struct(p); 1469 1470 return count; 1471 } 1472 1473 static int sched_open(struct inode *inode, struct file *filp) 1474 { 1475 return single_open(filp, sched_show, inode); 1476 } 1477 1478 static const struct file_operations proc_pid_sched_operations = { 1479 .open = sched_open, 1480 .read = seq_read, 1481 .write = sched_write, 1482 .llseek = seq_lseek, 1483 .release = single_release, 1484 }; 1485 1486 #endif 1487 1488 #ifdef CONFIG_SCHED_AUTOGROUP 1489 /* 1490 * Print out autogroup related information: 1491 */ 1492 static int sched_autogroup_show(struct seq_file *m, void *v) 1493 { 1494 struct inode *inode = m->private; 1495 struct task_struct *p; 1496 1497 p = get_proc_task(inode); 1498 if (!p) 1499 return -ESRCH; 1500 proc_sched_autogroup_show_task(p, m); 1501 1502 put_task_struct(p); 1503 1504 return 0; 1505 } 1506 1507 static ssize_t 1508 sched_autogroup_write(struct file *file, const char __user *buf, 1509 size_t count, loff_t *offset) 1510 { 1511 struct inode *inode = file_inode(file); 1512 struct task_struct *p; 1513 char buffer[PROC_NUMBUF]; 1514 int nice; 1515 int err; 1516 1517 memset(buffer, 0, sizeof(buffer)); 1518 if (count > sizeof(buffer) - 1) 1519 count = sizeof(buffer) - 1; 1520 if (copy_from_user(buffer, buf, count)) 1521 return -EFAULT; 1522 1523 err = kstrtoint(strstrip(buffer), 0, &nice); 1524 if (err < 0) 1525 return err; 1526 1527 p = get_proc_task(inode); 1528 if (!p) 1529 return -ESRCH; 1530 1531 err = proc_sched_autogroup_set_nice(p, nice); 1532 if (err) 1533 count = err; 1534 1535 put_task_struct(p); 1536 1537 return count; 1538 } 1539 1540 static int sched_autogroup_open(struct inode *inode, struct file *filp) 1541 { 1542 int ret; 1543 1544 ret = single_open(filp, sched_autogroup_show, NULL); 1545 if (!ret) { 1546 struct seq_file *m = filp->private_data; 1547 1548 m->private = inode; 1549 } 1550 return ret; 1551 } 1552 1553 static const struct file_operations proc_pid_sched_autogroup_operations = { 1554 .open = sched_autogroup_open, 1555 .read = seq_read, 1556 .write = sched_autogroup_write, 1557 .llseek = seq_lseek, 1558 .release = single_release, 1559 }; 1560 1561 #endif /* CONFIG_SCHED_AUTOGROUP */ 1562 1563 #ifdef CONFIG_TIME_NS 1564 static int timens_offsets_show(struct seq_file *m, void *v) 1565 { 1566 struct task_struct *p; 1567 1568 p = get_proc_task(file_inode(m->file)); 1569 if (!p) 1570 return -ESRCH; 1571 proc_timens_show_offsets(p, m); 1572 1573 put_task_struct(p); 1574 1575 return 0; 1576 } 1577 1578 static ssize_t timens_offsets_write(struct file *file, const char __user *buf, 1579 size_t count, loff_t *ppos) 1580 { 1581 struct inode *inode = file_inode(file); 1582 struct proc_timens_offset offsets[2]; 1583 char *kbuf = NULL, *pos, *next_line; 1584 struct task_struct *p; 1585 int ret, noffsets; 1586 1587 /* Only allow < page size writes at the beginning of the file */ 1588 if ((*ppos != 0) || (count >= PAGE_SIZE)) 1589 return -EINVAL; 1590 1591 /* Slurp in the user data */ 1592 kbuf = memdup_user_nul(buf, count); 1593 if (IS_ERR(kbuf)) 1594 return PTR_ERR(kbuf); 1595 1596 /* Parse the user data */ 1597 ret = -EINVAL; 1598 noffsets = 0; 1599 for (pos = kbuf; pos; pos = next_line) { 1600 struct proc_timens_offset *off = &offsets[noffsets]; 1601 char clock[10]; 1602 int err; 1603 1604 /* Find the end of line and ensure we don't look past it */ 1605 next_line = strchr(pos, '\n'); 1606 if (next_line) { 1607 *next_line = '\0'; 1608 next_line++; 1609 if (*next_line == '\0') 1610 next_line = NULL; 1611 } 1612 1613 err = sscanf(pos, "%9s %lld %lu", clock, 1614 &off->val.tv_sec, &off->val.tv_nsec); 1615 if (err != 3 || off->val.tv_nsec >= NSEC_PER_SEC) 1616 goto out; 1617 1618 clock[sizeof(clock) - 1] = 0; 1619 if (strcmp(clock, "monotonic") == 0 || 1620 strcmp(clock, __stringify(CLOCK_MONOTONIC)) == 0) 1621 off->clockid = CLOCK_MONOTONIC; 1622 else if (strcmp(clock, "boottime") == 0 || 1623 strcmp(clock, __stringify(CLOCK_BOOTTIME)) == 0) 1624 off->clockid = CLOCK_BOOTTIME; 1625 else 1626 goto out; 1627 1628 noffsets++; 1629 if (noffsets == ARRAY_SIZE(offsets)) { 1630 if (next_line) 1631 count = next_line - kbuf; 1632 break; 1633 } 1634 } 1635 1636 ret = -ESRCH; 1637 p = get_proc_task(inode); 1638 if (!p) 1639 goto out; 1640 ret = proc_timens_set_offset(file, p, offsets, noffsets); 1641 put_task_struct(p); 1642 if (ret) 1643 goto out; 1644 1645 ret = count; 1646 out: 1647 kfree(kbuf); 1648 return ret; 1649 } 1650 1651 static int timens_offsets_open(struct inode *inode, struct file *filp) 1652 { 1653 return single_open(filp, timens_offsets_show, inode); 1654 } 1655 1656 static const struct file_operations proc_timens_offsets_operations = { 1657 .open = timens_offsets_open, 1658 .read = seq_read, 1659 .write = timens_offsets_write, 1660 .llseek = seq_lseek, 1661 .release = single_release, 1662 }; 1663 #endif /* CONFIG_TIME_NS */ 1664 1665 static ssize_t comm_write(struct file *file, const char __user *buf, 1666 size_t count, loff_t *offset) 1667 { 1668 struct inode *inode = file_inode(file); 1669 struct task_struct *p; 1670 char buffer[TASK_COMM_LEN]; 1671 const size_t maxlen = sizeof(buffer) - 1; 1672 1673 memset(buffer, 0, sizeof(buffer)); 1674 if (copy_from_user(buffer, buf, count > maxlen ? maxlen : count)) 1675 return -EFAULT; 1676 1677 p = get_proc_task(inode); 1678 if (!p) 1679 return -ESRCH; 1680 1681 if (same_thread_group(current, p)) { 1682 set_task_comm(p, buffer); 1683 proc_comm_connector(p); 1684 } 1685 else 1686 count = -EINVAL; 1687 1688 put_task_struct(p); 1689 1690 return count; 1691 } 1692 1693 static int comm_show(struct seq_file *m, void *v) 1694 { 1695 struct inode *inode = m->private; 1696 struct task_struct *p; 1697 1698 p = get_proc_task(inode); 1699 if (!p) 1700 return -ESRCH; 1701 1702 proc_task_name(m, p, false); 1703 seq_putc(m, '\n'); 1704 1705 put_task_struct(p); 1706 1707 return 0; 1708 } 1709 1710 static int comm_open(struct inode *inode, struct file *filp) 1711 { 1712 return single_open(filp, comm_show, inode); 1713 } 1714 1715 static const struct file_operations proc_pid_set_comm_operations = { 1716 .open = comm_open, 1717 .read = seq_read, 1718 .write = comm_write, 1719 .llseek = seq_lseek, 1720 .release = single_release, 1721 }; 1722 1723 static int proc_exe_link(struct dentry *dentry, struct path *exe_path) 1724 { 1725 struct task_struct *task; 1726 struct file *exe_file; 1727 1728 task = get_proc_task(d_inode(dentry)); 1729 if (!task) 1730 return -ENOENT; 1731 exe_file = get_task_exe_file(task); 1732 put_task_struct(task); 1733 if (exe_file) { 1734 *exe_path = exe_file->f_path; 1735 path_get(&exe_file->f_path); 1736 fput(exe_file); 1737 return 0; 1738 } else 1739 return -ENOENT; 1740 } 1741 1742 static const char *proc_pid_get_link(struct dentry *dentry, 1743 struct inode *inode, 1744 struct delayed_call *done) 1745 { 1746 struct path path; 1747 int error = -EACCES; 1748 1749 if (!dentry) 1750 return ERR_PTR(-ECHILD); 1751 1752 /* Are we allowed to snoop on the tasks file descriptors? */ 1753 if (!proc_fd_access_allowed(inode)) 1754 goto out; 1755 1756 error = PROC_I(inode)->op.proc_get_link(dentry, &path); 1757 if (error) 1758 goto out; 1759 1760 error = nd_jump_link(&path); 1761 out: 1762 return ERR_PTR(error); 1763 } 1764 1765 static int do_proc_readlink(struct path *path, char __user *buffer, int buflen) 1766 { 1767 char *tmp = (char *)__get_free_page(GFP_KERNEL); 1768 char *pathname; 1769 int len; 1770 1771 if (!tmp) 1772 return -ENOMEM; 1773 1774 pathname = d_path(path, tmp, PAGE_SIZE); 1775 len = PTR_ERR(pathname); 1776 if (IS_ERR(pathname)) 1777 goto out; 1778 len = tmp + PAGE_SIZE - 1 - pathname; 1779 1780 if (len > buflen) 1781 len = buflen; 1782 if (copy_to_user(buffer, pathname, len)) 1783 len = -EFAULT; 1784 out: 1785 free_page((unsigned long)tmp); 1786 return len; 1787 } 1788 1789 static int proc_pid_readlink(struct dentry * dentry, char __user * buffer, int buflen) 1790 { 1791 int error = -EACCES; 1792 struct inode *inode = d_inode(dentry); 1793 struct path path; 1794 1795 /* Are we allowed to snoop on the tasks file descriptors? */ 1796 if (!proc_fd_access_allowed(inode)) 1797 goto out; 1798 1799 error = PROC_I(inode)->op.proc_get_link(dentry, &path); 1800 if (error) 1801 goto out; 1802 1803 error = do_proc_readlink(&path, buffer, buflen); 1804 path_put(&path); 1805 out: 1806 return error; 1807 } 1808 1809 const struct inode_operations proc_pid_link_inode_operations = { 1810 .readlink = proc_pid_readlink, 1811 .get_link = proc_pid_get_link, 1812 .setattr = proc_setattr, 1813 }; 1814 1815 1816 /* building an inode */ 1817 1818 void task_dump_owner(struct task_struct *task, umode_t mode, 1819 kuid_t *ruid, kgid_t *rgid) 1820 { 1821 /* Depending on the state of dumpable compute who should own a 1822 * proc file for a task. 1823 */ 1824 const struct cred *cred; 1825 kuid_t uid; 1826 kgid_t gid; 1827 1828 if (unlikely(task->flags & PF_KTHREAD)) { 1829 *ruid = GLOBAL_ROOT_UID; 1830 *rgid = GLOBAL_ROOT_GID; 1831 return; 1832 } 1833 1834 /* Default to the tasks effective ownership */ 1835 rcu_read_lock(); 1836 cred = __task_cred(task); 1837 uid = cred->euid; 1838 gid = cred->egid; 1839 rcu_read_unlock(); 1840 1841 /* 1842 * Before the /proc/pid/status file was created the only way to read 1843 * the effective uid of a /process was to stat /proc/pid. Reading 1844 * /proc/pid/status is slow enough that procps and other packages 1845 * kept stating /proc/pid. To keep the rules in /proc simple I have 1846 * made this apply to all per process world readable and executable 1847 * directories. 