1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * linux/fs/proc/base.c 4 * 5 * Copyright (C) 1991, 1992 Linus Torvalds 6 * 7 * proc base directory handling functions 8 * 9 * 1999, Al Viro. Rewritten. Now it covers the whole per-process part. 10 * Instead of using magical inumbers to determine the kind of object 11 * we allocate and fill in-core inodes upon lookup. They don't even 12 * go into icache. We cache the reference to task_struct upon lookup too. 13 * Eventually it should become a filesystem in its own. We don't use the 14 * rest of procfs anymore. 15 * 16 * 17 * Changelog: 18 * 17-Jan-2005 19 * Allan Bezerra 20 * Bruna Moreira <bruna.moreira@indt.org.br> 21 * Edjard Mota <edjard.mota@indt.org.br> 22 * Ilias Biris <ilias.biris@indt.org.br> 23 * Mauricio Lin <mauricio.lin@indt.org.br> 24 * 25 * Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT 26 * 27 * A new process specific entry (smaps) included in /proc. It shows the 28 * size of rss for each memory area. The maps entry lacks information 29 * about physical memory size (rss) for each mapped file, i.e., 30 * rss information for executables and library files. 31 * This additional information is useful for any tools that need to know 32 * about physical memory consumption for a process specific library. 33 * 34 * Changelog: 35 * 21-Feb-2005 36 * Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT 37 * Pud inclusion in the page table walking. 38 * 39 * ChangeLog: 40 * 10-Mar-2005 41 * 10LE Instituto Nokia de Tecnologia - INdT: 42 * A better way to walks through the page table as suggested by Hugh Dickins. 43 * 44 * Simo Piiroinen <simo.piiroinen@nokia.com>: 45 * Smaps information related to shared, private, clean and dirty pages. 46 * 47 * Paul Mundt <paul.mundt@nokia.com>: 48 * Overall revision about smaps. 49 */ 50 51 #include <linux/uaccess.h> 52 53 #include <linux/errno.h> 54 #include <linux/time.h> 55 #include <linux/proc_fs.h> 56 #include <linux/stat.h> 57 #include <linux/task_io_accounting_ops.h> 58 #include <linux/init.h> 59 #include <linux/capability.h> 60 #include <linux/file.h> 61 #include <linux/fdtable.h> 62 #include <linux/generic-radix-tree.h> 63 #include <linux/string.h> 64 #include <linux/seq_file.h> 65 #include <linux/namei.h> 66 #include <linux/mnt_namespace.h> 67 #include <linux/mm.h> 68 #include <linux/swap.h> 69 #include <linux/rcupdate.h> 70 #include <linux/kallsyms.h> 71 #include <linux/stacktrace.h> 72 #include <linux/resource.h> 73 #include <linux/module.h> 74 #include <linux/mount.h> 75 #include <linux/security.h> 76 #include <linux/ptrace.h> 77 #include <linux/printk.h> 78 #include <linux/cache.h> 79 #include <linux/cgroup.h> 80 #include <linux/cpuset.h> 81 #include <linux/audit.h> 82 #include <linux/poll.h> 83 #include <linux/nsproxy.h> 84 #include <linux/oom.h> 85 #include <linux/elf.h> 86 #include <linux/pid_namespace.h> 87 #include <linux/user_namespace.h> 88 #include <linux/fs_struct.h> 89 #include <linux/slab.h> 90 #include <linux/sched/autogroup.h> 91 #include <linux/sched/mm.h> 92 #include <linux/sched/coredump.h> 93 #include <linux/sched/debug.h> 94 #include <linux/sched/stat.h> 95 #include <linux/posix-timers.h> 96 #include <linux/time_namespace.h> 97 #include <linux/resctrl.h> 98 #include <linux/cn_proc.h> 99 #include <linux/ksm.h> 100 #include <uapi/linux/lsm.h> 101 #include <trace/events/oom.h> 102 #include "internal.h" 103 #include "fd.h" 104 105 #include "../../lib/kstrtox.h" 106 107 /* NOTE: 108 * Implementing inode permission operations in /proc is almost 109 * certainly an error. Permission checks need to happen during 110 * each system call not at open time. The reason is that most of 111 * what we wish to check for permissions in /proc varies at runtime. 112 * 113 * The classic example of a problem is opening file descriptors 114 * in /proc for a task before it execs a suid executable. 115 */ 116 117 static u8 nlink_tid __ro_after_init; 118 static u8 nlink_tgid __ro_after_init; 119 120 struct pid_entry { 121 const char *name; 122 unsigned int len; 123 umode_t mode; 124 const struct inode_operations *iop; 125 const struct file_operations *fop; 126 union proc_op op; 127 }; 128 129 #define NOD(NAME, MODE, IOP, FOP, OP) { \ 130 .name = (NAME), \ 131 .len = sizeof(NAME) - 1, \ 132 .mode = MODE, \ 133 .iop = IOP, \ 134 .fop = FOP, \ 135 .op = OP, \ 136 } 137 138 #define DIR(NAME, MODE, iops, fops) \ 139 NOD(NAME, (S_IFDIR|(MODE)), &iops, &fops, {} ) 140 #define LNK(NAME, get_link) \ 141 NOD(NAME, (S_IFLNK|S_IRWXUGO), \ 142 &proc_pid_link_inode_operations, NULL, \ 143 { .proc_get_link = get_link } ) 144 #define REG(NAME, MODE, fops) \ 145 NOD(NAME, (S_IFREG|(MODE)), NULL, &fops, {}) 146 #define ONE(NAME, MODE, show) \ 147 NOD(NAME, (S_IFREG|(MODE)), \ 148 NULL, &proc_single_file_operations, \ 149 { .proc_show = show } ) 150 #define ATTR(LSMID, NAME, MODE) \ 151 NOD(NAME, (S_IFREG|(MODE)), \ 152 NULL, &proc_pid_attr_operations, \ 153 { .lsmid = LSMID }) 154 155 /* 156 * Count the number of hardlinks for the pid_entry table, excluding the . 157 * and .. links. 158 */ 159 static unsigned int __init pid_entry_nlink(const struct pid_entry *entries, 160 unsigned int n) 161 { 162 unsigned int i; 163 unsigned int count; 164 165 count = 2; 166 for (i = 0; i < n; ++i) { 167 if (S_ISDIR(entries[i].mode)) 168 ++count; 169 } 170 171 return count; 172 } 173 174 static int get_task_root(struct task_struct *task, struct path *root) 175 { 176 int result = -ENOENT; 177 178 task_lock(task); 179 if (task->fs) { 180 get_fs_root(task->fs, root); 181 result = 0; 182 } 183 task_unlock(task); 184 return result; 185 } 186 187 static int proc_cwd_link(struct dentry *dentry, struct path *path) 188 { 189 struct task_struct *task = get_proc_task(d_inode(dentry)); 190 int result = -ENOENT; 191 192 if (task) { 193 task_lock(task); 194 if (task->fs) { 195 get_fs_pwd(task->fs, path); 196 result = 0; 197 } 198 task_unlock(task); 199 put_task_struct(task); 200 } 201 return result; 202 } 203 204 static int proc_root_link(struct dentry *dentry, struct path *path) 205 { 206 struct task_struct *task = get_proc_task(d_inode(dentry)); 207 int result = -ENOENT; 208 209 if (task) { 210 result = get_task_root(task, path); 211 put_task_struct(task); 212 } 213 return result; 214 } 215 216 /* 217 * If the user used setproctitle(), we just get the string from 218 * user space at arg_start, and limit it to a maximum of one page. 219 */ 220 static ssize_t get_mm_proctitle(struct mm_struct *mm, char __user *buf, 221 size_t count, unsigned long pos, 222 unsigned long arg_start) 223 { 224 char *page; 225 int ret, got; 226 227 if (pos >= PAGE_SIZE) 228 return 0; 229 230 page = (char *)__get_free_page(GFP_KERNEL); 231 if (!page) 232 return -ENOMEM; 233 234 ret = 0; 235 got = access_remote_vm(mm, arg_start, page, PAGE_SIZE, FOLL_ANON); 236 if (got > 0) { 237 int len = strnlen(page, got); 238 239 /* Include the NUL character if it was found */ 240 if (len < got) 241 len++; 242 243 if (len > pos) { 244 len -= pos; 245 if (len > count) 246 len = count; 247 len -= copy_to_user(buf, page+pos, len); 248 if (!len) 249 len = -EFAULT; 250 ret = len; 251 } 252 } 253 free_page((unsigned long)page); 254 return ret; 255 } 256 257 static ssize_t get_mm_cmdline(struct mm_struct *mm, char __user *buf, 258 size_t count, loff_t *ppos) 259 { 260 unsigned long arg_start, arg_end, env_start, env_end; 261 unsigned long pos, len; 262 char *page, c; 263 264 /* Check if process spawned far enough to have cmdline. */ 265 if (!mm->env_end) 266 return 0; 267 268 spin_lock(&mm->arg_lock); 269 arg_start = mm->arg_start; 270 arg_end = mm->arg_end; 271 env_start = mm->env_start; 272 env_end = mm->env_end; 273 spin_unlock(&mm->arg_lock); 274 275 if (arg_start >= arg_end) 276 return 0; 277 278 /* 279 * We allow setproctitle() to overwrite the argument 280 * strings, and overflow past the original end. But 281 * only when it overflows into the environment area. 282 */ 283 if (env_start != arg_end || env_end < env_start) 284 env_start = env_end = arg_end; 285 len = env_end - arg_start; 286 287 /* We're not going to care if "*ppos" has high bits set */ 288 pos = *ppos; 289 if (pos >= len) 290 return 0; 291 if (count > len - pos) 292 count = len - pos; 293 if (!count) 294 return 0; 295 296 /* 297 * Magical special case: if the argv[] end byte is not 298 * zero, the user has overwritten it with setproctitle(3). 299 * 300 * Possible future enhancement: do this only once when 301 * pos is 0, and set a flag in the 'struct file'. 302 */ 303 if (access_remote_vm(mm, arg_end-1, &c, 1, FOLL_ANON) == 1 && c) 304 return get_mm_proctitle(mm, buf, count, pos, arg_start); 305 306 /* 307 * For the non-setproctitle() case we limit things strictly 308 * to the [arg_start, arg_end[ range. 309 */ 310 pos += arg_start; 311 if (pos < arg_start || pos >= arg_end) 312 return 0; 313 if (count > arg_end - pos) 314 count = arg_end - pos; 315 316 page = (char *)__get_free_page(GFP_KERNEL); 317 if (!page) 318 return -ENOMEM; 319 320 len = 0; 321 while (count) { 322 int got; 323 size_t size = min_t(size_t, PAGE_SIZE, count); 324 325 got = access_remote_vm(mm, pos, page, size, FOLL_ANON); 326 if (got <= 0) 327 break; 328 got -= copy_to_user(buf, page, got); 329 if (unlikely(!got)) { 330 if (!len) 331 len = -EFAULT; 332 break; 333 } 334 pos += got; 335 buf += got; 336 len += got; 337 count -= got; 338 } 339 340 free_page((unsigned long)page); 341 return len; 342 } 343 344 static ssize_t get_task_cmdline(struct task_struct *tsk, char __user *buf, 345 size_t count, loff_t *pos) 346 { 347 struct mm_struct *mm; 348 ssize_t ret; 349 350 mm = get_task_mm(tsk); 351 if (!mm) 352 return 0; 353 354 ret = get_mm_cmdline(mm, buf, count, pos); 355 mmput(mm); 356 return ret; 357 } 358 359 static ssize_t proc_pid_cmdline_read(struct file *file, char __user *buf, 360 size_t count, loff_t *pos) 361 { 362 struct task_struct *tsk; 363 ssize_t ret; 364 365 BUG_ON(*pos < 0); 366 367 tsk = get_proc_task(file_inode(file)); 368 if (!tsk) 369 return -ESRCH; 370 ret = get_task_cmdline(tsk, buf, count, pos); 371 put_task_struct(tsk); 372 if (ret > 0) 373 *pos += ret; 374 return ret; 375 } 376 377 static const struct file_operations proc_pid_cmdline_ops = { 378 .read = proc_pid_cmdline_read, 379 .llseek = generic_file_llseek, 380 }; 381 382 #ifdef CONFIG_KALLSYMS 383 /* 384 * Provides a wchan file via kallsyms in a proper one-value-per-file format. 385 * Returns the resolved symbol. If that fails, simply return the address. 386 */ 387 static int proc_pid_wchan(struct seq_file *m, struct pid_namespace *ns, 388 struct pid *pid, struct task_struct *task) 389 { 390 unsigned long wchan; 391 char symname[KSYM_NAME_LEN]; 392 393 if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS)) 394 goto print0; 395 396 wchan = get_wchan(task); 397 if (wchan && !lookup_symbol_name(wchan, symname)) { 398 seq_puts(m, symname); 399 return 0; 400 } 401 402 print0: 403 seq_putc(m, '0'); 404 return 0; 405 } 406 #endif /* CONFIG_KALLSYMS */ 407 408 static int lock_trace(struct task_struct *task) 409 { 410 int err = down_read_killable(&task->signal->exec_update_lock); 411 if (err) 412 return err; 413 if (!ptrace_may_access(task, PTRACE_MODE_ATTACH_FSCREDS)) { 414 up_read(&task->signal->exec_update_lock); 415 return -EPERM; 416 } 417 return 0; 418 } 419 420 static void unlock_trace(struct task_struct *task) 421 { 422 up_read(&task->signal->exec_update_lock); 423 } 424 425 #ifdef CONFIG_STACKTRACE 426 427 #define MAX_STACK_TRACE_DEPTH 64 428 429 static int proc_pid_stack(struct seq_file *m, struct pid_namespace *ns, 430 struct pid *pid, struct task_struct *task) 431 { 432 unsigned long *entries; 433 int err; 434 435 /* 436 * The ability to racily run the kernel stack unwinder on a running task 437 * and then observe the unwinder output is scary; while it is useful for 438 * debugging kernel issues, it can also allow an attacker to leak kernel 439 * stack contents. 440 * Doing this in a manner that is at least safe from races would require 441 * some work to ensure that the remote task can not be scheduled; and 442 * even then, this would still expose the unwinder as local attack 443 * surface. 