1 /* 2 * linux/fs/proc/base.c 3 * 4 * Copyright (C) 1991, 1992 Linus Torvalds 5 * 6 * proc base directory handling functions 7 * 8 * 1999, Al Viro. Rewritten. Now it covers the whole per-process part. 9 * Instead of using magical inumbers to determine the kind of object 10 * we allocate and fill in-core inodes upon lookup. They don't even 11 * go into icache. We cache the reference to task_struct upon lookup too. 12 * Eventually it should become a filesystem in its own. We don't use the 13 * rest of procfs anymore. 14 * 15 * 16 * Changelog: 17 * 17-Jan-2005 18 * Allan Bezerra 19 * Bruna Moreira <bruna.moreira@indt.org.br> 20 * Edjard Mota <edjard.mota@indt.org.br> 21 * Ilias Biris <ilias.biris@indt.org.br> 22 * Mauricio Lin <mauricio.lin@indt.org.br> 23 * 24 * Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT 25 * 26 * A new process specific entry (smaps) included in /proc. It shows the 27 * size of rss for each memory area. The maps entry lacks information 28 * about physical memory size (rss) for each mapped file, i.e., 29 * rss information for executables and library files. 30 * This additional information is useful for any tools that need to know 31 * about physical memory consumption for a process specific library. 32 * 33 * Changelog: 34 * 21-Feb-2005 35 * Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT 36 * Pud inclusion in the page table walking. 37 * 38 * ChangeLog: 39 * 10-Mar-2005 40 * 10LE Instituto Nokia de Tecnologia - INdT: 41 * A better way to walks through the page table as suggested by Hugh Dickins. 42 * 43 * Simo Piiroinen <simo.piiroinen@nokia.com>: 44 * Smaps information related to shared, private, clean and dirty pages. 45 * 46 * Paul Mundt <paul.mundt@nokia.com>: 47 * Overall revision about smaps. 48 */ 49 50 #include <asm/uaccess.h> 51 52 #include <linux/errno.h> 53 #include <linux/time.h> 54 #include <linux/proc_fs.h> 55 #include <linux/stat.h> 56 #include <linux/task_io_accounting_ops.h> 57 #include <linux/init.h> 58 #include <linux/capability.h> 59 #include <linux/file.h> 60 #include <linux/fdtable.h> 61 #include <linux/string.h> 62 #include <linux/seq_file.h> 63 #include <linux/namei.h> 64 #include <linux/mnt_namespace.h> 65 #include <linux/mm.h> 66 #include <linux/swap.h> 67 #include <linux/rcupdate.h> 68 #include <linux/kallsyms.h> 69 #include <linux/stacktrace.h> 70 #include <linux/resource.h> 71 #include <linux/module.h> 72 #include <linux/mount.h> 73 #include <linux/security.h> 74 #include <linux/ptrace.h> 75 #include <linux/tracehook.h> 76 #include <linux/cgroup.h> 77 #include <linux/cpuset.h> 78 #include <linux/audit.h> 79 #include <linux/poll.h> 80 #include <linux/nsproxy.h> 81 #include <linux/oom.h> 82 #include <linux/elf.h> 83 #include <linux/pid_namespace.h> 84 #include <linux/user_namespace.h> 85 #include <linux/fs_struct.h> 86 #include <linux/slab.h> 87 #include <linux/flex_array.h> 88 #ifdef CONFIG_HARDWALL 89 #include <asm/hardwall.h> 90 #endif 91 #include <trace/events/oom.h> 92 #include "internal.h" 93 94 /* NOTE: 95 * Implementing inode permission operations in /proc is almost 96 * certainly an error. Permission checks need to happen during 97 * each system call not at open time. The reason is that most of 98 * what we wish to check for permissions in /proc varies at runtime. 99 * 100 * The classic example of a problem is opening file descriptors 101 * in /proc for a task before it execs a suid executable. 102 */ 103 104 struct pid_entry { 105 char *name; 106 int len; 107 umode_t mode; 108 const struct inode_operations *iop; 109 const struct file_operations *fop; 110 union proc_op op; 111 }; 112 113 #define NOD(NAME, MODE, IOP, FOP, OP) { \ 114 .name = (NAME), \ 115 .len = sizeof(NAME) - 1, \ 116 .mode = MODE, \ 117 .iop = IOP, \ 118 .fop = FOP, \ 119 .op = OP, \ 120 } 121 122 #define DIR(NAME, MODE, iops, fops) \ 123 NOD(NAME, (S_IFDIR|(MODE)), &iops, &fops, {} ) 124 #define LNK(NAME, get_link) \ 125 NOD(NAME, (S_IFLNK|S_IRWXUGO), \ 126 &proc_pid_link_inode_operations, NULL, \ 127 { .proc_get_link = get_link } ) 128 #define REG(NAME, MODE, fops) \ 129 NOD(NAME, (S_IFREG|(MODE)), NULL, &fops, {}) 130 #define INF(NAME, MODE, read) \ 131 NOD(NAME, (S_IFREG|(MODE)), \ 132 NULL, &proc_info_file_operations, \ 133 { .proc_read = read } ) 134 #define ONE(NAME, MODE, show) \ 135 NOD(NAME, (S_IFREG|(MODE)), \ 136 NULL, &proc_single_file_operations, \ 137 { .proc_show = show } ) 138 139 static int proc_fd_permission(struct inode *inode, int mask); 140 141 /* 142 * Count the number of hardlinks for the pid_entry table, excluding the . 143 * and .. links. 144 */ 145 static unsigned int pid_entry_count_dirs(const struct pid_entry *entries, 146 unsigned int n) 147 { 148 unsigned int i; 149 unsigned int count; 150 151 count = 0; 152 for (i = 0; i < n; ++i) { 153 if (S_ISDIR(entries[i].mode)) 154 ++count; 155 } 156 157 return count; 158 } 159 160 static int get_task_root(struct task_struct *task, struct path *root) 161 { 162 int result = -ENOENT; 163 164 task_lock(task); 165 if (task->fs) { 166 get_fs_root(task->fs, root); 167 result = 0; 168 } 169 task_unlock(task); 170 return result; 171 } 172 173 static int proc_cwd_link(struct dentry *dentry, struct path *path) 174 { 175 struct task_struct *task = get_proc_task(dentry->d_inode); 176 int result = -ENOENT; 177 178 if (task) { 179 task_lock(task); 180 if (task->fs) { 181 get_fs_pwd(task->fs, path); 182 result = 0; 183 } 184 task_unlock(task); 185 put_task_struct(task); 186 } 187 return result; 188 } 189 190 static int proc_root_link(struct dentry *dentry, struct path *path) 191 { 192 struct task_struct *task = get_proc_task(dentry->d_inode); 193 int result = -ENOENT; 194 195 if (task) { 196 result = get_task_root(task, path); 197 put_task_struct(task); 198 } 199 return result; 200 } 201 202 static int proc_pid_cmdline(struct task_struct *task, char * buffer) 203 { 204 int res = 0; 205 unsigned int len; 206 struct mm_struct *mm = get_task_mm(task); 207 if (!mm) 208 goto out; 209 if (!mm->arg_end) 210 goto out_mm; /* Shh! No looking before we're done */ 211 212 len = mm->arg_end - mm->arg_start; 213 214 if (len > PAGE_SIZE) 215 len = PAGE_SIZE; 216 217 res = access_process_vm(task, mm->arg_start, buffer, len, 0); 218 219 // If the nul at the end of args has been overwritten, then 220 // assume application is using setproctitle(3). 221 if (res > 0 && buffer[res-1] != '\0' && len < PAGE_SIZE) { 222 len = strnlen(buffer, res); 223 if (len < res) { 224 res = len; 225 } else { 226 len = mm->env_end - mm->env_start; 227 if (len > PAGE_SIZE - res) 228 len = PAGE_SIZE - res; 229 res += access_process_vm(task, mm->env_start, buffer+res, len, 0); 230 res = strnlen(buffer, res); 231 } 232 } 233 out_mm: 234 mmput(mm); 235 out: 236 return res; 237 } 238 239 static int proc_pid_auxv(struct task_struct *task, char *buffer) 240 { 241 struct mm_struct *mm = mm_access(task, PTRACE_MODE_READ); 242 int res = PTR_ERR(mm); 243 if (mm && !IS_ERR(mm)) { 244 unsigned int nwords = 0; 245 do { 246 nwords += 2; 247 } while (mm->saved_auxv[nwords - 2] != 0); /* AT_NULL */ 248 res = nwords * sizeof(mm->saved_auxv[0]); 249 if (res > PAGE_SIZE) 250 res = PAGE_SIZE; 251 memcpy(buffer, mm->saved_auxv, res); 252 mmput(mm); 253 } 254 return res; 255 } 256 257 258 #ifdef CONFIG_KALLSYMS 259 /* 260 * Provides a wchan file via kallsyms in a proper one-value-per-file format. 261 * Returns the resolved symbol. If that fails, simply return the address. 262 */ 263 static int proc_pid_wchan(struct task_struct *task, char *buffer) 264 { 265 unsigned long wchan; 266 char symname[KSYM_NAME_LEN]; 267 268 wchan = get_wchan(task); 269 270 if (lookup_symbol_name(wchan, symname) < 0) 271 if (!ptrace_may_access(task, PTRACE_MODE_READ)) 272 return 0; 273 else 274 return sprintf(buffer, "%lu", wchan); 275 else 276 return sprintf(buffer, "%s", symname); 277 } 278 #endif /* CONFIG_KALLSYMS */ 279 280 static int lock_trace(struct task_struct *task) 281 { 282 int err = mutex_lock_killable(&task->signal->cred_guard_mutex); 283 if (err) 284 return err; 285 if (!ptrace_may_access(task, PTRACE_MODE_ATTACH)) { 286 mutex_unlock(&task->signal->cred_guard_mutex); 287 return -EPERM; 288 } 289 return 0; 290 } 291 292 static void unlock_trace(struct task_struct *task) 293 { 294 mutex_unlock(&task->signal->cred_guard_mutex); 295 } 296 297 #ifdef CONFIG_STACKTRACE 298 299 #define MAX_STACK_TRACE_DEPTH 64 300 301 static int proc_pid_stack(struct seq_file *m, struct pid_namespace *ns, 302 struct pid *pid, struct task_struct *task) 303 { 304 struct stack_trace trace; 305 unsigned long *entries; 306 int err; 307 int i; 308 309 entries = kmalloc(MAX_STACK_TRACE_DEPTH * sizeof(*entries), GFP_KERNEL); 310 if (!entries) 311 return -ENOMEM; 312 313 trace.nr_entries = 0; 314 trace.max_entries = MAX_STACK_TRACE_DEPTH; 315 trace.entries = entries; 316 trace.skip = 0; 317 318 err = lock_trace(task); 319 if (!err) { 320 save_stack_trace_tsk(task, &trace); 321 322 for (i = 0; i < trace.nr_entries; i++) { 323 seq_printf(m, "[<%pK>] %pS\n", 324 (void *)entries[i], (void *)entries[i]); 325 } 326 unlock_trace(task); 327 } 328 kfree(entries); 329 330 return err; 331 } 332 #endif 333 334 #ifdef CONFIG_SCHEDSTATS 335 /* 336 * Provides /proc/PID/schedstat 337 */ 338 static int proc_pid_schedstat(struct task_struct *task, char *buffer) 339 { 340 return sprintf(buffer, "%llu %llu %lu\n", 341 (unsigned long long)task->se.sum_exec_runtime, 342 (unsigned long long)task->sched_info.run_delay, 343 task->sched_info.pcount); 344 } 345 #endif 346 347 #ifdef CONFIG_LATENCYTOP 348 static int lstats_show_proc(struct seq_file *m, void *v) 349 { 350 int i; 351 struct inode *inode = m->private; 352 struct task_struct *task = get_proc_task(inode); 353 354 if (!task) 355 return -ESRCH; 356 seq_puts(m, "Latency Top version : v0.1\n"); 357 for (i = 0; i < 32; i++) { 358 struct latency_record *lr = &task->latency_record[i]; 359 if (lr->backtrace[0]) { 360 int q; 361 seq_printf(m, "%i %li %li", 362 lr->count, lr->time, lr->max); 363 for (q = 0; q < LT_BACKTRACEDEPTH; q++) { 364 unsigned long bt = lr->backtrace[q]; 365 if (!bt) 366 break; 367 if (bt == ULONG_MAX) 368 break; 369 seq_printf(m, " %ps", (void *)bt); 370 } 371 seq_putc(m, '\n'); 372 } 373 374 } 375 put_task_struct(task); 376 return 0; 377 } 378 379 static int lstats_open(struct inode *inode, struct file *file) 380 { 381 return single_open(file, lstats_show_proc, inode); 382 } 383 384 static ssize_t lstats_write(struct file *file, const char __user *buf, 385 size_t count, loff_t *offs) 386 { 387 struct task_struct *task = get_proc_task(file->f_dentry->d_inode); 388 389 if (!task) 390 return -ESRCH; 391 clear_all_latency_tracing(task); 392 put_task_struct(task); 393 394 return count; 395 } 396 397 static const struct file_operations proc_lstats_operations = { 398 .open = lstats_open, 399 .read = seq_read, 400 .write = lstats_write, 401 .llseek = seq_lseek, 402 .release = single_release, 403 }; 404 405 #endif 406 407 static int proc_oom_score(struct task_struct *task, char *buffer) 408 { 409 unsigned long totalpages = totalram_pages + total_swap_pages; 410 unsigned long points = 0; 411 412 read_lock(&tasklist_lock); 413 if (pid_alive(task)) 414 points = oom_badness(task, NULL, NULL, totalpages) * 415 1000 / totalpages; 416 read_unlock(&tasklist_lock); 417 return sprintf(buffer, "%lu\n", points); 418 } 419 420 struct limit_names { 421 char *name; 422 char *unit; 423 }; 424 425 static const struct limit_names lnames[RLIM_NLIMITS] = { 426 [RLIMIT_CPU] = {"Max cpu time", "seconds"}, 427 [RLIMIT_FSIZE] = {"Max file size", "bytes"}, 428 [RLIMIT_DATA] = {"Max data size", "bytes"}, 429 [RLIMIT_STACK] = {"Max stack size", "bytes"}, 430 [RLIMIT_CORE] = {"Max core file size", "bytes"}, 431 [RLIMIT_RSS] = {"Max resident