1848 */ 1849 if (mode != (S_IFDIR|S_IRUGO|S_IXUGO)) { 1850 struct mm_struct *mm; 1851 task_lock(task); 1852 mm = task->mm; 1853 /* Make non-dumpable tasks owned by some root */ 1854 if (mm) { 1855 if (get_dumpable(mm) != SUID_DUMP_USER) { 1856 struct user_namespace *user_ns = mm->user_ns; 1857 1858 uid = make_kuid(user_ns, 0); 1859 if (!uid_valid(uid)) 1860 uid = GLOBAL_ROOT_UID; 1861 1862 gid = make_kgid(user_ns, 0); 1863 if (!gid_valid(gid)) 1864 gid = GLOBAL_ROOT_GID; 1865 } 1866 } else { 1867 uid = GLOBAL_ROOT_UID; 1868 gid = GLOBAL_ROOT_GID; 1869 } 1870 task_unlock(task); 1871 } 1872 *ruid = uid; 1873 *rgid = gid; 1874 } 1875 1876 void proc_pid_evict_inode(struct proc_inode *ei) 1877 { 1878 struct pid *pid = ei->pid; 1879 1880 if (S_ISDIR(ei->vfs_inode.i_mode)) { 1881 spin_lock(&pid->lock); 1882 hlist_del_init_rcu(&ei->sibling_inodes); 1883 spin_unlock(&pid->lock); 1884 } 1885 1886 put_pid(pid); 1887 } 1888 1889 struct inode *proc_pid_make_inode(struct super_block * sb, 1890 struct task_struct *task, umode_t mode) 1891 { 1892 struct inode * inode; 1893 struct proc_inode *ei; 1894 struct pid *pid; 1895 1896 /* We need a new inode */ 1897 1898 inode = new_inode(sb); 1899 if (!inode) 1900 goto out; 1901 1902 /* Common stuff */ 1903 ei = PROC_I(inode); 1904 inode->i_mode = mode; 1905 inode->i_ino = get_next_ino(); 1906 inode->i_mtime = inode->i_atime = inode->i_ctime = current_time(inode); 1907 inode->i_op = &proc_def_inode_operations; 1908 1909 /* 1910 * grab the reference to task. 1911 */ 1912 pid = get_task_pid(task, PIDTYPE_PID); 1913 if (!pid) 1914 goto out_unlock; 1915 1916 /* Let the pid remember us for quick removal */ 1917 ei->pid = pid; 1918 if (S_ISDIR(mode)) { 1919 spin_lock(&pid->lock); 1920 hlist_add_head_rcu(&ei->sibling_inodes, &pid->inodes); 1921 spin_unlock(&pid->lock); 1922 } 1923 1924 task_dump_owner(task, 0, &inode->i_uid, &inode->i_gid); 1925 security_task_to_inode(task, inode); 1926 1927 out: 1928 return inode; 1929 1930 out_unlock: 1931 iput(inode); 1932 return NULL; 1933 } 1934 1935 int pid_getattr(struct user_namespace *mnt_userns, const struct path *path, 1936 struct kstat *stat, u32 request_mask, unsigned int query_flags) 1937 { 1938 struct inode *inode = d_inode(path->dentry); 1939 struct proc_fs_info *fs_info = proc_sb_info(inode->i_sb); 1940 struct task_struct *task; 1941 1942 generic_fillattr(&init_user_ns, inode, stat); 1943 1944 stat->uid = GLOBAL_ROOT_UID; 1945 stat->gid = GLOBAL_ROOT_GID; 1946 rcu_read_lock(); 1947 task = pid_task(proc_pid(inode), PIDTYPE_PID); 1948 if (task) { 1949 if (!has_pid_permissions(fs_info, task, HIDEPID_INVISIBLE)) { 1950 rcu_read_unlock(); 1951 /* 1952 * This doesn't prevent learning whether PID exists, 1953 * it only makes getattr() consistent with readdir(). 1954 */ 1955 return -ENOENT; 1956 } 1957 task_dump_owner(task, inode->i_mode, &stat->uid, &stat->gid); 1958 } 1959 rcu_read_unlock(); 1960 return 0; 1961 } 1962 1963 /* dentry stuff */ 1964 1965 /* 1966 * Set <pid>/... inode ownership (can change due to setuid(), etc.) 1967 */ 1968 void pid_update_inode(struct task_struct *task, struct inode *inode) 1969 { 1970 task_dump_owner(task, inode->i_mode, &inode->i_uid, &inode->i_gid); 1971 1972 inode->i_mode &= ~(S_ISUID | S_ISGID); 1973 security_task_to_inode(task, inode); 1974 } 1975 1976 /* 1977 * Rewrite the inode's ownerships here because the owning task may have 1978 * performed a setuid(), etc. 1979 * 1980 */ 1981 static int pid_revalidate(struct dentry *dentry, unsigned int flags) 1982 { 1983 struct inode *inode; 1984 struct task_struct *task; 1985 1986 if (flags & LOOKUP_RCU) 1987 return -ECHILD; 1988 1989 inode = d_inode(dentry); 1990 task = get_proc_task(inode); 1991 1992 if (task) { 1993 pid_update_inode(task, inode); 1994 put_task_struct(task); 1995 return 1; 1996 } 1997 return 0; 1998 } 1999 2000 static inline bool proc_inode_is_dead(struct inode *inode) 2001 { 2002 return !proc_pid(inode)->tasks[PIDTYPE_PID].first; 2003 } 2004 2005 int pid_delete_dentry(const struct dentry *dentry) 2006 { 2007 /* Is the task we represent dead? 2008 * If so, then don't put the dentry on the lru list, 2009 * kill it immediately. 2010 */ 2011 return proc_inode_is_dead(d_inode(dentry)); 2012 } 2013 2014 const struct dentry_operations pid_dentry_operations = 2015 { 2016 .d_revalidate = pid_revalidate, 2017 .d_delete = pid_delete_dentry, 2018 }; 2019 2020 /* Lookups */ 2021 2022 /* 2023 * Fill a directory entry. 2024 * 2025 * If possible create the dcache entry and derive our inode number and 2026 * file type from dcache entry. 2027 * 2028 * Since all of the proc inode numbers are dynamically generated, the inode 2029 * numbers do not exist until the inode is cache. This means creating 2030 * the dcache entry in readdir is necessary to keep the inode numbers 2031 * reported by readdir in sync with the inode numbers reported 2032 * by stat. 2033 */ 2034 bool proc_fill_cache(struct file *file, struct dir_context *ctx, 2035 const char *name, unsigned int len, 2036 instantiate_t instantiate, struct task_struct *task, const void *ptr) 2037 { 2038 struct dentry *child, *dir = file->f_path.dentry; 2039 struct qstr qname = QSTR_INIT(name, len); 2040 struct inode *inode; 2041 unsigned type = DT_UNKNOWN; 2042 ino_t ino = 1; 2043 2044 child = d_hash_and_lookup(dir, &qname); 2045 if (!child) { 2046 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq); 2047 child = d_alloc_parallel(dir, &qname, &wq); 2048 if (IS_ERR(child)) 2049 goto end_instantiate; 2050 if (d_in_lookup(child)) { 2051 struct dentry *res; 2052 res = instantiate(child, task, ptr); 2053 d_lookup_done(child); 2054 if (unlikely(res)) { 2055 dput(child); 2056 child = res; 2057 if (IS_ERR(child)) 2058 goto end_instantiate; 2059 } 2060 } 2061 } 2062 inode = d_inode(child); 2063 ino = inode->i_ino; 2064 type = inode->i_mode >> 12; 2065 dput(child); 2066 end_instantiate: 2067 return dir_emit(ctx, name, len, ino, type); 2068 } 2069 2070 /* 2071 * dname_to_vma_addr - maps a dentry name into two unsigned longs 2072 * which represent vma start and end addresses. 