xref: /linux/fs/proc/base.c (revision bd49666974a12f39eb9c74044e0b1753efcd94c4)
1 /*
2  *  linux/fs/proc/base.c
3  *
4  *  Copyright (C) 1991, 1992 Linus Torvalds
5  *
6  *  proc base directory handling functions
7  *
8  *  1999, Al Viro. Rewritten. Now it covers the whole per-process part.
9  *  Instead of using magical inumbers to determine the kind of object
10  *  we allocate and fill in-core inodes upon lookup. They don't even
11  *  go into icache. We cache the reference to task_struct upon lookup too.
12  *  Eventually it should become a filesystem in its own. We don't use the
13  *  rest of procfs anymore.
14  *
15  *
16  *  Changelog:
17  *  17-Jan-2005
18  *  Allan Bezerra
19  *  Bruna Moreira <bruna.moreira@indt.org.br>
20  *  Edjard Mota <edjard.mota@indt.org.br>
21  *  Ilias Biris <ilias.biris@indt.org.br>
22  *  Mauricio Lin <mauricio.lin@indt.org.br>
23  *
24  *  Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT
25  *
26  *  A new process specific entry (smaps) included in /proc. It shows the
27  *  size of rss for each memory area. The maps entry lacks information
28  *  about physical memory size (rss) for each mapped file, i.e.,
29  *  rss information for executables and library files.
30  *  This additional information is useful for any tools that need to know
31  *  about physical memory consumption for a process specific library.
32  *
33  *  Changelog:
34  *  21-Feb-2005
35  *  Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT
36  *  Pud inclusion in the page table walking.
37  *
38  *  ChangeLog:
39  *  10-Mar-2005
40  *  10LE Instituto Nokia de Tecnologia - INdT:
41  *  A better way to walks through the page table as suggested by Hugh Dickins.
42  *
43  *  Simo Piiroinen <simo.piiroinen@nokia.com>:
44  *  Smaps information related to shared, private, clean and dirty pages.
45  *
46  *  Paul Mundt <paul.mundt@nokia.com>:
47  *  Overall revision about smaps.
48  */
49 
50 #include <asm/uaccess.h>
51 
52 #include <linux/errno.h>
53 #include <linux/time.h>
54 #include <linux/proc_fs.h>
55 #include <linux/stat.h>
56 #include <linux/init.h>
57 #include <linux/capability.h>
58 #include <linux/file.h>
59 #include <linux/string.h>
60 #include <linux/seq_file.h>
61 #include <linux/namei.h>
62 #include <linux/mnt_namespace.h>
63 #include <linux/mm.h>
64 #include <linux/rcupdate.h>
65 #include <linux/kallsyms.h>
66 #include <linux/resource.h>
67 #include <linux/module.h>
68 #include <linux/mount.h>
69 #include <linux/security.h>
70 #include <linux/ptrace.h>
71 #include <linux/cgroup.h>
72 #include <linux/cpuset.h>
73 #include <linux/audit.h>
74 #include <linux/poll.h>
75 #include <linux/nsproxy.h>
76 #include <linux/oom.h>
77 #include <linux/elf.h>
78 #include <linux/pid_namespace.h>
79 #include "internal.h"
80 
81 /* NOTE:
82  *	Implementing inode permission operations in /proc is almost
83  *	certainly an error.  Permission checks need to happen during
84  *	each system call not at open time.  The reason is that most of
85  *	what we wish to check for permissions in /proc varies at runtime.
86  *
87  *	The classic example of a problem is opening file descriptors
88  *	in /proc for a task before it execs a suid executable.
89  */
90 
91 struct pid_entry {
92 	char *name;
93 	int len;
94 	mode_t mode;
95 	const struct inode_operations *iop;
96 	const struct file_operations *fop;
97 	union proc_op op;
98 };
99 
100 #define NOD(NAME, MODE, IOP, FOP, OP) {			\
101 	.name = (NAME),					\
102 	.len  = sizeof(NAME) - 1,			\
103 	.mode = MODE,					\
104 	.iop  = IOP,					\
105 	.fop  = FOP,					\
106 	.op   = OP,					\
107 }
108 
109 #define DIR(NAME, MODE, OTYPE)							\
110 	NOD(NAME, (S_IFDIR|(MODE)),						\
111 		&proc_##OTYPE##_inode_operations, &proc_##OTYPE##_operations,	\
112 		{} )
113 #define LNK(NAME, OTYPE)					\
114 	NOD(NAME, (S_IFLNK|S_IRWXUGO),				\
115 		&proc_pid_link_inode_operations, NULL,		\
116 		{ .proc_get_link = &proc_##OTYPE##_link } )
117 #define REG(NAME, MODE, OTYPE)				\
118 	NOD(NAME, (S_IFREG|(MODE)), NULL,		\
119 		&proc_##OTYPE##_operations, {})
120 #define INF(NAME, MODE, OTYPE)				\
121 	NOD(NAME, (S_IFREG|(MODE)), 			\
122 		NULL, &proc_info_file_operations,	\
123 		{ .proc_read = &proc_##OTYPE } )
124 #define ONE(NAME, MODE, OTYPE)				\
125 	NOD(NAME, (S_IFREG|(MODE)), 			\
126 		NULL, &proc_single_file_operations,	\
127 		{ .proc_show = &proc_##OTYPE } )
128 
129 int maps_protect;
130 EXPORT_SYMBOL(maps_protect);
131 
132 static struct fs_struct *get_fs_struct(struct task_struct *task)
133 {
134 	struct fs_struct *fs;
135 	task_lock(task);
136 	fs = task->fs;
137 	if(fs)
138 		atomic_inc(&fs->count);
139 	task_unlock(task);
140 	return fs;
141 }
142 
143 static int get_nr_threads(struct task_struct *tsk)
144 {
145 	/* Must be called with the rcu_read_lock held */
146 	unsigned long flags;
147 	int count = 0;
148 
149 	if (lock_task_sighand(tsk, &flags)) {
150 		count = atomic_read(&tsk->signal->count);
151 		unlock_task_sighand(tsk, &flags);
152 	}
153 	return count;
154 }
155 
156 static int proc_cwd_link(struct inode *inode, struct path *path)
157 {
158 	struct task_struct *task = get_proc_task(inode);
159 	struct fs_struct *fs = NULL;
160 	int result = -ENOENT;
161 
162 	if (task) {
163 		fs = get_fs_struct(task);
164 		put_task_struct(task);
165 	}
166 	if (fs) {
167 		read_lock(&fs->lock);
168 		*path = fs->pwd;
169 		path_get(&fs->pwd);
170 		read_unlock(&fs->lock);
171 		result = 0;
172 		put_fs_struct(fs);
173 	}
174 	return result;
175 }
176 
177 static int proc_root_link(struct inode *inode, struct path *path)
178 {
179 	struct task_struct *task = get_proc_task(inode);
180 	struct fs_struct *fs = NULL;
181 	int result = -ENOENT;
182 
183 	if (task) {
184 		fs = get_fs_struct(task);
185 		put_task_struct(task);
186 	}
187 	if (fs) {
188 		read_lock(&fs->lock);
189 		*path = fs->root;
190 		path_get(&fs->root);
191 		read_unlock(&fs->lock);
192 		result = 0;
193 		put_fs_struct(fs);
194 	}
195 	return result;
196 }
197 
198 #define MAY_PTRACE(task) \
199 	(task == current || \
200 	(task->parent == current && \
201 	(task->ptrace & PT_PTRACED) && \
202 	 (task_is_stopped_or_traced(task)) && \
203 	 security_ptrace(current,task) == 0))
204 
205 struct mm_struct *mm_for_maps(struct task_struct *task)
206 {
207 	struct mm_struct *mm = get_task_mm(task);
208 	if (!mm)
209 		return NULL;
210 	down_read(&mm->mmap_sem);
211 	task_lock(task);
212 	if (task->mm != mm)
213 		goto out;
214 	if (task->mm != current->mm && __ptrace_may_attach(task) < 0)
215 		goto out;
216 	task_unlock(task);
217 	return mm;
218 out:
219 	task_unlock(task);
220 	up_read(&mm->mmap_sem);
221 	mmput(mm);
222 	return NULL;
223 }
224 
225 static int proc_pid_cmdline(struct task_struct *task, char * buffer)
226 {
227 	int res = 0;
228 	unsigned int len;
229 	struct mm_struct *mm = get_task_mm(task);
230 	if (!mm)
231 		goto out;
232 	if (!mm->arg_end)
233 		goto out_mm;	/* Shh! No looking before we're done */
234 
235  	len = mm->arg_end - mm->arg_start;
236 
237 	if (len > PAGE_SIZE)
238 		len = PAGE_SIZE;
239 
240 	res = access_process_vm(task, mm->arg_start, buffer, len, 0);
241 
242 	// If the nul at the end of args has been overwritten, then
243 	// assume application is using setproctitle(3).
244 	if (res > 0 && buffer[res-1] != '\0' && len < PAGE_SIZE) {
245 		len = strnlen(buffer, res);
246 		if (len < res) {
247 		    res = len;
248 		} else {
249 			len = mm->env_end - mm->env_start;
250 			if (len > PAGE_SIZE - res)
251 				len = PAGE_SIZE - res;
252 			res += access_process_vm(task, mm->env_start, buffer+res, len, 0);
253 			res = strnlen(buffer, res);
254 		}
255 	}
256 out_mm:
257 	mmput(mm);
258 out:
259 	return res;
260 }
261 
262 static int proc_pid_auxv(struct task_struct *task, char *buffer)
263 {
264 	int res = 0;
265 	struct mm_struct *mm = get_task_mm(task);
266 	if (mm) {
267 		unsigned int nwords = 0;
268 		do
269 			nwords += 2;
270 		while (mm->saved_auxv[nwords - 2] != 0); /* AT_NULL */
271 		res = nwords * sizeof(mm->saved_auxv[0]);
272 		if (res > PAGE_SIZE)
273 			res = PAGE_SIZE;
274 		memcpy(buffer, mm->saved_auxv, res);
275 		mmput(mm);
276 	}
277 	return res;
278 }
279 
280 
281 #ifdef CONFIG_KALLSYMS
282 /*
283  * Provides a wchan file via kallsyms in a proper one-value-per-file format.
284  * Returns the resolved symbol.  If that fails, simply return the address.
