xref: /linux/fs/proc/base.c (revision c80544dc0b87bb65038355e7aafdc30be16b26ab)
1 /*
2  *  linux/fs/proc/base.c
3  *
4  *  Copyright (C) 1991, 1992 Linus Torvalds
5  *
6  *  proc base directory handling functions
7  *
8  *  1999, Al Viro. Rewritten. Now it covers the whole per-process part.
9  *  Instead of using magical inumbers to determine the kind of object
10  *  we allocate and fill in-core inodes upon lookup. They don't even
11  *  go into icache. We cache the reference to task_struct upon lookup too.
12  *  Eventually it should become a filesystem in its own. We don't use the
13  *  rest of procfs anymore.
14  *
15  *
16  *  Changelog:
17  *  17-Jan-2005
18  *  Allan Bezerra
19  *  Bruna Moreira <bruna.moreira@indt.org.br>
20  *  Edjard Mota <edjard.mota@indt.org.br>
21  *  Ilias Biris <ilias.biris@indt.org.br>
22  *  Mauricio Lin <mauricio.lin@indt.org.br>
23  *
24  *  Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT
25  *
26  *  A new process specific entry (smaps) included in /proc. It shows the
27  *  size of rss for each memory area. The maps entry lacks information
28  *  about physical memory size (rss) for each mapped file, i.e.,
29  *  rss information for executables and library files.
30  *  This additional information is useful for any tools that need to know
31  *  about physical memory consumption for a process specific library.
32  *
33  *  Changelog:
34  *  21-Feb-2005
35  *  Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT
36  *  Pud inclusion in the page table walking.
37  *
38  *  ChangeLog:
39  *  10-Mar-2005
40  *  10LE Instituto Nokia de Tecnologia - INdT:
41  *  A better way to walks through the page table as suggested by Hugh Dickins.
42  *
43  *  Simo Piiroinen <simo.piiroinen@nokia.com>:
44  *  Smaps information related to shared, private, clean and dirty pages.
45  *
46  *  Paul Mundt <paul.mundt@nokia.com>:
47  *  Overall revision about smaps.
48  */
49 
50 #include <asm/uaccess.h>
51 
52 #include <linux/errno.h>
53 #include <linux/time.h>
54 #include <linux/proc_fs.h>
55 #include <linux/stat.h>
56 #include <linux/init.h>
57 #include <linux/capability.h>
58 #include <linux/file.h>
59 #include <linux/string.h>
60 #include <linux/seq_file.h>
61 #include <linux/namei.h>
62 #include <linux/mnt_namespace.h>
63 #include <linux/mm.h>
64 #include <linux/rcupdate.h>
65 #include <linux/kallsyms.h>
66 #include <linux/module.h>
67 #include <linux/mount.h>
68 #include <linux/security.h>
69 #include <linux/ptrace.h>
70 #include <linux/cpuset.h>
71 #include <linux/audit.h>
72 #include <linux/poll.h>
73 #include <linux/nsproxy.h>
74 #include <linux/oom.h>
75 #include <linux/elf.h>
76 #include "internal.h"
77 
78 /* NOTE:
79  *	Implementing inode permission operations in /proc is almost
80  *	certainly an error.  Permission checks need to happen during
81  *	each system call not at open time.  The reason is that most of
82  *	what we wish to check for permissions in /proc varies at runtime.
83  *
84  *	The classic example of a problem is opening file descriptors
85  *	in /proc for a task before it execs a suid executable.
86  */
87 
88 
89 /* Worst case buffer size needed for holding an integer. */
90 #define PROC_NUMBUF 13
91 
92 struct pid_entry {
93 	char *name;
94 	int len;
95 	mode_t mode;
96 	const struct inode_operations *iop;
97 	const struct file_operations *fop;
98 	union proc_op op;
99 };
100 
101 #define NOD(NAME, MODE, IOP, FOP, OP) {			\
102 	.name = (NAME),					\
103 	.len  = sizeof(NAME) - 1,			\
104 	.mode = MODE,					\
105 	.iop  = IOP,					\
106 	.fop  = FOP,					\
107 	.op   = OP,					\
108 }
109 
110 #define DIR(NAME, MODE, OTYPE)							\
111 	NOD(NAME, (S_IFDIR|(MODE)),						\
112 		&proc_##OTYPE##_inode_operations, &proc_##OTYPE##_operations,	\
113 		{} )
114 #define LNK(NAME, OTYPE)					\
115 	NOD(NAME, (S_IFLNK|S_IRWXUGO),				\
116 		&proc_pid_link_inode_operations, NULL,		\
117 		{ .proc_get_link = &proc_##OTYPE##_link } )
118 #define REG(NAME, MODE, OTYPE)				\
119 	NOD(NAME, (S_IFREG|(MODE)), NULL,		\
120 		&proc_##OTYPE##_operations, {})
121 #define INF(NAME, MODE, OTYPE)				\
122 	NOD(NAME, (S_IFREG|(MODE)), 			\
123 		NULL, &proc_info_file_operations,	\
124 		{ .proc_read = &proc_##OTYPE } )
125 
126 int maps_protect;
127 EXPORT_SYMBOL(maps_protect);
128 
129 static struct fs_struct *get_fs_struct(struct task_struct *task)
130 {
131 	struct fs_struct *fs;
132 	task_lock(task);
133 	fs = task->fs;
134 	if(fs)
135 		atomic_inc(&fs->count);
136 	task_unlock(task);
137 	return fs;
138 }
139 
140 static int get_nr_threads(struct task_struct *tsk)
141 {
142 	/* Must be called with the rcu_read_lock held */
143 	unsigned long flags;
144 	int count = 0;
145 
146 	if (lock_task_sighand(tsk, &flags)) {
147 		count = atomic_read(&tsk->signal->count);
148 		unlock_task_sighand(tsk, &flags);
149 	}
150 	return count;
151 }
152 
153 static int proc_cwd_link(struct inode *inode, struct dentry **dentry, struct vfsmount **mnt)
154 {
155 	struct task_struct *task = get_proc_task(inode);
156 	struct fs_struct *fs = NULL;
157 	int result = -ENOENT;
158 
159 	if (task) {
160 		fs = get_fs_struct(task);
161 		put_task_struct(task);
162 	}
163 	if (fs) {
164 		read_lock(&fs->lock);
165 		*mnt = mntget(fs->pwdmnt);
166 		*dentry = dget(fs->pwd);
167 		read_unlock(&fs->lock);
168 		result = 0;
169 		put_fs_struct(fs);
170 	}
171 	return result;
172 }
173 
174 static int proc_root_link(struct inode *inode, struct dentry **dentry, struct vfsmount **mnt)
175 {
176 	struct task_struct *task = get_proc_task(inode);
177 	struct fs_struct *fs = NULL;
178 	int result = -ENOENT;
179 
180 	if (task) {
181 		fs = get_fs_struct(task);
182 		put_task_struct(task);
183 	}
184 	if (fs) {
185 		read_lock(&fs->lock);
186 		*mnt = mntget(fs->rootmnt);
187 		*dentry = dget(fs->root);
188 		read_unlock(&fs->lock);
189 		result = 0;
190 		put_fs_struct(fs);
191 	}
192 	return result;
193 }
194 
195 #define MAY_PTRACE(task) \
196 	(task == current || \
197 	(task->parent == current && \
198 	(task->ptrace & PT_PTRACED) && \
199 	 (task->state == TASK_STOPPED || task->state == TASK_TRACED) && \
200 	 security_ptrace(current,task) == 0))
201 
202 static int proc_pid_cmdline(struct task_struct *task, char * buffer)
203 {
204 	int res = 0;
205 	unsigned int len;
206 	struct mm_struct *mm = get_task_mm(task);
207 	if (!mm)
208 		goto out;
209 	if (!mm->arg_end)
210 		goto out_mm;	/* Shh! No looking before we're done */
211 
212  	len = mm->arg_end - mm->arg_start;
213 
214 	if (len > PAGE_SIZE)
215 		len = PAGE_SIZE;
216 
217 	res = access_process_vm(task, mm->arg_start, buffer, len, 0);
218 
219 	// If the nul at the end of args has been overwritten, then
220 	// assume application is using setproctitle(3).
221 	if (res > 0 && buffer[res-1] != '\0' && len < PAGE_SIZE) {
222 		len = strnlen(buffer, res);
223 		if (len < res) {
224 		    res = len;
225 		} else {
226 			len = mm->env_end - mm->env_start;
227 			if (len > PAGE_SIZE - res)
228 				len = PAGE_SIZE - res;
229 			res += access_process_vm(task, mm->env_start, buffer+res, len, 0);
230 			res = strnlen(buffer, res);
231 		}
232 	}
233 out_mm:
234 	mmput(mm);
235 out:
236 	return res;
237 }
238 
239 static int proc_pid_auxv(struct task_struct *task, char *buffer)
240 {
241 	int res = 0;
242 	struct mm_struct *mm = get_task_mm(task);
243 	if (mm) {
244 		unsigned int nwords = 0;
245 		do
246 			nwords += 2;
247 		while (mm->saved_auxv[nwords - 2] != 0); /* AT_NULL */
248 		res = nwords * sizeof(mm->saved_auxv[0]);
249 		if (res > PAGE_SIZE)
250 			res = PAGE_SIZE;
251 		memcpy(buffer, mm->saved_auxv, res);
252 		mmput(mm);
253 	}
254 	return res;
255 }
256 
257 
258 #ifdef CONFIG_KALLSYMS
259 /*
260  * Provides a wchan file via kallsyms in a proper one-value-per-file format.
261  * Returns the resolved symbol.  If that fails, simply return the address.
262  */
263 static int proc_pid_wchan(struct task_struct *task, char *buffer)
264 {
265 	unsigned long wchan;
266 	char symname[KSYM_NAME_LEN];
267 
268 	wchan = get_wchan(task);
269 
270 	if (lookup_symbol_name(wchan, symname) < 0)
271 		return sprintf(buffer, "%lu", wchan);
272 	else
273 		return sprintf(buffer, "%s", symname);
274 }
275 #endif /* CONFIG_KALLSYMS */
276 
277 #ifdef CONFIG_SCHEDSTATS
278 /*
279  * Provides /proc/PID/schedstat
280  */
281 static int proc_pid_schedstat(struct task_struct *task, char *buffer)
282 {
283 	return sprintf(buffer, "%llu %llu %lu\n",
284 			task->sched_info.cpu_time,
285 			task->sched_info.run_delay,
286 			task->sched_info.pcount);
287 }
288 #endif
289 
290 /* The badness from the OOM killer */
291 unsigned long badness(struct task_struct *p, unsigned long uptime);
292 static int proc_oom_score(struct task_struct *task, char *buffer)
293 {
294 	unsigned long points;
295 	struct timespec uptime;
296 
297 	do_posix_clock_monotonic_gettime(&uptime);
298 	read_lock(&tasklist_lock);
299 	points = badness(task, uptime.tv_sec);
300 	read_unlock(&tasklist_lock);
301 	return sprintf(buffer, "%lu\n", points);
302 }
303 
304 /************************************************************************/
305 /*                       Here the fs part begins                        */
306 /************************************************************************/
307 
308 /* permission checks */
309 static int proc_fd_access_allowed(struct inode *inode)
310 {
311 	struct task_struct *task;
312 	int allowed = 0;
313 	/* Allow access to a task's file descriptors if it is us or we
314 	 * may use ptrace attach to the process and find out that
315 	 * information.
