xref: /linux/fs/proc/base.c (revision c6e9dba3be5ef3b701b29b143609561915e5d0e9)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/fs/proc/base.c
4  *
5  *  Copyright (C) 1991, 1992 Linus Torvalds
6  *
7  *  proc base directory handling functions
8  *
9  *  1999, Al Viro. Rewritten. Now it covers the whole per-process part.
10  *  Instead of using magical inumbers to determine the kind of object
11  *  we allocate and fill in-core inodes upon lookup. They don't even
12  *  go into icache. We cache the reference to task_struct upon lookup too.
13  *  Eventually it should become a filesystem in its own. We don't use the
14  *  rest of procfs anymore.
15  *
16  *
17  *  Changelog:
18  *  17-Jan-2005
19  *  Allan Bezerra
20  *  Bruna Moreira <bruna.moreira@indt.org.br>
21  *  Edjard Mota <edjard.mota@indt.org.br>
22  *  Ilias Biris <ilias.biris@indt.org.br>
23  *  Mauricio Lin <mauricio.lin@indt.org.br>
24  *
25  *  Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT
26  *
27  *  A new process specific entry (smaps) included in /proc. It shows the
28  *  size of rss for each memory area. The maps entry lacks information
29  *  about physical memory size (rss) for each mapped file, i.e.,
30  *  rss information for executables and library files.
31  *  This additional information is useful for any tools that need to know
32  *  about physical memory consumption for a process specific library.
33  *
34  *  Changelog:
35  *  21-Feb-2005
36  *  Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT
37  *  Pud inclusion in the page table walking.
38  *
39  *  ChangeLog:
40  *  10-Mar-2005
41  *  10LE Instituto Nokia de Tecnologia - INdT:
42  *  A better way to walks through the page table as suggested by Hugh Dickins.
43  *
44  *  Simo Piiroinen <simo.piiroinen@nokia.com>:
45  *  Smaps information related to shared, private, clean and dirty pages.
46  *
47  *  Paul Mundt <paul.mundt@nokia.com>:
48  *  Overall revision about smaps.
49  */
50 
51 #include <linux/uaccess.h>
52 
53 #include <linux/errno.h>
54 #include <linux/time.h>
55 #include <linux/proc_fs.h>
56 #include <linux/stat.h>
57 #include <linux/task_io_accounting_ops.h>
58 #include <linux/init.h>
59 #include <linux/capability.h>
60 #include <linux/file.h>
61 #include <linux/fdtable.h>
62 #include <linux/generic-radix-tree.h>
63 #include <linux/string.h>
64 #include <linux/seq_file.h>
65 #include <linux/namei.h>
66 #include <linux/mnt_namespace.h>
67 #include <linux/mm.h>
68 #include <linux/swap.h>
69 #include <linux/rcupdate.h>
70 #include <linux/kallsyms.h>
71 #include <linux/stacktrace.h>
72 #include <linux/resource.h>
73 #include <linux/module.h>
74 #include <linux/mount.h>
75 #include <linux/security.h>
76 #include <linux/ptrace.h>
77 #include <linux/printk.h>
78 #include <linux/cache.h>
79 #include <linux/cgroup.h>
80 #include <linux/cpuset.h>
81 #include <linux/audit.h>
82 #include <linux/poll.h>
83 #include <linux/nsproxy.h>
84 #include <linux/oom.h>
85 #include <linux/elf.h>
86 #include <linux/pid_namespace.h>
87 #include <linux/user_namespace.h>
88 #include <linux/fs_struct.h>
89 #include <linux/slab.h>
90 #include <linux/sched/autogroup.h>
91 #include <linux/sched/mm.h>
92 #include <linux/sched/coredump.h>
93 #include <linux/sched/debug.h>
94 #include <linux/sched/stat.h>
95 #include <linux/posix-timers.h>
96 #include <linux/time_namespace.h>
97 #include <linux/resctrl.h>
98 #include <linux/cn_proc.h>
99 #include <linux/ksm.h>
100 #include <trace/events/oom.h>
101 #include "internal.h"
102 #include "fd.h"
103 
104 #include "../../lib/kstrtox.h"
105 
106 /* NOTE:
107  *	Implementing inode permission operations in /proc is almost
108  *	certainly an error.  Permission checks need to happen during
109  *	each system call not at open time.  The reason is that most of
110  *	what we wish to check for permissions in /proc varies at runtime.
111  *
112  *	The classic example of a problem is opening file descriptors
113  *	in /proc for a task before it execs a suid executable.
114  */
115 
116 static u8 nlink_tid __ro_after_init;
117 static u8 nlink_tgid __ro_after_init;
118 
119 struct pid_entry {
120 	const char *name;
121 	unsigned int len;
122 	umode_t mode;
123 	const struct inode_operations *iop;
124 	const struct file_operations *fop;
125 	union proc_op op;
126 };
127 
128 #define NOD(NAME, MODE, IOP, FOP, OP) {			\
129 	.name = (NAME),					\
130 	.len  = sizeof(NAME) - 1,			\
131 	.mode = MODE,					\
132 	.iop  = IOP,					\
133 	.fop  = FOP,					\
134 	.op   = OP,					\
135 }
136 
137 #define DIR(NAME, MODE, iops, fops)	\
138 	NOD(NAME, (S_IFDIR|(MODE)), &iops, &fops, {} )
139 #define LNK(NAME, get_link)					\
140 	NOD(NAME, (S_IFLNK|S_IRWXUGO),				\
141 		&proc_pid_link_inode_operations, NULL,		\
142 		{ .proc_get_link = get_link } )
143 #define REG(NAME, MODE, fops)				\
144 	NOD(NAME, (S_IFREG|(MODE)), NULL, &fops, {})
145 #define ONE(NAME, MODE, show)				\
146 	NOD(NAME, (S_IFREG|(MODE)),			\
147 		NULL, &proc_single_file_operations,	\
148 		{ .proc_show = show } )
149 #define ATTR(LSM, NAME, MODE)				\
150 	NOD(NAME, (S_IFREG|(MODE)),			\
151 		NULL, &proc_pid_attr_operations,	\
152 		{ .lsm = LSM })
153 
154 /*
155  * Count the number of hardlinks for the pid_entry table, excluding the .
156  * and .. links.
157  */
158 static unsigned int __init pid_entry_nlink(const struct pid_entry *entries,
159 	unsigned int n)
160 {
161 	unsigned int i;
162 	unsigned int count;
163 
164 	count = 2;
165 	for (i = 0; i < n; ++i) {
166 		if (S_ISDIR(entries[i].mode))
167 			++count;
168 	}
169 
170 	return count;
171 }
172 
173 static int get_task_root(struct task_struct *task, struct path *root)
174 {
175 	int result = -ENOENT;
176 
177 	task_lock(task);
178 	if (task->fs) {
179 		get_fs_root(task->fs, root);
180 		result = 0;
181 	}
182 	task_unlock(task);
183 	return result;
184 }
185 
186 static int proc_cwd_link(struct dentry *dentry, struct path *path)
187 {
188 	struct task_struct *task = get_proc_task(d_inode(dentry));
189 	int result = -ENOENT;
190 
191 	if (task) {
192 		task_lock(task);
193 		if (task->fs) {
194 			get_fs_pwd(task->fs, path);
195 			result = 0;
196 		}
197 		task_unlock(task);
198 		put_task_struct(task);
199 	}
200 	return result;
201 }
202 
203 static int proc_root_link(struct dentry *dentry, struct path *path)
204 {
205 	struct task_struct *task = get_proc_task(d_inode(dentry));
206 	int result = -ENOENT;
207 
208 	if (task) {
209 		result = get_task_root(task, path);
210 		put_task_struct(task);
211 	}
212 	return result;
213 }
214 
215 /*
216  * If the user used setproctitle(), we just get the string from
217  * user space at arg_start, and limit it to a maximum of one page.
218  */
219 static ssize_t get_mm_proctitle(struct mm_struct *mm, char __user *buf,
220 				size_t count, unsigned long pos,
221 				unsigned long arg_start)
222 {
223 	char *page;
224 	int ret, got;
225 
226 	if (pos >= PAGE_SIZE)
227 		return 0;
228 
229 	page = (char *)__get_free_page(GFP_KERNEL);
230 	if (!page)
231 		return -ENOMEM;
232 
233 	ret = 0;
234 	got = access_remote_vm(mm, arg_start, page, PAGE_SIZE, FOLL_ANON);
235 	if (got > 0) {
236 		int len = strnlen(page, got);
237 
238 		/* Include the NUL character if it was found */
239 		if (len < got)
240 			len++;
241 
242 		if (len > pos) {
243 			len -= pos;
244 			if (len > count)
245 				len = count;
246 			len -= copy_to_user(buf, page+pos, len);
247 			if (!len)
248 				len = -EFAULT;
249 			ret = len;
250 		}
251 	}
252 	free_page((unsigned long)page);
253 	return ret;
254 }
255 
256 static ssize_t get_mm_cmdline(struct mm_struct *mm, char __user *buf,
257 			      size_t count, loff_t *ppos)
258 {
259 	unsigned long arg_start, arg_end, env_start, env_end;
260 	unsigned long pos, len;
261 	char *page, c;
262 
263 	/* Check if process spawned far enough to have cmdline. */
264 	if (!mm->env_end)
265 		return 0;
266 
267 	spin_lock(&mm->arg_lock);
268 	arg_start = mm->arg_start;
269 	arg_end = mm->arg_end;
270 	env_start = mm->env_start;
271 	env_end = mm->env_end;
272 	spin_unlock(&mm->arg_lock);
273 
274 	if (arg_start >= arg_end)
275 		return 0;
276 
277 	/*
278 	 * We allow setproctitle() to overwrite the argument
279 	 * strings, and overflow past the original end. But
280 	 * only when it overflows into the environment area.
281 	 */
282 	if (env_start != arg_end || env_end < env_start)
283 		env_start = env_end = arg_end;
284 	len = env_end - arg_start;
285 
286 	/* We're not going to care if "*ppos" has high bits set */
287 	pos = *ppos;
288 	if (pos >= len)
289 		return 0;
290 	if (count > len - pos)
291 		count = len - pos;
292 	if (!count)
293 		return 0;
294 
295 	/*
296 	 * Magical special case: if the argv[] end byte is not
297 	 * zero, the user has overwritten it with setproctitle(3).
298 	 *
299 	 * Possible future enhancement: do this only once when
300 	 * pos is 0, and set a flag in the 'struct file'.
301 	 */
302 	if (access_remote_vm(mm, arg_end-1, &c, 1, FOLL_ANON) == 1 && c)
303 		return get_mm_proctitle(mm, buf, count, pos, arg_start);
304 
305 	/*
306 	 * For the non-setproctitle() case we limit things strictly
307 	 * to the [arg_start, arg_end[ range.
308 	 */
309 	pos += arg_start;
310 	if (pos < arg_start || pos >= arg_end)
311 		return 0;
312 	if (count > arg_end - pos)
313 		count = arg_end - pos;
314 
315 	page = (char *)__get_free_page(GFP_KERNEL);
316 	if (!page)
317 		return -ENOMEM;
318 
319 	len = 0;
320 	while (count) {
321 		int got;
322 		size_t size = min_t(size_t, PAGE_SIZE, count);
323 
324 		got = access_remote_vm(mm, pos, page, size, FOLL_ANON);
325 		if (got <= 0)
326 			break;
327 		got -= copy_to_user(buf, page, got);
328 		if (unlikely(!got)) {
329 			if (!len)
330 				len = -EFAULT;
331 			break;
332 		}
333 		pos += got;
334 		buf += got;
335 		len += got;
336 		count -= got;
337 	}
338 
339 	free_page((unsigned long)page);
340 	return len;
341 }
342 
343 static ssize_t get_task_cmdline(struct task_struct *tsk, char __user *buf,
344 				size_t count, loff_t *pos)
345 {
346 	struct mm_struct *mm;
347 	ssize_t ret;
348 
349 	mm = get_task_mm(tsk);
350 	if (!mm)
351 		return 0;
352 
353 	ret = get_mm_cmdline(mm, buf, count, pos);
354 	mmput(mm);
355 	return ret;
356 }
357 
358 static ssize_t proc_pid_cmdline_read(struct file *file, char __user *buf,
359 				     size_t count, loff_t *pos)
360 {
361 	struct task_struct *tsk;
362 	ssize_t ret;
363 
364 	BUG_ON(*pos < 0);
365 
366 	tsk = get_proc_task(file_inode(file));
367 	if (!tsk)
368 		return -ESRCH;
369 	ret = get_task_cmdline(tsk, buf, count, pos);
370 	put_task_struct(tsk);
371 	if (ret > 0)
372 		*pos += ret;
373 	return ret;
374 }
375 
376 static const struct file_operations proc_pid_cmdline_ops = {
377 	.read	= proc_pid_cmdline_read,
378 	.llseek	= generic_file_llseek,
379 };
380 
381 #ifdef CONFIG_KALLSYMS
382 /*
383  * Provides a wchan file via kallsyms in a proper one-value-per-file format.
384  * Returns the resolved symbol.  If that fails, simply return the address.
385  */
386 static int proc_pid_wchan(struct seq_file *m, struct pid_namespace *ns,
387 			  struct pid *pid, struct task_struct *task)
388 {
389 	unsigned long wchan;
390 	char symname[KSYM_NAME_LEN];
391 
392 	if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS))
393 		goto print0;
394 
395 	wchan = get_wchan(task);
396 	if (wchan && !lookup_symbol_name(wchan, symname)) {
397 		seq_puts(m, symname);
398 		return 0;
399 	}
400 
401 print0:
402 	seq_putc(m, '0');
403 	return 0;
404 }
405 #endif /* CONFIG_KALLSYMS */
406 
407 static int lock_trace(struct task_struct *task)
408 {
409 	int err = down_read_killable(&task->signal->exec_update_lock);
410 	if (err)
411 		return err;
412 	if (!ptrace_may_access(task, PTRACE_MODE_ATTACH_FSCREDS)) {
413 		up_read(&task->signal->exec_update_lock);
414 		return -EPERM;
415 	}
416 	return 0;
417 }
418 
419 static void unlock_trace(struct task_struct *task)
420 {
421 	up_read(&task->signal->exec_update_lock);
422 }
423 
424 #ifdef CONFIG_STACKTRACE
425 
426 #define MAX_STACK_TRACE_DEPTH	64
427 
428 static int proc_pid_stack(struct seq_file *m, struct pid_namespace *ns,
429 			  struct pid *pid, struct task_struct *task)
430 {
431 	unsigned long *entries;
432 	int err;
433 
434 	/*
435 	 * The ability to racily run the kernel stack unwinder on a running task
436 	 * and then observe the unwinder output is scary; while it is useful for
437 	 * debugging kernel issues, it can also allow an attacker to leak kernel
438 	 * stack contents.
439 	 * Doing this in a manner that is at least safe from races would require
440 	 * some work to ensure that the remote task can not be scheduled; and
441 	 * even then, this would still expose the unwinder as local attack
442 	 * surface.
443 	 * Therefore, this interface is restricted to root.
444 	 */
445 	if (!file_ns_capable(m->file, &init_user_ns, CAP_SYS_ADMIN))
446 		return -EACCES;
447 
448 	entries = kmalloc_array(MAX_STACK_TRACE_DEPTH, sizeof(*entries),
449 				GFP_KERNEL);
450 	if (!entries)
451 		return -ENOMEM;
452 
453 	err = lock_trace(task);
454 	if (!err) {
455 		unsigned int i, nr_entries;
456 
457 		nr_entries = stack_trace_save_tsk(task, entries,
458 						  MAX_STACK_TRACE_DEPTH, 0);
459 
460 		for (i = 0; i < nr_entries; i++) {
461 			seq_printf(m, "[<0>] %pB\n", (void *)entries[i]);
462 		}
463 
464 		unlock_trace(task);
465 	}
466 	kfree(entries);
467 
468 	return err;
469 }
470 #endif
471 
472 #ifdef CONFIG_SCHED_INFO
473 /*
474  * Provides /proc/PID/schedstat
475  */
476 static int proc_pid_schedstat(struct seq_file *m, struct pid_namespace *ns,
477 			      struct pid *pid, struct task_struct *task)
478 {
479 	if (unlikely(!sched_info_on()))
480 		seq_puts(m, "0 0 0\n");
481 	else
482 		seq_printf(m, "%llu %llu %lu\n",
483 		   (unsigned long long)task->se.sum_exec_runtime,
484 		   (unsigned long long)task->sched_info.run_delay,
485 		   task->sched_info.pcount);
486 
487 	return 0;
488 }
489 #endif
490 
491 #ifdef CONFIG_LATENCYTOP
492 static int lstats_show_proc(struct seq_file *m, void *v)
493 {
494 	int i;
495 	struct inode *inode = m->private;
496 	struct task_struct *task = get_proc_task(inode);
497 
498 	if (!task)
499 		return -ESRCH;
500 	seq_puts(m, "Latency Top version : v0.1\n");
501 	for (i = 0; i < LT_SAVECOUNT; i++) {
502 		struct latency_record *lr = &task->latency_record[i];
503 		if (lr->backtrace[0]) {
504 			int q;
505 			seq_printf(m, "%i %li %li",
506 				   lr->count, lr->time, lr->max);
507 			for (q = 0; q < LT_BACKTRACEDEPTH; q++) {
508 				unsigned long bt = lr->backtrace[q];
509 
510 				if (!bt)
511 					break;
512 				seq_printf(m, " %ps", (void *)bt);
513 			}
514 			seq_putc(m, '\n');
515 		}
516 
517 	}
518 	put_task_struct(task);
519 	return 0;
520 }
521 
522 static int lstats_open(struct inode *inode, struct file *file)
523 {
524 	return single_open(file, lstats_show_proc, inode);
525 }
526 
527 static ssize_t lstats_write(struct file *file, const char __user *buf,
528 			    size_t count, loff_t *offs)
529 {
530 	struct task_struct *task = get_proc_task(file_inode(file));
531 
532 	if (!task)
533 		return -ESRCH;
534 	clear_tsk_latency_tracing(task);
535 	put_task_struct(task);
536 
537 	return count;
538 }
539 
540 static const struct file_operations proc_lstats_operations = {
541 	.open		= lstats_open,
542 	.read		= seq_read,
543 	.write		= lstats_write,
544 	.llseek		= seq_lseek,
545 	.release	= single_release,
546 };
547 
548 #endif
549 
550 static int proc_oom_score(struct seq_file *m, struct pid_namespace *ns,
551 			  struct pid *pid, struct task_struct *task)
552 {
553 	unsigned long totalpages = totalram_pages() + total_swap_pages;
554 	unsigned long points = 0;
555 	long badness;
556 
557 	badness = oom_badness(task, totalpages);
558 	/*
559 	 * Special case OOM_SCORE_ADJ_MIN for all others scale the
560 	 * badness value into [0, 2000] range which we have been
561 	 * exporting for a long time so userspace might depend on it.