2073 */ 2074 static int dname_to_vma_addr(struct dentry *dentry, 2075 unsigned long *start, unsigned long *end) 2076 { 2077 const char *str = dentry->d_name.name; 2078 unsigned long long sval, eval; 2079 unsigned int len; 2080 2081 if (str[0] == '0' && str[1] != '-') 2082 return -EINVAL; 2083 len = _parse_integer(str, 16, &sval); 2084 if (len & KSTRTOX_OVERFLOW) 2085 return -EINVAL; 2086 if (sval != (unsigned long)sval) 2087 return -EINVAL; 2088 str += len; 2089 2090 if (*str != '-') 2091 return -EINVAL; 2092 str++; 2093 2094 if (str[0] == '0' && str[1]) 2095 return -EINVAL; 2096 len = _parse_integer(str, 16, &eval); 2097 if (len & KSTRTOX_OVERFLOW) 2098 return -EINVAL; 2099 if (eval != (unsigned long)eval) 2100 return -EINVAL; 2101 str += len; 2102 2103 if (*str != '\0') 2104 return -EINVAL; 2105 2106 *start = sval; 2107 *end = eval; 2108 2109 return 0; 2110 } 2111 2112 static int map_files_d_revalidate(struct dentry *dentry, unsigned int flags) 2113 { 2114 unsigned long vm_start, vm_end; 2115 bool exact_vma_exists = false; 2116 struct mm_struct *mm = NULL; 2117 struct task_struct *task; 2118 struct inode *inode; 2119 int status = 0; 2120 2121 if (flags & LOOKUP_RCU) 2122 return -ECHILD; 2123 2124 inode = d_inode(dentry); 2125 task = get_proc_task(inode); 2126 if (!task) 2127 goto out_notask; 2128 2129 mm = mm_access(task, PTRACE_MODE_READ_FSCREDS); 2130 if (IS_ERR_OR_NULL(mm)) 2131 goto out; 2132 2133 if (!dname_to_vma_addr(dentry, &vm_start, &vm_end)) { 2134 status = mmap_read_lock_killable(mm); 2135 if (!status) { 2136 exact_vma_exists = !!find_exact_vma(mm, vm_start, 2137 vm_end); 2138 mmap_read_unlock(mm); 2139 } 2140 } 2141 2142 mmput(mm); 2143 2144 if (exact_vma_exists) { 2145 task_dump_owner(task, 0, &inode->i_uid, &inode->i_gid); 2146 2147 security_task_to_inode(task, inode); 2148 status = 1; 2149 } 2150 2151 out: 2152 put_task_struct(task); 2153 2154 out_notask: 2155 return status; 2156 } 2157 2158 static const struct dentry_operations tid_map_files_dentry_operations = { 2159 .d_revalidate = map_files_d_revalidate, 2160 .d_delete = pid_delete_dentry, 2161 }; 2162 2163 static int map_files_get_link(struct dentry *dentry, struct path *path) 2164 { 2165 unsigned long vm_start, vm_end; 2166 struct vm_area_struct *vma; 2167 struct task_struct *task; 2168 struct mm_struct *mm; 2169 int rc; 2170 2171 rc = -ENOENT; 2172 task = get_proc_task(d_inode(dentry)); 2173 if (!task) 2174 goto out; 2175 2176 mm = get_task_mm(task); 2177 put_task_struct(task); 2178 if (!mm) 2179 goto out; 2180 2181 rc = dname_to_vma_addr(dentry, &vm_start, &vm_end); 2182 if (rc) 2183 goto out_mmput; 2184 2185 rc = mmap_read_lock_killable(mm); 2186 if (rc) 2187 goto out_mmput; 2188 2189 rc = -ENOENT; 2190 vma = find_exact_vma(mm, vm_start, vm_end); 2191 if (vma && vma->vm_file) { 2192 *path = vma->vm_file->f_path; 2193 path_get(path); 2194 rc = 0; 2195 } 2196 mmap_read_unlock(mm); 2197 2198 out_mmput: 2199 mmput(mm); 2200 out: 2201 return rc; 2202 } 2203 2204 struct map_files_info { 2205 unsigned long start; 2206 unsigned long end; 2207 fmode_t mode; 2208 }; 2209 2210 /* 2211 * Only allow CAP_SYS_ADMIN and CAP_CHECKPOINT_RESTORE to follow the links, due 2212 * to concerns about how the symlinks may be used to bypass permissions on 2213 * ancestor directories in the path to the file in question. 2214 */ 2215 static const char * 2216 proc_map_files_get_link(struct dentry *dentry, 2217 struct inode *inode, 2218 struct delayed_call *done) 2219 { 2220 if (!checkpoint_restore_ns_capable(&init_user_ns)) 2221 return ERR_PTR(-EPERM); 2222 2223 return proc_pid_get_link(dentry, inode, done); 2224 } 2225 2226 /* 2227 * Identical to proc_pid_link_inode_operations except for get_link() 2228 */ 2229 static const struct inode_operations proc_map_files_link_inode_operations = { 2230 .readlink = proc_pid_readlink, 2231 .get_link = proc_map_files_get_link, 2232 .setattr = proc_setattr, 2233 }; 2234 2235 static struct dentry * 2236 proc_map_files_instantiate(struct dentry *dentry, 2237 struct task_struct *task, const void *ptr) 2238 { 2239 fmode_t mode = (fmode_t)(unsigned long)ptr; 2240 struct proc_inode *ei; 2241 struct inode *inode; 2242 2243 inode = proc_pid_make_inode(dentry->d_sb, task, S_IFLNK | 2244 ((mode & FMODE_READ ) ? S_IRUSR : 0) | 2245 ((mode & FMODE_WRITE) ? S_IWUSR : 0)); 2246 if (!inode) 2247 return ERR_PTR(-ENOENT); 2248 2249 ei = PROC_I(inode); 2250 ei->op.proc_get_link = map_files_get_link; 2251 2252 inode->i_op = &proc_map_files_link_inode_operations; 2253 inode->i_size = 64; 2254 2255 d_set_d_op(dentry, &tid_map_files_dentry_operations); 2256 return d_splice_alias(inode, dentry); 2257 } 2258 2259 static struct dentry *proc_map_files_lookup(struct inode *dir, 2260 struct dentry *dentry, unsigned int flags) 2261 { 2262 unsigned long vm_start, vm_end; 2263 struct vm_area_struct *vma; 2264 struct task_struct *task; 2265 struct dentry *result; 2266 struct mm_struct *mm; 2267 2268 result = ERR_PTR(-ENOENT); 2269 task = get_proc_task(dir); 2270 if (!task) 2271 goto out; 2272 2273 result = ERR_PTR(-EACCES); 2274 if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS)) 2275 goto out_put_task; 2276 2277 result = ERR_PTR(-ENOENT); 2278 if (dname_to_vma_addr(dentry, &vm_start, &vm_end)) 2279 goto out_put_task; 2280 2281 mm = get_task_mm(task); 2282 if (!mm) 2283 goto out_put_task; 2284 2285 result = ERR_PTR(-EINTR); 2286 if (mmap_read_lock_killable(mm)) 2287 goto out_put_mm; 2288 2289 result = ERR_PTR(-ENOENT); 2290 vma = find_exact_vma(mm, vm_start, vm_end); 2291 if (!vma) 2292 goto out_no_vma; 2293 2294 if (vma->vm_file) 2295 result = proc_map_files_instantiate(dentry, task, 2296 (void *)(unsigned long)vma->vm_file->f_mode); 2297 2298 out_no_vma: 2299 mmap_read_unlock(mm); 2300 out_put_mm: 2301 mmput(mm); 2302 out_put_task: 2303 put_task_struct(task); 2304 out: 2305 return result; 2306 } 2307 2308 static const struct inode_operations proc_map_files_inode_operations = { 2309 .lookup = proc_map_files_lookup, 2310 .permission = proc_fd_permission, 2311 .setattr = proc_setattr, 2312 }; 2313 2314 static int 2315 proc_map_files_readdir(struct file *file, struct dir_context *ctx) 2316 { 2317 struct vm_area_struct *vma; 2318 struct task_struct *task; 2319 struct mm_struct *mm; 2320 unsigned long nr_files, pos, i; 2321 GENRADIX(struct map_files_info) fa; 2322 struct map_files_info *p; 2323 int ret; 2324 2325 genradix_init(&fa); 2326 2327 ret = -ENOENT; 2328 task = get_proc_task(file_inode(file)); 2329 if (!task) 2330 goto out; 2331 2332 ret = -EACCES; 2333 if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS)) 2334 goto out_put_task; 2335 2336 ret = 0; 2337 if (!dir_emit_dots(file, ctx)) 2338 goto out_put_task; 2339 2340 mm = get_task_mm(task); 2341 if (!mm) 2342 goto out_put_task; 2343 2344 ret = mmap_read_lock_killable(mm); 2345 if (ret) { 2346 mmput(mm); 2347 goto out_put_task; 2348 } 2349 2350 nr_files = 0; 2351 2352 /* 2353 * We need two passes here: 2354 * 2355 * 1) Collect vmas of mapped files with mmap_lock taken 2356 * 2) Release mmap_lock and instantiate entries 2357 * 2358 * otherwise we get lockdep complained, since filldir() 2359 * routine might require mmap_lock taken in might_fault(). 2360 */ 2361 2362 for (vma = mm->mmap, pos = 2; vma; vma = vma->vm_next) { 2363 if (!vma->vm_file) 2364 continue; 2365 if (++pos <= ctx->pos) 2366 continue; 2367 2368 p = genradix_ptr_alloc(&fa, nr_files++, GFP_KERNEL); 2369 if (!p) { 2370 ret = -ENOMEM; 2371 mmap_read_unlock(mm); 2372 mmput(mm); 2373 goto out_put_task; 2374 } 2375 2376 p->start = vma->vm_start; 2377 p->end = vma->vm_end; 2378 p->mode = vma->vm_file->f_mode; 2379 } 2380 mmap_read_unlock(mm); 2381 mmput(mm); 2382 2383 for (i = 0; i < nr_files; i++) { 2384 char buf[4 * sizeof(long) + 2]; /* max: %lx-%lx\0 */ 2385 unsigned int len; 2386 2387 p = genradix_ptr(&fa, i); 2388 len = snprintf(buf, sizeof(buf), "%lx-%lx", p->start, p->end); 2389 if (!proc_fill_cache(file, ctx, 2390 buf, len, 2391 proc_map_files_instantiate, 2392 task, 2393 (void *)(unsigned long)p->mode)) 2394 break; 2395 ctx->pos++; 2396 } 2397 2398 out_put_task: 2399 put_task_struct(task); 2400 out: 2401 genradix_free(&fa); 2402 return ret; 2403 } 2404 2405 static const struct file_operations proc_map_files_operations = { 2406 .read = generic_read_dir, 2407 .iterate_shared = proc_map_files_readdir, 2408 .llseek = generic_file_llseek, 2409 }; 2410 2411 #if defined(CONFIG_CHECKPOINT_RESTORE) && defined(CONFIG_POSIX_TIMERS) 2412 struct timers_private { 2413 struct pid *pid; 2414 struct task_struct *task; 2415 struct sighand_struct *sighand; 2416 struct pid_namespace *ns; 2417 unsigned long flags; 2418 }; 2419 2420 static void *timers_start(struct seq_file *m, loff_t *pos) 2421 { 2422 struct timers_private *tp = m->private; 2423 2424 tp->task = get_pid_task(tp->pid, PIDTYPE_PID); 2425 if (!tp->task) 2426 return ERR_PTR(-ESRCH); 2427 2428 tp->sighand = lock_task_sighand(tp->task, &tp->flags); 2429 if (!tp->sighand) 2430 return ERR_PTR(-ESRCH); 2431 2432 return seq_list_start(&tp->task->signal->posix_timers, *pos); 2433 } 2434 2435 static void *timers_next(struct seq_file *m, void *v, loff_t *pos) 2436 { 2437 struct timers_private *tp = m->private; 2438 return seq_list_next(v, &tp->task->signal->posix_timers, pos); 2439 } 2440 2441 static void timers_stop(struct seq_file *m, void *v) 2442 { 2443 struct timers_private *tp = m->private; 2444 2445 if (tp->sighand) { 2446 unlock_task_sighand(tp->task, &tp->flags); 2447 tp->sighand = NULL; 2448 } 2449 2450 if (tp->task) { 2451 put_task_struct(tp->task); 2452 tp->task = NULL; 2453 } 2454 } 2455 2456 static int show_timer(struct seq_file *m, void *v) 2457 { 2458 struct k_itimer *timer; 2459 struct timers_private *tp = m->private; 2460 int notify; 2461 static const char * const nstr[] = { 2462 [SIGEV_SIGNAL] = "signal", 2463 [SIGEV_NONE] = "none", 2464 [SIGEV_THREAD] = "thread", 2465 }; 2466 2467 timer = list_entry((struct list_head *)v, struct k_itimer, list); 2468 notify = timer->it_sigev_notify; 2469 2470 seq_printf(m, "ID: %d\n", timer->it_id); 2471 seq_printf(m, "signal: %d/%px\n", 2472 timer->sigq->info.si_signo, 2473 timer->sigq->info.si_value.sival_ptr); 2474 seq_printf(m, "notify: %s/%s.