316 	 */
317 	task = get_proc_task(inode);
318 	if (task) {
319 		allowed = ptrace_may_attach(task);
320 		put_task_struct(task);
321 	}
322 	return allowed;
323 }
324 
325 static int proc_setattr(struct dentry *dentry, struct iattr *attr)
326 {
327 	int error;
328 	struct inode *inode = dentry->d_inode;
329 
330 	if (attr->ia_valid & ATTR_MODE)
331 		return -EPERM;
332 
333 	error = inode_change_ok(inode, attr);
334 	if (!error)
335 		error = inode_setattr(inode, attr);
336 	return error;
337 }
338 
339 static const struct inode_operations proc_def_inode_operations = {
340 	.setattr	= proc_setattr,
341 };
342 
343 extern struct seq_operations mounts_op;
344 struct proc_mounts {
345 	struct seq_file m;
346 	int event;
347 };
348 
349 static int mounts_open(struct inode *inode, struct file *file)
350 {
351 	struct task_struct *task = get_proc_task(inode);
352 	struct mnt_namespace *ns = NULL;
353 	struct proc_mounts *p;
354 	int ret = -EINVAL;
355 
356 	if (task) {
357 		task_lock(task);
358 		if (task->nsproxy) {
359 			ns = task->nsproxy->mnt_ns;
360 			if (ns)
361 				get_mnt_ns(ns);
362 		}
363 		task_unlock(task);
364 		put_task_struct(task);
365 	}
366 
367 	if (ns) {
368 		ret = -ENOMEM;
369 		p = kmalloc(sizeof(struct proc_mounts), GFP_KERNEL);
370 		if (p) {
371 			file->private_data = &p->m;
372 			ret = seq_open(file, &mounts_op);
373 			if (!ret) {
374 				p->m.private = ns;
375 				p->event = ns->event;
376 				return 0;
377 			}
378 			kfree(p);
379 		}
380 		put_mnt_ns(ns);
381 	}
382 	return ret;
383 }
384 
385 static int mounts_release(struct inode *inode, struct file *file)
386 {
387 	struct seq_file *m = file->private_data;
388 	struct mnt_namespace *ns = m->private;
389 	put_mnt_ns(ns);
390 	return seq_release(inode, file);
391 }
392 
393 static unsigned mounts_poll(struct file *file, poll_table *wait)
394 {
395 	struct proc_mounts *p = file->private_data;
396 	struct mnt_namespace *ns = p->m.private;
397 	unsigned res = 0;
398 
399 	poll_wait(file, &ns->poll, wait);
400 
401 	spin_lock(&vfsmount_lock);
402 	if (p->event != ns->event) {
403 		p->event = ns->event;
404 		res = POLLERR;
405 	}
406 	spin_unlock(&vfsmount_lock);
407 
408 	return res;
409 }
410 
411 static const struct file_operations proc_mounts_operations = {
412 	.open		= mounts_open,
413 	.read		= seq_read,
414 	.llseek		= seq_lseek,
415 	.release	= mounts_release,
416 	.poll		= mounts_poll,
417 };
418 
419 extern struct seq_operations mountstats_op;
420 static int mountstats_open(struct inode *inode, struct file *file)
421 {
422 	int ret = seq_open(file, &mountstats_op);
423 
424 	if (!ret) {
425 		struct seq_file *m = file->private_data;
426 		struct mnt_namespace *mnt_ns = NULL;
427 		struct task_struct *task = get_proc_task(inode);
428 
429 		if (task) {
430 			task_lock(task);
431 			if (task->nsproxy)
432 				mnt_ns = task->nsproxy->mnt_ns;
433 			if (mnt_ns)
434 				get_mnt_ns(mnt_ns);
435 			task_unlock(task);
436 			put_task_struct(task);
437 		}
438 
439 		if (mnt_ns)
440 			m->private = mnt_ns;
441 		else {
442 			seq_release(inode, file);
443 			ret = -EINVAL;
444 		}
445 	}
446 	return ret;
447 }
448 
449 static const struct file_operations proc_mountstats_operations = {
450 	.open		= mountstats_open,
451 	.read		= seq_read,
452 	.llseek		= seq_lseek,
453 	.release	= mounts_release,
454 };
455 
456 #define PROC_BLOCK_SIZE	(3*1024)		/* 4K page size but our output routines use some slack for overruns */
457 
458 static ssize_t proc_info_read(struct file * file, char __user * buf,
459 			  size_t count, loff_t *ppos)
460 {
461 	struct inode * inode = file->f_path.dentry->d_inode;
462 	unsigned long page;
463 	ssize_t length;
464 	struct task_struct *task = get_proc_task(inode);
465 
466 	length = -ESRCH;
467 	if (!task)
468 		goto out_no_task;
469 
470 	if (count > PROC_BLOCK_SIZE)
471 		count = PROC_BLOCK_SIZE;
472 
473 	length = -ENOMEM;
474 	if (!(page = __get_free_page(GFP_TEMPORARY)))
475 		goto out;
476 
477 	length = PROC_I(inode)->op.proc_read(task, (char*)page);
478 
479 	if (length >= 0)
480 		length = simple_read_from_buffer(buf, count, ppos, (char *)page, length);
481 	free_page(page);
482 out:
483 	put_task_struct(task);
484 out_no_task:
485 	return length;
486 }
487 
488 static const struct file_operations proc_info_file_operations = {
489 	.read		= proc_info_read,
490 };
491 
492 static int mem_open(struct inode* inode, struct file* file)
493 {
494 	file->private_data = (void*)((long)current->self_exec_id);
495 	return 0;
496 }
497 
498 static ssize_t mem_read(struct file * file, char __user * buf,
499 			size_t count, loff_t *ppos)
500 {
501 	struct task_struct *task = get_proc_task(file->f_path.dentry->d_inode);
502 	char *page;
503 	unsigned long src = *ppos;
504 	int ret = -ESRCH;
505 	struct mm_struct *mm;
506 
507 	if (!task)
508 		goto out_no_task;
509 
510 	if (!MAY_PTRACE(task) || !ptrace_may_attach(task))
511 		goto out;
512 
513 	ret = -ENOMEM;
514 	page = (char *)__get_free_page(GFP_TEMPORARY);
515 	if (!page)
516 		goto out;
517 
518 	ret = 0;
519 
520 	mm = get_task_mm(task);
521 	if (!mm)
522 		goto out_free;
523 
524 	ret = -EIO;
525 
526 	if (file->private_data != (void*)((long)current->self_exec_id))
527 		goto out_put;
528 
529 	ret = 0;
530 
531 	while (count > 0) {
532 		int this_len, retval;
533 
534 		this_len = (count > PAGE_SIZE) ? PAGE_SIZE : count;
535 		retval = access_process_vm(task, src, page, this_len, 0);
536 		if (!retval || !MAY_PTRACE(task) || !ptrace_may_attach(task)) {
537 			if (!ret)
538 				ret = -EIO;
539 			break;
540 		}
541 
542 		if (copy_to_user(buf, page, retval)) {
543 			ret = -EFAULT;
544 			break;
545 		}
546 
547 		ret += retval;
548 		src += retval;
549 		buf += retval;
550 		count -= retval;
551 	}
552 	*ppos = src;
553 
554 out_put:
555 	mmput(mm);
556 out_free:
557 	free_page((unsigned long) page);
558 out:
559 	put_task_struct(task);
560 out_no_task:
561 	return ret;
562 }
563 
564 #define mem_write NULL
565 
566 #ifndef mem_write
567 /* This is a security hazard */
568 static ssize_t mem_write(struct file * file, const char __user *buf,
569 			 size_t count, loff_t *ppos)
570 {
571 	int copied;
572 	char *page;
573 	struct task_struct *task = get_proc_task(file->f_path.dentry->d_inode);
574 	unsigned long dst = *ppos;
575 
576 	copied = -ESRCH;
577 	if (!task)
578 		goto out_no_task;
579 
580 	if (!MAY_PTRACE(task) || !ptrace_may_attach(task))
581 		goto out;
582 
583 	copied = -ENOMEM;
584 	page = (char *)__get_free_page(GFP_TEMPORARY);
585 	if (!page)
586 		goto out;
587 
588 	copied = 0;
589 	while (count > 0) {
590 		int this_len, retval;
591 
592 		this_len = (count > PAGE_SIZE) ? PAGE_SIZE : count;
593 		if (copy_from_user(page, buf, this_len)) {
594 			copied = -EFAULT;
595 			break;
596 		}
597 		retval = access_process_vm(task, dst, page, this_len, 1);
598 		if (!retval) {
599 			if (!copied)
600 				copied = -EIO;
601 			break;
602 		}
603 		copied += retval;
604 		buf += retval;
605 		dst += retval;
606 		count -= retval;
607 	}
608 	*ppos = dst;
609 	free_page((unsigned long) page);
610 out:
611 	put_task_struct(task);
612 out_no_task:
613 	return copied;
614 }
615 #endif
616 
617 static loff_t mem_lseek(struct file * file, loff_t offset, int orig)
618 {
619 	switch (orig) {
620 	case 0:
621 		file->f_pos = offset;
622 		break;
623 	case 1:
624 		file->f_pos += offset;
625 		break;
626 	default:
627 		return -EINVAL;
628 	}
629 	force_successful_syscall_return();
630 	return file->f_pos;
631 }
632 
633 static const struct file_operations proc_mem_operations = {
634 	.llseek		= mem_lseek,
635 	.read		= mem_read,
636 	.write		= mem_write,
637 	.open		= mem_open,
638 };
639 
640 static ssize_t environ_read(struct file *file, char __user *buf,
641 			size_t count, loff_t *ppos)
642 {
643 	struct task_struct *task = get_proc_task(file->f_dentry->d_inode);
644 	char *page;
645 	unsigned long src = *ppos;
646 	int ret = -ESRCH;
647 	struct mm_struct *mm;
648 
649 	if (!task)
650 		goto out_no_task;
651 
652 	if (!ptrace_may_attach(task))
653 		goto out;
654 
655 	ret = -ENOMEM;
656 	page = (char *)__get_free_page(GFP_TEMPORARY);
657 	if (!page)
658 		goto out;
659 
660 	ret = 0;
661 
662 	mm = get_task_mm(task);
663 	if (!mm)
664 		goto out_free;
665 
666 	while (count > 0) {
667 		int this_len, retval, max_len;
668 
669 		this_len = mm->env_end - (mm->env_start + src);
670 
671 		if (this_len <= 0)
672 			break;
673 
674 		max_len = (count > PAGE_SIZE) ? PAGE_SIZE : count;
675 		this_len = (this_len > max_len) ? max_len : this_len;
676 
677 		retval = access_process_vm(task, (mm->env_start + src),
678 			page, this_len, 0);
679 
680 		if (retval <= 0) {
681 			ret = retval;
682 			break;
683 		}
684 
685 		if (copy_to_user(buf, page, retval)) {
686 			ret = -EFAULT;
687 			break;
688 		}
689 
690 		ret += retval;
691 		src += retval;
692 		buf += retval;
693 		count -= retval;
694 	}
695 	*ppos = src;
696 
697 	mmput(mm);
698 out_free:
699 	free_page((unsigned long) page);
700 out:
701 	put_task_struct(task);
702 out_no_task:
703 	return ret;
704 }
705 
706 static const struct file_operations proc_environ_operations = {
707 	.read		= environ_read,
708 };
709 
710 static ssize_t oom_adjust_read(struct file *file, char __user *buf,
711 				size_t count, loff_t *ppos)
712 {
713 	struct task_struct *task = get_proc_task(file->f_path.dentry->d_inode);
714 	char buffer[PROC_NUMBUF];
715 	size_t len;
716 	int oom_adjust;
717 
718 	if (!task)
719 		return -ESRCH;
720 	oom_adjust = task->oomkilladj;
721 	put_task_struct(task);
722 
723 	len = snprintf(buffer, sizeof(buffer), "%i\n", oom_adjust);
724 
725 	return simple_read_from_buffer(buf, count, ppos, buffer, len);