562 	 */
563 	if (badness != LONG_MIN)
564 		points = (1000 + badness * 1000 / (long)totalpages) * 2 / 3;
565 
566 	seq_printf(m, "%lu\n", points);
567 
568 	return 0;
569 }
570 
571 struct limit_names {
572 	const char *name;
573 	const char *unit;
574 };
575 
576 static const struct limit_names lnames[RLIM_NLIMITS] = {
577 	[RLIMIT_CPU] = {"Max cpu time", "seconds"},
578 	[RLIMIT_FSIZE] = {"Max file size", "bytes"},
579 	[RLIMIT_DATA] = {"Max data size", "bytes"},
580 	[RLIMIT_STACK] = {"Max stack size", "bytes"},
581 	[RLIMIT_CORE] = {"Max core file size", "bytes"},
582 	[RLIMIT_RSS] = {"Max resident set", "bytes"},
583 	[RLIMIT_NPROC] = {"Max processes", "processes"},
584 	[RLIMIT_NOFILE] = {"Max open files", "files"},
585 	[RLIMIT_MEMLOCK] = {"Max locked memory", "bytes"},
586 	[RLIMIT_AS] = {"Max address space", "bytes"},
587 	[RLIMIT_LOCKS] = {"Max file locks", "locks"},
588 	[RLIMIT_SIGPENDING] = {"Max pending signals", "signals"},
589 	[RLIMIT_MSGQUEUE] = {"Max msgqueue size", "bytes"},
590 	[RLIMIT_NICE] = {"Max nice priority", NULL},
591 	[RLIMIT_RTPRIO] = {"Max realtime priority", NULL},
592 	[RLIMIT_RTTIME] = {"Max realtime timeout", "us"},
593 };
594 
595 /* Display limits for a process */
596 static int proc_pid_limits(struct seq_file *m, struct pid_namespace *ns,
597 			   struct pid *pid, struct task_struct *task)
598 {
599 	unsigned int i;
600 	unsigned long flags;
601 
602 	struct rlimit rlim[RLIM_NLIMITS];
603 
604 	if (!lock_task_sighand(task, &flags))
605 		return 0;
606 	memcpy(rlim, task->signal->rlim, sizeof(struct rlimit) * RLIM_NLIMITS);
607 	unlock_task_sighand(task, &flags);
608 
609 	/*
610 	 * print the file header
611 	 */
612 	seq_puts(m, "Limit                     "
613 		"Soft Limit           "
614 		"Hard Limit           "
615 		"Units     \n");
616 
617 	for (i = 0; i < RLIM_NLIMITS; i++) {
618 		if (rlim[i].rlim_cur == RLIM_INFINITY)
619 			seq_printf(m, "%-25s %-20s ",
620 				   lnames[i].name, "unlimited");
621 		else
622 			seq_printf(m, "%-25s %-20lu ",
623 				   lnames[i].name, rlim[i].rlim_cur);
624 
625 		if (rlim[i].rlim_max == RLIM_INFINITY)
626 			seq_printf(m, "%-20s ", "unlimited");
627 		else
628 			seq_printf(m, "%-20lu ", rlim[i].rlim_max);
629 
630 		if (lnames[i].unit)
631 			seq_printf(m, "%-10s\n", lnames[i].unit);
632 		else
633 			seq_putc(m, '\n');
634 	}
635 
636 	return 0;
637 }
638 
639 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK
640 static int proc_pid_syscall(struct seq_file *m, struct pid_namespace *ns,
641 			    struct pid *pid, struct task_struct *task)
642 {
643 	struct syscall_info info;
644 	u64 *args = &info.data.args[0];
645 	int res;
646 
647 	res = lock_trace(task);
648 	if (res)
649 		return res;
650 
651 	if (task_current_syscall(task, &info))
652 		seq_puts(m, "running\n");
653 	else if (info.data.nr < 0)
654 		seq_printf(m, "%d 0x%llx 0x%llx\n",
655 			   info.data.nr, info.sp, info.data.instruction_pointer);
656 	else
657 		seq_printf(m,
658 		       "%d 0x%llx 0x%llx 0x%llx 0x%llx 0x%llx 0x%llx 0x%llx 0x%llx\n",
659 		       info.data.nr,
660 		       args[0], args[1], args[2], args[3], args[4], args[5],
661 		       info.sp, info.data.instruction_pointer);
662 	unlock_trace(task);
663 
664 	return 0;
665 }
666 #endif /* CONFIG_HAVE_ARCH_TRACEHOOK */
667 
668 /************************************************************************/
669 /*                       Here the fs part begins                        */
670 /************************************************************************/
671 
672 /* permission checks */
673 static bool proc_fd_access_allowed(struct inode *inode)
674 {
675 	struct task_struct *task;
676 	bool allowed = false;
677 	/* Allow access to a task's file descriptors if it is us or we
678 	 * may use ptrace attach to the process and find out that
679 	 * information.
680 	 */
681 	task = get_proc_task(inode);
682 	if (task) {
683 		allowed = ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS);
684 		put_task_struct(task);
685 	}
686 	return allowed;
687 }
688 
689 int proc_setattr(struct mnt_idmap *idmap, struct dentry *dentry,
690 		 struct iattr *attr)
691 {
692 	int error;
693 	struct inode *inode = d_inode(dentry);
694 
695 	if (attr->ia_valid & ATTR_MODE)
696 		return -EPERM;
697 
698 	error = setattr_prepare(&nop_mnt_idmap, dentry, attr);
699 	if (error)
700 		return error;
701 
702 	setattr_copy(&nop_mnt_idmap, inode, attr);
703 	return 0;
704 }
705 
706 /*
707  * May current process learn task's sched/cmdline info (for hide_pid_min=1)
708  * or euid/egid (for hide_pid_min=2)?
709  */
710 static bool has_pid_permissions(struct proc_fs_info *fs_info,
711 				 struct task_struct *task,
712 				 enum proc_hidepid hide_pid_min)
713 {
714 	/*
715 	 * If 'hidpid' mount option is set force a ptrace check,
716 	 * we indicate that we are using a filesystem syscall
717 	 * by passing PTRACE_MODE_READ_FSCREDS
718 	 */
719 	if (fs_info->hide_pid == HIDEPID_NOT_PTRACEABLE)
720 		return ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS);
721 
722 	if (fs_info->hide_pid < hide_pid_min)
723 		return true;
724 	if (in_group_p(fs_info->pid_gid))
725 		return true;
726 	return ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS);
727 }
728 
729 
730 static int proc_pid_permission(struct mnt_idmap *idmap,
731 			       struct inode *inode, int mask)
732 {
733 	struct proc_fs_info *fs_info = proc_sb_info(inode->i_sb);
734 	struct task_struct *task;
735 	bool has_perms;
736 
737 	task = get_proc_task(inode);
738 	if (!task)
739 		return -ESRCH;
740 	has_perms = has_pid_permissions(fs_info, task, HIDEPID_NO_ACCESS);
741 	put_task_struct(task);
742 
743 	if (!has_perms) {
744 		if (fs_info->hide_pid == HIDEPID_INVISIBLE) {
745 			/*
746 			 * Let's make getdents(), stat(), and open()
747 			 * consistent with each other.  If a process
748 			 * may not stat() a file, it shouldn't be seen
749 			 * in procfs at all.
750 			 */
751 			return -ENOENT;
752 		}
753 
754 		return -EPERM;
755 	}
756 	return generic_permission(&nop_mnt_idmap, inode, mask);
757 }
758 
759 
760 
761 static const struct inode_operations proc_def_inode_operations = {
762 	.setattr	= proc_setattr,
763 };
764 
765 static int proc_single_show(struct seq_file *m, void *v)
766 {
767 	struct inode *inode = m->private;
768 	struct pid_namespace *ns = proc_pid_ns(inode->i_sb);
769 	struct pid *pid = proc_pid(inode);
770 	struct task_struct *task;
771 	int ret;
772 
773 	task = get_pid_task(pid, PIDTYPE_PID);
774 	if (!task)
775 		return -ESRCH;
776 
777 	ret = PROC_I(inode)->op.proc_show(m, ns, pid, task);
778 
779 	put_task_struct(task);
780 	return ret;
781 }
782 
783 static int proc_single_open(struct inode *inode, struct file *filp)
784 {
785 	return single_open(filp, proc_single_show, inode);
786 }
787 
788 static const struct file_operations proc_single_file_operations = {
789 	.open		= proc_single_open,
790 	.read		= seq_read,
791 	.llseek		= seq_lseek,
792 	.release	= single_release,
793 };
794 
795 
796 struct mm_struct *proc_mem_open(struct inode *inode, unsigned int mode)
797 {
798 	struct task_struct *task = get_proc_task(inode);
799 	struct mm_struct *mm = ERR_PTR(-ESRCH);
800 
801 	if (task) {
802 		mm = mm_access(task, mode | PTRACE_MODE_FSCREDS);
803 		put_task_struct(task);
804 
805 		if (!IS_ERR_OR_NULL(mm)) {
806 			/* ensure this mm_struct can't be freed */
807 			mmgrab(mm);
808 			/* but do not pin its memory */
809 			mmput(mm);
810 		}
811 	}
812 
813 	return mm;
814 }
815 
816 static int __mem_open(struct inode *inode, struct file *file, unsigned int mode)
817 {
818 	struct mm_struct *mm = proc_mem_open(inode, mode);
819 
820 	if (IS_ERR(mm))
821 		return PTR_ERR(mm);
822 
823 	file->private_data = mm;
824 	return 0;
825 }
826 
827 static int mem_open(struct inode *inode, struct file *file)
828 {
829 	int ret = __mem_open(inode, file, PTRACE_MODE_ATTACH);
830 
831 	/* OK to pass negative loff_t, we can catch out-of-range */
832 	file->f_mode |= FMODE_UNSIGNED_OFFSET;
833 
834 	return ret;
835 }
836 
837 static ssize_t mem_rw(struct file *file, char __user *buf,
838 			size_t count, loff_t *ppos, int write)
839 {
840 	struct mm_struct *mm = file->private_data;
841 	unsigned long addr = *ppos;
842 	ssize_t copied;
843 	char *page;
844 	unsigned int flags;
845 
846 	if (!mm)
847 		return 0;
848 
849 	page = (char *)__get_free_page(GFP_KERNEL);
850 	if (!page)
851 		return -ENOMEM;
852 
853 	copied = 0;
854 	if (!mmget_not_zero(mm))
855 		goto free;
856 
857 	flags = FOLL_FORCE | (write ? FOLL_WRITE : 0);
858 
859 	while (count > 0) {
860 		size_t this_len = min_t(size_t, count, PAGE_SIZE);
861 
862 		if (write && copy_from_user(page, buf, this_len)) {
863 			copied = -EFAULT;
864 			break;
865 		}
866 
867 		this_len = access_remote_vm(mm, addr, page, this_len, flags);
868 		if (!this_len) {
869 			if (!copied)
870 				copied = -EIO;
871 			break;
872 		}
873 
874 		if (!write && copy_to_user(buf, page, this_len)) {
875 			copied = -EFAULT;
876 			break;
877 		}
878 
879 		buf += this_len;
880 		addr += this_len;
881 		copied += this_len;
882 		count -= this_len;
883 	}
884 	*ppos = addr;
885 
886 	mmput(mm);
887 free:
888 	free_page((unsigned long) page);
889 	return copied;
890 }
891 
892 static ssize_t mem_read(struct file *file, char __user *buf,
893 			size_t count, loff_t *ppos)
894 {
895 	return mem_rw(file, buf, count, ppos, 0);
896 }
897 
898 static ssize_t mem_write(struct file *file, const char __user *buf,
899 			 size_t count, loff_t *ppos)
900 {
901 	return mem_rw(file, (char __user*)buf, count, ppos, 1);
902 }
903 
904 loff_t mem_lseek(struct file *file, loff_t offset, int orig)
905 {
906 	switch (orig) {
907 	case 0:
908 		file->f_pos = offset;
909 		break;
910 	case 1:
911 		file->f_pos += offset;
912 		break;
913 	default:
914 		return -EINVAL;
915 	}
916 	force_successful_syscall_return();
917 	return file->f_pos;
918 }
919 
920 static int mem_release(struct inode *inode, struct file *file)
921 {
922 	struct mm_struct *mm = file->private_data;
923 	if (mm)
924 		mmdrop(mm);
925 	return 0;
926 }
927 
928 static const struct file_operations proc_mem_operations = {
929 	.llseek		= mem_lseek,
930 	.read		= mem_read,
931 	.write		= mem_write,
932 	.open		= mem_open,
933 	.release	= mem_release,
934 };
935 
936 static int environ_open(struct inode *inode, struct file *file)
937 {
938 	return __mem_open(inode, file, PTRACE_MODE_READ);
939 }
940 
941 static ssize_t environ_read(struct file *file, char __user *buf,
942 			size_t count, loff_t *ppos)
943 {
944 	char *page;
945 	unsigned long src = *ppos;
946 	int ret = 0;
947 	struct mm_struct *mm = file->private_data;
948 	unsigned long env_start, env_end;
949 
950 	/* Ensure the process spawned far enough to have an environment. */
951 	if (!mm || !mm->env_end)
952 		return 0;
953 
954 	page = (char *)__get_free_page(GFP_KERNEL);
955 	if (!page)
956 		return -ENOMEM;
957 
958 	ret = 0;
959 	if (!mmget_not_zero(mm))
960 		goto free;
961 
962 	spin_lock(&mm->arg_lock);
963 	env_start = mm->env_start;
964 	env_end = mm->env_end;
965 	spin_unlock(&mm->arg_lock);
966 
967 	while (count > 0) {
968 		size_t this_len, max_len;
969 		int retval;
970 
971 		if (src >= (env_end - env_start))
972 			break;
973 
974 		this_len = env_end - (env_start + src);
975 
976 		max_len = min_t(size_t, PAGE_SIZE, count);
977 		this_len = min(max_len, this_len);
978 
979 		retval = access_remote_vm(mm, (env_start + src), page, this_len, FOLL_ANON);
980 
981 		if (retval <= 0) {
982 			ret = retval;
983 			break;
984 		}
985 
986 		if (copy_to_user(buf, page, retval)) {
987 			ret = -EFAULT;
988 			break;
989 		}
990 
991 		ret += retval;
992 		src += retval;
993 		buf += retval;
994 		count -= retval;
995 	}
996 	*ppos = src;
997 	mmput(mm);
998 
999 free:
1000 	free_page((unsigned long) page);
1001 	return ret;
1002 }
1003 
1004 static const struct file_operations proc_environ_operations = {
1005 	.open		= environ_open,
1006 	.read		= environ_read,
1007 	.llseek		= generic_file_llseek,
1008 	.release	= mem_release,
1009 };
1010 
1011 static int auxv_open(struct inode *inode, struct file *file)
1012 {
1013 	return __mem_open(inode, file, PTRACE_MODE_READ_FSCREDS);
1014 }
1015 
1016 static ssize_t auxv_read(struct file *file, char __user *buf,
1017 			size_t count, loff_t *ppos)
1018 {
1019 	struct mm_struct *mm = file->private_data;
1020 	unsigned int nwords = 0;
1021 
1022 	if (!mm)
1023 		return 0;
1024 	do {
1025 		nwords += 2;
1026 	} while (mm->saved_auxv[nwords - 2] != 0); /* AT_NULL */
1027 	return simple_read_from_buffer(buf, count, ppos, mm->saved_auxv,
1028 				       nwords * sizeof(mm->saved_auxv[0]));
1029 }
1030 
1031 static const struct file_operations proc_auxv_operations = {
1032 	.open		= auxv_open,
1033 	.read		= auxv_read,
1034 	.llseek		= generic_file_llseek,
1035 	.release	= mem_release,
1036 };
1037 
1038 static ssize_t oom_adj_read(struct file *file, char __user *buf, size_t count,
1039 			    loff_t *ppos)
1040 {
1041 	struct task_struct *task = get_proc_task(file_inode(file));
1042 	char buffer[PROC_NUMBUF];
1043 	int oom_adj = OOM_ADJUST_MIN;
1044 	size_t len;
1045 
1046 	if (!task)
1047 		return -ESRCH;
1048 	if (task->signal->oom_score_adj == OOM_SCORE_ADJ_MAX)
1049 		oom_adj = OOM_ADJUST_MAX;
1050 	else
1051 		oom_adj = (task->signal->oom_score_adj * -OOM_DISABLE) /
1052 			  OOM_SCORE_ADJ_MAX;
1053 	put_task_struct(task);
1054 	if (oom_adj > OOM_ADJUST_MAX)
1055 		oom_adj = OOM_ADJUST_MAX;
1056 	len = snprintf(buffer, sizeof(buffer), "%d\n", oom_adj);
1057 	return simple_read_from_buffer(buf, count, ppos, buffer, len);
1058 }
1059 
1060 static int __set_oom_adj(struct file *file, int oom_adj, bool legacy)
1061 {
1062 	struct mm_struct *mm = NULL;
1063 	struct task_struct *task;
1064 	int err = 0;
1065 
1066 	task = get_proc_task(file_inode(file));
1067 	if (!task)
1068 		return -ESRCH;
1069 
1070 	mutex_lock(&oom_adj_mutex);
1071 	if (legacy) {
1072 		if (oom_adj < task->signal->oom_score_adj &&
1073 				!capable(CAP_SYS_RESOURCE)) {
1074 			err = -EACCES;
1075 			goto err_unlock;
1076 		}
1077 		/*
1078 		 * /proc/pid/oom_adj is provided for legacy purposes, ask users to use
1079 		 * /proc/pid/oom_score_adj instead.