444 * Therefore, this interface is restricted to root. 445 */ 446 if (!file_ns_capable(m->file, &init_user_ns, CAP_SYS_ADMIN)) 447 return -EACCES; 448 449 entries = kmalloc_array(MAX_STACK_TRACE_DEPTH, sizeof(*entries), 450 GFP_KERNEL); 451 if (!entries) 452 return -ENOMEM; 453 454 err = lock_trace(task); 455 if (!err) { 456 unsigned int i, nr_entries; 457 458 nr_entries = stack_trace_save_tsk(task, entries, 459 MAX_STACK_TRACE_DEPTH, 0); 460 461 for (i = 0; i < nr_entries; i++) { 462 seq_printf(m, "[<0>] %pB\n", (void *)entries[i]); 463 } 464 465 unlock_trace(task); 466 } 467 kfree(entries); 468 469 return err; 470 } 471 #endif 472 473 #ifdef CONFIG_SCHED_INFO 474 /* 475 * Provides /proc/PID/schedstat 476 */ 477 static int proc_pid_schedstat(struct seq_file *m, struct pid_namespace *ns, 478 struct pid *pid, struct task_struct *task) 479 { 480 if (unlikely(!sched_info_on())) 481 seq_puts(m, "0 0 0\n"); 482 else 483 seq_printf(m, "%llu %llu %lu\n", 484 (unsigned long long)task->se.sum_exec_runtime, 485 (unsigned long long)task->sched_info.run_delay, 486 task->sched_info.pcount); 487 488 return 0; 489 } 490 #endif 491 492 #ifdef CONFIG_LATENCYTOP 493 static int lstats_show_proc(struct seq_file *m, void *v) 494 { 495 int i; 496 struct inode *inode = m->private; 497 struct task_struct *task = get_proc_task(inode); 498 499 if (!task) 500 return -ESRCH; 501 seq_puts(m, "Latency Top version : v0.1\n"); 502 for (i = 0; i < LT_SAVECOUNT; i++) { 503 struct latency_record *lr = &task->latency_record[i]; 504 if (lr->backtrace[0]) { 505 int q; 506 seq_printf(m, "%i %li %li", 507 lr->count, lr->time, lr->max); 508 for (q = 0; q < LT_BACKTRACEDEPTH; q++) { 509 unsigned long bt = lr->backtrace[q]; 510 511 if (!bt) 512 break; 513 seq_printf(m, " %ps", (void *)bt); 514 } 515 seq_putc(m, '\n'); 516 } 517 518 } 519 put_task_struct(task); 520 return 0; 521 } 522 523 static int lstats_open(struct inode *inode, struct file *file) 524 { 525 return single_open(file, lstats_show_proc, inode); 526 } 527 528 static ssize_t lstats_write(struct file *file, const char __user *buf, 529 size_t count, loff_t *offs) 530 { 531 struct task_struct *task = get_proc_task(file_inode(file)); 532 533 if (!task) 534 return -ESRCH; 535 clear_tsk_latency_tracing(task); 536 put_task_struct(task); 537 538 return count; 539 } 540 541 static const struct file_operations proc_lstats_operations = { 542 .open = lstats_open, 543 .read = seq_read, 544 .write = lstats_write, 545 .llseek = seq_lseek, 546 .release = single_release, 547 }; 548 549 #endif 550 551 static int proc_oom_score(struct seq_file *m, struct pid_namespace *ns, 552 struct pid *pid, struct task_struct *task) 553 { 554 unsigned long totalpages = totalram_pages() + total_swap_pages; 555 unsigned long points = 0; 556 long badness; 557 558 badness = oom_badness(task, totalpages); 559 /* 560 * Special case OOM_SCORE_ADJ_MIN for all others scale the 561 * badness value into [0, 2000] range which we have been 562 * exporting for a long time so userspace might depend on it. 563 */ 564 if (badness != LONG_MIN) 565 points = (1000 + badness * 1000 / (long)totalpages) * 2 / 3; 566 567 seq_printf(m, "%lu\n", points); 568 569 return 0; 570 } 571 572 struct limit_names { 573 const char *name; 574 const char *unit; 575 }; 576 577 static const struct limit_names lnames[RLIM_NLIMITS] = { 578 [RLIMIT_CPU] = {"Max cpu time", "seconds"}, 579 [RLIMIT_FSIZE] = {"Max file size", "bytes"}, 580 [RLIMIT_DATA] = {"Max data size", "bytes"}, 581 [RLIMIT_STACK] = {"Max stack size", "bytes"}, 582 [RLIMIT_CORE] = {"Max core file size", "bytes"}, 583 [RLIMIT_RSS] = {"Max resident set", "bytes"}, 584 [RLIMIT_NPROC] = {"Max processes", "processes"}, 585 [RLIMIT_NOFILE] = {"Max open files", "files"}, 586 [RLIMIT_MEMLOCK] = {"Max locked memory", "bytes"}, 587 [RLIMIT_AS] = {"Max address space", "bytes"}, 588 [RLIMIT_LOCKS] = {"Max file locks", "locks"}, 589 [RLIMIT_SIGPENDING] = {"Max pending signals", "signals"}, 590 [RLIMIT_MSGQUEUE] = {"Max msgqueue size", "bytes"}, 591 [RLIMIT_NICE] = {"Max nice priority", NULL}, 592 [RLIMIT_RTPRIO] = {"Max realtime priority", NULL}, 593 [RLIMIT_RTTIME] = {"Max realtime timeout", "us"}, 594 }; 595 596 /* Display limits for a process */ 597 static int proc_pid_limits(struct seq_file *m, struct pid_namespace *ns, 598 struct pid *pid, struct task_struct *task) 599 { 600 unsigned int i; 601 unsigned long flags; 602 603 struct rlimit rlim[RLIM_NLIMITS]; 604 605 if (!lock_task_sighand(task, &flags)) 606 return 0; 607 memcpy(rlim, task->signal->rlim, sizeof(struct rlimit) * RLIM_NLIMITS); 608 unlock_task_sighand(task, &flags); 609 610 /* 611 * print the file header 612 */ 613 seq_puts(m, "Limit " 614 "Soft Limit " 615 "Hard Limit " 616 "Units \n"); 617 618 for (i = 0; i < RLIM_NLIMITS; i++) { 619 if (rlim[i].rlim_cur == RLIM_INFINITY) 620 seq_printf(m, "%-25s %-20s ", 621 lnames[i].name, "unlimited"); 622 else 623 seq_printf(m, "%-25s %-20lu ", 624 lnames[i].name, rlim[i].rlim_cur); 625 626 if (rlim[i].rlim_max == RLIM_INFINITY) 627 seq_printf(m, "%-20s ", "unlimited"); 628 else 629 seq_printf(m, "%-20lu ", rlim[i].rlim_max); 630 631 if (lnames[i].unit) 632 seq_printf(m, "%-10s\n", lnames[i].unit); 633 else 634 seq_putc(m, '\n'); 635 } 636 637 return 0; 638 } 639 640 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK 641 static int proc_pid_syscall(struct seq_file *m, struct pid_namespace *ns, 642 struct pid *pid, struct task_struct *task) 643 { 644 struct syscall_info info; 645 u64 *args = &info.data.args[0]; 646 int res; 647 648 res = lock_trace(task); 649 if (res) 650 return res; 651 652 if (task_current_syscall(task, &info)) 653 seq_puts(m, "running\n"); 654 else if (info.data.nr < 0) 655 seq_printf(m, "%d 0x%llx 0x%llx\n", 656 info.data.nr, info.sp, info.data.instruction_pointer); 657 else 658 seq_printf(m, 659 "%d 0x%llx 0x%llx 0x%llx 0x%llx 0x%llx 0x%llx 0x%llx 0x%llx\n", 660 info.data.nr, 661 args[0], args[1], args[2], args[3], args[4], args[5], 662 info.sp, info.data.instruction_pointer); 663 unlock_trace(task); 664 665 return 0; 666 } 667 #endif /* CONFIG_HAVE_ARCH_TRACEHOOK */ 668 669 /************************************************************************/ 670 /* Here the fs part begins */ 671 /************************************************************************/ 672 673 /* permission checks */ 674 static bool proc_fd_access_allowed(struct inode *inode) 675 { 676 struct task_struct *task; 677 bool allowed = false; 678 /* Allow access to a task's file descriptors if it is us or we 679 * may use ptrace attach to the process and find out that 680 * information. 681 */ 682 task = get_proc_task(inode); 683 if (task) { 684 allowed = ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS); 685 put_task_struct(task); 686 } 687 return allowed; 688 } 689 690 int proc_setattr(struct mnt_idmap *idmap, struct dentry *dentry, 691 struct iattr *attr) 692 { 693 int error; 694 struct inode *inode = d_inode(dentry); 695 696 if (attr->ia_valid & ATTR_MODE) 697 return -EPERM; 698 699 error = setattr_prepare(&nop_mnt_idmap, dentry, attr); 700 if (error) 701 return error; 702 703 setattr_copy(&nop_mnt_idmap, inode, attr); 704 return 0; 705 } 706 707 /* 708 * May current process learn task's sched/cmdline info (for hide_pid_min=1) 709 * or euid/egid (for hide_pid_min=2)? 710 */ 711 static bool has_pid_permissions(struct proc_fs_info *fs_info, 712 struct task_struct *task, 713 enum proc_hidepid hide_pid_min) 714 { 715 /* 716 * If 'hidpid' mount option is set force a ptrace check, 717 * we indicate that we are using a filesystem syscall 718 * by passing PTRACE_MODE_READ_FSCREDS 719 */ 720 if (fs_info->hide_pid == HIDEPID_NOT_PTRACEABLE) 721 return ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS); 722 723 if (fs_info->hide_pid < hide_pid_min) 724 return true; 725 if (in_group_p(fs_info->pid_gid)) 726 return true; 727 return ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS); 728 } 729 730 731 static int proc_pid_permission(struct mnt_idmap *idmap, 732 struct inode *inode, int mask) 733 { 734 struct proc_fs_info *fs_info = proc_sb_info(inode->i_sb); 735 struct task_struct *task; 736 bool has_perms; 737 738 task = get_proc_task(inode); 739 if (!task) 740 return -ESRCH; 741 has_perms = has_pid_permissions(fs_info, task, HIDEPID_NO_ACCESS); 742 put_task_struct(task); 743 744 if (!has_perms) { 745 if (fs_info->hide_pid == HIDEPID_INVISIBLE) { 746 /* 747 * Let's make getdents(), stat(), and open() 748 * consistent with each other. If a process 749 * may not stat() a file, it shouldn't be seen 750 * in procfs at all. 751 */ 752 return -ENOENT; 753 } 754 755 return -EPERM; 756 } 757 return generic_permission(&nop_mnt_idmap, inode, mask); 758 } 759 760 761 762 static const struct inode_operations proc_def_inode_operations = { 763 .setattr = proc_setattr, 764 }; 765 766 static int proc_single_show(struct seq_file *m, void *v) 767 { 768 struct inode *inode = m->private; 769 struct pid_namespace *ns = proc_pid_ns(inode->i_sb); 770 struct pid *pid = proc_pid(inode); 771 struct task_struct *task; 772 int ret; 773 774 task = get_pid_task(pid, PIDTYPE_PID); 775 if (!task) 776 return -ESRCH; 777 778 ret = PROC_I(inode)->op.proc_show(m, ns, pid, task); 779 780 put_task_struct(task); 781 return ret; 782 } 783 784 static int proc_single_open(struct inode *inode, struct file *filp) 785 { 786 return single_open(filp, proc_single_show, inode); 787 } 788 789 static const struct file_operations proc_single_file_operations = { 790 .open = proc_single_open, 791 .read = seq_read, 792 .llseek = seq_lseek, 793 .release = single_release, 794 }; 795 796 797 struct mm_struct *proc_mem_open(struct inode *inode, unsigned int mode) 798 { 799 struct task_struct *task = get_proc_task(inode); 800 struct mm_struct *mm = ERR_PTR(-ESRCH); 801 802 if (task) { 803 mm = mm_access(task, mode | PTRACE_MODE_FSCREDS); 804 put_task_struct(task); 805 806 if (!IS_ERR_OR_NULL(mm)) { 807 /* ensure this mm_struct can't be freed */ 808 mmgrab(mm); 809 /* but do not pin its memory */ 810 mmput(mm); 811 } 812 } 813 814 return mm; 815 } 816 817 static int __mem_open(struct inode *inode, struct file *file, unsigned int mode) 818 { 819 struct mm_struct *mm = proc_mem_open(inode, mode); 820 821 if (IS_ERR(mm)) 822 return PTR_ERR(mm); 823 824 file->private_data = mm; 825 return 0; 826 } 827 828 static int mem_open(struct inode *inode, struct file *file) 829 { 830 int ret = __mem_open(inode, file, PTRACE_MODE_ATTACH); 831 832 /* OK to pass negative loff_t, we can catch out-of-range */ 833 file->f_mode |= FMODE_UNSIGNED_OFFSET; 834 835 return ret; 836 } 837 838 static ssize_t mem_rw(struct file *file, char __user *buf, 839 size_t count, loff_t *ppos, int write) 840 { 841 struct mm_struct *mm = file->private_data; 842 unsigned long addr = *ppos; 843 ssize_t copied; 844 char *page; 845 unsigned int flags; 846 847 if (!mm) 848 return 0; 849 850 page = (char *)__get_free_page(GFP_KERNEL); 851 if (!page) 852 return -ENOMEM; 853 854 copied = 0; 855 if (!mmget_not_zero(mm)) 856 goto free; 857 858 flags = FOLL_FORCE | (write ? FOLL_WRITE : 0); 859 860 while (count > 0) { 861 size_t this_len = min_t(size_t, count, PAGE_SIZE); 862 863 if (write && copy_from_user(page, buf, this_len)) { 864 copied = -EFAULT; 865 break; 866 } 867 868 this_len = access_remote_vm(mm, addr, page, this_len, flags); 869 if (!this_len) { 870 if (!copied) 871 copied = -EIO; 872 break; 873 } 874 875 if (!write && copy_to_user(buf, page, this_len)) { 876 copied = -EFAULT; 877 break; 878 } 879 880 buf += this_len; 881 addr += this_len; 882 copied += this_len; 883 count -= this_len; 884 } 885 *ppos = addr; 886 887 mmput(mm); 888 free: 889 free_page((unsigned long) page); 890 return copied; 891 } 892 893 static ssize_t mem_read(struct file *file, char __user *buf, 894 size_t count, loff_t *ppos) 895 { 896 return mem_rw(file, buf, count, ppos, 0); 897 } 898 899 static ssize_t mem_write(struct file *file, const char __user *buf, 900 size_t count, loff_t *ppos) 901 { 902 return mem_rw(file, (char __user*)buf, count, ppos, 1); 903 } 904 905 loff_t mem_lseek(struct file *file, loff_t offset, int orig) 906 { 907 switch (orig) { 908 case 0: 909 file->f_pos = offset; 910 break; 911 case 1: 912 file->f_pos += offset; 913 break; 914 default: 915 return -EINVAL; 916 } 917 force_successful_syscall_return(); 918 return file->f_pos; 919 } 920 921 static int mem_release(struct inode *inode, struct file *file) 922 { 923 struct mm_struct *mm = file->private_data; 924 if (mm) 925 mmdrop(mm); 926 return 0; 927 } 928 929 static const struct file_operations proc_mem_operations = { 930 .llseek = mem_lseek, 931 .read = mem_read, 932 .write = mem_write, 933 .open = mem_open, 934 .release = mem_release, 935 }; 936 937 static int environ_open(struct inode *inode, struct file *file) 938 { 939 return __mem_open(inode, file, PTRACE_MODE_READ); 940 } 941 942 static ssize_t environ_read(struct file *file, char __user *buf, 943 size_t count, loff_t *ppos) 944 { 945 char *page; 946 unsigned long src = *ppos; 947 int ret = 0; 948 struct mm_struct *mm = file->private_data; 949 unsigned long env_start, env_end; 950 951 /* Ensure the process spawned far enough to have an environment. */ 952 if (!mm || !mm->env_end) 953 return 0; 954 955 page = (char *)__get_free_page(GFP_KERNEL); 956 if (!page) 957 return -ENOMEM; 958 959 ret = 0; 960 if (!mmget_not_zero(mm)) 961 goto free; 962 963 spin_lock(&mm->arg_lock); 964 env_start = mm->env_start; 965 env_end = mm->env_end; 966 spin_unlock(&mm->arg_lock); 967 968 while (count > 0) { 969 size_t this_len, max_len; 970 int retval; 971 972 if (src >= (env_end - env_start)) 973 break; 974 975 this_len = env_end - (env_start + src); 976 977 max_len = min_t(size_t, PAGE_SIZE, count); 978 this_len = min(max_len, this_len); 979 980 retval = access_remote_vm(mm, (env_start + src), page, this_len, FOLL_ANON); 981 982 if (retval <= 0) { 983 ret = retval; 984 break; 985 } 986 987 if (copy_to_user(buf, page, retval)) { 988 ret = -EFAULT; 989 break; 990 } 991 992 ret += retval; 993 src += retval; 994 buf += retval; 995 count -= retval; 996 } 997 *ppos = src; 998 mmput(mm); 999 1000 free: 1001 free_page((unsigned long) page); 1002 return ret; 1003 } 1004 1005 static const struct file_operations proc_environ_operations = { 1006 .open = environ_open, 1007 .read = environ_read, 1008 .llseek = generic_file_llseek, 1009 .release = mem_release, 1010 }; 1011 1012 static int auxv_open(struct inode *inode, struct file *file) 1013 { 1014 return __mem_open(inode, file, PTRACE_MODE_READ_FSCREDS); 1015 } 1016 1017 static ssize_t auxv_read(struct file *file, char __user *buf, 1018 size_t count, loff_t *ppos) 1019 { 1020 struct mm_struct *mm = file->private_data; 1021 unsigned int nwords = 0; 1022 1023 if (!mm) 1024 return 0; 1025 do { 1026 nwords += 2; 1027 } while (mm->saved_auxv[nwords - 2] != 0); /* AT_NULL */ 1028 return simple_read_from_buffer(buf, count, ppos, mm->saved_auxv, 1029 nwords * sizeof(mm->saved_auxv[0])); 1030 } 1031 1032 static const struct file_operations proc_auxv_operations = { 1033 .open = auxv_open, 1034 .read = auxv_read, 1035 .llseek = generic_file_llseek, 1036 .release = mem_release, 1037 }; 1038 1039 static ssize_t oom_adj_read(struct file *file, char __user *buf, size_t count, 1040 loff_t *ppos) 1041 { 1042 struct task_struct *task = get_proc_task(file_inode(file)); 1043 char buffer[PROC_NUMBUF]; 1044 int oom_adj = OOM_ADJUST_MIN; 1045 size_t len; 1046 1047 if (!task) 1048 return -ESRCH; 1049 if (task->signal->oom_score_adj == OOM_SCORE_ADJ_MAX) 1050 oom_adj = OOM_ADJUST_MAX; 1051 else 1052 oom_adj = (task->signal->oom_score_adj * -OOM_DISABLE) / 1053 OOM_SCORE_ADJ_MAX; 1054 put_task_struct(task); 1055 if (oom_adj > OOM_ADJUST_MAX) 1056 oom_adj = OOM_ADJUST_MAX; 1057 len = snprintf(buffer, sizeof(buffer), "%d\n", oom_adj); 1058 return simple_read_from_buffer(buf, count, ppos, buffer, len); 1059 } 1060 1061 static int __set_oom_adj(struct file *file, int oom_adj, bool legacy) 1062 { 1063 struct mm_struct *mm = NULL; 1064 struct task_struct *task; 1065 int err = 0; 1066 1067 task = get_proc_task(file_inode(file)); 1068 if (!task) 1069 return -ESRCH; 1070 1071 mutex_lock(&oom_adj_mutex); 1072 if (legacy) { 1073 if (oom_adj < task->signal->oom_score_adj && 1074 !capable(CAP_SYS_RESOURCE)) { 1075 err = -EACCES; 1076 goto err_unlock; 1077 } 1078 /* 1079 * /proc/pid/oom_adj is provided for legacy purposes, ask users to use 1080 * /proc/pid/oom_score_adj instead. 