726 }
727 
728 static ssize_t oom_adjust_write(struct file *file, const char __user *buf,
729 				size_t count, loff_t *ppos)
730 {
731 	struct task_struct *task;
732 	char buffer[PROC_NUMBUF], *end;
733 	int oom_adjust;
734 
735 	memset(buffer, 0, sizeof(buffer));
736 	if (count > sizeof(buffer) - 1)
737 		count = sizeof(buffer) - 1;
738 	if (copy_from_user(buffer, buf, count))
739 		return -EFAULT;
740 	oom_adjust = simple_strtol(buffer, &end, 0);
741 	if ((oom_adjust < OOM_ADJUST_MIN || oom_adjust > OOM_ADJUST_MAX) &&
742 	     oom_adjust != OOM_DISABLE)
743 		return -EINVAL;
744 	if (*end == '\n')
745 		end++;
746 	task = get_proc_task(file->f_path.dentry->d_inode);
747 	if (!task)
748 		return -ESRCH;
749 	if (oom_adjust < task->oomkilladj && !capable(CAP_SYS_RESOURCE)) {
750 		put_task_struct(task);
751 		return -EACCES;
752 	}
753 	task->oomkilladj = oom_adjust;
754 	put_task_struct(task);
755 	if (end - buffer == 0)
756 		return -EIO;
757 	return end - buffer;
758 }
759 
760 static const struct file_operations proc_oom_adjust_operations = {
761 	.read		= oom_adjust_read,
762 	.write		= oom_adjust_write,
763 };
764 
765 #ifdef CONFIG_MMU
766 static ssize_t clear_refs_write(struct file *file, const char __user *buf,
767 				size_t count, loff_t *ppos)
768 {
769 	struct task_struct *task;
770 	char buffer[PROC_NUMBUF], *end;
771 	struct mm_struct *mm;
772 
773 	memset(buffer, 0, sizeof(buffer));
774 	if (count > sizeof(buffer) - 1)
775 		count = sizeof(buffer) - 1;
776 	if (copy_from_user(buffer, buf, count))
777 		return -EFAULT;
778 	if (!simple_strtol(buffer, &end, 0))
779 		return -EINVAL;
780 	if (*end == '\n')
781 		end++;
782 	task = get_proc_task(file->f_path.dentry->d_inode);
783 	if (!task)
784 		return -ESRCH;
785 	mm = get_task_mm(task);
786 	if (mm) {
787 		clear_refs_smap(mm);
788 		mmput(mm);
789 	}
790 	put_task_struct(task);
791 	if (end - buffer == 0)
792 		return -EIO;
793 	return end - buffer;
794 }
795 
796 static struct file_operations proc_clear_refs_operations = {
797 	.write		= clear_refs_write,
798 };
799 #endif
800 
801 #ifdef CONFIG_AUDITSYSCALL
802 #define TMPBUFLEN 21
803 static ssize_t proc_loginuid_read(struct file * file, char __user * buf,
804 				  size_t count, loff_t *ppos)
805 {
806 	struct inode * inode = file->f_path.dentry->d_inode;
807 	struct task_struct *task = get_proc_task(inode);
808 	ssize_t length;
809 	char tmpbuf[TMPBUFLEN];
810 
811 	if (!task)
812 		return -ESRCH;
813 	length = scnprintf(tmpbuf, TMPBUFLEN, "%u",
814 				audit_get_loginuid(task->audit_context));
815 	put_task_struct(task);
816 	return simple_read_from_buffer(buf, count, ppos, tmpbuf, length);
817 }
818 
819 static ssize_t proc_loginuid_write(struct file * file, const char __user * buf,
820 				   size_t count, loff_t *ppos)
821 {
822 	struct inode * inode = file->f_path.dentry->d_inode;
823 	char *page, *tmp;
824 	ssize_t length;
825 	uid_t loginuid;
826 
827 	if (!capable(CAP_AUDIT_CONTROL))
828 		return -EPERM;
829 
830 	if (current != pid_task(proc_pid(inode), PIDTYPE_PID))
831 		return -EPERM;
832 
833 	if (count >= PAGE_SIZE)
834 		count = PAGE_SIZE - 1;
835 
836 	if (*ppos != 0) {
837 		/* No partial writes. */
838 		return -EINVAL;
839 	}
840 	page = (char*)__get_free_page(GFP_TEMPORARY);
841 	if (!page)
842 		return -ENOMEM;
843 	length = -EFAULT;
844 	if (copy_from_user(page, buf, count))
845 		goto out_free_page;
846 
847 	page[count] = '\0';
848 	loginuid = simple_strtoul(page, &tmp, 10);
849 	if (tmp == page) {
850 		length = -EINVAL;
851 		goto out_free_page;
852 
853 	}
854 	length = audit_set_loginuid(current, loginuid);
855 	if (likely(length == 0))
856 		length = count;
857 
858 out_free_page:
859 	free_page((unsigned long) page);
860 	return length;
861 }
862 
863 static const struct file_operations proc_loginuid_operations = {
864 	.read		= proc_loginuid_read,
865 	.write		= proc_loginuid_write,
866 };
867 #endif
868 
869 #ifdef CONFIG_FAULT_INJECTION
870 static ssize_t proc_fault_inject_read(struct file * file, char __user * buf,
871 				      size_t count, loff_t *ppos)
872 {
873 	struct task_struct *task = get_proc_task(file->f_dentry->d_inode);
874 	char buffer[PROC_NUMBUF];
875 	size_t len;
876 	int make_it_fail;
877 
878 	if (!task)
879 		return -ESRCH;
880 	make_it_fail = task->make_it_fail;
881 	put_task_struct(task);
882 
883 	len = snprintf(buffer, sizeof(buffer), "%i\n", make_it_fail);
884 
885 	return simple_read_from_buffer(buf, count, ppos, buffer, len);
886 }
887 
888 static ssize_t proc_fault_inject_write(struct file * file,
889 			const char __user * buf, size_t count, loff_t *ppos)
890 {
891 	struct task_struct *task;
892 	char buffer[PROC_NUMBUF], *end;
893 	int make_it_fail;
894 
895 	if (!capable(CAP_SYS_RESOURCE))
896 		return -EPERM;
897 	memset(buffer, 0, sizeof(buffer));
898 	if (count > sizeof(buffer) - 1)
899 		count = sizeof(buffer) - 1;
900 	if (copy_from_user(buffer, buf, count))
901 		return -EFAULT;
902 	make_it_fail = simple_strtol(buffer, &end, 0);
903 	if (*end == '\n')
904 		end++;
905 	task = get_proc_task(file->f_dentry->d_inode);
906 	if (!task)
907 		return -ESRCH;
908 	task->make_it_fail = make_it_fail;
909 	put_task_struct(task);
910 	if (end - buffer == 0)
911 		return -EIO;
912 	return end - buffer;
913 }
914 
915 static const struct file_operations proc_fault_inject_operations = {
916 	.read		= proc_fault_inject_read,
917 	.write		= proc_fault_inject_write,
918 };
919 #endif
920 
921 #ifdef CONFIG_SCHED_DEBUG
922 /*
923  * Print out various scheduling related per-task fields:
924  */
925 static int sched_show(struct seq_file *m, void *v)
926 {
927 	struct inode *inode = m->private;
928 	struct task_struct *p;
929 
930 	WARN_ON(!inode);
931 
932 	p = get_proc_task(inode);
933 	if (!p)
934 		return -ESRCH;
935 	proc_sched_show_task(p, m);
936 
937 	put_task_struct(p);
938 
939 	return 0;
940 }
941 
942 static ssize_t
943 sched_write(struct file *file, const char __user *buf,
944 	    size_t count, loff_t *offset)
945 {
946 	struct inode *inode = file->f_path.dentry->d_inode;
947 	struct task_struct *p;
948 
949 	WARN_ON(!inode);
950 
951 	p = get_proc_task(inode);
952 	if (!p)
953 		return -ESRCH;
954 	proc_sched_set_task(p);
955 
956 	put_task_struct(p);
957 
958 	return count;
959 }
960 
961 static int sched_open(struct inode *inode, struct file *filp)
962 {
963 	int ret;
964 
965 	ret = single_open(filp, sched_show, NULL);
966 	if (!ret) {
967 		struct seq_file *m = filp->private_data;
968 
969 		m->private = inode;
970 	}
971 	return ret;
972 }
973 
974 static const struct file_operations proc_pid_sched_operations = {
975 	.open		= sched_open,
976 	.read		= seq_read,
977 	.write		= sched_write,
978 	.llseek		= seq_lseek,
979 	.release	= single_release,
980 };
981 
982 #endif
983 
984 static void *proc_pid_follow_link(struct dentry *dentry, struct nameidata *nd)
985 {
986 	struct inode *inode = dentry->d_inode;
987 	int error = -EACCES;
988 
989 	/* We don't need a base pointer in the /proc filesystem */
990 	path_release(nd);
991 
992 	/* Are we allowed to snoop on the tasks file descriptors? */
993 	if (!proc_fd_access_allowed(inode))
994 		goto out;
995 
996 	error = PROC_I(inode)->op.proc_get_link(inode, &nd->dentry, &nd->mnt);
997 	nd->last_type = LAST_BIND;
998 out:
999 	return ERR_PTR(error);
1000 }
1001 
1002 static int do_proc_readlink(struct dentry *dentry, struct vfsmount *mnt,
1003 			    char __user *buffer, int buflen)
1004 {
1005 	struct inode * inode;
1006 	char *tmp = (char*)__get_free_page(GFP_TEMPORARY);
1007 	char *path;
1008 	int len;
1009 
1010 	if (!tmp)
1011 		return -ENOMEM;
1012 
1013 	inode = dentry->d_inode;
1014 	path = d_path(dentry, mnt, tmp, PAGE_SIZE);
1015 	len = PTR_ERR(path);
1016 	if (IS_ERR(path))
1017 		goto out;
1018 	len = tmp + PAGE_SIZE - 1 - path;
1019 
1020 	if (len > buflen)
1021 		len = buflen;
1022 	if (copy_to_user(buffer, path, len))
1023 		len = -EFAULT;
1024  out:
1025 	free_page((unsigned long)tmp);
1026 	return len;
1027 }
1028 
1029 static int proc_pid_readlink(struct dentry * dentry, char __user * buffer, int buflen)
1030 {
1031 	int error = -EACCES;
1032 	struct inode *inode = dentry->d_inode;
1033 	struct dentry *de;
1034 	struct vfsmount *mnt = NULL;
1035 
1036 	/* Are we allowed to snoop on the tasks file descriptors? */
1037 	if (!proc_fd_access_allowed(inode))
1038 		goto out;
1039 
1040 	error = PROC_I(inode)->op.proc_get_link(inode, &de, &mnt);
1041 	if (error)
1042 		goto out;
1043 
1044 	error = do_proc_readlink(de, mnt, buffer, buflen);
1045 	dput(de);
1046 	mntput(mnt);
1047 out:
1048 	return error;
1049 }
1050 
1051 static const struct inode_operations proc_pid_link_inode_operations = {
1052 	.readlink	= proc_pid_readlink,
1053 	.follow_link	= proc_pid_follow_link,
1054 	.setattr	= proc_setattr,
1055 };
1056 
1057 
1058 /* building an inode */
1059 
1060 static int task_dumpable(struct task_struct *task)
1061 {
1062 	int dumpable = 0;
1063 	struct mm_struct *mm;
1064 
1065 	task_lock(task);
1066 	mm = task->mm;
1067 	if (mm)
1068 		dumpable = get_dumpable(mm);
1069 	task_unlock(task);
1070 	if(dumpable == 1)
1071 		return 1;
1072 	return 0;
1073 }
1074 
1075 
1076 static struct inode *proc_pid_make_inode(struct super_block * sb, struct task_struct *task)
1077 {
1078 	struct inode * inode;
1079 	struct proc_inode *ei;
1080 
1081 	/* We need a new inode */
1082 
1083 	inode = new_inode(sb);
1084 	if (!inode)
1085 		goto out;
1086 
1087 	/* Common stuff */
1088 	ei = PROC_I(inode);
1089 	inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
1090 	inode->i_op = &proc_def_inode_operations;
1091 
1092 	/*
1093 	 * grab the reference to task.