1080 		 */
1081 		pr_warn_once("%s (%d): /proc/%d/oom_adj is deprecated, please use /proc/%d/oom_score_adj instead.\n",
1082 			  current->comm, task_pid_nr(current), task_pid_nr(task),
1083 			  task_pid_nr(task));
1084 	} else {
1085 		if ((short)oom_adj < task->signal->oom_score_adj_min &&
1086 				!capable(CAP_SYS_RESOURCE)) {
1087 			err = -EACCES;
1088 			goto err_unlock;
1089 		}
1090 	}
1091 
1092 	/*
1093 	 * Make sure we will check other processes sharing the mm if this is
1094 	 * not vfrok which wants its own oom_score_adj.
1095 	 * pin the mm so it doesn't go away and get reused after task_unlock
1096 	 */
1097 	if (!task->vfork_done) {
1098 		struct task_struct *p = find_lock_task_mm(task);
1099 
1100 		if (p) {
1101 			if (test_bit(MMF_MULTIPROCESS, &p->mm->flags)) {
1102 				mm = p->mm;
1103 				mmgrab(mm);
1104 			}
1105 			task_unlock(p);
1106 		}
1107 	}
1108 
1109 	task->signal->oom_score_adj = oom_adj;
1110 	if (!legacy && has_capability_noaudit(current, CAP_SYS_RESOURCE))
1111 		task->signal->oom_score_adj_min = (short)oom_adj;
1112 	trace_oom_score_adj_update(task);
1113 
1114 	if (mm) {
1115 		struct task_struct *p;
1116 
1117 		rcu_read_lock();
1118 		for_each_process(p) {
1119 			if (same_thread_group(task, p))
1120 				continue;
1121 
1122 			/* do not touch kernel threads or the global init */
1123 			if (p->flags & PF_KTHREAD || is_global_init(p))
1124 				continue;
1125 
1126 			task_lock(p);
1127 			if (!p->vfork_done && process_shares_mm(p, mm)) {
1128 				p->signal->oom_score_adj = oom_adj;
1129 				if (!legacy && has_capability_noaudit(current, CAP_SYS_RESOURCE))
1130 					p->signal->oom_score_adj_min = (short)oom_adj;
1131 			}
1132 			task_unlock(p);
1133 		}
1134 		rcu_read_unlock();
1135 		mmdrop(mm);
1136 	}
1137 err_unlock:
1138 	mutex_unlock(&oom_adj_mutex);
1139 	put_task_struct(task);
1140 	return err;
1141 }
1142 
1143 /*
1144  * /proc/pid/oom_adj exists solely for backwards compatibility with previous
1145  * kernels.  The effective policy is defined by oom_score_adj, which has a
1146  * different scale: oom_adj grew exponentially and oom_score_adj grows linearly.
1147  * Values written to oom_adj are simply mapped linearly to oom_score_adj.
1148  * Processes that become oom disabled via oom_adj will still be oom disabled
1149  * with this implementation.
1150  *
1151  * oom_adj cannot be removed since existing userspace binaries use it.
1152  */
1153 static ssize_t oom_adj_write(struct file *file, const char __user *buf,
1154 			     size_t count, loff_t *ppos)
1155 {
1156 	char buffer[PROC_NUMBUF] = {};
1157 	int oom_adj;
1158 	int err;
1159 
1160 	if (count > sizeof(buffer) - 1)
1161 		count = sizeof(buffer) - 1;
1162 	if (copy_from_user(buffer, buf, count)) {
1163 		err = -EFAULT;
1164 		goto out;
1165 	}
1166 
1167 	err = kstrtoint(strstrip(buffer), 0, &oom_adj);
1168 	if (err)
1169 		goto out;
1170 	if ((oom_adj < OOM_ADJUST_MIN || oom_adj > OOM_ADJUST_MAX) &&
1171 	     oom_adj != OOM_DISABLE) {
1172 		err = -EINVAL;
1173 		goto out;
1174 	}
1175 
1176 	/*
1177 	 * Scale /proc/pid/oom_score_adj appropriately ensuring that a maximum
1178 	 * value is always attainable.
1179 	 */
1180 	if (oom_adj == OOM_ADJUST_MAX)
1181 		oom_adj = OOM_SCORE_ADJ_MAX;
1182 	else
1183 		oom_adj = (oom_adj * OOM_SCORE_ADJ_MAX) / -OOM_DISABLE;
1184 
1185 	err = __set_oom_adj(file, oom_adj, true);
1186 out:
1187 	return err < 0 ? err : count;
1188 }
1189 
1190 static const struct file_operations proc_oom_adj_operations = {
1191 	.read		= oom_adj_read,
1192 	.write		= oom_adj_write,
1193 	.llseek		= generic_file_llseek,
1194 };
1195 
1196 static ssize_t oom_score_adj_read(struct file *file, char __user *buf,
1197 					size_t count, loff_t *ppos)
1198 {
1199 	struct task_struct *task = get_proc_task(file_inode(file));
1200 	char buffer[PROC_NUMBUF];
1201 	short oom_score_adj = OOM_SCORE_ADJ_MIN;
1202 	size_t len;
1203 
1204 	if (!task)
1205 		return -ESRCH;
1206 	oom_score_adj = task->signal->oom_score_adj;
1207 	put_task_struct(task);
1208 	len = snprintf(buffer, sizeof(buffer), "%hd\n", oom_score_adj);
1209 	return simple_read_from_buffer(buf, count, ppos, buffer, len);
1210 }
1211 
1212 static ssize_t oom_score_adj_write(struct file *file, const char __user *buf,
1213 					size_t count, loff_t *ppos)
1214 {
1215 	char buffer[PROC_NUMBUF] = {};
1216 	int oom_score_adj;
1217 	int err;
1218 
1219 	if (count > sizeof(buffer) - 1)
1220 		count = sizeof(buffer) - 1;
1221 	if (copy_from_user(buffer, buf, count)) {
1222 		err = -EFAULT;
1223 		goto out;
1224 	}
1225 
1226 	err = kstrtoint(strstrip(buffer), 0, &oom_score_adj);
1227 	if (err)
1228 		goto out;
1229 	if (oom_score_adj < OOM_SCORE_ADJ_MIN ||
1230 			oom_score_adj > OOM_SCORE_ADJ_MAX) {
1231 		err = -EINVAL;
1232 		goto out;
1233 	}
1234 
1235 	err = __set_oom_adj(file, oom_score_adj, false);
1236 out:
1237 	return err < 0 ? err : count;
1238 }
1239 
1240 static const struct file_operations proc_oom_score_adj_operations = {
1241 	.read		= oom_score_adj_read,
1242 	.write		= oom_score_adj_write,
1243 	.llseek		= default_llseek,
1244 };
1245 
1246 #ifdef CONFIG_AUDIT
1247 #define TMPBUFLEN 11
1248 static ssize_t proc_loginuid_read(struct file * file, char __user * buf,
1249 				  size_t count, loff_t *ppos)
1250 {
1251 	struct inode * inode = file_inode(file);
1252 	struct task_struct *task = get_proc_task(inode);
1253 	ssize_t length;
1254 	char tmpbuf[TMPBUFLEN];
1255 
1256 	if (!task)
1257 		return -ESRCH;
1258 	length = scnprintf(tmpbuf, TMPBUFLEN, "%u",
1259 			   from_kuid(file->f_cred->user_ns,
1260 				     audit_get_loginuid(task)));
1261 	put_task_struct(task);
1262 	return simple_read_from_buffer(buf, count, ppos, tmpbuf, length);
1263 }
1264 
1265 static ssize_t proc_loginuid_write(struct file * file, const char __user * buf,
1266 				   size_t count, loff_t *ppos)
1267 {
1268 	struct inode * inode = file_inode(file);
1269 	uid_t loginuid;
1270 	kuid_t kloginuid;
1271 	int rv;
1272 
1273 	/* Don't let kthreads write their own loginuid */
1274 	if (current->flags & PF_KTHREAD)
1275 		return -EPERM;
1276 
1277 	rcu_read_lock();
1278 	if (current != pid_task(proc_pid(inode), PIDTYPE_PID)) {
1279 		rcu_read_unlock();
1280 		return -EPERM;
1281 	}
1282 	rcu_read_unlock();
1283 
1284 	if (*ppos != 0) {
1285 		/* No partial writes. */
1286 		return -EINVAL;
1287 	}
1288 
1289 	rv = kstrtou32_from_user(buf, count, 10, &loginuid);
1290 	if (rv < 0)
1291 		return rv;
1292 
1293 	/* is userspace tring to explicitly UNSET the loginuid? */
1294 	if (loginuid == AUDIT_UID_UNSET) {
1295 		kloginuid = INVALID_UID;
1296 	} else {
1297 		kloginuid = make_kuid(file->f_cred->user_ns, loginuid);
1298 		if (!uid_valid(kloginuid))
1299 			return -EINVAL;
1300 	}
1301 
1302 	rv = audit_set_loginuid(kloginuid);
1303 	if (rv < 0)
1304 		return rv;
1305 	return count;
1306 }
1307 
1308 static const struct file_operations proc_loginuid_operations = {
1309 	.read		= proc_loginuid_read,
1310 	.write		= proc_loginuid_write,
1311 	.llseek		= generic_file_llseek,
1312 };
1313 
1314 static ssize_t proc_sessionid_read(struct file * file, char __user * buf,
1315 				  size_t count, loff_t *ppos)
1316 {
1317 	struct inode * inode = file_inode(file);
1318 	struct task_struct *task = get_proc_task(inode);
1319 	ssize_t length;
1320 	char tmpbuf[TMPBUFLEN];
1321 
1322 	if (!task)
1323 		return -ESRCH;
1324 	length = scnprintf(tmpbuf, TMPBUFLEN, "%u",
1325 				audit_get_sessionid(task));
1326 	put_task_struct(task);
1327 	return simple_read_from_buffer(buf, count, ppos, tmpbuf, length);
1328 }
1329 
1330 static const struct file_operations proc_sessionid_operations = {
1331 	.read		= proc_sessionid_read,
1332 	.llseek		= generic_file_llseek,
1333 };
1334 #endif
1335 
1336 #ifdef CONFIG_FAULT_INJECTION
1337 static ssize_t proc_fault_inject_read(struct file * file, char __user * buf,
1338 				      size_t count, loff_t *ppos)
1339 {
1340 	struct task_struct *task = get_proc_task(file_inode(file));
1341 	char buffer[PROC_NUMBUF];
1342 	size_t len;
1343 	int make_it_fail;
1344 
1345 	if (!task)
1346 		return -ESRCH;
1347 	make_it_fail = task->make_it_fail;
1348 	put_task_struct(task);
1349 
1350 	len = snprintf(buffer, sizeof(buffer), "%i\n", make_it_fail);
1351 
1352 	return simple_read_from_buffer(buf, count, ppos, buffer, len);
1353 }
1354 
1355 static ssize_t proc_fault_inject_write(struct file * file,
1356 			const char __user * buf, size_t count, loff_t *ppos)
1357 {
1358 	struct task_struct *task;
1359 	char buffer[PROC_NUMBUF] = {};
1360 	int make_it_fail;
1361 	int rv;
1362 
1363 	if (!capable(CAP_SYS_RESOURCE))
1364 		return -EPERM;
1365 
1366 	if (count > sizeof(buffer) - 1)
1367 		count = sizeof(buffer) - 1;
1368 	if (copy_from_user(buffer, buf, count))
1369 		return -EFAULT;
1370 	rv = kstrtoint(strstrip(buffer), 0, &make_it_fail);
1371 	if (rv < 0)
1372 		return rv;
1373 	if (make_it_fail < 0 || make_it_fail > 1)
1374 		return -EINVAL;
1375 
1376 	task = get_proc_task(file_inode(file));
1377 	if (!task)
1378 		return -ESRCH;
1379 	task->make_it_fail = make_it_fail;
1380 	put_task_struct(task);
1381 
1382 	return count;
1383 }
1384 
1385 static const struct file_operations proc_fault_inject_operations = {
1386 	.read		= proc_fault_inject_read,
1387 	.write		= proc_fault_inject_write,
1388 	.llseek		= generic_file_llseek,
1389 };
1390 
1391 static ssize_t proc_fail_nth_write(struct file *file, const char __user *buf,
1392 				   size_t count, loff_t *ppos)
1393 {
1394 	struct task_struct *task;
1395 	int err;
1396 	unsigned int n;
1397 
1398 	err = kstrtouint_from_user(buf, count, 0, &n);
1399 	if (err)
1400 		return err;
1401 
1402 	task = get_proc_task(file_inode(file));
1403 	if (!task)
1404 		return -ESRCH;
1405 	task->fail_nth = n;
1406 	put_task_struct(task);
1407 
1408 	return count;
1409 }
1410 
1411 static ssize_t proc_fail_nth_read(struct file *file, char __user *buf,
1412 				  size_t count, loff_t *ppos)
1413 {
1414 	struct task_struct *task;
1415 	char numbuf[PROC_NUMBUF];
1416 	ssize_t len;
1417 
1418 	task = get_proc_task(file_inode(file));
1419 	if (!task)
1420 		return -ESRCH;
1421 	len = snprintf(numbuf, sizeof(numbuf), "%u\n", task->fail_nth);
1422 	put_task_struct(task);
1423 	return simple_read_from_buffer(buf, count, ppos, numbuf, len);
1424 }
1425 
1426 static const struct file_operations proc_fail_nth_operations = {
1427 	.read		= proc_fail_nth_read,
1428 	.write		= proc_fail_nth_write,
1429 };
1430 #endif
1431 
1432 
1433 #ifdef CONFIG_SCHED_DEBUG
1434 /*
1435  * Print out various scheduling related per-task fields:
1436  */
1437 static int sched_show(struct seq_file *m, void *v)
1438 {
1439 	struct inode *inode = m->private;
1440 	struct pid_namespace *ns = proc_pid_ns(inode->i_sb);
1441 	struct task_struct *p;
1442 
1443 	p = get_proc_task(inode);
1444 	if (!p)
1445 		return -ESRCH;
1446 	proc_sched_show_task(p, ns, m);
1447 
1448 	put_task_struct(p);
1449 
1450 	return 0;
1451 }
1452 
1453 static ssize_t
1454 sched_write(struct file *file, const char __user *buf,
1455 	    size_t count, loff_t *offset)
1456 {
1457 	struct inode *inode = file_inode(file);
1458 	struct task_struct *p;
1459 
1460 	p = get_proc_task(inode);
1461 	if (!p)
1462 		return -ESRCH;
1463 	proc_sched_set_task(p);
1464 
1465 	put_task_struct(p);
1466 
1467 	return count;
1468 }
1469 
1470 static int sched_open(struct inode *inode, struct file *filp)
1471 {
1472 	return single_open(filp, sched_show, inode);
1473 }
1474 
1475 static const struct file_operations proc_pid_sched_operations = {
1476 	.open		= sched_open,
1477 	.read		= seq_read,
1478 	.write		= sched_write,
1479 	.llseek		= seq_lseek,
1480 	.release	= single_release,
1481 };
1482 
1483 #endif
1484 
1485 #ifdef CONFIG_SCHED_AUTOGROUP
1486 /*
1487  * Print out autogroup related information:
1488  */
1489 static int sched_autogroup_show(struct seq_file *m, void *v)
1490 {
1491 	struct inode *inode = m->private;
1492 	struct task_struct *p;
1493 
1494 	p = get_proc_task(inode);
1495 	if (!p)
1496 		return -ESRCH;
1497 	proc_sched_autogroup_show_task(p, m);
1498 
1499 	put_task_struct(p);
1500 
1501 	return 0;
1502 }
1503 
1504 static ssize_t
1505 sched_autogroup_write(struct file *file, const char __user *buf,
1506 	    size_t count, loff_t *offset)
1507 {
1508 	struct inode *inode = file_inode(file);
1509 	struct task_struct *p;
1510 	char buffer[PROC_NUMBUF] = {};
1511 	int nice;
1512 	int err;
1513 
1514 	if (count > sizeof(buffer) - 1)
1515 		count = sizeof(buffer) - 1;
1516 	if (copy_from_user(buffer, buf, count))
1517 		return -EFAULT;
1518 
1519 	err = kstrtoint(strstrip(buffer), 0, &nice);
1520 	if (err < 0)
1521 		return err;
1522 
1523 	p = get_proc_task(inode);
1524 	if (!p)
1525 		return -ESRCH;
1526 
1527 	err = proc_sched_autogroup_set_nice(p, nice);
1528 	if (err)
1529 		count = err;
1530 
1531 	put_task_struct(p);
1532 
1533 	return count;
1534 }
1535 
1536 static int sched_autogroup_open(struct inode *inode, struct file *filp)
1537 {
1538 	int ret;
1539 
1540 	ret = single_open(filp, sched_autogroup_show, NULL);
1541 	if (!ret) {
1542 		struct seq_file *m = filp->private_data;
1543 
1544 		m->private = inode;
1545 	}
1546 	return ret;
1547 }
1548 
1549 static const struct file_operations proc_pid_sched_autogroup_operations = {
1550 	.open		= sched_autogroup_open,
1551 	.read		= seq_read,
1552 	.write		= sched_autogroup_write,
1553 	.llseek		= seq_lseek,
1554 	.release	= single_release,
1555 };
1556 
1557 #endif /* CONFIG_SCHED_AUTOGROUP */
1558 
1559 #ifdef CONFIG_TIME_NS
1560 static int timens_offsets_show(struct seq_file *m, void *v)
1561 {
1562 	struct task_struct *p;
1563 
1564 	p = get_proc_task(file_inode(m->file));
1565 	if (!p)
1566 		return -ESRCH;
1567 	proc_timens_show_offsets(p, m);
1568 
1569 	put_task_struct(p);
1570 
1571 	return 0;
1572 }
1573 
1574 static ssize_t timens_offsets_write(struct file *file, const char __user *buf,
1575 				    size_t count, loff_t *ppos)
1576 {
1577 	struct inode *inode = file_inode(file);
1578 	struct proc_timens_offset offsets[2];
1579 	char *kbuf = NULL, *pos, *next_line;
1580 	struct task_struct *p;
1581 	int ret, noffsets;
1582 
1583 	/* Only allow < page size writes at the beginning of the file */
1584 	if ((*ppos != 0) || (count >= PAGE_SIZE))
1585 		return -EINVAL;
1586 