1081 */ 1082 pr_warn_once("%s (%d): /proc/%d/oom_adj is deprecated, please use /proc/%d/oom_score_adj instead.\n", 1083 current->comm, task_pid_nr(current), task_pid_nr(task), 1084 task_pid_nr(task)); 1085 } else { 1086 if ((short)oom_adj < task->signal->oom_score_adj_min && 1087 !capable(CAP_SYS_RESOURCE)) { 1088 err = -EACCES; 1089 goto err_unlock; 1090 } 1091 } 1092 1093 /* 1094 * Make sure we will check other processes sharing the mm if this is 1095 * not vfrok which wants its own oom_score_adj. 1096 * pin the mm so it doesn't go away and get reused after task_unlock 1097 */ 1098 if (!task->vfork_done) { 1099 struct task_struct *p = find_lock_task_mm(task); 1100 1101 if (p) { 1102 if (test_bit(MMF_MULTIPROCESS, &p->mm->flags)) { 1103 mm = p->mm; 1104 mmgrab(mm); 1105 } 1106 task_unlock(p); 1107 } 1108 } 1109 1110 task->signal->oom_score_adj = oom_adj; 1111 if (!legacy && has_capability_noaudit(current, CAP_SYS_RESOURCE)) 1112 task->signal->oom_score_adj_min = (short)oom_adj; 1113 trace_oom_score_adj_update(task); 1114 1115 if (mm) { 1116 struct task_struct *p; 1117 1118 rcu_read_lock(); 1119 for_each_process(p) { 1120 if (same_thread_group(task, p)) 1121 continue; 1122 1123 /* do not touch kernel threads or the global init */ 1124 if (p->flags & PF_KTHREAD || is_global_init(p)) 1125 continue; 1126 1127 task_lock(p); 1128 if (!p->vfork_done && process_shares_mm(p, mm)) { 1129 p->signal->oom_score_adj = oom_adj; 1130 if (!legacy && has_capability_noaudit(current, CAP_SYS_RESOURCE)) 1131 p->signal->oom_score_adj_min = (short)oom_adj; 1132 } 1133 task_unlock(p); 1134 } 1135 rcu_read_unlock(); 1136 mmdrop(mm); 1137 } 1138 err_unlock: 1139 mutex_unlock(&oom_adj_mutex); 1140 put_task_struct(task); 1141 return err; 1142 } 1143 1144 /* 1145 * /proc/pid/oom_adj exists solely for backwards compatibility with previous 1146 * kernels. The effective policy is defined by oom_score_adj, which has a 1147 * different scale: oom_adj grew exponentially and oom_score_adj grows linearly. 1148 * Values written to oom_adj are simply mapped linearly to oom_score_adj. 1149 * Processes that become oom disabled via oom_adj will still be oom disabled 1150 * with this implementation. 1151 * 1152 * oom_adj cannot be removed since existing userspace binaries use it. 1153 */ 1154 static ssize_t oom_adj_write(struct file *file, const char __user *buf, 1155 size_t count, loff_t *ppos) 1156 { 1157 char buffer[PROC_NUMBUF] = {}; 1158 int oom_adj; 1159 int err; 1160 1161 if (count > sizeof(buffer) - 1) 1162 count = sizeof(buffer) - 1; 1163 if (copy_from_user(buffer, buf, count)) { 1164 err = -EFAULT; 1165 goto out; 1166 } 1167 1168 err = kstrtoint(strstrip(buffer), 0, &oom_adj); 1169 if (err) 1170 goto out; 1171 if ((oom_adj < OOM_ADJUST_MIN || oom_adj > OOM_ADJUST_MAX) && 1172 oom_adj != OOM_DISABLE) { 1173 err = -EINVAL; 1174 goto out; 1175 } 1176 1177 /* 1178 * Scale /proc/pid/oom_score_adj appropriately ensuring that a maximum 1179 * value is always attainable. 1180 */ 1181 if (oom_adj == OOM_ADJUST_MAX) 1182 oom_adj = OOM_SCORE_ADJ_MAX; 1183 else 1184 oom_adj = (oom_adj * OOM_SCORE_ADJ_MAX) / -OOM_DISABLE; 1185 1186 err = __set_oom_adj(file, oom_adj, true); 1187 out: 1188 return err < 0 ? err : count; 1189 } 1190 1191 static const struct file_operations proc_oom_adj_operations = { 1192 .read = oom_adj_read, 1193 .write = oom_adj_write, 1194 .llseek = generic_file_llseek, 1195 }; 1196 1197 static ssize_t oom_score_adj_read(struct file *file, char __user *buf, 1198 size_t count, loff_t *ppos) 1199 { 1200 struct task_struct *task = get_proc_task(file_inode(file)); 1201 char buffer[PROC_NUMBUF]; 1202 short oom_score_adj = OOM_SCORE_ADJ_MIN; 1203 size_t len; 1204 1205 if (!task) 1206 return -ESRCH; 1207 oom_score_adj = task->signal->oom_score_adj; 1208 put_task_struct(task); 1209 len = snprintf(buffer, sizeof(buffer), "%hd\n", oom_score_adj); 1210 return simple_read_from_buffer(buf, count, ppos, buffer, len); 1211 } 1212 1213 static ssize_t oom_score_adj_write(struct file *file, const char __user *buf, 1214 size_t count, loff_t *ppos) 1215 { 1216 char buffer[PROC_NUMBUF] = {}; 1217 int oom_score_adj; 1218 int err; 1219 1220 if (count > sizeof(buffer) - 1) 1221 count = sizeof(buffer) - 1; 1222 if (copy_from_user(buffer, buf, count)) { 1223 err = -EFAULT; 1224 goto out; 1225 } 1226 1227 err = kstrtoint(strstrip(buffer), 0, &oom_score_adj); 1228 if (err) 1229 goto out; 1230 if (oom_score_adj < OOM_SCORE_ADJ_MIN || 1231 oom_score_adj > OOM_SCORE_ADJ_MAX) { 1232 err = -EINVAL; 1233 goto out; 1234 } 1235 1236 err = __set_oom_adj(file, oom_score_adj, false); 1237 out: 1238 return err < 0 ? err : count; 1239 } 1240 1241 static const struct file_operations proc_oom_score_adj_operations = { 1242 .read = oom_score_adj_read, 1243 .write = oom_score_adj_write, 1244 .llseek = default_llseek, 1245 }; 1246 1247 #ifdef CONFIG_AUDIT 1248 #define TMPBUFLEN 11 1249 static ssize_t proc_loginuid_read(struct file * file, char __user * buf, 1250 size_t count, loff_t *ppos) 1251 { 1252 struct inode * inode = file_inode(file); 1253 struct task_struct *task = get_proc_task(inode); 1254 ssize_t length; 1255 char tmpbuf[TMPBUFLEN]; 1256 1257 if (!task) 1258 return -ESRCH; 1259 length = scnprintf(tmpbuf, TMPBUFLEN, "%u", 1260 from_kuid(file->f_cred->user_ns, 1261 audit_get_loginuid(task))); 1262 put_task_struct(task); 1263 return simple_read_from_buffer(buf, count, ppos, tmpbuf, length); 1264 } 1265 1266 static ssize_t proc_loginuid_write(struct file * file, const char __user * buf, 1267 size_t count, loff_t *ppos) 1268 { 1269 struct inode * inode = file_inode(file); 1270 uid_t loginuid; 1271 kuid_t kloginuid; 1272 int rv; 1273 1274 /* Don't let kthreads write their own loginuid */ 1275 if (current->flags & PF_KTHREAD) 1276 return -EPERM; 1277 1278 rcu_read_lock(); 1279 if (current != pid_task(proc_pid(inode), PIDTYPE_PID)) { 1280 rcu_read_unlock(); 1281 return -EPERM; 1282 } 1283 rcu_read_unlock(); 1284 1285 if (*ppos != 0) { 1286 /* No partial writes. */ 1287 return -EINVAL; 1288 } 1289 1290 rv = kstrtou32_from_user(buf, count, 10, &loginuid); 1291 if (rv < 0) 1292 return rv; 1293 1294 /* is userspace tring to explicitly UNSET the loginuid? */ 1295 if (loginuid == AUDIT_UID_UNSET) { 1296 kloginuid = INVALID_UID; 1297 } else { 1298 kloginuid = make_kuid(file->f_cred->user_ns, loginuid); 1299 if (!uid_valid(kloginuid)) 1300 return -EINVAL; 1301 } 1302 1303 rv = audit_set_loginuid(kloginuid); 1304 if (rv < 0) 1305 return rv; 1306 return count; 1307 } 1308 1309 static const struct file_operations proc_loginuid_operations = { 1310 .read = proc_loginuid_read, 1311 .write = proc_loginuid_write, 1312 .llseek = generic_file_llseek, 1313 }; 1314 1315 static ssize_t proc_sessionid_read(struct file * file, char __user * buf, 1316 size_t count, loff_t *ppos) 1317 { 1318 struct inode * inode = file_inode(file); 1319 struct task_struct *task = get_proc_task(inode); 1320 ssize_t length; 1321 char tmpbuf[TMPBUFLEN]; 1322 1323 if (!task) 1324 return -ESRCH; 1325 length = scnprintf(tmpbuf, TMPBUFLEN, "%u", 1326 audit_get_sessionid(task)); 1327 put_task_struct(task); 1328 return simple_read_from_buffer(buf, count, ppos, tmpbuf, length); 1329 } 1330 1331 static const struct file_operations proc_sessionid_operations = { 1332 .read = proc_sessionid_read, 1333 .llseek = generic_file_llseek, 1334 }; 1335 #endif 1336 1337 #ifdef CONFIG_FAULT_INJECTION 1338 static ssize_t proc_fault_inject_read(struct file * file, char __user * buf, 1339 size_t count, loff_t *ppos) 1340 { 1341 struct task_struct *task = get_proc_task(file_inode(file)); 1342 char buffer[PROC_NUMBUF]; 1343 size_t len; 1344 int make_it_fail; 1345 1346 if (!task) 1347 return -ESRCH; 1348 make_it_fail = task->make_it_fail; 1349 put_task_struct(task); 1350 1351 len = snprintf(buffer, sizeof(buffer), "%i\n", make_it_fail); 1352 1353 return simple_read_from_buffer(buf, count, ppos, buffer, len); 1354 } 1355 1356 static ssize_t proc_fault_inject_write(struct file * file, 1357 const char __user * buf, size_t count, loff_t *ppos) 1358 { 1359 struct task_struct *task; 1360 char buffer[PROC_NUMBUF] = {}; 1361 int make_it_fail; 1362 int rv; 1363 1364 if (!capable(CAP_SYS_RESOURCE)) 1365 return -EPERM; 1366 1367 if (count > sizeof(buffer) - 1) 1368 count = sizeof(buffer) - 1; 1369 if (copy_from_user(buffer, buf, count)) 1370 return -EFAULT; 1371 rv = kstrtoint(strstrip(buffer), 0, &make_it_fail); 1372 if (rv < 0) 1373 return rv; 1374 if (make_it_fail < 0 || make_it_fail > 1) 1375 return -EINVAL; 1376 1377 task = get_proc_task(file_inode(file)); 1378 if (!task) 1379 return -ESRCH; 1380 task->make_it_fail = make_it_fail; 1381 put_task_struct(task); 1382 1383 return count; 1384 } 1385 1386 static const struct file_operations proc_fault_inject_operations = { 1387 .read = proc_fault_inject_read, 1388 .write = proc_fault_inject_write, 1389 .llseek = generic_file_llseek, 1390 }; 1391 1392 static ssize_t proc_fail_nth_write(struct file *file, const char __user *buf, 1393 size_t count, loff_t *ppos) 1394 { 1395 struct task_struct *task; 1396 int err; 1397 unsigned int n; 1398 1399 err = kstrtouint_from_user(buf, count, 0, &n); 1400 if (err) 1401 return err; 1402 1403 task = get_proc_task(file_inode(file)); 1404 if (!task) 1405 return -ESRCH; 1406 task->fail_nth = n; 1407 put_task_struct(task); 1408 1409 return count; 1410 } 1411 1412 static ssize_t proc_fail_nth_read(struct file *file, char __user *buf, 1413 size_t count, loff_t *ppos) 1414 { 1415 struct task_struct *task; 1416 char numbuf[PROC_NUMBUF]; 1417 ssize_t len; 1418 1419 task = get_proc_task(file_inode(file)); 1420 if (!task) 1421 return -ESRCH; 1422 len = snprintf(numbuf, sizeof(numbuf), "%u\n", task->fail_nth); 1423 put_task_struct(task); 1424 return simple_read_from_buffer(buf, count, ppos, numbuf, len); 1425 } 1426 1427 static const struct file_operations proc_fail_nth_operations = { 1428 .read = proc_fail_nth_read, 1429 .write = proc_fail_nth_write, 1430 }; 1431 #endif 1432 1433 1434 #ifdef CONFIG_SCHED_DEBUG 1435 /* 1436 * Print out various scheduling related per-task fields: 1437 */ 1438 static int sched_show(struct seq_file *m, void *v) 1439 { 1440 struct inode *inode = m->private; 1441 struct pid_namespace *ns = proc_pid_ns(inode->i_sb); 1442 struct task_struct *p; 1443 1444 p = get_proc_task(inode); 1445 if (!p) 1446 return -ESRCH; 1447 proc_sched_show_task(p, ns, m); 1448 1449 put_task_struct(p); 1450 1451 return 0; 1452 } 1453 1454 static ssize_t 1455 sched_write(struct file *file, const char __user *buf, 1456 size_t count, loff_t *offset) 1457 { 1458 struct inode *inode = file_inode(file); 1459 struct task_struct *p; 1460 1461 p = get_proc_task(inode); 1462 if (!p) 1463 return -ESRCH; 1464 proc_sched_set_task(p); 1465 1466 put_task_struct(p); 1467 1468 return count; 1469 } 1470 1471 static int sched_open(struct inode *inode, struct file *filp) 1472 { 1473 return single_open(filp, sched_show, inode); 1474 } 1475 1476 static const struct file_operations proc_pid_sched_operations = { 1477 .open = sched_open, 1478 .read = seq_read, 1479 .write = sched_write, 1480 .llseek = seq_lseek, 1481 .release = single_release, 1482 }; 1483 1484 #endif 1485 1486 #ifdef CONFIG_SCHED_AUTOGROUP 1487 /* 1488 * Print out autogroup related information: 1489 */ 1490 static int sched_autogroup_show(struct seq_file *m, void *v) 1491 { 1492 struct inode *inode = m->private; 1493 struct task_struct *p; 1494 1495 p = get_proc_task(inode); 1496 if (!p) 1497 return -ESRCH; 1498 proc_sched_autogroup_show_task(p, m); 1499 1500 put_task_struct(p); 1501 1502 return 0; 1503 } 1504 1505 static ssize_t 1506 sched_autogroup_write(struct file *file, const char __user *buf, 1507 size_t count, loff_t *offset) 1508 { 1509 struct inode *inode = file_inode(file); 1510 struct task_struct *p; 1511 char buffer[PROC_NUMBUF] = {}; 1512 int nice; 1513 int err; 1514 1515 if (count > sizeof(buffer) - 1) 1516 count = sizeof(buffer) - 1; 1517 if (copy_from_user(buffer, buf, count)) 1518 return -EFAULT; 1519 1520 err = kstrtoint(strstrip(buffer), 0, &nice); 1521 if (err < 0) 1522 return err; 1523 1524 p = get_proc_task(inode); 1525 if (!p) 1526 return -ESRCH; 1527 1528 err = proc_sched_autogroup_set_nice(p, nice); 1529 if (err) 1530 count = err; 1531 1532 put_task_struct(p); 1533 1534 return count; 1535 } 1536 1537 static int sched_autogroup_open(struct inode *inode, struct file *filp) 1538 { 1539 int ret; 1540 1541 