1094 	 */
1095 	ei->pid = get_task_pid(task, PIDTYPE_PID);
1096 	if (!ei->pid)
1097 		goto out_unlock;
1098 
1099 	inode->i_uid = 0;
1100 	inode->i_gid = 0;
1101 	if (task_dumpable(task)) {
1102 		inode->i_uid = task->euid;
1103 		inode->i_gid = task->egid;
1104 	}
1105 	security_task_to_inode(task, inode);
1106 
1107 out:
1108 	return inode;
1109 
1110 out_unlock:
1111 	iput(inode);
1112 	return NULL;
1113 }
1114 
1115 static int pid_getattr(struct vfsmount *mnt, struct dentry *dentry, struct kstat *stat)
1116 {
1117 	struct inode *inode = dentry->d_inode;
1118 	struct task_struct *task;
1119 	generic_fillattr(inode, stat);
1120 
1121 	rcu_read_lock();
1122 	stat->uid = 0;
1123 	stat->gid = 0;
1124 	task = pid_task(proc_pid(inode), PIDTYPE_PID);
1125 	if (task) {
1126 		if ((inode->i_mode == (S_IFDIR|S_IRUGO|S_IXUGO)) ||
1127 		    task_dumpable(task)) {
1128 			stat->uid = task->euid;
1129 			stat->gid = task->egid;
1130 		}
1131 	}
1132 	rcu_read_unlock();
1133 	return 0;
1134 }
1135 
1136 /* dentry stuff */
1137 
1138 /*
1139  *	Exceptional case: normally we are not allowed to unhash a busy
1140  * directory. In this case, however, we can do it - no aliasing problems
1141  * due to the way we treat inodes.
1142  *
1143  * Rewrite the inode's ownerships here because the owning task may have
1144  * performed a setuid(), etc.
1145  *
1146  * Before the /proc/pid/status file was created the only way to read
1147  * the effective uid of a /process was to stat /proc/pid.  Reading
1148  * /proc/pid/status is slow enough that procps and other packages
1149  * kept stating /proc/pid.  To keep the rules in /proc simple I have
1150  * made this apply to all per process world readable and executable
1151  * directories.
1152  */
1153 static int pid_revalidate(struct dentry *dentry, struct nameidata *nd)
1154 {
1155 	struct inode *inode = dentry->d_inode;
1156 	struct task_struct *task = get_proc_task(inode);
1157 	if (task) {
1158 		if ((inode->i_mode == (S_IFDIR|S_IRUGO|S_IXUGO)) ||
1159 		    task_dumpable(task)) {
1160 			inode->i_uid = task->euid;
1161 			inode->i_gid = task->egid;
1162 		} else {
1163 			inode->i_uid = 0;
1164 			inode->i_gid = 0;
1165 		}
1166 		inode->i_mode &= ~(S_ISUID | S_ISGID);
1167 		security_task_to_inode(task, inode);
1168 		put_task_struct(task);
1169 		return 1;
1170 	}
1171 	d_drop(dentry);
1172 	return 0;
1173 }
1174 
1175 static int pid_delete_dentry(struct dentry * dentry)
1176 {
1177 	/* Is the task we represent dead?
1178 	 * If so, then don't put the dentry on the lru list,
1179 	 * kill it immediately.
1180 	 */
1181 	return !proc_pid(dentry->d_inode)->tasks[PIDTYPE_PID].first;
1182 }
1183 
1184 static struct dentry_operations pid_dentry_operations =
1185 {
1186 	.d_revalidate	= pid_revalidate,
1187 	.d_delete	= pid_delete_dentry,
1188 };
1189 
1190 /* Lookups */
1191 
1192 typedef struct dentry *instantiate_t(struct inode *, struct dentry *,
1193 				struct task_struct *, const void *);
1194 
1195 /*
1196  * Fill a directory entry.
1197  *
1198  * If possible create the dcache entry and derive our inode number and
1199  * file type from dcache entry.
1200  *
1201  * Since all of the proc inode numbers are dynamically generated, the inode
1202  * numbers do not exist until the inode is cache.  This means creating the
1203  * the dcache entry in readdir is necessary to keep the inode numbers
1204  * reported by readdir in sync with the inode numbers reported
1205  * by stat.
1206  */
1207 static int proc_fill_cache(struct file *filp, void *dirent, filldir_t filldir,
1208 	char *name, int len,
1209 	instantiate_t instantiate, struct task_struct *task, const void *ptr)
1210 {
1211 	struct dentry *child, *dir = filp->f_path.dentry;
1212 	struct inode *inode;
1213 	struct qstr qname;
1214 	ino_t ino = 0;
1215 	unsigned type = DT_UNKNOWN;
1216 
1217 	qname.name = name;
1218 	qname.len  = len;
1219 	qname.hash = full_name_hash(name, len);
1220 
1221 	child = d_lookup(dir, &qname);
1222 	if (!child) {
1223 		struct dentry *new;
1224 		new = d_alloc(dir, &qname);
1225 		if (new) {
1226 			child = instantiate(dir->d_inode, new, task, ptr);
1227 			if (child)
1228 				dput(new);
1229 			else
1230 				child = new;
1231 		}
1232 	}
1233 	if (!child || IS_ERR(child) || !child->d_inode)
1234 		goto end_instantiate;
1235 	inode = child->d_inode;
1236 	if (inode) {
1237 		ino = inode->i_ino;
1238 		type = inode->i_mode >> 12;
1239 	}
1240 	dput(child);
1241 end_instantiate:
1242 	if (!ino)
1243 		ino = find_inode_number(dir, &qname);
1244 	if (!ino)
1245 		ino = 1;
1246 	return filldir(dirent, name, len, filp->f_pos, ino, type);
1247 }
1248 
1249 static unsigned name_to_int(struct dentry *dentry)
1250 {
1251 	const char *name = dentry->d_name.name;
1252 	int len = dentry->d_name.len;
1253 	unsigned n = 0;
1254 
1255 	if (len > 1 && *name == '0')
1256 		goto out;
1257 	while (len-- > 0) {
1258 		unsigned c = *name++ - '0';
1259 		if (c > 9)
1260 			goto out;
1261 		if (n >= (~0U-9)/10)
1262 			goto out;
1263 		n *= 10;
1264 		n += c;
1265 	}
1266 	return n;
1267 out:
1268 	return ~0U;
1269 }
1270 
1271 #define PROC_FDINFO_MAX 64
1272 
1273 static int proc_fd_info(struct inode *inode, struct dentry **dentry,
1274 			struct vfsmount **mnt, char *info)
1275 {
1276 	struct task_struct *task = get_proc_task(inode);
1277 	struct files_struct *files = NULL;
1278 	struct file *file;
1279 	int fd = proc_fd(inode);
1280 
1281 	if (task) {
1282 		files = get_files_struct(task);
1283 		put_task_struct(task);
1284 	}
1285 	if (files) {
1286 		/*
1287 		 * We are not taking a ref to the file structure, so we must
1288 		 * hold ->file_lock.
1289 		 */
1290 		spin_lock(&files->file_lock);
1291 		file = fcheck_files(files, fd);
1292 		if (file) {
1293 			if (mnt)
1294 				*mnt = mntget(file->f_path.mnt);
1295 			if (dentry)
1296 				*dentry = dget(file->f_path.dentry);
1297 			if (info)
1298 				snprintf(info, PROC_FDINFO_MAX,
1299 					 "pos:\t%lli\n"
1300 					 "flags:\t0%o\n",
1301 					 (long long) file->f_pos,
1302 					 file->f_flags);
1303 			spin_unlock(&files->file_lock);
1304 			put_files_struct(files);
1305 			return 0;
1306 		}
1307 		spin_unlock(&files->file_lock);
1308 		put_files_struct(files);
1309 	}
1310 	return -ENOENT;
1311 }
1312 
1313 static int proc_fd_link(struct inode *inode, struct dentry **dentry,
1314 			struct vfsmount **mnt)
1315 {
1316 	return proc_fd_info(inode, dentry, mnt, NULL);
1317 }
1318 
1319 static int tid_fd_revalidate(struct dentry *dentry, struct nameidata *nd)
1320 {
1321 	struct inode *inode = dentry->d_inode;
1322 	struct task_struct *task = get_proc_task(inode);
1323 	int fd = proc_fd(inode);
1324 	struct files_struct *files;
1325 
1326 	if (task) {
1327 		files = get_files_struct(task);
1328 		if (files) {
1329 			rcu_read_lock();
1330 			if (fcheck_files(files, fd)) {
1331 				rcu_read_unlock();
1332 				put_files_struct(files);
1333 				if (task_dumpable(task)) {
1334 					inode->i_uid = task->euid;
1335 					inode->i_gid = task->egid;
1336 				} else {
1337 					inode->i_uid = 0;
1338 					inode->i_gid = 0;
1339 				}
1340 				inode->i_mode &= ~(S_ISUID | S_ISGID);
1341 				security_task_to_inode(task, inode);
1342 				put_task_struct(task);
1343 				return 1;
1344 			}
1345 			rcu_read_unlock();
1346 			put_files_struct(files);
1347 		}
1348 		put_task_struct(task);
1349 	}
1350 	d_drop(dentry);
1351 	return 0;
1352 }
1353 
1354 static struct dentry_operations tid_fd_dentry_operations =
1355 {
1356 	.d_revalidate	= tid_fd_revalidate,
1357 	.d_delete	= pid_delete_dentry,
1358 };
1359 
1360 static struct dentry *proc_fd_instantiate(struct inode *dir,
1361 	struct dentry *dentry, struct task_struct *task, const void *ptr)
1362 {
1363 	unsigned fd = *(const unsigned *)ptr;
1364 	struct file *file;
1365 	struct files_struct *files;
1366  	struct inode *inode;
1367  	struct proc_inode *ei;
1368 	struct dentry *error = ERR_PTR(-ENOENT);
1369 
1370 	inode = proc_pid_make_inode(dir->i_sb, task);
1371 	if (!inode)
1372 		goto out;
1373 	ei = PROC_I(inode);
1374 	ei->fd = fd;
1375 	files = get_files_struct(task);
1376 	if (!files)
1377 		goto out_iput;
1378 	inode->i_mode = S_IFLNK;
1379 
1380 	/*
1381 	 * We are not taking a ref to the file structure, so we must
1382 	 * hold ->file_lock.