285  */
286 static int proc_pid_wchan(struct task_struct *task, char *buffer)
287 {
288 	unsigned long wchan;
289 	char symname[KSYM_NAME_LEN];
290 
291 	wchan = get_wchan(task);
292 
293 	if (lookup_symbol_name(wchan, symname) < 0)
294 		return sprintf(buffer, "%lu", wchan);
295 	else
296 		return sprintf(buffer, "%s", symname);
297 }
298 #endif /* CONFIG_KALLSYMS */
299 
300 #ifdef CONFIG_SCHEDSTATS
301 /*
302  * Provides /proc/PID/schedstat
303  */
304 static int proc_pid_schedstat(struct task_struct *task, char *buffer)
305 {
306 	return sprintf(buffer, "%llu %llu %lu\n",
307 			task->sched_info.cpu_time,
308 			task->sched_info.run_delay,
309 			task->sched_info.pcount);
310 }
311 #endif
312 
313 #ifdef CONFIG_LATENCYTOP
314 static int lstats_show_proc(struct seq_file *m, void *v)
315 {
316 	int i;
317 	struct task_struct *task = m->private;
318 	seq_puts(m, "Latency Top version : v0.1\n");
319 
320 	for (i = 0; i < 32; i++) {
321 		if (task->latency_record[i].backtrace[0]) {
322 			int q;
323 			seq_printf(m, "%i %li %li ",
324 				task->latency_record[i].count,
325 				task->latency_record[i].time,
326 				task->latency_record[i].max);
327 			for (q = 0; q < LT_BACKTRACEDEPTH; q++) {
328 				char sym[KSYM_NAME_LEN];
329 				char *c;
330 				if (!task->latency_record[i].backtrace[q])
331 					break;
332 				if (task->latency_record[i].backtrace[q] == ULONG_MAX)
333 					break;
334 				sprint_symbol(sym, task->latency_record[i].backtrace[q]);
335 				c = strchr(sym, '+');
336 				if (c)
337 					*c = 0;
338 				seq_printf(m, "%s ", sym);
339 			}
340 			seq_printf(m, "\n");
341 		}
342 
343 	}
344 	return 0;
345 }
346 
347 static int lstats_open(struct inode *inode, struct file *file)
348 {
349 	int ret;
350 	struct seq_file *m;
351 	struct task_struct *task = get_proc_task(inode);
352 
353 	ret = single_open(file, lstats_show_proc, NULL);
354 	if (!ret) {
355 		m = file->private_data;
356 		m->private = task;
357 	}
358 	return ret;
359 }
360 
361 static ssize_t lstats_write(struct file *file, const char __user *buf,
362 			    size_t count, loff_t *offs)
363 {
364 	struct seq_file *m;
365 	struct task_struct *task;
366 
367 	m = file->private_data;
368 	task = m->private;
369 	clear_all_latency_tracing(task);
370 
371 	return count;
372 }
373 
374 static const struct file_operations proc_lstats_operations = {
375 	.open		= lstats_open,
376 	.read		= seq_read,
377 	.write		= lstats_write,
378 	.llseek		= seq_lseek,
379 	.release	= single_release,
380 };
381 
382 #endif
383 
384 /* The badness from the OOM killer */
385 unsigned long badness(struct task_struct *p, unsigned long uptime);
386 static int proc_oom_score(struct task_struct *task, char *buffer)
387 {
388 	unsigned long points;
389 	struct timespec uptime;
390 
391 	do_posix_clock_monotonic_gettime(&uptime);
392 	read_lock(&tasklist_lock);
393 	points = badness(task, uptime.tv_sec);
394 	read_unlock(&tasklist_lock);
395 	return sprintf(buffer, "%lu\n", points);
396 }
397 
398 struct limit_names {
399 	char *name;
400 	char *unit;
401 };
402 
403 static const struct limit_names lnames[RLIM_NLIMITS] = {
404 	[RLIMIT_CPU] = {"Max cpu time", "ms"},
405 	[RLIMIT_FSIZE] = {"Max file size", "bytes"},
406 	[RLIMIT_DATA] = {"Max data size", "bytes"},
407 	[RLIMIT_STACK] = {"Max stack size", "bytes"},
408 	[RLIMIT_CORE] = {"Max core file size", "bytes"},
409 	[RLIMIT_RSS] = {"Max resident set", "bytes"},
410 	[RLIMIT_NPROC] = {"Max processes", "processes"},
411 	[RLIMIT_NOFILE] = {"Max open files", "files"},
412 	[RLIMIT_MEMLOCK] = {"Max locked memory", "bytes"},
413 	[RLIMIT_AS] = {"Max address space", "bytes"},
414 	[RLIMIT_LOCKS] = {"Max file locks", "locks"},
415 	[RLIMIT_SIGPENDING] = {"Max pending signals", "signals"},
416 	[RLIMIT_MSGQUEUE] = {"Max msgqueue size", "bytes"},
417 	[RLIMIT_NICE] = {"Max nice priority", NULL},
418 	[RLIMIT_RTPRIO] = {"Max realtime priority", NULL},
419 	[RLIMIT_RTTIME] = {"Max realtime timeout", "us"},
420 };
421 
422 /* Display limits for a process */
423 static int proc_pid_limits(struct task_struct *task, char *buffer)
424 {
425 	unsigned int i;
426 	int count = 0;
427 	unsigned long flags;
428 	char *bufptr = buffer;
429 
430 	struct rlimit rlim[RLIM_NLIMITS];
431 
432 	rcu_read_lock();
433 	if (!lock_task_sighand(task,&flags)) {
434 		rcu_read_unlock();
435 		return 0;
436 	}
437 	memcpy(rlim, task->signal->rlim, sizeof(struct rlimit) * RLIM_NLIMITS);
438 	unlock_task_sighand(task, &flags);
439 	rcu_read_unlock();
440 
441 	/*
442 	 * print the file header
443 	 */
444 	count += sprintf(&bufptr[count], "%-25s %-20s %-20s %-10s\n",
445 			"Limit", "Soft Limit", "Hard Limit", "Units");
446 
447 	for (i = 0; i < RLIM_NLIMITS; i++) {
448 		if (rlim[i].rlim_cur == RLIM_INFINITY)
449 			count += sprintf(&bufptr[count], "%-25s %-20s ",
450 					 lnames[i].name, "unlimited");
451 		else
452 			count += sprintf(&bufptr[count], "%-25s %-20lu ",
453 					 lnames[i].name, rlim[i].rlim_cur);
454 
455 		if (rlim[i].rlim_max == RLIM_INFINITY)
456 			count += sprintf(&bufptr[count], "%-20s ", "unlimited");
457 		else
458 			count += sprintf(&bufptr[count], "%-20lu ",
459 					 rlim[i].rlim_max);
460 
461 		if (lnames[i].unit)
462 			count += sprintf(&bufptr[count], "%-10s\n",
463 					 lnames[i].unit);
464 		else
465 			count += sprintf(&bufptr[count], "\n");
466 	}
467 
468 	return count;
469 }
470 
471 /************************************************************************/
472 /*                       Here the fs part begins                        */
473 /************************************************************************/
474 
475 /* permission checks */
476 static int proc_fd_access_allowed(struct inode *inode)
477 {
478 	struct task_struct *task;
479 	int allowed = 0;
480 	/* Allow access to a task's file descriptors if it is us or we
481 	 * may use ptrace attach to the process and find out that
482 	 * information.
483 	 */
484 	task = get_proc_task(inode);
485 	if (task) {
486 		allowed = ptrace_may_attach(task);
487 		put_task_struct(task);
488 	}
489 	return allowed;
490 }
491 
492 static int proc_setattr(struct dentry *dentry, struct iattr *attr)
493 {
494 	int error;
495 	struct inode *inode = dentry->d_inode;
496 
497 	if (attr->ia_valid & ATTR_MODE)
498 		return -EPERM;
499 
500 	error = inode_change_ok(inode, attr);
501 	if (!error)
502 		error = inode_setattr(inode, attr);
503 	return error;
504 }
505 
506 static const struct inode_operations proc_def_inode_operations = {
507 	.setattr	= proc_setattr,
508 };
509 
510 extern const struct seq_operations mounts_op;
511 struct proc_mounts {
512 	struct seq_file m;
513 	int event;
514 };
515 
516 static int mounts_open(struct inode *inode, struct file *file)
517 {
518 	struct task_struct *task = get_proc_task(inode);
519 	struct nsproxy *nsp;
520 	struct mnt_namespace *ns = NULL;
521 	struct proc_mounts *p;
522 	int ret = -EINVAL;
523 
524 	if (task) {
525 		rcu_read_lock();
526 		nsp = task_nsproxy(task);
527 		if (nsp) {
528 			ns = nsp->mnt_ns;
529 			if (ns)
530 				get_mnt_ns(ns);
531 		}
532 		rcu_read_unlock();
533 
534 		put_task_struct(task);
535 	}
536 
537 	if (ns) {
538 		ret = -ENOMEM;
539 		p = kmalloc(sizeof(struct proc_mounts), GFP_KERNEL);
540 		if (p) {
541 			file->private_data = &p->m;
542 			ret = seq_open(file, &mounts_op);
543 			if (!ret) {
544 				p->m.private = ns;
545 				p->event = ns->event;
546 				return 0;
547 			}
548 			kfree(p);
549 		}
550 		put_mnt_ns(ns);
551 	}
552 	return ret;
553 }
554 
555 static int mounts_release(struct inode *inode, struct file *file)
556 {
557 	struct seq_file *m = file->private_data;
558 	struct mnt_namespace *ns = m->private;
559 	put_mnt_ns(ns);
560 	return seq_release(inode, file);
561 }
562 
563 static unsigned mounts_poll(struct file *file, poll_table *wait)
564 {
565 	struct proc_mounts *p = file->private_data;
566 	struct mnt_namespace *ns = p->m.private;
567 	unsigned res = 0;
568 
569 	poll_wait(file, &ns->poll, wait);
570 
571 	spin_lock(&vfsmount_lock);
572 	if (p->event != ns->event) {
573 		p->event = ns->event;
574 		res = POLLERR;
575 	}
576 	spin_unlock(&vfsmount_lock);
577 
578 	return res;
579 }
580 
581 static const struct file_operations proc_mounts_operations = {
582 	.open		= mounts_open,
583 	.read		= seq_read,
584 	.llseek		= seq_lseek,
585 	.release	= mounts_release,
586 	.poll		= mounts_poll,
587 };
588 
589 extern const struct seq_operations mountstats_op;
590 static int mountstats_open(struct inode *inode, struct file *file)
591 {
592 	int ret = seq_open(file, &mountstats_op);
593 
594 	if (!ret) {
595 		struct seq_file *m = file->private_data;
596 		struct nsproxy *nsp;
597 		struct mnt_namespace *mnt_ns = NULL;
598 		struct task_struct *task = get_proc_task(inode);
599 
600 		if (task) {
601 			rcu_read_lock();
602 			nsp = task_nsproxy(task);
603 			if (nsp) {
604 				mnt_ns = nsp->mnt_ns;
605 				if (mnt_ns)
606 					get_mnt_ns(mnt_ns);
607 			}
608 			rcu_read_unlock();
609 
610 			put_task_struct(task);
611 		}
612 
613 		if (mnt_ns)
614 			m->private = mnt_ns;
615 		else {
616 			seq_release(inode, file);
617 			ret = -EINVAL;
618 		}
619 	}
620 	return ret;
621 }
622 
623 static const struct file_operations proc_mountstats_operations = {
624 	.open		= mountstats_open,
625 	.read		= seq_read,
626 	.llseek		= seq_lseek,
627 	.release	= mounts_release,
628 };
629 
630 #define PROC_BLOCK_SIZE	(3*1024)		/* 4K page size but our output routines use some slack for overruns */
631 
632 static ssize_t proc_info_read(struct file * file, char __user * buf,
633 			  size_t count, loff_t *ppos)
634 {
635 	struct inode * inode = file->f_path.dentry->d_inode;
636 	unsigned long page;
637 	ssize_t length;
638 	struct task_struct *task = get_proc_task(inode);
639 
640 	length = -ESRCH;
641 	if (!task)
642 		goto out_no_task;
643 
644 	if (count > PROC_BLOCK_SIZE)
645 		count = PROC_BLOCK_SIZE;
646 
647 	length = -ENOMEM;
648 	if (!(page = __get_free_page(GFP_TEMPORARY)))
649 		goto out;
650 
651 	length = PROC_I(inode)->op.proc_read(task, (char*)page);
652 
653 	if (length >= 0)
654 		length = simple_read_from_buffer(buf, count, ppos, (char *)page, length);
655 	free_page(page);
656 out:
657 	put_task_struct(task);
658 out_no_task:
659 	return length;
660 }
661 
662 static const struct file_operations proc_info_file_operations = {
663 	.read		= proc_info_read,
664 };
665 
666 static int proc_single_show(struct seq_file *m, void *v)
667 {
668 	struct inode *inode = m->private;
669 	struct pid_namespace *ns;
670 	struct pid *pid;
671 	struct task_struct *task;
672 	int ret;
673 
674 	ns = inode->i_sb->s_fs_info;
675 	pid = proc_pid(inode);
676 	task = get_pid_task(pid, PIDTYPE_PID);
677 	if (!task)
678 		return -ESRCH;
679 
680 	ret = PROC_I(inode)->op.proc_show(m, ns, pid, task);
681 
682 	put_task_struct(task);
683 	return ret;
684 }
685 
686 static int proc_single_open(struct inode *inode, struct file *filp)
687 {
688 	int ret;
689 	ret = single_open(filp, proc_single_show, NULL);
690 	if (!ret) {
691 		struct seq_file *m = filp->private_data;
692 
693 		m->private = inode;
694 	}
695 	return ret;
696 }
697 
698 static const struct file_operations proc_single_file_operations = {
699 	.open		= proc_single_open,
700 	.read		= seq_read,
701 	.llseek		= seq_lseek,
702 	.release	= single_release,
703 };
704 
705 static int mem_open(struct inode* inode, struct file* file)
706 {
707 	file->private_data = (void*)((long)current->self_exec_id);
708 	return 0;
709 }
710 
711 static ssize_t mem_read(struct file * file, char __user * buf,
712 			size_t count, loff_t *ppos)
713 {
714 	struct task_struct *task = get_proc_task(file->f_path.dentry->d_inode);
715 	char *page;
716 	unsigned long src = *ppos;
717 	int ret = -ESRCH;
718 	struct mm_struct *mm;
719 
720 	if (!task)
721 		goto out_no_task;
722 
723 	if (!MAY_PTRACE(task) || !ptrace_may_attach(task))
724 		goto out;
725 
726 	ret = -ENOMEM;
727 	page = (char *)__get_free_page(GFP_TEMPORARY);
728 	if (!page)
729 		goto out;
730 
731 	ret = 0;
732 
733 	mm = get_task_mm(task);
734 	if (!mm)
735 		goto out_free;
736 
737 	ret = -EIO;
738 
739 	if (file->private_data != (void*)((long)current->self_exec_id))
740 		goto out_put;
741 
742 	ret = 0;
743 
744 	while (count > 0) {
745 		int this_len, retval;
746 
747 		this_len = (count > PAGE_SIZE) ? PAGE_SIZE : count;
748 		retval = access_process_vm(task, src, page, this_len, 0);
749 		if (!retval || !MAY_PTRACE(task) || !ptrace_may_attach(task)) {
750 			if (!ret)
751 				ret = -EIO;
752 			break;
753 		}
754 
755 		if (copy_to_user(buf, page, retval)) {
756 			ret = -EFAULT;
757 			break;
758 		}
759 
760 		ret += retval;
761 		src += retval;
762 		buf += retval;
