xref: /linux/fs/proc/base.c (revision d39d0ed196aa1685bb24771e92f78633c66ac9cb)
1 /*
2  *  linux/fs/proc/base.c
3  *
4  *  Copyright (C) 1991, 1992 Linus Torvalds
5  *
6  *  proc base directory handling functions
7  *
8  *  1999, Al Viro. Rewritten. Now it covers the whole per-process part.
9  *  Instead of using magical inumbers to determine the kind of object
10  *  we allocate and fill in-core inodes upon lookup. They don't even
11  *  go into icache. We cache the reference to task_struct upon lookup too.
12  *  Eventually it should become a filesystem in its own. We don't use the
13  *  rest of procfs anymore.
14  *
15  *
16  *  Changelog:
17  *  17-Jan-2005
18  *  Allan Bezerra
19  *  Bruna Moreira <bruna.moreira@indt.org.br>
20  *  Edjard Mota <edjard.mota@indt.org.br>
21  *  Ilias Biris <ilias.biris@indt.org.br>
22  *  Mauricio Lin <mauricio.lin@indt.org.br>
23  *
24  *  Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT
25  *
26  *  A new process specific entry (smaps) included in /proc. It shows the
27  *  size of rss for each memory area. The maps entry lacks information
28  *  about physical memory size (rss) for each mapped file, i.e.,
29  *  rss information for executables and library files.
30  *  This additional information is useful for any tools that need to know
31  *  about physical memory consumption for a process specific library.
32  *
33  *  Changelog:
34  *  21-Feb-2005
35  *  Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT
36  *  Pud inclusion in the page table walking.
37  *
38  *  ChangeLog:
39  *  10-Mar-2005
40  *  10LE Instituto Nokia de Tecnologia - INdT:
41  *  A better way to walks through the page table as suggested by Hugh Dickins.
42  *
43  *  Simo Piiroinen <simo.piiroinen@nokia.com>:
44  *  Smaps information related to shared, private, clean and dirty pages.
45  *
46  *  Paul Mundt <paul.mundt@nokia.com>:
47  *  Overall revision about smaps.
48  */
49 
50 #include <asm/uaccess.h>
51 
52 #include <linux/errno.h>
53 #include <linux/time.h>
54 #include <linux/proc_fs.h>
55 #include <linux/stat.h>
56 #include <linux/task_io_accounting_ops.h>
57 #include <linux/init.h>
58 #include <linux/capability.h>
59 #include <linux/file.h>
60 #include <linux/fdtable.h>
61 #include <linux/string.h>
62 #include <linux/seq_file.h>
63 #include <linux/namei.h>
64 #include <linux/mnt_namespace.h>
65 #include <linux/mm.h>
66 #include <linux/swap.h>
67 #include <linux/rcupdate.h>
68 #include <linux/kallsyms.h>
69 #include <linux/stacktrace.h>
70 #include <linux/resource.h>
71 #include <linux/module.h>
72 #include <linux/mount.h>
73 #include <linux/security.h>
74 #include <linux/ptrace.h>
75 #include <linux/tracehook.h>
76 #include <linux/cgroup.h>
77 #include <linux/cpuset.h>
78 #include <linux/audit.h>
79 #include <linux/poll.h>
80 #include <linux/nsproxy.h>
81 #include <linux/oom.h>
82 #include <linux/elf.h>
83 #include <linux/pid_namespace.h>
84 #include <linux/fs_struct.h>
85 #include <linux/slab.h>
86 #include "internal.h"
87 
88 /* NOTE:
89  *	Implementing inode permission operations in /proc is almost
90  *	certainly an error.  Permission checks need to happen during
91  *	each system call not at open time.  The reason is that most of
92  *	what we wish to check for permissions in /proc varies at runtime.
93  *
94  *	The classic example of a problem is opening file descriptors
95  *	in /proc for a task before it execs a suid executable.
96  */
97 
98 struct pid_entry {
99 	char *name;
100 	int len;
101 	mode_t mode;
102 	const struct inode_operations *iop;
103 	const struct file_operations *fop;
104 	union proc_op op;
105 };
106 
107 #define NOD(NAME, MODE, IOP, FOP, OP) {			\
108 	.name = (NAME),					\
109 	.len  = sizeof(NAME) - 1,			\
110 	.mode = MODE,					\
111 	.iop  = IOP,					\
112 	.fop  = FOP,					\
113 	.op   = OP,					\
114 }
115 
116 #define DIR(NAME, MODE, iops, fops)	\
117 	NOD(NAME, (S_IFDIR|(MODE)), &iops, &fops, {} )
118 #define LNK(NAME, get_link)					\
119 	NOD(NAME, (S_IFLNK|S_IRWXUGO),				\
120 		&proc_pid_link_inode_operations, NULL,		\
121 		{ .proc_get_link = get_link } )
122 #define REG(NAME, MODE, fops)				\
123 	NOD(NAME, (S_IFREG|(MODE)), NULL, &fops, {})
124 #define INF(NAME, MODE, read)				\
125 	NOD(NAME, (S_IFREG|(MODE)), 			\
126 		NULL, &proc_info_file_operations,	\
127 		{ .proc_read = read } )
128 #define ONE(NAME, MODE, show)				\
129 	NOD(NAME, (S_IFREG|(MODE)), 			\
130 		NULL, &proc_single_file_operations,	\
131 		{ .proc_show = show } )
132 
133 /*
134  * Count the number of hardlinks for the pid_entry table, excluding the .
135  * and .. links.
136  */
137 static unsigned int pid_entry_count_dirs(const struct pid_entry *entries,
138 	unsigned int n)
139 {
140 	unsigned int i;
141 	unsigned int count;
142 
143 	count = 0;
144 	for (i = 0; i < n; ++i) {
145 		if (S_ISDIR(entries[i].mode))
146 			++count;
147 	}
148 
149 	return count;
150 }
151 
152 static int get_task_root(struct task_struct *task, struct path *root)
153 {
154 	int result = -ENOENT;
155 
156 	task_lock(task);
157 	if (task->fs) {
158 		get_fs_root(task->fs, root);
159 		result = 0;
160 	}
161 	task_unlock(task);
162 	return result;
163 }
164 
165 static int proc_cwd_link(struct inode *inode, struct path *path)
166 {
167 	struct task_struct *task = get_proc_task(inode);
168 	int result = -ENOENT;
169 
170 	if (task) {
171 		task_lock(task);
172 		if (task->fs) {
173 			get_fs_pwd(task->fs, path);
174 			result = 0;
175 		}
176 		task_unlock(task);
177 		put_task_struct(task);
178 	}
179 	return result;
180 }
181 
182 static int proc_root_link(struct inode *inode, struct path *path)
183 {
184 	struct task_struct *task = get_proc_task(inode);
185 	int result = -ENOENT;
186 
187 	if (task) {
188 		result = get_task_root(task, path);
189 		put_task_struct(task);
190 	}
191 	return result;
192 }
193 
194 /*
195  * Return zero if current may access user memory in @task, -error if not.
196  */
197 static int check_mem_permission(struct task_struct *task)
198 {
199 	/*
200 	 * A task can always look at itself, in case it chooses
201 	 * to use system calls instead of load instructions.
202 	 */
203 	if (task == current)
204 		return 0;
205 
206 	/*
207 	 * If current is actively ptrace'ing, and would also be
208 	 * permitted to freshly attach with ptrace now, permit it.
209 	 */
210 	if (task_is_stopped_or_traced(task)) {
211 		int match;
212 		rcu_read_lock();
213 		match = (tracehook_tracer_task(task) == current);
214 		rcu_read_unlock();
215 		if (match && ptrace_may_access(task, PTRACE_MODE_ATTACH))
216 			return 0;
217 	}
218 
219 	/*
220 	 * Noone else is allowed.
221 	 */
222 	return -EPERM;
223 }
224 
225 struct mm_struct *mm_for_maps(struct task_struct *task)
226 {
227 	struct mm_struct *mm;
228 
229 	if (mutex_lock_killable(&task->cred_guard_mutex))
230 		return NULL;
231 
232 	mm = get_task_mm(task);
233 	if (mm && mm != current->mm &&
234 			!ptrace_may_access(task, PTRACE_MODE_READ)) {
235 		mmput(mm);
236 		mm = NULL;
237 	}
238 	mutex_unlock(&task->cred_guard_mutex);
239 
240 	return mm;
241 }
242 
243 static int proc_pid_cmdline(struct task_struct *task, char * buffer)
244 {
245 	int res = 0;
246 	unsigned int len;
247 	struct mm_struct *mm = get_task_mm(task);
248 	if (!mm)
249 		goto out;
250 	if (!mm->arg_end)
251 		goto out_mm;	/* Shh! No looking before we're done */
252 
253  	len = mm->arg_end - mm->arg_start;
254 
255 	if (len > PAGE_SIZE)
256 		len = PAGE_SIZE;
257 
258 	res = access_process_vm(task, mm->arg_start, buffer, len, 0);
259 
260 	// If the nul at the end of args has been overwritten, then
261 	// assume application is using setproctitle(3).
262 	if (res > 0 && buffer[res-1] != '\0' && len < PAGE_SIZE) {
263 		len = strnlen(buffer, res);
264 		if (len < res) {
265 		    res = len;
266 		} else {
267 			len = mm->env_end - mm->env_start;
268 			if (len > PAGE_SIZE - res)
269 				len = PAGE_SIZE - res;
270 			res += access_process_vm(task, mm->env_start, buffer+res, len, 0);
271 			res = strnlen(buffer, res);
272 		}
273 	}
274 out_mm:
275 	mmput(mm);
276 out:
277 	return res;
278 }
279 
280 static int proc_pid_auxv(struct task_struct *task, char *buffer)
281 {
282 	int res = 0;
283 	struct mm_struct *mm = get_task_mm(task);
284 	if (mm) {
285 		unsigned int nwords = 0;
286 		do {
287 			nwords += 2;
288 		} while (mm->saved_auxv[nwords - 2] != 0); /* AT_NULL */
289 		res = nwords * sizeof(mm->saved_auxv[0]);
290 		if (res > PAGE_SIZE)
291 			res = PAGE_SIZE;
292 		memcpy(buffer, mm->saved_auxv, res);
293 		mmput(mm);
294 	}
295 	return res;
296 }
297 
298 
299 #ifdef CONFIG_KALLSYMS
300 /*
301  * Provides a wchan file via kallsyms in a proper one-value-per-file format.
302  * Returns the resolved symbol.  If that fails, simply return the address.
303  */
304 static int proc_pid_wchan(struct task_struct *task, char *buffer)
305 {
306 	unsigned long wchan;
307 	char symname[KSYM_NAME_LEN];
308 
309 	wchan = get_wchan(task);
310 
311 	if (lookup_symbol_name(wchan, symname) < 0)
312 		if (!ptrace_may_access(task, PTRACE_MODE_READ))
313 			return 0;
314 		else
315 			return sprintf(buffer, "%lu", wchan);
316 	else
317 		return sprintf(buffer, "%s", symname);
318 }
319 #endif /* CONFIG_KALLSYMS */
320 
321 #ifdef CONFIG_STACKTRACE
322 
323 #define MAX_STACK_TRACE_DEPTH	64
324 
325 static int proc_pid_stack(struct seq_file *m, struct pid_namespace *ns,
326 			  struct pid *pid, struct task_struct *task)
327 {
328 	struct stack_trace trace;
329 	unsigned long *entries;
330 	int i;
331 
332 	entries = kmalloc(MAX_STACK_TRACE_DEPTH * sizeof(*entries), GFP_KERNEL);
333 	if (!entries)
334 		return -ENOMEM;
335 
336 	trace.nr_entries	= 0;
337 	trace.max_entries	= MAX_STACK_TRACE_DEPTH;
338 	trace.entries		= entries;
339 	trace.skip		= 0;
340 	save_stack_trace_tsk(task, &trace);
341 
342 	for (i = 0; i < trace.nr_entries; i++) {
343 		seq_printf(m, "[<%p>] %pS\n",
344 			   (void *)entries[i], (void *)entries[i]);
345 	}
346 	kfree(entries);
347 
348 	return 0;
349 }
350 #endif
351 
352 #ifdef CONFIG_SCHEDSTATS
353 /*
354  * Provides /proc/PID/schedstat
355  */
356 static int proc_pid_schedstat(struct task_struct *task, char *buffer)
357 {
358 	return sprintf(buffer, "%llu %llu %lu\n",
359 			(unsigned long long)task->se.sum_exec_runtime,
360 			(unsigned long long)task->sched_info.run_delay,
361 			task->sched_info.pcount);
362 }
363 #endif
364 
365 #ifdef CONFIG_LATENCYTOP
366 static int lstats_show_proc(struct seq_file *m, void *v)
367 {
368 	int i;
369 	struct inode *inode = m->private;
370 	struct task_struct *task = get_proc_task(inode);
371 
372 	if (!task)
373 		return -ESRCH;
374 	seq_puts(m, "Latency Top version : v0.1\n");
375 	for (i = 0; i < 32; i++) {
376 		if (task->latency_record[i].backtrace[0]) {
377 			int q;
378 			seq_printf(m, "%i %li %li ",
379 				task->latency_record[i].count,
380 				task->latency_record[i].time,
381 				task->latency_record[i].max);
382 			for (q = 0; q < LT_BACKTRACEDEPTH; q++) {
383 				char sym[KSYM_SYMBOL_LEN];
384 				char *c;
385 				if (!task->latency_record[i].backtrace[q])
386 					break;
387 				if (task->latency_record[i].backtrace[q] == ULONG_MAX)
388 					break;
389 				sprint_symbol(sym, task->latency_record[i].backtrace[q]);
390 				c = strchr(sym, '+');
391 				if (c)
392 					*c = 0;
393 				seq_printf(m, "%s ", sym);
394 			}
395 			seq_printf(m, "\n");
396 		}
397 
398 	}
399 	put_task_struct(task);
400 	return 0;
401 }
402 
403 static int lstats_open(struct inode *inode, struct file *file)
404 {
405 	return single_open(file, lstats_show_proc, inode);
406 }
407 
408 static ssize_t lstats_write(struct file *file, const char __user *buf,
409 			    size_t count, loff_t *offs)
410 {
411 	struct task_struct *task = get_proc_task(file->f_dentry->d_inode);
412 
413 	if (!task)
414 		return -ESRCH;
415 	clear_all_latency_tracing(task);
416 	put_task_struct(task);
417 
418 	return count;
419 }
420 
421 static const struct file_operations proc_lstats_operations = {
422 	.open		= lstats_open,
423 	.read		= seq_read,
424 	.write		= lstats_write,
425 	.llseek		= seq_lseek,
426 	.release	= single_release,
427 };
428 
429 #endif
430 
431 static int proc_oom_score(struct task_struct *task, char *buffer)
432 {
433 	unsigned long points = 0;
434 
435 	read_lock(&tasklist_lock);
436 	if (pid_alive(task))
437 		points = oom_badness(task, NULL, NULL,
438 					totalram_pages + total_swap_pages);
439 	read_unlock(&tasklist_lock);
440 	return sprintf(buffer, "%lu\n", points);
441 }
442 
443 struct limit_names {
444 	char *name;
445 	char *unit;
446 };
447 
448 static const struct limit_names lnames[RLIM_NLIMITS] = {
449 	[RLIMIT_CPU] = {"Max cpu time", "seconds"},
450 	[RLIMIT_FSIZE] = {"Max file size", "bytes"},
451 	[RLIMIT_DATA] = {"Max data size", "bytes"},
452 	[RLIMIT_STACK] = {"Max stack size", "bytes"},
453 	[RLIMIT_CORE] = {"Max core file size", "bytes"},
454 	[RLIMIT_RSS] = {"Max resident set", "bytes"},
455 	[RLIMIT_NPROC] = {"Max processes", "processes"},
456 	[RLIMIT_NOFILE] = {"Max open files", "files"},
457 	[RLIMIT_MEMLOCK] = {"Max locked memory", "bytes"},
458 	[RLIMIT_AS] = {"Max address space", "bytes"},
459 	[RLIMIT_LOCKS] = {"Max file locks", "locks"},
460 	[RLIMIT_SIGPENDING] = {"Max pending signals", "signals"},
461 	[RLIMIT_MSGQUEUE] = {"Max msgqueue size", "bytes"},
462 	[RLIMIT_NICE] = {"Max nice priority", NULL},
463 	[RLIMIT_RTPRIO] = {"Max realtime priority", NULL},
464 	[RLIMIT_RTTIME] = {"Max realtime timeout", "us"},
465 };
466 
467 /* Display limits for a process */
468 static int proc_pid_limits(struct task_struct *task, char *buffer)
469 {
470 	unsigned int i;
471 	int count = 0;
472 	unsigned long flags;
473 	char *bufptr = buffer;
474 
475 	struct rlimit rlim[RLIM_NLIMITS];
476 
477 	if (!lock_task_sighand(task, &flags))
478 		return 0;
479 	memcpy(rlim, task->signal->rlim, sizeof(struct rlimit) * RLIM_NLIMITS);
480 	unlock_task_sighand(task, &flags);
481 
482 	/*
483 	 * print the file header
484 	 */
485 	count += sprintf(&bufptr[count], "%-25s %-20s %-20s %-10s\n",
486 			"Limit", "Soft Limit", "Hard Limit", "Units");
487 
488 	for (i = 0; i < RLIM_NLIMITS; i++) {
489 		if (rlim[i].rlim_cur == RLIM_INFINITY)
490 			count += sprintf(&bufptr[count], "%-25s %-20s ",
491 					 lnames[i].name, "unlimited");
492 		else
493 			count += sprintf(&bufptr[count], "%-25s %-20lu ",
494 					 lnames[i].name, rlim[i].rlim_cur);
495 
496 		if (rlim[i].rlim_max == RLIM_INFINITY)
497 			count += sprintf(&bufptr[count], "%-20s ", "unlimited");
498 		else
499 			count += sprintf(&bufptr[count], "%-20lu ",
500 					 rlim[i].rlim_max);
501 
502 		if (lnames[i].unit)
503 			count += sprintf(&bufptr[count], "%-10s\n",
504 					 lnames[i].unit);
505 		else
506 			count += sprintf(&bufptr[count], "\n");
507 	}
508 
509 	return count;
510 }
511 
512 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK
513 static int proc_pid_syscall(struct task_struct *task, char *buffer)
514 {
515 	long nr;
516 	unsigned long args[6], sp, pc;
517 
518 	if (task_current_syscall(task, &nr, args, 6, &sp, &pc))
519 		return sprintf(buffer, "running\n");
520 
521 	if (nr < 0)
522 		return sprintf(buffer, "%ld 0x%lx 0x%lx\n", nr, sp, pc);
523 
524 	return sprintf(buffer,
525 		       "%ld 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx\n",
526 		       nr,
527 		       args[0], args[1], args[2], args[3], args[4], args[5],
528 		       sp, pc);
529 }
530 #endif /* CONFIG_HAVE_ARCH_TRACEHOOK */
531 
532 /************************************************************************/
533 /*                       Here the fs part begins                        */
534 /************************************************************************/
535 
536 /* permission checks */
537 static int proc_fd_access_allowed(struct inode *inode)
538 {
539 	struct task_struct *task;
540 	int allowed = 0;
541 	/* Allow access to a task's file descriptors if it is us or we
542 	 * may use ptrace attach to the process and find out that
543 	 * information.