1383 	 */
1384 	spin_lock(&files->file_lock);
1385 	file = fcheck_files(files, fd);
1386 	if (!file)
1387 		goto out_unlock;
1388 	if (file->f_mode & 1)
1389 		inode->i_mode |= S_IRUSR | S_IXUSR;
1390 	if (file->f_mode & 2)
1391 		inode->i_mode |= S_IWUSR | S_IXUSR;
1392 	spin_unlock(&files->file_lock);
1393 	put_files_struct(files);
1394 
1395 	inode->i_op = &proc_pid_link_inode_operations;
1396 	inode->i_size = 64;
1397 	ei->op.proc_get_link = proc_fd_link;
1398 	dentry->d_op = &tid_fd_dentry_operations;
1399 	d_add(dentry, inode);
1400 	/* Close the race of the process dying before we return the dentry */
1401 	if (tid_fd_revalidate(dentry, NULL))
1402 		error = NULL;
1403 
1404  out:
1405 	return error;
1406 out_unlock:
1407 	spin_unlock(&files->file_lock);
1408 	put_files_struct(files);
1409 out_iput:
1410 	iput(inode);
1411 	goto out;
1412 }
1413 
1414 static struct dentry *proc_lookupfd_common(struct inode *dir,
1415 					   struct dentry *dentry,
1416 					   instantiate_t instantiate)
1417 {
1418 	struct task_struct *task = get_proc_task(dir);
1419 	unsigned fd = name_to_int(dentry);
1420 	struct dentry *result = ERR_PTR(-ENOENT);
1421 
1422 	if (!task)
1423 		goto out_no_task;
1424 	if (fd == ~0U)
1425 		goto out;
1426 
1427 	result = instantiate(dir, dentry, task, &fd);
1428 out:
1429 	put_task_struct(task);
1430 out_no_task:
1431 	return result;
1432 }
1433 
1434 static int proc_readfd_common(struct file * filp, void * dirent,
1435 			      filldir_t filldir, instantiate_t instantiate)
1436 {
1437 	struct dentry *dentry = filp->f_path.dentry;
1438 	struct inode *inode = dentry->d_inode;
1439 	struct task_struct *p = get_proc_task(inode);
1440 	unsigned int fd, tid, ino;
1441 	int retval;
1442 	struct files_struct * files;
1443 	struct fdtable *fdt;
1444 
1445 	retval = -ENOENT;
1446 	if (!p)
1447 		goto out_no_task;
1448 	retval = 0;
1449 	tid = p->pid;
1450 
1451 	fd = filp->f_pos;
1452 	switch (fd) {
1453 		case 0:
1454 			if (filldir(dirent, ".", 1, 0, inode->i_ino, DT_DIR) < 0)
1455 				goto out;
1456 			filp->f_pos++;
1457 		case 1:
1458 			ino = parent_ino(dentry);
1459 			if (filldir(dirent, "..", 2, 1, ino, DT_DIR) < 0)
1460 				goto out;
1461 			filp->f_pos++;
1462 		default:
1463 			files = get_files_struct(p);
1464 			if (!files)
1465 				goto out;
1466 			rcu_read_lock();
1467 			fdt = files_fdtable(files);
1468 			for (fd = filp->f_pos-2;
1469 			     fd < fdt->max_fds;
1470 			     fd++, filp->f_pos++) {
1471 				char name[PROC_NUMBUF];
1472 				int len;
1473 
1474 				if (!fcheck_files(files, fd))
1475 					continue;
1476 				rcu_read_unlock();
1477 
1478 				len = snprintf(name, sizeof(name), "%d", fd);
1479 				if (proc_fill_cache(filp, dirent, filldir,
1480 						    name, len, instantiate,
1481 						    p, &fd) < 0) {
1482 					rcu_read_lock();
1483 					break;
1484 				}
1485 				rcu_read_lock();
1486 			}
1487 			rcu_read_unlock();
1488 			put_files_struct(files);
1489 	}
1490 out:
1491 	put_task_struct(p);
1492 out_no_task:
1493 	return retval;
1494 }
1495 
1496 static struct dentry *proc_lookupfd(struct inode *dir, struct dentry *dentry,
1497 				    struct nameidata *nd)
1498 {
1499 	return proc_lookupfd_common(dir, dentry, proc_fd_instantiate);
1500 }
1501 
1502 static int proc_readfd(struct file *filp, void *dirent, filldir_t filldir)
1503 {
1504 	return proc_readfd_common(filp, dirent, filldir, proc_fd_instantiate);
1505 }
1506 
1507 static ssize_t proc_fdinfo_read(struct file *file, char __user *buf,
1508 				      size_t len, loff_t *ppos)
1509 {
1510 	char tmp[PROC_FDINFO_MAX];
1511 	int err = proc_fd_info(file->f_path.dentry->d_inode, NULL, NULL, tmp);
1512 	if (!err)
1513 		err = simple_read_from_buffer(buf, len, ppos, tmp, strlen(tmp));
1514 	return err;
1515 }
1516 
1517 static const struct file_operations proc_fdinfo_file_operations = {
1518 	.open		= nonseekable_open,
1519 	.read		= proc_fdinfo_read,
1520 };
1521 
1522 static const struct file_operations proc_fd_operations = {
1523 	.read		= generic_read_dir,
1524 	.readdir	= proc_readfd,
1525 };
1526 
1527 /*
1528  * /proc/pid/fd needs a special permission handler so that a process can still
1529  * access /proc/self/fd after it has executed a setuid().
1530  */
1531 static int proc_fd_permission(struct inode *inode, int mask,
1532 				struct nameidata *nd)
1533 {
1534 	int rv;
1535 
1536 	rv = generic_permission(inode, mask, NULL);
1537 	if (rv == 0)
1538 		return 0;
1539 	if (task_pid(current) == proc_pid(inode))
1540 		rv = 0;
1541 	return rv;
1542 }
1543 
1544 /*
1545  * proc directories can do almost nothing..
1546  */
1547 static const struct inode_operations proc_fd_inode_operations = {
1548 	.lookup		= proc_lookupfd,
1549 	.permission	= proc_fd_permission,
1550 	.setattr	= proc_setattr,
1551 };
1552 
1553 static struct dentry *proc_fdinfo_instantiate(struct inode *dir,
1554 	struct dentry *dentry, struct task_struct *task, const void *ptr)
1555 {
1556 	unsigned fd = *(unsigned *)ptr;
1557  	struct inode *inode;
1558  	struct proc_inode *ei;
1559 	struct dentry *error = ERR_PTR(-ENOENT);
1560 
1561 	inode = proc_pid_make_inode(dir->i_sb, task);
1562 	if (!inode)
1563 		goto out;
1564 	ei = PROC_I(inode);
1565 	ei->fd = fd;
1566 	inode->i_mode = S_IFREG | S_IRUSR;
1567 	inode->i_fop = &proc_fdinfo_file_operations;
1568 	dentry->d_op = &tid_fd_dentry_operations;
1569 	d_add(dentry, inode);
1570 	/* Close the race of the process dying before we return the dentry */
1571 	if (tid_fd_revalidate(dentry, NULL))
1572 		error = NULL;
1573 
1574  out:
1575 	return error;
1576 }
1577 
1578 static struct dentry *proc_lookupfdinfo(struct inode *dir,
1579 					struct dentry *dentry,
1580 					struct nameidata *nd)
1581 {
1582 	return proc_lookupfd_common(dir, dentry, proc_fdinfo_instantiate);
1583 }
1584 
1585 static int proc_readfdinfo(struct file *filp, void *dirent, filldir_t filldir)
1586 {
1587 	return proc_readfd_common(filp, dirent, filldir,
1588 				  proc_fdinfo_instantiate);
1589 }
1590 
1591 static const struct file_operations proc_fdinfo_operations = {
1592 	.read		= generic_read_dir,
1593 	.readdir	= proc_readfdinfo,
1594 };
1595 
1596 /*
1597  * proc directories can do almost nothing..
1598  */
1599 static const struct inode_operations proc_fdinfo_inode_operations = {
1600 	.lookup		= proc_lookupfdinfo,
1601 	.setattr	= proc_setattr,
1602 };
1603 
1604 
1605 static struct dentry *proc_pident_instantiate(struct inode *dir,
1606 	struct dentry *dentry, struct task_struct *task, const void *ptr)
1607 {
1608 	const struct pid_entry *p = ptr;
1609 	struct inode *inode;
1610 	struct proc_inode *ei;
1611 	struct dentry *error = ERR_PTR(-EINVAL);
1612 
1613 	inode = proc_pid_make_inode(dir->i_sb, task);
1614 	if (!inode)
1615 		goto out;
1616 
1617 	ei = PROC_I(inode);
1618 	inode->i_mode = p->mode;
1619 	if (S_ISDIR(inode->i_mode))
1620 		inode->i_nlink = 2;	/* Use getattr to fix if necessary */
1621 	if (p->iop)
1622 		inode->i_op = p->iop;
1623 	if (p->fop)
1624 		inode->i_fop = p->fop;
1625 	ei->op = p->op;
1626 	dentry->d_op = &pid_dentry_operations;
1627 	d_add(dentry, inode);
1628 	/* Close the race of the process dying before we return the dentry */
1629 	if (pid_revalidate(dentry, NULL))
1630 		error = NULL;
1631 out:
1632 	return error;
1633 }
1634 
1635 static struct dentry *proc_pident_lookup(struct inode *dir,
1636 					 struct dentry *dentry,
1637 					 const struct pid_entry *ents,
1638 					 unsigned int nents)
1639 {
1640 	struct inode *inode;
1641 	struct dentry *error;
1642 	struct task_struct *task = get_proc_task(dir);
1643 	const struct pid_entry *p, *last;
1644 
1645 	error = ERR_PTR(-ENOENT);
1646 	inode = NULL;
1647 
1648 	if (!task)
1649 		goto out_no_task;
1650 
1651 	/*
1652 	 * Yes, it does not scale. And it should not. Don't add
1653 	 * new entries into /proc/<tgid>/ without very good reasons.
1654 	 */
1655 	last = &ents[nents - 1];
1656 	for (p = ents; p <= last; p++) {
1657 		if (p->len != dentry->d_name.len)
1658 			continue;
1659 		if (!memcmp(dentry->d_name.name, p->name, p->len))
1660 			break;
1661 	}
1662 	if (p > last)
1663 		goto out;
1664 
1665 	error = proc_pident_instantiate(dir, dentry, task, p);
1666 out:
1667 	put_task_struct(task);
1668 out_no_task:
1669 	return error;
1670 }
1671 
1672 static int proc_pident_fill_cache(struct file *filp, void *dirent,
1673 	filldir_t filldir, struct task_struct *task, const struct pid_entry *p)
1674 {
1675 	return proc_fill_cache(filp, dirent, filldir, p->name, p->len,
1676 				proc_pident_instantiate, task, p);
1677 }
1678 
1679 static int proc_pident_readdir(struct file *filp,
1680 		void *dirent, filldir_t filldir,
1681 		const struct pid_entry *ents, unsigned int nents)
1682 {
1683 	int i;
1684 	int pid;
1685 	struct dentry *dentry = filp->f_path.dentry;