1587 	/* Slurp in the user data */
1588 	kbuf = memdup_user_nul(buf, count);
1589 	if (IS_ERR(kbuf))
1590 		return PTR_ERR(kbuf);
1591 
1592 	/* Parse the user data */
1593 	ret = -EINVAL;
1594 	noffsets = 0;
1595 	for (pos = kbuf; pos; pos = next_line) {
1596 		struct proc_timens_offset *off = &offsets[noffsets];
1597 		char clock[10];
1598 		int err;
1599 
1600 		/* Find the end of line and ensure we don't look past it */
1601 		next_line = strchr(pos, '\n');
1602 		if (next_line) {
1603 			*next_line = '\0';
1604 			next_line++;
1605 			if (*next_line == '\0')
1606 				next_line = NULL;
1607 		}
1608 
1609 		err = sscanf(pos, "%9s %lld %lu", clock,
1610 				&off->val.tv_sec, &off->val.tv_nsec);
1611 		if (err != 3 || off->val.tv_nsec >= NSEC_PER_SEC)
1612 			goto out;
1613 
1614 		clock[sizeof(clock) - 1] = 0;
1615 		if (strcmp(clock, "monotonic") == 0 ||
1616 		    strcmp(clock, __stringify(CLOCK_MONOTONIC)) == 0)
1617 			off->clockid = CLOCK_MONOTONIC;
1618 		else if (strcmp(clock, "boottime") == 0 ||
1619 			 strcmp(clock, __stringify(CLOCK_BOOTTIME)) == 0)
1620 			off->clockid = CLOCK_BOOTTIME;
1621 		else
1622 			goto out;
1623 
1624 		noffsets++;
1625 		if (noffsets == ARRAY_SIZE(offsets)) {
1626 			if (next_line)
1627 				count = next_line - kbuf;
1628 			break;
1629 		}
1630 	}
1631 
1632 	ret = -ESRCH;
1633 	p = get_proc_task(inode);
1634 	if (!p)
1635 		goto out;
1636 	ret = proc_timens_set_offset(file, p, offsets, noffsets);
1637 	put_task_struct(p);
1638 	if (ret)
1639 		goto out;
1640 
1641 	ret = count;
1642 out:
1643 	kfree(kbuf);
1644 	return ret;
1645 }
1646 
1647 static int timens_offsets_open(struct inode *inode, struct file *filp)
1648 {
1649 	return single_open(filp, timens_offsets_show, inode);
1650 }
1651 
1652 static const struct file_operations proc_timens_offsets_operations = {
1653 	.open		= timens_offsets_open,
1654 	.read		= seq_read,
1655 	.write		= timens_offsets_write,
1656 	.llseek		= seq_lseek,
1657 	.release	= single_release,
1658 };
1659 #endif /* CONFIG_TIME_NS */
1660 
1661 static ssize_t comm_write(struct file *file, const char __user *buf,
1662 				size_t count, loff_t *offset)
1663 {
1664 	struct inode *inode = file_inode(file);
1665 	struct task_struct *p;
1666 	char buffer[TASK_COMM_LEN] = {};
1667 	const size_t maxlen = sizeof(buffer) - 1;
1668 
1669 	if (copy_from_user(buffer, buf, count > maxlen ? maxlen : count))
1670 		return -EFAULT;
1671 
1672 	p = get_proc_task(inode);
1673 	if (!p)
1674 		return -ESRCH;
1675 
1676 	if (same_thread_group(current, p)) {
1677 		set_task_comm(p, buffer);
1678 		proc_comm_connector(p);
1679 	}
1680 	else
1681 		count = -EINVAL;
1682 
1683 	put_task_struct(p);
1684 
1685 	return count;
1686 }
1687 
1688 static int comm_show(struct seq_file *m, void *v)
1689 {
1690 	struct inode *inode = m->private;
1691 	struct task_struct *p;
1692 
1693 	p = get_proc_task(inode);
1694 	if (!p)
1695 		return -ESRCH;
1696 
1697 	proc_task_name(m, p, false);
1698 	seq_putc(m, '\n');
1699 
1700 	put_task_struct(p);
1701 
1702 	return 0;
1703 }
1704 
1705 static int comm_open(struct inode *inode, struct file *filp)
1706 {
1707 	return single_open(filp, comm_show, inode);
1708 }
1709 
1710 static const struct file_operations proc_pid_set_comm_operations = {
1711 	.open		= comm_open,
1712 	.read		= seq_read,
1713 	.write		= comm_write,
1714 	.llseek		= seq_lseek,
1715 	.release	= single_release,
1716 };
1717 
1718 static int proc_exe_link(struct dentry *dentry, struct path *exe_path)
1719 {
1720 	struct task_struct *task;
1721 	struct file *exe_file;
1722 
1723 	task = get_proc_task(d_inode(dentry));
1724 	if (!task)
1725 		return -ENOENT;
1726 	exe_file = get_task_exe_file(task);
1727 	put_task_struct(task);
1728 	if (exe_file) {
1729 		*exe_path = exe_file->f_path;
1730 		path_get(&exe_file->f_path);
1731 		fput(exe_file);
1732 		return 0;
1733 	} else
1734 		return -ENOENT;
1735 }
1736 
1737 static const char *proc_pid_get_link(struct dentry *dentry,
1738 				     struct inode *inode,
1739 				     struct delayed_call *done)
1740 {
1741 	struct path path;
1742 	int error = -EACCES;
1743 
1744 	if (!dentry)
1745 		return ERR_PTR(-ECHILD);
1746 
1747 	/* Are we allowed to snoop on the tasks file descriptors? */
1748 	if (!proc_fd_access_allowed(inode))
1749 		goto out;
1750 
1751 	error = PROC_I(inode)->op.proc_get_link(dentry, &path);
1752 	if (error)
1753 		goto out;
1754 
1755 	error = nd_jump_link(&path);
1756 out:
1757 	return ERR_PTR(error);
1758 }
1759 
1760 static int do_proc_readlink(const struct path *path, char __user *buffer, int buflen)
1761 {
1762 	char *tmp = kmalloc(PATH_MAX, GFP_KERNEL);
1763 	char *pathname;
1764 	int len;
1765 
1766 	if (!tmp)
1767 		return -ENOMEM;
1768 
1769 	pathname = d_path(path, tmp, PATH_MAX);
1770 	len = PTR_ERR(pathname);
1771 	if (IS_ERR(pathname))
1772 		goto out;
1773 	len = tmp + PATH_MAX - 1 - pathname;
1774 
1775 	if (len > buflen)
1776 		len = buflen;
1777 	if (copy_to_user(buffer, pathname, len))
1778 		len = -EFAULT;
1779  out:
1780 	kfree(tmp);
1781 	return len;
1782 }
1783 
1784 static int proc_pid_readlink(struct dentry * dentry, char __user * buffer, int buflen)
1785 {
1786 	int error = -EACCES;
1787 	struct inode *inode = d_inode(dentry);
1788 	struct path path;
1789 
1790 	/* Are we allowed to snoop on the tasks file descriptors? */
1791 	if (!proc_fd_access_allowed(inode))
1792 		goto out;
1793 
1794 	error = PROC_I(inode)->op.proc_get_link(dentry, &path);
1795 	if (error)
1796 		goto out;
1797 
1798 	error = do_proc_readlink(&path, buffer, buflen);
1799 	path_put(&path);
1800 out:
1801 	return error;
1802 }
1803 
1804 const struct inode_operations proc_pid_link_inode_operations = {
1805 	.readlink	= proc_pid_readlink,
1806 	.get_link	= proc_pid_get_link,
1807 	.setattr	= proc_setattr,
1808 };
1809 
1810 
1811 /* building an inode */
1812 
1813 void task_dump_owner(struct task_struct *task, umode_t mode,
1814 		     kuid_t *ruid, kgid_t *rgid)
1815 {
1816 	/* Depending on the state of dumpable compute who should own a
1817 	 * proc file for a task.
1818 	 */
1819 	const struct cred *cred;
1820 	kuid_t uid;
1821 	kgid_t gid;
1822 
1823 	if (unlikely(task->flags & PF_KTHREAD)) {
1824 		*ruid = GLOBAL_ROOT_UID;
1825 		*rgid = GLOBAL_ROOT_GID;
1826 		return;
1827 	}
1828 
1829 	/* Default to the tasks effective ownership */
1830 	rcu_read_lock();
1831 	cred = __task_cred(task);
1832 	uid = cred->euid;
1833 	gid = cred->egid;
1834 	rcu_read_unlock();
1835 
1836 	/*
1837 	 * Before the /proc/pid/status file was created the only way to read
1838 	 * the effective uid of a /process was to stat /proc/pid.  Reading
1839 	 * /proc/pid/status is slow enough that procps and other packages
1840 	 * kept stating /proc/pid.  To keep the rules in /proc simple I have
1841 	 * made this apply to all per process world readable and executable
1842 	 * directories.
1843 	 */
1844 	if (mode != (S_IFDIR|S_IRUGO|S_IXUGO)) {
1845 		struct mm_struct *mm;
1846 		task_lock(task);
1847 		mm = task->mm;
1848 		/* Make non-dumpable tasks owned by some root */
1849 		if (mm) {
1850 			if (get_dumpable(mm) != SUID_DUMP_USER) {
1851 				struct user_namespace *user_ns = mm->user_ns;
1852 
1853 				uid = make_kuid(user_ns, 0);
1854 				if (!uid_valid(uid))
1855 					uid = GLOBAL_ROOT_UID;
1856 
1857 				gid = make_kgid(user_ns, 0);
1858 				if (!gid_valid(gid))
1859 					gid = GLOBAL_ROOT_GID;
1860 			}
1861 		} else {
1862 			uid = GLOBAL_ROOT_UID;
1863 			gid = GLOBAL_ROOT_GID;
1864 		}
1865 		task_unlock(task);
1866 	}
1867 	*ruid = uid;
1868 	*rgid = gid;
1869 }
1870 
1871 void proc_pid_evict_inode(struct proc_inode *ei)
1872 {
1873 	struct pid *pid = ei->pid;
1874 
1875 	if (S_ISDIR(ei->vfs_inode.i_mode)) {
1876 		spin_lock(&pid->lock);
1877 		hlist_del_init_rcu(&ei->sibling_inodes);
1878 		spin_unlock(&pid->lock);
1879 	}
1880 
1881 	put_pid(pid);
1882 }
1883 
1884 struct inode *proc_pid_make_inode(struct super_block *sb,
1885 				  struct task_struct *task, umode_t mode)
1886 {
1887 	struct inode * inode;
1888 	struct proc_inode *ei;
1889 	struct pid *pid;
1890 
1891 	/* We need a new inode */
1892 
1893 	inode = new_inode(sb);
1894 	if (!inode)
1895 		goto out;
1896 
1897 	/* Common stuff */
1898 	ei = PROC_I(inode);
1899 	inode->i_mode = mode;
1900 	inode->i_ino = get_next_ino();
1901 	simple_inode_init_ts(inode);
1902 	inode->i_op = &proc_def_inode_operations;
1903 
1904 	/*
1905 	 * grab the reference to task.
1906 	 */
1907 	pid = get_task_pid(task, PIDTYPE_PID);
1908 	if (!pid)
1909 		goto out_unlock;
1910 
1911 	/* Let the pid remember us for quick removal */
1912 	ei->pid = pid;
1913 
1914 	task_dump_owner(task, 0, &inode->i_uid, &inode->i_gid);
1915 	security_task_to_inode(task, inode);
1916 
1917 out:
1918 	return inode;
1919 
1920 out_unlock:
1921 	iput(inode);
1922 	return NULL;
1923 }
1924 
1925 /*
1926  * Generating an inode and adding it into @pid->inodes, so that task will
1927  * invalidate inode's dentry before being released.
1928  *
1929  * This helper is used for creating dir-type entries under '/proc' and
1930  * '/proc/<tgid>/task'. Other entries(eg. fd, stat) under '/proc/<tgid>'
1931  * can be released by invalidating '/proc/<tgid>' dentry.
1932  * In theory, dentries under '/proc/<tgid>/task' can also be released by
1933  * invalidating '/proc/<tgid>' dentry, we reserve it to handle single
1934  * thread exiting situation: Any one of threads should invalidate its
1935  * '/proc/<tgid>/task/<pid>' dentry before released.
1936  */
1937 static struct inode *proc_pid_make_base_inode(struct super_block *sb,
1938 				struct task_struct *task, umode_t mode)
1939 {
1940 	struct inode *inode;
1941 	struct proc_inode *ei;
1942 	struct pid *pid;
1943 
1944 	inode = proc_pid_make_inode(sb, task, mode);
1945 	if (!inode)
1946 		return NULL;
1947 
1948 	/* Let proc_flush_pid find this directory inode */
1949 	ei = PROC_I(inode);
1950 	pid = ei->pid;
1951 	spin_lock(&pid->lock);
1952 	hlist_add_head_rcu(&ei->sibling_inodes, &pid->inodes);
1953 	spin_unlock(&pid->lock);
1954 
1955 	return inode;
1956 }
1957 
1958 int pid_getattr(struct mnt_idmap *idmap, const struct path *path,
1959 		struct kstat *stat, u32 request_mask, unsigned int query_flags)
1960 {
1961 	struct inode *inode = d_inode(path->dentry);
1962 	struct proc_fs_info *fs_info = proc_sb_info(inode->i_sb);
1963 	struct task_struct *task;
1964 
1965 	generic_fillattr(&nop_mnt_idmap, request_mask, inode, stat);
1966 
1967 	stat->uid = GLOBAL_ROOT_UID;
1968 	stat->gid = GLOBAL_ROOT_GID;
1969 	rcu_read_lock();
1970 	task = pid_task(proc_pid(inode), PIDTYPE_PID);
1971 	if (task) {
1972 		if (!has_pid_permissions(fs_info, task, HIDEPID_INVISIBLE)) {
1973 			rcu_read_unlock();
1974 			/*
1975 			 * This doesn't prevent learning whether PID exists,
1976 			 * it only makes getattr() consistent with readdir().
1977 			 */
1978 			return -ENOENT;
1979 		}
1980 		task_dump_owner(task, inode->i_mode, &stat->uid, &stat->gid);
1981 	}
1982 	rcu_read_unlock();
1983 	return 0;
1984 }
1985 
1986 /* dentry stuff */
1987 
1988 /*
1989  * Set <pid>/... inode ownership (can change due to setuid(), etc.)
1990  */
1991 void pid_update_inode(struct task_struct *task, struct inode *inode)
1992 {
1993 	task_dump_owner(task, inode->i_mode, &inode->i_uid, &inode->i_gid);
1994 
1995 	inode->i_mode &= ~(S_ISUID | S_ISGID);
1996 	security_task_to_inode(task, inode);
1997 }
1998 
1999 /*
2000  * Rewrite the inode's ownerships here because the owning task may have
2001  * performed a setuid(), etc.
2002  *
2003  */
2004 static int pid_revalidate(struct dentry *dentry, unsigned int flags)
2005 {
2006 	struct inode *inode;
2007 	struct task_struct *task;
2008 	int ret = 0;
2009 
2010 	rcu_read_lock();
2011 	inode = d_inode_rcu(dentry);
2012 	if (!inode)
2013 		goto out;
2014 	task = pid_task(proc_pid(inode), PIDTYPE_PID);
2015 
2016 	if (task) {
2017 		pid_update_inode(task, inode);
2018 		ret = 1;
2019 	}
2020 out:
2021 	rcu_read_unlock();
2022 	return ret;
2023 }
2024 
2025 static inline bool proc_inode_is_dead(struct inode *inode)
2026 {
2027 	return !proc_pid(inode)->tasks[PIDTYPE_PID].first;
2028 }
2029 
2030 int pid_delete_dentry(const struct dentry *dentry)
2031 {
2032 	/* Is the task we represent dead?
2033 	 * If so, then don't put the dentry on the lru list,
2034 	 * kill it immediately.
2035 	 */
2036 	return proc_inode_is_dead(d_inode(dentry));
2037 }
2038 
2039 const struct dentry_operations pid_dentry_operations =
2040 {
2041 	.d_revalidate	= pid_revalidate,
2042 	.d_delete	= pid_delete_dentry,
2043 };
2044 
2045 /* Lookups */
2046 
2047 /*
2048  * Fill a directory entry.
2049  *
2050  * If possible create the dcache entry and derive our inode number and
2051  * file type from dcache entry.
2052  *
2053  * Since all of the proc inode numbers are dynamically generated, the inode
2054  * numbers do not exist until the inode is cache.  This means creating
2055  * the dcache entry in readdir is necessary to keep the inode numbers
2056  * reported by readdir in sync with the inode numbers reported
2057  * by stat.
2058  */
2059 bool proc_fill_cache(struct file *file, struct dir_context *ctx,
2060 	const char *name, unsigned int len,
2061 	instantiate_t instantiate, struct task_struct *task, const void *ptr)
2062 {
2063 	struct dentry *child, *dir = file->f_path.dentry;
2064 	struct qstr qname = QSTR_INIT(name, len);
2065 	struct inode *inode;
2066 	unsigned type = DT_UNKNOWN;
2067 	ino_t ino = 1;
2068 
2069 	child = d_hash_and_lookup(dir, &qname);
2070 	if (!child) {
2071 		DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
2072 		child = d_alloc_parallel(dir, &qname, &wq);
2073 		if (IS_ERR(child))
2074 			goto end_instantiate;
2075 		if (d_in_lookup(child)) {
2076 			struct dentry *res;
2077 			res = instantiate(child, task, ptr);
2078 			d_lookup_done(child);
2079 			if (unlikely(res)) {
2080 				dput(child);
2081 				child = res;
2082 				if (IS_ERR(child))
2083 					goto end_instantiate;
2084 			}
2085 		}
2086 	}
2087 	inode = d_inode(child);
2088 	ino = inode->i_ino;
2089 	type = inode->i_mode >> 12;
2090 	dput(child);
2091 end_instantiate:
2092 	return dir_emit(ctx, name, len, ino, type);
2093 }
2094 
2095 /*
2096  * dname_to_vma_addr - maps a dentry name into two unsigned longs
2097  * which represent vma start and end addresses.