set", "bytes"}, 432 [RLIMIT_NPROC] = {"Max processes", "processes"}, 433 [RLIMIT_NOFILE] = {"Max open files", "files"}, 434 [RLIMIT_MEMLOCK] = {"Max locked memory", "bytes"}, 435 [RLIMIT_AS] = {"Max address space", "bytes"}, 436 [RLIMIT_LOCKS] = {"Max file locks", "locks"}, 437 [RLIMIT_SIGPENDING] = {"Max pending signals", "signals"}, 438 [RLIMIT_MSGQUEUE] = {"Max msgqueue size", "bytes"}, 439 [RLIMIT_NICE] = {"Max nice priority", NULL}, 440 [RLIMIT_RTPRIO] = {"Max realtime priority", NULL}, 441 [RLIMIT_RTTIME] = {"Max realtime timeout", "us"}, 442 }; 443 444 /* Display limits for a process */ 445 static int proc_pid_limits(struct task_struct *task, char *buffer) 446 { 447 unsigned int i; 448 int count = 0; 449 unsigned long flags; 450 char *bufptr = buffer; 451 452 struct rlimit rlim[RLIM_NLIMITS]; 453 454 if (!lock_task_sighand(task, &flags)) 455 return 0; 456 memcpy(rlim, task->signal->rlim, sizeof(struct rlimit) * RLIM_NLIMITS); 457 unlock_task_sighand(task, &flags); 458 459 /* 460 * print the file header 461 */ 462 count += sprintf(&bufptr[count], "%-25s %-20s %-20s %-10s\n", 463 "Limit", "Soft Limit", "Hard Limit", "Units"); 464 465 for (i = 0; i < RLIM_NLIMITS; i++) { 466 if (rlim[i].rlim_cur == RLIM_INFINITY) 467 count += sprintf(&bufptr[count], "%-25s %-20s ", 468 lnames[i].name, "unlimited"); 469 else 470 count += sprintf(&bufptr[count], "%-25s %-20lu ", 471 lnames[i].name, rlim[i].rlim_cur); 472 473 if (rlim[i].rlim_max == RLIM_INFINITY) 474 count += sprintf(&bufptr[count], "%-20s ", "unlimited"); 475 else 476 count += sprintf(&bufptr[count], "%-20lu ", 477 rlim[i].rlim_max); 478 479 if (lnames[i].unit) 480 count += sprintf(&bufptr[count], "%-10s\n", 481 lnames[i].unit); 482 else 483 count += sprintf(&bufptr[count], "\n"); 484 } 485 486 return count; 487 } 488 489 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK 490 static int proc_pid_syscall(struct task_struct *task, char *buffer) 491 { 492 long nr; 493 unsigned long args[6], sp, pc; 494 int res = lock_trace(task); 495 if (res) 496 return res; 497 498 if (task_current_syscall(task, &nr, args, 6, &sp, &pc)) 499 res = sprintf(buffer, "running\n"); 500 else if (nr < 0) 501 res = sprintf(buffer, "%ld 0x%lx 0x%lx\n", nr, sp, pc); 502 else 503 res = sprintf(buffer, 504 "%ld 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx\n", 505 nr, 506 args[0], args[1], args[2], args[3], args[4], args[5], 507 sp, pc); 508 unlock_trace(task); 509 return res; 510 } 511 #endif /* CONFIG_HAVE_ARCH_TRACEHOOK */ 512 513 /************************************************************************/ 514 /* Here the fs part begins */ 515 /************************************************************************/ 516 517 /* permission checks */ 518 static int proc_fd_access_allowed(struct inode *inode) 519 { 520 struct task_struct *task; 521 int allowed = 0; 522 /* Allow access to a task's file descriptors if it is us or we 523 * may use ptrace attach to the process and find out that 524 * information. 525 */ 526 task = get_proc_task(inode); 527 if (task) { 528 allowed = ptrace_may_access(task, PTRACE_MODE_READ); 529 put_task_struct(task); 530 } 531 return allowed; 532 } 533 534 int proc_setattr(struct dentry *dentry, struct iattr *attr) 535 { 536 int error; 537 struct inode *inode = dentry->d_inode; 538 539 if (attr->ia_valid & ATTR_MODE) 540 return -EPERM; 541 542 error = inode_change_ok(inode, attr); 543 if (error) 544 return error; 545 546 if ((attr->ia_valid & ATTR_SIZE) && 547 attr->ia_size != i_size_read(inode)) { 548 error = vmtruncate(inode, attr->ia_size); 549 if (error) 550 return error; 551 } 552 553 setattr_copy(inode, attr); 554 mark_inode_dirty(inode); 555 return 0; 556 } 557 558 /* 559 * May current process learn task's sched/cmdline info (for hide_pid_min=1) 560 * or euid/egid (for hide_pid_min=2)? 561 */ 562 static bool has_pid_permissions(struct pid_namespace *pid, 563 struct task_struct *task, 564 int hide_pid_min) 565 { 566 if (pid->hide_pid < hide_pid_min) 567 return true; 568 if (in_group_p(pid->pid_gid)) 569 return true; 570 return ptrace_may_access(task, PTRACE_MODE_READ); 571 } 572 573 574 static int proc_pid_permission(struct inode *inode, int mask) 575 { 576 struct pid_namespace *pid = inode->i_sb->s_fs_info; 577 struct task_struct *task; 578 bool has_perms; 579 580 task = get_proc_task(inode); 581 if (!task) 582 return -ESRCH; 583 has_perms = has_pid_permissions(pid, task, 1); 584 put_task_struct(task); 585 586 if (!has_perms) { 587 if (pid->hide_pid == 2) { 588 /* 589 * Let's make getdents(), stat(), and open() 590 * consistent with each other. If a process 591 * may not stat() a file, it shouldn't be seen 592 * in procfs at all. 593 */ 594 return -ENOENT; 595 } 596 597 return -EPERM; 598 } 599 return generic_permission(inode, mask); 600 } 601 602 603 604 static const struct inode_operations proc_def_inode_operations = { 605 .setattr = proc_setattr, 606 }; 607 608 #define PROC_BLOCK_SIZE (3*1024) /* 4K page size but our output routines use some slack for overruns */ 609 610 static ssize_t proc_info_read(struct file * file, char __user * buf, 611 size_t count, loff_t *ppos) 612 { 613 struct inode * inode = file->f_path.dentry->d_inode; 614 unsigned long page; 615 ssize_t length; 616 struct task_struct *task = get_proc_task(inode); 617 618 length = -ESRCH; 619 if (!task) 620 goto out_no_task; 621 622 if (count > PROC_BLOCK_SIZE) 623 count = PROC_BLOCK_SIZE; 624 625 length = -ENOMEM; 626 if (!(page = __get_free_page(GFP_TEMPORARY))) 627 goto out; 628 629 length = PROC_I(inode)->op.proc_read(task, (char*)page); 630 631 if (length >= 0) 632 length = simple_read_from_buffer(buf, count, ppos, (char *)page, length); 633 free_page(page); 634 out: 635 put_task_struct(task); 636 out_no_task: 637 return length; 638 } 639 640 static const struct file_operations proc_info_file_operations = { 641 .read = proc_info_read, 642 .llseek = generic_file_llseek, 643 }; 644 645 static int proc_single_show(struct seq_file *m, void *v) 646 { 647 struct inode *inode = m->private; 648 struct pid_namespace *ns; 649 struct pid *pid; 650 struct task_struct *task; 651 int ret; 652 653 ns = inode->i_sb->s_fs_info; 654 pid = proc_pid(inode); 655 task = get_pid_task(pid, PIDTYPE_PID); 656 if (!task) 657 return -ESRCH; 658 659 ret = PROC_I(inode)->op.proc_show(m, ns, pid, task); 660 661 put_task_struct(task); 662 return ret; 663 } 664 665 static int proc_single_open(struct inode *inode, struct file *filp) 666 { 667 return single_open(filp, proc_single_show, inode); 668 } 669 670 static const struct file_operations proc_single_file_operations = { 671 .open = proc_single_open, 672 .read = seq_read, 673 .llseek = seq_lseek, 674 .release = single_release, 675 }; 676 677 static int __mem_open(struct inode *inode, struct file *file, unsigned int mode) 678 { 679 struct task_struct *task = get_proc_task(file->f_path.dentry->d_inode); 680 struct mm_struct *mm; 681 682 if (!task) 683 return -ESRCH; 684 685 mm = mm_access(task, mode); 686 put_task_struct(task); 687 688 if (IS_ERR(mm)) 689 return PTR_ERR(mm); 690 691 if (mm) { 692 /* ensure this mm_struct can't be freed */ 693 atomic_inc(&mm->mm_count); 694 /* but do not pin its memory */ 695 mmput(mm); 696 } 697 698 /* OK to pass negative loff_t, we can catch out-of-range */ 699 file->f_mode |= FMODE_UNSIGNED_OFFSET; 700 file->private_data = mm; 701 702 return 0; 703 } 704 705 static int mem_open(struct inode *inode, struct file *file) 706 { 707 return __mem_open(inode, file, PTRACE_MODE_ATTACH); 708 } 709 710 static ssize_t mem_rw(struct file *file, char __user *buf, 711 size_t count, loff_t *ppos, int write) 712 { 713 struct mm_struct *mm = file->private_data; 714 unsigned long addr = *ppos; 715 ssize_t copied; 716 char *page; 717 718 if (!mm) 719 return 0; 720 721 page = (char *)__get_free_page(GFP_TEMPORARY); 722 if (!page) 723 return -ENOMEM; 724 725 copied = 0; 726 if (!atomic_inc_not_zero(&mm->mm_users)) 727 goto free; 728 729 while (count > 0) { 730 int this_len = min_t(int, count, PAGE_SIZE); 731 732 if (write && copy_from_user(page, buf, this_len)) { 733 copied = -EFAULT; 734 break; 735 } 736 737 this_len = access_remote_vm(mm, addr, page, this_len, write); 738 if (!this_len) { 739 if (!copied) 740 copied = -EIO; 741 break; 742 } 743 744 if (!write && copy_to_user(buf, page, this_len)) { 745 copied = -EFAULT; 746 break; 747 } 748 749 buf += this_len; 750 addr += this_len; 751 copied += this_len; 752 count -= this_len; 753 } 754 *ppos = addr; 755 756 mmput(mm); 757 free: 758 free_page((unsigned long) page); 759 return copied; 760 } 761 762 static ssize_t mem_read(struct file *file, char __user *buf, 763 size_t count, loff_t *ppos) 764 { 765 return mem_rw(file, buf, count, ppos, 0); 766 } 767 768 static ssize_t mem_write(struct file *file, const char __user *buf, 769 size_t count, loff_t *ppos) 770 { 771 return mem_rw(file, (char __user*)buf, count, ppos, 1); 772 } 773 774 loff_t mem_lseek(struct file *file, loff_t offset, int orig) 775 { 776 switch (orig) { 777 case 0: 778 file->f_pos = offset; 779 break; 780 case 1: 781 file->f_pos += offset; 782 break; 783 default: 784 return -EINVAL; 785 } 786 force_successful_syscall_return(); 787 return file->f_pos; 788 } 789 790 static int mem_release(struct inode *inode, struct file *file) 791 { 792 struct mm_struct *mm = file->private_data; 793 if (mm) 794 mmdrop(mm); 795 return 0; 796 } 797 798 static const struct file_operations proc_mem_operations = { 799 .llseek = mem_lseek, 800 .read = mem_read, 801 .write = mem_write, 802 .open = mem_open, 803 .release = mem_release, 804 }; 805 806 static int environ_open(struct inode *inode, struct file *file) 807 { 808 return __mem_open(inode, file, PTRACE_MODE_READ); 809 } 810 811 static ssize_t environ_read(struct file *file, char __user *buf, 812 size_t count, loff_t *ppos) 813 { 814 char *page; 815 unsigned long src = *ppos; 816 int ret = 0; 817 struct mm_struct *mm = file->private_data; 818 819 if (!mm) 820 return 0; 821 822 page = (char *)__get_free_page(GFP_TEMPORARY); 823 if (!page) 824 return -ENOMEM; 825 826 ret = 0; 827 if (!atomic_inc_not_zero(&mm->mm_users)) 828 goto free; 829 while (count > 0) { 830 int this_len, retval, max_len; 831 832 this_len = mm->env_end - (mm->env_start + src); 833 834 if (this_len <= 0) 835 break; 836 837 max_len = (count > PAGE_SIZE) ? PAGE_SIZE : count; 838 this_len = (this_len > max_len) ? max_len : this_len; 839 840 retval = access_remote_vm(mm, (mm->env_start + src), 841 page, this_len, 0); 842 843 if (retval <= 0) { 844 ret = retval; 845 break; 846 } 847 848 if (copy_to_user(buf, page, retval)) { 849 ret = -EFAULT; 850 break; 851 } 852 853 ret += retval; 854 src += retval; 855 buf += retval; 856 count -= retval; 857 } 858 *ppos = src; 859 mmput(mm); 860 861 free: 862 free_page((unsigned long) page); 863 return ret; 864 } 865 866 static const struct file_operations proc_environ_operations = { 867 .open = environ_open, 868 .read = environ_read, 869 .llseek = generic_file_llseek, 870 .release = mem_release, 871 }; 872 873 static ssize_t oom_adjust_read(struct file *file, char __user *buf, 874 size_t count, loff_t *ppos) 875 { 876 struct task_struct *task = get_proc_task(file->f_path.dentry->d_inode); 877 char buffer[PROC_NUMBUF]; 878 size_t len; 879 int oom_adjust = OOM_DISABLE; 880 unsigned long flags; 881 882 if (!task) 883 return -ESRCH; 884 885 if (lock_task_sighand(task, &flags)) { 886 oom_adjust = task->signal->oom_adj; 887 unlock_task_sighand(task, &flags); 888 } 889 890 put_task_struct(task); 891 892 len = snprintf(buffer, sizeof(buffer), "%i\n", oom_adjust); 893 894 return simple_read_from_buffer(buf, count, ppos, buffer, len); 895 } 896 897 static ssize_t oom_adjust_write(struct file *file, const char __user *buf, 898 size_t count, loff_t *ppos) 899 { 900 struct task_struct *task; 901 char buffer[PROC_NUMBUF]; 902 int oom_adjust; 903 unsigned long flags; 904 int err; 905 906 memset(buffer, 0, sizeof(buffer)); 907 if (count > sizeof(buffer) - 1) 908 count = sizeof(buffer) - 1; 909 if (copy_from_user(buffer, buf, count)) { 910 err = -EFAULT; 911 goto out; 912 } 913 914 err = kstrtoint(strstrip(buffer), 0, &oom_adjust); 915 if (err) 916 goto out; 917 if ((oom_adjust < OOM_ADJUST_MIN || oom_adjust > OOM_ADJUST_MAX) && 918 oom_adjust != OOM_DISABLE) { 919 err = -EINVAL; 920 goto out; 921 } 922 923 task = get_proc_task(file->f_path.dentry->d_inode); 924 if (!task) { 925 err = -ESRCH; 926 goto out; 927 } 928 929 task_lock(task); 930 if (!task->mm) { 931 err = -EINVAL; 932 goto err_task_lock; 933 } 934 935 if (!lock_task_sighand(task, &flags)) { 936 err = -ESRCH; 937 goto err_task_lock; 938 } 939 940 if (oom_adjust < task->signal->oom_adj && !capable(CAP_SYS_RESOURCE)) { 941 err = -EACCES; 942 goto err_sighand; 943 } 944 945 /* 946 * Warn that /proc/pid/oom_adj is deprecated, see 947 * Documentation/feature-removal-schedule.txt. 948 */ 949 printk_once(KERN_WARNING "%s (%d): /proc/%d/oom_adj is deprecated, please use /proc/%d/oom_score_adj instead.