1686 	struct inode *inode = dentry->d_inode;
1687 	struct task_struct *task = get_proc_task(inode);
1688 	const struct pid_entry *p, *last;
1689 	ino_t ino;
1690 	int ret;
1691 
1692 	ret = -ENOENT;
1693 	if (!task)
1694 		goto out_no_task;
1695 
1696 	ret = 0;
1697 	pid = task->pid;
1698 	i = filp->f_pos;
1699 	switch (i) {
1700 	case 0:
1701 		ino = inode->i_ino;
1702 		if (filldir(dirent, ".", 1, i, ino, DT_DIR) < 0)
1703 			goto out;
1704 		i++;
1705 		filp->f_pos++;
1706 		/* fall through */
1707 	case 1:
1708 		ino = parent_ino(dentry);
1709 		if (filldir(dirent, "..", 2, i, ino, DT_DIR) < 0)
1710 			goto out;
1711 		i++;
1712 		filp->f_pos++;
1713 		/* fall through */
1714 	default:
1715 		i -= 2;
1716 		if (i >= nents) {
1717 			ret = 1;
1718 			goto out;
1719 		}
1720 		p = ents + i;
1721 		last = &ents[nents - 1];
1722 		while (p <= last) {
1723 			if (proc_pident_fill_cache(filp, dirent, filldir, task, p) < 0)
1724 				goto out;
1725 			filp->f_pos++;
1726 			p++;
1727 		}
1728 	}
1729 
1730 	ret = 1;
1731 out:
1732 	put_task_struct(task);
1733 out_no_task:
1734 	return ret;
1735 }
1736 
1737 #ifdef CONFIG_SECURITY
1738 static ssize_t proc_pid_attr_read(struct file * file, char __user * buf,
1739 				  size_t count, loff_t *ppos)
1740 {
1741 	struct inode * inode = file->f_path.dentry->d_inode;
1742 	char *p = NULL;
1743 	ssize_t length;
1744 	struct task_struct *task = get_proc_task(inode);
1745 
1746 	if (!task)
1747 		return -ESRCH;
1748 
1749 	length = security_getprocattr(task,
1750 				      (char*)file->f_path.dentry->d_name.name,
1751 				      &p);
1752 	put_task_struct(task);
1753 	if (length > 0)
1754 		length = simple_read_from_buffer(buf, count, ppos, p, length);
1755 	kfree(p);
1756 	return length;
1757 }
1758 
1759 static ssize_t proc_pid_attr_write(struct file * file, const char __user * buf,
1760 				   size_t count, loff_t *ppos)
1761 {
1762 	struct inode * inode = file->f_path.dentry->d_inode;
1763 	char *page;
1764 	ssize_t length;
1765 	struct task_struct *task = get_proc_task(inode);
1766 
1767 	length = -ESRCH;
1768 	if (!task)
1769 		goto out_no_task;
1770 	if (count > PAGE_SIZE)
1771 		count = PAGE_SIZE;
1772 
1773 	/* No partial writes. */
1774 	length = -EINVAL;
1775 	if (*ppos != 0)
1776 		goto out;
1777 
1778 	length = -ENOMEM;
1779 	page = (char*)__get_free_page(GFP_TEMPORARY);
1780 	if (!page)
1781 		goto out;
1782 
1783 	length = -EFAULT;
1784 	if (copy_from_user(page, buf, count))
1785 		goto out_free;
1786 
1787 	length = security_setprocattr(task,
1788 				      (char*)file->f_path.dentry->d_name.name,
1789 				      (void*)page, count);
1790 out_free:
1791 	free_page((unsigned long) page);
1792 out:
1793 	put_task_struct(task);
1794 out_no_task:
1795 	return length;
1796 }
1797 
1798 static const struct file_operations proc_pid_attr_operations = {
1799 	.read		= proc_pid_attr_read,
1800 	.write		= proc_pid_attr_write,
1801 };
1802 
1803 static const struct pid_entry attr_dir_stuff[] = {
1804 	REG("current",    S_IRUGO|S_IWUGO, pid_attr),
1805 	REG("prev",       S_IRUGO,	   pid_attr),
1806 	REG("exec",       S_IRUGO|S_IWUGO, pid_attr),
1807 	REG("fscreate",   S_IRUGO|S_IWUGO, pid_attr),
1808 	REG("keycreate",  S_IRUGO|S_IWUGO, pid_attr),
1809 	REG("sockcreate", S_IRUGO|S_IWUGO, pid_attr),
1810 };
1811 
1812 static int proc_attr_dir_readdir(struct file * filp,
1813 			     void * dirent, filldir_t filldir)
1814 {
1815 	return proc_pident_readdir(filp,dirent,filldir,
1816 				   attr_dir_stuff,ARRAY_SIZE(attr_dir_stuff));
1817 }
1818 
1819 static const struct file_operations proc_attr_dir_operations = {
1820 	.read		= generic_read_dir,
1821 	.readdir	= proc_attr_dir_readdir,
1822 };
1823 
1824 static struct dentry *proc_attr_dir_lookup(struct inode *dir,
1825 				struct dentry *dentry, struct nameidata *nd)
1826 {
1827 	return proc_pident_lookup(dir, dentry,
1828 				  attr_dir_stuff, ARRAY_SIZE(attr_dir_stuff));
1829 }
1830 
1831 static const struct inode_operations proc_attr_dir_inode_operations = {
1832 	.lookup		= proc_attr_dir_lookup,
1833 	.getattr	= pid_getattr,
1834 	.setattr	= proc_setattr,
1835 };
1836 
1837 #endif
1838 
1839 #if defined(USE_ELF_CORE_DUMP) && defined(CONFIG_ELF_CORE)
1840 static ssize_t proc_coredump_filter_read(struct file *file, char __user *buf,
1841 					 size_t count, loff_t *ppos)
1842 {
1843 	struct task_struct *task = get_proc_task(file->f_dentry->d_inode);
1844 	struct mm_struct *mm;
1845 	char buffer[PROC_NUMBUF];
1846 	size_t len;
1847 	int ret;
1848 
1849 	if (!task)
1850 		return -ESRCH;
1851 
1852 	ret = 0;
1853 	mm = get_task_mm(task);
1854 	if (mm) {
1855 		len = snprintf(buffer, sizeof(buffer), "%08lx\n",
1856 			       ((mm->flags & MMF_DUMP_FILTER_MASK) >>
1857 				MMF_DUMP_FILTER_SHIFT));
1858 		mmput(mm);
1859 		ret = simple_read_from_buffer(buf, count, ppos, buffer, len);
1860 	}
1861 
1862 	put_task_struct(task);
1863 
1864 	return ret;
1865 }
1866 
1867 static ssize_t proc_coredump_filter_write(struct file *file,
1868 					  const char __user *buf,
1869 					  size_t count,
1870 					  loff_t *ppos)
1871 {
1872 	struct task_struct *task;
1873 	struct mm_struct *mm;
1874 	char buffer[PROC_NUMBUF], *end;
1875 	unsigned int val;
1876 	int ret;
1877 	int i;
1878 	unsigned long mask;
1879 
1880 	ret = -EFAULT;
1881 	memset(buffer, 0, sizeof(buffer));
1882 	if (count > sizeof(buffer) - 1)
1883 		count = sizeof(buffer) - 1;
1884 	if (copy_from_user(buffer, buf, count))
1885 		goto out_no_task;
1886 
1887 	ret = -EINVAL;
1888 	val = (unsigned int)simple_strtoul(buffer, &end, 0);
1889 	if (*end == '\n')
1890 		end++;
1891 	if (end - buffer == 0)
1892 		goto out_no_task;
1893 
1894 	ret = -ESRCH;
1895 	task = get_proc_task(file->f_dentry->d_inode);
1896 	if (!task)
1897 		goto out_no_task;
1898 
1899 	ret = end - buffer;
1900 	mm = get_task_mm(task);
1901 	if (!mm)
1902 		goto out_no_mm;
1903 
1904 	for (i = 0, mask = 1; i < MMF_DUMP_FILTER_BITS; i++, mask <<= 1) {
1905 		if (val & mask)
1906 			set_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags);
1907 		else
1908 			clear_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags);
1909 	}
1910 
1911 	mmput(mm);
1912  out_no_mm:
1913 	put_task_struct(task);
1914  out_no_task:
1915 	return ret;
1916 }
1917 
1918 static const struct file_operations proc_coredump_filter_operations = {
1919 	.read		= proc_coredump_filter_read,
1920 	.write		= proc_coredump_filter_write,
1921 };
1922 #endif
1923 
1924 /*
1925  * /proc/self:
1926  */
1927 static int proc_self_readlink(struct dentry *dentry, char __user *buffer,
1928 			      int buflen)
1929 {
1930 	char tmp[PROC_NUMBUF];
1931 	sprintf(tmp, "%d", current->tgid);
1932 	return vfs_readlink(dentry,buffer,buflen,tmp);
1933 }
1934 
1935 static void *proc_self_follow_link(struct dentry *dentry, struct nameidata *nd)
1936 {
1937 	char tmp[PROC_NUMBUF];
1938 	sprintf(tmp, "%d", current->tgid);
1939 	return ERR_PTR(vfs_follow_link(nd,tmp));
1940 }
1941 
1942 static const struct inode_operations proc_self_inode_operations = {
1943 	.readlink	= proc_self_readlink,
1944 	.follow_link	= proc_self_follow_link,
1945 };
1946 
1947 /*
1948  * proc base
1949  *
1950  * These are the directory entries in the root directory of /proc
1951  * that properly belong to the /proc filesystem, as they describe
1952  * describe something that is process related.
1953  */
1954 static const struct pid_entry proc_base_stuff[] = {
1955 	NOD("self", S_IFLNK|S_IRWXUGO,
1956 		&proc_self_inode_operations, NULL, {}),
1957 };
1958 
1959 /*
1960  *	Exceptional case: normally we are not allowed to unhash a busy
1961  * directory. In this case, however, we can do it - no aliasing problems
1962  * due to the way we treat inodes.
1963  */
1964 static int proc_base_revalidate(struct dentry *dentry, struct nameidata *nd)
1965 {
1966 	struct inode *inode = dentry->d_inode;
1967 	struct task_struct *task = get_proc_task(inode);
1968 	if (task) {
1969 		put_task_struct(task);
1970 		return 1;
1971 	}
1972 	d_drop(dentry);
1973 	return 0;
1974 }
1975 
1976 static struct dentry_operations proc_base_dentry_operations =
1977 {
1978 	.d_revalidate	= proc_base_revalidate,
1979 	.d_delete	= pid_delete_dentry,
1980 };
1981 
1982 static struct dentry *proc_base_instantiate(struct inode *dir,
1983 	struct dentry *dentry, struct task_struct *task, const void *ptr)
1984 {
1985 	const struct pid_entry *p = ptr;
1986 	struct inode *inode;
1987 	struct proc_inode *ei;
1988 	struct dentry *error = ERR_PTR(-EINVAL);
1989 
1990 	/* Allocate the inode */
1991 	error = ERR_PTR(-ENOMEM);
1992 	inode = new_inode(dir->i_sb);
1993 	if (!inode)
1994 		goto out;
1995 
1996 	/* Initialize the inode */
1997 	ei = PROC_I(inode);
1998 	inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
1999 
2000 	/*
2001 	 * grab the reference to the task.