544 	 */
545 	task = get_proc_task(inode);
546 	if (task) {
547 		allowed = ptrace_may_access(task, PTRACE_MODE_READ);
548 		put_task_struct(task);
549 	}
550 	return allowed;
551 }
552 
553 static int proc_setattr(struct dentry *dentry, struct iattr *attr)
554 {
555 	int error;
556 	struct inode *inode = dentry->d_inode;
557 
558 	if (attr->ia_valid & ATTR_MODE)
559 		return -EPERM;
560 
561 	error = inode_change_ok(inode, attr);
562 	if (error)
563 		return error;
564 
565 	if ((attr->ia_valid & ATTR_SIZE) &&
566 	    attr->ia_size != i_size_read(inode)) {
567 		error = vmtruncate(inode, attr->ia_size);
568 		if (error)
569 			return error;
570 	}
571 
572 	setattr_copy(inode, attr);
573 	mark_inode_dirty(inode);
574 	return 0;
575 }
576 
577 static const struct inode_operations proc_def_inode_operations = {
578 	.setattr	= proc_setattr,
579 };
580 
581 static int mounts_open_common(struct inode *inode, struct file *file,
582 			      const struct seq_operations *op)
583 {
584 	struct task_struct *task = get_proc_task(inode);
585 	struct nsproxy *nsp;
586 	struct mnt_namespace *ns = NULL;
587 	struct path root;
588 	struct proc_mounts *p;
589 	int ret = -EINVAL;
590 
591 	if (task) {
592 		rcu_read_lock();
593 		nsp = task_nsproxy(task);
594 		if (nsp) {
595 			ns = nsp->mnt_ns;
596 			if (ns)
597 				get_mnt_ns(ns);
598 		}
599 		rcu_read_unlock();
600 		if (ns && get_task_root(task, &root) == 0)
601 			ret = 0;
602 		put_task_struct(task);
603 	}
604 
605 	if (!ns)
606 		goto err;
607 	if (ret)
608 		goto err_put_ns;
609 
610 	ret = -ENOMEM;
611 	p = kmalloc(sizeof(struct proc_mounts), GFP_KERNEL);
612 	if (!p)
613 		goto err_put_path;
614 
615 	file->private_data = &p->m;
616 	ret = seq_open(file, op);
617 	if (ret)
618 		goto err_free;
619 
620 	p->m.private = p;
621 	p->ns = ns;
622 	p->root = root;
623 	p->event = ns->event;
624 
625 	return 0;
626 
627  err_free:
628 	kfree(p);
629  err_put_path:
630 	path_put(&root);
631  err_put_ns:
632 	put_mnt_ns(ns);
633  err:
634 	return ret;
635 }
636 
637 static int mounts_release(struct inode *inode, struct file *file)
638 {
639 	struct proc_mounts *p = file->private_data;
640 	path_put(&p->root);
641 	put_mnt_ns(p->ns);
642 	return seq_release(inode, file);
643 }
644 
645 static unsigned mounts_poll(struct file *file, poll_table *wait)
646 {
647 	struct proc_mounts *p = file->private_data;
648 	unsigned res = POLLIN | POLLRDNORM;
649 
650 	poll_wait(file, &p->ns->poll, wait);
651 	if (mnt_had_events(p))
652 		res |= POLLERR | POLLPRI;
653 
654 	return res;
655 }
656 
657 static int mounts_open(struct inode *inode, struct file *file)
658 {
659 	return mounts_open_common(inode, file, &mounts_op);
660 }
661 
662 static const struct file_operations proc_mounts_operations = {
663 	.open		= mounts_open,
664 	.read		= seq_read,
665 	.llseek		= seq_lseek,
666 	.release	= mounts_release,
667 	.poll		= mounts_poll,
668 };
669 
670 static int mountinfo_open(struct inode *inode, struct file *file)
671 {
672 	return mounts_open_common(inode, file, &mountinfo_op);
673 }
674 
675 static const struct file_operations proc_mountinfo_operations = {
676 	.open		= mountinfo_open,
677 	.read		= seq_read,
678 	.llseek		= seq_lseek,
679 	.release	= mounts_release,
680 	.poll		= mounts_poll,
681 };
682 
683 static int mountstats_open(struct inode *inode, struct file *file)
684 {
685 	return mounts_open_common(inode, file, &mountstats_op);
686 }
687 
688 static const struct file_operations proc_mountstats_operations = {
689 	.open		= mountstats_open,
690 	.read		= seq_read,
691 	.llseek		= seq_lseek,
692 	.release	= mounts_release,
693 };
694 
695 #define PROC_BLOCK_SIZE	(3*1024)		/* 4K page size but our output routines use some slack for overruns */
696 
697 static ssize_t proc_info_read(struct file * file, char __user * buf,
698 			  size_t count, loff_t *ppos)
699 {
700 	struct inode * inode = file->f_path.dentry->d_inode;
701 	unsigned long page;
702 	ssize_t length;
703 	struct task_struct *task = get_proc_task(inode);
704 
705 	length = -ESRCH;
706 	if (!task)
707 		goto out_no_task;
708 
709 	if (count > PROC_BLOCK_SIZE)
710 		count = PROC_BLOCK_SIZE;
711 
712 	length = -ENOMEM;
713 	if (!(page = __get_free_page(GFP_TEMPORARY)))
714 		goto out;
715 
716 	length = PROC_I(inode)->op.proc_read(task, (char*)page);
717 
718 	if (length >= 0)
719 		length = simple_read_from_buffer(buf, count, ppos, (char *)page, length);
720 	free_page(page);
721 out:
722 	put_task_struct(task);
723 out_no_task:
724 	return length;
725 }
726 
727 static const struct file_operations proc_info_file_operations = {
728 	.read		= proc_info_read,
729 	.llseek		= generic_file_llseek,
730 };
731 
732 static int proc_single_show(struct seq_file *m, void *v)
733 {
734 	struct inode *inode = m->private;
735 	struct pid_namespace *ns;
736 	struct pid *pid;
737 	struct task_struct *task;
738 	int ret;
739 
740 	ns = inode->i_sb->s_fs_info;
741 	pid = proc_pid(inode);
742 	task = get_pid_task(pid, PIDTYPE_PID);
743 	if (!task)
744 		return -ESRCH;
745 
746 	ret = PROC_I(inode)->op.proc_show(m, ns, pid, task);
747 
748 	put_task_struct(task);
749 	return ret;
750 }
751 
752 static int proc_single_open(struct inode *inode, struct file *filp)
753 {
754 	int ret;
755 	ret = single_open(filp, proc_single_show, NULL);
756 	if (!ret) {
757 		struct seq_file *m = filp->private_data;
758 
759 		m->private = inode;
760 	}
761 	return ret;
762 }
763 
764 static const struct file_operations proc_single_file_operations = {
765 	.open		= proc_single_open,
766 	.read		= seq_read,
767 	.llseek		= seq_lseek,
768 	.release	= single_release,
769 };
770 
771 static int mem_open(struct inode* inode, struct file* file)
772 {
773 	file->private_data = (void*)((long)current->self_exec_id);
774 	return 0;
775 }
776 
777 static ssize_t mem_read(struct file * file, char __user * buf,
778 			size_t count, loff_t *ppos)
779 {
780 	struct task_struct *task = get_proc_task(file->f_path.dentry->d_inode);
781 	char *page;
782 	unsigned long src = *ppos;
783 	int ret = -ESRCH;
784 	struct mm_struct *mm;
785 
786 	if (!task)
787 		goto out_no_task;
788 
789 	if (check_mem_permission(task))
790 		goto out;
791 
792 	ret = -ENOMEM;
793 	page = (char *)__get_free_page(GFP_TEMPORARY);
794 	if (!page)
795 		goto out;
796 
797 	ret = 0;
798 
799 	mm = get_task_mm(task);
800 	if (!mm)
801 		goto out_free;
802 
803 	ret = -EIO;
804 
805 	if (file->private_data != (void*)((long)current->self_exec_id))
806 		goto out_put;
807 
808 	ret = 0;
809 
810 	while (count > 0) {
811 		int this_len, retval;
812 
813 		this_len = (count > PAGE_SIZE) ? PAGE_SIZE : count;
814 		retval = access_process_vm(task, src, page, this_len, 0);
815 		if (!retval || check_mem_permission(task)) {
816 			if (!ret)
817 				ret = -EIO;
818 			break;
819 		}
820 
821 		if (copy_to_user(buf, page, retval)) {
822 			ret = -EFAULT;
823 			break;
824 		}
825 
826 		ret += retval;
827 		src += retval;
828 		buf += retval;
829 		count -= retval;
830 	}
831 	*ppos = src;
832 
833 out_put:
834 	mmput(mm);
835 out_free:
836 	free_page((unsigned long) page);
837 out:
838 	put_task_struct(task);
839 out_no_task:
840 	return ret;
841 }
842 
843 #define mem_write NULL
844 
845 #ifndef mem_write
846 /* This is a security hazard */
847 static ssize_t mem_write(struct file * file, const char __user *buf,
848 			 size_t count, loff_t *ppos)
849 {
850 	int copied;
851 	char *page;
852 	struct task_struct *task = get_proc_task(file->f_path.dentry->d_inode);
853 	unsigned long dst = *ppos;
854 
855 	copied = -ESRCH;
856 	if (!task)
857 		goto out_no_task;
858 
859 	if (check_mem_permission(task))
860 		goto out;
861 
862 	copied = -ENOMEM;
863 	page = (char *)__get_free_page(GFP_TEMPORARY);
864 	if (!page)
865 		goto out;
866 
867 	copied = 0;
868 	while (count > 0) {
869 		int this_len, retval;
870 
871 		this_len = (count > PAGE_SIZE) ? PAGE_SIZE : count;
872 		if (copy_from_user(page, buf, this_len)) {
873 			copied = -EFAULT;
874 			break;
875 		}
876 		retval = access_process_vm(task, dst, page, this_len, 1);
877 		if (!retval) {
878 			if (!copied)
879 				copied = -EIO;
880 			break;
881 		}
882 		copied += retval;
883 		buf += retval;
884 		dst += retval;
885 		count -= retval;
886 	}
887 	*ppos = dst;
888 	free_page((unsigned long) page);
889 out:
890 	put_task_struct(task);
891 out_no_task:
892 	return copied;
893 }
894 #endif
895 
896 loff_t mem_lseek(struct file *file, loff_t offset, int orig)
897 {
898 	switch (orig) {
899 	case 0:
900 		file->f_pos = offset;
901 		break;
902 	case 1:
903 		file->f_pos += offset;
904 		break;
905 	default:
906 		return -EINVAL;
907 	}
908 	force_successful_syscall_return();
909 	return file->f_pos;
910 }
911 
912 static const struct file_operations proc_mem_operations = {
913 	.llseek		= mem_lseek,
914 	.read		= mem_read,
915 	.write		= mem_write,
916 	.open		= mem_open,
917 };
918 
919 static ssize_t environ_read(struct file *file, char __user *buf,
920 			size_t count, loff_t *ppos)
921 {
922 	struct task_struct *task = get_proc_task(file->f_dentry->d_inode);
923 	char *page;
924 	unsigned long src = *ppos;
925 	int ret = -ESRCH;
926 	struct mm_struct *mm;
927 
928 	if (!task)
929 		goto out_no_task;
930 
931 	if (!ptrace_may_access(task, PTRACE_MODE_READ))
932 		goto out;
933 
934 	ret = -ENOMEM;
935 	page = (char *)__get_free_page(GFP_TEMPORARY);
936 	if (!page)
937 		goto out;
938 
939 	ret = 0;
940 
941 	mm = get_task_mm(task);
942 	if (!mm)
943 		goto out_free;
944 
945 	while (count > 0) {
946 		int this_len, retval, max_len;
947 
948 		this_len = mm->env_end - (mm->env_start + src);
949 
950 		if (this_len <= 0)
951 			break;
952 
953 		max_len = (count > PAGE_SIZE) ? PAGE_SIZE : count;
954 		this_len = (this_len > max_len) ? max_len : this_len;
955 
956 		retval = access_process_vm(task, (mm->env_start + src),
957 			page, this_len, 0);
958 
959 		if (retval <= 0) {
960 			ret = retval;
961 			break;
962 		}
963 
964 		if (copy_to_user(buf, page, retval)) {
965 			ret = -EFAULT;
966 			break;
967 		}
968 
969 		ret += retval;
970 		src += retval;
971 		buf += retval;
972 		count -= retval;
973 	}
974 	*ppos = src;
975 
976 	mmput(mm);
977 out_free:
978 	free_page((unsigned long) page);
979 out:
980 	put_task_struct(task);
981 out_no_task:
982 	return ret;
983 }
984 
985 static const struct file_operations proc_environ_operations = {
986 	.read		= environ_read,
987 	.llseek		= generic_file_llseek,
988 };
989 
990 static ssize_t oom_adjust_read(struct file *file, char __user *buf,
991 				size_t count, loff_t *ppos)
992 {
993 	struct task_struct *task = get_proc_task(file->f_path.dentry->d_inode);
994 	char buffer[PROC_NUMBUF];
995 	size_t len;
996 	int oom_adjust = OOM_DISABLE;
997 	unsigned long flags;
998 
999 	if (!task)
1000 		return -ESRCH;
1001 
1002 	if (lock_task_sighand(task, &flags)) {
1003 		oom_adjust = task->signal->oom_adj;
1004 		unlock_task_sighand(task, &flags);
1005 	}
1006 
1007 	put_task_struct(task);
1008 
1009 	len = snprintf(buffer, sizeof(buffer), "%i\n", oom_adjust);
1010 
1011 	return simple_read_from_buffer(buf, count, ppos, buffer, len);
1012 }
1013 
1014 static ssize_t oom_adjust_write(struct file *file, const char __user *buf,
1015 				size_t count, loff_t *ppos)
1016 {
1017 	struct task_struct *task;
1018 	char buffer[PROC_NUMBUF];
1019 	long oom_adjust;
1020 	unsigned long flags;
1021 	int err;
1022 
1023 	memset(buffer, 0, sizeof(buffer));
1024 	if (count > sizeof(buffer) - 1)
1025 		count = sizeof(buffer) - 1;
1026 	if (copy_from_user(buffer, buf, count))
1027 		return -EFAULT;
1028 
1029 	err = strict_strtol(strstrip(buffer), 0, &oom_adjust);
1030 	if (err)
1031 		return -EINVAL;
1032 	if ((oom_adjust < OOM_ADJUST_MIN || oom_adjust > OOM_ADJUST_MAX) &&
1033 	     oom_adjust != OOM_DISABLE)
1034 		return -EINVAL;
1035 
1036 	task = get_proc_task(file->f_path.dentry->d_inode);
1037 	if (!task)
1038 		return -ESRCH;
1039 	if (!lock_task_sighand(task, &flags)) {
1040 		put_task_struct(task);
1041 		return -ESRCH;
1042 	}
1043 
1044 	if (oom_adjust < task->signal->oom_adj && !capable(CAP_SYS_RESOURCE)) {
1045 		unlock_task_sighand(task, &flags);
1046 		put_task_struct(task);
1047 		return -EACCES;
1048 	}
1049 
1050 	/*
1051 	 * Warn that /proc/pid/oom_adj is deprecated, see
1052 	 * Documentation/feature-removal-schedule.txt.