\n", 950 current->comm, task_pid_nr(current), task_pid_nr(task), 951 task_pid_nr(task)); 952 task->signal->oom_adj = oom_adjust; 953 /* 954 * Scale /proc/pid/oom_score_adj appropriately ensuring that a maximum 955 * value is always attainable. 956 */ 957 if (task->signal->oom_adj == OOM_ADJUST_MAX) 958 task->signal->oom_score_adj = OOM_SCORE_ADJ_MAX; 959 else 960 task->signal->oom_score_adj = (oom_adjust * OOM_SCORE_ADJ_MAX) / 961 -OOM_DISABLE; 962 trace_oom_score_adj_update(task); 963 err_sighand: 964 unlock_task_sighand(task, &flags); 965 err_task_lock: 966 task_unlock(task); 967 put_task_struct(task); 968 out: 969 return err < 0 ? err : count; 970 } 971 972 static const struct file_operations proc_oom_adjust_operations = { 973 .read = oom_adjust_read, 974 .write = oom_adjust_write, 975 .llseek = generic_file_llseek, 976 }; 977 978 static ssize_t oom_score_adj_read(struct file *file, char __user *buf, 979 size_t count, loff_t *ppos) 980 { 981 struct task_struct *task = get_proc_task(file->f_path.dentry->d_inode); 982 char buffer[PROC_NUMBUF]; 983 int oom_score_adj = OOM_SCORE_ADJ_MIN; 984 unsigned long flags; 985 size_t len; 986 987 if (!task) 988 return -ESRCH; 989 if (lock_task_sighand(task, &flags)) { 990 oom_score_adj = task->signal->oom_score_adj; 991 unlock_task_sighand(task, &flags); 992 } 993 put_task_struct(task); 994 len = snprintf(buffer, sizeof(buffer), "%d\n", oom_score_adj); 995 return simple_read_from_buffer(buf, count, ppos, buffer, len); 996 } 997 998 static ssize_t oom_score_adj_write(struct file *file, const char __user *buf, 999 size_t count, loff_t *ppos) 1000 { 1001 struct task_struct *task; 1002 char buffer[PROC_NUMBUF]; 1003 unsigned long flags; 1004 int oom_score_adj; 1005 int err; 1006 1007 memset(buffer, 0, sizeof(buffer)); 1008 if (count > sizeof(buffer) - 1) 1009 count = sizeof(buffer) - 1; 1010 if (copy_from_user(buffer, buf, count)) { 1011 err = -EFAULT; 1012 goto out; 1013 } 1014 1015 err = kstrtoint(strstrip(buffer), 0, &oom_score_adj); 1016 if (err) 1017 goto out; 1018 if (oom_score_adj < OOM_SCORE_ADJ_MIN || 1019 oom_score_adj > OOM_SCORE_ADJ_MAX) { 1020 err = -EINVAL; 1021 goto out; 1022 } 1023 1024 task = get_proc_task(file->f_path.dentry->d_inode); 1025 if (!task) { 1026 err = -ESRCH; 1027 goto out; 1028 } 1029 1030 task_lock(task); 1031 if (!task->mm) { 1032 err = -EINVAL; 1033 goto err_task_lock; 1034 } 1035 1036 if (!lock_task_sighand(task, &flags)) { 1037 err = -ESRCH; 1038 goto err_task_lock; 1039 } 1040 1041 if (oom_score_adj < task->signal->oom_score_adj_min && 1042 !capable(CAP_SYS_RESOURCE)) { 1043 err = -EACCES; 1044 goto err_sighand; 1045 } 1046 1047 task->signal->oom_score_adj = oom_score_adj; 1048 if (has_capability_noaudit(current, CAP_SYS_RESOURCE)) 1049 task->signal->oom_score_adj_min = oom_score_adj; 1050 trace_oom_score_adj_update(task); 1051 /* 1052 * Scale /proc/pid/oom_adj appropriately ensuring that OOM_DISABLE is 1053 * always attainable. 1054 */ 1055 if (task->signal->oom_score_adj == OOM_SCORE_ADJ_MIN) 1056 task->signal->oom_adj = OOM_DISABLE; 1057 else 1058 task->signal->oom_adj = (oom_score_adj * OOM_ADJUST_MAX) / 1059 OOM_SCORE_ADJ_MAX; 1060 err_sighand: 1061 unlock_task_sighand(task, &flags); 1062 err_task_lock: 1063 task_unlock(task); 1064 put_task_struct(task); 1065 out: 1066 return err < 0 ? err : count; 1067 } 1068 1069 static const struct file_operations proc_oom_score_adj_operations = { 1070 .read = oom_score_adj_read, 1071 .write = oom_score_adj_write, 1072 .llseek = default_llseek, 1073 }; 1074 1075 #ifdef CONFIG_AUDITSYSCALL 1076 #define TMPBUFLEN 21 1077 static ssize_t proc_loginuid_read(struct file * file, char __user * buf, 1078 size_t count, loff_t *ppos) 1079 { 1080 struct inode * inode = file->f_path.dentry->d_inode; 1081 struct task_struct *task = get_proc_task(inode); 1082 ssize_t length; 1083 char tmpbuf[TMPBUFLEN]; 1084 1085 if (!task) 1086 return -ESRCH; 1087 length = scnprintf(tmpbuf, TMPBUFLEN, "%u", 1088 audit_get_loginuid(task)); 1089 put_task_struct(task); 1090 return simple_read_from_buffer(buf, count, ppos, tmpbuf, length); 1091 } 1092 1093 static ssize_t proc_loginuid_write(struct file * file, const char __user * buf, 1094 size_t count, loff_t *ppos) 1095 { 1096 struct inode * inode = file->f_path.dentry->d_inode; 1097 char *page, *tmp; 1098 ssize_t length; 1099 uid_t loginuid; 1100 1101 rcu_read_lock(); 1102 if (current != pid_task(proc_pid(inode), PIDTYPE_PID)) { 1103 rcu_read_unlock(); 1104 return -EPERM; 1105 } 1106 rcu_read_unlock(); 1107 1108 if (count >= PAGE_SIZE) 1109 count = PAGE_SIZE - 1; 1110 1111 if (*ppos != 0) { 1112 /* No partial writes. */ 1113 return -EINVAL; 1114 } 1115 page = (char*)__get_free_page(GFP_TEMPORARY); 1116 if (!page) 1117 return -ENOMEM; 1118 length = -EFAULT; 1119 if (copy_from_user(page, buf, count)) 1120 goto out_free_page; 1121 1122 page[count] = '\0'; 1123 loginuid = simple_strtoul(page, &tmp, 10); 1124 if (tmp == page) { 1125 length = -EINVAL; 1126 goto out_free_page; 1127 1128 } 1129 length = audit_set_loginuid(loginuid); 1130 if (likely(length == 0)) 1131 length = count; 1132 1133 out_free_page: 1134 free_page((unsigned long) page); 1135 return length; 1136 } 1137 1138 static const struct file_operations proc_loginuid_operations = { 1139 .read = proc_loginuid_read, 1140 .write = proc_loginuid_write, 1141 .llseek = generic_file_llseek, 1142 }; 1143 1144 static ssize_t proc_sessionid_read(struct file * file, char __user * buf, 1145 size_t count, loff_t *ppos) 1146 { 1147 struct inode * inode = file->f_path.dentry->d_inode; 1148 struct task_struct *task = get_proc_task(inode); 1149 ssize_t length; 1150 char tmpbuf[TMPBUFLEN]; 1151 1152 if (!task) 1153 return -ESRCH; 1154 length = scnprintf(tmpbuf, TMPBUFLEN, "%u", 1155 audit_get_sessionid(task)); 1156 put_task_struct(task); 1157 return simple_read_from_buffer(buf, count, ppos, tmpbuf, length); 1158 } 1159 1160 static const struct file_operations proc_sessionid_operations = { 1161 .read = proc_sessionid_read, 1162 .llseek = generic_file_llseek, 1163 }; 1164 #endif 1165 1166 #ifdef CONFIG_FAULT_INJECTION 1167 static ssize_t proc_fault_inject_read(struct file * file, char __user * buf, 1168 size_t count, loff_t *ppos) 1169 { 1170 struct task_struct *task = get_proc_task(file->f_dentry->d_inode); 1171 char buffer[PROC_NUMBUF]; 1172 size_t len; 1173 int make_it_fail; 1174 1175 if (!task) 1176 return -ESRCH; 1177 make_it_fail = task->make_it_fail; 1178 put_task_struct(task); 1179 1180 len = snprintf(buffer, sizeof(buffer), "%i\n", make_it_fail); 1181 1182 return simple_read_from_buffer(buf, count, ppos, buffer, len); 1183 } 1184 1185 static ssize_t proc_fault_inject_write(struct file * file, 1186 const char __user * buf, size_t count, loff_t *ppos) 1187 { 1188 struct task_struct *task; 1189 char buffer[PROC_NUMBUF], *end; 1190 int make_it_fail; 1191 1192 if (!capable(CAP_SYS_RESOURCE)) 1193 return -EPERM; 1194 memset(buffer, 0, sizeof(buffer)); 1195 if (count > sizeof(buffer) - 1) 1196 count = sizeof(buffer) - 1; 1197 if (copy_from_user(buffer, buf, count)) 1198 return -EFAULT; 1199 make_it_fail = simple_strtol(strstrip(buffer), &end, 0); 1200 if (*end) 1201 return -EINVAL; 1202 task = get_proc_task(file->f_dentry->d_inode); 1203 if (!task) 1204 return -ESRCH; 1205 task->make_it_fail = make_it_fail; 1206 put_task_struct(task); 1207 1208 return count; 1209 } 1210 1211 static const struct file_operations proc_fault_inject_operations = { 1212 .read = proc_fault_inject_read, 1213 .write = proc_fault_inject_write, 1214 .llseek = generic_file_llseek, 1215 }; 1216 #endif 1217 1218 1219 #ifdef CONFIG_SCHED_DEBUG 1220 /* 1221 * Print out various scheduling related per-task fields: 1222 */ 1223 static int sched_show(struct seq_file *m, void *v) 1224 { 1225 struct inode *inode = m->private; 1226 struct task_struct *p; 1227 1228 p = get_proc_task(inode); 1229 if (!p) 1230 return -ESRCH; 1231 proc_sched_show_task(p, m); 1232 1233 put_task_struct(p); 1234 1235 return 0; 1236 } 1237 1238 static ssize_t 1239 sched_write(struct file *file, const char __user *buf, 1240 size_t count, loff_t *offset) 1241 { 1242 struct inode *inode = file->f_path.dentry->d_inode; 1243 struct task_struct *p; 1244 1245 p = get_proc_task(inode); 1246 if (!p) 1247 return -ESRCH; 1248 proc_sched_set_task(p); 1249 1250 put_task_struct(p); 1251 1252 return count; 1253 } 1254 1255 static int sched_open(struct inode *inode, struct file *filp) 1256 { 1257 return single_open(filp, sched_show, inode); 1258 } 1259 1260 static const struct file_operations proc_pid_sched_operations = { 1261 .open = sched_open, 1262 .read = seq_read, 1263 .write = sched_write, 1264 .llseek = seq_lseek, 1265 .release = single_release, 1266 }; 1267 1268 #endif 1269 1270 #ifdef CONFIG_SCHED_AUTOGROUP 1271 /* 1272 * Print out autogroup related information: 1273 */ 1274 static int sched_autogroup_show(struct seq_file *m, void *v) 1275 { 1276 struct inode *inode = m->private; 1277 struct task_struct *p; 1278 1279 p = get_proc_task(inode); 1280 if (!p) 1281 return -ESRCH; 1282 proc_sched_autogroup_show_task(p, m); 1283 1284 put_task_struct(p); 1285 1286 return 0; 1287 } 1288 1289 static ssize_t 1290 sched_autogroup_write(struct file *file, const char __user *buf, 1291 size_t count, loff_t *offset) 1292 { 1293 struct inode *inode = file->f_path.dentry->d_inode; 1294 struct task_struct *p; 1295 char buffer[PROC_NUMBUF]; 1296 int nice; 1297 int err; 1298 1299 memset(buffer, 0, sizeof(buffer)); 1300 if (count > sizeof(buffer) - 1) 1301 count = sizeof(buffer) - 1; 1302 if (copy_from_user(buffer, buf, count)) 1303 return -EFAULT; 1304 1305 err = kstrtoint(strstrip(buffer), 0, &nice); 1306 if (err < 0) 1307 return err; 1308 1309 p = get_proc_task(inode); 1310 if (!p) 1311 return -ESRCH; 1312 1313 err = proc_sched_autogroup_set_nice(p, nice); 1314 if (err) 1315 count = err; 1316 1317 put_task_struct(p); 1318 1319 return count; 1320 } 1321 1322 static int sched_autogroup_open(struct inode *inode, struct file *filp) 1323 { 1324 int ret; 1325 1326 ret = single_open(filp, sched_autogroup_show, NULL); 1327 if (!ret) { 1328 struct seq_file *m = filp->private_data; 1329 1330 m->private = inode; 1331 } 1332 return ret; 1333 } 1334 1335 static const struct file_operations proc_pid_sched_autogroup_operations = { 1336 .open = sched_autogroup_open, 1337 .read = seq_read, 1338 .write = sched_autogroup_write, 1339 .llseek = seq_lseek, 1340 .release = single_release, 1341 }; 1342 1343 #endif /* CONFIG_SCHED_AUTOGROUP */ 1344 1345 static ssize_t