2098  */
2099 static int dname_to_vma_addr(struct dentry *dentry,
2100 			     unsigned long *start, unsigned long *end)
2101 {
2102 	const char *str = dentry->d_name.name;
2103 	unsigned long long sval, eval;
2104 	unsigned int len;
2105 
2106 	if (str[0] == '0' && str[1] != '-')
2107 		return -EINVAL;
2108 	len = _parse_integer(str, 16, &sval);
2109 	if (len & KSTRTOX_OVERFLOW)
2110 		return -EINVAL;
2111 	if (sval != (unsigned long)sval)
2112 		return -EINVAL;
2113 	str += len;
2114 
2115 	if (*str != '-')
2116 		return -EINVAL;
2117 	str++;
2118 
2119 	if (str[0] == '0' && str[1])
2120 		return -EINVAL;
2121 	len = _parse_integer(str, 16, &eval);
2122 	if (len & KSTRTOX_OVERFLOW)
2123 		return -EINVAL;
2124 	if (eval != (unsigned long)eval)
2125 		return -EINVAL;
2126 	str += len;
2127 
2128 	if (*str != '\0')
2129 		return -EINVAL;
2130 
2131 	*start = sval;
2132 	*end = eval;
2133 
2134 	return 0;
2135 }
2136 
2137 static int map_files_d_revalidate(struct dentry *dentry, unsigned int flags)
2138 {
2139 	unsigned long vm_start, vm_end;
2140 	bool exact_vma_exists = false;
2141 	struct mm_struct *mm = NULL;
2142 	struct task_struct *task;
2143 	struct inode *inode;
2144 	int status = 0;
2145 
2146 	if (flags & LOOKUP_RCU)
2147 		return -ECHILD;
2148 
2149 	inode = d_inode(dentry);
2150 	task = get_proc_task(inode);
2151 	if (!task)
2152 		goto out_notask;
2153 
2154 	mm = mm_access(task, PTRACE_MODE_READ_FSCREDS);
2155 	if (IS_ERR_OR_NULL(mm))
2156 		goto out;
2157 
2158 	if (!dname_to_vma_addr(dentry, &vm_start, &vm_end)) {
2159 		status = mmap_read_lock_killable(mm);
2160 		if (!status) {
2161 			exact_vma_exists = !!find_exact_vma(mm, vm_start,
2162 							    vm_end);
2163 			mmap_read_unlock(mm);
2164 		}
2165 	}
2166 
2167 	mmput(mm);
2168 
2169 	if (exact_vma_exists) {
2170 		task_dump_owner(task, 0, &inode->i_uid, &inode->i_gid);
2171 
2172 		security_task_to_inode(task, inode);
2173 		status = 1;
2174 	}
2175 
2176 out:
2177 	put_task_struct(task);
2178 
2179 out_notask:
2180 	return status;
2181 }
2182 
2183 static const struct dentry_operations tid_map_files_dentry_operations = {
2184 	.d_revalidate	= map_files_d_revalidate,
2185 	.d_delete	= pid_delete_dentry,
2186 };
2187 
2188 static int map_files_get_link(struct dentry *dentry, struct path *path)
2189 {
2190 	unsigned long vm_start, vm_end;
2191 	struct vm_area_struct *vma;
2192 	struct task_struct *task;
2193 	struct mm_struct *mm;
2194 	int rc;
2195 
2196 	rc = -ENOENT;
2197 	task = get_proc_task(d_inode(dentry));
2198 	if (!task)
2199 		goto out;
2200 
2201 	mm = get_task_mm(task);
2202 	put_task_struct(task);
2203 	if (!mm)
2204 		goto out;
2205 
2206 	rc = dname_to_vma_addr(dentry, &vm_start, &vm_end);
2207 	if (rc)
2208 		goto out_mmput;
2209 
2210 	rc = mmap_read_lock_killable(mm);
2211 	if (rc)
2212 		goto out_mmput;
2213 
2214 	rc = -ENOENT;
2215 	vma = find_exact_vma(mm, vm_start, vm_end);
2216 	if (vma && vma->vm_file) {
2217 		*path = *file_user_path(vma->vm_file);
2218 		path_get(path);
2219 		rc = 0;
2220 	}
2221 	mmap_read_unlock(mm);
2222 
2223 out_mmput:
2224 	mmput(mm);
2225 out:
2226 	return rc;
2227 }
2228 
2229 struct map_files_info {
2230 	unsigned long	start;
2231 	unsigned long	end;
2232 	fmode_t		mode;
2233 };
2234 
2235 /*
2236  * Only allow CAP_SYS_ADMIN and CAP_CHECKPOINT_RESTORE to follow the links, due
2237  * to concerns about how the symlinks may be used to bypass permissions on
2238  * ancestor directories in the path to the file in question.
2239  */
2240 static const char *
2241 proc_map_files_get_link(struct dentry *dentry,
2242 			struct inode *inode,
2243 		        struct delayed_call *done)
2244 {
2245 	if (!checkpoint_restore_ns_capable(&init_user_ns))
2246 		return ERR_PTR(-EPERM);
2247 
2248 	return proc_pid_get_link(dentry, inode, done);
2249 }
2250 
2251 /*
2252  * Identical to proc_pid_link_inode_operations except for get_link()
2253  */
2254 static const struct inode_operations proc_map_files_link_inode_operations = {
2255 	.readlink	= proc_pid_readlink,
2256 	.get_link	= proc_map_files_get_link,
2257 	.setattr	= proc_setattr,
2258 };
2259 
2260 static struct dentry *
2261 proc_map_files_instantiate(struct dentry *dentry,
2262 			   struct task_struct *task, const void *ptr)
2263 {
2264 	fmode_t mode = (fmode_t)(unsigned long)ptr;
2265 	struct proc_inode *ei;
2266 	struct inode *inode;
2267 
2268 	inode = proc_pid_make_inode(dentry->d_sb, task, S_IFLNK |
2269 				    ((mode & FMODE_READ ) ? S_IRUSR : 0) |
2270 				    ((mode & FMODE_WRITE) ? S_IWUSR : 0));
2271 	if (!inode)
2272 		return ERR_PTR(-ENOENT);
2273 
2274 	ei = PROC_I(inode);
2275 	ei->op.proc_get_link = map_files_get_link;
2276 
2277 	inode->i_op = &proc_map_files_link_inode_operations;
2278 	inode->i_size = 64;
2279 
2280 	d_set_d_op(dentry, &tid_map_files_dentry_operations);
2281 	return d_splice_alias(inode, dentry);
2282 }
2283 
2284 static struct dentry *proc_map_files_lookup(struct inode *dir,
2285 		struct dentry *dentry, unsigned int flags)
2286 {
2287 	unsigned long vm_start, vm_end;
2288 	struct vm_area_struct *vma;
2289 	struct task_struct *task;
2290 	struct dentry *result;
2291 	struct mm_struct *mm;
2292 
2293 	result = ERR_PTR(-ENOENT);
2294 	task = get_proc_task(dir);
2295 	if (!task)
2296 		goto out;
2297 
2298 	result = ERR_PTR(-EACCES);
2299 	if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS))
2300 		goto out_put_task;
2301 
2302 	result = ERR_PTR(-ENOENT);
2303 	if (dname_to_vma_addr(dentry, &vm_start, &vm_end))
2304 		goto out_put_task;
2305 
2306 	mm = get_task_mm(task);
2307 	if (!mm)
2308 		goto out_put_task;
2309 
2310 	result = ERR_PTR(-EINTR);
2311 	if (mmap_read_lock_killable(mm))
2312 		goto out_put_mm;
2313 
2314 	result = ERR_PTR(-ENOENT);
2315 	vma = find_exact_vma(mm, vm_start, vm_end);
2316 	if (!vma)
2317 		goto out_no_vma;
2318 
2319 	if (vma->vm_file)
2320 		result = proc_map_files_instantiate(dentry, task,
2321 				(void *)(unsigned long)vma->vm_file->f_mode);
2322 
2323 out_no_vma:
2324 	mmap_read_unlock(mm);
2325 out_put_mm:
2326 	mmput(mm);
2327 out_put_task:
2328 	put_task_struct(task);
2329 out:
2330 	return result;
2331 }
2332 
2333 static const struct inode_operations proc_map_files_inode_operations = {
2334 	.lookup		= proc_map_files_lookup,
2335 	.permission	= proc_fd_permission,
2336 	.setattr	= proc_setattr,
2337 };
2338 
2339 static int
2340 proc_map_files_readdir(struct file *file, struct dir_context *ctx)
2341 {
2342 	struct vm_area_struct *vma;
2343 	struct task_struct *task;
2344 	struct mm_struct *mm;
2345 	unsigned long nr_files, pos, i;
2346 	GENRADIX(struct map_files_info) fa;
2347 	struct map_files_info *p;
2348 	int ret;
2349 	struct vma_iterator vmi;
2350 
2351 	genradix_init(&fa);
2352 
2353 	ret = -ENOENT;
2354 	task = get_proc_task(file_inode(file));
2355 	if (!task)
2356 		goto out;
2357 
2358 	ret = -EACCES;
2359 	if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS))
2360 		goto out_put_task;
2361 
2362 	ret = 0;
2363 	if (!dir_emit_dots(file, ctx))
2364 		goto out_put_task;
2365 
2366 	mm = get_task_mm(task);
2367 	if (!mm)
2368 		goto out_put_task;
2369 
2370 	ret = mmap_read_lock_killable(mm);
2371 	if (ret) {
2372 		mmput(mm);
2373 		goto out_put_task;
2374 	}
2375 
2376 	nr_files = 0;
2377 
2378 	/*
2379 	 * We need two passes here:
2380 	 *
2381 	 *  1) Collect vmas of mapped files with mmap_lock taken
2382 	 *  2) Release mmap_lock and instantiate entries
2383 	 *
2384 	 * otherwise we get lockdep complained, since filldir()
2385 	 * routine might require mmap_lock taken in might_fault().
2386 	 */
2387 
2388 	pos = 2;
2389 	vma_iter_init(&vmi, mm, 0);
2390 	for_each_vma(vmi, vma) {
2391 		if (!vma->vm_file)
2392 			continue;
2393 		if (++pos <= ctx->pos)
2394 			continue;
2395 
2396 		p = genradix_ptr_alloc(&fa, nr_files++, GFP_KERNEL);
2397 		if (!p) {
2398 			ret = -ENOMEM;
2399 			mmap_read_unlock(mm);
2400 			mmput(mm);
2401 			goto out_put_task;
2402 		}
2403 
2404 		p->start = vma->vm_start;
2405 		p->end = vma->vm_end;
2406 		p->mode = vma->vm_file->f_mode;
2407 	}
2408 	mmap_read_unlock(mm);
2409 	mmput(mm);
2410 
2411 	for (i = 0; i < nr_files; i++) {
2412 		char buf[4 * sizeof(long) + 2];	/* max: %lx-%lx\0 */
2413 		unsigned int len;
2414 
2415 		p = genradix_ptr(&fa, i);
2416 		len = snprintf(buf, sizeof(buf), "%lx-%lx", p->start, p->end);
2417 		if (!proc_fill_cache(file, ctx,
2418 				      buf, len,
2419 				      proc_map_files_instantiate,
2420 				      task,
2421 				      (void *)(unsigned long)p->mode))
2422 			break;
2423 		ctx->pos++;
2424 	}
2425 
2426 out_put_task:
2427 	put_task_struct(task);
2428 out:
2429 	genradix_free(&fa);
2430 	return ret;
2431 }
2432 
2433 static const struct file_operations proc_map_files_operations = {
2434 	.read		= generic_read_dir,
2435 	.iterate_shared	= proc_map_files_readdir,
2436 	.llseek		= generic_file_llseek,
2437 };
2438 
2439 #if defined(CONFIG_CHECKPOINT_RESTORE) && defined(CONFIG_POSIX_TIMERS)
2440 struct timers_private {
2441 	struct pid *pid;
2442 	struct task_struct *task;
2443 	struct sighand_struct *sighand;
2444 	struct pid_namespace *ns;
2445 	unsigned long flags;
2446 };
2447 
2448 static void *timers_start(struct seq_file *m, loff_t *pos)
2449 {
2450 	struct timers_private *tp = m->private;
2451 
2452 	tp->task = get_pid_task(tp->pid, PIDTYPE_PID);
2453 	if (!tp->task)
2454 		return ERR_PTR(-ESRCH);
2455 
2456 	tp->sighand = lock_task_sighand(tp->task, &tp->flags);
2457 	if (!tp->sighand)
2458 		return ERR_PTR(-ESRCH);
2459 
2460 	return seq_list_start(&tp->task->signal->posix_timers, *pos);
2461 }
2462 
2463 static void *timers_next(struct seq_file *m, void *v, loff_t *pos)
2464 {
2465 	struct timers_private *tp = m->private;
2466 	return seq_list_next(v, &tp->task->signal->posix_timers, pos);
2467 }
2468 
2469 static void timers_stop(struct seq_file *m, void *v)
2470 {
2471 	struct timers_private *tp = m->private;
2472 
2473 	if (tp->sighand) {
2474 		unlock_task_sighand(tp->task, &tp->flags);
2475 		tp->sighand = NULL;
2476 	}
2477 
2478 	if (tp->task) {
2479 		put_task_struct(tp->task);
2480 		tp->task = NULL;
2481 	}
2482 }
2483 
2484 static int show_timer(struct seq_file *m, void *v)
2485 {
2486 	struct k_itimer *timer;
2487 	struct timers_private *tp = m->private;
2488 	int notify;
2489 	static const char * const nstr[] = {
2490 		[SIGEV_SIGNAL] = "signal",
2491 		[SIGEV_NONE] = "none",
2492 		[SIGEV_THREAD] = "thread",
2493 	};
2494 
2495 	timer = list_entry((struct list_head *)v, struct k_itimer, list);
2496 	notify = timer->it_sigev_notify;
2497 
2498 	seq_printf(m, "ID: %d\n", timer->it_id);
2499 	seq_printf(m, "signal: %d/%px\n",
2500 		   timer->sigq->info.si_signo,
2501 		   timer->sigq->info.si_value.sival_ptr);
2502 	seq_printf(m, "notify: %s/%s.%d\n",
2503 		   nstr[notify & ~SIGEV_THREAD_ID],
2504 		   (notify & SIGEV_THREAD_ID) ? "tid" : "pid",
2505 		   pid_nr_ns(timer->it_pid, tp->ns));
2506 	seq_printf(m, "ClockID: %d\n", timer->it_clock);
2507 
2508 	return 0;
2509 }
2510 
2511 static const struct seq_operations proc_timers_seq_ops = {
2512 	.start	= timers_start,
2513 	.next	= timers_next,
2514 	.stop	= timers_stop,
2515 	.show	= show_timer,
2516 };
2517 
2518 static int proc_timers_open(struct inode *inode, struct file *file)
2519 {
2520 	struct timers_private *tp;
2521 
2522 	tp = __seq_open_private(file, &proc_timers_seq_ops,
2523 			sizeof(struct timers_private));
2524 	if (!tp)
2525 		return -ENOMEM;
2526 
2527 	tp->pid = proc_pid(inode);
2528 	tp->ns = proc_pid_ns(inode->i_sb);
2529 	return 0;
2530 }
2531 
2532 static const struct file_operations proc_timers_operations = {
2533 	.open		= proc_timers_open,
2534 	.read		= seq_read,
2535 	.llseek		= seq_lseek,
2536 	.release	= seq_release_private,
2537 };
2538 #endif
2539 
2540 static ssize_t timerslack_ns_write(struct file *file, const char __user *buf,
2541 					size_t count, loff_t *offset)
2542 {
2543 	struct inode *inode = file_inode(file);
2544 	struct task_struct *p;
2545 	u64 slack_ns;
2546 	int err;
2547 
2548 	err = kstrtoull_from_user(buf, count, 10, &slack_ns);
2549 	if (err < 0)
2550 		return err;
2551 
2552 	p = get_proc_task(inode);
2553 	if (!p)
2554 		return -ESRCH;
2555 
2556 	if (p != current) {
2557 		rcu_read_lock();
2558 		if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
2559 			rcu_read_unlock();
2560 			count = -EPERM;
2561 			goto out;
2562 		}
2563 		rcu_read_unlock();
2564 
2565 		err = security_task_setscheduler(p);
2566 		if (err) {
2567 			count = err;
2568 			goto out;
2569 		}
2570 	}
2571 
2572 	task_lock(p);
2573 	if (slack_ns == 0)
2574 		p->timer_slack_ns = p->default_timer_slack_ns;
2575 	else
2576 		p->timer_slack_ns = slack_ns;
2577 	task_unlock(p);
2578 
2579 out:
2580 	put_task_struct(p);
2581 
2582 	return count;
2583 }
2584 
2585 static int timerslack_ns_show(struct seq_file *m, void *v)
2586 {
2587 	struct inode *inode = m->private;
2588 	struct task_struct *p;
2589 	int err = 0;
2590 
2591 	p = get_proc_task(inode);
2592 	if (!p)
2593 		return -ESRCH;
2594 
2595 	if (p != current) {
2596 		rcu_read_lock();
2597 		if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
2598 			rcu_read_unlock();
2599 			err = -EPERM;
2600 			goto out;
2601 		}
2602 		rcu_read_unlock();
2603 
2604 		err = security_task_getscheduler(p);
2605 		if (err)
2606 			goto out;
2607 	}
2608 
2609 	task_lock(p);
2610 	seq_printf(m, "%llu\n", p->timer_slack_ns);
2611 	task_unlock(p);
2612 
2613 out:
2614 	put_task_struct(p);
2615 
2616 	return err;
2617 }
2618 
2619 static int timerslack_ns_open(struct inode *inode, struct file *filp)
2620 {
2621 	return single_open(filp, timerslack_ns_show, inode);
2622 }
2623 
2624 static const struct file_operations proc_pid_set_timerslack_ns_operations = {
2625 	.open		= timerslack_ns_open,
2626 	.read		= seq_read,
2627 	.write		= timerslack_ns_write,
2628 	.llseek		= seq_lseek,
2629 	.release	= single_release,
2630 };
2631 
2632 static struct dentry *proc_pident_instantiate(struct dentry *dentry,
2633 	struct task_struct *task, const void *ptr)
2634 {
2635 	const struct pid_entry *p = ptr;
2636 	struct inode *inode;
2637 	struct proc_inode *ei;
2638 
2639 	inode = proc_pid_make_inode(dentry->d_sb, task, p->mode);
2640 	if (!inode)
2641 		return ERR_PTR(-ENOENT);
2642 
2643 	ei = PROC_I(inode);
2644 	if (S_ISDIR(inode->i_mode))
2645 		set_nlink(inode, 2);	/* Use getattr to fix if necessary */
2646 	if (p->iop)
2647 		inode->i_op = p->iop;
2648 	if (p->fop)
2649 		inode->i_fop = p->fop;
2650 	ei->op = p->op;
2651 	pid_update_inode(task, inode);
2652 	d_set_d_op(dentry, &pid_dentry_operations);
2653 	return d_splice_alias(inode, dentry);
2654 }
2655 
2656 static struct dentry *proc_pident_lookup(struct inode *dir,
2657 					 struct dentry *dentry,
2658 					 const struct pid_entry *p,
2659 					 const struct pid_entry *end)
2660 {
2661 	struct task_struct *task = get_proc_task(dir);
2662 	struct dentry *res = ERR_PTR(-ENOENT);
2663 
2664 	if (!task)
2665 		goto out_no_task;
2666 
2667 	/*
2668 	 * Yes, it does not scale. And it should not. Don't add
2669 	 * new entries into /proc/<tgid>/ without very good reasons.