1053 	 */
1054 	printk_once(KERN_WARNING "%s (%d): /proc/%d/oom_adj is deprecated, "
1055 			"please use /proc/%d/oom_score_adj instead.\n",
1056 			current->comm, task_pid_nr(current),
1057 			task_pid_nr(task), task_pid_nr(task));
1058 	task->signal->oom_adj = oom_adjust;
1059 	/*
1060 	 * Scale /proc/pid/oom_score_adj appropriately ensuring that a maximum
1061 	 * value is always attainable.
1062 	 */
1063 	if (task->signal->oom_adj == OOM_ADJUST_MAX)
1064 		task->signal->oom_score_adj = OOM_SCORE_ADJ_MAX;
1065 	else
1066 		task->signal->oom_score_adj = (oom_adjust * OOM_SCORE_ADJ_MAX) /
1067 								-OOM_DISABLE;
1068 	unlock_task_sighand(task, &flags);
1069 	put_task_struct(task);
1070 
1071 	return count;
1072 }
1073 
1074 static const struct file_operations proc_oom_adjust_operations = {
1075 	.read		= oom_adjust_read,
1076 	.write		= oom_adjust_write,
1077 	.llseek		= generic_file_llseek,
1078 };
1079 
1080 static ssize_t oom_score_adj_read(struct file *file, char __user *buf,
1081 					size_t count, loff_t *ppos)
1082 {
1083 	struct task_struct *task = get_proc_task(file->f_path.dentry->d_inode);
1084 	char buffer[PROC_NUMBUF];
1085 	int oom_score_adj = OOM_SCORE_ADJ_MIN;
1086 	unsigned long flags;
1087 	size_t len;
1088 
1089 	if (!task)
1090 		return -ESRCH;
1091 	if (lock_task_sighand(task, &flags)) {
1092 		oom_score_adj = task->signal->oom_score_adj;
1093 		unlock_task_sighand(task, &flags);
1094 	}
1095 	put_task_struct(task);
1096 	len = snprintf(buffer, sizeof(buffer), "%d\n", oom_score_adj);
1097 	return simple_read_from_buffer(buf, count, ppos, buffer, len);
1098 }
1099 
1100 static ssize_t oom_score_adj_write(struct file *file, const char __user *buf,
1101 					size_t count, loff_t *ppos)
1102 {
1103 	struct task_struct *task;
1104 	char buffer[PROC_NUMBUF];
1105 	unsigned long flags;
1106 	long oom_score_adj;
1107 	int err;
1108 
1109 	memset(buffer, 0, sizeof(buffer));
1110 	if (count > sizeof(buffer) - 1)
1111 		count = sizeof(buffer) - 1;
1112 	if (copy_from_user(buffer, buf, count))
1113 		return -EFAULT;
1114 
1115 	err = strict_strtol(strstrip(buffer), 0, &oom_score_adj);
1116 	if (err)
1117 		return -EINVAL;
1118 	if (oom_score_adj < OOM_SCORE_ADJ_MIN ||
1119 			oom_score_adj > OOM_SCORE_ADJ_MAX)
1120 		return -EINVAL;
1121 
1122 	task = get_proc_task(file->f_path.dentry->d_inode);
1123 	if (!task)
1124 		return -ESRCH;
1125 	if (!lock_task_sighand(task, &flags)) {
1126 		put_task_struct(task);
1127 		return -ESRCH;
1128 	}
1129 	if (oom_score_adj < task->signal->oom_score_adj &&
1130 			!capable(CAP_SYS_RESOURCE)) {
1131 		unlock_task_sighand(task, &flags);
1132 		put_task_struct(task);
1133 		return -EACCES;
1134 	}
1135 
1136 	task->signal->oom_score_adj = oom_score_adj;
1137 	/*
1138 	 * Scale /proc/pid/oom_adj appropriately ensuring that OOM_DISABLE is
1139 	 * always attainable.
1140 	 */
1141 	if (task->signal->oom_score_adj == OOM_SCORE_ADJ_MIN)
1142 		task->signal->oom_adj = OOM_DISABLE;
1143 	else
1144 		task->signal->oom_adj = (oom_score_adj * OOM_ADJUST_MAX) /
1145 							OOM_SCORE_ADJ_MAX;
1146 	unlock_task_sighand(task, &flags);
1147 	put_task_struct(task);
1148 	return count;
1149 }
1150 
1151 static const struct file_operations proc_oom_score_adj_operations = {
1152 	.read		= oom_score_adj_read,
1153 	.write		= oom_score_adj_write,
1154 };
1155 
1156 #ifdef CONFIG_AUDITSYSCALL
1157 #define TMPBUFLEN 21
1158 static ssize_t proc_loginuid_read(struct file * file, char __user * buf,
1159 				  size_t count, loff_t *ppos)
1160 {
1161 	struct inode * inode = file->f_path.dentry->d_inode;
1162 	struct task_struct *task = get_proc_task(inode);
1163 	ssize_t length;
1164 	char tmpbuf[TMPBUFLEN];
1165 
1166 	if (!task)
1167 		return -ESRCH;
1168 	length = scnprintf(tmpbuf, TMPBUFLEN, "%u",
1169 				audit_get_loginuid(task));
1170 	put_task_struct(task);
1171 	return simple_read_from_buffer(buf, count, ppos, tmpbuf, length);
1172 }
1173 
1174 static ssize_t proc_loginuid_write(struct file * file, const char __user * buf,
1175 				   size_t count, loff_t *ppos)
1176 {
1177 	struct inode * inode = file->f_path.dentry->d_inode;
1178 	char *page, *tmp;
1179 	ssize_t length;
1180 	uid_t loginuid;
1181 
1182 	if (!capable(CAP_AUDIT_CONTROL))
1183 		return -EPERM;
1184 
1185 	rcu_read_lock();
1186 	if (current != pid_task(proc_pid(inode), PIDTYPE_PID)) {
1187 		rcu_read_unlock();
1188 		return -EPERM;
1189 	}
1190 	rcu_read_unlock();
1191 
1192 	if (count >= PAGE_SIZE)
1193 		count = PAGE_SIZE - 1;
1194 
1195 	if (*ppos != 0) {
1196 		/* No partial writes. */
1197 		return -EINVAL;
1198 	}
1199 	page = (char*)__get_free_page(GFP_TEMPORARY);
1200 	if (!page)
1201 		return -ENOMEM;
1202 	length = -EFAULT;
1203 	if (copy_from_user(page, buf, count))
1204 		goto out_free_page;
1205 
1206 	page[count] = '\0';
1207 	loginuid = simple_strtoul(page, &tmp, 10);
1208 	if (tmp == page) {
1209 		length = -EINVAL;
1210 		goto out_free_page;
1211 
1212 	}
1213 	length = audit_set_loginuid(current, loginuid);
1214 	if (likely(length == 0))
1215 		length = count;
1216 
1217 out_free_page:
1218 	free_page((unsigned long) page);
1219 	return length;
1220 }
1221 
1222 static const struct file_operations proc_loginuid_operations = {
1223 	.read		= proc_loginuid_read,
1224 	.write		= proc_loginuid_write,
1225 	.llseek		= generic_file_llseek,
1226 };
1227 
1228 static ssize_t proc_sessionid_read(struct file * file, char __user * buf,
1229 				  size_t count, loff_t *ppos)
1230 {
1231 	struct inode * inode = file->f_path.dentry->d_inode;
1232 	struct task_struct *task = get_proc_task(inode);
1233 	ssize_t length;
1234 	char tmpbuf[TMPBUFLEN];
1235 
1236 	if (!task)
1237 		return -ESRCH;
1238 	length = scnprintf(tmpbuf, TMPBUFLEN, "%u",
1239 				audit_get_sessionid(task));
1240 	put_task_struct(task);
1241 	return simple_read_from_buffer(buf, count, ppos, tmpbuf, length);
1242 }
1243 
1244 static const struct file_operations proc_sessionid_operations = {
1245 	.read		= proc_sessionid_read,
1246 	.llseek		= generic_file_llseek,
1247 };
1248 #endif
1249 
1250 #ifdef CONFIG_FAULT_INJECTION
1251 static ssize_t proc_fault_inject_read(struct file * file, char __user * buf,
1252 				      size_t count, loff_t *ppos)
1253 {
1254 	struct task_struct *task = get_proc_task(file->f_dentry->d_inode);
1255 	char buffer[PROC_NUMBUF];
1256 	size_t len;
1257 	int make_it_fail;
1258 
1259 	if (!task)
1260 		return -ESRCH;
1261 	make_it_fail = task->make_it_fail;
1262 	put_task_struct(task);
1263 
1264 	len = snprintf(buffer, sizeof(buffer), "%i\n", make_it_fail);
1265 
1266 	return simple_read_from_buffer(buf, count, ppos, buffer, len);
1267 }
1268 
1269 static ssize_t proc_fault_inject_write(struct file * file,
1270 			const char __user * buf, size_t count, loff_t *ppos)
1271 {
1272 	struct task_struct *task;
1273 	char buffer[PROC_NUMBUF], *end;
1274 	int make_it_fail;
1275 
1276 	if (!capable(CAP_SYS_RESOURCE))
1277 		return -EPERM;
1278 	memset(buffer, 0, sizeof(buffer));
1279 	if (count > sizeof(buffer) - 1)
1280 		count = sizeof(buffer) - 1;
1281 	if (copy_from_user(buffer, buf, count))
1282 		return -EFAULT;
1283 	make_it_fail = simple_strtol(strstrip(buffer), &end, 0);
1284 	if (*end)
1285 		return -EINVAL;
1286 	task = get_proc_task(file->f_dentry->d_inode);
1287 	if (!task)
1288 		return -ESRCH;
1289 	task->make_it_fail = make_it_fail;
1290 	put_task_struct(task);
1291 
1292 	return count;
1293 }
1294 
1295 static const struct file_operations proc_fault_inject_operations = {
1296 	.read		= proc_fault_inject_read,
1297 	.write		= proc_fault_inject_write,
1298 	.llseek		= generic_file_llseek,
1299 };
1300 #endif
1301 
1302 
1303 #ifdef CONFIG_SCHED_DEBUG
1304 /*
1305  * Print out various scheduling related per-task fields:
1306  */
1307 static int sched_show(struct seq_file *m, void *v)
1308 {
1309 	struct inode *inode = m->private;
1310 	struct task_struct *p;
1311 
1312 	p = get_proc_task(inode);
1313 	if (!p)
1314 		return -ESRCH;
1315 	proc_sched_show_task(p, m);
1316 
1317 	put_task_struct(p);
1318 
1319 	return 0;
1320 }
1321 
1322 static ssize_t
1323 sched_write(struct file *file, const char __user *buf,
1324 	    size_t count, loff_t *offset)
1325 {
1326 	struct inode *inode = file->f_path.dentry->d_inode;
1327 	struct task_struct *p;
1328 
1329 	p = get_proc_task(inode);
1330 	if (!p)
1331 		return -ESRCH;
1332 	proc_sched_set_task(p);
1333 
1334 	put_task_struct(p);
1335 
1336 	return count;
1337 }
1338 
1339 static int sched_open(struct inode *inode, struct file *filp)
1340 {
1341 	int ret;
1342 
1343 	ret = single_open(filp, sched_show, NULL);
1344 	if (!ret) {
1345 		struct seq_file *m = filp->private_data;
1346 
1347 		m->private = inode;
1348 	}
1349 	return ret;
1350 }
1351 
1352 static const struct file_operations proc_pid_sched_operations = {
1353 	.open		= sched_open,
1354 	.read		= seq_read,
1355 	.write		= sched_write,
1356 	.llseek		= seq_lseek,
1357 	.release	= single_release,
1358 };
1359 
1360 #endif
1361 
1362 static ssize_t comm_write(struct file *file, const char __user *buf,
1363 				size_t count, loff_t *offset)
1364 {
1365 	struct inode *inode = file->f_path.dentry->d_inode;
1366 	struct task_struct *p;
1367 	char buffer[TASK_COMM_LEN];
1368 
1369 	memset(buffer, 0, sizeof(buffer));
1370 	if (count > sizeof(buffer) - 1)
1371 		count = sizeof(buffer) - 1;
1372 	if (copy_from_user(buffer, buf, count))
1373 		return -EFAULT;
1374 
1375 	p = get_proc_task(inode);
1376 	if (!p)
1377 		return -ESRCH;
1378 
1379 	if (same_thread_group(current, p))
1380 		set_task_comm(p, buffer);
1381 	else
1382 		count = -EINVAL;
1383 
1384 	put_task_struct(p);
1385 
1386 	return count;
1387 }
1388 
1389 static int comm_show(struct seq_file *m, void *v)
1390 {
1391 	struct inode *inode = m->private;
1392 	struct task_struct *p;
1393 
1394 	p = get_proc_task(inode);
1395 	if (!p)
1396 		return -ESRCH;
1397 
1398 	task_lock(p);
1399 	seq_printf(m, "%s\n", p->comm);
1400 	task_unlock(p);
1401 
1402 	put_task_struct(p);
1403 
1404 	return 0;
1405 }
1406 
1407 static int comm_open(struct inode *inode, struct file *filp)
1408 {
1409 	int ret;
1410 
1411 	ret = single_open(filp, comm_show, NULL);
1412 	if (!ret) {
1413 		struct seq_file *m = filp->private_data;
1414 
1415 		m->private = inode;
1416 	}
1417 	return ret;
1418 }
1419 
1420 static const struct file_operations proc_pid_set_comm_operations = {
1421 	.open		= comm_open,
1422 	.read		= seq_read,
1423 	.write		= comm_write,
1424 	.llseek		= seq_lseek,
1425 	.release	= single_release,
1426 };
1427 
1428 /*
1429  * We added or removed a vma mapping the executable. The vmas are only mapped
1430  * during exec and are not mapped with the mmap system call.