ret = single_open(filp, sched_autogroup_show, NULL); 1542 if (!ret) { 1543 struct seq_file *m = filp->private_data; 1544 1545 m->private = inode; 1546 } 1547 return ret; 1548 } 1549 1550 static const struct file_operations proc_pid_sched_autogroup_operations = { 1551 .open = sched_autogroup_open, 1552 .read = seq_read, 1553 .write = sched_autogroup_write, 1554 .llseek = seq_lseek, 1555 .release = single_release, 1556 }; 1557 1558 #endif /* CONFIG_SCHED_AUTOGROUP */ 1559 1560 #ifdef CONFIG_TIME_NS 1561 static int timens_offsets_show(struct seq_file *m, void *v) 1562 { 1563 struct task_struct *p; 1564 1565 p = get_proc_task(file_inode(m->file)); 1566 if (!p) 1567 return -ESRCH; 1568 proc_timens_show_offsets(p, m); 1569 1570 put_task_struct(p); 1571 1572 return 0; 1573 } 1574 1575 static ssize_t timens_offsets_write(struct file *file, const char __user *buf, 1576 size_t count, loff_t *ppos) 1577 { 1578 struct inode *inode = file_inode(file); 1579 struct proc_timens_offset offsets[2]; 1580 char *kbuf = NULL, *pos, *next_line; 1581 struct task_struct *p; 1582 int ret, noffsets; 1583 1584 /* Only allow < page size writes at the beginning of the file */ 1585 if ((*ppos != 0) || (count >= PAGE_SIZE)) 1586 return -EINVAL; 1587 1588 /* Slurp in the user data */ 1589 kbuf = memdup_user_nul(buf, count); 1590 if (IS_ERR(kbuf)) 1591 return PTR_ERR(kbuf); 1592 1593 /* Parse the user data */ 1594 ret = -EINVAL; 1595 noffsets = 0; 1596 for (pos = kbuf; pos; pos = next_line) { 1597 struct proc_timens_offset *off = &offsets[noffsets]; 1598 char clock[10]; 1599 int err; 1600 1601 /* Find the end of line and ensure we don't look past it */ 1602 next_line = strchr(pos, '\n'); 1603 if (next_line) { 1604 *next_line = '\0'; 1605 next_line++; 1606 if (*next_line == '\0') 1607 next_line = NULL; 1608 } 1609 1610 err = sscanf(pos, "%9s %lld %lu", clock, 1611 &off->val.tv_sec, &off->val.tv_nsec); 1612 if (err != 3 || off->val.tv_nsec >= NSEC_PER_SEC) 1613 goto out; 1614 1615 clock[sizeof(clock) - 1] = 0; 1616 if (strcmp(clock, "monotonic") == 0 || 1617 strcmp(clock, __stringify(CLOCK_MONOTONIC)) == 0) 1618 off->clockid = CLOCK_MONOTONIC; 1619 else if (strcmp(clock, "boottime") == 0 || 1620 strcmp(clock, __stringify(CLOCK_BOOTTIME)) == 0) 1621 off->clockid = CLOCK_BOOTTIME; 1622 else 1623 goto out; 1624 1625 noffsets++; 1626 if (noffsets == ARRAY_SIZE(offsets)) { 1627 if (next_line) 1628 count = next_line - kbuf; 1629 break; 1630 } 1631 } 1632 1633 ret = -ESRCH; 1634 p = get_proc_task(inode); 1635 if (!p) 1636 goto out; 1637 ret = proc_timens_set_offset(file, p, offsets, noffsets); 1638 put_task_struct(p); 1639 if (ret) 1640 goto out; 1641 1642 ret = count; 1643 out: 1644 kfree(kbuf); 1645 return ret; 1646 } 1647 1648 static int timens_offsets_open(struct inode *inode, struct file *filp) 1649 { 1650 return single_open(filp, timens_offsets_show, inode); 1651 } 1652 1653 static const struct file_operations proc_timens_offsets_operations = { 1654 .open = timens_offsets_open, 1655 .read = seq_read, 1656 .write = timens_offsets_write, 1657 .llseek = seq_lseek, 1658 .release = single_release, 1659 }; 1660 #endif /* CONFIG_TIME_NS */ 1661 1662 static ssize_t comm_write(struct file *file, const char __user *buf, 1663 size_t count, loff_t *offset) 1664 { 1665 struct inode *inode = file_inode(file); 1666 struct task_struct *p; 1667 char buffer[TASK_COMM_LEN] = {}; 1668 const size_t maxlen = sizeof(buffer) - 1; 1669 1670 if (copy_from_user(buffer, buf, count > maxlen ? maxlen : count)) 1671 return -EFAULT; 1672 1673 p = get_proc_task(inode); 1674 if (!p) 1675 return -ESRCH; 1676 1677 if (same_thread_group(current, p)) { 1678 set_task_comm(p, buffer); 1679 proc_comm_connector(p); 1680 } 1681 else 1682 count = -EINVAL; 1683 1684 put_task_struct(p); 1685 1686 return count; 1687 } 1688 1689 static int comm_show(struct seq_file *m, void *v) 1690 { 1691 struct inode *inode = m->private; 1692 struct task_struct *p; 1693 1694 p = get_proc_task(inode); 1695 if (!p) 1696 return -ESRCH; 1697 1698 proc_task_name(m, p, false); 1699 seq_putc(m, '\n'); 1700 1701 put_task_struct(p); 1702 1703 return 0; 1704 } 1705 1706 static int comm_open(struct inode *inode, struct file *filp) 1707 { 1708 return single_open(filp, comm_show, inode); 1709 } 1710 1711 static const struct file_operations proc_pid_set_comm_operations = { 1712 .open = comm_open, 1713 .read = seq_read, 1714 .write = comm_write, 1715 .llseek = seq_lseek, 1716 .release = single_release, 1717 }; 1718 1719 static int proc_exe_link(struct dentry *dentry, struct path *exe_path) 1720 { 1721 struct task_struct *task; 1722 struct file *exe_file; 1723 1724 task = get_proc_task(d_inode(dentry)); 1725 if (!task) 1726 return -ENOENT; 1727 exe_file = get_task_exe_file(task); 1728 put_task_struct(task); 1729 if (exe_file) { 1730 *exe_path = exe_file->f_path; 1731 path_get(&exe_file->f_path); 1732 fput(exe_file); 1733 return 0; 1734 } else 1735 return -ENOENT; 1736 } 1737 1738 static const char *proc_pid_get_link(struct dentry *dentry, 1739 struct inode *inode, 1740 struct delayed_call *done) 1741 { 1742 struct path path; 1743 int error = -EACCES; 1744 1745 if (!dentry) 1746 return ERR_PTR(-ECHILD); 1747 1748 /* Are we allowed to snoop on the tasks file descriptors? */ 1749 if (!proc_fd_access_allowed(inode)) 1750 goto out; 1751 1752 error = PROC_I(inode)->op.proc_get_link(dentry, &path); 1753 if (error) 1754 goto out; 1755 1756 error = nd_jump_link(&path); 1757 out: 1758 return ERR_PTR(error); 1759 } 1760 1761 static int do_proc_readlink(const struct path *path, char __user *buffer, int buflen) 1762 { 1763 char *tmp = kmalloc(PATH_MAX, GFP_KERNEL); 1764 char *pathname; 1765 int len; 1766 1767 if (!tmp) 1768 return -ENOMEM; 1769 1770 pathname = d_path(path, tmp, PATH_MAX); 1771 len = PTR_ERR(pathname); 1772 if (IS_ERR(pathname)) 1773 goto out; 1774 len = tmp + PATH_MAX - 1 - pathname; 1775 1776 if (len > buflen) 1777 len = buflen; 1778 if (copy_to_user(buffer, pathname, len)) 1779 len = -EFAULT; 1780 out: 1781 kfree(tmp); 1782 return len; 1783 } 1784 1785 static int proc_pid_readlink(struct dentry * dentry, char __user * buffer, int buflen) 1786 { 1787 int error = -EACCES; 1788 struct inode *inode = d_inode(dentry); 1789 struct path path; 1790 1791 /* Are we allowed to snoop on the tasks file descriptors? */ 1792 if (!proc_fd_access_allowed(inode)) 1793 goto out; 1794 1795 error = PROC_I(inode)->op.proc_get_link(dentry, &path); 1796 if (error) 1797 goto out; 1798 1799 error = do_proc_readlink(&path, buffer, buflen); 1800 path_put(&path); 1801 out: 1802 return error; 1803 } 1804 1805 const struct inode_operations proc_pid_link_inode_operations = { 1806 .readlink = proc_pid_readlink, 1807 .get_link = proc_pid_get_link, 1808 .setattr = proc_setattr, 1809 }; 1810 1811 1812 /* building an inode */ 1813 1814 void task_dump_owner(struct task_struct *task, umode_t mode, 1815 kuid_t *ruid, kgid_t *rgid) 1816 { 1817 /* Depending on the state of dumpable compute who should own a 1818 * proc file for a task. 1819 */ 1820 const struct cred *cred; 1821 kuid_t uid; 1822 kgid_t gid; 1823 1824 if (unlikely(task->flags & PF_KTHREAD)) { 1825 *ruid = GLOBAL_ROOT_UID; 1826 *rgid = GLOBAL_ROOT_GID; 1827 return; 1828 } 1829 1830 /* Default to the tasks effective ownership */ 1831 rcu_read_lock(); 1832 cred = __task_cred(task); 1833 uid = cred->euid; 1834 gid = cred->egid; 1835 rcu_read_unlock(); 1836 1837 /* 1838 * Before the /proc/pid/status file was created the only way to read 1839 * the effective uid of a /process was to stat /proc/pid. Reading 1840 * /proc/pid/status is slow enough that procps and other packages 1841 * kept stating /proc/pid. To keep the rules in /proc simple I have 1842 * made this apply to all per process world readable and executable 1843 * directories. 1844 */ 1845 if (mode != (S_IFDIR|S_IRUGO|S_IXUGO)) { 1846 struct mm_struct *mm; 1847 task_lock(task); 1848 mm = task->mm; 1849 /* Make non-dumpable tasks owned by some root */ 1850 if (mm) { 1851 if (get_dumpable(mm) != SUID_DUMP_USER) { 1852 struct user_namespace *user_ns = mm->user_ns; 1853 1854 uid = make_kuid(user_ns, 0); 1855 if (!uid_valid(uid)) 1856 uid = GLOBAL_ROOT_UID; 1857 1858 gid = make_kgid(user_ns, 0); 1859 if (!gid_valid(gid)) 1860 gid = GLOBAL_ROOT_GID; 1861 } 1862 } else { 1863 uid = GLOBAL_ROOT_UID; 1864 gid = GLOBAL_ROOT_GID; 1865 } 1866 task_unlock(task); 1867 } 1868 *ruid = uid; 1869 *rgid = gid; 1870 } 1871 1872 void proc_pid_evict_inode(struct proc_inode *ei) 1873 { 1874 struct pid *pid = ei->pid; 1875 1876 if (S_ISDIR(ei->vfs_inode.i_mode)) { 1877 spin_lock(&pid->lock); 1878 hlist_del_init_rcu(&ei->sibling_inodes); 1879 spin_unlock(&pid->lock); 1880 } 1881 1882 put_pid(pid); 1883 } 1884 1885 struct inode *proc_pid_make_inode(struct super_block *sb, 1886 struct task_struct *task, umode_t mode) 1887 { 1888 struct inode * inode; 1889 struct proc_inode *ei; 1890 struct pid *pid; 1891 1892 /* We need a new inode */ 1893 1894 inode = new_inode(sb); 1895 if (!inode) 1896 goto out; 1897 1898 /* Common stuff */ 1899 ei = PROC_I(inode); 1900 inode->i_mode = mode; 1901 inode->i_ino = get_next_ino(); 1902 simple_inode_init_ts(inode); 1903 inode->i_op = &proc_def_inode_operations; 1904 1905 /* 1906 * grab the reference to task. 1907 */ 1908 pid = get_task_pid(task, PIDTYPE_PID); 1909 if (!pid) 1910 goto out_unlock; 1911 1912 /* Let the pid remember us for quick removal */ 1913 ei->pid = pid; 1914 1915 task_dump_owner(task, 0, &inode->i_uid, &inode->i_gid); 1916 security_task_to_inode(task, inode); 1917 1918 out: 1919 return inode; 1920 1921 out_unlock: 1922 iput(inode); 1923 return NULL; 1924 } 1925 1926 /* 1927 * Generating an inode and adding it into @pid->inodes, so that task will 1928 * invalidate inode's dentry before being released. 1929 * 1930 * This helper is used for creating dir-type entries under '/proc' and 1931 * '/proc/<tgid>/task'. Other entries(eg. fd, stat) under '/proc/<tgid>' 1932 * can be released by invalidating '/proc/<tgid>' dentry. 1933 * In theory, dentries under '/proc/<tgid>/task' can also be released by 1934 * invalidating '/proc/<tgid>' dentry, we reserve it to handle single 1935 * thread exiting situation: Any one of threads should invalidate its 1936 * '/proc/<tgid>/task/<pid>' dentry before released. 1937 */ 1938 static struct inode *proc_pid_make_base_inode(struct super_block *sb, 1939 struct task_struct *task, umode_t mode) 1940 { 1941 struct inode *inode; 1942 struct proc_inode *ei; 1943 struct pid *pid; 1944 1945 inode = proc_pid_make_inode(sb, task, mode); 1946 if (!inode) 1947 return NULL; 1948 1949 /* Let proc_flush_pid find this directory inode */ 1950 ei = PROC_I(inode); 1951 pid = ei->pid; 1952 spin_lock(&pid->lock); 1953 hlist_add_head_rcu(&ei->sibling_inodes, &pid->inodes); 1954 spin_unlock(&pid->lock); 1955 1956 return inode; 1957 } 1958 1959 int pid_getattr(struct mnt_idmap *idmap, const struct path *path, 1960 struct kstat *stat, u32 request_mask, unsigned int query_flags) 1961 { 1962 struct inode *inode = d_inode(path->dentry); 1963 struct proc_fs_info *fs_info = proc_sb_info(inode->i_sb); 1964 struct task_struct *task; 1965 1966 generic_fillattr(&nop_mnt_idmap, request_mask, inode, stat); 1967 1968 stat->uid = GLOBAL_ROOT_UID; 1969 stat->gid = GLOBAL_ROOT_GID; 1970 rcu_read_lock(); 1971 task = pid_task(proc_pid(inode), PIDTYPE_PID); 1972 if (task) { 1973 if (!has_pid_permissions(fs_info, task, HIDEPID_INVISIBLE)) { 1974 rcu_read_unlock(); 1975 /* 1976 * This doesn't prevent learning whether PID exists, 1977 * it only makes getattr() consistent with readdir(). 1978 */ 1979 return -ENOENT; 1980 } 1981 task_dump_owner(task, inode->i_mode, &stat->uid, &stat->gid); 1982 } 1983 rcu_read_unlock(); 1984 return 0; 1985 } 1986 1987 /* dentry stuff */ 1988 1989 /* 1990 * Set <pid>/... inode ownership (can change due to setuid(), etc.) 1991 */ 1992 void pid_update_inode(struct task_struct *task, struct inode *inode) 1993 { 1994 task_dump_owner(task, inode->i_mode, &inode->i_uid, &inode->i_gid); 1995 1996 inode->i_mode &= ~(S_ISUID | S_ISGID); 1997 security_task_to_inode(task, inode); 1998 } 1999 2000 /* 2001 * Rewrite the inode's ownerships here because the owning task may have 2002 * performed a setuid(), etc. 2003 * 2004 */ 2005 static int pid_revalidate(struct dentry *dentry, unsigned int flags) 2006 { 2007 struct inode *inode; 2008 struct task_struct *task; 2009 int ret = 0; 2010 2011 rcu_read_lock(); 2012 inode = d_inode_rcu(dentry); 2013 if (!inode) 2014 goto out; 2015 task = pid_task(proc_pid(inode), PIDTYPE_PID); 2016 2017 if (task) { 2018 pid_update_inode(task, inode); 2019 ret = 1; 2020 } 2021 out: 2022 rcu_read_unlock(); 2023 return ret; 2024 } 2025 2026 static inline bool proc_inode_is_dead(struct inode *inode) 2027 { 2028 return !proc_pid(inode)->tasks[PIDTYPE_PID].first; 2029 } 2030 2031 int pid_delete_dentry(const struct dentry *dentry) 2032 { 2033 /* Is the task we represent dead? 2034 * If so, then don't put the dentry on the lru list, 2035 * kill it immediately. 2036 */ 2037 return proc_inode_is_dead(d_inode(dentry)); 2038 } 2039 2040 const struct dentry_operations pid_dentry_operations = 2041 { 2042 .d_revalidate = pid_revalidate, 2043 .d_delete = pid_delete_dentry, 2044 }; 2045 2046 /* Lookups */ 2047 2048 /* 2049 * Fill a directory entry. 2050 * 2051 * If possible create the dcache entry and derive our inode number and 2052 * file type from dcache entry. 