2670 	 */
2671 	for (; p < end; p++) {
2672 		if (p->len != dentry->d_name.len)
2673 			continue;
2674 		if (!memcmp(dentry->d_name.name, p->name, p->len)) {
2675 			res = proc_pident_instantiate(dentry, task, p);
2676 			break;
2677 		}
2678 	}
2679 	put_task_struct(task);
2680 out_no_task:
2681 	return res;
2682 }
2683 
2684 static int proc_pident_readdir(struct file *file, struct dir_context *ctx,
2685 		const struct pid_entry *ents, unsigned int nents)
2686 {
2687 	struct task_struct *task = get_proc_task(file_inode(file));
2688 	const struct pid_entry *p;
2689 
2690 	if (!task)
2691 		return -ENOENT;
2692 
2693 	if (!dir_emit_dots(file, ctx))
2694 		goto out;
2695 
2696 	if (ctx->pos >= nents + 2)
2697 		goto out;
2698 
2699 	for (p = ents + (ctx->pos - 2); p < ents + nents; p++) {
2700 		if (!proc_fill_cache(file, ctx, p->name, p->len,
2701 				proc_pident_instantiate, task, p))
2702 			break;
2703 		ctx->pos++;
2704 	}
2705 out:
2706 	put_task_struct(task);
2707 	return 0;
2708 }
2709 
2710 #ifdef CONFIG_SECURITY
2711 static int proc_pid_attr_open(struct inode *inode, struct file *file)
2712 {
2713 	file->private_data = NULL;
2714 	__mem_open(inode, file, PTRACE_MODE_READ_FSCREDS);
2715 	return 0;
2716 }
2717 
2718 static ssize_t proc_pid_attr_read(struct file * file, char __user * buf,
2719 				  size_t count, loff_t *ppos)
2720 {
2721 	struct inode * inode = file_inode(file);
2722 	char *p = NULL;
2723 	ssize_t length;
2724 	struct task_struct *task = get_proc_task(inode);
2725 
2726 	if (!task)
2727 		return -ESRCH;
2728 
2729 	length = security_getprocattr(task, PROC_I(inode)->op.lsm,
2730 				      file->f_path.dentry->d_name.name,
2731 				      &p);
2732 	put_task_struct(task);
2733 	if (length > 0)
2734 		length = simple_read_from_buffer(buf, count, ppos, p, length);
2735 	kfree(p);
2736 	return length;
2737 }
2738 
2739 static ssize_t proc_pid_attr_write(struct file * file, const char __user * buf,
2740 				   size_t count, loff_t *ppos)
2741 {
2742 	struct inode * inode = file_inode(file);
2743 	struct task_struct *task;
2744 	void *page;
2745 	int rv;
2746 
2747 	/* A task may only write when it was the opener. */
2748 	if (file->private_data != current->mm)
2749 		return -EPERM;
2750 
2751 	rcu_read_lock();
2752 	task = pid_task(proc_pid(inode), PIDTYPE_PID);
2753 	if (!task) {
2754 		rcu_read_unlock();
2755 		return -ESRCH;
2756 	}
2757 	/* A task may only write its own attributes. */
2758 	if (current != task) {
2759 		rcu_read_unlock();
2760 		return -EACCES;
2761 	}
2762 	/* Prevent changes to overridden credentials. */
2763 	if (current_cred() != current_real_cred()) {
2764 		rcu_read_unlock();
2765 		return -EBUSY;
2766 	}
2767 	rcu_read_unlock();
2768 
2769 	if (count > PAGE_SIZE)
2770 		count = PAGE_SIZE;
2771 
2772 	/* No partial writes. */
2773 	if (*ppos != 0)
2774 		return -EINVAL;
2775 
2776 	page = memdup_user(buf, count);
2777 	if (IS_ERR(page)) {
2778 		rv = PTR_ERR(page);
2779 		goto out;
2780 	}
2781 
2782 	/* Guard against adverse ptrace interaction */
2783 	rv = mutex_lock_interruptible(&current->signal->cred_guard_mutex);
2784 	if (rv < 0)
2785 		goto out_free;
2786 
2787 	rv = security_setprocattr(PROC_I(inode)->op.lsm,
2788 				  file->f_path.dentry->d_name.name, page,
2789 				  count);
2790 	mutex_unlock(&current->signal->cred_guard_mutex);
2791 out_free:
2792 	kfree(page);
2793 out:
2794 	return rv;
2795 }
2796 
2797 static const struct file_operations proc_pid_attr_operations = {
2798 	.open		= proc_pid_attr_open,
2799 	.read		= proc_pid_attr_read,
2800 	.write		= proc_pid_attr_write,
2801 	.llseek		= generic_file_llseek,
2802 	.release	= mem_release,
2803 };
2804 
2805 #define LSM_DIR_OPS(LSM) \
2806 static int proc_##LSM##_attr_dir_iterate(struct file *filp, \
2807 			     struct dir_context *ctx) \
2808 { \
2809 	return proc_pident_readdir(filp, ctx, \
2810 				   LSM##_attr_dir_stuff, \
2811 				   ARRAY_SIZE(LSM##_attr_dir_stuff)); \
2812 } \
2813 \
2814 static const struct file_operations proc_##LSM##_attr_dir_ops = { \
2815 	.read		= generic_read_dir, \
2816 	.iterate_shared	= proc_##LSM##_attr_dir_iterate, \
2817 	.llseek		= default_llseek, \
2818 }; \
2819 \
2820 static struct dentry *proc_##LSM##_attr_dir_lookup(struct inode *dir, \
2821 				struct dentry *dentry, unsigned int flags) \
2822 { \
2823 	return proc_pident_lookup(dir, dentry, \
2824 				  LSM##_attr_dir_stuff, \
2825 				  LSM##_attr_dir_stuff + ARRAY_SIZE(LSM##_attr_dir_stuff)); \
2826 } \
2827 \
2828 static const struct inode_operations proc_##LSM##_attr_dir_inode_ops = { \
2829 	.lookup		= proc_##LSM##_attr_dir_lookup, \
2830 	.getattr	= pid_getattr, \
2831 	.setattr	= proc_setattr, \
2832 }
2833 
2834 #ifdef CONFIG_SECURITY_SMACK
2835 static const struct pid_entry smack_attr_dir_stuff[] = {
2836 	ATTR("smack", "current",	0666),
2837 };
2838 LSM_DIR_OPS(smack);
2839 #endif
2840 
2841 #ifdef CONFIG_SECURITY_APPARMOR
2842 static const struct pid_entry apparmor_attr_dir_stuff[] = {
2843 	ATTR("apparmor", "current",	0666),
2844 	ATTR("apparmor", "prev",	0444),
2845 	ATTR("apparmor", "exec",	0666),
2846 };
2847 LSM_DIR_OPS(apparmor);
2848 #endif
2849 
2850 static const struct pid_entry attr_dir_stuff[] = {
2851 	ATTR(NULL, "current",		0666),
2852 	ATTR(NULL, "prev",		0444),
2853 	ATTR(NULL, "exec",		0666),
2854 	ATTR(NULL, "fscreate",		0666),
2855 	ATTR(NULL, "keycreate",		0666),
2856 	ATTR(NULL, "sockcreate",	0666),
2857 #ifdef CONFIG_SECURITY_SMACK
2858 	DIR("smack",			0555,
2859 	    proc_smack_attr_dir_inode_ops, proc_smack_attr_dir_ops),
2860 #endif
2861 #ifdef CONFIG_SECURITY_APPARMOR
2862 	DIR("apparmor",			0555,
2863 	    proc_apparmor_attr_dir_inode_ops, proc_apparmor_attr_dir_ops),
2864 #endif
2865 };
2866 
2867 static int proc_attr_dir_readdir(struct file *file, struct dir_context *ctx)
2868 {
2869 	return proc_pident_readdir(file, ctx,
2870 				   attr_dir_stuff, ARRAY_SIZE(attr_dir_stuff));
2871 }
2872 
2873 static const struct file_operations proc_attr_dir_operations = {
2874 	.read		= generic_read_dir,
2875 	.iterate_shared	= proc_attr_dir_readdir,
2876 	.llseek		= generic_file_llseek,
2877 };
2878 
2879 static struct dentry *proc_attr_dir_lookup(struct inode *dir,
2880 				struct dentry *dentry, unsigned int flags)
2881 {
2882 	return proc_pident_lookup(dir, dentry,
2883 				  attr_dir_stuff,
2884 				  attr_dir_stuff + ARRAY_SIZE(attr_dir_stuff));
2885 }
2886 
2887 static const struct inode_operations proc_attr_dir_inode_operations = {
2888 	.lookup		= proc_attr_dir_lookup,
2889 	.getattr	= pid_getattr,
2890 	.setattr	= proc_setattr,
2891 };
2892 
2893 #endif
2894 
2895 #ifdef CONFIG_ELF_CORE
2896 static ssize_t proc_coredump_filter_read(struct file *file, char __user *buf,
2897 					 size_t count, loff_t *ppos)
2898 {
2899 	struct task_struct *task = get_proc_task(file_inode(file));
2900 	struct mm_struct *mm;
2901 	char buffer[PROC_NUMBUF];
2902 	size_t len;
2903 	int ret;
2904 
2905 	if (!task)
2906 		return -ESRCH;
2907 
2908 	ret = 0;
2909 	mm = get_task_mm(task);
2910 	if (mm) {
2911 		len = snprintf(buffer, sizeof(buffer), "%08lx\n",
2912 			       ((mm->flags & MMF_DUMP_FILTER_MASK) >>
2913 				MMF_DUMP_FILTER_SHIFT));
2914 		mmput(mm);
2915 		ret = simple_read_from_buffer(buf, count, ppos, buffer, len);
2916 	}
2917 
2918 	put_task_struct(task);
2919 
2920 	return ret;
2921 }
2922 
2923 static ssize_t proc_coredump_filter_write(struct file *file,
2924 					  const char __user *buf,
2925 					  size_t count,
2926 					  loff_t *ppos)
2927 {
2928 	struct task_struct *task;
2929 	struct mm_struct *mm;
2930 	unsigned int val;
2931 	int ret;
2932 	int i;
2933 	unsigned long mask;
2934 
2935 	ret = kstrtouint_from_user(buf, count, 0, &val);
2936 	if (ret < 0)
2937 		return ret;
2938 
2939 	ret = -ESRCH;
2940 	task = get_proc_task(file_inode(file));
2941 	if (!task)
2942 		goto out_no_task;
2943 
2944 	mm = get_task_mm(task);
2945 	if (!mm)
2946 		goto out_no_mm;
2947 	ret = 0;
2948 
2949 	for (i = 0, mask = 1; i < MMF_DUMP_FILTER_BITS; i++, mask <<= 1) {
2950 		if (val & mask)
2951 			set_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags);
2952 		else
2953 			clear_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags);
2954 	}
2955 
2956 	mmput(mm);
2957  out_no_mm:
2958 	put_task_struct(task);
2959  out_no_task:
2960 	if (ret < 0)
2961 		return ret;
2962 	return count;
2963 }
2964 
2965 static const struct file_operations proc_coredump_filter_operations = {
2966 	.read		= proc_coredump_filter_read,
2967 	.write		= proc_coredump_filter_write,
2968 	.llseek		= generic_file_llseek,
2969 };
2970 #endif
2971 
2972 #ifdef CONFIG_TASK_IO_ACCOUNTING
2973 static int do_io_accounting(struct task_struct *task, struct seq_file *m, int whole)
2974 {
2975 	struct task_io_accounting acct;
2976 	int result;
2977 
2978 	result = down_read_killable(&task->signal->exec_update_lock);
2979 	if (result)
2980 		return result;
2981 
2982 	if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS)) {
2983 		result = -EACCES;
2984 		goto out_unlock;
2985 	}
2986 
2987 	if (whole) {
2988 		struct signal_struct *sig = task->signal;
2989 		struct task_struct *t;
2990 		unsigned int seq = 1;
2991 		unsigned long flags;
2992 
2993 		rcu_read_lock();
2994 		do {
2995 			seq++; /* 2 on the 1st/lockless path, otherwise odd */
2996 			flags = read_seqbegin_or_lock_irqsave(&sig->stats_lock, &seq);
2997 
2998 			acct = sig->ioac;
2999 			__for_each_thread(sig, t)
3000 				task_io_accounting_add(&acct, &t->ioac);
3001 
3002 		} while (need_seqretry(&sig->stats_lock, seq));
3003 		done_seqretry_irqrestore(&sig->stats_lock, seq, flags);
3004 		rcu_read_unlock();
3005 	} else {
3006 		acct = task->ioac;
3007 	}
3008 
3009 	seq_printf(m,
3010 		   "rchar: %llu\n"
3011 		   "wchar: %llu\n"
3012 		   "syscr: %llu\n"
3013 		   "syscw: %llu\n"
3014 		   "read_bytes: %llu\n"
3015 		   "write_bytes: %llu\n"
3016 		   "cancelled_write_bytes: %llu\n",
3017 		   (unsigned long long)acct.rchar,
3018 		   (unsigned long long)acct.wchar,
3019 		   (unsigned long long)acct.syscr,
3020 		   (unsigned long long)acct.syscw,
3021 		   (unsigned long long)acct.read_bytes,
3022 		   (unsigned long long)acct.write_bytes,
3023 		   (unsigned long long)acct.cancelled_write_bytes);
3024 	result = 0;
3025 
3026 out_unlock:
3027 	up_read(&task->signal->exec_update_lock);
3028 	return result;
3029 }
3030 
3031 static int proc_tid_io_accounting(struct seq_file *m, struct pid_namespace *ns,
3032 				  struct pid *pid, struct task_struct *task)
3033 {
3034 	return do_io_accounting(task, m, 0);
3035 }
3036 
3037 static int proc_tgid_io_accounting(struct seq_file *m, struct pid_namespace *ns,
3038 				   struct pid *pid, struct task_struct *task)
3039 {
3040 	return do_io_accounting(task, m, 1);
3041 }
3042 #endif /* CONFIG_TASK_IO_ACCOUNTING */
3043 
3044 #ifdef CONFIG_USER_NS
3045 static int proc_id_map_open(struct inode *inode, struct file *file,
3046 	const struct seq_operations *seq_ops)
3047 {
3048 	struct user_namespace *ns = NULL;
3049 	struct task_struct *task;
3050 	struct seq_file *seq;
3051 	int ret = -EINVAL;
3052 
3053 	task = get_proc_task(inode);
3054 	if (task) {
3055 		rcu_read_lock();
3056 		ns = get_user_ns(task_cred_xxx(task, user_ns));
3057 		rcu_read_unlock();
3058 		put_task_struct(task);
3059 	}
3060 	if (!ns)
3061 		goto err;
3062 
3063 	ret = seq_open(file, seq_ops);
3064 	if (ret)
3065 		goto err_put_ns;
3066 
3067 	seq = file->private_data;
3068 	seq->private = ns;
3069 
3070 	return 0;
3071 err_put_ns:
3072 	put_user_ns(ns);
3073 err:
3074 	return ret;
3075 }
3076 
3077 static int proc_id_map_release(struct inode *inode, struct file *file)
3078 {
3079 	struct seq_file *seq = file->private_data;
3080 	struct user_namespace *ns = seq->private;
3081 	put_user_ns(ns);
3082 	return seq_release(inode, file);
3083 }
3084 
3085 static int proc_uid_map_open(struct inode *inode, struct file *file)
3086 {
3087 	return proc_id_map_open(inode, file, &proc_uid_seq_operations);
3088 }
3089 
3090 static int proc_gid_map_open(struct inode *inode, struct file *file)
3091 {
3092 	return proc_id_map_open(inode, file, &proc_gid_seq_operations);
3093 }
3094 
3095 static int proc_projid_map_open(struct inode *inode, struct file *file)
3096 {
3097 	return proc_id_map_open(inode, file, &proc_projid_seq_operations);
3098 }
3099 
3100 static const struct file_operations proc_uid_map_operations = {
3101 	.open		= proc_uid_map_open,
3102 	.write		= proc_uid_map_write,
3103 	.read		= seq_read,
3104 	.llseek		= seq_lseek,
3105 	.release	= proc_id_map_release,
3106 };
3107 
3108 static const struct file_operations proc_gid_map_operations = {
3109 	.open		= proc_gid_map_open,
3110 	.write		= proc_gid_map_write,
3111 	.read		= seq_read,
3112 	.llseek		= seq_lseek,
3113 	.release	= proc_id_map_release,
3114 };
3115 
3116 static const struct file_operations proc_projid_map_operations = {
3117 	.open		= proc_projid_map_open,
3118 	.write		= proc_projid_map_write,
3119 	.read		= seq_read,
3120 	.llseek		= seq_lseek,
3121 	.release	= proc_id_map_release,
3122 };
3123 
3124 static int proc_setgroups_open(struct inode *inode, struct file *file)
3125 {
3126 	struct user_namespace *ns = NULL;
3127 	struct task_struct *task;
3128 	int ret;
3129 
3130 	ret = -ESRCH;
3131 	task = get_proc_task(inode);
3132 	if (task) {
3133 		rcu_read_lock();
3134 		ns = get_user_ns(task_cred_xxx(task, user_ns));
3135 		rcu_read_unlock();
3136 		put_task_struct(task);
3137 	}
3138 	if (!ns)
3139 		goto err;
3140 
3141 	if (file->f_mode & FMODE_WRITE) {
3142 		ret = -EACCES;
3143 		if (!ns_capable(ns, CAP_SYS_ADMIN))
3144 			goto err_put_ns;
3145 	}
3146 
3147 	ret = single_open(file, &proc_setgroups_show, ns);
3148 	if (ret)
3149 		goto err_put_ns;
3150 
3151 	return 0;
3152 err_put_ns:
3153 	put_user_ns(ns);
3154 err:
3155 	return ret;
3156 }
3157 
3158 static int proc_setgroups_release(struct inode *inode, struct file *file)
3159 {
3160 	struct seq_file *seq = file->private_data;
3161 	struct user_namespace *ns = seq->private;