1431  * Callers must hold down_write() on the mm's mmap_sem for these
1432  */
1433 void added_exe_file_vma(struct mm_struct *mm)
1434 {
1435 	mm->num_exe_file_vmas++;
1436 }
1437 
1438 void removed_exe_file_vma(struct mm_struct *mm)
1439 {
1440 	mm->num_exe_file_vmas--;
1441 	if ((mm->num_exe_file_vmas == 0) && mm->exe_file){
1442 		fput(mm->exe_file);
1443 		mm->exe_file = NULL;
1444 	}
1445 
1446 }
1447 
1448 void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
1449 {
1450 	if (new_exe_file)
1451 		get_file(new_exe_file);
1452 	if (mm->exe_file)
1453 		fput(mm->exe_file);
1454 	mm->exe_file = new_exe_file;
1455 	mm->num_exe_file_vmas = 0;
1456 }
1457 
1458 struct file *get_mm_exe_file(struct mm_struct *mm)
1459 {
1460 	struct file *exe_file;
1461 
1462 	/* We need mmap_sem to protect against races with removal of
1463 	 * VM_EXECUTABLE vmas */
1464 	down_read(&mm->mmap_sem);
1465 	exe_file = mm->exe_file;
1466 	if (exe_file)
1467 		get_file(exe_file);
1468 	up_read(&mm->mmap_sem);
1469 	return exe_file;
1470 }
1471 
1472 void dup_mm_exe_file(struct mm_struct *oldmm, struct mm_struct *newmm)
1473 {
1474 	/* It's safe to write the exe_file pointer without exe_file_lock because
1475 	 * this is called during fork when the task is not yet in /proc */
1476 	newmm->exe_file = get_mm_exe_file(oldmm);
1477 }
1478 
1479 static int proc_exe_link(struct inode *inode, struct path *exe_path)
1480 {
1481 	struct task_struct *task;
1482 	struct mm_struct *mm;
1483 	struct file *exe_file;
1484 
1485 	task = get_proc_task(inode);
1486 	if (!task)
1487 		return -ENOENT;
1488 	mm = get_task_mm(task);
1489 	put_task_struct(task);
1490 	if (!mm)
1491 		return -ENOENT;
1492 	exe_file = get_mm_exe_file(mm);
1493 	mmput(mm);
1494 	if (exe_file) {
1495 		*exe_path = exe_file->f_path;
1496 		path_get(&exe_file->f_path);
1497 		fput(exe_file);
1498 		return 0;
1499 	} else
1500 		return -ENOENT;
1501 }
1502 
1503 static void *proc_pid_follow_link(struct dentry *dentry, struct nameidata *nd)
1504 {
1505 	struct inode *inode = dentry->d_inode;
1506 	int error = -EACCES;
1507 
1508 	/* We don't need a base pointer in the /proc filesystem */
1509 	path_put(&nd->path);
1510 
1511 	/* Are we allowed to snoop on the tasks file descriptors? */
1512 	if (!proc_fd_access_allowed(inode))
1513 		goto out;
1514 
1515 	error = PROC_I(inode)->op.proc_get_link(inode, &nd->path);
1516 out:
1517 	return ERR_PTR(error);
1518 }
1519 
1520 static int do_proc_readlink(struct path *path, char __user *buffer, int buflen)
1521 {
1522 	char *tmp = (char*)__get_free_page(GFP_TEMPORARY);
1523 	char *pathname;
1524 	int len;
1525 
1526 	if (!tmp)
1527 		return -ENOMEM;
1528 
1529 	pathname = d_path_with_unreachable(path, tmp, PAGE_SIZE);
1530 	len = PTR_ERR(pathname);
1531 	if (IS_ERR(pathname))
1532 		goto out;
1533 	len = tmp + PAGE_SIZE - 1 - pathname;
1534 
1535 	if (len > buflen)
1536 		len = buflen;
1537 	if (copy_to_user(buffer, pathname, len))
1538 		len = -EFAULT;
1539  out:
1540 	free_page((unsigned long)tmp);
1541 	return len;
1542 }
1543 
1544 static int proc_pid_readlink(struct dentry * dentry, char __user * buffer, int buflen)
1545 {
1546 	int error = -EACCES;
1547 	struct inode *inode = dentry->d_inode;
1548 	struct path path;
1549 
1550 	/* Are we allowed to snoop on the tasks file descriptors? */
1551 	if (!proc_fd_access_allowed(inode))
1552 		goto out;
1553 
1554 	error = PROC_I(inode)->op.proc_get_link(inode, &path);
1555 	if (error)
1556 		goto out;
1557 
1558 	error = do_proc_readlink(&path, buffer, buflen);
1559 	path_put(&path);
1560 out:
1561 	return error;
1562 }
1563 
1564 static const struct inode_operations proc_pid_link_inode_operations = {
1565 	.readlink	= proc_pid_readlink,
1566 	.follow_link	= proc_pid_follow_link,
1567 	.setattr	= proc_setattr,
1568 };
1569 
1570 
1571 /* building an inode */
1572 
1573 static int task_dumpable(struct task_struct *task)
1574 {
1575 	int dumpable = 0;
1576 	struct mm_struct *mm;
1577 
1578 	task_lock(task);
1579 	mm = task->mm;
1580 	if (mm)
1581 		dumpable = get_dumpable(mm);
1582 	task_unlock(task);
1583 	if(dumpable == 1)
1584 		return 1;
1585 	return 0;
1586 }
1587 
1588 
1589 static struct inode *proc_pid_make_inode(struct super_block * sb, struct task_struct *task)
1590 {
1591 	struct inode * inode;
1592 	struct proc_inode *ei;
1593 	const struct cred *cred;
1594 
1595 	/* We need a new inode */
1596 
1597 	inode = new_inode(sb);
1598 	if (!inode)
1599 		goto out;
1600 
1601 	/* Common stuff */
1602 	ei = PROC_I(inode);
1603 	inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
1604 	inode->i_op = &proc_def_inode_operations;
1605 
1606 	/*
1607 	 * grab the reference to task.
1608 	 */
1609 	ei->pid = get_task_pid(task, PIDTYPE_PID);
1610 	if (!ei->pid)
1611 		goto out_unlock;
1612 
1613 	if (task_dumpable(task)) {
1614 		rcu_read_lock();
1615 		cred = __task_cred(task);
1616 		inode->i_uid = cred->euid;
1617 		inode->i_gid = cred->egid;
1618 		rcu_read_unlock();
1619 	}
1620 	security_task_to_inode(task, inode);
1621 
1622 out:
1623 	return inode;
1624 
1625 out_unlock:
1626 	iput(inode);
1627 	return NULL;
1628 }
1629 
1630 static int pid_getattr(struct vfsmount *mnt, struct dentry *dentry, struct kstat *stat)
1631 {
1632 	struct inode *inode = dentry->d_inode;
1633 	struct task_struct *task;
1634 	const struct cred *cred;
1635 
1636 	generic_fillattr(inode, stat);
1637 
1638 	rcu_read_lock();
1639 	stat->uid = 0;
1640 	stat->gid = 0;
1641 	task = pid_task(proc_pid(inode), PIDTYPE_PID);
1642 	if (task) {
1643 		if ((inode->i_mode == (S_IFDIR|S_IRUGO|S_IXUGO)) ||
1644 		    task_dumpable(task)) {
1645 			cred = __task_cred(task);
1646 			stat->uid = cred->euid;
1647 			stat->gid = cred->egid;
1648 		}
1649 	}
1650 	rcu_read_unlock();
1651 	return 0;
1652 }
1653 
1654 /* dentry stuff */
1655 
1656 /*
1657  *	Exceptional case: normally we are not allowed to unhash a busy
1658  * directory. In this case, however, we can do it - no aliasing problems
1659  * due to the way we treat inodes.
1660  *
1661  * Rewrite the inode's ownerships here because the owning task may have
1662  * performed a setuid(), etc.
1663  *
1664  * Before the /proc/pid/status file was created the only way to read
1665  * the effective uid of a /process was to stat /proc/pid.  Reading
1666  * /proc/pid/status is slow enough that procps and other packages
1667  * kept stating /proc/pid.  To keep the rules in /proc simple I have
1668  * made this apply to all per process world readable and executable
1669  * directories.
1670  */
1671 static int pid_revalidate(struct dentry *dentry, struct nameidata *nd)
1672 {
1673 	struct inode *inode = dentry->d_inode;
1674 	struct task_struct *task = get_proc_task(inode);
1675 	const struct cred *cred;
1676 
1677 	if (task) {
1678 		if ((inode->i_mode == (S_IFDIR|S_IRUGO|S_IXUGO)) ||
1679 		    task_dumpable(task)) {
1680 			rcu_read_lock();
1681 			cred = __task_cred(task);
1682 			inode->i_uid = cred->euid;
1683 			inode->i_gid = cred->egid;
1684 			rcu_read_unlock();
1685 		} else {
1686 			inode->i_uid = 0;
1687 			inode->i_gid = 0;
1688 		}
1689 		inode->i_mode &= ~(S_ISUID | S_ISGID);
1690 		security_task_to_inode(task, inode);
1691 		put_task_struct(task);
1692 		return 1;
1693 	}
1694 	d_drop(dentry);
1695 	return 0;
1696 }
1697 
1698 static int pid_delete_dentry(struct dentry * dentry)
1699 {
1700 	/* Is the task we represent dead?
1701 	 * If so, then don't put the dentry on the lru list,
1702 	 * kill it immediately.
1703 	 */
1704 	return !proc_pid(dentry->d_inode)->tasks[PIDTYPE_PID].first;
1705 }
1706 
1707 static const struct dentry_operations pid_dentry_operations =
1708 {
1709 	.d_revalidate	= pid_revalidate,
1710 	.d_delete	= pid_delete_dentry,
1711 };
1712 
1713 /* Lookups */
1714 
1715 typedef struct dentry *instantiate_t(struct inode *, struct dentry *,
1716 				struct task_struct *, const void *);
1717 
1718 /*
1719  * Fill a directory entry.
1720  *
1721  * If possible create the dcache entry and derive our inode number and
1722  * file type from dcache entry.
1723  *
1724  * Since all of the proc inode numbers are dynamically generated, the inode
1725  * numbers do not exist until the inode is cache.  This means creating the
1726  * the dcache entry in readdir is necessary to keep the inode numbers
1727  * reported by readdir in sync with the inode numbers reported
1728  * by stat.
1729  */
1730 static int proc_fill_cache(struct file *filp, void *dirent, filldir_t filldir,
1731 	char *name, int len,
1732 	instantiate_t instantiate, struct task_struct *task, const void *ptr)
1733 {
1734 	struct dentry *child, *dir = filp->f_path.dentry;
1735 	struct inode *inode;
1736 	struct qstr qname;
1737 	ino_t ino = 0;
1738 	unsigned type = DT_UNKNOWN;
1739 
1740 	qname.name = name;
1741 	qname.len  = len;
1742 	qname.hash = full_name_hash(name, len);
1743 
1744 	child = d_lookup(dir, &qname);
1745 	if (!child) {
1746 		struct dentry *new;
1747 		new = d_alloc(dir, &qname);
1748 		if (new) {
1749 			child = instantiate(dir->d_inode, new, task, ptr);
1750 			if (child)
1751 				dput(new);
1752 			else
1753 				child = new;
1754 		}
1755 	}
1756 	if (!child || IS_ERR(child) || !child->d_inode)
1757 		goto end_instantiate;
1758 	inode = child->d_inode;
1759 	if (inode) {
1760 		ino = inode->i_ino;
1761 		type = inode->i_mode >> 12;
1762 	}
1763 	dput(child);
1764 end_instantiate:
1765 	if (!ino)
1766 		ino = find_inode_number(dir, &qname);
1767 	if (!ino)
1768 		ino = 1;
1769 	return filldir(dirent, name, len, filp->f_pos, ino, type);
1770 }
1771 
1772 static unsigned name_to_int(struct dentry *dentry)
1773 {
1774 	const char *name = dentry->d_name.name;
1775 	int len = dentry->d_name.len;
1776 	unsigned n = 0;
1777 
1778 	if (len > 1 && *name == '0')
1779 		goto out;
1780 	while (len-- > 0) {
1781 		unsigned c = *name++ - '0';
1782 		if (c > 9)
1783 			goto out;
1784 		if (n >= (~0U-9)/10)
1785 			goto out;
1786 		n *= 10;
1787 		n += c;
1788 	}
1789 	return n;
1790 out:
1791 	return ~0U;
1792 }
1793 
1794 #define PROC_FDINFO_MAX 64
1795 
1796 static int proc_fd_info(struct inode *inode, struct path *path, char *info)
1797 {
1798 	struct task_struct *task = get_proc_task(inode);
1799 	struct files_struct *files = NULL;
1800 	struct file *file;
1801 	int fd = proc_fd(inode);
1802 
1803 	if (task) {
1804 		files = get_files_struct(task);
1805 		put_task_struct(task);
1806 	}
1807 	if (files) {
1808 		/*
1809 		 * We are not taking a ref to the file structure, so we must
1810 		 * hold ->file_lock.