763 		count -= retval;
764 	}
765 	*ppos = src;
766 
767 out_put:
768 	mmput(mm);
769 out_free:
770 	free_page((unsigned long) page);
771 out:
772 	put_task_struct(task);
773 out_no_task:
774 	return ret;
775 }
776 
777 #define mem_write NULL
778 
779 #ifndef mem_write
780 /* This is a security hazard */
781 static ssize_t mem_write(struct file * file, const char __user *buf,
782 			 size_t count, loff_t *ppos)
783 {
784 	int copied;
785 	char *page;
786 	struct task_struct *task = get_proc_task(file->f_path.dentry->d_inode);
787 	unsigned long dst = *ppos;
788 
789 	copied = -ESRCH;
790 	if (!task)
791 		goto out_no_task;
792 
793 	if (!MAY_PTRACE(task) || !ptrace_may_attach(task))
794 		goto out;
795 
796 	copied = -ENOMEM;
797 	page = (char *)__get_free_page(GFP_TEMPORARY);
798 	if (!page)
799 		goto out;
800 
801 	copied = 0;
802 	while (count > 0) {
803 		int this_len, retval;
804 
805 		this_len = (count > PAGE_SIZE) ? PAGE_SIZE : count;
806 		if (copy_from_user(page, buf, this_len)) {
807 			copied = -EFAULT;
808 			break;
809 		}
810 		retval = access_process_vm(task, dst, page, this_len, 1);
811 		if (!retval) {
812 			if (!copied)
813 				copied = -EIO;
814 			break;
815 		}
816 		copied += retval;
817 		buf += retval;
818 		dst += retval;
819 		count -= retval;
820 	}
821 	*ppos = dst;
822 	free_page((unsigned long) page);
823 out:
824 	put_task_struct(task);
825 out_no_task:
826 	return copied;
827 }
828 #endif
829 
830 loff_t mem_lseek(struct file *file, loff_t offset, int orig)
831 {
832 	switch (orig) {
833 	case 0:
834 		file->f_pos = offset;
835 		break;
836 	case 1:
837 		file->f_pos += offset;
838 		break;
839 	default:
840 		return -EINVAL;
841 	}
842 	force_successful_syscall_return();
843 	return file->f_pos;
844 }
845 
846 static const struct file_operations proc_mem_operations = {
847 	.llseek		= mem_lseek,
848 	.read		= mem_read,
849 	.write		= mem_write,
850 	.open		= mem_open,
851 };
852 
853 static ssize_t environ_read(struct file *file, char __user *buf,
854 			size_t count, loff_t *ppos)
855 {
856 	struct task_struct *task = get_proc_task(file->f_dentry->d_inode);
857 	char *page;
858 	unsigned long src = *ppos;
859 	int ret = -ESRCH;
860 	struct mm_struct *mm;
861 
862 	if (!task)
863 		goto out_no_task;
864 
865 	if (!ptrace_may_attach(task))
866 		goto out;
867 
868 	ret = -ENOMEM;
869 	page = (char *)__get_free_page(GFP_TEMPORARY);
870 	if (!page)
871 		goto out;
872 
873 	ret = 0;
874 
875 	mm = get_task_mm(task);
876 	if (!mm)
877 		goto out_free;
878 
879 	while (count > 0) {
880 		int this_len, retval, max_len;
881 
882 		this_len = mm->env_end - (mm->env_start + src);
883 
884 		if (this_len <= 0)
885 			break;
886 
887 		max_len = (count > PAGE_SIZE) ? PAGE_SIZE : count;
888 		this_len = (this_len > max_len) ? max_len : this_len;
889 
890 		retval = access_process_vm(task, (mm->env_start + src),
891 			page, this_len, 0);
892 
893 		if (retval <= 0) {
894 			ret = retval;
895 			break;
896 		}
897 
898 		if (copy_to_user(buf, page, retval)) {
899 			ret = -EFAULT;
900 			break;
901 		}
902 
903 		ret += retval;
904 		src += retval;
905 		buf += retval;
906 		count -= retval;
907 	}
908 	*ppos = src;
909 
910 	mmput(mm);
911 out_free:
912 	free_page((unsigned long) page);
913 out:
914 	put_task_struct(task);
915 out_no_task:
916 	return ret;
917 }
918 
919 static const struct file_operations proc_environ_operations = {
920 	.read		= environ_read,
921 };
922 
923 static ssize_t oom_adjust_read(struct file *file, char __user *buf,
924 				size_t count, loff_t *ppos)
925 {
926 	struct task_struct *task = get_proc_task(file->f_path.dentry->d_inode);
927 	char buffer[PROC_NUMBUF];
928 	size_t len;
929 	int oom_adjust;
930 
931 	if (!task)
932 		return -ESRCH;
933 	oom_adjust = task->oomkilladj;
934 	put_task_struct(task);
935 
936 	len = snprintf(buffer, sizeof(buffer), "%i\n", oom_adjust);
937 
938 	return simple_read_from_buffer(buf, count, ppos, buffer, len);
939 }
940 
941 static ssize_t oom_adjust_write(struct file *file, const char __user *buf,
942 				size_t count, loff_t *ppos)
943 {
944 	struct task_struct *task;
945 	char buffer[PROC_NUMBUF], *end;
946 	int oom_adjust;
947 
948 	memset(buffer, 0, sizeof(buffer));
949 	if (count > sizeof(buffer) - 1)
950 		count = sizeof(buffer) - 1;
951 	if (copy_from_user(buffer, buf, count))
952 		return -EFAULT;
953 	oom_adjust = simple_strtol(buffer, &end, 0);
954 	if ((oom_adjust < OOM_ADJUST_MIN || oom_adjust > OOM_ADJUST_MAX) &&
955 	     oom_adjust != OOM_DISABLE)
956 		return -EINVAL;
957 	if (*end == '\n')
958 		end++;
959 	task = get_proc_task(file->f_path.dentry->d_inode);
960 	if (!task)
961 		return -ESRCH;
962 	if (oom_adjust < task->oomkilladj && !capable(CAP_SYS_RESOURCE)) {
963 		put_task_struct(task);
964 		return -EACCES;
965 	}
966 	task->oomkilladj = oom_adjust;
967 	put_task_struct(task);
968 	if (end - buffer == 0)
969 		return -EIO;
970 	return end - buffer;
971 }
972 
973 static const struct file_operations proc_oom_adjust_operations = {
974 	.read		= oom_adjust_read,
975 	.write		= oom_adjust_write,
976 };
977 
978 #ifdef CONFIG_AUDITSYSCALL
979 #define TMPBUFLEN 21
980 static ssize_t proc_loginuid_read(struct file * file, char __user * buf,
981 				  size_t count, loff_t *ppos)
982 {
983 	struct inode * inode = file->f_path.dentry->d_inode;
984 	struct task_struct *task = get_proc_task(inode);
985 	ssize_t length;
986 	char tmpbuf[TMPBUFLEN];
987 
988 	if (!task)
989 		return -ESRCH;
990 	length = scnprintf(tmpbuf, TMPBUFLEN, "%u",
991 				audit_get_loginuid(task));
992 	put_task_struct(task);
993 	return simple_read_from_buffer(buf, count, ppos, tmpbuf, length);
994 }
995 
996 static ssize_t proc_loginuid_write(struct file * file, const char __user * buf,
997 				   size_t count, loff_t *ppos)
998 {
999 	struct inode * inode = file->f_path.dentry->d_inode;
1000 	char *page, *tmp;
1001 	ssize_t length;
1002 	uid_t loginuid;
1003 
1004 	if (!capable(CAP_AUDIT_CONTROL))
1005 		return -EPERM;
1006 
1007 	if (current != pid_task(proc_pid(inode), PIDTYPE_PID))
1008 		return -EPERM;
1009 
1010 	if (count >= PAGE_SIZE)
1011 		count = PAGE_SIZE - 1;
1012 
1013 	if (*ppos != 0) {
1014 		/* No partial writes. */
1015 		return -EINVAL;
1016 	}
1017 	page = (char*)__get_free_page(GFP_TEMPORARY);
1018 	if (!page)
1019 		return -ENOMEM;
1020 	length = -EFAULT;
1021 	if (copy_from_user(page, buf, count))
1022 		goto out_free_page;
1023 
1024 	page[count] = '\0';
1025 	loginuid = simple_strtoul(page, &tmp, 10);
1026 	if (tmp == page) {
1027 		length = -EINVAL;
1028 		goto out_free_page;
1029 
1030 	}
1031 	length = audit_set_loginuid(current, loginuid);
1032 	if (likely(length == 0))
1033 		length = count;
1034 
1035 out_free_page:
1036 	free_page((unsigned long) page);
1037 	return length;
1038 }
1039 
1040 static const struct file_operations proc_loginuid_operations = {
1041 	.read		= proc_loginuid_read,
1042 	.write		= proc_loginuid_write,
1043 };
1044 #endif
1045 
1046 #ifdef CONFIG_FAULT_INJECTION
1047 static ssize_t proc_fault_inject_read(struct file * file, char __user * buf,
1048 				      size_t count, loff_t *ppos)
1049 {
1050 	struct task_struct *task = get_proc_task(file->f_dentry->d_inode);
1051 	char buffer[PROC_NUMBUF];
1052 	size_t len;
1053 	int make_it_fail;
1054 
1055 	if (!task)
1056 		return -ESRCH;
1057 	make_it_fail = task->make_it_fail;
1058 	put_task_struct(task);
1059 
1060 	len = snprintf(buffer, sizeof(buffer), "%i\n", make_it_fail);
1061 
1062 	return simple_read_from_buffer(buf, count, ppos, buffer, len);
1063 }
1064 
1065 static ssize_t proc_fault_inject_write(struct file * file,
1066 			const char __user * buf, size_t count, loff_t *ppos)
1067 {
1068 	struct task_struct *task;
1069 	char buffer[PROC_NUMBUF], *end;
1070 	int make_it_fail;
1071 
1072 	if (!capable(CAP_SYS_RESOURCE))
1073 		return -EPERM;
1074 	memset(buffer, 0, sizeof(buffer));
1075 	if (count > sizeof(buffer) - 1)
1076 		count = sizeof(buffer) - 1;
1077 	if (copy_from_user(buffer, buf, count))
1078 		return -EFAULT;
1079 	make_it_fail = simple_strtol(buffer, &end, 0);
1080 	if (*end == '\n')
1081 		end++;
1082 	task = get_proc_task(file->f_dentry->d_inode);
1083 	if (!task)
1084 		return -ESRCH;
1085 	task->make_it_fail = make_it_fail;
1086 	put_task_struct(task);
1087 	if (end - buffer == 0)
1088 		return -EIO;
1089 	return end - buffer;
1090 }
1091 
1092 static const struct file_operations proc_fault_inject_operations = {
1093 	.read		= proc_fault_inject_read,
1094 	.write		= proc_fault_inject_write,
1095 };
1096 #endif
1097 
1098 
1099 #ifdef CONFIG_SCHED_DEBUG
1100 /*
1101  * Print out various scheduling related per-task fields:
1102  */
1103 static int sched_show(struct seq_file *m, void *v)
1104 {
1105 	struct inode *inode = m->private;
1106 	struct task_struct *p;
1107 
1108 	WARN_ON(!inode);
1109 
1110 	p = get_proc_task(inode);
1111 	if (!p)
1112 		return -ESRCH;
1113 	proc_sched_show_task(p, m);
1114 
1115 	put_task_struct(p);
1116 
1117 	return 0;
1118 }
1119 
1120 static ssize_t
1121 sched_write(struct file *file, const char __user *buf,
1122 	    size_t count, loff_t *offset)
1123 {
1124 	struct inode *inode = file->f_path.dentry->d_inode;
1125 	struct task_struct *p;
1126 
1127 	WARN_ON(!inode);
1128 
1129 	p = get_proc_task(inode);
1130 	if (!p)
1131 		return -ESRCH;
1132 	proc_sched_set_task(p);
1133 
1134 	put_task_struct(p);
1135 
1136 	return count;
1137 }
1138 
1139 static int sched_open(struct inode *inode, struct file *filp)
1140 {
1141 	int ret;
1142 
1143 	ret = single_open(filp, sched_show, NULL);
1144 	if (!ret) {
1145 		struct seq_file *m = filp->private_data;
1146 
1147 		m->private = inode;
1148 	}
1149 	return ret;
1150 }
1151 
1152 static const struct file_operations proc_pid_sched_operations = {
1153 	.open		= sched_open,
1154 	.read		= seq_read,
1155 	.write		= sched_write,
1156 	.llseek		= seq_lseek,
1157 	.release	= single_release,
1158 };
1159 
1160 #endif
1161 
1162 static void *proc_pid_follow_link(struct dentry *dentry, struct nameidata *nd)
1163 {
1164 	struct inode *inode = dentry->d_inode;
1165 	int error = -EACCES;
1166 
1167 	/* We don't need a base pointer in the /proc filesystem */
1168 	path_put(&nd->path);
1169 
1170 	/* Are we allowed to snoop on the tasks file descriptors? */
1171 	if (!proc_fd_access_allowed(inode))
1172 		goto out;
1173 
1174 	error = PROC_I(inode)->op.proc_get_link(inode, &nd->path);
1175 	nd->last_type = LAST_BIND;
1176 out:
1177 	return ERR_PTR(error);
1178 }
1179 
1180 static int do_proc_readlink(struct path *path, char __user *buffer, int buflen)
1181 {
1182 	char *tmp = (char*)__get_free_page(GFP_TEMPORARY);
1183 	char *pathname;
1184 	int len;
1185 
1186 	if (!tmp)
1187 		return -ENOMEM;
1188 
1189 	pathname = d_path(path, tmp, PAGE_SIZE);
1190 	len = PTR_ERR(pathname);
1191 	if (IS_ERR(pathname))
1192 		goto out;
1193 	len = tmp + PAGE_SIZE - 1 - pathname;
1194 
1195 	if (len > buflen)
1196 		len = buflen;
1197 	if (copy_to_user(buffer, pathname, len))
1198 		len = -EFAULT;
1199  out:
1200 	free_page((unsigned long)tmp);
1201 	return len;
1202 }
1203 
1204 static int proc_pid_readlink(struct dentry * dentry, char __user * buffer, int buflen)
1205 {
1206 	int error = -EACCES;
1207 	struct inode *inode = dentry->d_inode;
1208 	struct path path;
1209 
1210 	/* Are we allowed to snoop on the tasks file descriptors? */
1211 	if (!proc_fd_access_allowed(inode))
1212 		goto out;
1213 
1214 	error = PROC_I(inode)->op.proc_get_link(inode, &path);
1215 	if (error)
1216 		goto out;
1217 
1218 	error = do_proc_readlink(&path, buffer, buflen);
1219 	path_put(&path);
1220 out:
1221 	return error;
1222 }
1223 
1224 static const struct inode_operations proc_pid_link_inode_operations = {
1225 	.readlink	= proc_pid_readlink,
1226 	.follow_link	= proc_pid_follow_link,
1227 	.setattr	= proc_setattr,
1228 };
1229 
1230 
1231 /* building an inode */
1232 
1233 static int task_dumpable(struct task_struct *task)
1234 {
1235 	int dumpable = 0;
1236 	struct mm_struct *mm;
1237 
1238 	task_lock(task);
1239 	mm = task->mm;
1240 	if (mm)
1241 		dumpable = get_dumpable(mm);
1242 	task_unlock(task);
1243 	if(dumpable == 1)
1244 		return 1;
1245 	return 0;
1246 }
1247 
1248 
1249 static struct inode *proc_pid_make_inode(struct super_block * sb, struct task_struct *task)
1250 {
1251 	struct inode * inode;
1252 	struct proc_inode *ei;
1253 
1254 	/* We need a new inode */
1255 
1256 	inode = new_inode(sb);
1257 	if (!inode)
1258 		goto out;
1259 
1260 	/* Common stuff */
1261 	ei = PROC_I(inode);
1262 	inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
1263 	inode->i_op = &proc_def_inode_operations;
1264 
1265 	/*
1266 	 * grab the reference to task.