comm_write(struct file *file, const char __user *buf, 1346 size_t count, loff_t *offset) 1347 { 1348 struct inode *inode = file->f_path.dentry->d_inode; 1349 struct task_struct *p; 1350 char buffer[TASK_COMM_LEN]; 1351 1352 memset(buffer, 0, sizeof(buffer)); 1353 if (count > sizeof(buffer) - 1) 1354 count = sizeof(buffer) - 1; 1355 if (copy_from_user(buffer, buf, count)) 1356 return -EFAULT; 1357 1358 p = get_proc_task(inode); 1359 if (!p) 1360 return -ESRCH; 1361 1362 if (same_thread_group(current, p)) 1363 set_task_comm(p, buffer); 1364 else 1365 count = -EINVAL; 1366 1367 put_task_struct(p); 1368 1369 return count; 1370 } 1371 1372 static int comm_show(struct seq_file *m, void *v) 1373 { 1374 struct inode *inode = m->private; 1375 struct task_struct *p; 1376 1377 p = get_proc_task(inode); 1378 if (!p) 1379 return -ESRCH; 1380 1381 task_lock(p); 1382 seq_printf(m, "%s\n", p->comm); 1383 task_unlock(p); 1384 1385 put_task_struct(p); 1386 1387 return 0; 1388 } 1389 1390 static int comm_open(struct inode *inode, struct file *filp) 1391 { 1392 return single_open(filp, comm_show, inode); 1393 } 1394 1395 static const struct file_operations proc_pid_set_comm_operations = { 1396 .open = comm_open, 1397 .read = seq_read, 1398 .write = comm_write, 1399 .llseek = seq_lseek, 1400 .release = single_release, 1401 }; 1402 1403 static int proc_exe_link(struct dentry *dentry, struct path *exe_path) 1404 { 1405 struct task_struct *task; 1406 struct mm_struct *mm; 1407 struct file *exe_file; 1408 1409 task = get_proc_task(dentry->d_inode); 1410 if (!task) 1411 return -ENOENT; 1412 mm = get_task_mm(task); 1413 put_task_struct(task); 1414 if (!mm) 1415 return -ENOENT; 1416 exe_file = get_mm_exe_file(mm); 1417 mmput(mm); 1418 if (exe_file) { 1419 *exe_path = exe_file->f_path; 1420 path_get(&exe_file->f_path); 1421 fput(exe_file); 1422 return 0; 1423 } else 1424 return -ENOENT; 1425 } 1426 1427 static void *proc_pid_follow_link(struct dentry *dentry, struct nameidata *nd) 1428 { 1429 struct inode *inode = dentry->d_inode; 1430 struct path path; 1431 int error = -EACCES; 1432 1433 /* Are we allowed to snoop on the tasks file descriptors? */ 1434 if (!proc_fd_access_allowed(inode)) 1435 goto out; 1436 1437 error = PROC_I(inode)->op.proc_get_link(dentry, &path); 1438 if (error) 1439 goto out; 1440 1441 nd_jump_link(nd, &path); 1442 return NULL; 1443 out: 1444 return ERR_PTR(error); 1445 } 1446 1447 static int do_proc_readlink(struct path *path, char __user *buffer, int buflen) 1448 { 1449 char *tmp = (char*)__get_free_page(GFP_TEMPORARY); 1450 char *pathname; 1451 int len; 1452 1453 if (!tmp) 1454 return -ENOMEM; 1455 1456 pathname = d_path(path, tmp, PAGE_SIZE); 1457 len = PTR_ERR(pathname); 1458 if (IS_ERR(pathname)) 1459 goto out; 1460 len = tmp + PAGE_SIZE - 1 - pathname; 1461 1462 if (len > buflen) 1463 len = buflen; 1464 if (copy_to_user(buffer, pathname, len)) 1465 len = -EFAULT; 1466 out: 1467 free_page((unsigned long)tmp); 1468 return len; 1469 } 1470 1471 static int proc_pid_readlink(struct dentry * dentry, char __user * buffer, int buflen) 1472 { 1473 int error = -EACCES; 1474 struct inode *inode = dentry->d_inode; 1475 struct path path; 1476 1477 /* Are we allowed to snoop on the tasks file descriptors? */ 1478 if (!proc_fd_access_allowed(inode)) 1479 goto out; 1480 1481 error = PROC_I(inode)->op.proc_get_link(dentry, &path); 1482 if (error) 1483 goto out; 1484 1485 error = do_proc_readlink(&path, buffer, buflen); 1486 path_put(&path); 1487 out: 1488 return error; 1489 } 1490 1491 static const struct inode_operations proc_pid_link_inode_operations = { 1492 .readlink = proc_pid_readlink, 1493 .follow_link = proc_pid_follow_link, 1494 .setattr = proc_setattr, 1495 }; 1496 1497 1498 /* building an inode */ 1499 1500 static int task_dumpable(struct task_struct *task) 1501 { 1502 int dumpable = 0; 1503 struct mm_struct *mm; 1504 1505 task_lock(task); 1506 mm = task->mm; 1507 if (mm) 1508 dumpable = get_dumpable(mm); 1509 task_unlock(task); 1510 if(dumpable == 1) 1511 return 1; 1512 return 0; 1513 } 1514 1515 struct inode *proc_pid_make_inode(struct super_block * sb, struct task_struct *task) 1516 { 1517 struct inode * inode; 1518 struct proc_inode *ei; 1519 const struct cred *cred; 1520 1521 /* We need a new inode */ 1522 1523 inode = new_inode(sb); 1524 if (!inode) 1525 goto out; 1526 1527 /* Common stuff */ 1528 ei = PROC_I(inode); 1529 inode->i_ino = get_next_ino(); 1530 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME; 1531 inode->i_op = &proc_def_inode_operations; 1532 1533 /* 1534 * grab the reference to task. 1535 */ 1536 ei->pid = get_task_pid(task, PIDTYPE_PID); 1537 if (!ei->pid) 1538 goto out_unlock; 1539 1540 if (task_dumpable(task)) { 1541 rcu_read_lock(); 1542 cred = __task_cred(task); 1543 inode->i_uid = cred->euid; 1544 inode->i_gid = cred->egid; 1545 rcu_read_unlock(); 1546 } 1547 security_task_to_inode(task, inode); 1548 1549 out: 1550 return inode; 1551 1552 out_unlock: 1553 iput(inode); 1554 return NULL; 1555 } 1556 1557 int pid_getattr(struct vfsmount *mnt, struct dentry *dentry, struct kstat *stat) 1558 { 1559 struct inode *inode = dentry->d_inode; 1560 struct task_struct *task; 1561 const struct cred *cred; 1562 struct pid_namespace *pid = dentry->d_sb->s_fs_info; 1563 1564 generic_fillattr(inode, stat); 1565 1566 rcu_read_lock(); 1567 stat->uid = GLOBAL_ROOT_UID; 1568 stat->gid = GLOBAL_ROOT_GID; 1569 task = pid_task(proc_pid(inode), PIDTYPE_PID); 1570 if (task) { 1571 if (!has_pid_permissions(pid, task, 2)) { 1572 rcu_read_unlock(); 1573 /* 1574 * This doesn't prevent learning whether PID exists, 1575 * it only makes getattr() consistent with readdir(). 1576 */ 1577 return -ENOENT; 1578 } 1579 if ((inode->i_mode == (S_IFDIR|S_IRUGO|S_IXUGO)) || 1580 task_dumpable(task)) { 1581 cred = __task_cred(task); 1582 stat->uid = cred->euid; 1583 stat->gid = cred->egid; 1584 } 1585 } 1586 rcu_read_unlock(); 1587 return 0; 1588 } 1589 1590 /* dentry stuff */ 1591 1592 /* 1593 * Exceptional case: normally we are not allowed to unhash a busy 1594 * directory. In this case, however, we can do it - no aliasing problems 1595 * due to the way we treat inodes. 1596 * 1597 * Rewrite the inode's ownerships here because the owning task may have 1598 * performed a setuid(), etc. 1599 * 1600 * Before the /proc/pid/status file was created the only way to read 1601 * the effective uid of a /process was to stat /proc/pid. Reading 1602 * /proc/pid/status is slow enough that procps and other packages 1603 * kept stating /proc/pid. To keep the rules in /proc simple I have 1604 * made this apply to all per process world readable and executable 1605 * directories. 1606 */ 1607 int pid_revalidate(struct dentry *dentry, unsigned int flags) 1608 { 1609 struct inode *inode; 1610 struct task_struct *task; 1611 const struct cred *cred; 1612 1613 if (flags & LOOKUP_RCU) 1614 return -ECHILD; 1615 1616 inode = dentry->d_inode; 1617 task = get_proc_task(inode); 1618 1619 if (task) { 1620 if ((inode->i_mode == (S_IFDIR|S_IRUGO|S_IXUGO)) || 1621 task_dumpable(task)) { 1622 rcu_read_lock(); 1623 cred = __task_cred(task); 1624 inode->i_uid = cred->euid; 1625 inode->i_gid = cred->egid; 1626 rcu_read_unlock(); 1627 } else { 1628 inode->i_uid = GLOBAL_ROOT_UID; 1629 inode->i_gid = GLOBAL_ROOT_GID; 1630 } 1631 inode->i_mode &= ~(S_ISUID | S_ISGID); 1632 security_task_to_inode(task, inode); 1633 put_task_struct(task); 1634 return 1; 1635 } 1636 d_drop(dentry); 1637 return 0; 1638 } 1639 1640 static int pid_delete_dentry(const struct dentry * dentry) 1641 { 1642 /* Is the task we represent dead? 1643 * If so, then don't put the dentry on the lru list, 1644 * kill it immediately. 1645 */ 1646 return !proc_pid(dentry->d_inode)->tasks[PIDTYPE_PID].first; 1647 } 1648 1649 const struct dentry_operations pid_dentry_operations = 1650 { 1651 .d_revalidate = pid_revalidate, 1652 .d_delete = pid_delete_dentry, 1653 }; 1654 1655 /* Lookups */ 1656 1657 /* 1658 * Fill a directory entry. 1659 * 1660 * If possible create the dcache entry and derive our inode number and 1661 * file type from dcache entry. 1662 * 1663 * Since all of the proc inode numbers are dynamically generated, the inode 1664 * numbers do not exist until the inode is cache. This means creating the 1665 * the dcache entry in readdir is necessary to keep the inode numbers 1666 * reported by readdir in sync with the inode numbers reported 1667 * by stat. 1668 */ 1669 int proc_fill_cache(struct file *filp, void *dirent, filldir_t filldir, 1670 const char *name, int len, 1671 instantiate_t instantiate, struct task_struct *task, const void *ptr) 1672 { 1673 struct dentry *child, *dir = filp->f_path.dentry; 1674 struct inode *inode; 1675 struct qstr qname; 1676 ino_t ino = 0; 1677 unsigned type = DT_UNKNOWN; 1678 1679 qname.name = name; 1680 qname.len = len; 1681 qname.hash = full_name_hash(name, len); 1682 1683 child = d_lookup(dir, &qname); 1684 if (!child) { 1685 struct dentry *new; 1686 new = d_alloc(dir, &qname); 1687 if (new) { 1688 child = instantiate(dir->d_inode, new, task, ptr); 1689 if (child) 1690 dput(new); 1691 else 1692 child = new; 1693 } 1694 } 1695 if (!child || IS_ERR(child) || !child->d_inode) 1696 goto end_instantiate; 1697 inode = child->d_inode; 1698 if (inode) { 1699 ino = inode->i_ino; 1700 type = inode->i_mode >> 12; 1701 } 1702 dput(child); 1703 end_instantiate: 1704 if (!ino) 1705 ino = find_inode_number(dir, &qname); 1706 if (!ino) 1707 ino = 1; 1708 return filldir(dirent, name, len, filp->f_pos, ino, type); 1709 } 1710 1711 static unsigned name_to_int(struct dentry *dentry) 1712 { 1713 const char *name = dentry->d_name.name; 1714 int len = dentry->d_name.len; 1715 unsigned n = 0; 1716 1717 if (len > 1 && *name == '0') 1718 goto out; 1719 while (len-- > 0) { 1720 unsigned c = *name++ - '0'; 1721 if (c > 9) 1722 goto out; 1723 if (n >= (~0U-9)/10) 1724 goto out; 1725 n *= 10; 1726 n += c; 1727 } 1728 return n; 1729 out: 1730 return ~0U; 1731 } 1732 1733 #define PROC_FDINFO_MAX 64 1734 1735 static int proc_fd_info(struct inode *inode, struct path *path, char *info) 1736 { 1737 struct task_struct *task = get_proc_task(inode); 1738 struct files_struct *files = NULL; 1739 struct file *file; 1740 int fd = proc_fd(inode); 1741 1742 if (task) { 1743 files = get_files_struct(task); 1744 put_task_struct(task); 1745 } 1746 if (files) { 1747 /* 1748 * We are not taking a ref to the file structure, so we must 1749 * hold ->file_lock. 1750 */ 1751 spin_lock(&files->file_lock); 1752 file = fcheck_files(files, fd); 1753 if (file) { 1754 unsigned int f_flags; 1755 struct fdtable *fdt; 1756 1757 fdt = files_fdtable(files); 1758 f_flags = file->f_flags & ~O_CLOEXEC; 1759 if (close_on_exec(fd, fdt)) 1760 f_flags |= O_CLOEXEC; 1761 1762 if (path) { 1763 *path = file->f_path; 1764 path_get(&file->f_path); 1765 } 1766 if (info) 1767 snprintf(info, PROC_FDINFO_MAX, 1768 "pos:\t%lli\n" 1769 "flags:\t0%o\n", 1770 (long long) file->f_pos, 1771 f_flags); 1772 spin_unlock(&files->file_lock); 1773 put_files_struct(files); 1774 return 0; 1775 } 1776 spin_unlock(&files->file_lock); 1777 put_files_struct(files); 1778 } 1779 return -ENOENT; 1780 } 1781 1782 static int proc_fd_link(struct dentry *dentry, struct path *path) 1783 { 1784 return proc_fd_info(dentry->d_inode, path, NULL); 1785 } 1786 1787 static int tid_fd_revalidate(struct dentry *dentry, unsigned int flags) 1788 { 1789 struct inode *inode; 1790 struct task_struct *task; 1791 int fd; 1792 struct files_struct *files; 1793 const struct cred *cred; 1794 1795 if (flags & LOOKUP_RCU) 1796 return -ECHILD; 1797 1798 inode = dentry->d_inode; 1799 task = get_proc_task(inode); 1800 fd = proc_fd(inode); 1801 1802 if (task) { 1803 files = get_files_struct(task); 1804 if (files) { 