1811 		 */
1812 		spin_lock(&files->file_lock);
1813 		file = fcheck_files(files, fd);
1814 		if (file) {
1815 			if (path) {
1816 				*path = file->f_path;
1817 				path_get(&file->f_path);
1818 			}
1819 			if (info)
1820 				snprintf(info, PROC_FDINFO_MAX,
1821 					 "pos:\t%lli\n"
1822 					 "flags:\t0%o\n",
1823 					 (long long) file->f_pos,
1824 					 file->f_flags);
1825 			spin_unlock(&files->file_lock);
1826 			put_files_struct(files);
1827 			return 0;
1828 		}
1829 		spin_unlock(&files->file_lock);
1830 		put_files_struct(files);
1831 	}
1832 	return -ENOENT;
1833 }
1834 
1835 static int proc_fd_link(struct inode *inode, struct path *path)
1836 {
1837 	return proc_fd_info(inode, path, NULL);
1838 }
1839 
1840 static int tid_fd_revalidate(struct dentry *dentry, struct nameidata *nd)
1841 {
1842 	struct inode *inode = dentry->d_inode;
1843 	struct task_struct *task = get_proc_task(inode);
1844 	int fd = proc_fd(inode);
1845 	struct files_struct *files;
1846 	const struct cred *cred;
1847 
1848 	if (task) {
1849 		files = get_files_struct(task);
1850 		if (files) {
1851 			rcu_read_lock();
1852 			if (fcheck_files(files, fd)) {
1853 				rcu_read_unlock();
1854 				put_files_struct(files);
1855 				if (task_dumpable(task)) {
1856 					rcu_read_lock();
1857 					cred = __task_cred(task);
1858 					inode->i_uid = cred->euid;
1859 					inode->i_gid = cred->egid;
1860 					rcu_read_unlock();
1861 				} else {
1862 					inode->i_uid = 0;
1863 					inode->i_gid = 0;
1864 				}
1865 				inode->i_mode &= ~(S_ISUID | S_ISGID);
1866 				security_task_to_inode(task, inode);
1867 				put_task_struct(task);
1868 				return 1;
1869 			}
1870 			rcu_read_unlock();
1871 			put_files_struct(files);
1872 		}
1873 		put_task_struct(task);
1874 	}
1875 	d_drop(dentry);
1876 	return 0;
1877 }
1878 
1879 static const struct dentry_operations tid_fd_dentry_operations =
1880 {
1881 	.d_revalidate	= tid_fd_revalidate,
1882 	.d_delete	= pid_delete_dentry,
1883 };
1884 
1885 static struct dentry *proc_fd_instantiate(struct inode *dir,
1886 	struct dentry *dentry, struct task_struct *task, const void *ptr)
1887 {
1888 	unsigned fd = *(const unsigned *)ptr;
1889 	struct file *file;
1890 	struct files_struct *files;
1891  	struct inode *inode;
1892  	struct proc_inode *ei;
1893 	struct dentry *error = ERR_PTR(-ENOENT);
1894 
1895 	inode = proc_pid_make_inode(dir->i_sb, task);
1896 	if (!inode)
1897 		goto out;
1898 	ei = PROC_I(inode);
1899 	ei->fd = fd;
1900 	files = get_files_struct(task);
1901 	if (!files)
1902 		goto out_iput;
1903 	inode->i_mode = S_IFLNK;
1904 
1905 	/*
1906 	 * We are not taking a ref to the file structure, so we must
1907 	 * hold ->file_lock.
1908 	 */
1909 	spin_lock(&files->file_lock);
1910 	file = fcheck_files(files, fd);
1911 	if (!file)
1912 		goto out_unlock;
1913 	if (file->f_mode & FMODE_READ)
1914 		inode->i_mode |= S_IRUSR | S_IXUSR;
1915 	if (file->f_mode & FMODE_WRITE)
1916 		inode->i_mode |= S_IWUSR | S_IXUSR;
1917 	spin_unlock(&files->file_lock);
1918 	put_files_struct(files);
1919 
1920 	inode->i_op = &proc_pid_link_inode_operations;
1921 	inode->i_size = 64;
1922 	ei->op.proc_get_link = proc_fd_link;
1923 	dentry->d_op = &tid_fd_dentry_operations;
1924 	d_add(dentry, inode);
1925 	/* Close the race of the process dying before we return the dentry */
1926 	if (tid_fd_revalidate(dentry, NULL))
1927 		error = NULL;
1928 
1929  out:
1930 	return error;
1931 out_unlock:
1932 	spin_unlock(&files->file_lock);
1933 	put_files_struct(files);
1934 out_iput:
1935 	iput(inode);
1936 	goto out;
1937 }
1938 
1939 static struct dentry *proc_lookupfd_common(struct inode *dir,
1940 					   struct dentry *dentry,
1941 					   instantiate_t instantiate)
1942 {
1943 	struct task_struct *task = get_proc_task(dir);
1944 	unsigned fd = name_to_int(dentry);
1945 	struct dentry *result = ERR_PTR(-ENOENT);
1946 
1947 	if (!task)
1948 		goto out_no_task;
1949 	if (fd == ~0U)
1950 		goto out;
1951 
1952 	result = instantiate(dir, dentry, task, &fd);
1953 out:
1954 	put_task_struct(task);
1955 out_no_task:
1956 	return result;
1957 }
1958 
1959 static int proc_readfd_common(struct file * filp, void * dirent,
1960 			      filldir_t filldir, instantiate_t instantiate)
1961 {
1962 	struct dentry *dentry = filp->f_path.dentry;
1963 	struct inode *inode = dentry->d_inode;
1964 	struct task_struct *p = get_proc_task(inode);
1965 	unsigned int fd, ino;
1966 	int retval;
1967 	struct files_struct * files;
1968 
1969 	retval = -ENOENT;
1970 	if (!p)
1971 		goto out_no_task;
1972 	retval = 0;
1973 
1974 	fd = filp->f_pos;
1975 	switch (fd) {
1976 		case 0:
1977 			if (filldir(dirent, ".", 1, 0, inode->i_ino, DT_DIR) < 0)
1978 				goto out;
1979 			filp->f_pos++;
1980 		case 1:
1981 			ino = parent_ino(dentry);
1982 			if (filldir(dirent, "..", 2, 1, ino, DT_DIR) < 0)
1983 				goto out;
1984 			filp->f_pos++;
1985 		default:
1986 			files = get_files_struct(p);
1987 			if (!files)
1988 				goto out;
1989 			rcu_read_lock();
1990 			for (fd = filp->f_pos-2;
1991 			     fd < files_fdtable(files)->max_fds;
1992 			     fd++, filp->f_pos++) {
1993 				char name[PROC_NUMBUF];
1994 				int len;
1995 
1996 				if (!fcheck_files(files, fd))
1997 					continue;
1998 				rcu_read_unlock();
1999 
2000 				len = snprintf(name, sizeof(name), "%d", fd);
2001 				if (proc_fill_cache(filp, dirent, filldir,
2002 						    name, len, instantiate,
2003 						    p, &fd) < 0) {
2004 					rcu_read_lock();
2005 					break;
2006 				}
2007 				rcu_read_lock();
2008 			}
2009 			rcu_read_unlock();
2010 			put_files_struct(files);
2011 	}
2012 out:
2013 	put_task_struct(p);
2014 out_no_task:
2015 	return retval;
2016 }
2017 
2018 static struct dentry *proc_lookupfd(struct inode *dir, struct dentry *dentry,
2019 				    struct nameidata *nd)
2020 {
2021 	return proc_lookupfd_common(dir, dentry, proc_fd_instantiate);
2022 }
2023 
2024 static int proc_readfd(struct file *filp, void *dirent, filldir_t filldir)
2025 {
2026 	return proc_readfd_common(filp, dirent, filldir, proc_fd_instantiate);
2027 }
2028 
2029 static ssize_t proc_fdinfo_read(struct file *file, char __user *buf,
2030 				      size_t len, loff_t *ppos)
2031 {
2032 	char tmp[PROC_FDINFO_MAX];
2033 	int err = proc_fd_info(file->f_path.dentry->d_inode, NULL, tmp);
2034 	if (!err)
2035 		err = simple_read_from_buffer(buf, len, ppos, tmp, strlen(tmp));
2036 	return err;
2037 }
2038 
2039 static const struct file_operations proc_fdinfo_file_operations = {
2040 	.open           = nonseekable_open,
2041 	.read		= proc_fdinfo_read,
2042 };
2043 
2044 static const struct file_operations proc_fd_operations = {
2045 	.read		= generic_read_dir,
2046 	.readdir	= proc_readfd,
2047 };
2048 
2049 /*
2050  * /proc/pid/fd needs a special permission handler so that a process can still
2051  * access /proc/self/fd after it has executed a setuid().
2052  */
2053 static int proc_fd_permission(struct inode *inode, int mask)
2054 {
2055 	int rv;
2056 
2057 	rv = generic_permission(inode, mask, NULL);
2058 	if (rv == 0)
2059 		return 0;
2060 	if (task_pid(current) == proc_pid(inode))
2061 		rv = 0;
2062 	return rv;
2063 }
2064 
2065 /*
2066  * proc directories can do almost nothing..
2067  */
2068 static const struct inode_operations proc_fd_inode_operations = {
2069 	.lookup		= proc_lookupfd,
2070 	.permission	= proc_fd_permission,
2071 	.setattr	= proc_setattr,
2072 };
2073 
2074 static struct dentry *proc_fdinfo_instantiate(struct inode *dir,
2075 	struct dentry *dentry, struct task_struct *task, const void *ptr)
2076 {
2077 	unsigned fd = *(unsigned *)ptr;
2078  	struct inode *inode;
2079  	struct proc_inode *ei;
2080 	struct dentry *error = ERR_PTR(-ENOENT);
2081 
2082 	inode = proc_pid_make_inode(dir->i_sb, task);
2083 	if (!inode)
2084 		goto out;
2085 	ei = PROC_I(inode);
2086 	ei->fd = fd;
2087 	inode->i_mode = S_IFREG | S_IRUSR;
2088 	inode->i_fop = &proc_fdinfo_file_operations;
2089 	dentry->d_op = &tid_fd_dentry_operations;
2090 	d_add(dentry, inode);
2091 	/* Close the race of the process dying before we return the dentry */
2092 	if (tid_fd_revalidate(dentry, NULL))
2093 		error = NULL;
2094 
2095  out:
2096 	return error;
2097 }
2098 
2099 static struct dentry *proc_lookupfdinfo(struct inode *dir,
2100 					struct dentry *dentry,
2101 					struct nameidata *nd)
2102 {
2103 	return proc_lookupfd_common(dir, dentry, proc_fdinfo_instantiate);
2104 }
2105 
2106 static int proc_readfdinfo(struct file *filp, void *dirent, filldir_t filldir)
2107 {
2108 	return proc_readfd_common(filp, dirent, filldir,
2109 				  proc_fdinfo_instantiate);
2110 }
2111 
2112 static const struct file_operations proc_fdinfo_operations = {
2113 	.read		= generic_read_dir,
2114 	.readdir	= proc_readfdinfo,
2115 };
2116 
2117 /*
2118  * proc directories can do almost nothing..
2119  */
2120 static const struct inode_operations proc_fdinfo_inode_operations = {
2121 	.lookup		= proc_lookupfdinfo,
2122 	.setattr	= proc_setattr,
2123 };
2124 
2125 
2126 static struct dentry *proc_pident_instantiate(struct inode *dir,
2127 	struct dentry *dentry, struct task_struct *task, const void *ptr)
2128 {
2129 	const struct pid_entry *p = ptr;
2130 	struct inode *inode;
2131 	struct proc_inode *ei;
2132 	struct dentry *error = ERR_PTR(-ENOENT);
2133 
2134 	inode = proc_pid_make_inode(dir->i_sb, task);
2135 	if (!inode)
2136 		goto out;
2137 
2138 	ei = PROC_I(inode);
2139 	inode->i_mode = p->mode;
2140 	if (S_ISDIR(inode->i_mode))
2141 		inode->i_nlink = 2;	/* Use getattr to fix if necessary */
2142 	if (p->iop)
2143 		inode->i_op = p->iop;
2144 	if (p->fop)
2145 		inode->i_fop = p->fop;
2146 	ei->op = p->op;
2147 	dentry->d_op = &pid_dentry_operations;
2148 	d_add(dentry, inode);
2149 	/* Close the race of the process dying before we return the dentry */
2150 	if (pid_revalidate(dentry, NULL))
2151 		error = NULL;
2152 out:
2153 	return error;
2154 }
2155 
2156 static struct dentry *proc_pident_lookup(struct inode *dir,
2157 					 struct dentry *dentry,
2158 					 const struct pid_entry *ents,
2159 					 unsigned int nents)
2160 {
2161 	struct dentry *error;
2162 	struct task_struct *task = get_proc_task(dir);
2163 	const struct pid_entry *p, *last;
2164 
2165 	error = ERR_PTR(-ENOENT);
2166 
2167 	if (!task)
2168 		goto out_no_task;
2169 
2170 	/*
2171 	 * Yes, it does not scale. And it should not. Don't add
2172 	 * new entries into /proc/<tgid>/ without very good reasons.