2053 * 2054 * Since all of the proc inode numbers are dynamically generated, the inode 2055 * numbers do not exist until the inode is cache. This means creating 2056 * the dcache entry in readdir is necessary to keep the inode numbers 2057 * reported by readdir in sync with the inode numbers reported 2058 * by stat. 2059 */ 2060 bool proc_fill_cache(struct file *file, struct dir_context *ctx, 2061 const char *name, unsigned int len, 2062 instantiate_t instantiate, struct task_struct *task, const void *ptr) 2063 { 2064 struct dentry *child, *dir = file->f_path.dentry; 2065 struct qstr qname = QSTR_INIT(name, len); 2066 struct inode *inode; 2067 unsigned type = DT_UNKNOWN; 2068 ino_t ino = 1; 2069 2070 child = d_hash_and_lookup(dir, &qname); 2071 if (!child) { 2072 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq); 2073 child = d_alloc_parallel(dir, &qname, &wq); 2074 if (IS_ERR(child)) 2075 goto end_instantiate; 2076 if (d_in_lookup(child)) { 2077 struct dentry *res; 2078 res = instantiate(child, task, ptr); 2079 d_lookup_done(child); 2080 if (unlikely(res)) { 2081 dput(child); 2082 child = res; 2083 if (IS_ERR(child)) 2084 goto end_instantiate; 2085 } 2086 } 2087 } 2088 inode = d_inode(child); 2089 ino = inode->i_ino; 2090 type = inode->i_mode >> 12; 2091 dput(child); 2092 end_instantiate: 2093 return dir_emit(ctx, name, len, ino, type); 2094 } 2095 2096 /* 2097 * dname_to_vma_addr - maps a dentry name into two unsigned longs 2098 * which represent vma start and end addresses. 2099 */ 2100 static int dname_to_vma_addr(struct dentry *dentry, 2101 unsigned long *start, unsigned long *end) 2102 { 2103 const char *str = dentry->d_name.name; 2104 unsigned long long sval, eval; 2105 unsigned int len; 2106 2107 if (str[0] == '0' && str[1] != '-') 2108 return -EINVAL; 2109 len = _parse_integer(str, 16, &sval); 2110 if (len & KSTRTOX_OVERFLOW) 2111 return -EINVAL; 2112 if (sval != (unsigned long)sval) 2113 return -EINVAL; 2114 str += len; 2115 2116 if (*str != '-') 2117 return -EINVAL; 2118 str++; 2119 2120 if (str[0] == '0' && str[1]) 2121 return -EINVAL; 2122 len = _parse_integer(str, 16, &eval); 2123 if (len & KSTRTOX_OVERFLOW) 2124 return -EINVAL; 2125 if (eval != (unsigned long)eval) 2126 return -EINVAL; 2127 str += len; 2128 2129 if (*str != '\0') 2130 return -EINVAL; 2131 2132 *start = sval; 2133 *end = eval; 2134 2135 return 0; 2136 } 2137 2138 static int map_files_d_revalidate(struct dentry *dentry, unsigned int flags) 2139 { 2140 unsigned long vm_start, vm_end; 2141 bool exact_vma_exists = false; 2142 struct mm_struct *mm = NULL; 2143 struct task_struct *task; 2144 struct inode *inode; 2145 int status = 0; 2146 2147 if (flags & LOOKUP_RCU) 2148 return -ECHILD; 2149 2150 inode = d_inode(dentry); 2151 task = get_proc_task(inode); 2152 if (!task) 2153 goto out_notask; 2154 2155 mm = mm_access(task, PTRACE_MODE_READ_FSCREDS); 2156 if (IS_ERR_OR_NULL(mm)) 2157 goto out; 2158 2159 if (!dname_to_vma_addr(dentry, &vm_start, &vm_end)) { 2160 status = mmap_read_lock_killable(mm); 2161 if (!status) { 2162 exact_vma_exists = !!find_exact_vma(mm, vm_start, 2163 vm_end); 2164 mmap_read_unlock(mm); 2165 } 2166 } 2167 2168 mmput(mm); 2169 2170 if (exact_vma_exists) { 2171 task_dump_owner(task, 0, &inode->i_uid, &inode->i_gid); 2172 2173 security_task_to_inode(task, inode); 2174 status = 1; 2175 } 2176 2177 out: 2178 put_task_struct(task); 2179 2180 out_notask: 2181 return status; 2182 } 2183 2184 static const struct dentry_operations tid_map_files_dentry_operations = { 2185 .d_revalidate = map_files_d_revalidate, 2186 .d_delete = pid_delete_dentry, 2187 }; 2188 2189 static int map_files_get_link(struct dentry *dentry, struct path *path) 2190 { 2191 unsigned long vm_start, vm_end; 2192 struct vm_area_struct *vma; 2193 struct task_struct *task; 2194 struct mm_struct *mm; 2195 int rc; 2196 2197 rc = -ENOENT; 2198 task = get_proc_task(d_inode(dentry)); 2199 if (!task) 2200 goto out; 2201 2202 mm = get_task_mm(task); 2203 put_task_struct(task); 2204 if (!mm) 2205 goto out; 2206 2207 rc = dname_to_vma_addr(dentry, &vm_start, &vm_end); 2208 if (rc) 2209 goto out_mmput; 2210 2211 rc = mmap_read_lock_killable(mm); 2212 if (rc) 2213 goto out_mmput; 2214 2215 rc = -ENOENT; 2216 vma = find_exact_vma(mm, vm_start, vm_end); 2217 if (vma && vma->vm_file) { 2218 *path = *file_user_path(vma->vm_file); 2219 path_get(path); 2220 rc = 0; 2221 } 2222 mmap_read_unlock(mm); 2223 2224 out_mmput: 2225 mmput(mm); 2226 out: 2227 return rc; 2228 } 2229 2230 struct map_files_info { 2231 unsigned long start; 2232 unsigned long end; 2233 fmode_t mode; 2234 }; 2235 2236 /* 2237 * Only allow CAP_SYS_ADMIN and CAP_CHECKPOINT_RESTORE to follow the links, due 2238 * to concerns about how the symlinks may be used to bypass permissions on 2239 * ancestor directories in the path to the file in question. 2240 */ 2241 static const char * 2242 proc_map_files_get_link(struct dentry *dentry, 2243 struct inode *inode, 2244 struct delayed_call *done) 2245 { 2246 if (!checkpoint_restore_ns_capable(&init_user_ns)) 2247 return ERR_PTR(-EPERM); 2248 2249 return proc_pid_get_link(dentry, inode, done); 2250 } 2251 2252 /* 2253 * Identical to proc_pid_link_inode_operations except for get_link() 2254 */ 2255 static const struct inode_operations proc_map_files_link_inode_operations = { 2256 .readlink = proc_pid_readlink, 2257 .get_link = proc_map_files_get_link, 2258 .setattr = proc_setattr, 2259 }; 2260 2261 static struct dentry * 2262 proc_map_files_instantiate(struct dentry *dentry, 2263 struct task_struct *task, const void *ptr) 2264 { 2265 fmode_t mode = (fmode_t)(unsigned long)ptr; 2266 struct proc_inode *ei; 2267 struct inode *inode; 2268 2269 inode = proc_pid_make_inode(dentry->d_sb, task, S_IFLNK | 2270 ((mode & FMODE_READ ) ? S_IRUSR : 0) | 2271 ((mode & FMODE_WRITE) ? S_IWUSR : 0)); 2272 if (!inode) 2273 return ERR_PTR(-ENOENT); 2274 2275 ei = PROC_I(inode); 2276 ei->op.proc_get_link = map_files_get_link; 2277 2278 inode->i_op = &proc_map_files_link_inode_operations; 2279 inode->i_size = 64; 2280 2281 d_set_d_op(dentry, &tid_map_files_dentry_operations); 2282 return d_splice_alias(inode, dentry); 2283 } 2284 2285 static struct dentry *proc_map_files_lookup(struct inode *dir, 2286 struct dentry *dentry, unsigned int flags) 2287 { 2288 unsigned long vm_start, vm_end; 2289 struct vm_area_struct *vma; 2290 struct task_struct *task; 2291 struct dentry *result; 2292 struct mm_struct *mm; 2293 2294 result = ERR_PTR(-ENOENT); 2295 task = get_proc_task(dir); 2296 if (!task) 2297 goto out; 2298 2299 result = ERR_PTR(-EACCES); 2300 if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS)) 2301 goto out_put_task; 2302 2303 result = ERR_PTR(-ENOENT); 2304 if (dname_to_vma_addr(dentry, &vm_start, &vm_end)) 2305 goto out_put_task; 2306 2307 mm = get_task_mm(task); 2308 if (!mm) 2309 goto out_put_task; 2310 2311 result = ERR_PTR(-EINTR); 2312 if (mmap_read_lock_killable(mm)) 2313 goto out_put_mm; 2314 2315 result = ERR_PTR(-ENOENT); 2316 vma = find_exact_vma(mm, vm_start, vm_end); 2317 if (!vma) 2318 goto out_no_vma; 2319 2320 if (vma->vm_file) 2321 result = proc_map_files_instantiate(dentry, task, 2322 (void *)(unsigned long)vma->vm_file->f_mode); 2323 2324 out_no_vma: 2325 mmap_read_unlock(mm); 2326 out_put_mm: 2327 mmput(mm); 2328 out_put_task: 2329 put_task_struct(task); 2330 out: 2331 return result; 2332 } 2333 2334 static const struct inode_operations proc_map_files_inode_operations = { 2335 .lookup = proc_map_files_lookup, 2336 .permission = proc_fd_permission, 2337 .setattr = proc_setattr, 2338 }; 2339 2340 static int 2341 proc_map_files_readdir(struct file *file, struct dir_context *ctx) 2342 { 2343 struct vm_area_struct *vma; 2344 struct task_struct *task; 2345 struct mm_struct *mm; 2346 unsigned long nr_files, pos, i; 2347 GENRADIX(struct map_files_info) fa; 2348 struct map_files_info *p; 2349 int ret; 2350 struct vma_iterator vmi; 2351 2352 genradix_init(&fa); 2353 2354 ret = -ENOENT; 2355 task = get_proc_task(file_inode(file)); 2356 if (!task) 2357 goto out; 2358 2359 ret = -EACCES; 2360 if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS)) 2361 goto out_put_task; 2362 2363 ret = 0; 2364 if (!dir_emit_dots(file, ctx)) 2365 goto out_put_task; 2366 2367 mm = get_task_mm(task); 2368 if (!mm) 2369 goto out_put_task; 2370 2371 ret = mmap_read_lock_killable(mm); 2372 if (ret) { 2373 mmput(mm); 2374 goto out_put_task; 2375 } 2376 2377 nr_files = 0; 2378 2379 /* 2380 * We need two passes here: 2381 * 2382 * 1) Collect vmas of mapped files with mmap_lock taken 2383 * 2) Release mmap_lock and instantiate entries 2384 * 2385 * otherwise we get lockdep complained, since filldir() 2386 * routine might require mmap_lock taken in might_fault(). 2387 */ 2388 2389 pos = 2; 2390 vma_iter_init(&vmi, mm, 0); 2391 for_each_vma(vmi, vma) { 2392 if (!vma->vm_file) 2393 continue; 2394 if (++pos <= ctx->pos) 2395 continue; 2396 2397 p = genradix_ptr_alloc(&fa, nr_files++, GFP_KERNEL); 2398 if (!p) { 2399 ret = -ENOMEM; 2400 mmap_read_unlock(mm); 2401 mmput(mm); 2402 goto out_put_task; 2403 } 2404 2405 p->start = vma->vm_start; 2406 p->end = vma->vm_end; 2407 p->mode = vma->vm_file->f_mode; 2408 } 2409 mmap_read_unlock(mm); 2410 mmput(mm); 2411 2412 for (i = 0; i < nr_files; i++) { 2413 char buf[4 * sizeof(long) + 2]; /* max: %lx-%lx\0 */ 2414 unsigned int len; 2415 2416 p = genradix_ptr(&fa, i); 2417 len = snprintf(buf, sizeof(buf), "%lx-%lx", p->start, p->end); 2418 if (!proc_fill_cache(file, ctx, 2419 buf, len, 2420 proc_map_files_instantiate, 2421 task, 2422 (void *)(unsigned long)p->mode)) 2423 break; 2424 ctx->pos++; 2425 } 2426 2427 out_put_task: 2428 put_task_struct(task); 2429 out: 2430 genradix_free(&fa); 2431 return ret; 2432 } 2433 2434 static const struct file_operations proc_map_files_operations = { 2435 .read = generic_read_dir, 2436 .iterate_shared = proc_map_files_readdir, 2437 .llseek = generic_file_llseek, 2438 }; 2439 2440 #if defined(CONFIG_CHECKPOINT_RESTORE) && defined(CONFIG_POSIX_TIMERS) 2441 struct timers_private { 2442 struct pid *pid; 2443 struct task_struct *task; 2444 struct sighand_struct *sighand; 2445 struct pid_namespace *ns; 2446 unsigned long flags; 2447 }; 2448 2449 static void *timers_start(struct seq_file *m, loff_t *pos) 2450 { 2451 struct timers_private *tp = m->private; 2452 2453 tp->task = get_pid_task(tp->pid, PIDTYPE_PID); 2454 if (!tp->task) 2455 return ERR_PTR(-ESRCH); 2456 2457 tp->sighand = lock_task_sighand(tp->task, &tp->flags); 2458 if (!tp->sighand) 2459 return ERR_PTR(-ESRCH); 2460 2461 return seq_list_start(&tp->task->signal->posix_timers, *pos); 2462 } 2463 2464 static void *timers_next(struct seq_file *m, void *v, loff_t *pos) 2465 { 2466 struct timers_private *tp = m->private; 2467 return seq_list_next(v, &tp->task->signal->posix_timers, pos); 2468 } 2469 2470 static void timers_stop(struct seq_file *m, void *v) 2471 { 2472 struct timers_private *tp = m->private; 2473 2474 if (tp->sighand) { 2475 unlock_task_sighand(tp->task, &tp->flags); 2476 tp->sighand = NULL; 2477 } 2478 2479 if (tp->task) { 2480 put_task_struct(tp->task); 2481 tp->task = NULL; 2482 } 2483 } 2484 2485 static int show_timer(struct seq_file *m, void *v) 2486 { 2487 struct k_itimer *timer; 2488 struct timers_private *tp = m->private; 2489 int notify; 2490 static const char * const nstr[] = { 2491 [SIGEV_SIGNAL] = "signal", 2492 [SIGEV_NONE] = "none", 2493 [SIGEV_THREAD] = "thread", 2494 }; 2495 2496 timer = list_entry((struct list_head *)v, struct k_itimer, list); 2497 notify = timer->it_sigev_notify; 2498 2499 seq_printf(m, "ID: %d\n", timer->it_id); 2500 seq_printf(m, "signal: %d/%px\n", 2501 timer->sigq->info.si_signo, 2502 timer->sigq->info.si_value.sival_ptr); 2503 seq_printf(m, "notify: %s/%s.%d\n", 2504 nstr[notify & ~SIGEV_THREAD_ID], 2505 (notify & SIGEV_THREAD_ID) ? "tid" : "pid", 2506 pid_nr_ns(timer->it_pid, tp->ns)); 2507 seq_printf(m, "ClockID: %d\n", timer->it_clock); 2508 2509 return 0; 2510 } 2511 2512 static const struct seq_operations proc_timers_seq_ops = { 2513 .start = timers_start, 2514 .next = timers_next, 2515 .stop = timers_stop, 2516 .show = show_timer, 2517 }; 2518 2519 static int proc_timers_open(struct inode *inode, struct file *file) 2520 { 2521 struct timers_private *tp; 2522 2523 tp = __seq_open_private(file, &proc_timers_seq_ops, 2524 sizeof(struct timers_private)); 2525 if (!tp) 2526 return -ENOMEM; 2527 2528 tp->pid = proc_pid(inode); 2529 tp->ns = proc_pid_ns(inode->i_sb); 2530 return 0; 2531 } 2532 2533 static const struct file_operations proc_timers_operations = { 2534 .open = proc_timers_open, 2535 .read = seq_read, 2536 .llseek = seq_lseek, 2537 .release = seq_release_private, 2538 }; 2539 #endif 2540 2541 static ssize_t timerslack_ns_write(struct file *file, const char __user *buf, 2542 size_t count, loff_t *offset) 2543 { 2544 struct inode *inode = file_inode(file); 2545 struct task_struct *p; 2546 u64 slack_ns; 2547 int err; 2548 2549 err = kstrtoull_from_user(buf, count, 10, &slack_ns); 2550 if (err < 0) 2551 return err; 2552 2553 p = get_proc_task(inode); 2554 if (!p) 2555 return -ESRCH; 2556 2557 if (p != current) { 2558 rcu_read_lock(); 2559 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) { 2560 rcu_read_unlock(); 2561 count = -EPERM; 2562 goto out; 2563 } 2564 rcu_read_unlock(); 2565 2566 err = security_task_setscheduler(p); 2567 if (err) { 2568 count = err; 2569 goto out; 2570 } 2571 } 2572 2573 task_lock(p); 2574 if (slack_ns == 0) 2575 p->timer_slack_ns = p->default_timer_slack_ns; 2576 else 2577 p->timer_slack_ns = slack_ns; 2578 task_unlock(p); 2579 2580 out: 2581 put_task_struct(p); 2582 2583 return count; 2584 } 2585 2586 static int timerslack_ns_show(struct seq_file *m, void *v) 2587 { 2588 struct inode *inode = m->private; 2589 struct task_struct *p; 2590 int err = 0; 2591 2592 p = get_proc_task(inode); 2593 if (!p) 2594 return -ESRCH; 2595 2596 if (p != current) { 2597 rcu_read_lock(); 2598 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) { 2599 rcu_read_unlock(); 2600 err = -EPERM; 2601 goto out; 2602 } 2603 rcu_read_unlock(); 2604 2605 err = security_task_getscheduler(p); 2606 if (err) 2607 goto out; 2608 } 2609 2610 task_lock(p); 2611 seq_printf(m, "%llu\n", p->timer_slack_ns); 2612 task_unlock(p); 2613 2614 out: 2615 put_task_struct(p); 2616 2617 return err; 2618 } 2619 2620 static int timerslack_ns_open(struct inode *inode, struct file *filp) 2621 { 2622 return single_open(filp, timerslack_ns_show, inode); 2623 } 2624 2625 static const struct file_operations proc_pid_set_timerslack_ns_operations = { 2626 .open = timerslack_ns_open, 2627 .read = seq_read, 2628 .write = timerslack_ns_write, 2629 .llseek = seq_lseek, 2630 .release = single_release, 2631 }; 2632 2633 static struct dentry *proc_pident_instantiate(struct dentry *dentry, 2634 struct task_struct *task, const void *ptr) 2635 { 2636 const struct pid_entry *p = ptr; 2637 struct inode *inode; 2638 struct proc_inode *ei; 2639 2640 inode = proc_pid_make_inode(dentry->d_sb, task, p->mode); 2641 if (!inode) 2642 return ERR_PTR(-ENOENT); 2643 2644 ei = PROC_I(inode); 2645 if (S_ISDIR(inode->i_mode)) 2646 set_nlink(inode, 2); /* Use getattr to fix if necessary */ 2647 if (p->iop) 2648 inode->i_op = p->iop; 2649 if (p->fop) 2650 inode->i_fop = p->fop; 2651 ei->op = p->op; 2652 pid_update_inode(task, inode); 2653 d_set_d_op(dentry, &pid_dentry_operations); 2654 return d_splice_alias(inode, dentry); 2655 } 2656 2657 static struct dentry *proc_pident_lookup(struct inode *dir, 2658 struct dentry *dentry, 2659 const struct pid_entry *p, 2660 const struct pid_entry *end) 2661 { 2662 struct task_struct *task = get_proc_task(dir); 2663 struct dentry *res = ERR_PTR(-ENOENT); 2664 2665 if (!task) 2666 goto out_no_task; 2667 2668 /* 2669 * Yes, it does not scale. And it should not. Don't add 2670 * new entries into /proc/<tgid>/ without very good reasons. 