%d\n", 2475 nstr[notify & ~SIGEV_THREAD_ID], 2476 (notify & SIGEV_THREAD_ID) ? "tid" : "pid", 2477 pid_nr_ns(timer->it_pid, tp->ns)); 2478 seq_printf(m, "ClockID: %d\n", timer->it_clock); 2479 2480 return 0; 2481 } 2482 2483 static const struct seq_operations proc_timers_seq_ops = { 2484 .start = timers_start, 2485 .next = timers_next, 2486 .stop = timers_stop, 2487 .show = show_timer, 2488 }; 2489 2490 static int proc_timers_open(struct inode *inode, struct file *file) 2491 { 2492 struct timers_private *tp; 2493 2494 tp = __seq_open_private(file, &proc_timers_seq_ops, 2495 sizeof(struct timers_private)); 2496 if (!tp) 2497 return -ENOMEM; 2498 2499 tp->pid = proc_pid(inode); 2500 tp->ns = proc_pid_ns(inode->i_sb); 2501 return 0; 2502 } 2503 2504 static const struct file_operations proc_timers_operations = { 2505 .open = proc_timers_open, 2506 .read = seq_read, 2507 .llseek = seq_lseek, 2508 .release = seq_release_private, 2509 }; 2510 #endif 2511 2512 static ssize_t timerslack_ns_write(struct file *file, const char __user *buf, 2513 size_t count, loff_t *offset) 2514 { 2515 struct inode *inode = file_inode(file); 2516 struct task_struct *p; 2517 u64 slack_ns; 2518 int err; 2519 2520 err = kstrtoull_from_user(buf, count, 10, &slack_ns); 2521 if (err < 0) 2522 return err; 2523 2524 p = get_proc_task(inode); 2525 if (!p) 2526 return -ESRCH; 2527 2528 if (p != current) { 2529 rcu_read_lock(); 2530 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) { 2531 rcu_read_unlock(); 2532 count = -EPERM; 2533 goto out; 2534 } 2535 rcu_read_unlock(); 2536 2537 err = security_task_setscheduler(p); 2538 if (err) { 2539 count = err; 2540 goto out; 2541 } 2542 } 2543 2544 task_lock(p); 2545 if (slack_ns == 0) 2546 p->timer_slack_ns = p->default_timer_slack_ns; 2547 else 2548 p->timer_slack_ns = slack_ns; 2549 task_unlock(p); 2550 2551 out: 2552 put_task_struct(p); 2553 2554 return count; 2555 } 2556 2557 static int timerslack_ns_show(struct seq_file *m, void *v) 2558 { 2559 struct inode *inode = m->private; 2560 struct task_struct *p; 2561 int err = 0; 2562 2563 p = get_proc_task(inode); 2564 if (!p) 2565 return -ESRCH; 2566 2567 if (p != current) { 2568 rcu_read_lock(); 2569 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) { 2570 rcu_read_unlock(); 2571 err = -EPERM; 2572 goto out; 2573 } 2574 rcu_read_unlock(); 2575 2576 err = security_task_getscheduler(p); 2577 if (err) 2578 goto out; 2579 } 2580 2581 task_lock(p); 2582 seq_printf(m, "%llu\n", p->timer_slack_ns); 2583 task_unlock(p); 2584 2585 out: 2586 put_task_struct(p); 2587 2588 return err; 2589 } 2590 2591 static int timerslack_ns_open(struct inode *inode, struct file *filp) 2592 { 2593 return single_open(filp, timerslack_ns_show, inode); 2594 } 2595 2596 static const struct file_operations proc_pid_set_timerslack_ns_operations = { 2597 .open = timerslack_ns_open, 2598 .read = seq_read, 2599 .write = timerslack_ns_write, 2600 .llseek = seq_lseek, 2601 .release = single_release, 2602 }; 2603 2604 static struct dentry *proc_pident_instantiate(struct dentry *dentry, 2605 struct task_struct *task, const void *ptr) 2606 { 2607 const struct pid_entry *p = ptr; 2608 struct inode *inode; 2609 struct proc_inode *ei; 2610 2611 inode = proc_pid_make_inode(dentry->d_sb, task, p->mode); 2612 if (!inode) 2613 return ERR_PTR(-ENOENT); 2614 2615 ei = PROC_I(inode); 2616 if (S_ISDIR(inode->i_mode)) 2617 set_nlink(inode, 2); /* Use getattr to fix if necessary */ 2618 if (p->iop) 2619 inode->i_op = p->iop; 2620 if (p->fop) 2621 inode->i_fop = p->fop; 2622 ei->op = p->op; 2623 pid_update_inode(task, inode); 2624 d_set_d_op(dentry, &pid_dentry_operations); 2625 return d_splice_alias(inode, dentry); 2626 } 2627 2628 static struct dentry *proc_pident_lookup(struct inode *dir, 2629 struct dentry *dentry, 2630 const struct pid_entry *p, 2631 const struct pid_entry *end) 2632 { 2633 struct task_struct *task = get_proc_task(dir); 2634 struct dentry *res = ERR_PTR(-ENOENT); 2635 2636 if (!task) 2637 goto out_no_task; 2638 2639 /* 2640 * Yes, it does not scale. And it should not. Don't add 2641 * new entries into /proc/<tgid>/ without very good reasons. 2642 */ 2643 for (; p < end; p++) { 2644 if (p->len != dentry->d_name.len) 2645 continue; 2646 if (!memcmp(dentry->d_name.name, p->name, p->len)) { 2647 res = proc_pident_instantiate(dentry, task, p); 2648 break; 2649 } 2650 } 2651 put_task_struct(task); 2652 out_no_task: 2653 return res; 2654 } 2655 2656 static int proc_pident_readdir(struct file *file, struct dir_context *ctx, 2657 const struct pid_entry *ents, unsigned int nents) 2658 { 2659 struct task_struct *task = get_proc_task(file_inode(file)); 2660 const struct pid_entry *p; 2661 2662 if (!task) 2663 return -ENOENT; 2664 2665 if (!dir_emit_dots(file, ctx)) 2666 goto out; 2667 2668 if (ctx->pos >= nents + 2) 2669 goto out; 2670 2671 for (p = ents + (ctx->pos - 2); p < ents + nents; p++) { 2672 if (!proc_fill_cache(file, ctx, p->name, p->len, 2673 proc_pident_instantiate, task, p)) 2674 break; 2675 ctx->pos++; 2676 } 2677 out: 2678 put_task_struct(task); 2679 return 0; 2680 } 2681 2682 #ifdef CONFIG_SECURITY 2683 static int proc_pid_attr_open(struct inode *inode, struct file *file) 2684 { 2685 file->private_data = NULL; 2686 __mem_open(inode, file, PTRACE_MODE_READ_FSCREDS); 2687 return 0; 2688 } 2689 2690 static ssize_t proc_pid_attr_read(struct file * file, char __user * buf, 2691 size_t count, loff_t *ppos) 2692 { 2693 struct inode * inode = file_inode(file); 2694 char *p = NULL; 2695 ssize_t length; 2696 struct task_struct *task = get_proc_task(inode); 2697 2698 if (!task) 2699 return -ESRCH; 2700 2701 length = security_getprocattr(task, PROC_I(inode)->op.lsm, 2702 (char*)file->f_path.dentry->d_name.name, 2703 &p); 2704 put_task_struct(task); 2705 if (length > 0) 2706 length = simple_read_from_buffer(buf, count, ppos, p, length); 2707 kfree(p); 2708 return length; 2709 } 2710 2711 static ssize_t proc_pid_attr_write(struct file * file, const char __user * buf, 2712 size_t count, loff_t *ppos) 2713 { 2714 struct inode * inode = file_inode(file); 2715 struct task_struct *task; 2716 void *page; 2717 int rv; 2718 2719 /* A task may only write when it was the opener. */ 2720 if (file->private_data != current->mm) 2721 return -EPERM; 2722 2723 rcu_read_lock(); 2724 task = pid_task(proc_pid(inode), PIDTYPE_PID); 2725 if (!task) { 2726 rcu_read_unlock(); 2727 return -ESRCH; 2728 } 2729 /* A task may only write its own attributes. */ 2730 if (current != task) { 2731 rcu_read_unlock(); 2732 return -EACCES; 2733 } 2734 /* Prevent changes to overridden credentials. */ 2735 if (current_cred() != current_real_cred()) { 2736 rcu_read_unlock(); 2737 return -EBUSY; 2738 } 2739 rcu_read_unlock(); 2740 2741 if (count > PAGE_SIZE) 2742 count = PAGE_SIZE; 2743 2744 /* No partial writes. */ 2745 if (*ppos != 0) 2746 return -EINVAL; 2747 2748 page = memdup_user(buf, count); 2749 if (IS_ERR(page)) { 2750 rv = PTR_ERR(page); 2751 goto out; 2752 } 2753 2754 /* Guard against adverse ptrace interaction */ 2755 rv = mutex_lock_interruptible(¤t->signal->cred_guard_mutex); 2756 if (rv < 0) 2757 goto out_free; 2758 2759 rv = security_setprocattr(PROC_I(inode)->op.lsm, 2760 file->f_path.dentry->d_name.name, page, 2761 count); 2762 mutex_unlock(¤t->signal->cred_guard_mutex); 2763 out_free: 2764 kfree(page); 2765 out: 2766 return rv; 2767 } 2768 2769 static const struct file_operations proc_pid_attr_operations = { 2770 .open = proc_pid_attr_open, 2771 .read = proc_pid_attr_read, 2772 .write = proc_pid_attr_write, 2773 .llseek = generic_file_llseek, 2774 .release = mem_release, 2775 }; 2776 2777 #define LSM_DIR_OPS(LSM) \ 2778 static int proc_##LSM##_attr_dir_iterate(struct file *filp, \ 2779 struct dir_context *ctx) \ 2780 { \ 2781 return proc_pident_readdir(filp, ctx, \ 2782 LSM##_attr_dir_stuff, \ 2783 ARRAY_SIZE(LSM##_attr_dir_stuff)); \ 2784 } \ 2785 \ 2786 static