2173 	 */
2174 	last = &ents[nents - 1];
2175 	for (p = ents; p <= last; p++) {
2176 		if (p->len != dentry->d_name.len)
2177 			continue;
2178 		if (!memcmp(dentry->d_name.name, p->name, p->len))
2179 			break;
2180 	}
2181 	if (p > last)
2182 		goto out;
2183 
2184 	error = proc_pident_instantiate(dir, dentry, task, p);
2185 out:
2186 	put_task_struct(task);
2187 out_no_task:
2188 	return error;
2189 }
2190 
2191 static int proc_pident_fill_cache(struct file *filp, void *dirent,
2192 	filldir_t filldir, struct task_struct *task, const struct pid_entry *p)
2193 {
2194 	return proc_fill_cache(filp, dirent, filldir, p->name, p->len,
2195 				proc_pident_instantiate, task, p);
2196 }
2197 
2198 static int proc_pident_readdir(struct file *filp,
2199 		void *dirent, filldir_t filldir,
2200 		const struct pid_entry *ents, unsigned int nents)
2201 {
2202 	int i;
2203 	struct dentry *dentry = filp->f_path.dentry;
2204 	struct inode *inode = dentry->d_inode;
2205 	struct task_struct *task = get_proc_task(inode);
2206 	const struct pid_entry *p, *last;
2207 	ino_t ino;
2208 	int ret;
2209 
2210 	ret = -ENOENT;
2211 	if (!task)
2212 		goto out_no_task;
2213 
2214 	ret = 0;
2215 	i = filp->f_pos;
2216 	switch (i) {
2217 	case 0:
2218 		ino = inode->i_ino;
2219 		if (filldir(dirent, ".", 1, i, ino, DT_DIR) < 0)
2220 			goto out;
2221 		i++;
2222 		filp->f_pos++;
2223 		/* fall through */
2224 	case 1:
2225 		ino = parent_ino(dentry);
2226 		if (filldir(dirent, "..", 2, i, ino, DT_DIR) < 0)
2227 			goto out;
2228 		i++;
2229 		filp->f_pos++;
2230 		/* fall through */
2231 	default:
2232 		i -= 2;
2233 		if (i >= nents) {
2234 			ret = 1;
2235 			goto out;
2236 		}
2237 		p = ents + i;
2238 		last = &ents[nents - 1];
2239 		while (p <= last) {
2240 			if (proc_pident_fill_cache(filp, dirent, filldir, task, p) < 0)
2241 				goto out;
2242 			filp->f_pos++;
2243 			p++;
2244 		}
2245 	}
2246 
2247 	ret = 1;
2248 out:
2249 	put_task_struct(task);
2250 out_no_task:
2251 	return ret;
2252 }
2253 
2254 #ifdef CONFIG_SECURITY
2255 static ssize_t proc_pid_attr_read(struct file * file, char __user * buf,
2256 				  size_t count, loff_t *ppos)
2257 {
2258 	struct inode * inode = file->f_path.dentry->d_inode;
2259 	char *p = NULL;
2260 	ssize_t length;
2261 	struct task_struct *task = get_proc_task(inode);
2262 
2263 	if (!task)
2264 		return -ESRCH;
2265 
2266 	length = security_getprocattr(task,
2267 				      (char*)file->f_path.dentry->d_name.name,
2268 				      &p);
2269 	put_task_struct(task);
2270 	if (length > 0)
2271 		length = simple_read_from_buffer(buf, count, ppos, p, length);
2272 	kfree(p);
2273 	return length;
2274 }
2275 
2276 static ssize_t proc_pid_attr_write(struct file * file, const char __user * buf,
2277 				   size_t count, loff_t *ppos)
2278 {
2279 	struct inode * inode = file->f_path.dentry->d_inode;
2280 	char *page;
2281 	ssize_t length;
2282 	struct task_struct *task = get_proc_task(inode);
2283 
2284 	length = -ESRCH;
2285 	if (!task)
2286 		goto out_no_task;
2287 	if (count > PAGE_SIZE)
2288 		count = PAGE_SIZE;
2289 
2290 	/* No partial writes. */
2291 	length = -EINVAL;
2292 	if (*ppos != 0)
2293 		goto out;
2294 
2295 	length = -ENOMEM;
2296 	page = (char*)__get_free_page(GFP_TEMPORARY);
2297 	if (!page)
2298 		goto out;
2299 
2300 	length = -EFAULT;
2301 	if (copy_from_user(page, buf, count))
2302 		goto out_free;
2303 
2304 	/* Guard against adverse ptrace interaction */
2305 	length = mutex_lock_interruptible(&task->cred_guard_mutex);
2306 	if (length < 0)
2307 		goto out_free;
2308 
2309 	length = security_setprocattr(task,
2310 				      (char*)file->f_path.dentry->d_name.name,
2311 				      (void*)page, count);
2312 	mutex_unlock(&task->cred_guard_mutex);
2313 out_free:
2314 	free_page((unsigned long) page);
2315 out:
2316 	put_task_struct(task);
2317 out_no_task:
2318 	return length;
2319 }
2320 
2321 static const struct file_operations proc_pid_attr_operations = {
2322 	.read		= proc_pid_attr_read,
2323 	.write		= proc_pid_attr_write,
2324 	.llseek		= generic_file_llseek,
2325 };
2326 
2327 static const struct pid_entry attr_dir_stuff[] = {
2328 	REG("current",    S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2329 	REG("prev",       S_IRUGO,	   proc_pid_attr_operations),
2330 	REG("exec",       S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2331 	REG("fscreate",   S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2332 	REG("keycreate",  S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2333 	REG("sockcreate", S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2334 };
2335 
2336 static int proc_attr_dir_readdir(struct file * filp,
2337 			     void * dirent, filldir_t filldir)
2338 {
2339 	return proc_pident_readdir(filp,dirent,filldir,
2340 				   attr_dir_stuff,ARRAY_SIZE(attr_dir_stuff));
2341 }
2342 
2343 static const struct file_operations proc_attr_dir_operations = {
2344 	.read		= generic_read_dir,
2345 	.readdir	= proc_attr_dir_readdir,
2346 };
2347 
2348 static struct dentry *proc_attr_dir_lookup(struct inode *dir,
2349 				struct dentry *dentry, struct nameidata *nd)
2350 {
2351 	return proc_pident_lookup(dir, dentry,
2352 				  attr_dir_stuff, ARRAY_SIZE(attr_dir_stuff));
2353 }
2354 
2355 static const struct inode_operations proc_attr_dir_inode_operations = {
2356 	.lookup		= proc_attr_dir_lookup,
2357 	.getattr	= pid_getattr,
2358 	.setattr	= proc_setattr,
2359 };
2360 
2361 #endif
2362 
2363 #ifdef CONFIG_ELF_CORE
2364 static ssize_t proc_coredump_filter_read(struct file *file, char __user *buf,
2365 					 size_t count, loff_t *ppos)
2366 {
2367 	struct task_struct *task = get_proc_task(file->f_dentry->d_inode);
2368 	struct mm_struct *mm;
2369 	char buffer[PROC_NUMBUF];
2370 	size_t len;
2371 	int ret;
2372 
2373 	if (!task)
2374 		return -ESRCH;
2375 
2376 	ret = 0;
2377 	mm = get_task_mm(task);
2378 	if (mm) {
2379 		len = snprintf(buffer, sizeof(buffer), "%08lx\n",
2380 			       ((mm->flags & MMF_DUMP_FILTER_MASK) >>
2381 				MMF_DUMP_FILTER_SHIFT));
2382 		mmput(mm);
2383 		ret = simple_read_from_buffer(buf, count, ppos, buffer, len);
2384 	}
2385 
2386 	put_task_struct(task);
2387 
2388 	return ret;
2389 }
2390 
2391 static ssize_t proc_coredump_filter_write(struct file *file,
2392 					  const char __user *buf,
2393 					  size_t count,
2394 					  loff_t *ppos)
2395 {
2396 	struct task_struct *task;
2397 	struct mm_struct *mm;
2398 	char buffer[PROC_NUMBUF], *end;
2399 	unsigned int val;
2400 	int ret;
2401 	int i;
2402 	unsigned long mask;
2403 
2404 	ret = -EFAULT;
2405 	memset(buffer, 0, sizeof(buffer));
2406 	if (count > sizeof(buffer) - 1)
2407 		count = sizeof(buffer) - 1;
2408 	if (copy_from_user(buffer, buf, count))
2409 		goto out_no_task;
2410 
2411 	ret = -EINVAL;
2412 	val = (unsigned int)simple_strtoul(buffer, &end, 0);
2413 	if (*end == '\n')
2414 		end++;
2415 	if (end - buffer == 0)
2416 		goto out_no_task;
2417 
2418 	ret = -ESRCH;
2419 	task = get_proc_task(file->f_dentry->d_inode);
2420 	if (!task)
2421 		goto out_no_task;
2422 
2423 	ret = end - buffer;
2424 	mm = get_task_mm(task);
2425 	if (!mm)
2426 		goto out_no_mm;
2427 
2428 	for (i = 0, mask = 1; i < MMF_DUMP_FILTER_BITS; i++, mask <<= 1) {
2429 		if (val & mask)
2430 			set_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags);
2431 		else
2432 			clear_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags);
2433 	}
2434 
2435 	mmput(mm);
2436  out_no_mm:
2437 	put_task_struct(task);
2438  out_no_task:
2439 	return ret;
2440 }
2441 
2442 static const struct file_operations proc_coredump_filter_operations = {
2443 	.read		= proc_coredump_filter_read,
2444 	.write		= proc_coredump_filter_write,
2445 	.llseek		= generic_file_llseek,
2446 };
2447 #endif
2448 
2449 /*
2450  * /proc/self:
2451  */
2452 static int proc_self_readlink(struct dentry *dentry, char __user *buffer,
2453 			      int buflen)
2454 {
2455 	struct pid_namespace *ns = dentry->d_sb->s_fs_info;
2456 	pid_t tgid = task_tgid_nr_ns(current, ns);
2457 	char tmp[PROC_NUMBUF];
2458 	if (!tgid)
2459 		return -ENOENT;
2460 	sprintf(tmp, "%d", tgid);
2461 	return vfs_readlink(dentry,buffer,buflen,tmp);
2462 }
2463 
2464 static void *proc_self_follow_link(struct dentry *dentry, struct nameidata *nd)
2465 {
2466 	struct pid_namespace *ns = dentry->d_sb->s_fs_info;
2467 	pid_t tgid = task_tgid_nr_ns(current, ns);
2468 	char *name = ERR_PTR(-ENOENT);
2469 	if (tgid) {
2470 		name = __getname();
2471 		if (!name)
2472 			name = ERR_PTR(-ENOMEM);
2473 		else
2474 			sprintf(name, "%d", tgid);
2475 	}
2476 	nd_set_link(nd, name);
2477 	return NULL;
2478 }
2479 
2480 static void proc_self_put_link(struct dentry *dentry, struct nameidata *nd,
2481 				void *cookie)
2482 {
2483 	char *s = nd_get_link(nd);
2484 	if (!IS_ERR(s))
2485 		__putname(s);
2486 }
2487 
2488 static const struct inode_operations proc_self_inode_operations = {
2489 	.readlink	= proc_self_readlink,
2490 	.follow_link	= proc_self_follow_link,
2491 	.put_link	= proc_self_put_link,
2492 };
2493 
2494 /*
2495  * proc base
2496  *
2497  * These are the directory entries in the root directory of /proc
2498  * that properly belong to the /proc filesystem, as they describe
2499  * describe something that is process related.
2500  */
2501 static const struct pid_entry proc_base_stuff[] = {
2502 	NOD("self", S_IFLNK|S_IRWXUGO,
2503 		&proc_self_inode_operations, NULL, {}),
2504 };
2505 
2506 /*
2507  *	Exceptional case: normally we are not allowed to unhash a busy
2508  * directory. In this case, however, we can do it - no aliasing problems
2509  * due to the way we treat inodes.
2510  */
2511 static int proc_base_revalidate(struct dentry *dentry, struct nameidata *nd)
2512 {
2513 	struct inode *inode = dentry->d_inode;
2514 	struct task_struct *task = get_proc_task(inode);
2515 	if (task) {
2516 		put_task_struct(task);
2517 		return 1;
2518 	}
2519 	d_drop(dentry);
2520 	return 0;
2521 }
2522 
2523 static const struct dentry_operations proc_base_dentry_operations =
2524 {
2525 	.d_revalidate	= proc_base_revalidate,
2526 	.d_delete	= pid_delete_dentry,
2527 };
2528 
2529 static struct dentry *proc_base_instantiate(struct inode *dir,
2530 	struct dentry *dentry, struct task_struct *task, const void *ptr)
2531 {
2532 	const struct pid_entry *p = ptr;
2533 	struct inode *inode;
2534 	struct proc_inode *ei;
2535 	struct dentry *error;
2536 
2537 	/* Allocate the inode */
2538 	error = ERR_PTR(-ENOMEM);
2539 	inode = new_inode(dir->i_sb);
2540 	if (!inode)
2541 		goto out;
2542 
2543 	/* Initialize the inode */
2544 	ei = PROC_I(inode);
2545 	inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
2546 
2547 	/*
2548 	 * grab the reference to the task.