2671 */ 2672 for (; p < end; p++) { 2673 if (p->len != dentry->d_name.len) 2674 continue; 2675 if (!memcmp(dentry->d_name.name, p->name, p->len)) { 2676 res = proc_pident_instantiate(dentry, task, p); 2677 break; 2678 } 2679 } 2680 put_task_struct(task); 2681 out_no_task: 2682 return res; 2683 } 2684 2685 static int proc_pident_readdir(struct file *file, struct dir_context *ctx, 2686 const struct pid_entry *ents, unsigned int nents) 2687 { 2688 struct task_struct *task = get_proc_task(file_inode(file)); 2689 const struct pid_entry *p; 2690 2691 if (!task) 2692 return -ENOENT; 2693 2694 if (!dir_emit_dots(file, ctx)) 2695 goto out; 2696 2697 if (ctx->pos >= nents + 2) 2698 goto out; 2699 2700 for (p = ents + (ctx->pos - 2); p < ents + nents; p++) { 2701 if (!proc_fill_cache(file, ctx, p->name, p->len, 2702 proc_pident_instantiate, task, p)) 2703 break; 2704 ctx->pos++; 2705 } 2706 out: 2707 put_task_struct(task); 2708 return 0; 2709 } 2710 2711 #ifdef CONFIG_SECURITY 2712 static int proc_pid_attr_open(struct inode *inode, struct file *file) 2713 { 2714 file->private_data = NULL; 2715 __mem_open(inode, file, PTRACE_MODE_READ_FSCREDS); 2716 return 0; 2717 } 2718 2719 static ssize_t proc_pid_attr_read(struct file * file, char __user * buf, 2720 size_t count, loff_t *ppos) 2721 { 2722 struct inode * inode = file_inode(file); 2723 char *p = NULL; 2724 ssize_t length; 2725 struct task_struct *task = get_proc_task(inode); 2726 2727 if (!task) 2728 return -ESRCH; 2729 2730 length = security_getprocattr(task, PROC_I(inode)->op.lsmid, 2731 file->f_path.dentry->d_name.name, 2732 &p); 2733 put_task_struct(task); 2734 if (length > 0) 2735 length = simple_read_from_buffer(buf, count, ppos, p, length); 2736 kfree(p); 2737 return length; 2738 } 2739 2740 static ssize_t proc_pid_attr_write(struct file * file, const char __user * buf, 2741 size_t count, loff_t *ppos) 2742 { 2743 struct inode * inode = file_inode(file); 2744 struct task_struct *task; 2745 void *page; 2746 int rv; 2747 2748 /* A task may only write when it was the opener. */ 2749 if (file->private_data != current->mm) 2750 return -EPERM; 2751 2752 rcu_read_lock(); 2753 task = pid_task(proc_pid(inode), PIDTYPE_PID); 2754 if (!task) { 2755 rcu_read_unlock(); 2756 return -ESRCH; 2757 } 2758 /* A task may only write its own attributes. */ 2759 if (current != task) { 2760 rcu_read_unlock(); 2761 return -EACCES; 2762 } 2763 /* Prevent changes to overridden credentials. */ 2764 if (current_cred() != current_real_cred()) { 2765 rcu_read_unlock(); 2766 return -EBUSY; 2767 } 2768 rcu_read_unlock(); 2769 2770 if (count > PAGE_SIZE) 2771 count = PAGE_SIZE; 2772 2773 /* No partial writes. */ 2774 if (*ppos != 0) 2775 return -EINVAL; 2776 2777 page = memdup_user(buf, count); 2778 if (IS_ERR(page)) { 2779 rv = PTR_ERR(page); 2780 goto out; 2781 } 2782 2783 /* Guard against adverse ptrace interaction */ 2784 rv = mutex_lock_interruptible(¤t->signal->cred_guard_mutex); 2785 if (rv < 0) 2786 goto out_free; 2787 2788 rv = security_setprocattr(PROC_I(inode)->op.lsmid, 2789 file->f_path.dentry->d_name.name, page, 2790 count); 2791 mutex_unlock(¤t->signal->cred_guard_mutex); 2792 out_free: 2793 kfree(page); 2794 out: 2795 return rv; 2796 } 2797 2798 static const struct file_operations proc_pid_attr_operations = { 2799 .open = proc_pid_attr_open, 2800 .read = proc_pid_attr_read, 2801 .write = proc_pid_attr_write, 2802 .llseek = generic_file_llseek, 2803 .release = mem_release, 2804 }; 2805 2806 #define LSM_DIR_OPS(LSM) \ 2807 static int proc_##LSM##_attr_dir_iterate(struct file *filp, \ 2808 struct dir_context *ctx) \ 2809 { \ 2810 return proc_pident_readdir(filp, ctx, \ 2811 LSM##_attr_dir_stuff, \ 2812 ARRAY_SIZE(LSM##_attr_dir_stuff)); \ 2813 } \ 2814 \ 2815 static const struct file_operations proc_##LSM##_attr_dir_ops = { \ 2816 .read = generic_read_dir, \ 2817 .iterate_shared = proc_##LSM##_attr_dir_iterate, \ 2818 .llseek = default_llseek, \ 2819 }; \ 2820 \ 2821 static struct dentry *proc_##LSM##_attr_dir_lookup(struct inode *dir, \ 2822 struct dentry *dentry, unsigned int flags) \ 2823 { \ 2824 return proc_pident_lookup(dir, dentry, \ 2825 LSM##_attr_dir_stuff, \ 2826 LSM##_attr_dir_stuff + ARRAY_SIZE(LSM##_attr_dir_stuff)); \ 2827 } \ 2828 \ 2829 static const struct inode_operations proc_##LSM##_attr_dir_inode_ops = { \ 2830 .lookup = proc_##LSM##_attr_dir_lookup, \ 2831 .getattr = pid_getattr, \ 2832 .setattr = proc_setattr, \ 2833 } 2834 2835 #ifdef CONFIG_SECURITY_SMACK 2836 static const struct pid_entry smack_attr_dir_stuff[] = { 2837 ATTR(LSM_ID_SMACK, "current", 0666), 2838 }; 2839 LSM_DIR_OPS(smack); 2840 #endif 2841 2842 #ifdef CONFIG_SECURITY_APPARMOR 2843 static const struct pid_entry apparmor_attr_dir_stuff[] = { 2844 ATTR(LSM_ID_APPARMOR, "current", 0666), 2845 ATTR(LSM_ID_APPARMOR, "prev", 0444), 2846 ATTR(LSM_ID_APPARMOR, "exec", 0666), 2847 }; 2848 LSM_DIR_OPS(apparmor); 2849 #endif 2850 2851 static const struct pid_entry attr_dir_stuff[] = { 2852 ATTR(LSM_ID_UNDEF, "current", 0666), 2853 ATTR(LSM_ID_UNDEF, "prev", 0444), 2854 ATTR(LSM_ID_UNDEF, "exec", 0666), 2855 ATTR(LSM_ID_UNDEF, "fscreate", 0666), 2856 ATTR(LSM_ID_UNDEF, "keycreate", 0666), 2857 ATTR(LSM_ID_UNDEF, "sockcreate", 0666), 2858 #ifdef CONFIG_SECURITY_SMACK 2859 DIR("smack", 0555, 2860 proc_smack_attr_dir_inode_ops, proc_smack_attr_dir_ops), 2861 #endif 2862 #ifdef CONFIG_SECURITY_APPARMOR 2863 DIR("apparmor", 0555, 2864 proc_apparmor_attr_dir_inode_ops, proc_apparmor_attr_dir_ops), 2865 #endif 2866 }; 2867 2868 static int proc_attr_dir_readdir(struct file *file, struct dir_context *ctx) 2869 { 2870 return proc_pident_readdir(file, ctx, 2871 attr_dir_stuff, ARRAY_SIZE(attr_dir_stuff)); 2872 } 2873 2874 static const struct file_operations proc_attr_dir_operations = { 2875 .read = generic_read_dir, 2876 .iterate_shared = proc_attr_dir_readdir, 2877 .llseek = generic_file_llseek, 2878 }; 2879 2880 static struct dentry *proc_attr_dir_lookup(struct inode *dir, 2881 struct dentry *dentry, unsigned int flags) 2882 { 2883 return proc_pident_lookup(dir, dentry, 2884 attr_dir_stuff, 2885 attr_dir_stuff + ARRAY_SIZE(attr_dir_stuff)); 2886 } 2887 2888 static const struct inode_operations proc_attr_dir_inode_operations = { 2889 .lookup = proc_attr_dir_lookup, 2890 .getattr = pid_getattr, 2891 .setattr = proc_setattr, 2892 }; 2893 2894 #endif 2895 2896 #ifdef CONFIG_ELF_CORE 2897 static ssize_t proc_coredump_filter_read(struct file *file, char __user *buf, 2898 size_t count, loff_t *ppos) 2899 { 2900 struct task_struct *task = get_proc_task(file_inode(file)); 2901 struct mm_struct *mm; 2902 char buffer[PROC_NUMBUF]; 2903 size_t len; 2904 int ret; 2905 2906 if (!task) 2907 return -ESRCH; 2908 2909 ret = 0; 2910 mm = get_task_mm(task); 2911 if (mm) { 2912 len = snprintf(buffer, sizeof(buffer), "%08lx\n", 2913 ((mm->flags & MMF_DUMP_FILTER_MASK) >> 2914 MMF_DUMP_FILTER_SHIFT)); 2915 mmput(mm); 2916 ret = simple_read_from_buffer(buf, count, ppos, buffer, len); 2917 } 2918 2919 put_task_struct(task); 2920 2921 return ret; 2922 } 2923 2924 static ssize_t proc_coredump_filter_write(struct file *file, 2925 const char __user *buf, 2926 size_t count, 2927 loff_t *ppos) 2928 { 2929 struct task_struct *task; 2930 struct mm_struct *mm; 2931 unsigned int val; 2932 int ret; 2933 int i; 2934 unsigned long mask; 2935 2936 ret = kstrtouint_from_user(buf, count, 0, &val); 2937 if (ret < 0) 2938 return ret; 2939 2940 ret = -ESRCH; 2941 task = get_proc_task(file_inode(file)); 2942 if (!task) 2943 goto out_no_task; 2944 2945 mm = get_task_mm(task); 2946 if (!mm) 2947 goto out_no_mm; 2948 ret = 0; 2949 2950 for (i = 0, mask = 1; i < MMF_DUMP_FILTER_BITS; i++, mask <<= 1) { 2951 if (val & mask) 2952 set_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags); 2953 else 2954 clear_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags); 2955 } 2956 2957 mmput(mm); 2958 out_no_mm: 2959 put_task_struct(task); 2960 out_no_task: 2961 if (ret < 0) 2962 return ret; 2963 return count; 2964 } 2965 2966 static const struct file_operations proc_coredump_filter_operations = { 2967 .read = proc_coredump_filter_read, 2968 .write = proc_coredump_filter_write, 2969 .llseek = generic_file_llseek, 2970 }; 2971 #endif 2972 2973 #ifdef CONFIG_TASK_IO_ACCOUNTING 2974 static int do_io_accounting(struct task_struct *task, struct seq_file *m, int whole) 2975 { 2976 struct task_io_accounting acct; 2977 int result; 2978 2979 result = down_read_killable(&task->signal->exec_update_lock); 2980 if (result) 2981 return result; 2982 2983 if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS)) { 2984 result = -EACCES; 2985 goto out_unlock; 2986 } 2987 2988 if (whole) { 2989 struct signal_struct *sig = task->signal; 2990 struct task_struct *t; 2991 unsigned int seq = 1; 2992 unsigned long flags; 2993 2994 rcu_read_lock(); 2995 do { 2996 seq++; /* 2 on the 1st/lockless path, otherwise odd */ 2997 flags = read_seqbegin_or_lock_irqsave(&sig->stats_lock, &seq); 2998 2999 acct = sig->ioac; 3000 __for_each_thread(sig, t) 3001 task_io_accounting_add(&acct, &t->ioac); 3002 3003 } while (need_seqretry(&sig->stats_lock, seq)); 3004 done_seqretry_irqrestore(&sig->stats_lock, seq, flags); 3005 rcu_read_unlock(); 3006 } else { 3007 acct = task->ioac; 3008 } 3009 3010 seq_printf(m, 3011 "rchar: %llu\n" 3012 "wchar: %llu\n" 3013 "syscr: %llu\n" 3014 "syscw: %llu\n" 3015 "read_bytes: %llu\n" 3016 "write_bytes: %llu\n" 3017 "cancelled_write_bytes: %llu\n", 3018 (unsigned long long)acct.rchar, 3019 (unsigned long long)acct.wchar, 3020 (unsigned long long)acct.syscr, 3021 (unsigned long long)acct.syscw, 3022 (unsigned long long)acct.read_bytes, 3023 (unsigned long long)acct.write_bytes, 3024 (unsigned long long)acct.cancelled_write_bytes); 3025 result = 0; 3026 3027 out_unlock: 3028 up_read(&task->signal->exec_update_lock); 3029 return result; 3030 } 3031 3032 static int proc_tid_io_accounting(struct seq_file *m, struct pid_namespace *ns, 3033 struct pid *pid, struct task_struct *task) 3034 { 3035 return do_io_accounting(task, m, 0); 3036 } 3037 3038 static int proc_tgid_io_accounting(struct seq_file *m, struct pid_namespace *ns, 3039 struct pid *pid, struct task_struct *task) 3040 { 3041 return do_io_accounting(task, m, 1); 3042 } 3043 #endif /* CONFIG_TASK_IO_ACCOUNTING */ 3044 3045 #ifdef CONFIG_USER_NS 3046 static int proc_id_map_open(struct inode *inode, struct file *file, 3047 const struct seq_operations *seq_ops) 3048 { 3049 struct user_namespace *ns = NULL; 3050 struct task_struct *task; 3051 struct seq_file *seq; 3052 int ret = -EINVAL; 3053 3054 task = get_proc_task(inode); 3055 if (task) { 3056 rcu_read_lock(); 3057 ns = get_user_ns(task_cred_xxx(task, user_ns)); 3058 rcu_read_unlock(); 3059 put_task_struct(task); 3060 } 3061 if (!ns) 3062 goto err; 3063 3064 ret = seq_open(file, seq_ops); 3065 if (ret) 3066 goto err_put_ns; 3067 3068 seq = file->private_data; 3069 seq->private = ns; 3070 3071 return 0; 3072 err_put_ns: 3073 put_user_ns(ns); 3074 err: 3075 return ret; 3076 } 3077 3078 static int proc_id_map_release(struct inode *inode, struct file *file) 3079 { 3080 struct seq_file *seq = file->private_data; 3081 struct user_namespace *ns = seq->private; 3082 put_user_ns(ns); 3083 return seq_release(inode, file); 3084 } 3085 3086 static int proc_uid_map_open(struct inode *inode, struct file *file) 3087 { 3088 return proc_id_map_open(inode, file, &proc_uid_seq_operations); 3089 } 3090 3091 static int proc_gid_map_open(struct inode *inode, struct file *file) 3092 { 3093 return proc_id_map_open(inode, file, &proc_gid_seq_operations); 3094 } 3095 3096 static int proc_projid_map_open(struct inode *inode, struct file *file) 3097 { 3098 return