3162 	int ret = single_release(inode, file);
3163 	put_user_ns(ns);
3164 	return ret;
3165 }
3166 
3167 static const struct file_operations proc_setgroups_operations = {
3168 	.open		= proc_setgroups_open,
3169 	.write		= proc_setgroups_write,
3170 	.read		= seq_read,
3171 	.llseek		= seq_lseek,
3172 	.release	= proc_setgroups_release,
3173 };
3174 #endif /* CONFIG_USER_NS */
3175 
3176 static int proc_pid_personality(struct seq_file *m, struct pid_namespace *ns,
3177 				struct pid *pid, struct task_struct *task)
3178 {
3179 	int err = lock_trace(task);
3180 	if (!err) {
3181 		seq_printf(m, "%08x\n", task->personality);
3182 		unlock_trace(task);
3183 	}
3184 	return err;
3185 }
3186 
3187 #ifdef CONFIG_LIVEPATCH
3188 static int proc_pid_patch_state(struct seq_file *m, struct pid_namespace *ns,
3189 				struct pid *pid, struct task_struct *task)
3190 {
3191 	seq_printf(m, "%d\n", task->patch_state);
3192 	return 0;
3193 }
3194 #endif /* CONFIG_LIVEPATCH */
3195 
3196 #ifdef CONFIG_KSM
3197 static int proc_pid_ksm_merging_pages(struct seq_file *m, struct pid_namespace *ns,
3198 				struct pid *pid, struct task_struct *task)
3199 {
3200 	struct mm_struct *mm;
3201 
3202 	mm = get_task_mm(task);
3203 	if (mm) {
3204 		seq_printf(m, "%lu\n", mm->ksm_merging_pages);
3205 		mmput(mm);
3206 	}
3207 
3208 	return 0;
3209 }
3210 static int proc_pid_ksm_stat(struct seq_file *m, struct pid_namespace *ns,
3211 				struct pid *pid, struct task_struct *task)
3212 {
3213 	struct mm_struct *mm;
3214 
3215 	mm = get_task_mm(task);
3216 	if (mm) {
3217 		seq_printf(m, "ksm_rmap_items %lu\n", mm->ksm_rmap_items);
3218 		seq_printf(m, "ksm_zero_pages %lu\n", mm->ksm_zero_pages);
3219 		seq_printf(m, "ksm_merging_pages %lu\n", mm->ksm_merging_pages);
3220 		seq_printf(m, "ksm_process_profit %ld\n", ksm_process_profit(mm));
3221 		mmput(mm);
3222 	}
3223 
3224 	return 0;
3225 }
3226 #endif /* CONFIG_KSM */
3227 
3228 #ifdef CONFIG_STACKLEAK_METRICS
3229 static int proc_stack_depth(struct seq_file *m, struct pid_namespace *ns,
3230 				struct pid *pid, struct task_struct *task)
3231 {
3232 	unsigned long prev_depth = THREAD_SIZE -
3233 				(task->prev_lowest_stack & (THREAD_SIZE - 1));
3234 	unsigned long depth = THREAD_SIZE -
3235 				(task->lowest_stack & (THREAD_SIZE - 1));
3236 
3237 	seq_printf(m, "previous stack depth: %lu\nstack depth: %lu\n",
3238 							prev_depth, depth);
3239 	return 0;
3240 }
3241 #endif /* CONFIG_STACKLEAK_METRICS */
3242 
3243 /*
3244  * Thread groups
3245  */
3246 static const struct file_operations proc_task_operations;
3247 static const struct inode_operations proc_task_inode_operations;
3248 
3249 static const struct pid_entry tgid_base_stuff[] = {
3250 	DIR("task",       S_IRUGO|S_IXUGO, proc_task_inode_operations, proc_task_operations),
3251 	DIR("fd",         S_IRUSR|S_IXUSR, proc_fd_inode_operations, proc_fd_operations),
3252 	DIR("map_files",  S_IRUSR|S_IXUSR, proc_map_files_inode_operations, proc_map_files_operations),
3253 	DIR("fdinfo",     S_IRUGO|S_IXUGO, proc_fdinfo_inode_operations, proc_fdinfo_operations),
3254 	DIR("ns",	  S_IRUSR|S_IXUGO, proc_ns_dir_inode_operations, proc_ns_dir_operations),
3255 #ifdef CONFIG_NET
3256 	DIR("net",        S_IRUGO|S_IXUGO, proc_net_inode_operations, proc_net_operations),
3257 #endif
3258 	REG("environ",    S_IRUSR, proc_environ_operations),
3259 	REG("auxv",       S_IRUSR, proc_auxv_operations),
3260 	ONE("status",     S_IRUGO, proc_pid_status),
3261 	ONE("personality", S_IRUSR, proc_pid_personality),
3262 	ONE("limits",	  S_IRUGO, proc_pid_limits),
3263 #ifdef CONFIG_SCHED_DEBUG
3264 	REG("sched",      S_IRUGO|S_IWUSR, proc_pid_sched_operations),
3265 #endif
3266 #ifdef CONFIG_SCHED_AUTOGROUP
3267 	REG("autogroup",  S_IRUGO|S_IWUSR, proc_pid_sched_autogroup_operations),
3268 #endif
3269 #ifdef CONFIG_TIME_NS
3270 	REG("timens_offsets",  S_IRUGO|S_IWUSR, proc_timens_offsets_operations),
3271 #endif
3272 	REG("comm",      S_IRUGO|S_IWUSR, proc_pid_set_comm_operations),
3273 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK
3274 	ONE("syscall",    S_IRUSR, proc_pid_syscall),
3275 #endif
3276 	REG("cmdline",    S_IRUGO, proc_pid_cmdline_ops),
3277 	ONE("stat",       S_IRUGO, proc_tgid_stat),
3278 	ONE("statm",      S_IRUGO, proc_pid_statm),
3279 	REG("maps",       S_IRUGO, proc_pid_maps_operations),
3280 #ifdef CONFIG_NUMA
3281 	REG("numa_maps",  S_IRUGO, proc_pid_numa_maps_operations),
3282 #endif
3283 	REG("mem",        S_IRUSR|S_IWUSR, proc_mem_operations),
3284 	LNK("cwd",        proc_cwd_link),
3285 	LNK("root",       proc_root_link),
3286 	LNK("exe",        proc_exe_link),
3287 	REG("mounts",     S_IRUGO, proc_mounts_operations),
3288 	REG("mountinfo",  S_IRUGO, proc_mountinfo_operations),
3289 	REG("mountstats", S_IRUSR, proc_mountstats_operations),
3290 #ifdef CONFIG_PROC_PAGE_MONITOR
3291 	REG("clear_refs", S_IWUSR, proc_clear_refs_operations),
3292 	REG("smaps",      S_IRUGO, proc_pid_smaps_operations),
3293 	REG("smaps_rollup", S_IRUGO, proc_pid_smaps_rollup_operations),
3294 	REG("pagemap",    S_IRUSR, proc_pagemap_operations),
3295 #endif
3296 #ifdef CONFIG_SECURITY
3297 	DIR("attr",       S_IRUGO|S_IXUGO, proc_attr_dir_inode_operations, proc_attr_dir_operations),
3298 #endif
3299 #ifdef CONFIG_KALLSYMS
3300 	ONE("wchan",      S_IRUGO, proc_pid_wchan),
3301 #endif
3302 #ifdef CONFIG_STACKTRACE
3303 	ONE("stack",      S_IRUSR, proc_pid_stack),
3304 #endif
3305 #ifdef CONFIG_SCHED_INFO
3306 	ONE("schedstat",  S_IRUGO, proc_pid_schedstat),
3307 #endif
3308 #ifdef CONFIG_LATENCYTOP
3309 	REG("latency",  S_IRUGO, proc_lstats_operations),
3310 #endif
3311 #ifdef CONFIG_PROC_PID_CPUSET
3312 	ONE("cpuset",     S_IRUGO, proc_cpuset_show),
3313 #endif
3314 #ifdef CONFIG_CGROUPS
3315 	ONE("cgroup",  S_IRUGO, proc_cgroup_show),
3316 #endif
3317 #ifdef CONFIG_PROC_CPU_RESCTRL
3318 	ONE("cpu_resctrl_groups", S_IRUGO, proc_resctrl_show),
3319 #endif
3320 	ONE("oom_score",  S_IRUGO, proc_oom_score),
3321 	REG("oom_adj",    S_IRUGO|S_IWUSR, proc_oom_adj_operations),
3322 	REG("oom_score_adj", S_IRUGO|S_IWUSR, proc_oom_score_adj_operations),
3323 #ifdef CONFIG_AUDIT
3324 	REG("loginuid",   S_IWUSR|S_IRUGO, proc_loginuid_operations),
3325 	REG("sessionid",  S_IRUGO, proc_sessionid_operations),
3326 #endif
3327 #ifdef CONFIG_FAULT_INJECTION
3328 	REG("make-it-fail", S_IRUGO|S_IWUSR, proc_fault_inject_operations),
3329 	REG("fail-nth", 0644, proc_fail_nth_operations),
3330 #endif
3331 #ifdef CONFIG_ELF_CORE
3332 	REG("coredump_filter", S_IRUGO|S_IWUSR, proc_coredump_filter_operations),
3333 #endif
3334 #ifdef CONFIG_TASK_IO_ACCOUNTING
3335 	ONE("io",	S_IRUSR, proc_tgid_io_accounting),
3336 #endif
3337 #ifdef CONFIG_USER_NS
3338 	REG("uid_map",    S_IRUGO|S_IWUSR, proc_uid_map_operations),
3339 	REG("gid_map",    S_IRUGO|S_IWUSR, proc_gid_map_operations),
3340 	REG("projid_map", S_IRUGO|S_IWUSR, proc_projid_map_operations),
3341 	REG("setgroups",  S_IRUGO|S_IWUSR, proc_setgroups_operations),
3342 #endif
3343 #if defined(CONFIG_CHECKPOINT_RESTORE) && defined(CONFIG_POSIX_TIMERS)
3344 	REG("timers",	  S_IRUGO, proc_timers_operations),
3345 #endif
3346 	REG("timerslack_ns", S_IRUGO|S_IWUGO, proc_pid_set_timerslack_ns_operations),
3347 #ifdef CONFIG_LIVEPATCH
3348 	ONE("patch_state",  S_IRUSR, proc_pid_patch_state),
3349 #endif
3350 #ifdef CONFIG_STACKLEAK_METRICS
3351 	ONE("stack_depth", S_IRUGO, proc_stack_depth),
3352 #endif
3353 #ifdef CONFIG_PROC_PID_ARCH_STATUS
3354 	ONE("arch_status", S_IRUGO, proc_pid_arch_status),
3355 #endif
3356 #ifdef CONFIG_SECCOMP_CACHE_DEBUG
3357 	ONE("seccomp_cache", S_IRUSR, proc_pid_seccomp_cache),
3358 #endif
3359 #ifdef CONFIG_KSM
3360 	ONE("ksm_merging_pages",  S_IRUSR, proc_pid_ksm_merging_pages),
3361 	ONE("ksm_stat",  S_IRUSR, proc_pid_ksm_stat),
3362 #endif
3363 };
3364 
3365 static int proc_tgid_base_readdir(struct file *file, struct dir_context *ctx)
3366 {
3367 	return proc_pident_readdir(file, ctx,
3368 				   tgid_base_stuff, ARRAY_SIZE(tgid_base_stuff));
3369 }
3370 
3371 static const struct file_operations proc_tgid_base_operations = {
3372 	.read		= generic_read_dir,
3373 	.iterate_shared	= proc_tgid_base_readdir,
3374 	.llseek		= generic_file_llseek,
3375 };
3376 
3377 struct pid *tgid_pidfd_to_pid(const struct file *file)
3378 {
3379 	if (file->f_op != &proc_tgid_base_operations)
3380 		return ERR_PTR(-EBADF);
3381 
3382 	return proc_pid(file_inode(file));
3383 }
3384 
3385 static struct dentry *proc_tgid_base_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
3386 {
3387 	return proc_pident_lookup(dir, dentry,
3388 				  tgid_base_stuff,
3389 				  tgid_base_stuff + ARRAY_SIZE(tgid_base_stuff));
3390 }
3391 
3392 static const struct inode_operations proc_tgid_base_inode_operations = {
3393 	.lookup		= proc_tgid_base_lookup,
3394 	.getattr	= pid_getattr,
3395 	.setattr	= proc_setattr,
3396 	.permission	= proc_pid_permission,
3397 };
3398 
3399 /**
3400  * proc_flush_pid -  Remove dcache entries for @pid from the /proc dcache.
3401  * @pid: pid that should be flushed.
3402  *
3403  * This function walks a list of inodes (that belong to any proc
3404  * filesystem) that are attached to the pid and flushes them from
3405  * the dentry cache.
3406  *
3407  * It is safe and reasonable to cache /proc entries for a task until
3408  * that task exits.  After that they just clog up the dcache with
3409  * useless entries, possibly causing useful dcache entries to be
3410  * flushed instead.  This routine is provided to flush those useless
3411  * dcache entries when a process is reaped.
3412  *
3413  * NOTE: This routine is just an optimization so it does not guarantee
3414  *       that no dcache entries will exist after a process is reaped
3415  *       it just makes it very unlikely that any will persist.
3416  */
3417 
3418 void proc_flush_pid(struct pid *pid)
3419 {
3420 	proc_invalidate_siblings_dcache(&pid->inodes, &pid->lock);
3421 }
3422 
3423 static struct dentry *proc_pid_instantiate(struct dentry * dentry,
3424 				   struct task_struct *task, const void *ptr)
3425 {
3426 	struct inode *inode;
3427 
3428 	inode = proc_pid_make_base_inode(dentry->d_sb, task,
3429 					 S_IFDIR | S_IRUGO | S_IXUGO);
3430 	if (!inode)
3431 		return ERR_PTR(-ENOENT);
3432 
3433 	inode->i_op = &proc_tgid_base_inode_operations;
3434 	inode->i_fop = &proc_tgid_base_operations;
3435 	inode->i_flags|=S_IMMUTABLE;
3436 
3437 	set_nlink(inode, nlink_tgid);
3438 	pid_update_inode(task, inode);
3439 
3440 	d_set_d_op(dentry, &pid_dentry_operations);
3441 	return d_splice_alias(inode, dentry);
3442 }
3443 
3444 struct dentry *proc_pid_lookup(struct dentry *dentry, unsigned int flags)
3445 {
3446 	struct task_struct *task;
3447 	unsigned tgid;
3448 	struct proc_fs_info *fs_info;
3449 	struct pid_namespace *ns;
3450 	struct dentry *result = ERR_PTR(-ENOENT);
3451 
3452 	tgid = name_to_int(&dentry->d_name);
3453 	if (tgid == ~0U)
3454 		goto out;
3455 
3456 	fs_info = proc_sb_info(dentry->d_sb);
3457 	ns = fs_info->pid_ns;
3458 	rcu_read_lock();
3459 	task = find_task_by_pid_ns(tgid, ns);
3460 	if (task)
3461 		get_task_struct(task);
3462 	rcu_read_unlock();
3463 	if (!task)
3464 		goto out;
3465 
3466 	/* Limit procfs to only ptraceable tasks */
3467 	if (fs_info->hide_pid == HIDEPID_NOT_PTRACEABLE) {
3468 		if (!has_pid_permissions(fs_info, task, HIDEPID_NO_ACCESS))
3469 			goto out_put_task;
3470 	}
3471 
3472 	result = proc_pid_instantiate(dentry, task, NULL);
3473 out_put_task:
3474 	put_task_struct(task);
3475 out:
3476 	return result;
3477 }
3478 
3479 /*
3480  * Find the first task with tgid >= tgid
3481  *
3482  */
3483 struct tgid_iter {
3484 	unsigned int tgid;
3485 	struct task_struct *task;
3486 };
3487 static struct tgid_iter next_tgid(struct pid_namespace *ns, struct tgid_iter iter)
3488 {
3489 	struct pid *pid;
3490 
3491 	if (iter.task)
3492 		put_task_struct(iter.task);
3493 	rcu_read_lock();
3494 retry:
3495 	iter.task = NULL;
3496 	pid = find_ge_pid(iter.tgid, ns);
3497 	if (pid) {
3498 		iter.tgid = pid_nr_ns(pid, ns);
3499 		iter.task = pid_task(pid, PIDTYPE_TGID);
3500 		if (!iter.task) {
3501 			iter.tgid += 1;
3502 			goto retry;
3503 		}
3504 		get_task_struct(iter.task);
3505 	}
3506 	rcu_read_unlock();
3507 	return iter;
3508 }
3509 
3510 #define TGID_OFFSET (FIRST_PROCESS_ENTRY + 2)
3511 
3512 /* for the /proc/ directory itself, after non-process stuff has been done */
3513 int proc_pid_readdir(struct file *file, struct dir_context *ctx)
3514 {
3515 	struct tgid_iter iter;
3516 	struct proc_fs_info *fs_info = proc_sb_info(file_inode(file)->i_sb);
3517 	struct pid_namespace *ns = proc_pid_ns(file_inode(file)->i_sb);
3518 	loff_t pos = ctx->pos;
3519 
3520 	if (pos >= PID_MAX_LIMIT + TGID_OFFSET)
3521 		return 0;
3522 
3523 	if (pos == TGID_OFFSET - 2) {
3524 		struct inode *inode = d_inode(fs_info->proc_self);
3525 		if (!dir_emit(ctx, "self", 4, inode->i_ino, DT_LNK))
3526 			return 0;
3527 		ctx->pos = pos = pos + 1;
3528 	}
3529 	if (pos == TGID_OFFSET - 1) {
3530 		struct inode *inode = d_inode(fs_info->proc_thread_self);
3531 		if (!dir_emit(ctx, "thread-self", 11, inode->i_ino, DT_LNK))
3532 			return 0;
3533 		ctx->pos = pos = pos + 1;
3534 	}
3535 	iter.tgid = pos - TGID_OFFSET;
3536 	iter.task = NULL;
3537 	for (iter = next_tgid(ns, iter);
3538 	     iter.task;
3539 	     iter.tgid += 1, iter = next_tgid(ns, iter)) {
3540 		char name[10 + 1];
3541 		unsigned int len;
3542 
3543 		cond_resched();
3544 		if (!has_pid_permissions(fs_info, iter.task, HIDEPID_INVISIBLE))
3545 			continue;
3546 
3547 		len = snprintf(name, sizeof(name), "%u", iter.tgid);
3548 		ctx->pos = iter.tgid + TGID_OFFSET;
3549 		if (!proc_fill_cache(file, ctx, name, len,
3550 				     proc_pid_instantiate, iter.task, NULL)) {
3551 			put_task_struct(iter.task);
3552 			return 0;
3553 		}
3554 	}
3555 	ctx->pos = PID_MAX_LIMIT + TGID_OFFSET;
3556 	return 0;
3557 }
3558 
3559 /*
3560  * proc_tid_comm_permission is a special permission function exclusively
3561  * used for the node /proc/<pid>/task/<tid>/comm.