2549 	 */
2550 	ei->pid = get_task_pid(task, PIDTYPE_PID);
2551 	if (!ei->pid)
2552 		goto out_iput;
2553 
2554 	inode->i_mode = p->mode;
2555 	if (S_ISDIR(inode->i_mode))
2556 		inode->i_nlink = 2;
2557 	if (S_ISLNK(inode->i_mode))
2558 		inode->i_size = 64;
2559 	if (p->iop)
2560 		inode->i_op = p->iop;
2561 	if (p->fop)
2562 		inode->i_fop = p->fop;
2563 	ei->op = p->op;
2564 	dentry->d_op = &proc_base_dentry_operations;
2565 	d_add(dentry, inode);
2566 	error = NULL;
2567 out:
2568 	return error;
2569 out_iput:
2570 	iput(inode);
2571 	goto out;
2572 }
2573 
2574 static struct dentry *proc_base_lookup(struct inode *dir, struct dentry *dentry)
2575 {
2576 	struct dentry *error;
2577 	struct task_struct *task = get_proc_task(dir);
2578 	const struct pid_entry *p, *last;
2579 
2580 	error = ERR_PTR(-ENOENT);
2581 
2582 	if (!task)
2583 		goto out_no_task;
2584 
2585 	/* Lookup the directory entry */
2586 	last = &proc_base_stuff[ARRAY_SIZE(proc_base_stuff) - 1];
2587 	for (p = proc_base_stuff; p <= last; p++) {
2588 		if (p->len != dentry->d_name.len)
2589 			continue;
2590 		if (!memcmp(dentry->d_name.name, p->name, p->len))
2591 			break;
2592 	}
2593 	if (p > last)
2594 		goto out;
2595 
2596 	error = proc_base_instantiate(dir, dentry, task, p);
2597 
2598 out:
2599 	put_task_struct(task);
2600 out_no_task:
2601 	return error;
2602 }
2603 
2604 static int proc_base_fill_cache(struct file *filp, void *dirent,
2605 	filldir_t filldir, struct task_struct *task, const struct pid_entry *p)
2606 {
2607 	return proc_fill_cache(filp, dirent, filldir, p->name, p->len,
2608 				proc_base_instantiate, task, p);
2609 }
2610 
2611 #ifdef CONFIG_TASK_IO_ACCOUNTING
2612 static int do_io_accounting(struct task_struct *task, char *buffer, int whole)
2613 {
2614 	struct task_io_accounting acct = task->ioac;
2615 	unsigned long flags;
2616 
2617 	if (whole && lock_task_sighand(task, &flags)) {
2618 		struct task_struct *t = task;
2619 
2620 		task_io_accounting_add(&acct, &task->signal->ioac);
2621 		while_each_thread(task, t)
2622 			task_io_accounting_add(&acct, &t->ioac);
2623 
2624 		unlock_task_sighand(task, &flags);
2625 	}
2626 	return sprintf(buffer,
2627 			"rchar: %llu\n"
2628 			"wchar: %llu\n"
2629 			"syscr: %llu\n"
2630 			"syscw: %llu\n"
2631 			"read_bytes: %llu\n"
2632 			"write_bytes: %llu\n"
2633 			"cancelled_write_bytes: %llu\n",
2634 			(unsigned long long)acct.rchar,
2635 			(unsigned long long)acct.wchar,
2636 			(unsigned long long)acct.syscr,
2637 			(unsigned long long)acct.syscw,
2638 			(unsigned long long)acct.read_bytes,
2639 			(unsigned long long)acct.write_bytes,
2640 			(unsigned long long)acct.cancelled_write_bytes);
2641 }
2642 
2643 static int proc_tid_io_accounting(struct task_struct *task, char *buffer)
2644 {
2645 	return do_io_accounting(task, buffer, 0);
2646 }
2647 
2648 static int proc_tgid_io_accounting(struct task_struct *task, char *buffer)
2649 {
2650 	return do_io_accounting(task, buffer, 1);
2651 }
2652 #endif /* CONFIG_TASK_IO_ACCOUNTING */
2653 
2654 static int proc_pid_personality(struct seq_file *m, struct pid_namespace *ns,
2655 				struct pid *pid, struct task_struct *task)
2656 {
2657 	seq_printf(m, "%08x\n", task->personality);
2658 	return 0;
2659 }
2660 
2661 /*
2662  * Thread groups
2663  */
2664 static const struct file_operations proc_task_operations;
2665 static const struct inode_operations proc_task_inode_operations;
2666 
2667 static const struct pid_entry tgid_base_stuff[] = {
2668 	DIR("task",       S_IRUGO|S_IXUGO, proc_task_inode_operations, proc_task_operations),
2669 	DIR("fd",         S_IRUSR|S_IXUSR, proc_fd_inode_operations, proc_fd_operations),
2670 	DIR("fdinfo",     S_IRUSR|S_IXUSR, proc_fdinfo_inode_operations, proc_fdinfo_operations),
2671 #ifdef CONFIG_NET
2672 	DIR("net",        S_IRUGO|S_IXUGO, proc_net_inode_operations, proc_net_operations),
2673 #endif
2674 	REG("environ",    S_IRUSR, proc_environ_operations),
2675 	INF("auxv",       S_IRUSR, proc_pid_auxv),
2676 	ONE("status",     S_IRUGO, proc_pid_status),
2677 	ONE("personality", S_IRUSR, proc_pid_personality),
2678 	INF("limits",	  S_IRUSR, proc_pid_limits),
2679 #ifdef CONFIG_SCHED_DEBUG
2680 	REG("sched",      S_IRUGO|S_IWUSR, proc_pid_sched_operations),
2681 #endif
2682 	REG("comm",      S_IRUGO|S_IWUSR, proc_pid_set_comm_operations),
2683 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK
2684 	INF("syscall",    S_IRUSR, proc_pid_syscall),
2685 #endif
2686 	INF("cmdline",    S_IRUGO, proc_pid_cmdline),
2687 	ONE("stat",       S_IRUGO, proc_tgid_stat),
2688 	ONE("statm",      S_IRUGO, proc_pid_statm),
2689 	REG("maps",       S_IRUGO, proc_maps_operations),
2690 #ifdef CONFIG_NUMA
2691 	REG("numa_maps",  S_IRUGO, proc_numa_maps_operations),
2692 #endif
2693 	REG("mem",        S_IRUSR|S_IWUSR, proc_mem_operations),
2694 	LNK("cwd",        proc_cwd_link),
2695 	LNK("root",       proc_root_link),
2696 	LNK("exe",        proc_exe_link),
2697 	REG("mounts",     S_IRUGO, proc_mounts_operations),
2698 	REG("mountinfo",  S_IRUGO, proc_mountinfo_operations),
2699 	REG("mountstats", S_IRUSR, proc_mountstats_operations),
2700 #ifdef CONFIG_PROC_PAGE_MONITOR
2701 	REG("clear_refs", S_IWUSR, proc_clear_refs_operations),
2702 	REG("smaps",      S_IRUGO, proc_smaps_operations),
2703 	REG("pagemap",    S_IRUSR, proc_pagemap_operations),
2704 #endif
2705 #ifdef CONFIG_SECURITY
2706 	DIR("attr",       S_IRUGO|S_IXUGO, proc_attr_dir_inode_operations, proc_attr_dir_operations),
2707 #endif
2708 #ifdef CONFIG_KALLSYMS
2709 	INF("wchan",      S_IRUGO, proc_pid_wchan),
2710 #endif
2711 #ifdef CONFIG_STACKTRACE
2712 	ONE("stack",      S_IRUSR, proc_pid_stack),
2713 #endif
2714 #ifdef CONFIG_SCHEDSTATS
2715 	INF("schedstat",  S_IRUGO, proc_pid_schedstat),
2716 #endif
2717 #ifdef CONFIG_LATENCYTOP
2718 	REG("latency",  S_IRUGO, proc_lstats_operations),
2719 #endif
2720 #ifdef CONFIG_PROC_PID_CPUSET
2721 	REG("cpuset",     S_IRUGO, proc_cpuset_operations),
2722 #endif
2723 #ifdef CONFIG_CGROUPS
2724 	REG("cgroup",  S_IRUGO, proc_cgroup_operations),
2725 #endif
2726 	INF("oom_score",  S_IRUGO, proc_oom_score),
2727 	REG("oom_adj",    S_IRUGO|S_IWUSR, proc_oom_adjust_operations),
2728 	REG("oom_score_adj", S_IRUGO|S_IWUSR, proc_oom_score_adj_operations),
2729 #ifdef CONFIG_AUDITSYSCALL
2730 	REG("loginuid",   S_IWUSR|S_IRUGO, proc_loginuid_operations),
2731 	REG("sessionid",  S_IRUGO, proc_sessionid_operations),
2732 #endif
2733 #ifdef CONFIG_FAULT_INJECTION
2734 	REG("make-it-fail", S_IRUGO|S_IWUSR, proc_fault_inject_operations),
2735 #endif
2736 #ifdef CONFIG_ELF_CORE
2737 	REG("coredump_filter", S_IRUGO|S_IWUSR, proc_coredump_filter_operations),
2738 #endif
2739 #ifdef CONFIG_TASK_IO_ACCOUNTING
2740 	INF("io",	S_IRUGO, proc_tgid_io_accounting),
2741 #endif
2742 };
2743 
2744 static int proc_tgid_base_readdir(struct file * filp,
2745 			     void * dirent, filldir_t filldir)
2746 {
2747 	return proc_pident_readdir(filp,dirent,filldir,
2748 				   tgid_base_stuff,ARRAY_SIZE(tgid_base_stuff));
2749 }
2750 
2751 static const struct file_operations proc_tgid_base_operations = {
2752 	.read		= generic_read_dir,
2753 	.readdir	= proc_tgid_base_readdir,
2754 };
2755 
2756 static struct dentry *proc_tgid_base_lookup(struct inode *dir, struct dentry *dentry, struct nameidata *nd){
2757 	return proc_pident_lookup(dir, dentry,
2758 				  tgid_base_stuff, ARRAY_SIZE(tgid_base_stuff));
2759 }
2760 
2761 static const struct inode_operations proc_tgid_base_inode_operations = {
2762 	.lookup		= proc_tgid_base_lookup,
2763 	.getattr	= pid_getattr,
2764 	.setattr	= proc_setattr,
2765 };
2766 
2767 static void proc_flush_task_mnt(struct vfsmount *mnt, pid_t pid, pid_t tgid)
2768 {
2769 	struct dentry *dentry, *leader, *dir;
2770 	char buf[PROC_NUMBUF];
2771 	struct qstr name;
2772 
2773 	name.name = buf;
2774 	name.len = snprintf(buf, sizeof(buf), "%d", pid);
2775 	dentry = d_hash_and_lookup(mnt->mnt_root, &name);
2776 	if (dentry) {
2777 		shrink_dcache_parent(dentry);
2778 		d_drop(dentry);
2779 		dput(dentry);
2780 	}
2781 
2782 	name.name = buf;
2783 	name.len = snprintf(buf, sizeof(buf), "%d", tgid);
2784 	leader = d_hash_and_lookup(mnt->mnt_root, &name);
2785 	if (!leader)
2786 		goto out;
2787 
2788 	name.name = "task";
2789 	name.len = strlen(name.name);
2790 	dir = d_hash_and_lookup(leader, &name);
2791 	if (!dir)
2792 		goto out_put_leader;
2793 
2794 	name.name = buf;
2795 	name.len = snprintf(buf, sizeof(buf), "%d", pid);
2796 	dentry = d_hash_and_lookup(dir, &name);
2797 	if (dentry) {
2798 		shrink_dcache_parent(dentry);
2799 		d_drop(dentry);
2800 		dput(dentry);
2801 	}
2802 
2803 	dput(dir);
2804 out_put_leader:
2805 	dput(leader);
2806 out:
2807 	return;
2808 }
2809 
2810 /**
2811  * proc_flush_task -  Remove dcache entries for @task from the /proc dcache.
2812  * @task: task that should be flushed.
2813  *
2814  * When flushing dentries from proc, one needs to flush them from global
2815  * proc (proc_mnt) and from all the namespaces' procs this task was seen
2816  * in. This call is supposed to do all of this job.
2817  *
2818  * Looks in the dcache for
2819  * /proc/@pid
2820  * /proc/@tgid/task/@pid
2821  * if either directory is present flushes it and all of it'ts children
2822  * from the dcache.
2823  *
2824  * It is safe and reasonable to cache /proc entries for a task until
2825  * that task exits.  After that they just clog up the dcache with
2826  * useless entries, possibly causing useful dcache entries to be
2827  * flushed instead.  This routine is proved to flush those useless
2828  * dcache entries at process exit time.
2829  *
2830  * NOTE: This routine is just an optimization so it does not guarantee
2831  *       that no dcache entries will exist at process exit time it
2832  *       just makes it very unlikely that any will persist.
2833  */
2834 
2835 void proc_flush_task(struct task_struct *task)
2836 {
2837 	int i;
2838 	struct pid *pid, *tgid;
2839 	struct upid *upid;
2840 
2841 	pid = task_pid(task);
2842 	tgid = task_tgid(task);
2843 
2844 	for (i = 0; i <= pid->level; i++) {
2845 		upid = &pid->numbers[i];
2846 		proc_flush_task_mnt(upid->ns->proc_mnt, upid->nr,
2847 					tgid->numbers[i].nr);
2848 	}
2849 
2850 	upid = &pid->numbers[pid->level];
2851 	if (upid->nr == 1)
2852 		pid_ns_release_proc(upid->ns);
2853 }
2854 
2855 static struct dentry *proc_pid_instantiate(struct inode *dir,
2856 					   struct dentry * dentry,
2857 					   struct task_struct *task, const void *ptr)
2858 {
2859 	struct dentry *error = ERR_PTR(-ENOENT);
2860 	struct inode *inode;
2861 
2862 	inode = proc_pid_make_inode(dir->i_sb, task);
2863 	if (!inode)
2864 		goto out;
2865 
2866 	inode->i_mode = S_IFDIR|S_IRUGO|S_IXUGO;
2867 	inode->i_op = &proc_tgid_base_inode_operations;
2868 	inode->i_fop = &proc_tgid_base_operations;
2869 	inode->i_flags|=S_IMMUTABLE;
2870 
2871 	inode->i_nlink = 2 + pid_entry_count_dirs(tgid_base_stuff,
2872 		ARRAY_SIZE(tgid_base_stuff));
2873 
2874 	dentry->d_op = &pid_dentry_operations;
2875 
2876 	d_add(dentry, inode);
2877 	/* Close the race of the process dying before we return the dentry */
2878 	if (pid_revalidate(dentry, NULL))
2879 		error = NULL;
2880 out:
2881 	return error;
2882 }
2883 
2884 struct dentry *proc_pid_lookup(struct inode *dir, struct dentry * dentry, struct nameidata *nd)
2885 {
2886 	struct dentry *result;
2887 	struct task_struct *task;
2888 	unsigned tgid;
2889 	struct pid_namespace *ns;
2890 
2891 	result = proc_base_lookup(dir, dentry);
2892 	if (!IS_ERR(result) || PTR_ERR(result) != -ENOENT)
2893 		goto out;
2894 
2895 	tgid = name_to_int(dentry);
2896 	if (tgid == ~0U)
2897 		goto out;
2898 
2899 	ns = dentry->d_sb->s_fs_info;
2900 	rcu_read_lock();
2901 	task = find_task_by_pid_ns(tgid, ns);
2902 	if (task)
2903 		get_task_struct(task);
2904 	rcu_read_unlock();
2905 	if (!task)
2906 		goto out;
2907 
2908 	result = proc_pid_instantiate(dir, dentry, task, NULL);
2909 	put_task_struct(task);
2910 out:
2911 	return result;
2912 }
2913 
2914 /*
2915  * Find the first task with tgid >= tgid
2916  *
2917  */
2918 struct tgid_iter {
2919 	unsigned int tgid;
2920 	struct task_struct *task;
2921 };
2922 static struct tgid_iter next_tgid(struct pid_namespace *ns, struct tgid_iter iter)
2923 {
2924 	struct pid *pid;
2925 
2926 	if (iter.task)
2927 		put_task_struct(iter.task);
2928 	rcu_read_lock();
2929 retry:
2930 	iter.task = NULL;
2931 	pid = find_ge_pid(iter.tgid, ns);
2932 	if (pid) {
2933 		iter.tgid = pid_nr_ns(pid, ns);
2934 		iter.task = pid_task(pid, PIDTYPE_PID);
2935 		/* What we to know is if the pid we have find is the
2936 		 * pid of a thread_group_leader.  Testing for task
2937 		 * being a thread_group_leader is the obvious thing
2938 		 * todo but there is a window when it fails, due to
2939 		 * the pid transfer logic in de_thread.
2940 		 *
2941 		 * So we perform the straight forward test of seeing
2942 		 * if the pid we have found is the pid of a thread
2943 		 * group leader, and don't worry if the task we have
2944 		 * found doesn't happen to be a thread group leader.
2945 		 * As we don't care in the case of readdir.