2002 	 */
2003 	ei->pid = get_task_pid(task, PIDTYPE_PID);
2004 	if (!ei->pid)
2005 		goto out_iput;
2006 
2007 	inode->i_uid = 0;
2008 	inode->i_gid = 0;
2009 	inode->i_mode = p->mode;
2010 	if (S_ISDIR(inode->i_mode))
2011 		inode->i_nlink = 2;
2012 	if (S_ISLNK(inode->i_mode))
2013 		inode->i_size = 64;
2014 	if (p->iop)
2015 		inode->i_op = p->iop;
2016 	if (p->fop)
2017 		inode->i_fop = p->fop;
2018 	ei->op = p->op;
2019 	dentry->d_op = &proc_base_dentry_operations;
2020 	d_add(dentry, inode);
2021 	error = NULL;
2022 out:
2023 	return error;
2024 out_iput:
2025 	iput(inode);
2026 	goto out;
2027 }
2028 
2029 static struct dentry *proc_base_lookup(struct inode *dir, struct dentry *dentry)
2030 {
2031 	struct dentry *error;
2032 	struct task_struct *task = get_proc_task(dir);
2033 	const struct pid_entry *p, *last;
2034 
2035 	error = ERR_PTR(-ENOENT);
2036 
2037 	if (!task)
2038 		goto out_no_task;
2039 
2040 	/* Lookup the directory entry */
2041 	last = &proc_base_stuff[ARRAY_SIZE(proc_base_stuff) - 1];
2042 	for (p = proc_base_stuff; p <= last; p++) {
2043 		if (p->len != dentry->d_name.len)
2044 			continue;
2045 		if (!memcmp(dentry->d_name.name, p->name, p->len))
2046 			break;
2047 	}
2048 	if (p > last)
2049 		goto out;
2050 
2051 	error = proc_base_instantiate(dir, dentry, task, p);
2052 
2053 out:
2054 	put_task_struct(task);
2055 out_no_task:
2056 	return error;
2057 }
2058 
2059 static int proc_base_fill_cache(struct file *filp, void *dirent,
2060 	filldir_t filldir, struct task_struct *task, const struct pid_entry *p)
2061 {
2062 	return proc_fill_cache(filp, dirent, filldir, p->name, p->len,
2063 				proc_base_instantiate, task, p);
2064 }
2065 
2066 #ifdef CONFIG_TASK_IO_ACCOUNTING
2067 static int proc_pid_io_accounting(struct task_struct *task, char *buffer)
2068 {
2069 	return sprintf(buffer,
2070 #ifdef CONFIG_TASK_XACCT
2071 			"rchar: %llu\n"
2072 			"wchar: %llu\n"
2073 			"syscr: %llu\n"
2074 			"syscw: %llu\n"
2075 #endif
2076 			"read_bytes: %llu\n"
2077 			"write_bytes: %llu\n"
2078 			"cancelled_write_bytes: %llu\n",
2079 #ifdef CONFIG_TASK_XACCT
2080 			(unsigned long long)task->rchar,
2081 			(unsigned long long)task->wchar,
2082 			(unsigned long long)task->syscr,
2083 			(unsigned long long)task->syscw,
2084 #endif
2085 			(unsigned long long)task->ioac.read_bytes,
2086 			(unsigned long long)task->ioac.write_bytes,
2087 			(unsigned long long)task->ioac.cancelled_write_bytes);
2088 }
2089 #endif
2090 
2091 /*
2092  * Thread groups
2093  */
2094 static const struct file_operations proc_task_operations;
2095 static const struct inode_operations proc_task_inode_operations;
2096 
2097 static const struct pid_entry tgid_base_stuff[] = {
2098 	DIR("task",       S_IRUGO|S_IXUGO, task),
2099 	DIR("fd",         S_IRUSR|S_IXUSR, fd),
2100 	DIR("fdinfo",     S_IRUSR|S_IXUSR, fdinfo),
2101 	REG("environ",    S_IRUSR, environ),
2102 	INF("auxv",       S_IRUSR, pid_auxv),
2103 	INF("status",     S_IRUGO, pid_status),
2104 #ifdef CONFIG_SCHED_DEBUG
2105 	REG("sched",      S_IRUGO|S_IWUSR, pid_sched),
2106 #endif
2107 	INF("cmdline",    S_IRUGO, pid_cmdline),
2108 	INF("stat",       S_IRUGO, tgid_stat),
2109 	INF("statm",      S_IRUGO, pid_statm),
2110 	REG("maps",       S_IRUGO, maps),
2111 #ifdef CONFIG_NUMA
2112 	REG("numa_maps",  S_IRUGO, numa_maps),
2113 #endif
2114 	REG("mem",        S_IRUSR|S_IWUSR, mem),
2115 	LNK("cwd",        cwd),
2116 	LNK("root",       root),
2117 	LNK("exe",        exe),
2118 	REG("mounts",     S_IRUGO, mounts),
2119 	REG("mountstats", S_IRUSR, mountstats),
2120 #ifdef CONFIG_MMU
2121 	REG("clear_refs", S_IWUSR, clear_refs),
2122 	REG("smaps",      S_IRUGO, smaps),
2123 #endif
2124 #ifdef CONFIG_SECURITY
2125 	DIR("attr",       S_IRUGO|S_IXUGO, attr_dir),
2126 #endif
2127 #ifdef CONFIG_KALLSYMS
2128 	INF("wchan",      S_IRUGO, pid_wchan),
2129 #endif
2130 #ifdef CONFIG_SCHEDSTATS
2131 	INF("schedstat",  S_IRUGO, pid_schedstat),
2132 #endif
2133 #ifdef CONFIG_CPUSETS
2134 	REG("cpuset",     S_IRUGO, cpuset),
2135 #endif
2136 	INF("oom_score",  S_IRUGO, oom_score),
2137 	REG("oom_adj",    S_IRUGO|S_IWUSR, oom_adjust),
2138 #ifdef CONFIG_AUDITSYSCALL
2139 	REG("loginuid",   S_IWUSR|S_IRUGO, loginuid),
2140 #endif
2141 #ifdef CONFIG_FAULT_INJECTION
2142 	REG("make-it-fail", S_IRUGO|S_IWUSR, fault_inject),
2143 #endif
2144 #if defined(USE_ELF_CORE_DUMP) && defined(CONFIG_ELF_CORE)
2145 	REG("coredump_filter", S_IRUGO|S_IWUSR, coredump_filter),
2146 #endif
2147 #ifdef CONFIG_TASK_IO_ACCOUNTING
2148 	INF("io",	S_IRUGO, pid_io_accounting),
2149 #endif
2150 };
2151 
2152 static int proc_tgid_base_readdir(struct file * filp,
2153 			     void * dirent, filldir_t filldir)
2154 {
2155 	return proc_pident_readdir(filp,dirent,filldir,
2156 				   tgid_base_stuff,ARRAY_SIZE(tgid_base_stuff));
2157 }
2158 
2159 static const struct file_operations proc_tgid_base_operations = {
2160 	.read		= generic_read_dir,
2161 	.readdir	= proc_tgid_base_readdir,
2162 };
2163 
2164 static struct dentry *proc_tgid_base_lookup(struct inode *dir, struct dentry *dentry, struct nameidata *nd){
2165 	return proc_pident_lookup(dir, dentry,
2166 				  tgid_base_stuff, ARRAY_SIZE(tgid_base_stuff));
2167 }
2168 
2169 static const struct inode_operations proc_tgid_base_inode_operations = {
2170 	.lookup		= proc_tgid_base_lookup,
2171 	.getattr	= pid_getattr,
2172 	.setattr	= proc_setattr,
2173 };
2174 
2175 /**
2176  * proc_flush_task -  Remove dcache entries for @task from the /proc dcache.
2177  *
2178  * @task: task that should be flushed.
2179  *
2180  * Looks in the dcache for
2181  * /proc/@pid
2182  * /proc/@tgid/task/@pid
2183  * if either directory is present flushes it and all of it'ts children
2184  * from the dcache.
2185  *
2186  * It is safe and reasonable to cache /proc entries for a task until
2187  * that task exits.  After that they just clog up the dcache with
2188  * useless entries, possibly causing useful dcache entries to be
2189  * flushed instead.  This routine is proved to flush those useless
2190  * dcache entries at process exit time.
2191  *
2192  * NOTE: This routine is just an optimization so it does not guarantee
2193  *       that no dcache entries will exist at process exit time it
2194  *       just makes it very unlikely that any will persist.
2195  */
2196 void proc_flush_task(struct task_struct *task)
2197 {
2198 	struct dentry *dentry, *leader, *dir;
2199 	char buf[PROC_NUMBUF];
2200 	struct qstr name;
2201 
2202 	name.name = buf;
2203 	name.len = snprintf(buf, sizeof(buf), "%d", task->pid);
2204 	dentry = d_hash_and_lookup(proc_mnt->mnt_root, &name);
2205 	if (dentry) {
2206 		shrink_dcache_parent(dentry);
2207 		d_drop(dentry);
2208 		dput(dentry);
2209 	}
2210 
2211 	if (thread_group_leader(task))
2212 		goto out;
2213 
2214 	name.name = buf;
2215 	name.len = snprintf(buf, sizeof(buf), "%d", task->tgid);
2216 	leader = d_hash_and_lookup(proc_mnt->mnt_root, &name);
2217 	if (!leader)
2218 		goto out;
2219 
2220 	name.name = "task";
2221 	name.len = strlen(name.name);
2222 	dir = d_hash_and_lookup(leader, &name);
2223 	if (!dir)
2224 		goto out_put_leader;
2225 
2226 	name.name = buf;
2227 	name.len = snprintf(buf, sizeof(buf), "%d", task->pid);
2228 	dentry = d_hash_and_lookup(dir, &name);
2229 	if (dentry) {
2230 		shrink_dcache_parent(dentry);
2231 		d_drop(dentry);
2232 		dput(dentry);
2233 	}
2234 
2235 	dput(dir);
2236 out_put_leader:
2237 	dput(leader);
2238 out:
2239 	return;
2240 }
2241 
2242 static struct dentry *proc_pid_instantiate(struct inode *dir,
2243 					   struct dentry * dentry,
2244 					   struct task_struct *task, const void *ptr)
2245 {
2246 	struct dentry *error = ERR_PTR(-ENOENT);
2247 	struct inode *inode;
2248 
2249 	inode = proc_pid_make_inode(dir->i_sb, task);
2250 	if (!inode)
2251 		goto out;
2252 
2253 	inode->i_mode = S_IFDIR|S_IRUGO|S_IXUGO;
2254 	inode->i_op = &proc_tgid_base_inode_operations;
2255 	inode->i_fop = &proc_tgid_base_operations;
2256 	inode->i_flags|=S_IMMUTABLE;
2257 	inode->i_nlink = 5;
2258 #ifdef CONFIG_SECURITY
2259 	inode->i_nlink += 1;
2260 #endif
2261 
2262 	dentry->d_op = &pid_dentry_operations;
2263 
2264 	d_add(dentry, inode);
2265 	/* Close the race of the process dying before we return the dentry */
2266 	if (pid_revalidate(dentry, NULL))
2267 		error = NULL;
2268 out:
2269 	return error;
2270 }
2271 
2272 struct dentry *proc_pid_lookup(struct inode *dir, struct dentry * dentry, struct nameidata *nd)
2273 {
2274 	struct dentry *result = ERR_PTR(-ENOENT);
2275 	struct task_struct *task;
2276 	unsigned tgid;
2277 
2278 	result = proc_base_lookup(dir, dentry);
2279 	if (!IS_ERR(result) || PTR_ERR(result) != -ENOENT)
2280 		goto out;
2281 
2282 	tgid = name_to_int(dentry);
2283 	if (tgid == ~0U)
2284 		goto out;
2285 
2286 	rcu_read_lock();
2287 	task = find_task_by_pid(tgid);
2288 	if (task)
2289 		get_task_struct(task);
2290 	rcu_read_unlock();
2291 	if (!task)
2292 		goto out;
2293 
2294 	result = proc_pid_instantiate(dir, dentry, task, NULL);
2295 	put_task_struct(task);
2296 out:
2297 	return result;
2298 }
2299 
2300 /*
2301  * Find the first task with tgid >= tgid
2302  *
2303  */
2304 static struct task_struct *next_tgid(unsigned int tgid)
2305 {
2306 	struct task_struct *task;
2307 	struct pid *pid;
2308 
2309 	rcu_read_lock();
2310 retry:
2311 	task = NULL;
2312 	pid = find_ge_pid(tgid);
2313 	if (pid) {
2314 		tgid = pid->nr + 1;
2315 		task = pid_task(pid, PIDTYPE_PID);
2316 		/* What we to know is if the pid we have find is the
2317 		 * pid of a thread_group_leader.  Testing for task
2318 		 * being a thread_group_leader is the obvious thing
2319 		 * todo but there is a window when it fails, due to
2320 		 * the pid transfer logic in de_thread.
2321 		 *
2322 		 * So we perform the straight forward test of seeing
2323 		 * if the pid we have found is the pid of a thread
2324 		 * group leader, and don't worry if the task we have
2325 		 * found doesn't happen to be a thread group leader.
2326 		 * As we don't care in the case of readdir.