1805 struct file *file; 1806 rcu_read_lock(); 1807 file = fcheck_files(files, fd); 1808 if (file) { 1809 unsigned f_mode = file->f_mode; 1810 1811 rcu_read_unlock(); 1812 put_files_struct(files); 1813 1814 if (task_dumpable(task)) { 1815 rcu_read_lock(); 1816 cred = __task_cred(task); 1817 inode->i_uid = cred->euid; 1818 inode->i_gid = cred->egid; 1819 rcu_read_unlock(); 1820 } else { 1821 inode->i_uid = GLOBAL_ROOT_UID; 1822 inode->i_gid = GLOBAL_ROOT_GID; 1823 } 1824 1825 if (S_ISLNK(inode->i_mode)) { 1826 unsigned i_mode = S_IFLNK; 1827 if (f_mode & FMODE_READ) 1828 i_mode |= S_IRUSR | S_IXUSR; 1829 if (f_mode & FMODE_WRITE) 1830 i_mode |= S_IWUSR | S_IXUSR; 1831 inode->i_mode = i_mode; 1832 } 1833 1834 security_task_to_inode(task, inode); 1835 put_task_struct(task); 1836 return 1; 1837 } 1838 rcu_read_unlock(); 1839 put_files_struct(files); 1840 } 1841 put_task_struct(task); 1842 } 1843 d_drop(dentry); 1844 return 0; 1845 } 1846 1847 static const struct dentry_operations tid_fd_dentry_operations = 1848 { 1849 .d_revalidate = tid_fd_revalidate, 1850 .d_delete = pid_delete_dentry, 1851 }; 1852 1853 static struct dentry *proc_fd_instantiate(struct inode *dir, 1854 struct dentry *dentry, struct task_struct *task, const void *ptr) 1855 { 1856 unsigned fd = (unsigned long)ptr; 1857 struct inode *inode; 1858 struct proc_inode *ei; 1859 struct dentry *error = ERR_PTR(-ENOENT); 1860 1861 inode = proc_pid_make_inode(dir->i_sb, task); 1862 if (!inode) 1863 goto out; 1864 ei = PROC_I(inode); 1865 ei->fd = fd; 1866 1867 inode->i_mode = S_IFLNK; 1868 inode->i_op = &proc_pid_link_inode_operations; 1869 inode->i_size = 64; 1870 ei->op.proc_get_link = proc_fd_link; 1871 d_set_d_op(dentry, &tid_fd_dentry_operations); 1872 d_add(dentry, inode); 1873 /* Close the race of the process dying before we return the dentry */ 1874 if (tid_fd_revalidate(dentry, 0)) 1875 error = NULL; 1876 1877 out: 1878 return error; 1879 } 1880 1881 static struct dentry *proc_lookupfd_common(struct inode *dir, 1882 struct dentry *dentry, 1883 instantiate_t instantiate) 1884 { 1885 struct task_struct *task = get_proc_task(dir); 1886 unsigned fd = name_to_int(dentry); 1887 struct dentry *result = ERR_PTR(-ENOENT); 1888 1889 if (!task) 1890 goto out_no_task; 1891 if (fd == ~0U) 1892 goto out; 1893 1894 result = instantiate(dir, dentry, task, (void *)(unsigned long)fd); 1895 out: 1896 put_task_struct(task); 1897 out_no_task: 1898 return result; 1899 } 1900 1901 static int proc_readfd_common(struct file * filp, void * dirent, 1902 filldir_t filldir, instantiate_t instantiate) 1903 { 1904 struct dentry *dentry = filp->f_path.dentry; 1905 struct inode *inode = dentry->d_inode; 1906 struct task_struct *p = get_proc_task(inode); 1907 unsigned int fd, ino; 1908 int retval; 1909 struct files_struct * files; 1910 1911 retval = -ENOENT; 1912 if (!p) 1913 goto out_no_task; 1914 retval = 0; 1915 1916 fd = filp->f_pos; 1917 switch (fd) { 1918 case 0: 1919 if (filldir(dirent, ".", 1, 0, inode->i_ino, DT_DIR) < 0) 1920 goto out; 1921 filp->f_pos++; 1922 case 1: 1923 ino = parent_ino(dentry); 1924 if (filldir(dirent, "..", 2, 1, ino, DT_DIR) < 0) 1925 goto out; 1926 filp->f_pos++; 1927 default: 1928 files = get_files_struct(p); 1929 if (!files) 1930 goto out; 1931 rcu_read_lock(); 1932 for (fd = filp->f_pos-2; 1933 fd < files_fdtable(files)->max_fds; 1934 fd++, filp->f_pos++) { 1935 char name[PROC_NUMBUF]; 1936 int len; 1937 int rv; 1938 1939 if (!fcheck_files(files, fd)) 1940 continue; 1941 rcu_read_unlock(); 1942 1943 len = snprintf(name, sizeof(name), "%d", fd); 1944 rv = proc_fill_cache(filp, dirent, filldir, 1945 name, len, instantiate, p, 1946 (void *)(unsigned long)fd); 1947 if (rv < 0) 1948 goto out_fd_loop; 1949 rcu_read_lock(); 1950 } 1951 rcu_read_unlock(); 1952 out_fd_loop: 1953 put_files_struct(files); 1954 } 1955 out: 1956 put_task_struct(p); 1957 out_no_task: 1958 return retval; 1959 } 1960 1961 static struct dentry *proc_lookupfd(struct inode *dir, struct dentry *dentry, 1962 unsigned int flags) 1963 { 1964 return proc_lookupfd_common(dir, dentry, proc_fd_instantiate); 1965 } 1966 1967 static int proc_readfd(struct file *filp, void *dirent, filldir_t filldir) 1968 { 1969 return proc_readfd_common(filp, dirent, filldir, proc_fd_instantiate); 1970 } 1971 1972 static ssize_t proc_fdinfo_read(struct file *file, char __user *buf, 1973 size_t len, loff_t *ppos) 1974 { 1975 char tmp[PROC_FDINFO_MAX]; 1976 int err = proc_fd_info(file->f_path.dentry->d_inode, NULL, tmp); 1977 if (!err) 1978 err = simple_read_from_buffer(buf, len, ppos, tmp, strlen(tmp)); 1979 return err; 1980 } 1981 1982 static const struct file_operations proc_fdinfo_file_operations = { 1983 .open = nonseekable_open, 1984 .read = proc_fdinfo_read, 1985 .llseek = no_llseek, 1986 }; 1987 1988 static const struct file_operations proc_fd_operations = { 1989 .read = generic_read_dir, 1990 .readdir = proc_readfd, 1991 .llseek = default_llseek, 1992 }; 1993 1994 #ifdef CONFIG_CHECKPOINT_RESTORE 1995 1996 /* 1997 * dname_to_vma_addr - maps a dentry name into two unsigned longs 1998 * which represent vma start and end addresses. 1999 */ 2000 static int dname_to_vma_addr(struct dentry *dentry, 2001 unsigned long *start, unsigned long *end) 2002 { 2003 if (sscanf(dentry->d_name.name, "%lx-%lx", start, end) != 2) 2004 return -EINVAL; 2005 2006 return 0; 2007 } 2008 2009 static int map_files_d_revalidate(struct dentry *dentry, unsigned int flags) 2010 { 2011 unsigned long vm_start, vm_end; 2012 bool exact_vma_exists = false; 2013 struct mm_struct *mm = NULL; 2014 struct task_struct *task; 2015 const struct cred *cred; 2016 struct inode *inode; 2017 int status = 0; 2018 2019 if (flags & LOOKUP_RCU) 2020 return -ECHILD; 2021 2022 if (!capable(CAP_SYS_ADMIN)) { 2023 status = -EACCES; 2024 goto out_notask; 2025 } 2026 2027 inode = dentry->d_inode; 2028 task = get_proc_task(inode); 2029 if (!task) 2030 goto out_notask; 2031 2032 mm = mm_access(task, PTRACE_MODE_READ); 2033 if (IS_ERR_OR_NULL(mm)) 2034 goto out; 2035 2036 if (!dname_to_vma_addr(dentry, &vm_start, &vm_end)) { 2037 down_read(&mm->mmap_sem); 2038 exact_vma_exists = !!find_exact_vma(mm, vm_start, vm_end); 2039 up_read(&mm->mmap_sem); 2040 } 2041 2042 mmput(mm); 2043 2044 if (exact_vma_exists) { 2045 if (task_dumpable(task)) { 2046 rcu_read_lock(); 2047 cred = __task_cred(task); 2048 inode->i_uid = cred->euid; 2049 inode->i_gid = cred->egid; 2050 rcu_read_unlock(); 2051 } else { 2052 inode->i_uid = GLOBAL_ROOT_UID; 2053 inode->i_gid = GLOBAL_ROOT_GID; 2054 } 2055 security_task_to_inode(task, inode); 2056 status = 1; 2057 } 2058 2059 out: 2060 put_task_struct(task); 2061 2062 out_notask: 2063 if (status <= 0) 2064 d_drop(dentry); 2065 2066 return status; 2067 } 2068 2069 static const struct dentry_operations tid_map_files_dentry_operations = { 2070 .d_revalidate = map_files_d_revalidate, 2071 .d_delete = pid_delete_dentry, 2072 }; 2073 2074 static int proc_map_files_get_link(struct dentry *dentry, struct path *path) 2075 { 2076 unsigned long vm_start, vm_end; 2077 struct vm_area_struct *vma; 2078 struct task_struct *task; 2079 struct mm_struct *mm; 2080 int rc; 2081 2082 rc = -ENOENT; 2083 task = get_proc_task(dentry->d_inode); 2084 if (!task) 2085 goto out; 2086 2087 mm = get_task_mm(task); 2088 put_task_struct(task); 2089 if (!mm) 2090 goto out; 2091 2092 rc = dname_to_vma_addr(dentry, &vm_start, &vm_end); 2093 if (rc) 2094 goto out_mmput; 2095 2096 down_read(&mm->mmap_sem); 2097 vma = find_exact_vma(mm, vm_start, vm_end); 2098 if (vma && vma->vm_file) { 2099 *path = vma->vm_file->f_path; 2100 path_get(path); 2101 rc = 0; 2102 } 2103 up_read(&mm->mmap_sem); 2104 2105 out_mmput: 2106 mmput(mm); 2107 out: 2108 return rc; 2109 } 2110 2111 struct map_files_info { 2112 struct file *file; 2113 unsigned long len; 2114 unsigned char name[4*sizeof(long)+2]; /* max: %lx-%lx\0 */ 2115 }; 2116 2117 static struct dentry * 2118 proc_map_files_instantiate(struct inode *dir, struct dentry *dentry, 2119 struct task_struct *task, const void *ptr) 2120 { 2121 const struct file *file = ptr; 2122 struct proc_inode *ei; 2123 struct inode *inode; 2124 2125 if (!file) 2126 return ERR_PTR(-ENOENT); 2127 2128 inode = proc_pid_make_inode(dir->i_sb, task); 2129 if (!inode) 2130 return ERR_PTR(-ENOENT); 2131 2132 ei = PROC_I(inode); 2133 ei->op.proc_get_link = proc_map_files_get_link; 2134 2135 inode->i_op = &proc_pid_link_inode_operations; 2136 inode->i_size = 64; 2137 inode->i_mode = S_IFLNK; 2138 2139 if (file->f_mode & FMODE_READ) 2140 inode->i_mode |= S_IRUSR; 2141 if (file->f_mode & FMODE_WRITE) 2142 inode->i_mode |= S_IWUSR; 2143 2144 d_set_d_op(dentry, &tid_map_files_dentry_operations); 2145 d_add(dentry, inode); 2146 2147 return NULL; 2148 } 2149 2150 static struct dentry *proc_map_files_lookup(struct inode *dir, 2151 struct dentry *dentry, unsigned int flags) 2152 { 2153 unsigned long vm_start, vm_end; 2154 struct vm_area_struct *vma; 2155 struct task_struct *task; 2156 struct dentry *result; 2157 struct mm_struct *mm; 2158 2159 result = ERR_PTR(-EACCES); 2160 if (!capable(CAP_SYS_ADMIN)) 2161 goto out; 2162 2163 result = ERR_PTR(-ENOENT); 2164 task = get_proc_task(dir); 2165 if (!task) 2166 goto out; 2167 2168 result = ERR_PTR(-EACCES); 2169 if (!ptrace_may_access(task, PTRACE_MODE_READ)) 2170 goto out_put_task; 2171 2172 result = ERR_PTR(-ENOENT); 2173 if (dname_to_vma_addr(dentry, &vm_start, &vm_end)) 2174 goto out_put_task; 2175 2176 mm = get_task_mm(task); 2177 if (!mm) 2178 goto out_put_task; 2179 2180 down_read(&mm->mmap_sem); 2181 vma = find_exact_vma(mm, vm_start, vm_end); 2182 if (!vma) 2183 goto out_no_vma; 2184 2185 result = proc_map_files_instantiate(dir, dentry, task, vma->vm_file); 2186 2187 out_no_vma: 2188 up_read(&mm->mmap_sem); 2189 mmput(mm); 2190 out_put_task: 2191 put_task_struct(task); 2192 out: 2193 return result; 2194 } 2195 2196 static const struct inode_operations proc_map_files_inode_operations = { 2197 .lookup = proc_map_files_lookup, 2198 .permission = proc_fd_permission, 2199 .setattr = proc_setattr, 2200 }; 2201 2202 static int 2203 proc_map_files_readdir(struct file *filp, void *dirent, filldir_t filldir) 2204 { 2205 struct dentry *dentry = filp->f_path.dentry; 2206 struct inode *inode = dentry->d_inode; 2207 struct vm_area_struct *vma; 2208 struct task_struct *task; 2209 struct mm_struct *mm; 2210 ino_t ino; 2211 int ret; 2212 2213 ret = -EACCES; 2214 if (!capable(CAP_SYS_ADMIN)) 2215 goto out; 2216 2217 ret = -ENOENT; 2218 task = get_proc_task(inode); 2219 if (!task) 2220 goto out; 2221 2222 ret = -EACCES; 2223 if (!ptrace_may_access(task, PTRACE_MODE_READ)) 2224 goto out_put_task; 2225 2226 ret = 0; 2227 switch (filp->f_pos) { 2228 case 0: 2229 ino = inode->i_ino; 2230 if (filldir(dirent, ".", 1, 0, ino, DT_DIR) < 0) 2231 goto out_put_task; 2232 filp->f_pos++; 2233 case 1: 2234 ino = parent_ino(dentry); 2235 if (filldir(dirent, "..", 2, 1, ino, DT_DIR) < 0) 2236 goto out_put_task; 2237 filp->f_pos++; 2238 default: 2239 { 2240 unsigned long nr_files, pos, i; 2241 struct flex_array *fa = NULL; 2242 struct map_files_info info; 2243 struct map_files_info *p; 2244 2245 mm = get_task_mm(task); 2246 if (!mm) 2247 goto out_put_task; 2248 down_read(&mm->mmap_sem); 2249 2250 nr_files = 0; 2251 2252 /* 2253 * We need two passes here: 2254 * 2255 * 1) Collect vmas of mapped files with mmap_sem taken 2256 * 2) Release mmap_sem and instantiate entries 2257 * 2258 * otherwise we get lockdep complained, since filldir() 2259 * routine might require mmap_sem taken in might_fault(). 