1267 	 */
1268 	ei->pid = get_task_pid(task, PIDTYPE_PID);
1269 	if (!ei->pid)
1270 		goto out_unlock;
1271 
1272 	inode->i_uid = 0;
1273 	inode->i_gid = 0;
1274 	if (task_dumpable(task)) {
1275 		inode->i_uid = task->euid;
1276 		inode->i_gid = task->egid;
1277 	}
1278 	security_task_to_inode(task, inode);
1279 
1280 out:
1281 	return inode;
1282 
1283 out_unlock:
1284 	iput(inode);
1285 	return NULL;
1286 }
1287 
1288 static int pid_getattr(struct vfsmount *mnt, struct dentry *dentry, struct kstat *stat)
1289 {
1290 	struct inode *inode = dentry->d_inode;
1291 	struct task_struct *task;
1292 	generic_fillattr(inode, stat);
1293 
1294 	rcu_read_lock();
1295 	stat->uid = 0;
1296 	stat->gid = 0;
1297 	task = pid_task(proc_pid(inode), PIDTYPE_PID);
1298 	if (task) {
1299 		if ((inode->i_mode == (S_IFDIR|S_IRUGO|S_IXUGO)) ||
1300 		    task_dumpable(task)) {
1301 			stat->uid = task->euid;
1302 			stat->gid = task->egid;
1303 		}
1304 	}
1305 	rcu_read_unlock();
1306 	return 0;
1307 }
1308 
1309 /* dentry stuff */
1310 
1311 /*
1312  *	Exceptional case: normally we are not allowed to unhash a busy
1313  * directory. In this case, however, we can do it - no aliasing problems
1314  * due to the way we treat inodes.
1315  *
1316  * Rewrite the inode's ownerships here because the owning task may have
1317  * performed a setuid(), etc.
1318  *
1319  * Before the /proc/pid/status file was created the only way to read
1320  * the effective uid of a /process was to stat /proc/pid.  Reading
1321  * /proc/pid/status is slow enough that procps and other packages
1322  * kept stating /proc/pid.  To keep the rules in /proc simple I have
1323  * made this apply to all per process world readable and executable
1324  * directories.
1325  */
1326 static int pid_revalidate(struct dentry *dentry, struct nameidata *nd)
1327 {
1328 	struct inode *inode = dentry->d_inode;
1329 	struct task_struct *task = get_proc_task(inode);
1330 	if (task) {
1331 		if ((inode->i_mode == (S_IFDIR|S_IRUGO|S_IXUGO)) ||
1332 		    task_dumpable(task)) {
1333 			inode->i_uid = task->euid;
1334 			inode->i_gid = task->egid;
1335 		} else {
1336 			inode->i_uid = 0;
1337 			inode->i_gid = 0;
1338 		}
1339 		inode->i_mode &= ~(S_ISUID | S_ISGID);
1340 		security_task_to_inode(task, inode);
1341 		put_task_struct(task);
1342 		return 1;
1343 	}
1344 	d_drop(dentry);
1345 	return 0;
1346 }
1347 
1348 static int pid_delete_dentry(struct dentry * dentry)
1349 {
1350 	/* Is the task we represent dead?
1351 	 * If so, then don't put the dentry on the lru list,
1352 	 * kill it immediately.
1353 	 */
1354 	return !proc_pid(dentry->d_inode)->tasks[PIDTYPE_PID].first;
1355 }
1356 
1357 static struct dentry_operations pid_dentry_operations =
1358 {
1359 	.d_revalidate	= pid_revalidate,
1360 	.d_delete	= pid_delete_dentry,
1361 };
1362 
1363 /* Lookups */
1364 
1365 typedef struct dentry *instantiate_t(struct inode *, struct dentry *,
1366 				struct task_struct *, const void *);
1367 
1368 /*
1369  * Fill a directory entry.
1370  *
1371  * If possible create the dcache entry and derive our inode number and
1372  * file type from dcache entry.
1373  *
1374  * Since all of the proc inode numbers are dynamically generated, the inode
1375  * numbers do not exist until the inode is cache.  This means creating the
1376  * the dcache entry in readdir is necessary to keep the inode numbers
1377  * reported by readdir in sync with the inode numbers reported
1378  * by stat.
1379  */
1380 static int proc_fill_cache(struct file *filp, void *dirent, filldir_t filldir,
1381 	char *name, int len,
1382 	instantiate_t instantiate, struct task_struct *task, const void *ptr)
1383 {
1384 	struct dentry *child, *dir = filp->f_path.dentry;
1385 	struct inode *inode;
1386 	struct qstr qname;
1387 	ino_t ino = 0;
1388 	unsigned type = DT_UNKNOWN;
1389 
1390 	qname.name = name;
1391 	qname.len  = len;
1392 	qname.hash = full_name_hash(name, len);
1393 
1394 	child = d_lookup(dir, &qname);
1395 	if (!child) {
1396 		struct dentry *new;
1397 		new = d_alloc(dir, &qname);
1398 		if (new) {
1399 			child = instantiate(dir->d_inode, new, task, ptr);
1400 			if (child)
1401 				dput(new);
1402 			else
1403 				child = new;
1404 		}
1405 	}
1406 	if (!child || IS_ERR(child) || !child->d_inode)
1407 		goto end_instantiate;
1408 	inode = child->d_inode;
1409 	if (inode) {
1410 		ino = inode->i_ino;
1411 		type = inode->i_mode >> 12;
1412 	}
1413 	dput(child);
1414 end_instantiate:
1415 	if (!ino)
1416 		ino = find_inode_number(dir, &qname);
1417 	if (!ino)
1418 		ino = 1;
1419 	return filldir(dirent, name, len, filp->f_pos, ino, type);
1420 }
1421 
1422 static unsigned name_to_int(struct dentry *dentry)
1423 {
1424 	const char *name = dentry->d_name.name;
1425 	int len = dentry->d_name.len;
1426 	unsigned n = 0;
1427 
1428 	if (len > 1 && *name == '0')
1429 		goto out;
1430 	while (len-- > 0) {
1431 		unsigned c = *name++ - '0';
1432 		if (c > 9)
1433 			goto out;
1434 		if (n >= (~0U-9)/10)
1435 			goto out;
1436 		n *= 10;
1437 		n += c;
1438 	}
1439 	return n;
1440 out:
1441 	return ~0U;
1442 }
1443 
1444 #define PROC_FDINFO_MAX 64
1445 
1446 static int proc_fd_info(struct inode *inode, struct path *path, char *info)
1447 {
1448 	struct task_struct *task = get_proc_task(inode);
1449 	struct files_struct *files = NULL;
1450 	struct file *file;
1451 	int fd = proc_fd(inode);
1452 
1453 	if (task) {
1454 		files = get_files_struct(task);
1455 		put_task_struct(task);
1456 	}
1457 	if (files) {
1458 		/*
1459 		 * We are not taking a ref to the file structure, so we must
1460 		 * hold ->file_lock.
1461 		 */
1462 		spin_lock(&files->file_lock);
1463 		file = fcheck_files(files, fd);
1464 		if (file) {
1465 			if (path) {
1466 				*path = file->f_path;
1467 				path_get(&file->f_path);
1468 			}
1469 			if (info)
1470 				snprintf(info, PROC_FDINFO_MAX,
1471 					 "pos:\t%lli\n"
1472 					 "flags:\t0%o\n",
1473 					 (long long) file->f_pos,
1474 					 file->f_flags);
1475 			spin_unlock(&files->file_lock);
1476 			put_files_struct(files);
1477 			return 0;
1478 		}
1479 		spin_unlock(&files->file_lock);
1480 		put_files_struct(files);
1481 	}
1482 	return -ENOENT;
1483 }
1484 
1485 static int proc_fd_link(struct inode *inode, struct path *path)
1486 {
1487 	return proc_fd_info(inode, path, NULL);
1488 }
1489 
1490 static int tid_fd_revalidate(struct dentry *dentry, struct nameidata *nd)
1491 {
1492 	struct inode *inode = dentry->d_inode;
1493 	struct task_struct *task = get_proc_task(inode);
1494 	int fd = proc_fd(inode);
1495 	struct files_struct *files;
1496 
1497 	if (task) {
1498 		files = get_files_struct(task);
1499 		if (files) {
1500 			rcu_read_lock();
1501 			if (fcheck_files(files, fd)) {
1502 				rcu_read_unlock();
1503 				put_files_struct(files);
1504 				if (task_dumpable(task)) {
1505 					inode->i_uid = task->euid;
1506 					inode->i_gid = task->egid;
1507 				} else {
1508 					inode->i_uid = 0;
1509 					inode->i_gid = 0;
1510 				}
1511 				inode->i_mode &= ~(S_ISUID | S_ISGID);
1512 				security_task_to_inode(task, inode);
1513 				put_task_struct(task);
1514 				return 1;
1515 			}
1516 			rcu_read_unlock();
1517 			put_files_struct(files);
1518 		}
1519 		put_task_struct(task);
1520 	}
1521 	d_drop(dentry);
1522 	return 0;
1523 }
1524 
1525 static struct dentry_operations tid_fd_dentry_operations =
1526 {
1527 	.d_revalidate	= tid_fd_revalidate,
1528 	.d_delete	= pid_delete_dentry,
1529 };
1530 
1531 static struct dentry *proc_fd_instantiate(struct inode *dir,
1532 	struct dentry *dentry, struct task_struct *task, const void *ptr)
1533 {
1534 	unsigned fd = *(const unsigned *)ptr;
1535 	struct file *file;
1536 	struct files_struct *files;
1537  	struct inode *inode;
1538  	struct proc_inode *ei;
1539 	struct dentry *error = ERR_PTR(-ENOENT);
1540 
1541 	inode = proc_pid_make_inode(dir->i_sb, task);
1542 	if (!inode)
1543 		goto out;
1544 	ei = PROC_I(inode);
1545 	ei->fd = fd;
1546 	files = get_files_struct(task);
1547 	if (!files)
1548 		goto out_iput;
1549 	inode->i_mode = S_IFLNK;
1550 
1551 	/*
1552 	 * We are not taking a ref to the file structure, so we must
1553 	 * hold ->file_lock.