const struct file_operations proc_##LSM##_attr_dir_ops = { \ 2787 .read = generic_read_dir, \ 2788 .iterate = proc_##LSM##_attr_dir_iterate, \ 2789 .llseek = default_llseek, \ 2790 }; \ 2791 \ 2792 static struct dentry *proc_##LSM##_attr_dir_lookup(struct inode *dir, \ 2793 struct dentry *dentry, unsigned int flags) \ 2794 { \ 2795 return proc_pident_lookup(dir, dentry, \ 2796 LSM##_attr_dir_stuff, \ 2797 LSM##_attr_dir_stuff + ARRAY_SIZE(LSM##_attr_dir_stuff)); \ 2798 } \ 2799 \ 2800 static const struct inode_operations proc_##LSM##_attr_dir_inode_ops = { \ 2801 .lookup = proc_##LSM##_attr_dir_lookup, \ 2802 .getattr = pid_getattr, \ 2803 .setattr = proc_setattr, \ 2804 } 2805 2806 #ifdef CONFIG_SECURITY_SMACK 2807 static const struct pid_entry smack_attr_dir_stuff[] = { 2808 ATTR("smack", "current", 0666), 2809 }; 2810 LSM_DIR_OPS(smack); 2811 #endif 2812 2813 #ifdef CONFIG_SECURITY_APPARMOR 2814 static const struct pid_entry apparmor_attr_dir_stuff[] = { 2815 ATTR("apparmor", "current", 0666), 2816 ATTR("apparmor", "prev", 0444), 2817 ATTR("apparmor", "exec", 0666), 2818 }; 2819 LSM_DIR_OPS(apparmor); 2820 #endif 2821 2822 static const struct pid_entry attr_dir_stuff[] = { 2823 ATTR(NULL, "current", 0666), 2824 ATTR(NULL, "prev", 0444), 2825 ATTR(NULL, "exec", 0666), 2826 ATTR(NULL, "fscreate", 0666), 2827 ATTR(NULL, "keycreate", 0666), 2828 ATTR(NULL, "sockcreate", 0666), 2829 #ifdef CONFIG_SECURITY_SMACK 2830 DIR("smack", 0555, 2831 proc_smack_attr_dir_inode_ops, proc_smack_attr_dir_ops), 2832 #endif 2833 #ifdef CONFIG_SECURITY_APPARMOR 2834 DIR("apparmor", 0555, 2835 proc_apparmor_attr_dir_inode_ops, proc_apparmor_attr_dir_ops), 2836 #endif 2837 }; 2838 2839 static int proc_attr_dir_readdir(struct file *file, struct dir_context *ctx) 2840 { 2841 return proc_pident_readdir(file, ctx, 2842 attr_dir_stuff, ARRAY_SIZE(attr_dir_stuff)); 2843 } 2844 2845 static const struct file_operations proc_attr_dir_operations = { 2846 .read = generic_read_dir, 2847 .iterate_shared = proc_attr_dir_readdir, 2848 .llseek = generic_file_llseek, 2849 }; 2850 2851 static struct dentry *proc_attr_dir_lookup(struct inode *dir, 2852 struct dentry *dentry, unsigned int flags) 2853 { 2854 return proc_pident_lookup(dir, dentry, 2855 attr_dir_stuff, 2856 attr_dir_stuff + ARRAY_SIZE(attr_dir_stuff)); 2857 } 2858 2859 static const struct inode_operations proc_attr_dir_inode_operations = { 2860 .lookup = proc_attr_dir_lookup, 2861 .getattr = pid_getattr, 2862 .setattr = proc_setattr, 2863 }; 2864 2865 #endif 2866 2867 #ifdef CONFIG_ELF_CORE 2868 static ssize_t proc_coredump_filter_read(struct file *file, char __user *buf, 2869 size_t count, loff_t *ppos) 2870 { 2871 struct task_struct *task = get_proc_task(file_inode(file)); 2872 struct mm_struct *mm; 2873 char buffer[PROC_NUMBUF]; 2874 size_t len; 2875 int ret; 2876 2877 if (!task) 2878 return -ESRCH; 2879 2880 ret = 0; 2881 mm = get_task_mm(task); 2882 if (mm) { 2883 len = snprintf(buffer, sizeof(buffer), "%08lx\n", 2884 ((mm->flags & MMF_DUMP_FILTER_MASK) >> 2885 MMF_DUMP_FILTER_SHIFT)); 2886 mmput(mm); 2887 ret = simple_read_from_buffer(buf, count, ppos, buffer, len); 2888 } 2889 2890 put_task_struct(task); 2891 2892 return ret; 2893 } 2894 2895 static ssize_t proc_coredump_filter_write(struct file *file, 2896 const char __user *buf, 2897 size_t count, 2898 loff_t *ppos) 2899 { 2900 struct task_struct *task; 2901 struct mm_struct *mm; 2902 unsigned int val; 2903 int ret; 2904 int i; 2905 unsigned long mask; 2906 2907 ret = kstrtouint_from_user(buf, count, 0, &val); 2908 if (ret < 0) 2909 return ret; 2910 2911 ret = -ESRCH; 2912 task = get_proc_task(file_inode(file)); 2913 if (!task) 2914 goto out_no_task; 2915 2916 mm = get_task_mm(task); 2917 if (!mm) 2918 goto out_no_mm; 2919 ret = 0; 2920 2921 for (i = 0, mask = 1; i < MMF_DUMP_FILTER_BITS; i++, mask <<= 1) { 2922 if (val & mask) 2923 set_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags); 2924 else 2925 clear_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags); 2926 } 2927 2928 mmput(mm); 2929 out_no_mm: 2930 put_task_struct(task); 2931 out_no_task: 2932 if (ret < 0) 2933 return ret; 2934 return count; 2935 } 2936 2937 static const struct file_operations proc_coredump_filter_operations = { 2938 .read = proc_coredump_filter_read, 2939 .write = proc_coredump_filter_write, 2940 .llseek = generic_file_llseek, 2941 }; 2942 #endif 2943 2944 #ifdef CONFIG_TASK_IO_ACCOUNTING 2945 static int do_io_accounting(struct task_struct *task, struct seq_file *m, int whole) 2946 { 2947 struct task_io_accounting acct = task->ioac; 2948 unsigned long flags; 2949 int result; 2950 2951 result = down_read_killable(&task->signal->exec_update_lock); 2952 if (result) 2953 return result; 2954 2955 if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS)) { 2956 result = -EACCES; 2957 goto out_unlock; 2958 } 2959 2960 if (whole && lock_task_sighand(task, &flags)) { 2961 struct task_struct *t = task; 2962 2963 task_io_accounting_add(&acct, &task->signal->ioac); 2964 while_each_thread(task, t) 2965 task_io_accounting_add(&acct, &t->ioac); 2966 2967 unlock_task_sighand(task, &flags); 2968 } 2969 seq_printf(m, 2970 "rchar: %llu\n" 2971 "wchar: %llu\n" 2972 "syscr: %llu\n" 2973 "syscw: %llu\n" 2974 "read_bytes: %llu\n" 2975 "write_bytes: %llu\n" 2976 "cancelled_write_bytes: %llu\n", 2977 (unsigned long long)acct.rchar, 2978 (unsigned long long)acct.wchar, 2979 (unsigned long long)acct.syscr, 2980 (unsigned long long)acct.syscw, 2981 (unsigned long long)acct.read_bytes, 2982 (unsigned long long)acct.write_bytes, 2983 (unsigned long long)acct.cancelled_write_bytes); 2984 result = 0; 2985 2986 out_unlock: 2987 up_read(&task->signal->exec_update_lock); 2988 return result; 2989 } 2990 2991 static int proc_tid_io_accounting(struct seq_file *m, struct pid_namespace *ns, 2992 struct pid *pid, struct task_struct *task) 2993 { 2994 return do_io_accounting(task, m, 0); 2995 } 2996 2997 static int proc_tgid_io_accounting(struct seq_file *m, struct pid_namespace *ns, 2998 struct pid *pid, struct task_struct *task) 2999 { 3000 return do_io_accounting(task, m, 1); 3001 } 3002 #endif /* CONFIG_TASK_IO_ACCOUNTING */ 3003 3004 #ifdef CONFIG_USER_NS 3005 static int proc_id_map_open(struct inode *inode, struct file *file, 3006 const struct seq_operations *seq_ops) 3007 { 3008 struct user_namespace *ns = NULL; 3009 struct task_struct *task; 3010 struct seq_file *seq; 3011 int ret = -EINVAL; 3012 3013 task = get_proc_task(inode); 3014 if (task) { 3015 rcu_read_lock(); 3016 ns = get_user_ns(task_cred_xxx(task, user_ns)); 3017 rcu_read_unlock(); 3018 put_task_struct(task); 3019 } 3020 if (!ns) 3021 goto err; 3022 3023 ret = seq_open(file, seq_ops); 3024 if (ret) 3025 goto err_put_ns; 3026 3027 seq = file->private_data; 3028 seq->private = ns; 3029 3030 return 0; 3031 err_put_ns: 3032 put_user_ns(ns); 3033 err: 3034 return ret; 3035 } 3036 3037 static int proc_id_map_release(struct inode *inode, struct file *file) 3038 { 3039 struct seq_file *seq = file->private_data; 3040 struct user_namespace *ns = seq->private; 3041 put_user_ns(ns); 3042 return seq_release(inode, file); 3043 } 3044 3045 static int proc_uid_map_open(struct inode *inode, struct file *file) 3046 { 3047 return proc_id_map_open(inode, file, &proc_uid_seq_operations); 3048 } 3049 3050 static int proc_gid_map_open(struct inode *inode, struct file *file) 3051 { 3052 return proc_id_map_open(inode, file, &proc_gid_seq_operations); 3053 } 3054 3055 static int proc_projid_map_open(struct inode *inode, struct file *file) 3056 { 3057 return proc_id_map_open(inode, file, &proc_projid_seq_operations); 3058 } 3059 3060 static const struct file_operations proc_uid_map_operations = { 3061 .open = proc_uid_map_open, 3062 .write = proc_uid_map_write, 3063 .read = seq_read, 3064 .llseek = seq_lseek, 3065 .release = proc_id_map_release, 3066 }; 3067 3068 static const struct file_operations proc_gid_map_operations = { 3069 .open = proc_gid_map_open, 3070 .write = proc_gid_map_write, 3071 .read = seq_read, 3072 .llseek = seq_lseek, 3073 .release = proc_id_map_release, 3074 }; 3075 3076 static const struct file_operations proc_projid_map_operations = { 3077 .open = proc_projid_map_open, 3078 .write = proc_projid_map_write, 3079 .read = seq_read, 3080 .llseek = seq_lseek, 3081 .release = proc_id_map_release, 3082 }; 3083 3084 static int proc_setgroups_open(struct inode *inode, struct file *file) 