2946 		 */
2947 		if (!iter.task || !has_group_leader_pid(iter.task)) {
2948 			iter.tgid += 1;
2949 			goto retry;
2950 		}
2951 		get_task_struct(iter.task);
2952 	}
2953 	rcu_read_unlock();
2954 	return iter;
2955 }
2956 
2957 #define TGID_OFFSET (FIRST_PROCESS_ENTRY + ARRAY_SIZE(proc_base_stuff))
2958 
2959 static int proc_pid_fill_cache(struct file *filp, void *dirent, filldir_t filldir,
2960 	struct tgid_iter iter)
2961 {
2962 	char name[PROC_NUMBUF];
2963 	int len = snprintf(name, sizeof(name), "%d", iter.tgid);
2964 	return proc_fill_cache(filp, dirent, filldir, name, len,
2965 				proc_pid_instantiate, iter.task, NULL);
2966 }
2967 
2968 /* for the /proc/ directory itself, after non-process stuff has been done */
2969 int proc_pid_readdir(struct file * filp, void * dirent, filldir_t filldir)
2970 {
2971 	unsigned int nr = filp->f_pos - FIRST_PROCESS_ENTRY;
2972 	struct task_struct *reaper = get_proc_task(filp->f_path.dentry->d_inode);
2973 	struct tgid_iter iter;
2974 	struct pid_namespace *ns;
2975 
2976 	if (!reaper)
2977 		goto out_no_task;
2978 
2979 	for (; nr < ARRAY_SIZE(proc_base_stuff); filp->f_pos++, nr++) {
2980 		const struct pid_entry *p = &proc_base_stuff[nr];
2981 		if (proc_base_fill_cache(filp, dirent, filldir, reaper, p) < 0)
2982 			goto out;
2983 	}
2984 
2985 	ns = filp->f_dentry->d_sb->s_fs_info;
2986 	iter.task = NULL;
2987 	iter.tgid = filp->f_pos - TGID_OFFSET;
2988 	for (iter = next_tgid(ns, iter);
2989 	     iter.task;
2990 	     iter.tgid += 1, iter = next_tgid(ns, iter)) {
2991 		filp->f_pos = iter.tgid + TGID_OFFSET;
2992 		if (proc_pid_fill_cache(filp, dirent, filldir, iter) < 0) {
2993 			put_task_struct(iter.task);
2994 			goto out;
2995 		}
2996 	}
2997 	filp->f_pos = PID_MAX_LIMIT + TGID_OFFSET;
2998 out:
2999 	put_task_struct(reaper);
3000 out_no_task:
3001 	return 0;
3002 }
3003 
3004 /*
3005  * Tasks
3006  */
3007 static const struct pid_entry tid_base_stuff[] = {
3008 	DIR("fd",        S_IRUSR|S_IXUSR, proc_fd_inode_operations, proc_fd_operations),
3009 	DIR("fdinfo",    S_IRUSR|S_IXUSR, proc_fdinfo_inode_operations, proc_fdinfo_operations),
3010 	REG("environ",   S_IRUSR, proc_environ_operations),
3011 	INF("auxv",      S_IRUSR, proc_pid_auxv),
3012 	ONE("status",    S_IRUGO, proc_pid_status),
3013 	ONE("personality", S_IRUSR, proc_pid_personality),
3014 	INF("limits",	 S_IRUSR, proc_pid_limits),
3015 #ifdef CONFIG_SCHED_DEBUG
3016 	REG("sched",     S_IRUGO|S_IWUSR, proc_pid_sched_operations),
3017 #endif
3018 	REG("comm",      S_IRUGO|S_IWUSR, proc_pid_set_comm_operations),
3019 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK
3020 	INF("syscall",   S_IRUSR, proc_pid_syscall),
3021 #endif
3022 	INF("cmdline",   S_IRUGO, proc_pid_cmdline),
3023 	ONE("stat",      S_IRUGO, proc_tid_stat),
3024 	ONE("statm",     S_IRUGO, proc_pid_statm),
3025 	REG("maps",      S_IRUGO, proc_maps_operations),
3026 #ifdef CONFIG_NUMA
3027 	REG("numa_maps", S_IRUGO, proc_numa_maps_operations),
3028 #endif
3029 	REG("mem",       S_IRUSR|S_IWUSR, proc_mem_operations),
3030 	LNK("cwd",       proc_cwd_link),
3031 	LNK("root",      proc_root_link),
3032 	LNK("exe",       proc_exe_link),
3033 	REG("mounts",    S_IRUGO, proc_mounts_operations),
3034 	REG("mountinfo",  S_IRUGO, proc_mountinfo_operations),
3035 #ifdef CONFIG_PROC_PAGE_MONITOR
3036 	REG("clear_refs", S_IWUSR, proc_clear_refs_operations),
3037 	REG("smaps",     S_IRUGO, proc_smaps_operations),
3038 	REG("pagemap",    S_IRUSR, proc_pagemap_operations),
3039 #endif
3040 #ifdef CONFIG_SECURITY
3041 	DIR("attr",      S_IRUGO|S_IXUGO, proc_attr_dir_inode_operations, proc_attr_dir_operations),
3042 #endif
3043 #ifdef CONFIG_KALLSYMS
3044 	INF("wchan",     S_IRUGO, proc_pid_wchan),
3045 #endif
3046 #ifdef CONFIG_STACKTRACE
3047 	ONE("stack",      S_IRUSR, proc_pid_stack),
3048 #endif
3049 #ifdef CONFIG_SCHEDSTATS
3050 	INF("schedstat", S_IRUGO, proc_pid_schedstat),
3051 #endif
3052 #ifdef CONFIG_LATENCYTOP
3053 	REG("latency",  S_IRUGO, proc_lstats_operations),
3054 #endif
3055 #ifdef CONFIG_PROC_PID_CPUSET
3056 	REG("cpuset",    S_IRUGO, proc_cpuset_operations),
3057 #endif
3058 #ifdef CONFIG_CGROUPS
3059 	REG("cgroup",  S_IRUGO, proc_cgroup_operations),
3060 #endif
3061 	INF("oom_score", S_IRUGO, proc_oom_score),
3062 	REG("oom_adj",   S_IRUGO|S_IWUSR, proc_oom_adjust_operations),
3063 	REG("oom_score_adj", S_IRUGO|S_IWUSR, proc_oom_score_adj_operations),
3064 #ifdef CONFIG_AUDITSYSCALL
3065 	REG("loginuid",  S_IWUSR|S_IRUGO, proc_loginuid_operations),
3066 	REG("sessionid",  S_IRUSR, proc_sessionid_operations),
3067 #endif
3068 #ifdef CONFIG_FAULT_INJECTION
3069 	REG("make-it-fail", S_IRUGO|S_IWUSR, proc_fault_inject_operations),
3070 #endif
3071 #ifdef CONFIG_TASK_IO_ACCOUNTING
3072 	INF("io",	S_IRUGO, proc_tid_io_accounting),
3073 #endif
3074 };
3075 
3076 static int proc_tid_base_readdir(struct file * filp,
3077 			     void * dirent, filldir_t filldir)
3078 {
3079 	return proc_pident_readdir(filp,dirent,filldir,
3080 				   tid_base_stuff,ARRAY_SIZE(tid_base_stuff));
3081 }
3082 
3083 static struct dentry *proc_tid_base_lookup(struct inode *dir, struct dentry *dentry, struct nameidata *nd){
3084 	return proc_pident_lookup(dir, dentry,
3085 				  tid_base_stuff, ARRAY_SIZE(tid_base_stuff));
3086 }
3087 
3088 static const struct file_operations proc_tid_base_operations = {
3089 	.read		= generic_read_dir,
3090 	.readdir	= proc_tid_base_readdir,
3091 };
3092 
3093 static const struct inode_operations proc_tid_base_inode_operations = {
3094 	.lookup		= proc_tid_base_lookup,
3095 	.getattr	= pid_getattr,
3096 	.setattr	= proc_setattr,
3097 };
3098 
3099 static struct dentry *proc_task_instantiate(struct inode *dir,
3100 	struct dentry *dentry, struct task_struct *task, const void *ptr)
3101 {
3102 	struct dentry *error = ERR_PTR(-ENOENT);
3103 	struct inode *inode;
3104 	inode = proc_pid_make_inode(dir->i_sb, task);
3105 
3106 	if (!inode)
3107 		goto out;
3108 	inode->i_mode = S_IFDIR|S_IRUGO|S_IXUGO;
3109 	inode->i_op = &proc_tid_base_inode_operations;
3110 	inode->i_fop = &proc_tid_base_operations;
3111 	inode->i_flags|=S_IMMUTABLE;
3112 
3113 	inode->i_nlink = 2 + pid_entry_count_dirs(tid_base_stuff,
3114 		ARRAY_SIZE(tid_base_stuff));
3115 
3116 	dentry->d_op = &pid_dentry_operations;
3117 
3118 	d_add(dentry, inode);
3119 	/* Close the race of the process dying before we return the dentry */
3120 	if (pid_revalidate(dentry, NULL))
3121 		error = NULL;
3122 out:
3123 	return error;
3124 }
3125 
3126 static struct dentry *proc_task_lookup(struct inode *dir, struct dentry * dentry, struct nameidata *nd)
3127 {
3128 	struct dentry *result = ERR_PTR(-ENOENT);
3129 	struct task_struct *task;
3130 	struct task_struct *leader = get_proc_task(dir);
3131 	unsigned tid;
3132 	struct pid_namespace *ns;
3133 
3134 	if (!leader)
3135 		goto out_no_task;
3136 
3137 	tid = name_to_int(dentry);
3138 	if (tid == ~0U)
3139 		goto out;
3140 
3141 	ns = dentry->d_sb->s_fs_info;
3142 	rcu_read_lock();
3143 	task = find_task_by_pid_ns(tid, ns);
3144 	if (task)
3145 		get_task_struct(task);
3146 	rcu_read_unlock();
3147 	if (!task)
3148 		goto out;
3149 	if (!same_thread_group(leader, task))
3150 		goto out_drop_task;
3151 
3152 	result = proc_task_instantiate(dir, dentry, task, NULL);
3153 out_drop_task:
3154 	put_task_struct(task);
3155 out:
3156 	put_task_struct(leader);
3157 out_no_task:
3158 	return result;
3159 }
3160 
3161 /*
3162  * Find the first tid of a thread group to return to user space.
3163  *
3164  * Usually this is just the thread group leader, but if the users
3165  * buffer was too small or there was a seek into the middle of the
3166  * directory we have more work todo.
3167  *
3168  * In the case of a short read we start with find_task_by_pid.
3169  *
3170  * In the case of a seek we start with the leader and walk nr
3171  * threads past it.
3172  */
3173 static struct task_struct *first_tid(struct task_struct *leader,
3174 		int tid, int nr, struct pid_namespace *ns)
3175 {
3176 	struct task_struct *pos;
3177 
3178 	rcu_read_lock();
3179 	/* Attempt to start with the pid of a thread */
3180 	if (tid && (nr > 0)) {
3181 		pos = find_task_by_pid_ns(tid, ns);
3182 		if (pos && (pos->group_leader == leader))
3183 			goto found;
3184 	}
3185 
3186 	/* If nr exceeds the number of threads there is nothing todo */
3187 	pos = NULL;
3188 	if (nr && nr >= get_nr_threads(leader))
3189 		goto out;
3190 
3191 	/* If we haven't found our starting place yet start
3192 	 * with the leader and walk nr threads forward.
3193 	 */
3194 	for (pos = leader; nr > 0; --nr) {
3195 		pos = next_thread(pos);
3196 		if (pos == leader) {
3197 			pos = NULL;
3198 			goto out;
3199 		}
3200 	}
3201 found:
3202 	get_task_struct(pos);
3203 out:
3204 	rcu_read_unlock();
3205 	return pos;
3206 }
3207 
3208 /*
3209  * Find the next thread in the thread list.
3210  * Return NULL if there is an error or no next thread.
3211  *
3212  * The reference to the input task_struct is released.
3213  */
3214 static struct task_struct *next_tid(struct task_struct *start)
3215 {
3216 	struct task_struct *pos = NULL;
3217 	rcu_read_lock();
3218 	if (pid_alive(start)) {
3219 		pos = next_thread(start);
3220 		if (thread_group_leader(pos))
3221 			pos = NULL;
3222 		else
3223 			get_task_struct(pos);
3224 	}
3225 	rcu_read_unlock();
3226 	put_task_struct(start);
3227 	return pos;
3228 }
3229 
3230 static int proc_task_fill_cache(struct file *filp, void *dirent, filldir_t filldir,
3231 	struct task_struct *task, int tid)
3232 {
3233 	char name[PROC_NUMBUF];
3234 	int len = snprintf(name, sizeof(name), "%d", tid);
3235 	return proc_fill_cache(filp, dirent, filldir, name, len,
3236 				proc_task_instantiate, task, NULL);
3237 }
3238 
3239 /* for the /proc/TGID/task/ directories */
3240 static int proc_task_readdir(struct file * filp, void * dirent, filldir_t filldir)
3241 {
3242 	struct dentry *dentry = filp->f_path.dentry;
3243 	struct inode *inode = dentry->d_inode;
3244 	struct task_struct *leader = NULL;
3245 	struct task_struct *task;
3246 	int retval = -ENOENT;
3247 	ino_t ino;
3248 	int tid;
3249 	struct pid_namespace *ns;
3250 
3251 	task = get_proc_task(inode);
3252 	if (!task)
3253 		goto out_no_task;
3254 	rcu_read_lock();
3255 	if (pid_alive(task)) {
3256 		leader = task->group_leader;
3257 		get_task_struct(leader);
3258 	}
3259 	rcu_read_unlock();
3260 	put_task_struct(task);
3261 	if (!leader)
3262 		goto out_no_task;
3263 	retval = 0;
3264 
3265 	switch ((unsigned long)filp->f_pos) {
3266 	case 0:
3267 		ino = inode->i_ino;
3268 		if (filldir(dirent, ".", 1, filp->f_pos, ino, DT_DIR) < 0)
3269 			goto out;
3270 		filp->f_pos++;
3271 		/* fall through */
3272 	case 1:
3273 		ino = parent_ino(dentry);
3274 		if (filldir(dirent, "..", 2, filp->f_pos, ino, DT_DIR) < 0)
3275 			goto out;
3276 		filp->f_pos++;
3277 		/* fall through */
3278 	}
3279 
3280 	/* f_version caches the tgid value that the last readdir call couldn't
3281 	 * return. lseek aka telldir automagically resets f_version to 0.
3282 	 */
3283 	ns = filp->f_dentry->d_sb->s_fs_info;
3284 	tid = (int)filp->f_version;
3285 	filp->f_version = 0;
3286 	for (task = first_tid(leader, tid, filp->f_pos - 2, ns);
3287 	     task;
3288 	     task = next_tid(task), filp->f_pos++) {
3289 		tid = task_pid_nr_ns(task, ns);
3290 		if (proc_task_fill_cache(filp, dirent, filldir, task, tid) < 0) {
3291 			/* returning this tgid failed, save it as the first
3292 			 * pid for the next readir call */
3293 			filp->f_version = (u64)tid;
3294 			put_task_struct(task);
3295 			break;
3296 		}
3297 	}
3298 out:
3299 	put_task_struct(leader);
3300 out_no_task:
3301 	return retval;
3302 }
3303 
3304 static int proc_task_getattr(struct vfsmount *mnt, struct dentry *dentry, struct kstat *stat)
3305 {
3306 	struct inode *inode = dentry->d_inode;
3307 	struct task_struct *p = get_proc_task(inode);
3308 	generic_fillattr(inode, stat);
3309 
3310 	if (p) {
3311 		stat->nlink += get_nr_threads(p);
3312 		put_task_struct(p);
3313 	}
3314 
3315 	return 0;
3316 }
3317 
3318 static const struct inode_operations proc_task_inode_operations = {
3319 	.lookup		= proc_task_lookup,
3320 	.getattr	= proc_task_getattr,
3321 	.setattr	= proc_setattr,
3322 };
3323 
3324 static const struct file_operations proc_task_operations = {
3325 	.read		= generic_read_dir,
3326 	.readdir	= proc_task_readdir,
3327 };
3328