2327 		 */
2328 		if (!task || !has_group_leader_pid(task))
2329 			goto retry;
2330 		get_task_struct(task);
2331 	}
2332 	rcu_read_unlock();
2333 	return task;
2334 }
2335 
2336 #define TGID_OFFSET (FIRST_PROCESS_ENTRY + ARRAY_SIZE(proc_base_stuff))
2337 
2338 static int proc_pid_fill_cache(struct file *filp, void *dirent, filldir_t filldir,
2339 	struct task_struct *task, int tgid)
2340 {
2341 	char name[PROC_NUMBUF];
2342 	int len = snprintf(name, sizeof(name), "%d", tgid);
2343 	return proc_fill_cache(filp, dirent, filldir, name, len,
2344 				proc_pid_instantiate, task, NULL);
2345 }
2346 
2347 /* for the /proc/ directory itself, after non-process stuff has been done */
2348 int proc_pid_readdir(struct file * filp, void * dirent, filldir_t filldir)
2349 {
2350 	unsigned int nr = filp->f_pos - FIRST_PROCESS_ENTRY;
2351 	struct task_struct *reaper = get_proc_task(filp->f_path.dentry->d_inode);
2352 	struct task_struct *task;
2353 	int tgid;
2354 
2355 	if (!reaper)
2356 		goto out_no_task;
2357 
2358 	for (; nr < ARRAY_SIZE(proc_base_stuff); filp->f_pos++, nr++) {
2359 		const struct pid_entry *p = &proc_base_stuff[nr];
2360 		if (proc_base_fill_cache(filp, dirent, filldir, reaper, p) < 0)
2361 			goto out;
2362 	}
2363 
2364 	tgid = filp->f_pos - TGID_OFFSET;
2365 	for (task = next_tgid(tgid);
2366 	     task;
2367 	     put_task_struct(task), task = next_tgid(tgid + 1)) {
2368 		tgid = task->pid;
2369 		filp->f_pos = tgid + TGID_OFFSET;
2370 		if (proc_pid_fill_cache(filp, dirent, filldir, task, tgid) < 0) {
2371 			put_task_struct(task);
2372 			goto out;
2373 		}
2374 	}
2375 	filp->f_pos = PID_MAX_LIMIT + TGID_OFFSET;
2376 out:
2377 	put_task_struct(reaper);
2378 out_no_task:
2379 	return 0;
2380 }
2381 
2382 /*
2383  * Tasks
2384  */
2385 static const struct pid_entry tid_base_stuff[] = {
2386 	DIR("fd",        S_IRUSR|S_IXUSR, fd),
2387 	DIR("fdinfo",    S_IRUSR|S_IXUSR, fdinfo),
2388 	REG("environ",   S_IRUSR, environ),
2389 	INF("auxv",      S_IRUSR, pid_auxv),
2390 	INF("status",    S_IRUGO, pid_status),
2391 #ifdef CONFIG_SCHED_DEBUG
2392 	REG("sched",     S_IRUGO|S_IWUSR, pid_sched),
2393 #endif
2394 	INF("cmdline",   S_IRUGO, pid_cmdline),
2395 	INF("stat",      S_IRUGO, tid_stat),
2396 	INF("statm",     S_IRUGO, pid_statm),
2397 	REG("maps",      S_IRUGO, maps),
2398 #ifdef CONFIG_NUMA
2399 	REG("numa_maps", S_IRUGO, numa_maps),
2400 #endif
2401 	REG("mem",       S_IRUSR|S_IWUSR, mem),
2402 	LNK("cwd",       cwd),
2403 	LNK("root",      root),
2404 	LNK("exe",       exe),
2405 	REG("mounts",    S_IRUGO, mounts),
2406 #ifdef CONFIG_MMU
2407 	REG("clear_refs", S_IWUSR, clear_refs),
2408 	REG("smaps",     S_IRUGO, smaps),
2409 #endif
2410 #ifdef CONFIG_SECURITY
2411 	DIR("attr",      S_IRUGO|S_IXUGO, attr_dir),
2412 #endif
2413 #ifdef CONFIG_KALLSYMS
2414 	INF("wchan",     S_IRUGO, pid_wchan),
2415 #endif
2416 #ifdef CONFIG_SCHEDSTATS
2417 	INF("schedstat", S_IRUGO, pid_schedstat),
2418 #endif
2419 #ifdef CONFIG_CPUSETS
2420 	REG("cpuset",    S_IRUGO, cpuset),
2421 #endif
2422 	INF("oom_score", S_IRUGO, oom_score),
2423 	REG("oom_adj",   S_IRUGO|S_IWUSR, oom_adjust),
2424 #ifdef CONFIG_AUDITSYSCALL
2425 	REG("loginuid",  S_IWUSR|S_IRUGO, loginuid),
2426 #endif
2427 #ifdef CONFIG_FAULT_INJECTION
2428 	REG("make-it-fail", S_IRUGO|S_IWUSR, fault_inject),
2429 #endif
2430 };
2431 
2432 static int proc_tid_base_readdir(struct file * filp,
2433 			     void * dirent, filldir_t filldir)
2434 {
2435 	return proc_pident_readdir(filp,dirent,filldir,
2436 				   tid_base_stuff,ARRAY_SIZE(tid_base_stuff));
2437 }
2438 
2439 static struct dentry *proc_tid_base_lookup(struct inode *dir, struct dentry *dentry, struct nameidata *nd){
2440 	return proc_pident_lookup(dir, dentry,
2441 				  tid_base_stuff, ARRAY_SIZE(tid_base_stuff));
2442 }
2443 
2444 static const struct file_operations proc_tid_base_operations = {
2445 	.read		= generic_read_dir,
2446 	.readdir	= proc_tid_base_readdir,
2447 };
2448 
2449 static const struct inode_operations proc_tid_base_inode_operations = {
2450 	.lookup		= proc_tid_base_lookup,
2451 	.getattr	= pid_getattr,
2452 	.setattr	= proc_setattr,
2453 };
2454 
2455 static struct dentry *proc_task_instantiate(struct inode *dir,
2456 	struct dentry *dentry, struct task_struct *task, const void *ptr)
2457 {
2458 	struct dentry *error = ERR_PTR(-ENOENT);
2459 	struct inode *inode;
2460 	inode = proc_pid_make_inode(dir->i_sb, task);
2461 
2462 	if (!inode)
2463 		goto out;
2464 	inode->i_mode = S_IFDIR|S_IRUGO|S_IXUGO;
2465 	inode->i_op = &proc_tid_base_inode_operations;
2466 	inode->i_fop = &proc_tid_base_operations;
2467 	inode->i_flags|=S_IMMUTABLE;
2468 	inode->i_nlink = 4;
2469 #ifdef CONFIG_SECURITY
2470 	inode->i_nlink += 1;
2471 #endif
2472 
2473 	dentry->d_op = &pid_dentry_operations;
2474 
2475 	d_add(dentry, inode);
2476 	/* Close the race of the process dying before we return the dentry */
2477 	if (pid_revalidate(dentry, NULL))
2478 		error = NULL;
2479 out:
2480 	return error;
2481 }
2482 
2483 static struct dentry *proc_task_lookup(struct inode *dir, struct dentry * dentry, struct nameidata *nd)
2484 {
2485 	struct dentry *result = ERR_PTR(-ENOENT);
2486 	struct task_struct *task;
2487 	struct task_struct *leader = get_proc_task(dir);
2488 	unsigned tid;
2489 
2490 	if (!leader)
2491 		goto out_no_task;
2492 
2493 	tid = name_to_int(dentry);
2494 	if (tid == ~0U)
2495 		goto out;
2496 
2497 	rcu_read_lock();
2498 	task = find_task_by_pid(tid);
2499 	if (task)
2500 		get_task_struct(task);
2501 	rcu_read_unlock();
2502 	if (!task)
2503 		goto out;
2504 	if (leader->tgid != task->tgid)
2505 		goto out_drop_task;
2506 
2507 	result = proc_task_instantiate(dir, dentry, task, NULL);
2508 out_drop_task:
2509 	put_task_struct(task);
2510 out:
2511 	put_task_struct(leader);
2512 out_no_task:
2513 	return result;
2514 }
2515 
2516 /*
2517  * Find the first tid of a thread group to return to user space.
2518  *
2519  * Usually this is just the thread group leader, but if the users
2520  * buffer was too small or there was a seek into the middle of the
2521  * directory we have more work todo.
2522  *
2523  * In the case of a short read we start with find_task_by_pid.
2524  *
2525  * In the case of a seek we start with the leader and walk nr
2526  * threads past it.
2527  */
2528 static struct task_struct *first_tid(struct task_struct *leader,
2529 					int tid, int nr)
2530 {
2531 	struct task_struct *pos;
2532 
2533 	rcu_read_lock();
2534 	/* Attempt to start with the pid of a thread */
2535 	if (tid && (nr > 0)) {
2536 		pos = find_task_by_pid(tid);
2537 		if (pos && (pos->group_leader == leader))
2538 			goto found;
2539 	}
2540 
2541 	/* If nr exceeds the number of threads there is nothing todo */
2542 	pos = NULL;
2543 	if (nr && nr >= get_nr_threads(leader))
2544 		goto out;
2545 
2546 	/* If we haven't found our starting place yet start
2547 	 * with the leader and walk nr threads forward.
2548 	 */
2549 	for (pos = leader; nr > 0; --nr) {
2550 		pos = next_thread(pos);
2551 		if (pos == leader) {
2552 			pos = NULL;
2553 			goto out;
2554 		}
2555 	}
2556 found:
2557 	get_task_struct(pos);
2558 out:
2559 	rcu_read_unlock();
2560 	return pos;
2561 }
2562 
2563 /*
2564  * Find the next thread in the thread list.
2565  * Return NULL if there is an error or no next thread.
2566  *
2567  * The reference to the input task_struct is released.
2568  */
2569 static struct task_struct *next_tid(struct task_struct *start)
2570 {
2571 	struct task_struct *pos = NULL;
2572 	rcu_read_lock();
2573 	if (pid_alive(start)) {
2574 		pos = next_thread(start);
2575 		if (thread_group_leader(pos))
2576 			pos = NULL;
2577 		else
2578 			get_task_struct(pos);
2579 	}
2580 	rcu_read_unlock();
2581 	put_task_struct(start);
2582 	return pos;
2583 }
2584 
2585 static int proc_task_fill_cache(struct file *filp, void *dirent, filldir_t filldir,
2586 	struct task_struct *task, int tid)
2587 {
2588 	char name[PROC_NUMBUF];
2589 	int len = snprintf(name, sizeof(name), "%d", tid);
2590 	return proc_fill_cache(filp, dirent, filldir, name, len,
2591 				proc_task_instantiate, task, NULL);
2592 }
2593 
2594 /* for the /proc/TGID/task/ directories */
2595 static int proc_task_readdir(struct file * filp, void * dirent, filldir_t filldir)
2596 {
2597 	struct dentry *dentry = filp->f_path.dentry;
2598 	struct inode *inode = dentry->d_inode;
2599 	struct task_struct *leader = NULL;
2600 	struct task_struct *task;
2601 	int retval = -ENOENT;
2602 	ino_t ino;
2603 	int tid;
2604 	unsigned long pos = filp->f_pos;  /* avoiding "long long" filp->f_pos */
2605 
2606 	task = get_proc_task(inode);
2607 	if (!task)
2608 		goto out_no_task;
2609 	rcu_read_lock();
2610 	if (pid_alive(task)) {
2611 		leader = task->group_leader;
2612 		get_task_struct(leader);
2613 	}
2614 	rcu_read_unlock();
2615 	put_task_struct(task);
2616 	if (!leader)
2617 		goto out_no_task;
2618 	retval = 0;
2619 
2620 	switch (pos) {
2621 	case 0:
2622 		ino = inode->i_ino;
2623 		if (filldir(dirent, ".", 1, pos, ino, DT_DIR) < 0)
2624 			goto out;
2625 		pos++;
2626 		/* fall through */
2627 	case 1:
2628 		ino = parent_ino(dentry);
2629 		if (filldir(dirent, "..", 2, pos, ino, DT_DIR) < 0)
2630 			goto out;
2631 		pos++;
2632 		/* fall through */
2633 	}
2634 
2635 	/* f_version caches the tgid value that the last readdir call couldn't
2636 	 * return. lseek aka telldir automagically resets f_version to 0.
2637 	 */
2638 	tid = (int)filp->f_version;
2639 	filp->f_version = 0;
2640 	for (task = first_tid(leader, tid, pos - 2);
2641 	     task;
2642 	     task = next_tid(task), pos++) {
2643 		tid = task->pid;
2644 		if (proc_task_fill_cache(filp, dirent, filldir, task, tid) < 0) {
2645 			/* returning this tgid failed, save it as the first
2646 			 * pid for the next readir call */
2647 			filp->f_version = (u64)tid;
2648 			put_task_struct(task);
2649 			break;
2650 		}
2651 	}
2652 out:
2653 	filp->f_pos = pos;
2654 	put_task_struct(leader);
2655 out_no_task:
2656 	return retval;
2657 }
2658 
2659 static int proc_task_getattr(struct vfsmount *mnt, struct dentry *dentry, struct kstat *stat)
2660 {
2661 	struct inode *inode = dentry->d_inode;
2662 	struct task_struct *p = get_proc_task(inode);
2663 	generic_fillattr(inode, stat);
2664 
2665 	if (p) {
2666 		rcu_read_lock();
2667 		stat->nlink += get_nr_threads(p);
2668 		rcu_read_unlock();
2669 		put_task_struct(p);
2670 	}
2671 
2672 	return 0;
2673 }
2674 
2675 static const struct inode_operations proc_task_inode_operations = {
2676 	.lookup		= proc_task_lookup,
2677 	.getattr	= proc_task_getattr,
2678 	.setattr	= proc_setattr,
2679 };
2680 
2681 static const struct file_operations proc_task_operations = {
2682 	.read		= generic_read_dir,
2683 	.readdir	= proc_task_readdir,
2684 };
2685