3085 { 3086 struct user_namespace *ns = NULL; 3087 struct task_struct *task; 3088 int ret; 3089 3090 ret = -ESRCH; 3091 task = get_proc_task(inode); 3092 if (task) { 3093 rcu_read_lock(); 3094 ns = get_user_ns(task_cred_xxx(task, user_ns)); 3095 rcu_read_unlock(); 3096 put_task_struct(task); 3097 } 3098 if (!ns) 3099 goto err; 3100 3101 if (file->f_mode & FMODE_WRITE) { 3102 ret = -EACCES; 3103 if (!ns_capable(ns, CAP_SYS_ADMIN)) 3104 goto err_put_ns; 3105 } 3106 3107 ret = single_open(file, &proc_setgroups_show, ns); 3108 if (ret) 3109 goto err_put_ns; 3110 3111 return 0; 3112 err_put_ns: 3113 put_user_ns(ns); 3114 err: 3115 return ret; 3116 } 3117 3118 static int proc_setgroups_release(struct inode *inode, struct file *file) 3119 { 3120 struct seq_file *seq = file->private_data; 3121 struct user_namespace *ns = seq->private; 3122 int ret = single_release(inode, file); 3123 put_user_ns(ns); 3124 return ret; 3125 } 3126 3127 static const struct file_operations proc_setgroups_operations = { 3128 .open = proc_setgroups_open, 3129 .write = proc_setgroups_write, 3130 .read = seq_read, 3131 .llseek = seq_lseek, 3132 .release = proc_setgroups_release, 3133 }; 3134 #endif /* CONFIG_USER_NS */ 3135 3136 static int proc_pid_personality(struct seq_file *m, struct pid_namespace *ns, 3137 struct pid *pid, struct task_struct *task) 3138 { 3139 int err = lock_trace(task); 3140 if (!err) { 3141 seq_printf(m, "%08x\n", task->personality); 3142 unlock_trace(task); 3143 } 3144 return err; 3145 } 3146 3147 #ifdef CONFIG_LIVEPATCH 3148 static int proc_pid_patch_state(struct seq_file *m, struct pid_namespace *ns, 3149 struct pid *pid, struct task_struct *task) 3150 { 3151 seq_printf(m, "%d\n", task->patch_state); 3152 return 0; 3153 } 3154 #endif /* CONFIG_LIVEPATCH */ 3155 3156 #ifdef CONFIG_STACKLEAK_METRICS 3157 static int proc_stack_depth(struct seq_file *m, struct pid_namespace *ns, 3158 struct pid *pid, struct task_struct *task) 3159 { 3160 unsigned long prev_depth = THREAD_SIZE - 3161 (task->prev_lowest_stack & (THREAD_SIZE - 1)); 3162 unsigned long depth = THREAD_SIZE - 3163 (task->lowest_stack & (THREAD_SIZE - 1)); 3164 3165 seq_printf(m, "previous stack depth: %lu\nstack depth: %lu\n", 3166 prev_depth, depth); 3167 return 0; 3168 } 3169 #endif /* CONFIG_STACKLEAK_METRICS */ 3170 3171 /* 3172 * Thread groups 3173 */ 3174 static const struct file_operations proc_task_operations; 3175 static const struct inode_operations proc_task_inode_operations; 3176 3177 static const struct pid_entry tgid_base_stuff[] = { 3178 DIR("task", S_IRUGO|S_IXUGO, proc_task_inode_operations, proc_task_operations), 3179 DIR("fd", S_IRUSR|S_IXUSR, proc_fd_inode_operations, proc_fd_operations), 3180 DIR("map_files", S_IRUSR|S_IXUSR, proc_map_files_inode_operations, proc_map_files_operations), 3181 DIR("fdinfo", S_IRUGO|S_IXUGO, proc_fdinfo_inode_operations, proc_fdinfo_operations), 3182 DIR("ns", S_IRUSR|S_IXUGO, proc_ns_dir_inode_operations, proc_ns_dir_operations), 3183 #ifdef CONFIG_NET 3184 DIR("net", S_IRUGO|S_IXUGO, proc_net_inode_operations, proc_net_operations), 3185 #endif 3186 REG("environ", S_IRUSR, proc_environ_operations), 3187 REG("auxv", S_IRUSR, proc_auxv_operations), 3188 ONE("status", S_IRUGO, proc_pid_status), 3189 ONE("personality", S_IRUSR, proc_pid_personality), 3190 ONE("limits", S_IRUGO, proc_pid_limits), 3191 #ifdef CONFIG_SCHED_DEBUG 3192 REG("sched", S_IRUGO|S_IWUSR, proc_pid_sched_operations), 3193 #endif 3194 #ifdef CONFIG_SCHED_AUTOGROUP 3195 REG("autogroup", S_IRUGO|S_IWUSR, proc_pid_sched_autogroup_operations), 3196 #endif 3197 #ifdef CONFIG_TIME_NS 3198 REG("timens_offsets", S_IRUGO|S_IWUSR, proc_timens_offsets_operations), 3199 #endif 3200 REG("comm", S_IRUGO|S_IWUSR, proc_pid_set_comm_operations), 3201 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK 3202 ONE("syscall", S_IRUSR, proc_pid_syscall), 3203 #endif 3204 REG("cmdline", S_IRUGO, proc_pid_cmdline_ops), 3205 ONE("stat", S_IRUGO, proc_tgid_stat), 3206 ONE("statm", S_IRUGO, proc_pid_statm), 3207 REG("maps", S_IRUGO, proc_pid_maps_operations), 3208 #ifdef CONFIG_NUMA 3209 REG("numa_maps", S_IRUGO, proc_pid_numa_maps_operations), 3210 #endif 3211 REG("mem", S_IRUSR|S_IWUSR, proc_mem_operations), 3212 LNK("cwd", proc_cwd_link), 3213 LNK("root", proc_root_link), 3214 LNK("exe", proc_exe_link), 3215 REG("mounts", S_IRUGO, proc_mounts_operations), 3216 REG("mountinfo", S_IRUGO, proc_mountinfo_operations), 3217 REG("mountstats", S_IRUSR, proc_mountstats_operations), 3218 #ifdef CONFIG_PROC_PAGE_MONITOR 3219 REG("clear_refs", S_IWUSR, proc_clear_refs_operations), 3220 REG("smaps", S_IRUGO, proc_pid_smaps_operations), 3221 REG("smaps_rollup", S_IRUGO, proc_pid_smaps_rollup_operations), 3222 REG("pagemap", S_IRUSR, proc_pagemap_operations), 3223 #endif 3224 #ifdef CONFIG_SECURITY 3225 DIR("attr", S_IRUGO|S_IXUGO, proc_attr_dir_inode_operations, proc_attr_dir_operations), 3226 #endif 3227 #ifdef CONFIG_KALLSYMS 3228 ONE("wchan", S_IRUGO, proc_pid_wchan), 3229 #endif 3230 #ifdef CONFIG_STACKTRACE 3231 ONE("stack", S_IRUSR, proc_pid_stack), 3232 #endif 3233 #ifdef CONFIG_SCHED_INFO 3234 ONE("schedstat", S_IRUGO, proc_pid_schedstat), 3235 #endif 3236 #ifdef CONFIG_LATENCYTOP 3237 REG("latency", S_IRUGO, proc_lstats_operations), 3238 #endif 3239 #ifdef CONFIG_PROC_PID_CPUSET 3240 ONE("cpuset", S_IRUGO, proc_cpuset_show), 3241 #endif 3242 #ifdef CONFIG_CGROUPS 3243 ONE("cgroup", S_IRUGO, proc_cgroup_show), 3244 #endif 3245 #ifdef CONFIG_PROC_CPU_RESCTRL 3246 ONE("cpu_resctrl_groups", S_IRUGO, proc_resctrl_show), 3247 #endif 3248 ONE("oom_score", S_IRUGO, proc_oom_score), 3249 REG("oom_adj", S_IRUGO|S_IWUSR, proc_oom_adj_operations), 3250 REG("oom_score_adj", S_IRUGO|S_IWUSR, proc_oom_score_adj_operations), 3251 #ifdef CONFIG_AUDIT 3252 REG("loginuid", S_IWUSR|S_IRUGO, proc_loginuid_operations), 3253 REG("sessionid", S_IRUGO, proc_sessionid_operations), 3254 #endif 3255 #ifdef CONFIG_FAULT_INJECTION 3256 REG("make-it-fail", S_IRUGO|S_IWUSR, proc_fault_inject_operations), 3257 REG("fail-nth", 0644, proc_fail_nth_operations), 3258 #endif 3259 #ifdef CONFIG_ELF_CORE 3260 REG("coredump_filter", S_IRUGO|S_IWUSR, proc_coredump_filter_operations), 3261 #endif 3262 #ifdef CONFIG_TASK_IO_ACCOUNTING 3263 ONE("io", S_IRUSR, proc_tgid_io_accounting), 3264 #endif 3265 #ifdef CONFIG_USER_NS 3266 REG("uid_map", S_IRUGO|S_IWUSR, proc_uid_map_operations), 3267 REG("gid_map", S_IRUGO|S_IWUSR, proc_gid_map_operations), 3268 REG("projid_map", S_IRUGO|S_IWUSR, proc_projid_map_operations), 3269 REG("setgroups", S_IRUGO|S_IWUSR, proc_setgroups_operations), 3270 #endif 3271 #if defined(CONFIG_CHECKPOINT_RESTORE) && defined(CONFIG_POSIX_TIMERS) 3272 REG("timers", S_IRUGO, proc_timers_operations), 3273 #endif 3274 REG("timerslack_ns", S_IRUGO|S_IWUGO, proc_pid_set_timerslack_ns_operations), 3275 #ifdef CONFIG_LIVEPATCH 3276 ONE("patch_state", S_IRUSR, proc_pid_patch_state), 3277 #endif 3278 #ifdef CONFIG_STACKLEAK_METRICS 3279 ONE("stack_depth", S_IRUGO, proc_stack_depth), 3280 #endif 3281 #ifdef CONFIG_PROC_PID_ARCH_STATUS 3282 ONE("arch_status", S_IRUGO, proc_pid_arch_status), 3283 #endif 3284 #ifdef CONFIG_SECCOMP_CACHE_DEBUG 3285 ONE("seccomp_cache", S_IRUSR, proc_pid_seccomp_cache), 3286 #endif 3287 }; 3288 3289 static int proc_tgid_base_readdir(struct file *file, struct dir_context *ctx) 3290 { 3291 return proc_pident_readdir(file, ctx, 3292 tgid_base_stuff, ARRAY_SIZE(tgid_base_stuff)); 3293 } 3294 3295 static const struct file_operations proc_tgid_base_operations = { 3296 .read = generic_read_dir, 3297 .iterate_shared = proc_tgid_base_readdir, 3298 .llseek = generic_file_llseek, 3299 }; 3300 3301 struct pid *tgid_pidfd_to_pid(const struct file *file) 3302 { 3303 if (file->f_op != &proc_tgid_base_operations) 3304 return ERR_PTR(-EBADF); 3305 3306 return proc_pid(file_inode(file)); 3307 } 3308 3309 static struct dentry *proc_tgid_base_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags) 3310 { 3311 return proc_pident_lookup(dir, dentry, 3312 tgid_base_stuff, 3313 tgid_base_stuff + ARRAY_SIZE(tgid_base_stuff)); 3314 } 3315 3316 static const struct inode_operations proc_tgid_base_inode_operations = { 3317 .lookup = proc_tgid_base_lookup, 3318 .getattr = pid_getattr, 3319 .setattr = proc_setattr, 3320 .permission = proc_pid_permission, 3321 }; 3322 3323 /** 3324 * proc_flush_pid - Remove dcache entries for @pid from the /proc dcache. 3325 * @pid: pid that should be flushed. 