2260 */ 2261 2262 for (vma = mm->mmap, pos = 2; vma; vma = vma->vm_next) { 2263 if (vma->vm_file && ++pos > filp->f_pos) 2264 nr_files++; 2265 } 2266 2267 if (nr_files) { 2268 fa = flex_array_alloc(sizeof(info), nr_files, 2269 GFP_KERNEL); 2270 if (!fa || flex_array_prealloc(fa, 0, nr_files, 2271 GFP_KERNEL)) { 2272 ret = -ENOMEM; 2273 if (fa) 2274 flex_array_free(fa); 2275 up_read(&mm->mmap_sem); 2276 mmput(mm); 2277 goto out_put_task; 2278 } 2279 for (i = 0, vma = mm->mmap, pos = 2; vma; 2280 vma = vma->vm_next) { 2281 if (!vma->vm_file) 2282 continue; 2283 if (++pos <= filp->f_pos) 2284 continue; 2285 2286 get_file(vma->vm_file); 2287 info.file = vma->vm_file; 2288 info.len = snprintf(info.name, 2289 sizeof(info.name), "%lx-%lx", 2290 vma->vm_start, vma->vm_end); 2291 if (flex_array_put(fa, i++, &info, GFP_KERNEL)) 2292 BUG(); 2293 } 2294 } 2295 up_read(&mm->mmap_sem); 2296 2297 for (i = 0; i < nr_files; i++) { 2298 p = flex_array_get(fa, i); 2299 ret = proc_fill_cache(filp, dirent, filldir, 2300 p->name, p->len, 2301 proc_map_files_instantiate, 2302 task, p->file); 2303 if (ret) 2304 break; 2305 filp->f_pos++; 2306 fput(p->file); 2307 } 2308 for (; i < nr_files; i++) { 2309 /* 2310 * In case of error don't forget 2311 * to put rest of file refs. 2312 */ 2313 p = flex_array_get(fa, i); 2314 fput(p->file); 2315 } 2316 if (fa) 2317 flex_array_free(fa); 2318 mmput(mm); 2319 } 2320 } 2321 2322 out_put_task: 2323 put_task_struct(task); 2324 out: 2325 return ret; 2326 } 2327 2328 static const struct file_operations proc_map_files_operations = { 2329 .read = generic_read_dir, 2330 .readdir = proc_map_files_readdir, 2331 .llseek = default_llseek, 2332 }; 2333 2334 #endif /* CONFIG_CHECKPOINT_RESTORE */ 2335 2336 /* 2337 * /proc/pid/fd needs a special permission handler so that a process can still 2338 * access /proc/self/fd after it has executed a setuid(). 2339 */ 2340 static int proc_fd_permission(struct inode *inode, int mask) 2341 { 2342 int rv = generic_permission(inode, mask); 2343 if (rv == 0) 2344 return 0; 2345 if (task_pid(current) == proc_pid(inode)) 2346 rv = 0; 2347 return rv; 2348 } 2349 2350 /* 2351 * proc directories can do almost nothing.. 2352 */ 2353 static const struct inode_operations proc_fd_inode_operations = { 2354 .lookup = proc_lookupfd, 2355 .permission = proc_fd_permission, 2356 .setattr = proc_setattr, 2357 }; 2358 2359 static struct dentry *proc_fdinfo_instantiate(struct inode *dir, 2360 struct dentry *dentry, struct task_struct *task, const void *ptr) 2361 { 2362 unsigned fd = (unsigned long)ptr; 2363 struct inode *inode; 2364 struct proc_inode *ei; 2365 struct dentry *error = ERR_PTR(-ENOENT); 2366 2367 inode = proc_pid_make_inode(dir->i_sb, task); 2368 if (!inode) 2369 goto out; 2370 ei = PROC_I(inode); 2371 ei->fd = fd; 2372 inode->i_mode = S_IFREG | S_IRUSR; 2373 inode->i_fop = &proc_fdinfo_file_operations; 2374 d_set_d_op(dentry, &tid_fd_dentry_operations); 2375 d_add(dentry, inode); 2376 /* Close the race of the process dying before we return the dentry */ 2377 if (tid_fd_revalidate(dentry, 0)) 2378 error = NULL; 2379 2380 out: 2381 return error; 2382 } 2383 2384 static struct dentry *proc_lookupfdinfo(struct inode *dir, 2385 struct dentry *dentry, 2386 unsigned int flags) 2387 { 2388 return proc_lookupfd_common(dir, dentry, proc_fdinfo_instantiate); 2389 } 2390 2391 static int proc_readfdinfo(struct file *filp, void *dirent, filldir_t filldir) 2392 { 2393 return proc_readfd_common(filp, dirent, filldir, 2394 proc_fdinfo_instantiate); 2395 } 2396 2397 static const struct file_operations proc_fdinfo_operations = { 2398 .read = generic_read_dir, 2399 .readdir = proc_readfdinfo, 2400 .llseek = default_llseek, 2401 }; 2402 2403 /* 2404 * proc directories can do almost nothing.. 2405 */ 2406 static const struct inode_operations proc_fdinfo_inode_operations = { 2407 .lookup = proc_lookupfdinfo, 2408 .setattr = proc_setattr, 2409 }; 2410 2411 2412 static struct dentry *proc_pident_instantiate(struct inode *dir, 2413 struct dentry *dentry, struct task_struct *task, const void *ptr) 2414 { 2415 const struct pid_entry *p = ptr; 2416 struct inode *inode; 2417 struct proc_inode *ei; 2418 struct dentry *error = ERR_PTR(-ENOENT); 2419 2420 inode = proc_pid_make_inode(dir->i_sb, task); 2421 if (!inode) 2422 goto out; 2423 2424 ei = PROC_I(inode); 2425 inode->i_mode = p->mode; 2426 if (S_ISDIR(inode->i_mode)) 2427 set_nlink(inode, 2); /* Use getattr to fix if necessary */ 2428 if (p->iop) 2429 inode->i_op = p->iop; 2430 if (p->fop) 2431 inode->i_fop = p->fop; 2432 ei->op = p->op; 2433 d_set_d_op(dentry, &pid_dentry_operations); 2434 d_add(dentry, inode); 2435 /* Close the race of the process dying before we return the dentry */ 2436 if (pid_revalidate(dentry, 0)) 2437 error = NULL; 2438 out: 2439 return error; 2440 } 2441 2442 static struct dentry *proc_pident_lookup(struct inode *dir, 2443 struct dentry *dentry, 2444 const struct pid_entry *ents, 2445 unsigned int nents) 2446 { 2447 struct dentry *error; 2448 struct task_struct *task = get_proc_task(dir); 2449 const struct pid_entry *p, *last; 2450 2451 error = ERR_PTR(-ENOENT); 2452 2453 if (!task) 2454 goto out_no_task; 2455 2456 /* 2457 * Yes, it does not scale. And it should not. Don't add 2458 * new entries into /proc/<tgid>/ without very good reasons. 2459 */ 2460 last = &ents[nents - 1]; 2461 for (p = ents; p <= last; p++) { 2462 if (p->len != dentry->d_name.len) 2463 continue; 2464 if (!memcmp(dentry->d_name.name, p->name, p->len)) 2465 break; 2466 } 2467 if (p > last) 2468 goto out; 2469 2470 error = proc_pident_instantiate(dir, dentry, task, p); 2471 out: 2472 put_task_struct(task); 2473 out_no_task: 2474 return error; 2475 } 2476 2477 static int proc_pident_fill_cache(struct file *filp, void *dirent, 2478 filldir_t filldir, struct task_struct *task, const struct pid_entry *p) 2479 { 2480 return proc_fill_cache(filp, dirent, filldir, p->name, p->len, 2481 proc_pident_instantiate, task, p); 2482 } 2483 2484 static int proc_pident_readdir(struct file *filp, 2485 void *dirent, filldir_t filldir, 2486 const struct pid_entry *ents, unsigned int nents) 2487 { 2488 int i; 2489 struct dentry *dentry = filp->f_path.dentry; 2490 struct inode *inode = dentry->d_inode; 2491 struct task_struct *task = get_proc_task(inode); 2492 const struct pid_entry *p, *last; 2493 ino_t ino; 2494 int ret; 2495 2496 ret = -ENOENT; 2497 if (!task) 2498 goto out_no_task; 2499 2500 ret = 0; 2501 i = filp->f_pos; 2502 switch (i) { 2503 case 0: 2504 ino = inode->i_ino; 2505 if (filldir(dirent, ".", 1, i, ino, DT_DIR) < 0) 2506 goto out; 2507 i++; 2508 filp->f_pos++; 2509 /* fall through */ 2510 case 1: 2511 ino = parent_ino(dentry); 2512 if (filldir(dirent, "..", 2, i, ino, DT_DIR) < 0) 2513 goto out; 2514 i++; 2515 filp->f_pos++; 2516 /* fall through */ 2517 default: 2518 i -= 2; 2519 if (i >= nents) { 2520 ret = 1; 2521 goto out; 2522 } 2523 p = ents + i; 2524 last = &ents[nents - 1]; 2525 while (p <= last) { 2526 if (proc_pident_fill_cache(filp, dirent, filldir, task, p) < 0) 2527 goto out; 2528 filp->f_pos++; 2529 p++; 2530 } 2531 } 2532 2533 ret = 1; 2534 out: 2535 put_task_struct(task); 2536 out_no_task: 2537 return ret; 2538 } 2539 2540 #ifdef CONFIG_SECURITY 2541 static ssize_t proc_pid_attr_read(struct file * file, char __user * buf, 2542 size_t count, loff_t *ppos) 2543 { 2544 struct inode * inode = file->f_path.dentry->d_inode; 2545 char *p = NULL; 2546 ssize_t length; 2547 struct task_struct *task = get_proc_task(inode); 2548 2549 if (!task) 2550 return -ESRCH; 2551 2552 length = security_getprocattr(task, 2553 (char*)file->f_path.dentry->d_name.name, 2554 &p); 2555 put_task_struct(task); 2556 if (length > 0) 2557 length = simple_read_from_buffer(buf, count, ppos, p, length); 2558 kfree(p); 2559 return length; 2560 } 2561 2562 static ssize_t proc_pid_attr_write(struct file * file, const char __user * buf, 2563 size_t count, loff_t *ppos) 2564 { 2565 struct inode * inode = file->f_path.dentry->d_inode; 2566 char *page; 2567 ssize_t length; 2568 struct task_struct *task = get_proc_task(inode); 2569 2570 length = -ESRCH; 2571 if (!task) 2572 goto out_no_task; 2573 if (count > PAGE_SIZE) 2574 count = PAGE_SIZE; 2575 2576 /* No partial writes. */ 2577 length = -EINVAL; 2578 if (*ppos != 0) 2579 goto out; 2580 2581 length = -ENOMEM; 2582 page = (char*)__get_free_page(GFP_TEMPORARY); 2583 if (!page) 2584 goto out; 2585 2586 length = -EFAULT; 2587 if (copy_from_user(page, buf, count)) 2588 goto out_free; 2589 2590 /* Guard against adverse ptrace interaction */ 2591 length = mutex_lock_interruptible(&task->signal->cred_guard_mutex); 2592 if (length < 0) 2593 goto out_free; 2594 2595 length = security_setprocattr(task, 2596 (char*)file->f_path.dentry->d_name.name, 2597 (void*)page, count); 2598 mutex_unlock(&task->signal->cred_guard_mutex); 2599 out_free: 2600 free_page((unsigned long) page); 2601 out: 2602 put_task_struct(task); 2603 out_no_task: 2604 return length; 2605 } 2606 2607 static const struct file_operations proc_pid_attr_operations = { 2608 .read = proc_pid_attr_read, 2609 .write = proc_pid_attr_write, 2610 .llseek = generic_file_llseek, 2611 }; 2612 2613 static const struct pid_entry attr_dir_stuff[] = { 2614 REG("current", S_IRUGO|S_IWUGO, proc_pid_attr_operations), 2615 REG("prev", S_IRUGO, proc_pid_attr_operations), 2616 REG("exec", S_IRUGO|S_IWUGO, proc_pid_attr_operations), 2617 REG("fscreate", S_IRUGO|S_IWUGO, proc_pid_attr_operations), 2618 REG("keycreate", S_IRUGO|S_IWUGO, proc_pid_attr_operations), 2619 REG("sockcreate", S_IRUGO|S_IWUGO, proc_pid_attr_operations), 2620 }; 2621 2622 static int proc_attr_dir_readdir(struct file * filp, 2623 void * dirent, filldir_t filldir) 2624 { 2625 return proc_pident_readdir(filp,dirent,filldir, 2626 attr_dir_stuff,ARRAY_SIZE(attr_dir_stuff)); 2627 } 2628 2629 static const struct file_operations proc_attr_dir_operations = { 2630 .read = generic_read_dir, 2631 .readdir = proc_attr_dir_readdir, 2632 .llseek = default_llseek, 2633 }; 2634 2635 static struct dentry *proc_attr_dir_lookup(struct inode *dir, 2636 struct dentry *dentry, unsigned int flags) 2637 { 2638 return proc_pident_lookup(dir, dentry, 2639 attr_dir_stuff, ARRAY_SIZE(attr_dir_stuff)); 2640 } 2641 2642 static const struct inode_operations proc_attr_dir_inode_operations = { 2643 .lookup = proc_attr_dir_lookup, 2644 .getattr = pid_getattr, 2645 .setattr = proc_setattr, 2646 }; 2647 2648 #endif 2649 2650 #ifdef CONFIG_ELF_CORE 2651 static ssize_t proc_coredump_filter_read(struct file *file, char __user *buf, 2652 size_t count, loff_t *ppos) 2653 { 2654 struct task_struct *task = get_proc_task(file->f_dentry->d_inode); 2655 struct mm_struct *mm; 2656 char buffer[PROC_NUMBUF]; 2657 size_t len; 2658 int ret; 2659 2660 if (!task) 2661 return -ESRCH; 2662 2663 ret = 0; 2664 mm = get_task_mm(task); 2665 if (mm) { 2666 len = snprintf(buffer, sizeof(buffer), "%08lx\n", 2667 ((mm->flags & MMF_DUMP_FILTER_MASK) >> 2668 MMF_DUMP_FILTER_SHIFT)); 2669 mmput(mm); 2670 ret = simple_read_from_buffer(buf, count, ppos, buffer, len); 2671 } 2672 2673 put_task_struct(task); 2674 2675 return ret; 2676 } 2677 2678 static ssize_t proc_coredump_filter_write(struct file *file, 2679 const char __user *buf, 2680 size_t count, 2681 loff_t *ppos) 2682 { 2683 struct task_struct *task; 2684 struct mm_struct *mm; 2685 char buffer[PROC_NUMBUF], *end; 2686 unsigned int val; 2687 int ret; 2688 int i; 2689 unsigned long mask; 2690 2691 ret = -EFAULT; 2692 memset(buffer, 0, sizeof(buffer)); 2693 if (count > sizeof(buffer) - 1) 2694 count = sizeof(buffer) - 1; 2695 if (copy_from_user(buffer, buf, count)) 2696 goto out_no_task; 2697 2698 ret = -EINVAL; 2699 val = (unsigned int)simple_strtoul(buffer, &end, 0); 2700 if (*end == '\n') 2701 end++; 2702 if (end - buffer == 0) 2703 goto out_no_task; 2704 2705 ret = -ESRCH; 2706 task = get_proc_task(file->f_dentry->d_inode); 2707 if (!task) 2708 goto out_no_task; 2709 