proc_id_map_open(inode, file, &proc_projid_seq_operations); 3099 } 3100 3101 static const struct file_operations proc_uid_map_operations = { 3102 .open = proc_uid_map_open, 3103 .write = proc_uid_map_write, 3104 .read = seq_read, 3105 .llseek = seq_lseek, 3106 .release = proc_id_map_release, 3107 }; 3108 3109 static const struct file_operations proc_gid_map_operations = { 3110 .open = proc_gid_map_open, 3111 .write = proc_gid_map_write, 3112 .read = seq_read, 3113 .llseek = seq_lseek, 3114 .release = proc_id_map_release, 3115 }; 3116 3117 static const struct file_operations proc_projid_map_operations = { 3118 .open = proc_projid_map_open, 3119 .write = proc_projid_map_write, 3120 .read = seq_read, 3121 .llseek = seq_lseek, 3122 .release = proc_id_map_release, 3123 }; 3124 3125 static int proc_setgroups_open(struct inode *inode, struct file *file) 3126 { 3127 struct user_namespace *ns = NULL; 3128 struct task_struct *task; 3129 int ret; 3130 3131 ret = -ESRCH; 3132 task = get_proc_task(inode); 3133 if (task) { 3134 rcu_read_lock(); 3135 ns = get_user_ns(task_cred_xxx(task, user_ns)); 3136 rcu_read_unlock(); 3137 put_task_struct(task); 3138 } 3139 if (!ns) 3140 goto err; 3141 3142 if (file->f_mode & FMODE_WRITE) { 3143 ret = -EACCES; 3144 if (!ns_capable(ns, CAP_SYS_ADMIN)) 3145 goto err_put_ns; 3146 } 3147 3148 ret = single_open(file, &proc_setgroups_show, ns); 3149 if (ret) 3150 goto err_put_ns; 3151 3152 return 0; 3153 err_put_ns: 3154 put_user_ns(ns); 3155 err: 3156 return ret; 3157 } 3158 3159 static int proc_setgroups_release(struct inode *inode, struct file *file) 3160 { 3161 struct seq_file *seq = file->private_data; 3162 struct user_namespace *ns = seq->private; 3163 int ret = single_release(inode, file); 3164 put_user_ns(ns); 3165 return ret; 3166 } 3167 3168 static const struct file_operations proc_setgroups_operations = { 3169 .open = proc_setgroups_open, 3170 .write = proc_setgroups_write, 3171 .read = seq_read, 3172 .llseek = seq_lseek, 3173 .release = proc_setgroups_release, 3174 }; 3175 #endif /* CONFIG_USER_NS */ 3176 3177 static int proc_pid_personality(struct seq_file *m, struct pid_namespace *ns, 3178 struct pid *pid, struct task_struct *task) 3179 { 3180 int err = lock_trace(task); 3181 if (!err) { 3182 seq_printf(m, "%08x\n", task->personality); 3183 unlock_trace(task); 3184 } 3185 return err; 3186 } 3187 3188 #ifdef CONFIG_LIVEPATCH 3189 static int proc_pid_patch_state(struct seq_file *m, struct pid_namespace *ns, 3190 struct pid *pid, struct task_struct *task) 3191 { 3192 seq_printf(m, "%d\n", task->patch_state); 3193 return 0; 3194 } 3195 #endif /* CONFIG_LIVEPATCH */ 3196 3197 #ifdef CONFIG_KSM 3198 static int proc_pid_ksm_merging_pages(struct seq_file *m, struct pid_namespace *ns, 3199 struct pid *pid, struct task_struct *task) 3200 { 3201 struct mm_struct *mm; 3202 3203 mm = get_task_mm(task); 3204 if (mm) { 3205 seq_printf(m, "%lu\n", mm->ksm_merging_pages); 3206 mmput(mm); 3207 } 3208 3209 return 0; 3210 } 3211 static int proc_pid_ksm_stat(struct seq_file *m, struct pid_namespace *ns, 3212 struct pid *pid, struct task_struct *task) 3213 { 3214 struct mm_struct *mm; 3215 3216 mm = get_task_mm(task); 3217 if (mm) { 3218 seq_printf(m, "ksm_rmap_items %lu\n", mm->ksm_rmap_items); 3219 seq_printf(m, "ksm_zero_pages %lu\n", mm->ksm_zero_pages); 3220 seq_printf(m, "ksm_merging_pages %lu\n", mm->ksm_merging_pages); 3221 seq_printf(m, "ksm_process_profit %ld\n", ksm_process_profit(mm)); 3222 mmput(mm); 3223 } 3224 3225 return 0; 3226 } 3227 #endif /* CONFIG_KSM */ 3228 3229 #ifdef CONFIG_STACKLEAK_METRICS 3230 static int proc_stack_depth(struct seq_file *m, struct pid_namespace *ns, 3231 struct pid *pid, struct task_struct *task) 3232 { 3233 unsigned long prev_depth = THREAD_SIZE - 3234 (task->prev_lowest_stack & (THREAD_SIZE - 1)); 3235 unsigned long depth = THREAD_SIZE - 3236 (task->lowest_stack & (THREAD_SIZE - 1)); 3237 3238 seq_printf(m, "previous stack depth: %lu\nstack depth: %lu\n", 3239 prev_depth, depth); 3240 return 0; 3241 } 3242 #endif /* CONFIG_STACKLEAK_METRICS */ 3243 3244 /* 3245 * Thread groups 3246 */ 3247 static const struct file_operations proc_task_operations; 3248 static const struct inode_operations proc_task_inode_operations; 3249 3250 static const struct pid_entry tgid_base_stuff[] = { 3251 DIR("task", S_IRUGO|S_IXUGO, proc_task_inode_operations, proc_task_operations), 3252 DIR("fd", S_IRUSR|S_IXUSR, proc_fd_inode_operations, proc_fd_operations), 3253 DIR("map_files", S_IRUSR|S_IXUSR, proc_map_files_inode_operations, proc_map_files_operations), 3254 DIR("fdinfo", S_IRUGO|S_IXUGO, proc_fdinfo_inode_operations, proc_fdinfo_operations), 3255 DIR("ns", S_IRUSR|S_IXUGO, proc_ns_dir_inode_operations, proc_ns_dir_operations), 3256 #ifdef CONFIG_NET 3257 DIR("net", S_IRUGO|S_IXUGO, proc_net_inode_operations, proc_net_operations), 3258 #endif 3259 REG("environ", S_IRUSR, proc_environ_operations), 3260 REG("auxv", S_IRUSR, proc_auxv_operations), 3261 ONE("status", S_IRUGO, proc_pid_status), 3262 ONE("personality", S_IRUSR, proc_pid_personality), 3263 ONE("limits", S_IRUGO, proc_pid_limits), 3264 #ifdef CONFIG_SCHED_DEBUG 3265 REG("sched", S_IRUGO|S_IWUSR, proc_pid_sched_operations), 3266 #endif 3267 #ifdef CONFIG_SCHED_AUTOGROUP 3268 REG("autogroup", S_IRUGO|S_IWUSR, proc_pid_sched_autogroup_operations), 3269 #endif 3270 #ifdef CONFIG_TIME_NS 3271 REG("timens_offsets", S_IRUGO|S_IWUSR, proc_timens_offsets_operations), 3272 #endif 3273 REG("comm", S_IRUGO|S_IWUSR, proc_pid_set_comm_operations), 3274 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK 3275 ONE("syscall", S_IRUSR, proc_pid_syscall), 3276 #endif 3277 REG("cmdline", S_IRUGO, proc_pid_cmdline_ops), 3278 ONE("stat", S_IRUGO, proc_tgid_stat), 3279 ONE("statm", S_IRUGO, proc_pid_statm), 3280 REG("maps", S_IRUGO, proc_pid_maps_operations), 3281 #ifdef CONFIG_NUMA 3282 REG("numa_maps", S_IRUGO, proc_pid_numa_maps_operations), 3283 #endif 3284 REG("mem", S_IRUSR|S_IWUSR, proc_mem_operations), 3285 LNK("cwd", proc_cwd_link), 3286 LNK("root", proc_root_link), 3287 LNK("exe", proc_exe_link), 3288 REG("mounts", S_IRUGO, proc_mounts_operations), 3289 REG("mountinfo", S_IRUGO, proc_mountinfo_operations), 3290 REG("mountstats", S_IRUSR, proc_mountstats_operations), 3291 #ifdef CONFIG_PROC_PAGE_MONITOR 3292 REG("clear_refs", S_IWUSR, proc_clear_refs_operations), 3293 REG("smaps", S_IRUGO, proc_pid_smaps_operations), 3294 REG("smaps_rollup", S_IRUGO, proc_pid_smaps_rollup_operations), 3295 REG("pagemap", S_IRUSR, proc_pagemap_operations), 3296 #endif 3297 #ifdef CONFIG_SECURITY 3298 DIR("attr", S_IRUGO|S_IXUGO, proc_attr_dir_inode_operations, proc_attr_dir_operations), 3299 #endif 3300 #ifdef CONFIG_KALLSYMS 3301 ONE("wchan", S_IRUGO, proc_pid_wchan), 3302 #endif 3303 #ifdef CONFIG_STACKTRACE 3304 ONE("stack", S_IRUSR, proc_pid_stack), 3305 #endif 3306 #ifdef CONFIG_SCHED_INFO 3307 ONE("schedstat", S_IRUGO, proc_pid_schedstat), 3308 #endif 3309 #ifdef CONFIG_LATENCYTOP 3310 REG("latency", S_IRUGO, proc_lstats_operations), 3311 #endif 3312 #ifdef CONFIG_PROC_PID_CPUSET 3313 ONE("cpuset", S_IRUGO, proc_cpuset_show), 3314 #endif 3315 #ifdef CONFIG_CGROUPS 3316 ONE("cgroup", S_IRUGO, proc_cgroup_show), 3317 #endif 3318 #ifdef CONFIG_PROC_CPU_RESCTRL 3319 ONE("cpu_resctrl_groups", S_IRUGO, proc_resctrl_show), 3320 #endif 3321 ONE("oom_score", S_IRUGO, proc_oom_score), 3322 REG("oom_adj", S_IRUGO|S_IWUSR, proc_oom_adj_operations), 3323 REG("oom_score_adj", S_IRUGO|S_IWUSR, proc_oom_score_adj_operations), 3324 #ifdef CONFIG_AUDIT 3325 REG("loginuid", S_IWUSR|S_IRUGO, proc_loginuid_operations), 3326 REG("sessionid", S_IRUGO, proc_sessionid_operations), 3327 #endif 3328 #ifdef CONFIG_FAULT_INJECTION 3329 REG("make-it-fail", S_IRUGO|S_IWUSR, proc_fault_inject_operations), 3330 REG("fail-nth", 0644, proc_fail_nth_operations), 3331 #endif 3332 #ifdef CONFIG_ELF_CORE 3333 REG("coredump_filter", S_IRUGO|S_IWUSR, proc_coredump_filter_operations), 3334 #endif 3335 #ifdef CONFIG_TASK_IO_ACCOUNTING 3336 ONE("io", S_IRUSR, proc_tgid_io_accounting), 3337 #endif 3338 #ifdef CONFIG_USER_NS 3339 REG("uid_map", S_IRUGO|S_IWUSR, proc_uid_map_operations), 3340 REG("gid_map", S_IRUGO|S_IWUSR, proc_gid_map_operations), 3341 REG("projid_map", S_IRUGO|S_IWUSR, proc_projid_map_operations), 3342 REG("setgroups", S_IRUGO|S_IWUSR, proc_setgroups_operations), 3343 #endif 3344 #if defined(CONFIG_CHECKPOINT_RESTORE) && defined(CONFIG_POSIX_TIMERS) 3345 REG("timers", S_IRUGO, proc_timers_operations), 3346 #endif 3347 REG("timerslack_ns", S_IRUGO|S_IWUGO, proc_pid_set_timerslack_ns_operations), 3348 #ifdef CONFIG_LIVEPATCH 3349 ONE("patch_state", S_IRUSR, proc_pid_patch_state), 3350 #endif 3351 #ifdef CONFIG_STACKLEAK_METRICS 3352 ONE("stack_depth", S_IRUGO, proc_stack_depth), 3353 #endif 3354 #ifdef CONFIG_PROC_PID_ARCH_STATUS 3355 ONE("arch_status", S_IRUGO, proc_pid_arch_status), 3356 #endif 3357 #ifdef CONFIG_SECCOMP_CACHE_DEBUG 3358 ONE("seccomp_cache", S_IRUSR, proc_pid_seccomp_cache), 3359 #endif 3360 #ifdef CONFIG_KSM 3361 ONE("ksm_merging_pages", S_IRUSR, proc_pid_ksm_merging_pages), 3362 ONE("ksm_stat", S_IRUSR, proc_pid_ksm_stat), 3363 #endif 3364 }; 3365 3366 static int proc_tgid_base_readdir(struct file *file, struct dir_context *ctx) 3367 { 3368 return proc_pident_readdir(file, ctx, 3369 tgid_base_stuff, ARRAY_SIZE(tgid_base_stuff)); 3370 } 3371 3372 static const struct file_operations proc_tgid_base_operations = { 3373 .read = generic_read_dir, 3374 .iterate_shared = proc_tgid_base_readdir, 3375 .llseek = generic_file_llseek, 3376 }; 3377 3378 struct pid *tgid_pidfd_to_pid(const struct file *file) 3379 { 3380 if (file->f_op != &proc_tgid_base_operations) 3381 return ERR_PTR(-EBADF); 3382 3383 return proc_pid(file_inode(file)); 3384 } 3385 3386 static struct dentry *proc_tgid_base_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags) 3387 { 3388 return proc_pident_lookup(dir, dentry, 3389 tgid_base_stuff, 3390 tgid_base_stuff + ARRAY_SIZE(tgid_base_stuff)); 3391 } 3392 3393 static const struct inode_operations proc_tgid_base_inode_operations = { 3394 .lookup = proc_tgid_base_lookup, 3395 .getattr = pid_getattr, 3396 .setattr = proc_setattr, 3397 .permission = proc_pid_permission, 3398 }; 3399 3400 /** 3401 * proc_flush_pid - Remove dcache entries for @pid from the /proc dcache. 3402 * @pid: pid that should be flushed. 3403 * 3404 * This function walks a list of inodes (that belong to any proc 3405 * filesystem) that are attached to the pid and flushes them from 3406 * the dentry cache. 3407 * 3408 * It is safe and reasonable to cache /proc entries for a task until 3409 * that task exits. After that they just clog up the dcache with 3410 * useless entries, possibly causing useful dcache entries to be 3411 * flushed instead. This routine is provided to flush those useless 3412 * dcache entries when a process is reaped. 3413 * 3414 * NOTE: This routine is just an optimization so it does not guarantee 3415 * that no dcache entries will exist after a process is reaped 3416 * it just makes it very unlikely that any will persist. 3417 */ 3418 3419 void proc_flush_pid(struct pid *pid) 3420 { 3421 proc_invalidate_siblings_dcache(&pid->inodes, &pid->lock); 3422 } 3423 3424 static struct dentry *proc_pid_instantiate(struct dentry * dentry, 3425 struct task_struct *task, const void *ptr) 3426 { 3427 struct inode *inode; 3428 3429 inode = proc_pid_make_base_inode(dentry->d_sb, task, 3430 S_IFDIR | S_IRUGO | S_IXUGO); 3431 if (!inode) 3432 return ERR_PTR(-ENOENT); 3433 3434 inode->i_op = &proc_tgid_base_inode_operations; 3435 inode->i_fop = &proc_tgid_base_operations; 3436 inode->i_flags|=S_IMMUTABLE; 3437 3438 set_nlink(inode, nlink_tgid); 3439 pid_update_inode(task, inode); 3440 3441 d_set_d_op(dentry, &pid_dentry_operations); 3442 return d_splice_alias(inode, dentry); 3443 } 3444 3445 struct dentry *proc_pid_lookup(struct dentry *dentry, unsigned int flags) 3446 { 3447 struct task_struct *task; 3448 unsigned tgid; 3449 struct proc_fs_info *fs_info; 3450 struct pid_namespace *ns; 3451 struct dentry *result = ERR_PTR(-ENOENT); 3452 3453 tgid = name_to_int(&dentry->d_name); 3454 if (tgid == ~0U) 3455 goto out; 3456 3457 fs_info = proc_sb_info(dentry->d_sb); 3458 ns = fs_info->pid_ns; 3459 rcu_read_lock(); 3460 task = find_task_by_pid_ns(tgid, ns); 3461 if (task) 3462 get_task_struct(task); 3463 rcu_read_unlock(); 3464 if (!task) 3465 goto out; 3466 3467 /* Limit procfs to only ptraceable tasks */ 3468 if (fs_info->hide_pid == HIDEPID_NOT_PTRACEABLE) { 3469 if (!has_pid_permissions(fs_info, task, HIDEPID_NO_ACCESS)) 3470 goto out_put_task; 3471 } 3472 3473 result = proc_pid_instantiate(dentry, task, NULL); 3474 out_put_task: 3475 put_task_struct(task); 3476 out: 3477 return result; 3478 } 3479 3480 /* 3481 * Find the first task with tgid >= tgid 3482 * 3483 */ 3484 struct tgid_iter { 3485 unsigned int tgid; 3486 struct task_struct *task; 3487 }; 3488 static struct tgid_iter next_tgid(struct pid_namespace *ns, struct tgid_iter iter) 3489 { 3490 struct pid *pid; 3491 3492 if (iter.task) 3493 put_task_struct(iter.task); 3494 rcu_read_lock(); 3495 retry: 3496 iter.task = NULL; 3497 pid = find_ge_pid(iter.tgid, ns); 3498 if (pid) { 3499 iter.tgid = pid_nr_ns(pid, ns); 3500 iter.task = pid_task(pid, PIDTYPE_TGID); 3501 if (!iter.task) { 3502 iter.tgid += 1; 3503 goto retry; 3504 } 3505 get_task_struct(iter.task); 3506 } 3507 rcu_read_unlock(); 3508 return iter; 3509 } 3510 3511 #define TGID_OFFSET (FIRST_PROCESS_ENTRY + 2) 3512 3513 /* for the /proc/ directory itself, after non-process stuff has been done */ 3514 int proc_pid_readdir(struct file *file, struct dir_context *ctx) 3515 { 3516 struct tgid_iter iter; 3517 struct proc_fs_info *fs_info = proc_sb_info(file_inode(file)->i_sb); 3518 struct pid_namespace *ns = proc_pid_ns(file_inode(file)->i_sb); 3519 loff_t pos = ctx->pos; 3520 3521 if (pos >= PID_MAX_LIMIT + TGID_OFFSET) 3522 return 0; 3523 3524 if (pos == TGID_OFFSET - 2) { 3525 struct inode *inode = d_inode(fs_info->proc_self); 3526 if (!dir_emit(ctx, "self", 4, inode->i_ino, DT_LNK)) 3527 return 0; 3528 ctx->pos = pos = pos + 1; 3529 } 3530 if (pos == TGID_OFFSET - 1) { 3531 struct inode *inode = d_inode(fs_info->proc_thread_self); 3532 if (!dir_emit(ctx, "thread-self", 11, inode->i_ino, DT_LNK)) 3533 return 0; 3534 ctx->pos = pos = pos + 1; 3535 } 3536 iter.tgid = pos - TGID_OFFSET; 3537 iter.task = NULL; 3538 for (iter = next_tgid(ns, iter); 3539 iter.task; 3540 iter.tgid += 1, iter = next_tgid(ns, iter)) { 3541 char name[10 + 1]; 3542 unsigned int len; 3543 3544 cond_resched(); 3545 if (!has_pid_permissions(fs_info, iter.task, HIDEPID_INVISIBLE)) 3546 continue; 3547 3548 len = snprintf(name, sizeof(name), "%u", iter.tgid); 3549 ctx->pos = iter.tgid + TGID_OFFSET; 3550 if (!proc_fill_cache(file, ctx, name, len, 3551 proc_pid_instantiate, iter.task, NULL)) { 3552 put_task_struct(iter.task); 3553 return 0; 3554 } 3555 } 3556 ctx->pos = PID_MAX_LIMIT + TGID_OFFSET; 3557 return 0; 3558 } 3559 3560 /* 3561 * proc_tid_comm_permission is a special permission function exclusively 3562 * used for the node /proc/<pid>/task/<tid>/comm. 3563 * It bypasses generic permission checks in the case where a task of the same 3564 * task group attempts to access the node. 3565 * The rationale behind this is that glibc and bionic access this node for 3566 * cross thread naming (pthread_set/getname_np(!self)). However, if 3567 * PR_SET_DUMPABLE gets set to 0 this node among others becomes uid=0 gid=0, 3568 * which locks out the cross thread naming implementation. 