3326 * 3327 * This function walks a list of inodes (that belong to any proc 3328 * filesystem) that are attached to the pid and flushes them from 3329 * the dentry cache. 3330 * 3331 * It is safe and reasonable to cache /proc entries for a task until 3332 * that task exits. After that they just clog up the dcache with 3333 * useless entries, possibly causing useful dcache entries to be 3334 * flushed instead. This routine is provided to flush those useless 3335 * dcache entries when a process is reaped. 3336 * 3337 * NOTE: This routine is just an optimization so it does not guarantee 3338 * that no dcache entries will exist after a process is reaped 3339 * it just makes it very unlikely that any will persist. 3340 */ 3341 3342 void proc_flush_pid(struct pid *pid) 3343 { 3344 proc_invalidate_siblings_dcache(&pid->inodes, &pid->lock); 3345 } 3346 3347 static struct dentry *proc_pid_instantiate(struct dentry * dentry, 3348 struct task_struct *task, const void *ptr) 3349 { 3350 struct inode *inode; 3351 3352 inode = proc_pid_make_inode(dentry->d_sb, task, S_IFDIR | S_IRUGO | S_IXUGO); 3353 if (!inode) 3354 return ERR_PTR(-ENOENT); 3355 3356 inode->i_op = &proc_tgid_base_inode_operations; 3357 inode->i_fop = &proc_tgid_base_operations; 3358 inode->i_flags|=S_IMMUTABLE; 3359 3360 set_nlink(inode, nlink_tgid); 3361 pid_update_inode(task, inode); 3362 3363 d_set_d_op(dentry, &pid_dentry_operations); 3364 return d_splice_alias(inode, dentry); 3365 } 3366 3367 struct dentry *proc_pid_lookup(struct dentry *dentry, unsigned int flags) 3368 { 3369 struct task_struct *task; 3370 unsigned tgid; 3371 struct proc_fs_info *fs_info; 3372 struct pid_namespace *ns; 3373 struct dentry *result = ERR_PTR(-ENOENT); 3374 3375 tgid = name_to_int(&dentry->d_name); 3376 if (tgid == ~0U) 3377 goto out; 3378 3379 fs_info = proc_sb_info(dentry->d_sb); 3380 ns = fs_info->pid_ns; 3381 rcu_read_lock(); 3382 task = find_task_by_pid_ns(tgid, ns); 3383 if (task) 3384 get_task_struct(task); 3385 rcu_read_unlock(); 3386 if (!task) 3387 goto out; 3388 3389 /* Limit procfs to only ptraceable tasks */ 3390 if (fs_info->hide_pid == HIDEPID_NOT_PTRACEABLE) { 3391 if (!has_pid_permissions(fs_info, task, HIDEPID_NO_ACCESS)) 3392 goto out_put_task; 3393 } 3394 3395 result = proc_pid_instantiate(dentry, task, NULL); 3396 out_put_task: 3397 put_task_struct(task); 3398 out: 3399 return result; 3400 } 3401 3402 /* 3403 * Find the first task with tgid >= tgid 3404 * 3405 */ 3406 struct tgid_iter { 3407 unsigned int tgid; 3408 struct task_struct *task; 3409 }; 3410 static struct tgid_iter next_tgid(struct pid_namespace *ns, struct tgid_iter iter) 3411 { 3412 struct pid *pid; 3413 3414 if (iter.task) 3415 put_task_struct(iter.task); 3416 rcu_read_lock(); 3417 retry: 3418 iter.task = NULL; 3419 pid = find_ge_pid(iter.tgid, ns); 3420 if (pid) { 3421 iter.tgid = pid_nr_ns(pid, ns); 3422 iter.task = pid_task(pid, PIDTYPE_TGID); 3423 if (!iter.task) { 3424 iter.tgid += 1; 3425 goto retry; 3426 } 3427 get_task_struct(iter.task); 3428 } 3429 rcu_read_unlock(); 3430 return iter; 3431 } 3432 3433 #define TGID_OFFSET (FIRST_PROCESS_ENTRY + 2) 3434 3435 /* for the /proc/ directory itself, after non-process stuff has been done */ 3436 int proc_pid_readdir(struct file *file, struct dir_context *ctx) 3437 { 3438 struct tgid_iter iter; 3439 struct proc_fs_info *fs_info = proc_sb_info(file_inode(file)->i_sb); 3440 struct pid_namespace *ns = proc_pid_ns(file_inode(file)->i_sb); 3441 loff_t pos = ctx->pos; 3442 3443 if (pos >= PID_MAX_LIMIT + TGID_OFFSET) 3444 return 0; 3445 3446 if (pos == TGID_OFFSET - 2) { 3447 struct inode *inode = d_inode(fs_info->proc_self); 3448 if (!dir_emit(ctx, "self", 4, inode->i_ino, DT_LNK)) 3449 return 0; 3450 ctx->pos = pos = pos + 1; 3451 } 3452 if (pos == TGID_OFFSET - 1) { 3453 struct inode *inode = d_inode(fs_info->proc_thread_self); 3454 if (!dir_emit(ctx, "thread-self", 11, inode->i_ino, DT_LNK)) 3455 return 0; 3456 ctx->pos = pos = pos + 1; 3457 } 3458 iter.tgid = pos - TGID_OFFSET; 3459 iter.task = NULL; 3460 for (iter = next_tgid(ns, iter); 3461 iter.task; 3462 iter.tgid += 1, iter = next_tgid(ns, iter)) { 3463 char name[10 + 1]; 3464 unsigned int len; 3465 3466 cond_resched(); 3467 if (!has_pid_permissions(fs_info, iter.task, HIDEPID_INVISIBLE)) 3468 continue; 3469 3470 len = snprintf(name, sizeof(name), "%u", iter.tgid); 3471 ctx->pos = iter.tgid + TGID_OFFSET; 3472 if (!proc_fill_cache(file, ctx, name, len, 3473 proc_pid_instantiate, iter.task, NULL)) { 3474 put_task_struct(iter.task); 3475 return 0; 3476 } 3477 } 3478 ctx->pos = PID_MAX_LIMIT + TGID_OFFSET; 3479 return 0; 3480 } 3481 3482 /* 3483 * proc_tid_comm_permission is a special permission function exclusively 3484 * used for the node /proc/<pid>/task/<tid>/comm. 3485 * It bypasses generic permission checks in the case where a task of the same 3486 * task group attempts to access the node. 3487 * The rationale behind this is that glibc and bionic access this node for 3488 * cross thread naming (pthread_set/getname_np(!self)). However, if 3489 * PR_SET_DUMPABLE gets set to 0 this node among others becomes uid=0 gid=0, 3490 * which locks out the cross thread naming implementation. 3491 * This function makes sure that the node is always accessible for members of 3492 * same thread group. 3493 */ 3494 static int proc_tid_comm_permission(struct user_namespace *mnt_userns, 3495 struct inode *inode, int mask) 3496 { 3497 bool is_same_tgroup; 3498 struct task_struct *task; 3499 3500 task = get_proc_task(inode); 3501 if (!task) 3502 return -ESRCH; 3503 is_same_tgroup = same_thread_group(current, task); 3504 put_task_struct(task); 3505 3506 if (likely(is_same_tgroup && !(mask & MAY_EXEC))) { 3507 /* This file (/proc/<pid>/task/<tid>/comm) can always be 3508 * read or written by the members of the corresponding 3509 * thread group. 3510 */ 3511 return 0; 3512 } 3513 3514 return generic_permission(&init_user_ns, inode, mask); 3515 } 3516 3517 static const struct inode_operations proc_tid_comm_inode_operations = { 3518 .permission = proc_tid_comm_permission, 3519 }; 3520 3521 /* 3522 * Tasks 3523 */ 3524 static const struct pid_entry tid_base_stuff[] = { 3525 DIR("fd", S_IRUSR|S_IXUSR, proc_fd_inode_operations, proc_fd_operations), 3526 DIR("fdinfo", S_IRUGO|S_IXUGO, proc_fdinfo_inode_operations, proc_fdinfo_operations), 3527 DIR("ns", S_IRUSR|S_IXUGO, proc_ns_dir_inode_operations, proc_ns_dir_operations), 3528 #ifdef CONFIG_NET 3529 DIR("net", S_IRUGO|S_IXUGO, proc_net_inode_operations, proc_net_operations), 3530 #endif 3531 REG("environ", S_IRUSR, proc_environ_operations), 3532 REG("auxv", S_IRUSR, proc_auxv_operations), 3533 ONE("status", S_IRUGO, proc_pid_status), 3534 ONE("personality", S_IRUSR, proc_pid_personality), 3535 ONE("limits", S_IRUGO, proc_pid_limits), 3536 #ifdef CONFIG_SCHED_DEBUG 3537 REG("sched", S_IRUGO|S_IWUSR, proc_pid_sched_operations), 3538 #endif 3539 NOD("comm", S_IFREG|S_IRUGO|S_IWUSR, 3540 &proc_tid_comm_inode_operations, 3541 &proc_pid_set_comm_operations, {}), 3542 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK 3543 ONE("syscall", S_IRUSR, proc_pid_syscall), 3544 #endif 3545 REG("cmdline", S_IRUGO, proc_pid_cmdline_ops), 3546 ONE("stat", S_IRUGO, proc_tid_stat), 3547 ONE("statm", S_IRUGO, proc_pid_statm), 3548 REG("maps", S_IRUGO, proc_pid_maps_operations), 3549 #ifdef CONFIG_PROC_CHILDREN 3550 REG("children", S_IRUGO, proc_tid_children_operations), 3551 #endif 3552 #ifdef CONFIG_NUMA 3553 REG("numa_maps", S_IRUGO, proc_pid_numa_maps_operations), 3554 #endif 3555 REG("mem", S_IRUSR|S_IWUSR, proc_mem_operations), 3556 LNK("cwd", proc_cwd_link), 3557 LNK("root", proc_root_link), 3558 LNK("exe", proc_exe_link), 3559 REG("mounts", S_IRUGO, proc_mounts_operations), 3560 REG("mountinfo", S_IRUGO, proc_mountinfo_operations), 3561 #ifdef CONFIG_PROC_PAGE_MONITOR 3562 REG("clear_refs", S_IWUSR, proc_clear_refs_operations), 3563 REG("smaps", S_IRUGO, proc_pid_smaps_operations), 3564 REG("smaps_rollup", S_IRUGO, proc_pid_smaps_rollup_operations), 3565 REG("pagemap", S_IRUSR, proc_pagemap_operations), 3566 #endif 3567 #ifdef CONFIG_SECURITY 3568 DIR("attr", S_IRUGO|S_IXUGO, proc_attr_dir_inode_operations, proc_attr_dir_operations), 3569 #endif 3570 #ifdef CONFIG_KALLSYMS 3571 ONE("wchan", S_IRUGO, proc_pid_wchan), 3572 #endif 3573 #ifdef CONFIG_STACKTRACE 3574 ONE("stack", S_IRUSR, proc_pid_stack), 3575 #endif 3576 #ifdef CONFIG_SCHED_INFO 3577 ONE("schedstat", S_IRUGO, proc_pid_schedstat), 3578 #endif 3579 #ifdef CONFIG_LATENCYTOP 3580 REG("latency", S_IRUGO, proc_lstats_operations), 3581 #endif 3582 #ifdef CONFIG_PROC_PID_CPUSET 3583 ONE("cpuset", S_IRUGO, proc_cpuset_show), 3584 #endif 3585 #ifdef CONFIG_CGROUPS 3586 ONE("cgroup", S_IRUGO, proc_cgroup_show), 3587 #endif 3588 #ifdef CONFIG_PROC_CPU_RESCTRL 3589 ONE("cpu_resctrl_groups", S_IRUGO, proc_resctrl_show), 3590 #endif 3591 ONE("oom_score", S_IRUGO, proc_oom_score), 3592 REG("oom_adj", S_IRUGO|S_IWUSR, proc_oom_adj_operations), 3593 REG("oom_score_adj", S_IRUGO|S_IWUSR, proc_oom_score_adj_operations), 3594 #ifdef CONFIG_AUDIT 3595 REG("loginuid", S_IWUSR|S_IRUGO, proc_loginuid_operations), 3596 REG("sessionid", S_IRUGO, proc_sessionid_operations), 3597 #endif 3598 #ifdef CONFIG_FAULT_INJECTION 3599 REG("make-it-fail", S_IRUGO|S_IWUSR, proc_fault_inject_operations), 3600 REG("fail-nth", 0644, proc_fail_nth_operations), 3601 #endif 3602 #ifdef CONFIG_TASK_IO_ACCOUNTING 3603 ONE("io", S_IRUSR, proc_tid_io_accounting), 3604 #endif 3605 #ifdef CONFIG_USER_NS 3606 REG("uid_map", S_IRUGO|S_IWUSR, proc_uid_map_operations), 3607 REG("gid_map", S_IRUGO|S_IWUSR, proc_gid_map_operations), 3608 REG("projid_map", S_IRUGO|S_IWUSR, proc_projid_map_operations), 3609 REG("setgroups", S_IRUGO|S_IWUSR, proc_setgroups_operations), 3610 #endif 3611 #ifdef CONFIG_LIVEPATCH 3612 ONE("patch_state", S_IRUSR, proc_pid_patch_state), 3613 #endif 3614 #ifdef CONFIG_PROC_PID_ARCH_STATUS 3615 ONE("arch_status", S_IRUGO, proc_pid_arch_status), 3616 #endif 3617 #ifdef CONFIG_SECCOMP_CACHE_DEBUG 3618 ONE("seccomp_cache", S_IRUSR, proc_pid_seccomp_cache), 3619 #endif 3620 }; 3621 3622 static int proc_tid_base_readdir(struct file *file, struct dir_context *ctx) 3623 { 3624 return proc_pident_readdir(file, ctx, 3625 tid_base_stuff, ARRAY_SIZE(tid_base_stuff)); 3626 } 3627 3628 static struct dentry *proc_tid_base_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags) 3629 { 3630 return proc_pident_lookup(dir, dentry, 3631 tid_base_stuff, 3632 tid_base_stuff + ARRAY_SIZE(tid_base_stuff)); 3633 } 3634 3635 static const struct file_operations proc_tid_base_operations = { 3636 .read = generic_read_dir, 3637 .iterate_shared = proc_tid_base_readdir, 3638 .llseek = generic_file_llseek, 3639 }; 3640 3641 static const struct inode_operations proc_tid_base_inode_operations = { 3642 .lookup = proc_tid_base_lookup, 3643 .getattr = pid_getattr, 3644 .setattr = proc_setattr, 3645 }; 3646 3647 static struct dentry *proc_task_instantiate(struct dentry *dentry, 3648 struct task_struct *task, const void *ptr) 3649 { 3650 struct inode *inode; 3651 inode = proc_pid_make_inode(dentry->d_sb, task, S_IFDIR | S_IRUGO | S_IXUGO); 3652 if (!inode) 3653 return ERR_PTR(-ENOENT); 3654 3655 inode->i_op = &proc_tid_base_inode_operations; 3656 inode->i_fop = &proc_tid_base_operations; 3657 inode->i_flags |= S_IMMUTABLE; 3658 3659 set_nlink(inode, nlink_tid); 3660 pid_update_inode(task, inode); 3661 3662 d_set_d_op(dentry, &pid_dentry_operations); 3663 return d_splice_alias(inode, dentry); 3664 } 3665 3666 static struct dentry *proc_task_lookup(struct inode *dir, struct dentry * dentry, unsigned int flags) 3667 { 3668 struct task_struct *task; 3669 struct task_struct *leader = get_proc_task(dir); 3670 unsigned tid; 3671 struct proc_fs_info *fs_info; 3672 struct pid_namespace *ns; 3673 struct dentry *result = ERR_PTR(-ENOENT); 3674 3675 if (!leader) 3676 goto out_no_task; 3677 3678 tid = name_to_int(&dentry->d_name); 3679 if (tid == ~0U) 3680 goto out; 3681 3682 fs_info = proc_sb_info(dentry->d_sb); 3683 ns = fs_info->pid_ns; 3684 rcu_read_lock(); 3685 task = find_task_by_pid_ns(tid, ns); 3686 if (task) 3687 get_task_struct(task); 3688 rcu_read_unlock(); 3689 if (!task) 3690 goto out; 3691 if (!same_thread_group(leader, task)) 3692 goto out_drop_task; 3693 3694 result = proc_task_instantiate(dentry, task, NULL); 3695 out_drop_task: 3696 put_task_struct(task); 3697 out: 3698 put_task_struct(leader); 3699 out_no_task: 3700 return result; 3701 } 3702 3703 /* 3704 * Find the first tid of a thread group to return to user space. 3705 * 3706 * Usually this is just the thread group leader, but if the users 3707 * buffer was too small or there was a seek into the middle of the 3708 * directory we have more work todo. 3709 * 3710 * In the case of a short read we start with find_task_by_pid. 3711 * 3712 * In the case of a seek we start with the leader and walk nr 3713 * threads past it. 3714 */ 3715 static struct task_struct *first_tid(struct pid *pid, int tid, loff_t f_pos, 3716 struct pid_namespace *ns) 3717 { 3718 struct task_struct *pos, *task; 3719 unsigned long nr = f_pos; 3720 3721 if (nr != f_pos) /* 32bit overflow? */ 3722 return NULL; 3723 3724 rcu_read_lock(); 3725 task = pid_task(pid, PIDTYPE_PID); 3726 if (!task) 3727 goto fail; 3728 3729 /* Attempt to start with the tid of a thread */ 3730 if (tid && nr) { 3731 pos = find_task_by_pid_ns(tid, ns); 3732 if (pos && same_thread_group(pos, task)) 3733 goto found; 3734 } 3735 3736 /* If nr exceeds the number of threads there is nothing todo */ 3737 if (nr >= get_nr_threads(task)) 3738 goto fail; 3739 3740 /* If we haven't found our starting place yet start 3741 * with the leader and walk nr threads forward. 3742 */ 3743 pos = task = task->group_leader; 3744 do { 3745 if (!nr--) 3746 goto found; 3747 } while_each_thread(task, pos); 3748 fail: 3749 pos = NULL; 3750 goto out; 3751 found: 3752 get_task_struct(pos); 3753 out: 3754 rcu_read_unlock(); 3755 return pos; 3756 } 3757 3758 /* 3759 * Find the next thread in the thread list. 3760 * Return NULL if there is an error or no next thread. 3761 * 3762 * The reference to the input task_struct is released. 3763 */ 3764 static struct task_struct *next_tid(struct task_struct *start) 3765 { 3766 struct task_struct *pos = NULL; 3767 rcu_read_lock(); 3768 if (pid_alive(start)) { 3769 pos = next_thread(start); 3770 if (thread_group_leader(pos)) 3771 pos = NULL; 3772 else 3773 get_task_struct(pos); 3774 } 3775 rcu_read_unlock(); 3776 put_task_struct(start); 3777 return pos; 3778 } 3779 3780 /* for the /proc/TGID/task/ directories */ 3781 static int proc_task_readdir(struct file *file, struct dir_context *ctx) 3782 { 3783 struct inode *inode = file_inode(file); 3784 struct task_struct *task; 3785 struct pid_namespace *ns; 3786 int tid; 3787 3788 if (proc_inode_is_dead(inode)) 3789 return -ENOENT; 3790 3791 if (!dir_emit_dots(file, ctx)) 3792 return 0; 3793 3794 /* f_version caches the tgid value that the last readdir call couldn't 3795 * return. lseek aka telldir automagically resets f_version to 0. 3796 */ 3797 ns = proc_pid_ns(inode->i_sb); 3798 tid = (int)file->f_version; 3799 file->f_version = 0; 3800 for (task = first_tid(proc_pid(inode), tid, ctx->pos - 2, ns); 3801 task; 3802 task = next_tid(task), ctx->pos++) { 3803 char name[10 + 1]; 3804 unsigned int len; 3805 tid = task_pid_nr_ns(task, ns); 3806 len = snprintf(name, sizeof(name), "%u", tid); 3807 if (!proc_fill_cache(file, ctx, name, len, 3808 proc_task_instantiate, task, NULL)) { 3809 /* returning this tgid failed, save it as the first 3810 * pid for the next readir call */ 3811 file->f_version = (u64)tid; 3812 put_task_struct(task); 3813 break; 3814 } 3815 } 3816 3817 return 0; 3818 } 3819 3820 static int proc_task_getattr(struct user_namespace *mnt_userns, 3821 const struct path *path, struct kstat *stat, 3822 u32 request_mask, unsigned int query_flags) 3823 { 3824 struct inode *inode = d_inode(path->dentry); 3825 struct task_struct *p = get_proc_task(inode); 3826 generic_fillattr(&init_user_ns, inode, stat); 3827 3828 if (p) { 3829 stat->nlink += get_nr_threads(p); 3830 put_task_struct(p); 3831 } 3832 3833 return 0; 3834 } 3835 3836 static const struct inode_operations proc_task_inode_operations = { 3837 .lookup = proc_task_lookup, 3838 .getattr = proc_task_getattr, 3839 .setattr = proc_setattr, 3840 .permission = proc_pid_permission, 3841 }; 3842 3843 static const struct file_operations proc_task_operations = { 3844 .read = generic_read_dir, 3845 .iterate_shared = proc_task_readdir, 3846 .llseek = generic_file_llseek, 3847 }; 3848 3849 void __init set_proc_pid_nlink(void) 3850 { 3851 nlink_tid = pid_entry_nlink(tid_base_stuff, ARRAY_SIZE(tid_base_stuff)); 3852 nlink_tgid = pid_entry_nlink(tgid_base_stuff, ARRAY_SIZE(tgid_base_stuff)); 3853 } 3854