1554 	 */
1555 	spin_lock(&files->file_lock);
1556 	file = fcheck_files(files, fd);
1557 	if (!file)
1558 		goto out_unlock;
1559 	if (file->f_mode & 1)
1560 		inode->i_mode |= S_IRUSR | S_IXUSR;
1561 	if (file->f_mode & 2)
1562 		inode->i_mode |= S_IWUSR | S_IXUSR;
1563 	spin_unlock(&files->file_lock);
1564 	put_files_struct(files);
1565 
1566 	inode->i_op = &proc_pid_link_inode_operations;
1567 	inode->i_size = 64;
1568 	ei->op.proc_get_link = proc_fd_link;
1569 	dentry->d_op = &tid_fd_dentry_operations;
1570 	d_add(dentry, inode);
1571 	/* Close the race of the process dying before we return the dentry */
1572 	if (tid_fd_revalidate(dentry, NULL))
1573 		error = NULL;
1574 
1575  out:
1576 	return error;
1577 out_unlock:
1578 	spin_unlock(&files->file_lock);
1579 	put_files_struct(files);
1580 out_iput:
1581 	iput(inode);
1582 	goto out;
1583 }
1584 
1585 static struct dentry *proc_lookupfd_common(struct inode *dir,
1586 					   struct dentry *dentry,
1587 					   instantiate_t instantiate)
1588 {
1589 	struct task_struct *task = get_proc_task(dir);
1590 	unsigned fd = name_to_int(dentry);
1591 	struct dentry *result = ERR_PTR(-ENOENT);
1592 
1593 	if (!task)
1594 		goto out_no_task;
1595 	if (fd == ~0U)
1596 		goto out;
1597 
1598 	result = instantiate(dir, dentry, task, &fd);
1599 out:
1600 	put_task_struct(task);
1601 out_no_task:
1602 	return result;
1603 }
1604 
1605 static int proc_readfd_common(struct file * filp, void * dirent,
1606 			      filldir_t filldir, instantiate_t instantiate)
1607 {
1608 	struct dentry *dentry = filp->f_path.dentry;
1609 	struct inode *inode = dentry->d_inode;
1610 	struct task_struct *p = get_proc_task(inode);
1611 	unsigned int fd, ino;
1612 	int retval;
1613 	struct files_struct * files;
1614 	struct fdtable *fdt;
1615 
1616 	retval = -ENOENT;
1617 	if (!p)
1618 		goto out_no_task;
1619 	retval = 0;
1620 
1621 	fd = filp->f_pos;
1622 	switch (fd) {
1623 		case 0:
1624 			if (filldir(dirent, ".", 1, 0, inode->i_ino, DT_DIR) < 0)
1625 				goto out;
1626 			filp->f_pos++;
1627 		case 1:
1628 			ino = parent_ino(dentry);
1629 			if (filldir(dirent, "..", 2, 1, ino, DT_DIR) < 0)
1630 				goto out;
1631 			filp->f_pos++;
1632 		default:
1633 			files = get_files_struct(p);
1634 			if (!files)
1635 				goto out;
1636 			rcu_read_lock();
1637 			fdt = files_fdtable(files);
1638 			for (fd = filp->f_pos-2;
1639 			     fd < fdt->max_fds;
1640 			     fd++, filp->f_pos++) {
1641 				char name[PROC_NUMBUF];
1642 				int len;
1643 
1644 				if (!fcheck_files(files, fd))
1645 					continue;
1646 				rcu_read_unlock();
1647 
1648 				len = snprintf(name, sizeof(name), "%d", fd);
1649 				if (proc_fill_cache(filp, dirent, filldir,
1650 						    name, len, instantiate,
1651 						    p, &fd) < 0) {
1652 					rcu_read_lock();
1653 					break;
1654 				}
1655 				rcu_read_lock();
1656 			}
1657 			rcu_read_unlock();
1658 			put_files_struct(files);
1659 	}
1660 out:
1661 	put_task_struct(p);
1662 out_no_task:
1663 	return retval;
1664 }
1665 
1666 static struct dentry *proc_lookupfd(struct inode *dir, struct dentry *dentry,
1667 				    struct nameidata *nd)
1668 {
1669 	return proc_lookupfd_common(dir, dentry, proc_fd_instantiate);
1670 }
1671 
1672 static int proc_readfd(struct file *filp, void *dirent, filldir_t filldir)
1673 {
1674 	return proc_readfd_common(filp, dirent, filldir, proc_fd_instantiate);
1675 }
1676 
1677 static ssize_t proc_fdinfo_read(struct file *file, char __user *buf,
1678 				      size_t len, loff_t *ppos)
1679 {
1680 	char tmp[PROC_FDINFO_MAX];
1681 	int err = proc_fd_info(file->f_path.dentry->d_inode, NULL, tmp);
1682 	if (!err)
1683 		err = simple_read_from_buffer(buf, len, ppos, tmp, strlen(tmp));
1684 	return err;
1685 }
1686 
1687 static const struct file_operations proc_fdinfo_file_operations = {
1688 	.open		= nonseekable_open,
1689 	.read		= proc_fdinfo_read,
1690 };
1691 
1692 static const struct file_operations proc_fd_operations = {
1693 	.read		= generic_read_dir,
1694 	.readdir	= proc_readfd,
1695 };
1696 
1697 /*
1698  * /proc/pid/fd needs a special permission handler so that a process can still
1699  * access /proc/self/fd after it has executed a setuid().
1700  */
1701 static int proc_fd_permission(struct inode *inode, int mask,
1702 				struct nameidata *nd)
1703 {
1704 	int rv;
1705 
1706 	rv = generic_permission(inode, mask, NULL);
1707 	if (rv == 0)
1708 		return 0;
1709 	if (task_pid(current) == proc_pid(inode))
1710 		rv = 0;
1711 	return rv;
1712 }
1713 
1714 /*
1715  * proc directories can do almost nothing..
1716  */
1717 static const struct inode_operations proc_fd_inode_operations = {
1718 	.lookup		= proc_lookupfd,
1719 	.permission	= proc_fd_permission,
1720 	.setattr	= proc_setattr,
1721 };
1722 
1723 static struct dentry *proc_fdinfo_instantiate(struct inode *dir,
1724 	struct dentry *dentry, struct task_struct *task, const void *ptr)
1725 {
1726 	unsigned fd = *(unsigned *)ptr;
1727  	struct inode *inode;
1728  	struct proc_inode *ei;
1729 	struct dentry *error = ERR_PTR(-ENOENT);
1730 
1731 	inode = proc_pid_make_inode(dir->i_sb, task);
1732 	if (!inode)
1733 		goto out;
1734 	ei = PROC_I(inode);
1735 	ei->fd = fd;
1736 	inode->i_mode = S_IFREG | S_IRUSR;
1737 	inode->i_fop = &proc_fdinfo_file_operations;
1738 	dentry->d_op = &tid_fd_dentry_operations;
1739 	d_add(dentry, inode);
1740 	/* Close the race of the process dying before we return the dentry */
1741 	if (tid_fd_revalidate(dentry, NULL))
1742 		error = NULL;
1743 
1744  out:
1745 	return error;
1746 }
1747 
1748 static struct dentry *proc_lookupfdinfo(struct inode *dir,
1749 					struct dentry *dentry,
1750 					struct nameidata *nd)
1751 {
1752 	return proc_lookupfd_common(dir, dentry, proc_fdinfo_instantiate);
1753 }
1754 
1755 static int proc_readfdinfo(struct file *filp, void *dirent, filldir_t filldir)
1756 {
1757 	return proc_readfd_common(filp, dirent, filldir,
1758 				  proc_fdinfo_instantiate);
1759 }
1760 
1761 static const struct file_operations proc_fdinfo_operations = {
1762 	.read		= generic_read_dir,
1763 	.readdir	= proc_readfdinfo,
1764 };
1765 
1766 /*
1767  * proc directories can do almost nothing..
1768  */
1769 static const struct inode_operations proc_fdinfo_inode_operations = {
1770 	.lookup		= proc_lookupfdinfo,
1771 	.setattr	= proc_setattr,
1772 };
1773 
1774 
1775 static struct dentry *proc_pident_instantiate(struct inode *dir,
1776 	struct dentry *dentry, struct task_struct *task, const void *ptr)
1777 {
1778 	const struct pid_entry *p = ptr;
1779 	struct inode *inode;
1780 	struct proc_inode *ei;
1781 	struct dentry *error = ERR_PTR(-EINVAL);
1782 
1783 	inode = proc_pid_make_inode(dir->i_sb, task);
1784 	if (!inode)
1785 		goto out;
1786 
1787 	ei = PROC_I(inode);
1788 	inode->i_mode = p->mode;
1789 	if (S_ISDIR(inode->i_mode))
1790 		inode->i_nlink = 2;	/* Use getattr to fix if necessary */
1791 	if (p->iop)
1792 		inode->i_op = p->iop;
1793 	if (p->fop)
1794 		inode->i_fop = p->fop;
1795 	ei->op = p->op;
1796 	dentry->d_op = &pid_dentry_operations;
1797 	d_add(dentry, inode);
1798 	/* Close the race of the process dying before we return the dentry */
1799 	if (pid_revalidate(dentry, NULL))
1800 		error = NULL;
1801 out:
1802 	return error;
1803 }
1804 
1805 static struct dentry *proc_pident_lookup(struct inode *dir,
1806 					 struct dentry *dentry,
1807 					 const struct pid_entry *ents,
1808 					 unsigned int nents)
1809 {
1810 	struct inode *inode;
1811 	struct dentry *error;
1812 	struct task_struct *task = get_proc_task(dir);
1813 	const struct pid_entry *p, *last;
1814 
1815 	error = ERR_PTR(-ENOENT);
1816 	inode = NULL;
1817 
1818 	if (!task)
1819 		goto out_no_task;
1820 
1821 	/*
1822 	 * Yes, it does not scale. And it should not. Don't add
1823 	 * new entries into /proc/<tgid>/ without very good reasons.