3562  * It bypasses generic permission checks in the case where a task of the same
3563  * task group attempts to access the node.
3564  * The rationale behind this is that glibc and bionic access this node for
3565  * cross thread naming (pthread_set/getname_np(!self)). However, if
3566  * PR_SET_DUMPABLE gets set to 0 this node among others becomes uid=0 gid=0,
3567  * which locks out the cross thread naming implementation.
3568  * This function makes sure that the node is always accessible for members of
3569  * same thread group.
3570  */
3571 static int proc_tid_comm_permission(struct mnt_idmap *idmap,
3572 				    struct inode *inode, int mask)
3573 {
3574 	bool is_same_tgroup;
3575 	struct task_struct *task;
3576 
3577 	task = get_proc_task(inode);
3578 	if (!task)
3579 		return -ESRCH;
3580 	is_same_tgroup = same_thread_group(current, task);
3581 	put_task_struct(task);
3582 
3583 	if (likely(is_same_tgroup && !(mask & MAY_EXEC))) {
3584 		/* This file (/proc/<pid>/task/<tid>/comm) can always be
3585 		 * read or written by the members of the corresponding
3586 		 * thread group.
3587 		 */
3588 		return 0;
3589 	}
3590 
3591 	return generic_permission(&nop_mnt_idmap, inode, mask);
3592 }
3593 
3594 static const struct inode_operations proc_tid_comm_inode_operations = {
3595 		.setattr	= proc_setattr,
3596 		.permission	= proc_tid_comm_permission,
3597 };
3598 
3599 /*
3600  * Tasks
3601  */
3602 static const struct pid_entry tid_base_stuff[] = {
3603 	DIR("fd",        S_IRUSR|S_IXUSR, proc_fd_inode_operations, proc_fd_operations),
3604 	DIR("fdinfo",    S_IRUGO|S_IXUGO, proc_fdinfo_inode_operations, proc_fdinfo_operations),
3605 	DIR("ns",	 S_IRUSR|S_IXUGO, proc_ns_dir_inode_operations, proc_ns_dir_operations),
3606 #ifdef CONFIG_NET
3607 	DIR("net",        S_IRUGO|S_IXUGO, proc_net_inode_operations, proc_net_operations),
3608 #endif
3609 	REG("environ",   S_IRUSR, proc_environ_operations),
3610 	REG("auxv",      S_IRUSR, proc_auxv_operations),
3611 	ONE("status",    S_IRUGO, proc_pid_status),
3612 	ONE("personality", S_IRUSR, proc_pid_personality),
3613 	ONE("limits",	 S_IRUGO, proc_pid_limits),
3614 #ifdef CONFIG_SCHED_DEBUG
3615 	REG("sched",     S_IRUGO|S_IWUSR, proc_pid_sched_operations),
3616 #endif
3617 	NOD("comm",      S_IFREG|S_IRUGO|S_IWUSR,
3618 			 &proc_tid_comm_inode_operations,
3619 			 &proc_pid_set_comm_operations, {}),
3620 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK
3621 	ONE("syscall",   S_IRUSR, proc_pid_syscall),
3622 #endif
3623 	REG("cmdline",   S_IRUGO, proc_pid_cmdline_ops),
3624 	ONE("stat",      S_IRUGO, proc_tid_stat),
3625 	ONE("statm",     S_IRUGO, proc_pid_statm),
3626 	REG("maps",      S_IRUGO, proc_pid_maps_operations),
3627 #ifdef CONFIG_PROC_CHILDREN
3628 	REG("children",  S_IRUGO, proc_tid_children_operations),
3629 #endif
3630 #ifdef CONFIG_NUMA
3631 	REG("numa_maps", S_IRUGO, proc_pid_numa_maps_operations),
3632 #endif
3633 	REG("mem",       S_IRUSR|S_IWUSR, proc_mem_operations),
3634 	LNK("cwd",       proc_cwd_link),
3635 	LNK("root",      proc_root_link),
3636 	LNK("exe",       proc_exe_link),
3637 	REG("mounts",    S_IRUGO, proc_mounts_operations),
3638 	REG("mountinfo",  S_IRUGO, proc_mountinfo_operations),
3639 #ifdef CONFIG_PROC_PAGE_MONITOR
3640 	REG("clear_refs", S_IWUSR, proc_clear_refs_operations),
3641 	REG("smaps",     S_IRUGO, proc_pid_smaps_operations),
3642 	REG("smaps_rollup", S_IRUGO, proc_pid_smaps_rollup_operations),
3643 	REG("pagemap",    S_IRUSR, proc_pagemap_operations),
3644 #endif
3645 #ifdef CONFIG_SECURITY
3646 	DIR("attr",      S_IRUGO|S_IXUGO, proc_attr_dir_inode_operations, proc_attr_dir_operations),
3647 #endif
3648 #ifdef CONFIG_KALLSYMS
3649 	ONE("wchan",     S_IRUGO, proc_pid_wchan),
3650 #endif
3651 #ifdef CONFIG_STACKTRACE
3652 	ONE("stack",      S_IRUSR, proc_pid_stack),
3653 #endif
3654 #ifdef CONFIG_SCHED_INFO
3655 	ONE("schedstat", S_IRUGO, proc_pid_schedstat),
3656 #endif
3657 #ifdef CONFIG_LATENCYTOP
3658 	REG("latency",  S_IRUGO, proc_lstats_operations),
3659 #endif
3660 #ifdef CONFIG_PROC_PID_CPUSET
3661 	ONE("cpuset",    S_IRUGO, proc_cpuset_show),
3662 #endif
3663 #ifdef CONFIG_CGROUPS
3664 	ONE("cgroup",  S_IRUGO, proc_cgroup_show),
3665 #endif
3666 #ifdef CONFIG_PROC_CPU_RESCTRL
3667 	ONE("cpu_resctrl_groups", S_IRUGO, proc_resctrl_show),
3668 #endif
3669 	ONE("oom_score", S_IRUGO, proc_oom_score),
3670 	REG("oom_adj",   S_IRUGO|S_IWUSR, proc_oom_adj_operations),
3671 	REG("oom_score_adj", S_IRUGO|S_IWUSR, proc_oom_score_adj_operations),
3672 #ifdef CONFIG_AUDIT
3673 	REG("loginuid",  S_IWUSR|S_IRUGO, proc_loginuid_operations),
3674 	REG("sessionid",  S_IRUGO, proc_sessionid_operations),
3675 #endif
3676 #ifdef CONFIG_FAULT_INJECTION
3677 	REG("make-it-fail", S_IRUGO|S_IWUSR, proc_fault_inject_operations),
3678 	REG("fail-nth", 0644, proc_fail_nth_operations),
3679 #endif
3680 #ifdef CONFIG_TASK_IO_ACCOUNTING
3681 	ONE("io",	S_IRUSR, proc_tid_io_accounting),
3682 #endif
3683 #ifdef CONFIG_USER_NS
3684 	REG("uid_map",    S_IRUGO|S_IWUSR, proc_uid_map_operations),
3685 	REG("gid_map",    S_IRUGO|S_IWUSR, proc_gid_map_operations),
3686 	REG("projid_map", S_IRUGO|S_IWUSR, proc_projid_map_operations),
3687 	REG("setgroups",  S_IRUGO|S_IWUSR, proc_setgroups_operations),
3688 #endif
3689 #ifdef CONFIG_LIVEPATCH
3690 	ONE("patch_state",  S_IRUSR, proc_pid_patch_state),
3691 #endif
3692 #ifdef CONFIG_PROC_PID_ARCH_STATUS
3693 	ONE("arch_status", S_IRUGO, proc_pid_arch_status),
3694 #endif
3695 #ifdef CONFIG_SECCOMP_CACHE_DEBUG
3696 	ONE("seccomp_cache", S_IRUSR, proc_pid_seccomp_cache),
3697 #endif
3698 #ifdef CONFIG_KSM
3699 	ONE("ksm_merging_pages",  S_IRUSR, proc_pid_ksm_merging_pages),
3700 	ONE("ksm_stat",  S_IRUSR, proc_pid_ksm_stat),
3701 #endif
3702 };
3703 
3704 static int proc_tid_base_readdir(struct file *file, struct dir_context *ctx)
3705 {
3706 	return proc_pident_readdir(file, ctx,
3707 				   tid_base_stuff, ARRAY_SIZE(tid_base_stuff));
3708 }
3709 
3710 static struct dentry *proc_tid_base_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
3711 {
3712 	return proc_pident_lookup(dir, dentry,
3713 				  tid_base_stuff,
3714 				  tid_base_stuff + ARRAY_SIZE(tid_base_stuff));
3715 }
3716 
3717 static const struct file_operations proc_tid_base_operations = {
3718 	.read		= generic_read_dir,
3719 	.iterate_shared	= proc_tid_base_readdir,
3720 	.llseek		= generic_file_llseek,
3721 };
3722 
3723 static const struct inode_operations proc_tid_base_inode_operations = {
3724 	.lookup		= proc_tid_base_lookup,
3725 	.getattr	= pid_getattr,
3726 	.setattr	= proc_setattr,
3727 };
3728 
3729 static struct dentry *proc_task_instantiate(struct dentry *dentry,
3730 	struct task_struct *task, const void *ptr)
3731 {
3732 	struct inode *inode;
3733 	inode = proc_pid_make_base_inode(dentry->d_sb, task,
3734 					 S_IFDIR | S_IRUGO | S_IXUGO);
3735 	if (!inode)
3736 		return ERR_PTR(-ENOENT);
3737 
3738 	inode->i_op = &proc_tid_base_inode_operations;
3739 	inode->i_fop = &proc_tid_base_operations;
3740 	inode->i_flags |= S_IMMUTABLE;
3741 
3742 	set_nlink(inode, nlink_tid);
3743 	pid_update_inode(task, inode);
3744 
3745 	d_set_d_op(dentry, &pid_dentry_operations);
3746 	return d_splice_alias(inode, dentry);
3747 }
3748 
3749 static struct dentry *proc_task_lookup(struct inode *dir, struct dentry * dentry, unsigned int flags)
3750 {
3751 	struct task_struct *task;
3752 	struct task_struct *leader = get_proc_task(dir);
3753 	unsigned tid;
3754 	struct proc_fs_info *fs_info;
3755 	struct pid_namespace *ns;
3756 	struct dentry *result = ERR_PTR(-ENOENT);
3757 
3758 	if (!leader)
3759 		goto out_no_task;
3760 
3761 	tid = name_to_int(&dentry->d_name);
3762 	if (tid == ~0U)
3763 		goto out;
3764 
3765 	fs_info = proc_sb_info(dentry->d_sb);
3766 	ns = fs_info->pid_ns;
3767 	rcu_read_lock();
3768 	task = find_task_by_pid_ns(tid, ns);
3769 	if (task)
3770 		get_task_struct(task);
3771 	rcu_read_unlock();
3772 	if (!task)
3773 		goto out;
3774 	if (!same_thread_group(leader, task))
3775 		goto out_drop_task;
3776 
3777 	result = proc_task_instantiate(dentry, task, NULL);
3778 out_drop_task:
3779 	put_task_struct(task);
3780 out:
3781 	put_task_struct(leader);
3782 out_no_task:
3783 	return result;
3784 }
3785 
3786 /*
3787  * Find the first tid of a thread group to return to user space.
3788  *
3789  * Usually this is just the thread group leader, but if the users
3790  * buffer was too small or there was a seek into the middle of the
3791  * directory we have more work todo.
3792  *
3793  * In the case of a short read we start with find_task_by_pid.
3794  *
3795  * In the case of a seek we start with the leader and walk nr
3796  * threads past it.
3797  */
3798 static struct task_struct *first_tid(struct pid *pid, int tid, loff_t f_pos,
3799 					struct pid_namespace *ns)
3800 {
3801 	struct task_struct *pos, *task;
3802 	unsigned long nr = f_pos;
3803 
3804 	if (nr != f_pos)	/* 32bit overflow? */
3805 		return NULL;
3806 
3807 	rcu_read_lock();
3808 	task = pid_task(pid, PIDTYPE_PID);
3809 	if (!task)
3810 		goto fail;
3811 
3812 	/* Attempt to start with the tid of a thread */
3813 	if (tid && nr) {
3814 		pos = find_task_by_pid_ns(tid, ns);
3815 		if (pos && same_thread_group(pos, task))
3816 			goto found;
3817 	}
3818 
3819 	/* If nr exceeds the number of threads there is nothing todo */
3820 	if (nr >= get_nr_threads(task))
3821 		goto fail;
3822 
3823 	/* If we haven't found our starting place yet start
3824 	 * with the leader and walk nr threads forward.
3825 	 */
3826 	for_each_thread(task, pos) {
3827 		if (!nr--)
3828 			goto found;
3829 	}
3830 fail:
3831 	pos = NULL;
3832 	goto out;
3833 found:
3834 	get_task_struct(pos);
3835 out:
3836 	rcu_read_unlock();
3837 	return pos;
3838 }
3839 
3840 /*
3841  * Find the next thread in the thread list.
3842  * Return NULL if there is an error or no next thread.
3843  *
3844  * The reference to the input task_struct is released.
3845  */
3846 static struct task_struct *next_tid(struct task_struct *start)
3847 {
3848 	struct task_struct *pos = NULL;
3849 	rcu_read_lock();
3850 	if (pid_alive(start)) {
3851 		pos = __next_thread(start);
3852 		if (pos)
3853 			get_task_struct(pos);
3854 	}
3855 	rcu_read_unlock();
3856 	put_task_struct(start);
3857 	return pos;
3858 }
3859 
3860 /* for the /proc/TGID/task/ directories */
3861 static int proc_task_readdir(struct file *file, struct dir_context *ctx)
3862 {
3863 	struct inode *inode = file_inode(file);
3864 	struct task_struct *task;
3865 	struct pid_namespace *ns;
3866 	int tid;
3867 
3868 	if (proc_inode_is_dead(inode))
3869 		return -ENOENT;
3870 
3871 	if (!dir_emit_dots(file, ctx))
3872 		return 0;
3873 
3874 	/* f_version caches the tgid value that the last readdir call couldn't
3875 	 * return. lseek aka telldir automagically resets f_version to 0.
3876 	 */
3877 	ns = proc_pid_ns(inode->i_sb);
3878 	tid = (int)file->f_version;
3879 	file->f_version = 0;
3880 	for (task = first_tid(proc_pid(inode), tid, ctx->pos - 2, ns);
3881 	     task;
3882 	     task = next_tid(task), ctx->pos++) {
3883 		char name[10 + 1];
3884 		unsigned int len;
3885 
3886 		tid = task_pid_nr_ns(task, ns);
3887 		if (!tid)
3888 			continue;	/* The task has just exited. */
3889 		len = snprintf(name, sizeof(name), "%u", tid);
3890 		if (!proc_fill_cache(file, ctx, name, len,
3891 				proc_task_instantiate, task, NULL)) {
3892 			/* returning this tgid failed, save it as the first
3893 			 * pid for the next readir call */
3894 			file->f_version = (u64)tid;
3895 			put_task_struct(task);
3896 			break;
3897 		}
3898 	}
3899 
3900 	return 0;
3901 }
3902 
3903 static int proc_task_getattr(struct mnt_idmap *idmap,
3904 			     const struct path *path, struct kstat *stat,
3905 			     u32 request_mask, unsigned int query_flags)
3906 {
3907 	struct inode *inode = d_inode(path->dentry);
3908 	struct task_struct *p = get_proc_task(inode);
3909 	generic_fillattr(&nop_mnt_idmap, request_mask, inode, stat);
3910 
3911 	if (p) {
3912 		stat->nlink += get_nr_threads(p);
3913 		put_task_struct(p);
3914 	}
3915 
3916 	return 0;
3917 }
3918 
3919 static const struct inode_operations proc_task_inode_operations = {
3920 	.lookup		= proc_task_lookup,
3921 	.getattr	= proc_task_getattr,
3922 	.setattr	= proc_setattr,
3923 	.permission	= proc_pid_permission,
3924 };
3925 
3926 static const struct file_operations proc_task_operations = {
3927 	.read		= generic_read_dir,
3928 	.iterate_shared	= proc_task_readdir,
3929 	.llseek		= generic_file_llseek,
3930 };
3931 
3932 void __init set_proc_pid_nlink(void)
3933 {
3934 	nlink_tid = pid_entry_nlink(tid_base_stuff, ARRAY_SIZE(tid_base_stuff));
3935 	nlink_tgid = pid_entry_nlink(tgid_base_stuff, ARRAY_SIZE(tgid_base_stuff));
3936 }
3937