2710 ret = end - buffer; 2711 mm = get_task_mm(task); 2712 if (!mm) 2713 goto out_no_mm; 2714 2715 for (i = 0, mask = 1; i < MMF_DUMP_FILTER_BITS; i++, mask <<= 1) { 2716 if (val & mask) 2717 set_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags); 2718 else 2719 clear_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags); 2720 } 2721 2722 mmput(mm); 2723 out_no_mm: 2724 put_task_struct(task); 2725 out_no_task: 2726 return ret; 2727 } 2728 2729 static const struct file_operations proc_coredump_filter_operations = { 2730 .read = proc_coredump_filter_read, 2731 .write = proc_coredump_filter_write, 2732 .llseek = generic_file_llseek, 2733 }; 2734 #endif 2735 2736 /* 2737 * /proc/self: 2738 */ 2739 static int proc_self_readlink(struct dentry *dentry, char __user *buffer, 2740 int buflen) 2741 { 2742 struct pid_namespace *ns = dentry->d_sb->s_fs_info; 2743 pid_t tgid = task_tgid_nr_ns(current, ns); 2744 char tmp[PROC_NUMBUF]; 2745 if (!tgid) 2746 return -ENOENT; 2747 sprintf(tmp, "%d", tgid); 2748 return vfs_readlink(dentry,buffer,buflen,tmp); 2749 } 2750 2751 static void *proc_self_follow_link(struct dentry *dentry, struct nameidata *nd) 2752 { 2753 struct pid_namespace *ns = dentry->d_sb->s_fs_info; 2754 pid_t tgid = task_tgid_nr_ns(current, ns); 2755 char *name = ERR_PTR(-ENOENT); 2756 if (tgid) { 2757 name = __getname(); 2758 if (!name) 2759 name = ERR_PTR(-ENOMEM); 2760 else 2761 sprintf(name, "%d", tgid); 2762 } 2763 nd_set_link(nd, name); 2764 return NULL; 2765 } 2766 2767 static void proc_self_put_link(struct dentry *dentry, struct nameidata *nd, 2768 void *cookie) 2769 { 2770 char *s = nd_get_link(nd); 2771 if (!IS_ERR(s)) 2772 __putname(s); 2773 } 2774 2775 static const struct inode_operations proc_self_inode_operations = { 2776 .readlink = proc_self_readlink, 2777 .follow_link = proc_self_follow_link, 2778 .put_link = proc_self_put_link, 2779 }; 2780 2781 /* 2782 * proc base 2783 * 2784 * These are the directory entries in the root directory of /proc 2785 * that properly belong to the /proc filesystem, as they describe 2786 * describe something that is process related. 2787 */ 2788 static const struct pid_entry proc_base_stuff[] = { 2789 NOD("self", S_IFLNK|S_IRWXUGO, 2790 &proc_self_inode_operations, NULL, {}), 2791 }; 2792 2793 static struct dentry *proc_base_instantiate(struct inode *dir, 2794 struct dentry *dentry, struct task_struct *task, const void *ptr) 2795 { 2796 const struct pid_entry *p = ptr; 2797 struct inode *inode; 2798 struct proc_inode *ei; 2799 struct dentry *error; 2800 2801 /* Allocate the inode */ 2802 error = ERR_PTR(-ENOMEM); 2803 inode = new_inode(dir->i_sb); 2804 if (!inode) 2805 goto out; 2806 2807 /* Initialize the inode */ 2808 ei = PROC_I(inode); 2809 inode->i_ino = get_next_ino(); 2810 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME; 2811 2812 /* 2813 * grab the reference to the task. 2814 */ 2815 ei->pid = get_task_pid(task, PIDTYPE_PID); 2816 if (!ei->pid) 2817 goto out_iput; 2818 2819 inode->i_mode = p->mode; 2820 if (S_ISDIR(inode->i_mode)) 2821 set_nlink(inode, 2); 2822 if (S_ISLNK(inode->i_mode)) 2823 inode->i_size = 64; 2824 if (p->iop) 2825 inode->i_op = p->iop; 2826 if (p->fop) 2827 inode->i_fop = p->fop; 2828 ei->op = p->op; 2829 d_add(dentry, inode); 2830 error = NULL; 2831 out: 2832 return error; 2833 out_iput: 2834 iput(inode); 2835 goto out; 2836 } 2837 2838 static struct dentry *proc_base_lookup(struct inode *dir, struct dentry *dentry) 2839 { 2840 struct dentry *error; 2841 struct task_struct *task = get_proc_task(dir); 2842 const struct pid_entry *p, *last; 2843 2844 error = ERR_PTR(-ENOENT); 2845 2846 if (!task) 2847 goto out_no_task; 2848 2849 /* Lookup the directory entry */ 2850 last = &proc_base_stuff[ARRAY_SIZE(proc_base_stuff) - 1]; 2851 for (p = proc_base_stuff; p <= last; p++) { 2852 if (p->len != dentry->d_name.len) 2853 continue; 2854 if (!memcmp(dentry->d_name.name, p->name, p->len)) 2855 break; 2856 } 2857 if (p > last) 2858 goto out; 2859 2860 error = proc_base_instantiate(dir, dentry, task, p); 2861 2862 out: 2863 put_task_struct(task); 2864 out_no_task: 2865 return error; 2866 } 2867 2868 static int proc_base_fill_cache(struct file *filp, void *dirent, 2869 filldir_t filldir, struct task_struct *task, const struct pid_entry *p) 2870 { 2871 return proc_fill_cache(filp, dirent, filldir, p->name, p->len, 2872 proc_base_instantiate, task, p); 2873 } 2874 2875 #ifdef CONFIG_TASK_IO_ACCOUNTING 2876 static int do_io_accounting(struct task_struct *task, char *buffer, int whole) 2877 { 2878 struct task_io_accounting acct = task->ioac; 2879 unsigned long flags; 2880 int result; 2881 2882 result = mutex_lock_killable(&task->signal->cred_guard_mutex); 2883 if (result) 2884 return result; 2885 2886 if (!ptrace_may_access(task, PTRACE_MODE_READ)) { 2887 result = -EACCES; 2888 goto out_unlock; 2889 } 2890 2891 if (whole && lock_task_sighand(task, &flags)) { 2892 struct task_struct *t = task; 2893 2894 task_io_accounting_add(&acct, &task->signal->ioac); 2895 while_each_thread(task, t) 2896 task_io_accounting_add(&acct, &t->ioac); 2897 2898 unlock_task_sighand(task, &flags); 2899 } 2900 result = sprintf(buffer, 2901 "rchar: %llu\n" 2902 "wchar: %llu\n" 2903 "syscr: %llu\n" 2904 "syscw: %llu\n" 2905 "read_bytes: %llu\n" 2906 "write_bytes: %llu\n" 2907 "cancelled_write_bytes: %llu\n", 2908 (unsigned long long)acct.rchar, 2909 (unsigned long long)acct.wchar, 2910 (unsigned long long)acct.syscr, 2911 (unsigned long long)acct.syscw, 2912 (unsigned long long)acct.read_bytes, 2913 (unsigned long long)acct.write_bytes, 2914 (unsigned long long)acct.cancelled_write_bytes); 2915 out_unlock: 2916 mutex_unlock(&task->signal->cred_guard_mutex); 2917 return result; 2918 } 2919 2920 static int proc_tid_io_accounting(struct task_struct *task, char *buffer) 2921 { 2922 return do_io_accounting(task, buffer, 0); 2923 } 2924 2925 static int proc_tgid_io_accounting(struct task_struct *task, char *buffer) 2926 { 2927 return do_io_accounting(task, buffer, 1); 2928 } 2929 #endif /* CONFIG_TASK_IO_ACCOUNTING */ 2930 2931 #ifdef CONFIG_USER_NS 2932 static int proc_id_map_open(struct inode *inode, struct file *file, 2933 struct seq_operations *seq_ops) 2934 { 2935 struct user_namespace *ns = NULL; 2936 struct task_struct *task; 2937 struct seq_file *seq; 2938 int ret = -EINVAL; 2939 2940 task = get_proc_task(inode); 2941 if (task) { 2942 rcu_read_lock(); 2943 ns = get_user_ns(task_cred_xxx(task, user_ns)); 2944 rcu_read_unlock(); 2945 put_task_struct(task); 2946 } 2947 if (!ns) 2948 goto err; 2949 2950 ret = seq_open(file, seq_ops); 2951 if (ret) 2952 goto err_put_ns; 2953 2954 seq = file->private_data; 2955 seq->private = ns; 2956 2957 return 0; 2958 err_put_ns: 2959 put_user_ns(ns); 2960 err: 2961 return ret; 2962 } 2963 2964 static int proc_id_map_release(struct inode *inode, struct file *file) 2965 { 2966 struct seq_file *seq = file->private_data; 2967 struct user_namespace *ns = seq->private; 2968 put_user_ns(ns); 2969 return seq_release(inode, file); 2970 } 2971 2972 static int proc_uid_map_open(struct inode *inode, struct file *file) 2973 { 2974 return proc_id_map_open(inode, file, &proc_uid_seq_operations); 2975 } 2976 2977 static int proc_gid_map_open(struct inode *inode, struct file *file) 2978 { 2979 return proc_id_map_open(inode, file, &proc_gid_seq_operations); 2980 } 2981 2982 static const struct file_operations proc_uid_map_operations = { 2983 .open = proc_uid_map_open, 2984 .write = proc_uid_map_write, 2985 .read = seq_read, 2986 .llseek = seq_lseek, 2987 .release = proc_id_map_release, 2988 }; 2989 2990 static const struct file_operations proc_gid_map_operations = { 2991 .open = proc_gid_map_open, 2992 .write = proc_gid_map_write, 2993 .read = seq_read, 2994 .llseek = seq_lseek, 2995 .release = proc_id_map_release, 2996 }; 2997 #endif /* CONFIG_USER_NS */ 2998 2999 static int proc_pid_personality(struct seq_file *m, struct pid_namespace *ns, 3000 struct pid *pid, struct task_struct *task) 3001 { 3002 int err = lock_trace(task); 3003 if (!err) { 3004 seq_printf(m, "%08x\n", task->personality); 3005 unlock_trace(task); 3006 } 3007 return err; 3008 } 3009 3010 /* 3011 * Thread groups 3012 */ 3013 static const struct file_operations proc_task_operations; 3014 static const struct inode_operations proc_task_inode_operations; 3015 3016 static const struct pid_entry tgid_base_stuff[] = { 3017 DIR("task", S_IRUGO|S_IXUGO, proc_task_inode_operations, proc_task_operations), 3018 DIR("fd", S_IRUSR|S_IXUSR, proc_fd_inode_operations, proc_fd_operations), 3019 #ifdef CONFIG_CHECKPOINT_RESTORE 3020 DIR("map_files", S_IRUSR|S_IXUSR, proc_map_files_inode_operations, proc_map_files_operations), 3021 #endif 3022 DIR("fdinfo", S_IRUSR|S_IXUSR, proc_fdinfo_inode_operations, proc_fdinfo_operations), 3023 DIR("ns", S_IRUSR|S_IXUGO, proc_ns_dir_inode_operations, proc_ns_dir_operations), 3024 #ifdef CONFIG_NET 3025 DIR("net", S_IRUGO|S_IXUGO, proc_net_inode_operations, proc_net_operations), 3026 #endif 3027 REG("environ", S_IRUSR, proc_environ_operations), 3028 INF("auxv", S_IRUSR, proc_pid_auxv), 3029 ONE("status", S_IRUGO, proc_pid_status), 3030 ONE("personality", S_IRUGO, proc_pid_personality), 3031 INF("limits", S_IRUGO, proc_pid_limits), 3032 #ifdef CONFIG_SCHED_DEBUG 3033 REG("sched", S_IRUGO|S_IWUSR, proc_pid_sched_operations), 3034 #endif 3035 #ifdef CONFIG_SCHED_AUTOGROUP 3036 REG("autogroup", S_IRUGO|S_IWUSR, proc_pid_sched_autogroup_operations), 3037 #endif 3038 REG("comm", S_IRUGO|S_IWUSR, proc_pid_set_comm_operations), 3039 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK 3040 INF("syscall", S_IRUGO, proc_pid_syscall), 3041 #endif 3042 INF("cmdline", S_IRUGO, proc_pid_cmdline), 3043 ONE("stat", S_IRUGO, proc_tgid_stat), 3044 ONE("statm", S_IRUGO, proc_pid_statm), 3045 REG("maps", S_IRUGO, proc_pid_maps_operations), 3046 #ifdef CONFIG_NUMA 3047 REG("numa_maps", S_IRUGO, proc_pid_numa_maps_operations), 3048 #endif 3049 REG("mem", S_IRUSR|S_IWUSR, proc_mem_operations), 3050 LNK("cwd", proc_cwd_link), 3051 LNK("root", proc_root_link), 3052 LNK("exe", proc_exe_link), 3053 REG("mounts", S_IRUGO, proc_mounts_operations), 3054 REG("mountinfo", S_IRUGO, proc_mountinfo_operations), 3055 REG("mountstats", S_IRUSR, proc_mountstats_operations), 3056 #ifdef CONFIG_PROC_PAGE_MONITOR 3057 REG("clear_refs", S_IWUSR, proc_clear_refs_operations), 3058 REG("smaps", S_IRUGO, proc_pid_smaps_operations), 3059 REG("pagemap", S_IRUGO, proc_pagemap_operations), 3060 #endif 3061 #ifdef CONFIG_SECURITY 3062 DIR("attr", S_IRUGO|S_IXUGO, proc_attr_dir_inode_operations, proc_attr_dir_operations), 3063 #endif 3064 #ifdef CONFIG_KALLSYMS 3065 INF("wchan", S_IRUGO, proc_pid_wchan), 3066 #endif 3067 #ifdef CONFIG_STACKTRACE 3068 ONE("stack", S_IRUGO, proc_pid_stack), 3069 #endif 3070 #ifdef CONFIG_SCHEDSTATS 3071 INF("schedstat", S_IRUGO, proc_pid_schedstat), 3072 #endif 3073 #ifdef CONFIG_LATENCYTOP 3074 REG("latency", S_IRUGO, proc_lstats_operations), 3075 #endif 3076 #ifdef CONFIG_PROC_PID_CPUSET 3077 REG("cpuset", S_IRUGO, proc_cpuset_operations), 3078 #endif 3079 #ifdef CONFIG_CGROUPS 3080 REG("cgroup", S_IRUGO, proc_cgroup_operations), 3081 #endif 3082 INF("oom_score", S_IRUGO, proc_oom_score), 3083 REG("oom_adj", S_IRUGO|S_IWUSR, proc_oom_adjust_operations), 3084 REG("oom_score_adj", S_IRUGO|S_IWUSR, proc_oom_score_adj_operations), 3085 #ifdef CONFIG_AUDITSYSCALL 3086 REG("loginuid", S_IWUSR|S_IRUGO, proc_loginuid_operations), 3087 REG("sessionid", S_IRUGO, proc_sessionid_operations), 3088 #endif 3089 #ifdef CONFIG_FAULT_INJECTION 3090 REG("make-it-fail", S_IRUGO|S_IWUSR, proc_fault_inject_operations), 3091 #endif 3092 #ifdef CONFIG_ELF_CORE 3093 REG("coredump_filter", S_IRUGO|S_IWUSR, proc_coredump_filter_operations), 