1824 	 */
1825 	last = &ents[nents - 1];
1826 	for (p = ents; p <= last; p++) {
1827 		if (p->len != dentry->d_name.len)
1828 			continue;
1829 		if (!memcmp(dentry->d_name.name, p->name, p->len))
1830 			break;
1831 	}
1832 	if (p > last)
1833 		goto out;
1834 
1835 	error = proc_pident_instantiate(dir, dentry, task, p);
1836 out:
1837 	put_task_struct(task);
1838 out_no_task:
1839 	return error;
1840 }
1841 
1842 static int proc_pident_fill_cache(struct file *filp, void *dirent,
1843 	filldir_t filldir, struct task_struct *task, const struct pid_entry *p)
1844 {
1845 	return proc_fill_cache(filp, dirent, filldir, p->name, p->len,
1846 				proc_pident_instantiate, task, p);
1847 }
1848 
1849 static int proc_pident_readdir(struct file *filp,
1850 		void *dirent, filldir_t filldir,
1851 		const struct pid_entry *ents, unsigned int nents)
1852 {
1853 	int i;
1854 	struct dentry *dentry = filp->f_path.dentry;
1855 	struct inode *inode = dentry->d_inode;
1856 	struct task_struct *task = get_proc_task(inode);
1857 	const struct pid_entry *p, *last;
1858 	ino_t ino;
1859 	int ret;
1860 
1861 	ret = -ENOENT;
1862 	if (!task)
1863 		goto out_no_task;
1864 
1865 	ret = 0;
1866 	i = filp->f_pos;
1867 	switch (i) {
1868 	case 0:
1869 		ino = inode->i_ino;
1870 		if (filldir(dirent, ".", 1, i, ino, DT_DIR) < 0)
1871 			goto out;
1872 		i++;
1873 		filp->f_pos++;
1874 		/* fall through */
1875 	case 1:
1876 		ino = parent_ino(dentry);
1877 		if (filldir(dirent, "..", 2, i, ino, DT_DIR) < 0)
1878 			goto out;
1879 		i++;
1880 		filp->f_pos++;
1881 		/* fall through */
1882 	default:
1883 		i -= 2;
1884 		if (i >= nents) {
1885 			ret = 1;
1886 			goto out;
1887 		}
1888 		p = ents + i;
1889 		last = &ents[nents - 1];
1890 		while (p <= last) {
1891 			if (proc_pident_fill_cache(filp, dirent, filldir, task, p) < 0)
1892 				goto out;
1893 			filp->f_pos++;
1894 			p++;
1895 		}
1896 	}
1897 
1898 	ret = 1;
1899 out:
1900 	put_task_struct(task);
1901 out_no_task:
1902 	return ret;
1903 }
1904 
1905 #ifdef CONFIG_SECURITY
1906 static ssize_t proc_pid_attr_read(struct file * file, char __user * buf,
1907 				  size_t count, loff_t *ppos)
1908 {
1909 	struct inode * inode = file->f_path.dentry->d_inode;
1910 	char *p = NULL;
1911 	ssize_t length;
1912 	struct task_struct *task = get_proc_task(inode);
1913 
1914 	if (!task)
1915 		return -ESRCH;
1916 
1917 	length = security_getprocattr(task,
1918 				      (char*)file->f_path.dentry->d_name.name,
1919 				      &p);
1920 	put_task_struct(task);
1921 	if (length > 0)
1922 		length = simple_read_from_buffer(buf, count, ppos, p, length);
1923 	kfree(p);
1924 	return length;
1925 }
1926 
1927 static ssize_t proc_pid_attr_write(struct file * file, const char __user * buf,
1928 				   size_t count, loff_t *ppos)
1929 {
1930 	struct inode * inode = file->f_path.dentry->d_inode;
1931 	char *page;
1932 	ssize_t length;
1933 	struct task_struct *task = get_proc_task(inode);
1934 
1935 	length = -ESRCH;
1936 	if (!task)
1937 		goto out_no_task;
1938 	if (count > PAGE_SIZE)
1939 		count = PAGE_SIZE;
1940 
1941 	/* No partial writes. */
1942 	length = -EINVAL;
1943 	if (*ppos != 0)
1944 		goto out;
1945 
1946 	length = -ENOMEM;
1947 	page = (char*)__get_free_page(GFP_TEMPORARY);
1948 	if (!page)
1949 		goto out;
1950 
1951 	length = -EFAULT;
1952 	if (copy_from_user(page, buf, count))
1953 		goto out_free;
1954 
1955 	length = security_setprocattr(task,
1956 				      (char*)file->f_path.dentry->d_name.name,
1957 				      (void*)page, count);
1958 out_free:
1959 	free_page((unsigned long) page);
1960 out:
1961 	put_task_struct(task);
1962 out_no_task:
1963 	return length;
1964 }
1965 
1966 static const struct file_operations proc_pid_attr_operations = {
1967 	.read		= proc_pid_attr_read,
1968 	.write		= proc_pid_attr_write,
1969 };
1970 
1971 static const struct pid_entry attr_dir_stuff[] = {
1972 	REG("current",    S_IRUGO|S_IWUGO, pid_attr),
1973 	REG("prev",       S_IRUGO,	   pid_attr),
1974 	REG("exec",       S_IRUGO|S_IWUGO, pid_attr),
1975 	REG("fscreate",   S_IRUGO|S_IWUGO, pid_attr),
1976 	REG("keycreate",  S_IRUGO|S_IWUGO, pid_attr),
1977 	REG("sockcreate", S_IRUGO|S_IWUGO, pid_attr),
1978 };
1979 
1980 static int proc_attr_dir_readdir(struct file * filp,
1981 			     void * dirent, filldir_t filldir)
1982 {
1983 	return proc_pident_readdir(filp,dirent,filldir,
1984 				   attr_dir_stuff,ARRAY_SIZE(attr_dir_stuff));
1985 }
1986 
1987 static const struct file_operations proc_attr_dir_operations = {
1988 	.read		= generic_read_dir,
1989 	.readdir	= proc_attr_dir_readdir,
1990 };
1991 
1992 static struct dentry *proc_attr_dir_lookup(struct inode *dir,
1993 				struct dentry *dentry, struct nameidata *nd)
1994 {
1995 	return proc_pident_lookup(dir, dentry,
1996 				  attr_dir_stuff, ARRAY_SIZE(attr_dir_stuff));
1997 }
1998 
1999 static const struct inode_operations proc_attr_dir_inode_operations = {
2000 	.lookup		= proc_attr_dir_lookup,
2001 	.getattr	= pid_getattr,
2002 	.setattr	= proc_setattr,
2003 };
2004 
2005 #endif
2006 
2007 #if defined(USE_ELF_CORE_DUMP) && defined(CONFIG_ELF_CORE)
2008 static ssize_t proc_coredump_filter_read(struct file *file, char __user *buf,
2009 					 size_t count, loff_t *ppos)
2010 {
2011 	struct task_struct *task = get_proc_task(file->f_dentry->d_inode);
2012 	struct mm_struct *mm;
2013 	char buffer[PROC_NUMBUF];
2014 	size_t len;
2015 	int ret;
2016 
2017 	if (!task)
2018 		return -ESRCH;
2019 
2020 	ret = 0;
2021 	mm = get_task_mm(task);
2022 	if (mm) {
2023 		len = snprintf(buffer, sizeof(buffer), "%08lx\n",
2024 			       ((mm->flags & MMF_DUMP_FILTER_MASK) >>
2025 				MMF_DUMP_FILTER_SHIFT));
2026 		mmput(mm);
2027 		ret = simple_read_from_buffer(buf, count, ppos, buffer, len);
2028 	}
2029 
2030 	put_task_struct(task);
2031 
2032 	return ret;
2033 }
2034 
2035 static ssize_t proc_coredump_filter_write(struct file *file,
2036 					  const char __user *buf,
2037 					  size_t count,
2038 					  loff_t *ppos)
2039 {
2040 	struct task_struct *task;
2041 	struct mm_struct *mm;
2042 	char buffer[PROC_NUMBUF], *end;
2043 	unsigned int val;
2044 	int ret;
2045 	int i;
2046 	unsigned long mask;
2047 
2048 	ret = -EFAULT;
2049 	memset(buffer, 0, sizeof(buffer));
2050 	if (count > sizeof(buffer) - 1)
2051 		count = sizeof(buffer) - 1;
2052 	if (copy_from_user(buffer, buf, count))
2053 		goto out_no_task;
2054 
2055 	ret = -EINVAL;
2056 	val = (unsigned int)simple_strtoul(buffer, &end, 0);
2057 	if (*end == '\n')
2058 		end++;
2059 	if (end - buffer == 0)
2060 		goto out_no_task;
2061 
2062 	ret = -ESRCH;
2063 	task = get_proc_task(file->f_dentry->d_inode);
2064 	if (!task)
2065 		goto out_no_task;
2066 
2067 	ret = end - buffer;
2068 	mm = get_task_mm(task);
2069 	if (!mm)
2070 		goto out_no_mm;
2071 
2072 	for (i = 0, mask = 1; i < MMF_DUMP_FILTER_BITS; i++, mask <<= 1) {
2073 		if (val & mask)
2074 			set_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags);
2075 		else
2076 			clear_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags);
2077 	}
2078 
2079 	mmput(mm);
2080  out_no_mm:
2081 	put_task_struct(task);
2082  out_no_task:
2083 	return ret;
2084 }
2085 
2086 static const struct file_operations proc_coredump_filter_operations = {
2087 	.read		= proc_coredump_filter_read,
2088 	.write		= proc_coredump_filter_write,
2089 };
2090 #endif
2091 
2092 /*
2093  * /proc/self:
2094  */
2095 static int proc_self_readlink(struct dentry *dentry, char __user *buffer,
2096 			      int buflen)
2097 {
2098 	struct pid_namespace *ns = dentry->d_sb->s_fs_info;
2099 	pid_t tgid = task_tgid_nr_ns(current, ns);
2100 	char tmp[PROC_NUMBUF];
2101 	if (!tgid)
2102 		return -ENOENT;
2103 	sprintf(tmp, "%d", tgid);
2104 	return vfs_readlink(dentry,buffer,buflen,tmp);
2105 }
2106 
2107 static void *proc_self_follow_link(struct dentry *dentry, struct nameidata *nd)
2108 {
2109 	struct pid_namespace *ns = dentry->d_sb->s_fs_info;
2110 	pid_t tgid = task_tgid_nr_ns(current, ns);
2111 	char tmp[PROC_NUMBUF];
2112 	if (!tgid)
2113 		return ERR_PTR(-ENOENT);
2114 	sprintf(tmp, "%d", task_tgid_nr_ns(current, ns));
2115 	return ERR_PTR(vfs_follow_link(nd,tmp));
2116 }
2117 
2118 static const struct inode_operations proc_self_inode_operations = {
2119 	.readlink	= proc_self_readlink,
2120 	.follow_link	= proc_self_follow_link,
2121 };
2122 
2123 /*
2124  * proc base
2125  *
2126  * These are the directory entries in the root directory of /proc
2127  * that properly belong to the /proc filesystem, as they describe
2128  * describe something that is process related.
2129  */
2130 static const struct pid_entry proc_base_stuff[] = {
2131 	NOD("self", S_IFLNK|S_IRWXUGO,
2132 		&proc_self_inode_operations, NULL, {}),
2133 };
2134 
2135 /*
2136  *	Exceptional case: normally we are not allowed to unhash a busy
2137  * directory. In this case, however, we can do it - no aliasing problems
2138  * due to the way we treat inodes.
2139  */
2140 static int proc_base_revalidate(struct dentry *dentry, struct nameidata *nd)
2141 {
2142 	struct inode *inode = dentry->d_inode;
2143 	struct task_struct *task = get_proc_task(inode);
2144 	if (task) {
2145 		put_task_struct(task);
2146 		return 1;
2147 	}
2148 	d_drop(dentry);
2149 	return 0;
2150 }
2151 
2152 static struct dentry_operations proc_base_dentry_operations =
2153 {
2154 	.d_revalidate	= proc_base_revalidate,
2155 	.d_delete	= pid_delete_dentry,
2156 };
2157 
2158 static struct dentry *proc_base_instantiate(struct inode *dir,
2159 	struct dentry *dentry, struct task_struct *task, const void *ptr)
2160 {
2161 	const struct pid_entry *p = ptr;
2162 	struct inode *inode;
2163 	struct proc_inode *ei;
2164 	struct dentry *error = ERR_PTR(-EINVAL);
2165 
2166 	/* Allocate the inode */
2167 	error = ERR_PTR(-ENOMEM);
2168 	inode = new_inode(dir->i_sb);
2169 	if (!inode)
2170 		goto out;
2171 
2172 	/* Initialize the inode */
2173 	ei = PROC_I(inode);
2174 	inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
2175 
2176 	/*
2177 	 * grab the reference to the task.