3569 * This function makes sure that the node is always accessible for members of 3570 * same thread group. 3571 */ 3572 static int proc_tid_comm_permission(struct mnt_idmap *idmap, 3573 struct inode *inode, int mask) 3574 { 3575 bool is_same_tgroup; 3576 struct task_struct *task; 3577 3578 task = get_proc_task(inode); 3579 if (!task) 3580 return -ESRCH; 3581 is_same_tgroup = same_thread_group(current, task); 3582 put_task_struct(task); 3583 3584 if (likely(is_same_tgroup && !(mask & MAY_EXEC))) { 3585 /* This file (/proc/<pid>/task/<tid>/comm) can always be 3586 * read or written by the members of the corresponding 3587 * thread group. 3588 */ 3589 return 0; 3590 } 3591 3592 return generic_permission(&nop_mnt_idmap, inode, mask); 3593 } 3594 3595 static const struct inode_operations proc_tid_comm_inode_operations = { 3596 .setattr = proc_setattr, 3597 .permission = proc_tid_comm_permission, 3598 }; 3599 3600 /* 3601 * Tasks 3602 */ 3603 static const struct pid_entry tid_base_stuff[] = { 3604 DIR("fd", S_IRUSR|S_IXUSR, proc_fd_inode_operations, proc_fd_operations), 3605 DIR("fdinfo", S_IRUGO|S_IXUGO, proc_fdinfo_inode_operations, proc_fdinfo_operations), 3606 DIR("ns", S_IRUSR|S_IXUGO, proc_ns_dir_inode_operations, proc_ns_dir_operations), 3607 #ifdef CONFIG_NET 3608 DIR("net", S_IRUGO|S_IXUGO, proc_net_inode_operations, proc_net_operations), 3609 #endif 3610 REG("environ", S_IRUSR, proc_environ_operations), 3611 REG("auxv", S_IRUSR, proc_auxv_operations), 3612 ONE("status", S_IRUGO, proc_pid_status), 3613 ONE("personality", S_IRUSR, proc_pid_personality), 3614 ONE("limits", S_IRUGO, proc_pid_limits), 3615 #ifdef CONFIG_SCHED_DEBUG 3616 REG("sched", S_IRUGO|S_IWUSR, proc_pid_sched_operations), 3617 #endif 3618 NOD("comm", S_IFREG|S_IRUGO|S_IWUSR, 3619 &proc_tid_comm_inode_operations, 3620 &proc_pid_set_comm_operations, {}), 3621 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK 3622 ONE("syscall", S_IRUSR, proc_pid_syscall), 3623 #endif 3624 REG("cmdline", S_IRUGO, proc_pid_cmdline_ops), 3625 ONE("stat", S_IRUGO, proc_tid_stat), 3626 ONE("statm", S_IRUGO, proc_pid_statm), 3627 REG("maps", S_IRUGO, proc_pid_maps_operations), 3628 #ifdef CONFIG_PROC_CHILDREN 3629 REG("children", S_IRUGO, proc_tid_children_operations), 3630 #endif 3631 #ifdef CONFIG_NUMA 3632 REG("numa_maps", S_IRUGO, proc_pid_numa_maps_operations), 3633 #endif 3634 REG("mem", S_IRUSR|S_IWUSR, proc_mem_operations), 3635 LNK("cwd", proc_cwd_link), 3636 LNK("root", proc_root_link), 3637 LNK("exe", proc_exe_link), 3638 REG("mounts", S_IRUGO, proc_mounts_operations), 3639 REG("mountinfo", S_IRUGO, proc_mountinfo_operations), 3640 #ifdef CONFIG_PROC_PAGE_MONITOR 3641 REG("clear_refs", S_IWUSR, proc_clear_refs_operations), 3642 REG("smaps", S_IRUGO, proc_pid_smaps_operations), 3643 REG("smaps_rollup", S_IRUGO, proc_pid_smaps_rollup_operations), 3644 REG("pagemap", S_IRUSR, proc_pagemap_operations), 3645 #endif 3646 #ifdef CONFIG_SECURITY 3647 DIR("attr", S_IRUGO|S_IXUGO, proc_attr_dir_inode_operations, proc_attr_dir_operations), 3648 #endif 3649 #ifdef CONFIG_KALLSYMS 3650 ONE("wchan", S_IRUGO, proc_pid_wchan), 3651 #endif 3652 #ifdef CONFIG_STACKTRACE 3653 ONE("stack", S_IRUSR, proc_pid_stack), 3654 #endif 3655 #ifdef CONFIG_SCHED_INFO 3656 ONE("schedstat", S_IRUGO, proc_pid_schedstat), 3657 #endif 3658 #ifdef CONFIG_LATENCYTOP 3659 REG("latency", S_IRUGO, proc_lstats_operations), 3660 #endif 3661 #ifdef CONFIG_PROC_PID_CPUSET 3662 ONE("cpuset", S_IRUGO, proc_cpuset_show), 3663 #endif 3664 #ifdef CONFIG_CGROUPS 3665 ONE("cgroup", S_IRUGO, proc_cgroup_show), 3666 #endif 3667 #ifdef CONFIG_PROC_CPU_RESCTRL 3668 ONE("cpu_resctrl_groups", S_IRUGO, proc_resctrl_show), 3669 #endif 3670 ONE("oom_score", S_IRUGO, proc_oom_score), 3671 REG("oom_adj", S_IRUGO|S_IWUSR, proc_oom_adj_operations), 3672 REG("oom_score_adj", S_IRUGO|S_IWUSR, proc_oom_score_adj_operations), 3673 #ifdef CONFIG_AUDIT 3674 REG("loginuid", S_IWUSR|S_IRUGO, proc_loginuid_operations), 3675 REG("sessionid", S_IRUGO, proc_sessionid_operations), 3676 #endif 3677 #ifdef CONFIG_FAULT_INJECTION 3678 REG("make-it-fail", S_IRUGO|S_IWUSR, proc_fault_inject_operations), 3679 REG("fail-nth", 0644, proc_fail_nth_operations), 3680 #endif 3681 #ifdef CONFIG_TASK_IO_ACCOUNTING 3682 ONE("io", S_IRUSR, proc_tid_io_accounting), 3683 #endif 3684 #ifdef CONFIG_USER_NS 3685 REG("uid_map", S_IRUGO|S_IWUSR, proc_uid_map_operations), 3686 REG("gid_map", S_IRUGO|S_IWUSR, proc_gid_map_operations), 3687 REG("projid_map", S_IRUGO|S_IWUSR, proc_projid_map_operations), 3688 REG("setgroups", S_IRUGO|S_IWUSR, proc_setgroups_operations), 3689 #endif 3690 #ifdef CONFIG_LIVEPATCH 3691 ONE("patch_state", S_IRUSR, proc_pid_patch_state), 3692 #endif 3693 #ifdef CONFIG_PROC_PID_ARCH_STATUS 3694 ONE("arch_status", S_IRUGO, proc_pid_arch_status), 3695 #endif 3696 #ifdef CONFIG_SECCOMP_CACHE_DEBUG 3697 ONE("seccomp_cache", S_IRUSR, proc_pid_seccomp_cache), 3698 #endif 3699 #ifdef CONFIG_KSM 3700 ONE("ksm_merging_pages", S_IRUSR, proc_pid_ksm_merging_pages), 3701 ONE("ksm_stat", S_IRUSR, proc_pid_ksm_stat), 3702 #endif 3703 }; 3704 3705 static int proc_tid_base_readdir(struct file *file, struct dir_context *ctx) 3706 { 3707 return proc_pident_readdir(file, ctx, 3708 tid_base_stuff, ARRAY_SIZE(tid_base_stuff)); 3709 } 3710 3711 static struct dentry *proc_tid_base_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags) 3712 { 3713 return proc_pident_lookup(dir, dentry, 3714 tid_base_stuff, 3715 tid_base_stuff + ARRAY_SIZE(tid_base_stuff)); 3716 } 3717 3718 static const struct file_operations proc_tid_base_operations = { 3719 .read = generic_read_dir, 3720 .iterate_shared = proc_tid_base_readdir, 3721 .llseek = generic_file_llseek, 3722 }; 3723 3724 static const struct inode_operations proc_tid_base_inode_operations = { 3725 .lookup = proc_tid_base_lookup, 3726 .getattr = pid_getattr, 3727 .setattr = proc_setattr, 3728 }; 3729 3730 static struct dentry *proc_task_instantiate(struct dentry *dentry, 3731 struct task_struct *task, const void *ptr) 3732 { 3733 struct inode *inode; 3734 inode = proc_pid_make_base_inode(dentry->d_sb, task, 3735 S_IFDIR | S_IRUGO | S_IXUGO); 3736 if (!inode) 3737 return ERR_PTR(-ENOENT); 3738 3739 inode->i_op = &proc_tid_base_inode_operations; 3740 inode->i_fop = &proc_tid_base_operations; 3741 inode->i_flags |= S_IMMUTABLE; 3742 3743 set_nlink(inode, nlink_tid); 3744 pid_update_inode(task, inode); 3745 3746 d_set_d_op(dentry, &pid_dentry_operations); 3747 return d_splice_alias(inode, dentry); 3748 } 3749 3750 static struct dentry *proc_task_lookup(struct inode *dir, struct dentry * dentry, unsigned int flags) 3751 { 3752 struct task_struct *task; 3753 struct task_struct *leader = get_proc_task(dir); 3754 unsigned tid; 3755 struct proc_fs_info *fs_info; 3756 struct pid_namespace *ns; 3757 struct dentry *result = ERR_PTR(-ENOENT); 3758 3759 if (!leader) 3760 goto out_no_task; 3761 3762 tid = name_to_int(&dentry->d_name); 3763 if (tid == ~0U) 3764 goto out; 3765 3766 fs_info = proc_sb_info(dentry->d_sb); 3767 ns = fs_info->pid_ns; 3768 rcu_read_lock(); 3769 task = find_task_by_pid_ns(tid, ns); 3770 if (task) 3771 get_task_struct(task); 3772 rcu_read_unlock(); 3773 if (!task) 3774 goto out; 3775 if (!same_thread_group(leader, task)) 3776 goto out_drop_task; 3777 3778 result = proc_task_instantiate(dentry, task, NULL); 3779 out_drop_task: 3780 put_task_struct(task); 3781 out: 3782 put_task_struct(leader); 3783 out_no_task: 3784 return result; 3785 } 3786 3787 /* 3788 * Find the first tid of a thread group to return to user space. 3789 * 3790 * Usually this is just the thread group leader, but if the users 3791 * buffer was too small or there was a seek into the middle of the 3792 * directory we have more work todo. 3793 * 3794 * In the case of a short read we start with find_task_by_pid. 3795 * 3796 * In the case of a seek we start with the leader and walk nr 3797 * threads past it. 3798 */ 3799 static struct task_struct *first_tid(struct pid *pid, int tid, loff_t f_pos, 3800 struct pid_namespace *ns) 3801 { 3802 struct task_struct *pos, *task; 3803 unsigned long nr = f_pos; 3804 3805 if (nr != f_pos) /* 32bit overflow? */ 3806 return NULL; 3807 3808 rcu_read_lock(); 3809 task = pid_task(pid, PIDTYPE_PID); 3810 if (!task) 3811 goto fail; 3812 3813 /* Attempt to start with the tid of a thread */ 3814 if (tid && nr) { 3815 pos = find_task_by_pid_ns(tid, ns); 3816 if (pos && same_thread_group(pos, task)) 3817 goto found; 3818 } 3819 3820 /* If nr exceeds the number of threads there is nothing todo */ 3821 if (nr >= get_nr_threads(task)) 3822 goto fail; 3823 3824 /* If we haven't found our starting place yet start 3825 * with the leader and walk nr threads forward. 3826 */ 3827 for_each_thread(task, pos) { 3828 if (!nr--) 3829 goto found; 3830 } 3831 fail: 3832 pos = NULL; 3833 goto out; 3834 found: 3835 get_task_struct(pos); 3836 out: 3837 rcu_read_unlock(); 3838 return pos; 3839 } 3840 3841 /* 3842 * Find the next thread in the thread list. 3843 * Return NULL if there is an error or no next thread. 3844 * 3845 * The reference to the input task_struct is released. 3846 */ 3847 static struct task_struct *next_tid(struct task_struct *start) 3848 { 3849 struct task_struct *pos = NULL; 3850 rcu_read_lock(); 3851 if (pid_alive(start)) { 3852 pos = __next_thread(start); 3853 if (pos) 3854 get_task_struct(pos); 3855 } 3856 rcu_read_unlock(); 3857 put_task_struct(start); 3858 return pos; 3859 } 3860 3861 /* for the /proc/TGID/task/ directories */ 3862 static int proc_task_readdir(struct file *file, struct dir_context *ctx) 3863 { 3864 struct inode *inode = file_inode(file); 3865 struct task_struct *task; 3866 struct pid_namespace *ns; 3867 int tid; 3868 3869 if (proc_inode_is_dead(inode)) 3870 return -ENOENT; 3871 3872 if (!dir_emit_dots(file, ctx)) 3873 return 0; 3874 3875 /* f_version caches the tgid value that the last readdir call couldn't 3876 * return. lseek aka telldir automagically resets f_version to 0. 3877 */ 3878 ns = proc_pid_ns(inode->i_sb); 3879 tid = (int)file->f_version; 3880 file->f_version = 0; 3881 for (task = first_tid(proc_pid(inode), tid, ctx->pos - 2, ns); 3882 task; 3883 task = next_tid(task), ctx->pos++) { 3884 char name[10 + 1]; 3885 unsigned int len; 3886 3887 tid = task_pid_nr_ns(task, ns); 3888 if (!tid) 3889 continue; /* The task has just exited. */ 3890 len = snprintf(name, sizeof(name), "%u", tid); 3891 if (!proc_fill_cache(file, ctx, name, len, 3892 proc_task_instantiate, task, NULL)) { 3893 /* returning this tgid failed, save it as the first 3894 * pid for the next readir call */ 3895 file->f_version = (u64)tid; 3896 put_task_struct(task); 3897 break; 3898 } 3899 } 3900 3901 return 0; 3902 } 3903 3904 static int proc_task_getattr(struct mnt_idmap *idmap, 3905 const struct path *path, struct kstat *stat, 3906 u32 request_mask, unsigned int query_flags) 3907 { 3908 struct inode *inode = d_inode(path->dentry); 3909 struct task_struct *p = get_proc_task(inode); 3910 generic_fillattr(&nop_mnt_idmap, request_mask, inode, stat); 3911 3912 if (p) { 3913 stat->nlink += get_nr_threads(p); 3914 put_task_struct(p); 3915 } 3916 3917 return 0; 3918 } 3919 3920 static const struct inode_operations proc_task_inode_operations = { 3921 .lookup = proc_task_lookup, 3922 .getattr = proc_task_getattr, 3923 .setattr = proc_setattr, 3924 .permission = proc_pid_permission, 3925 }; 3926 3927 static const struct file_operations proc_task_operations = { 3928 .read = generic_read_dir, 3929 .iterate_shared = proc_task_readdir, 3930 .llseek = generic_file_llseek, 3931 }; 3932 3933 void __init set_proc_pid_nlink(void) 3934 { 3935 nlink_tid = pid_entry_nlink(tid_base_stuff, ARRAY_SIZE(tid_base_stuff)); 3936 nlink_tgid = pid_entry_nlink(tgid_base_stuff, ARRAY_SIZE(tgid_base_stuff)); 3937 } 3938