2178 	 */
2179 	ei->pid = get_task_pid(task, PIDTYPE_PID);
2180 	if (!ei->pid)
2181 		goto out_iput;
2182 
2183 	inode->i_uid = 0;
2184 	inode->i_gid = 0;
2185 	inode->i_mode = p->mode;
2186 	if (S_ISDIR(inode->i_mode))
2187 		inode->i_nlink = 2;
2188 	if (S_ISLNK(inode->i_mode))
2189 		inode->i_size = 64;
2190 	if (p->iop)
2191 		inode->i_op = p->iop;
2192 	if (p->fop)
2193 		inode->i_fop = p->fop;
2194 	ei->op = p->op;
2195 	dentry->d_op = &proc_base_dentry_operations;
2196 	d_add(dentry, inode);
2197 	error = NULL;
2198 out:
2199 	return error;
2200 out_iput:
2201 	iput(inode);
2202 	goto out;
2203 }
2204 
2205 static struct dentry *proc_base_lookup(struct inode *dir, struct dentry *dentry)
2206 {
2207 	struct dentry *error;
2208 	struct task_struct *task = get_proc_task(dir);
2209 	const struct pid_entry *p, *last;
2210 
2211 	error = ERR_PTR(-ENOENT);
2212 
2213 	if (!task)
2214 		goto out_no_task;
2215 
2216 	/* Lookup the directory entry */
2217 	last = &proc_base_stuff[ARRAY_SIZE(proc_base_stuff) - 1];
2218 	for (p = proc_base_stuff; p <= last; p++) {
2219 		if (p->len != dentry->d_name.len)
2220 			continue;
2221 		if (!memcmp(dentry->d_name.name, p->name, p->len))
2222 			break;
2223 	}
2224 	if (p > last)
2225 		goto out;
2226 
2227 	error = proc_base_instantiate(dir, dentry, task, p);
2228 
2229 out:
2230 	put_task_struct(task);
2231 out_no_task:
2232 	return error;
2233 }
2234 
2235 static int proc_base_fill_cache(struct file *filp, void *dirent,
2236 	filldir_t filldir, struct task_struct *task, const struct pid_entry *p)
2237 {
2238 	return proc_fill_cache(filp, dirent, filldir, p->name, p->len,
2239 				proc_base_instantiate, task, p);
2240 }
2241 
2242 #ifdef CONFIG_TASK_IO_ACCOUNTING
2243 static int proc_pid_io_accounting(struct task_struct *task, char *buffer)
2244 {
2245 	return sprintf(buffer,
2246 #ifdef CONFIG_TASK_XACCT
2247 			"rchar: %llu\n"
2248 			"wchar: %llu\n"
2249 			"syscr: %llu\n"
2250 			"syscw: %llu\n"
2251 #endif
2252 			"read_bytes: %llu\n"
2253 			"write_bytes: %llu\n"
2254 			"cancelled_write_bytes: %llu\n",
2255 #ifdef CONFIG_TASK_XACCT
2256 			(unsigned long long)task->rchar,
2257 			(unsigned long long)task->wchar,
2258 			(unsigned long long)task->syscr,
2259 			(unsigned long long)task->syscw,
2260 #endif
2261 			(unsigned long long)task->ioac.read_bytes,
2262 			(unsigned long long)task->ioac.write_bytes,
2263 			(unsigned long long)task->ioac.cancelled_write_bytes);
2264 }
2265 #endif
2266 
2267 /*
2268  * Thread groups
2269  */
2270 static const struct file_operations proc_task_operations;
2271 static const struct inode_operations proc_task_inode_operations;
2272 
2273 static const struct pid_entry tgid_base_stuff[] = {
2274 	DIR("task",       S_IRUGO|S_IXUGO, task),
2275 	DIR("fd",         S_IRUSR|S_IXUSR, fd),
2276 	DIR("fdinfo",     S_IRUSR|S_IXUSR, fdinfo),
2277 	REG("environ",    S_IRUSR, environ),
2278 	INF("auxv",       S_IRUSR, pid_auxv),
2279 	ONE("status",     S_IRUGO, pid_status),
2280 	INF("limits",	  S_IRUSR, pid_limits),
2281 #ifdef CONFIG_SCHED_DEBUG
2282 	REG("sched",      S_IRUGO|S_IWUSR, pid_sched),
2283 #endif
2284 	INF("cmdline",    S_IRUGO, pid_cmdline),
2285 	ONE("stat",       S_IRUGO, tgid_stat),
2286 	ONE("statm",      S_IRUGO, pid_statm),
2287 	REG("maps",       S_IRUGO, maps),
2288 #ifdef CONFIG_NUMA
2289 	REG("numa_maps",  S_IRUGO, numa_maps),
2290 #endif
2291 	REG("mem",        S_IRUSR|S_IWUSR, mem),
2292 	LNK("cwd",        cwd),
2293 	LNK("root",       root),
2294 	LNK("exe",        exe),
2295 	REG("mounts",     S_IRUGO, mounts),
2296 	REG("mountstats", S_IRUSR, mountstats),
2297 #ifdef CONFIG_PROC_PAGE_MONITOR
2298 	REG("clear_refs", S_IWUSR, clear_refs),
2299 	REG("smaps",      S_IRUGO, smaps),
2300 	REG("pagemap",    S_IRUSR, pagemap),
2301 #endif
2302 #ifdef CONFIG_SECURITY
2303 	DIR("attr",       S_IRUGO|S_IXUGO, attr_dir),
2304 #endif
2305 #ifdef CONFIG_KALLSYMS
2306 	INF("wchan",      S_IRUGO, pid_wchan),
2307 #endif
2308 #ifdef CONFIG_SCHEDSTATS
2309 	INF("schedstat",  S_IRUGO, pid_schedstat),
2310 #endif
2311 #ifdef CONFIG_LATENCYTOP
2312 	REG("latency",  S_IRUGO, lstats),
2313 #endif
2314 #ifdef CONFIG_PROC_PID_CPUSET
2315 	REG("cpuset",     S_IRUGO, cpuset),
2316 #endif
2317 #ifdef CONFIG_CGROUPS
2318 	REG("cgroup",  S_IRUGO, cgroup),
2319 #endif
2320 	INF("oom_score",  S_IRUGO, oom_score),
2321 	REG("oom_adj",    S_IRUGO|S_IWUSR, oom_adjust),
2322 #ifdef CONFIG_AUDITSYSCALL
2323 	REG("loginuid",   S_IWUSR|S_IRUGO, loginuid),
2324 #endif
2325 #ifdef CONFIG_FAULT_INJECTION
2326 	REG("make-it-fail", S_IRUGO|S_IWUSR, fault_inject),
2327 #endif
2328 #if defined(USE_ELF_CORE_DUMP) && defined(CONFIG_ELF_CORE)
2329 	REG("coredump_filter", S_IRUGO|S_IWUSR, coredump_filter),
2330 #endif
2331 #ifdef CONFIG_TASK_IO_ACCOUNTING
2332 	INF("io",	S_IRUGO, pid_io_accounting),
2333 #endif
2334 };
2335 
2336 static int proc_tgid_base_readdir(struct file * filp,
2337 			     void * dirent, filldir_t filldir)
2338 {
2339 	return proc_pident_readdir(filp,dirent,filldir,
2340 				   tgid_base_stuff,ARRAY_SIZE(tgid_base_stuff));
2341 }
2342 
2343 static const struct file_operations proc_tgid_base_operations = {
2344 	.read		= generic_read_dir,
2345 	.readdir	= proc_tgid_base_readdir,
2346 };
2347 
2348 static struct dentry *proc_tgid_base_lookup(struct inode *dir, struct dentry *dentry, struct nameidata *nd){
2349 	return proc_pident_lookup(dir, dentry,
2350 				  tgid_base_stuff, ARRAY_SIZE(tgid_base_stuff));
2351 }
2352 
2353 static const struct inode_operations proc_tgid_base_inode_operations = {
2354 	.lookup		= proc_tgid_base_lookup,
2355 	.getattr	= pid_getattr,
2356 	.setattr	= proc_setattr,
2357 };
2358 
2359 static void proc_flush_task_mnt(struct vfsmount *mnt, pid_t pid, pid_t tgid)
2360 {
2361 	struct dentry *dentry, *leader, *dir;
2362 	char buf[PROC_NUMBUF];
2363 	struct qstr name;
2364 
2365 	name.name = buf;
2366 	name.len = snprintf(buf, sizeof(buf), "%d", pid);
2367 	dentry = d_hash_and_lookup(mnt->mnt_root, &name);
2368 	if (dentry) {
2369 		if (!(current->flags & PF_EXITING))
2370 			shrink_dcache_parent(dentry);
2371 		d_drop(dentry);
2372 		dput(dentry);
2373 	}
2374 
2375 	if (tgid == 0)
2376 		goto out;
2377 
2378 	name.name = buf;
2379 	name.len = snprintf(buf, sizeof(buf), "%d", tgid);
2380 	leader = d_hash_and_lookup(mnt->mnt_root, &name);
2381 	if (!leader)
2382 		goto out;
2383 
2384 	name.name = "task";
2385 	name.len = strlen(name.name);
2386 	dir = d_hash_and_lookup(leader, &name);
2387 	if (!dir)
2388 		goto out_put_leader;
2389 
2390 	name.name = buf;
2391 	name.len = snprintf(buf, sizeof(buf), "%d", pid);
2392 	dentry = d_hash_and_lookup(dir, &name);
2393 	if (dentry) {
2394 		shrink_dcache_parent(dentry);
2395 		d_drop(dentry);
2396 		dput(dentry);
2397 	}
2398 
2399 	dput(dir);
2400 out_put_leader:
2401 	dput(leader);
2402 out:
2403 	return;
2404 }
2405 
2406 /**
2407  * proc_flush_task -  Remove dcache entries for @task from the /proc dcache.
2408  * @task: task that should be flushed.
2409  *
2410  * When flushing dentries from proc, one needs to flush them from global
2411  * proc (proc_mnt) and from all the namespaces' procs this task was seen
2412  * in. This call is supposed to do all of this job.
2413  *
2414  * Looks in the dcache for
2415  * /proc/@pid
2416  * /proc/@tgid/task/@pid
2417  * if either directory is present flushes it and all of it'ts children
2418  * from the dcache.
2419  *
2420  * It is safe and reasonable to cache /proc entries for a task until
2421  * that task exits.  After that they just clog up the dcache with
2422  * useless entries, possibly causing useful dcache entries to be
2423  * flushed instead.  This routine is proved to flush those useless
2424  * dcache entries at process exit time.
2425  *
2426  * NOTE: This routine is just an optimization so it does not guarantee
2427  *       that no dcache entries will exist at process exit time it
2428  *       just makes it very unlikely that any will persist.
2429  */
2430 
2431 void proc_flush_task(struct task_struct *task)
2432 {
2433 	int i;
2434 	struct pid *pid, *tgid = NULL;
2435 	struct upid *upid;
2436 
2437 	pid = task_pid(task);
2438 	if (thread_group_leader(task))
2439 		tgid = task_tgid(task);
2440 
2441 	for (i = 0; i <= pid->level; i++) {
2442 		upid = &pid->numbers[i];
2443 		proc_flush_task_mnt(upid->ns->proc_mnt, upid->nr,
2444 			tgid ? tgid->numbers[i].nr : 0);
2445 	}
2446 
2447 	upid = &pid->numbers[pid->level];
2448 	if (upid->nr == 1)
2449 		pid_ns_release_proc(upid->ns);
2450 }
2451 
2452 static struct dentry *proc_pid_instantiate(struct inode *dir,
2453 					   struct dentry * dentry,
2454 					   struct task_struct *task, const void *ptr)
2455 {
2456 	struct dentry *error = ERR_PTR(-ENOENT);
2457 	struct inode *inode;
2458 
2459 	inode = proc_pid_make_inode(dir->i_sb, task);
2460 	if (!inode)
2461 		goto out;
2462 
2463 	inode->i_mode = S_IFDIR|S_IRUGO|S_IXUGO;
2464 	inode->i_op = &proc_tgid_base_inode_operations;
2465 	inode->i_fop = &proc_tgid_base_operations;
2466 	inode->i_flags|=S_IMMUTABLE;
2467 	inode->i_nlink = 5;
2468 #ifdef CONFIG_SECURITY
2469 	inode->i_nlink += 1;
2470 #endif
2471 
2472 	dentry->d_op = &pid_dentry_operations;
2473 
2474 	d_add(dentry, inode);
2475 	/* Close the race of the process dying before we return the dentry */
2476 	if (pid_revalidate(dentry, NULL))
2477 		error = NULL;
2478 out:
2479 	return error;
2480 }
2481 
2482 struct dentry *proc_pid_lookup(struct inode *dir, struct dentry * dentry, struct nameidata *nd)
2483 {
2484 	struct dentry *result = ERR_PTR(-ENOENT);
2485 	struct task_struct *task;
2486 	unsigned tgid;
2487 	struct pid_namespace *ns;
2488 
2489 	result = proc_base_lookup(dir, dentry);
2490 	if (!IS_ERR(result) || PTR_ERR(result) != -ENOENT)
2491 		goto out;
2492 
2493 	tgid = name_to_int(dentry);
2494 	if (tgid == ~0U)
2495 		goto out;
2496 
2497 	ns = dentry->d_sb->s_fs_info;
2498 	rcu_read_lock();
2499 	task = find_task_by_pid_ns(tgid, ns);
2500 	if (task)
2501 		get_task_struct(task);
2502 	rcu_read_unlock();
2503 	if (!task)
2504 		goto out;
2505 
2506 	result = proc_pid_instantiate(dir, dentry, task, NULL);
2507 	put_task_struct(task);
2508 out:
2509 	return result;
2510 }
2511 
2512 /*
2513  * Find the first task with tgid >= tgid
2514  *
2515  */
2516 struct tgid_iter {
2517 	unsigned int tgid;
2518 	struct task_struct *task;
2519 };
2520 static struct tgid_iter next_tgid(struct pid_namespace *ns, struct tgid_iter iter)
2521 {
2522 	struct pid *pid;
2523 
2524 	if (iter.task)
2525 		put_task_struct(iter.task);
2526 	rcu_read_lock();
2527 retry:
2528 	iter.task = NULL;
2529 	pid = find_ge_pid(iter.tgid, ns);
2530 	if (pid) {
2531 		iter.tgid = pid_nr_ns(pid, ns);
2532 		iter.task = pid_task(pid, PIDTYPE_PID);
2533 		/* What we to know is if the pid we have find is the
2534 		 * pid of a thread_group_leader.  Testing for task
2535 		 * being a thread_group_leader is the obvious thing
2536 		 * todo but there is a window when it fails, due to
2537 		 * the pid transfer logic in de_thread.
2538 		 *
2539 		 * So we perform the straight forward test of seeing
2540 		 * if the pid we have found is the pid of a thread
2541 		 * group leader, and don't worry if the task we have
2542 		 * found doesn't happen to be a thread group leader.
2543 		 * As we don't care in the case of readdir.
2544 		 */
2545 		if (!iter.task || !has_group_leader_pid(iter.task)) {
2546 			iter.tgid += 1;
2547 			goto retry;
2548 		}
2549 		get_task_struct(iter.task);
2550 	}
2551 	rcu_read_unlock();
2552 	return iter;
2553 }
2554 
2555 #define TGID_OFFSET (FIRST_PROCESS_ENTRY + ARRAY_SIZE(proc_base_stuff))
2556 
2557 static int proc_pid_fill_cache(struct file *filp, void *dirent, filldir_t filldir,
2558 	struct tgid_iter iter)
2559 {
2560 	char name[PROC_NUMBUF];
2561 	int len = snprintf(name, sizeof(name), "%d", iter.tgid);
2562 	return proc_fill_cache(filp, dirent, filldir, name, len,
2563 				proc_pid_instantiate, iter.task, NULL);
2564 }
2565 
2566 /* for the /proc/ directory itself, after non-process stuff has been done */
2567 int proc_pid_readdir(struct file * filp, void * dirent, filldir_t filldir)
2568 {
2569 	unsigned int nr = filp->f_pos - FIRST_PROCESS_ENTRY;
2570 	struct task_struct *reaper = get_proc_task(filp->f_path.dentry->d_inode);
2571 	struct tgid_iter iter;
2572 	struct pid_namespace *ns;
2573 
2574 	if (!reaper)
2575 		goto out_no_task;
2576 
2577 	for (; nr < ARRAY_SIZE(proc_base_stuff); filp->f_pos++, nr++) {
2578 		const struct pid_entry *p = &proc_base_stuff[nr];
2579 		if (proc_base_fill_cache(filp, dirent, filldir, reaper, p) < 0)
2580 			goto out;
2581 	}
2582 
2583 	ns = filp->f_dentry->d_sb->s_fs_info;
2584 	iter.task = NULL;
2585 	iter.tgid = filp->f_pos - TGID_OFFSET;
2586 	for (iter = next_tgid(ns, iter);
2587 	     iter.task;
2588 	     iter.tgid += 1, iter = next_tgid(ns, iter)) {
2589 		filp->f_pos = iter.tgid + TGID_OFFSET;
2590 		if (proc_pid_fill_cache(filp, dirent, filldir, iter) < 0) {
2591 			put_task_struct(iter.task);
2592 			goto out;
2593 		}
2594 	}
2595 	filp->f_pos = PID_MAX_LIMIT + TGID_OFFSET;
2596 out:
2597 	put_task_struct(reaper);
2598 out_no_task:
2599 	return 0;
2600 }
2601 
2602 /*
2603  * Tasks
2604  */
2605 static const struct pid_entry tid_base_stuff[] = {
2606 	DIR("fd",        S_IRUSR|S_IXUSR, fd),
2607 	DIR("fdinfo",    S_IRUSR|S_IXUSR, fdinfo),
2608 	REG("environ",   S_IRUSR, environ),
2609 	INF("auxv",      S_IRUSR, pid_auxv),
2610 	ONE("status",    S_IRUGO, pid_status),
2611 	INF("limits",	 S_IRUSR, pid_limits),
2612 #ifdef CONFIG_SCHED_DEBUG
2613 	REG("sched",     S_IRUGO|S_IWUSR, pid_sched),
2614 #endif
2615 	INF("cmdline",   S_IRUGO, pid_cmdline),
2616 	ONE("stat",      S_IRUGO, tid_stat),
2617 	ONE("statm",     S_IRUGO, pid_statm),
2618 	REG("maps",      S_IRUGO, maps),
2619 #ifdef CONFIG_NUMA
2620 	REG("numa_maps", S_IRUGO, numa_maps),
2621 #endif
2622 	REG("mem",       S_IRUSR|S_IWUSR, mem),
2623 	LNK("cwd",       cwd),
2624 	LNK("root",      root),
2625 	LNK("exe",       exe),
2626 	REG("mounts",    S_IRUGO, mounts),
2627 #ifdef CONFIG_PROC_PAGE_MONITOR
2628 	REG("clear_refs", S_IWUSR, clear_refs),
2629 	REG("smaps",     S_IRUGO, smaps),
2630 	REG("pagemap",    S_IRUSR, pagemap),
2631 #endif
2632 #ifdef CONFIG_SECURITY
2633 	DIR("attr",      S_IRUGO|S_IXUGO, attr_dir),
2634 #endif
2635 #ifdef CONFIG_KALLSYMS
2636 	INF("wchan",     S_IRUGO, pid_wchan),
2637 #endif
2638 #ifdef CONFIG_SCHEDSTATS
2639 	INF("schedstat", S_IRUGO, pid_schedstat),
2640 #endif
2641 #ifdef CONFIG_LATENCYTOP
2642 	REG("latency",  S_IRUGO, lstats),
2643 #endif
2644 #ifdef CONFIG_PROC_PID_CPUSET
2645 	REG("cpuset",    S_IRUGO, cpuset),
2646 #endif
2647 #ifdef CONFIG_CGROUPS
2648 	REG("cgroup",  S_IRUGO, cgroup),
2649 #endif
2650 	INF("oom_score", S_IRUGO, oom_score),
2651 	REG("oom_adj",   S_IRUGO|S_IWUSR, oom_adjust),
2652 #ifdef CONFIG_AUDITSYSCALL
2653 	REG("loginuid",  S_IWUSR|S_IRUGO, loginuid),
2654 #endif
2655 #ifdef CONFIG_FAULT_INJECTION
2656 	REG("make-it-fail", S_IRUGO|S_IWUSR, fault_inject),
2657 #endif
2658 };
2659 
2660 static int proc_tid_base_readdir(struct file * filp,
2661 			     void * dirent, filldir_t filldir)
2662 {
2663 	return proc_pident_readdir(filp,dirent,filldir,
2664 				   tid_base_stuff,ARRAY_SIZE(tid_base_stuff));
2665 }
2666 
2667 static struct dentry *proc_tid_base_lookup(struct inode *dir, struct dentry *dentry, struct nameidata *nd){
2668 	return proc_pident_lookup(dir, dentry,
2669 				  tid_base_stuff, ARRAY_SIZE(tid_base_stuff));
2670 }
2671 
2672 static const struct file_operations proc_tid_base_operations = {
2673 	.read		= generic_read_dir,
2674 	.readdir	= proc_tid_base_readdir,
2675 };
2676 
2677 static const struct inode_operations proc_tid_base_inode_operations = {
2678 	.lookup		= proc_tid_base_lookup,
2679 	.getattr	= pid_getattr,
2680 	.setattr	= proc_setattr,
2681 };
2682 
2683 static struct dentry *proc_task_instantiate(struct inode *dir,
2684 	struct dentry *dentry, struct task_struct *task, const void *ptr)
2685 {
2686 	struct dentry *error = ERR_PTR(-ENOENT);
2687 	struct inode *inode;
2688 	inode = proc_pid_make_inode(dir->i_sb, task);
2689 
2690 	if (!inode)
2691 		goto out;
2692 	inode->i_mode = S_IFDIR|S_IRUGO|S_IXUGO;
2693 	inode->i_op = &proc_tid_base_inode_operations;
2694 	inode->i_fop = &proc_tid_base_operations;
2695 	inode->i_flags|=S_IMMUTABLE;
2696 	inode->i_nlink = 4;
2697 #ifdef CONFIG_SECURITY
2698 	inode->i_nlink += 1;
2699 #endif
2700 
2701 	dentry->d_op = &pid_dentry_operations;
2702 
2703 	d_add(dentry, inode);
2704 	/* Close the race of the process dying before we return the dentry */
2705 	if (pid_revalidate(dentry, NULL))
2706 		error = NULL;
2707 out:
2708 	return error;
2709 }
2710 
2711 static struct dentry *proc_task_lookup(struct inode *dir, struct dentry * dentry, struct nameidata *nd)
2712 {
2713 	struct dentry *result = ERR_PTR(-ENOENT);
2714 	struct task_struct *task;
2715 	struct task_struct *leader = get_proc_task(dir);
2716 	unsigned tid;
2717 	struct pid_namespace *ns;
2718 
2719 	if (!leader)
2720 		goto out_no_task;
2721 
2722 	tid = name_to_int(dentry);
2723 	if (tid == ~0U)
2724 		goto out;
2725 
2726 	ns = dentry->d_sb->s_fs_info;
2727 	rcu_read_lock();
2728 	task = find_task_by_pid_ns(tid, ns);
2729 	if (task)
2730 		get_task_struct(task);
2731 	rcu_read_unlock();
2732 	if (!task)
2733 		goto out;
2734 	if (!same_thread_group(leader, task))
2735 		goto out_drop_task;
2736 
2737 	result = proc_task_instantiate(dir, dentry, task, NULL);
2738 out_drop_task:
2739 	put_task_struct(task);
2740 out:
2741 	put_task_struct(leader);
2742 out_no_task:
2743 	return result;
2744 }
2745 
2746 /*
2747  * Find the first tid of a thread group to return to user space.
2748  *
2749  * Usually this is just the thread group leader, but if the users
2750  * buffer was too small or there was a seek into the middle of the
2751  * directory we have more work todo.
2752  *
2753  * In the case of a short read we start with find_task_by_pid.
2754  *
2755  * In the case of a seek we start with the leader and walk nr
2756  * threads past it.
2757  */
2758 static struct task_struct *first_tid(struct task_struct *leader,
2759 		int tid, int nr, struct pid_namespace *ns)
2760 {
2761 	struct task_struct *pos;
2762 
2763 	rcu_read_lock();
2764 	/* Attempt to start with the pid of a thread */
2765 	if (tid && (nr > 0)) {
2766 		pos = find_task_by_pid_ns(tid, ns);
2767 		if (pos && (pos->group_leader == leader))
2768 			goto found;
2769 	}
2770 
2771 	/* If nr exceeds the number of threads there is nothing todo */
2772 	pos = NULL;
2773 	if (nr && nr >= get_nr_threads(leader))
2774 		goto out;
2775 
2776 	/* If we haven't found our starting place yet start
2777 	 * with the leader and walk nr threads forward.
2778 	 */
2779 	for (pos = leader; nr > 0; --nr) {
2780 		pos = next_thread(pos);
2781 		if (pos == leader) {
2782 			pos = NULL;
2783 			goto out;
2784 		}
2785 	}
2786 found:
2787 	get_task_struct(pos);
2788 out:
2789 	rcu_read_unlock();
2790 	return pos;
2791 }
2792 
2793 /*
2794  * Find the next thread in the thread list.
2795  * Return NULL if there is an error or no next thread.
2796  *
2797  * The reference to the input task_struct is released.
2798  */
2799 static struct task_struct *next_tid(struct task_struct *start)
2800 {
2801 	struct task_struct *pos = NULL;
2802 	rcu_read_lock();
2803 	if (pid_alive(start)) {
2804 		pos = next_thread(start);
2805 		if (thread_group_leader(pos))
2806 			pos = NULL;
2807 		else
2808 			get_task_struct(pos);
2809 	}
2810 	rcu_read_unlock();
2811 	put_task_struct(start);
2812 	return pos;
2813 }
2814 
2815 static int proc_task_fill_cache(struct file *filp, void *dirent, filldir_t filldir,
2816 	struct task_struct *task, int tid)
2817 {
2818 	char name[PROC_NUMBUF];
2819 	int len = snprintf(name, sizeof(name), "%d", tid);
2820 	return proc_fill_cache(filp, dirent, filldir, name, len,
2821 				proc_task_instantiate, task, NULL);
2822 }
2823 
2824 /* for the /proc/TGID/task/ directories */
2825 static int proc_task_readdir(struct file * filp, void * dirent, filldir_t filldir)
2826 {
2827 	struct dentry *dentry = filp->f_path.dentry;
2828 	struct inode *inode = dentry->d_inode;
2829 	struct task_struct *leader = NULL;
2830 	struct task_struct *task;
2831 	int retval = -ENOENT;
2832 	ino_t ino;
2833 	int tid;
2834 	unsigned long pos = filp->f_pos;  /* avoiding "long long" filp->f_pos */
2835 	struct pid_namespace *ns;
2836 
2837 	task = get_proc_task(inode);
2838 	if (!task)
2839 		goto out_no_task;
2840 	rcu_read_lock();
2841 	if (pid_alive(task)) {
2842 		leader = task->group_leader;
2843 		get_task_struct(leader);
2844 	}
2845 	rcu_read_unlock();
2846 	put_task_struct(task);
2847 	if (!leader)
2848 		goto out_no_task;
2849 	retval = 0;
2850 
2851 	switch (pos) {
2852 	case 0:
2853 		ino = inode->i_ino;
2854 		if (filldir(dirent, ".", 1, pos, ino, DT_DIR) < 0)
2855 			goto out;
2856 		pos++;
2857 		/* fall through */
2858 	case 1:
2859 		ino = parent_ino(dentry);
2860 		if (filldir(dirent, "..", 2, pos, ino, DT_DIR) < 0)
2861 			goto out;
2862 		pos++;
2863 		/* fall through */
2864 	}
2865 
2866 	/* f_version caches the tgid value that the last readdir call couldn't
2867 	 * return. lseek aka telldir automagically resets f_version to 0.
2868 	 */
2869 	ns = filp->f_dentry->d_sb->s_fs_info;
2870 	tid = (int)filp->f_version;
2871 	filp->f_version = 0;
2872 	for (task = first_tid(leader, tid, pos - 2, ns);
2873 	     task;
2874 	     task = next_tid(task), pos++) {
2875 		tid = task_pid_nr_ns(task, ns);
2876 		if (proc_task_fill_cache(filp, dirent, filldir, task, tid) < 0) {
2877 			/* returning this tgid failed, save it as the first
2878 			 * pid for the next readir call */
2879 			filp->f_version = (u64)tid;
2880 			put_task_struct(task);
2881 			break;
2882 		}
2883 	}
2884 out:
2885 	filp->f_pos = pos;
2886 	put_task_struct(leader);
2887 out_no_task:
2888 	return retval;
2889 }
2890 
2891 static int proc_task_getattr(struct vfsmount *mnt, struct dentry *dentry, struct kstat *stat)
2892 {
2893 	struct inode *inode = dentry->d_inode;
2894 	struct task_struct *p = get_proc_task(inode);
2895 	generic_fillattr(inode, stat);
2896 
2897 	if (p) {
2898 		rcu_read_lock();
2899 		stat->nlink += get_nr_threads(p);
2900 		rcu_read_unlock();
2901 		put_task_struct(p);
2902 	}
2903 
2904 	return 0;
2905 }
2906 
2907 static const struct inode_operations proc_task_inode_operations = {
2908 	.lookup		= proc_task_lookup,
2909 	.getattr	= proc_task_getattr,
2910 	.setattr	= proc_setattr,
2911 };
2912 
2913 static const struct file_operations proc_task_operations = {
2914 	.read		= generic_read_dir,
2915 	.readdir	= proc_task_readdir,
2916 };
2917