3094 #endif 3095 #ifdef CONFIG_TASK_IO_ACCOUNTING 3096 INF("io", S_IRUSR, proc_tgid_io_accounting), 3097 #endif 3098 #ifdef CONFIG_HARDWALL 3099 INF("hardwall", S_IRUGO, proc_pid_hardwall), 3100 #endif 3101 #ifdef CONFIG_USER_NS 3102 REG("uid_map", S_IRUGO|S_IWUSR, proc_uid_map_operations), 3103 REG("gid_map", S_IRUGO|S_IWUSR, proc_gid_map_operations), 3104 #endif 3105 }; 3106 3107 static int proc_tgid_base_readdir(struct file * filp, 3108 void * dirent, filldir_t filldir) 3109 { 3110 return proc_pident_readdir(filp,dirent,filldir, 3111 tgid_base_stuff,ARRAY_SIZE(tgid_base_stuff)); 3112 } 3113 3114 static const struct file_operations proc_tgid_base_operations = { 3115 .read = generic_read_dir, 3116 .readdir = proc_tgid_base_readdir, 3117 .llseek = default_llseek, 3118 }; 3119 3120 static struct dentry *proc_tgid_base_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags) 3121 { 3122 return proc_pident_lookup(dir, dentry, 3123 tgid_base_stuff, ARRAY_SIZE(tgid_base_stuff)); 3124 } 3125 3126 static const struct inode_operations proc_tgid_base_inode_operations = { 3127 .lookup = proc_tgid_base_lookup, 3128 .getattr = pid_getattr, 3129 .setattr = proc_setattr, 3130 .permission = proc_pid_permission, 3131 }; 3132 3133 static void proc_flush_task_mnt(struct vfsmount *mnt, pid_t pid, pid_t tgid) 3134 { 3135 struct dentry *dentry, *leader, *dir; 3136 char buf[PROC_NUMBUF]; 3137 struct qstr name; 3138 3139 name.name = buf; 3140 name.len = snprintf(buf, sizeof(buf), "%d", pid); 3141 dentry = d_hash_and_lookup(mnt->mnt_root, &name); 3142 if (dentry) { 3143 shrink_dcache_parent(dentry); 3144 d_drop(dentry); 3145 dput(dentry); 3146 } 3147 3148 name.name = buf; 3149 name.len = snprintf(buf, sizeof(buf), "%d", tgid); 3150 leader = d_hash_and_lookup(mnt->mnt_root, &name); 3151 if (!leader) 3152 goto out; 3153 3154 name.name = "task"; 3155 name.len = strlen(name.name); 3156 dir = d_hash_and_lookup(leader, &name); 3157 if (!dir) 3158 goto out_put_leader; 3159 3160 name.name = buf; 3161 name.len = snprintf(buf, sizeof(buf), "%d", pid); 3162 dentry = d_hash_and_lookup(dir, &name); 3163 if (dentry) { 3164 shrink_dcache_parent(dentry); 3165 d_drop(dentry); 3166 dput(dentry); 3167 } 3168 3169 dput(dir); 3170 out_put_leader: 3171 dput(leader); 3172 out: 3173 return; 3174 } 3175 3176 /** 3177 * proc_flush_task - Remove dcache entries for @task from the /proc dcache. 3178 * @task: task that should be flushed. 3179 * 3180 * When flushing dentries from proc, one needs to flush them from global 3181 * proc (proc_mnt) and from all the namespaces' procs this task was seen 3182 * in. This call is supposed to do all of this job. 3183 * 3184 * Looks in the dcache for 3185 * /proc/@pid 3186 * /proc/@tgid/task/@pid 3187 * if either directory is present flushes it and all of it'ts children 3188 * from the dcache. 3189 * 3190 * It is safe and reasonable to cache /proc entries for a task until 3191 * that task exits. After that they just clog up the dcache with 3192 * useless entries, possibly causing useful dcache entries to be 3193 * flushed instead. This routine is proved to flush those useless 3194 * dcache entries at process exit time. 3195 * 3196 * NOTE: This routine is just an optimization so it does not guarantee 3197 * that no dcache entries will exist at process exit time it 3198 * just makes it very unlikely that any will persist. 3199 */ 3200 3201 void proc_flush_task(struct task_struct *task) 3202 { 3203 int i; 3204 struct pid *pid, *tgid; 3205 struct upid *upid; 3206 3207 pid = task_pid(task); 3208 tgid = task_tgid(task); 3209 3210 for (i = 0; i <= pid->level; i++) { 3211 upid = &pid->numbers[i]; 3212 proc_flush_task_mnt(upid->ns->proc_mnt, upid->nr, 3213 tgid->numbers[i].nr); 3214 } 3215 3216 upid = &pid->numbers[pid->level]; 3217 if (upid->nr == 1) 3218 pid_ns_release_proc(upid->ns); 3219 } 3220 3221 static struct dentry *proc_pid_instantiate(struct inode *dir, 3222 struct dentry * dentry, 3223 struct task_struct *task, const void *ptr) 3224 { 3225 struct dentry *error = ERR_PTR(-ENOENT); 3226 struct inode *inode; 3227 3228 inode = proc_pid_make_inode(dir->i_sb, task); 3229 if (!inode) 3230 goto out; 3231 3232 inode->i_mode = S_IFDIR|S_IRUGO|S_IXUGO; 3233 inode->i_op = &proc_tgid_base_inode_operations; 3234 inode->i_fop = &proc_tgid_base_operations; 3235 inode->i_flags|=S_IMMUTABLE; 3236 3237 set_nlink(inode, 2 + pid_entry_count_dirs(tgid_base_stuff, 3238 ARRAY_SIZE(tgid_base_stuff))); 3239 3240 d_set_d_op(dentry, &pid_dentry_operations); 3241 3242 d_add(dentry, inode); 3243 /* Close the race of the process dying before we return the dentry */ 3244 if (pid_revalidate(dentry, 0)) 3245 error = NULL; 3246 out: 3247 return error; 3248 } 3249 3250 struct dentry *proc_pid_lookup(struct inode *dir, struct dentry * dentry, unsigned int flags) 3251 { 3252 struct dentry *result; 3253 struct task_struct *task; 3254 unsigned tgid; 3255 struct pid_namespace *ns; 3256 3257 result = proc_base_lookup(dir, dentry); 3258 if (!IS_ERR(result) || PTR_ERR(result) != -ENOENT) 3259 goto out; 3260 3261 tgid = name_to_int(dentry); 3262 if (tgid == ~0U) 3263 goto out; 3264 3265 ns = dentry->d_sb->s_fs_info; 3266 rcu_read_lock(); 3267 task = find_task_by_pid_ns(tgid, ns); 3268 if (task) 3269 get_task_struct(task); 3270 rcu_read_unlock(); 3271 if (!task) 3272 goto out; 3273 3274 result = proc_pid_instantiate(dir, dentry, task, NULL); 3275 put_task_struct(task); 3276 out: 3277 return result; 3278 } 3279 3280 /* 3281 * Find the first task with tgid >= tgid 3282 * 3283 */ 3284 struct tgid_iter { 3285 unsigned int tgid; 3286 struct task_struct *task; 3287 }; 3288 static struct tgid_iter next_tgid(struct pid_namespace *ns, struct tgid_iter iter) 3289 { 3290 struct pid *pid; 3291 3292 if (iter.task) 3293 put_task_struct(iter.task); 3294 rcu_read_lock(); 3295 retry: 3296 iter.task = NULL; 3297 pid = find_ge_pid(iter.tgid, ns); 3298 if (pid) { 3299 iter.tgid = pid_nr_ns(pid, ns); 3300 iter.task = pid_task(pid, PIDTYPE_PID); 3301 /* What we to know is if the pid we have find is the 3302 * pid of a thread_group_leader. Testing for task 3303 * being a thread_group_leader is the obvious thing 3304 * todo but there is a window when it fails, due to 3305 * the pid transfer logic in de_thread. 3306 * 3307 * So we perform the straight forward test of seeing 3308 * if the pid we have found is the pid of a thread 3309 * group leader, and don't worry if the task we have 3310 * found doesn't happen to be a thread group leader. 3311 * As we don't care in the case of readdir. 3312 */ 3313 if (!iter.task || !has_group_leader_pid(iter.task)) { 3314 iter.tgid += 1; 3315 goto retry; 3316 } 3317 get_task_struct(iter.task); 3318 } 3319 rcu_read_unlock(); 3320 return iter; 3321 } 3322 3323 #define TGID_OFFSET (FIRST_PROCESS_ENTRY + ARRAY_SIZE(proc_base_stuff)) 3324 3325 static int proc_pid_fill_cache(struct file *filp, void *dirent, filldir_t filldir, 3326 struct tgid_iter iter) 3327 { 3328 char name[PROC_NUMBUF]; 3329 int len = snprintf(name, sizeof(name), "%d", iter.tgid); 3330 return proc_fill_cache(filp, dirent, filldir, name, len, 3331 proc_pid_instantiate, iter.task, NULL); 3332 } 3333 3334 static int fake_filldir(void *buf, const char *name, int namelen, 3335 loff_t offset, u64 ino, unsigned d_type) 3336 { 3337 return 0; 3338 } 3339 3340 /* for the /proc/ directory itself, after non-process stuff has been done */ 3341 int proc_pid_readdir(struct file * filp, void * dirent, filldir_t filldir) 3342 { 3343 unsigned int nr; 3344 struct task_struct *reaper; 3345 struct tgid_iter iter; 3346 struct pid_namespace *ns; 3347 filldir_t __filldir; 3348 3349 if (filp->f_pos >= PID_MAX_LIMIT + TGID_OFFSET) 3350 goto out_no_task; 3351 nr = filp->f_pos - FIRST_PROCESS_ENTRY; 3352 3353 reaper = get_proc_task(filp->f_path.dentry->d_inode); 3354 if (!reaper) 3355 goto out_no_task; 3356 3357 for (; nr < ARRAY_SIZE(proc_base_stuff); filp->f_pos++, nr++) { 3358 const struct pid_entry *p = &proc_base_stuff[nr]; 3359 if (proc_base_fill_cache(filp, dirent, filldir, reaper, p) < 0) 3360 goto out; 3361 } 3362 3363 ns = filp->f_dentry->d_sb->s_fs_info; 3364 iter.task = NULL; 3365 iter.tgid = filp->f_pos - TGID_OFFSET; 3366 for (iter = next_tgid(ns, iter); 3367 iter.task; 3368 iter.tgid += 1, iter = next_tgid(ns, iter)) { 3369 if (has_pid_permissions(ns, iter.task, 2)) 3370 __filldir = filldir; 3371 else 3372 __filldir = fake_filldir; 3373 3374 filp->f_pos = iter.tgid + TGID_OFFSET; 3375 if (proc_pid_fill_cache(filp, dirent, __filldir, iter) < 0) { 3376 put_task_struct(iter.task); 3377 goto out; 3378 } 3379 } 3380 filp->f_pos = PID_MAX_LIMIT + TGID_OFFSET; 3381 out: 3382 put_task_struct(reaper); 3383 out_no_task: 3384 return 0; 3385 } 3386 3387 /* 3388 * Tasks 3389 */ 3390 static const struct pid_entry tid_base_stuff[] = { 3391 DIR("fd", S_IRUSR|S_IXUSR, proc_fd_inode_operations, proc_fd_operations), 3392 DIR("fdinfo", S_IRUSR|S_IXUSR, proc_fdinfo_inode_operations, proc_fdinfo_operations), 3393 DIR("ns", S_IRUSR|S_IXUGO, proc_ns_dir_inode_operations, proc_ns_dir_operations), 3394 REG("environ", S_IRUSR, proc_environ_operations), 3395 INF("auxv", S_IRUSR, proc_pid_auxv), 3396 ONE("status", S_IRUGO, proc_pid_status), 3397 ONE("personality", S_IRUGO, proc_pid_personality), 3398 INF("limits", S_IRUGO, proc_pid_limits), 3399 #ifdef CONFIG_SCHED_DEBUG 3400 REG("sched", S_IRUGO|S_IWUSR, proc_pid_sched_operations), 3401 #endif 3402 REG("comm", S_IRUGO|S_IWUSR, proc_pid_set_comm_operations), 3403 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK 3404 INF("syscall", S_IRUGO, proc_pid_syscall), 3405 #endif 3406 INF("cmdline", S_IRUGO, proc_pid_cmdline), 3407 ONE("stat", S_IRUGO, proc_tid_stat), 3408 ONE("statm", S_IRUGO, proc_pid_statm), 3409 REG("maps", S_IRUGO, proc_tid_maps_operations), 3410 #ifdef CONFIG_CHECKPOINT_RESTORE 3411 REG("children", S_IRUGO, proc_tid_children_operations), 3412 #endif 3413 #ifdef CONFIG_NUMA 3414 REG("numa_maps", S_IRUGO, proc_tid_numa_maps_operations), 3415 #endif 3416 REG("mem", S_IRUSR|S_IWUSR, proc_mem_operations), 3417 LNK("cwd", proc_cwd_link), 3418 LNK("root", proc_root_link), 3419 LNK("exe", proc_exe_link), 3420 REG("mounts", S_IRUGO, proc_mounts_operations), 3421 REG("mountinfo", S_IRUGO, proc_mountinfo_operations), 3422 #ifdef CONFIG_PROC_PAGE_MONITOR 3423 REG("clear_refs", S_IWUSR, proc_clear_refs_operations), 3424 REG("smaps", S_IRUGO, proc_tid_smaps_operations), 3425 REG("pagemap", S_IRUGO, proc_pagemap_operations), 3426 #endif 3427 #ifdef CONFIG_SECURITY 3428 DIR("attr", S_IRUGO|S_IXUGO, proc_attr_dir_inode_operations, proc_attr_dir_operations), 3429 #endif 3430 #ifdef CONFIG_KALLSYMS 3431 INF("wchan", S_IRUGO, proc_pid_wchan), 3432 #endif 3433 #ifdef CONFIG_STACKTRACE 3434 ONE("stack", S_IRUGO, proc_pid_stack), 3435 #endif 3436 #ifdef CONFIG_SCHEDSTATS 3437 INF("schedstat", S_IRUGO, proc_pid_schedstat), 3438 #endif 3439 #ifdef CONFIG_LATENCYTOP 3440 REG("latency", S_IRUGO, proc_lstats_operations), 3441 #endif 3442 #ifdef CONFIG_PROC_PID_CPUSET 3443 REG("cpuset", S_IRUGO, proc_cpuset_operations), 3444 #endif 3445 #ifdef CONFIG_CGROUPS 3446 REG("cgroup", S_IRUGO, proc_cgroup_operations), 3447 #endif 3448 INF("oom_score", S_IRUGO, proc_oom_score), 3449 REG("oom_adj", S_IRUGO|S_IWUSR, proc_oom_adjust_operations), 3450 REG("oom_score_adj", S_IRUGO|S_IWUSR, proc_oom_score_adj_operations), 3451 #ifdef CONFIG_AUDITSYSCALL 3452 REG("loginuid", S_IWUSR|S_IRUGO, proc_loginuid_operations), 3453 REG("sessionid", S_IRUGO, proc_sessionid_operations), 3454 #endif 3455 #ifdef CONFIG_FAULT_INJECTION 3456 REG("make-it-fail", S_IRUGO|S_IWUSR, proc_fault_inject_operations), 3457 #endif 3458 #ifdef CONFIG_TASK_IO_ACCOUNTING 3459 INF("io", S_IRUSR, proc_tid_io_accounting), 3460 #endif 3461 #ifdef CONFIG_HARDWALL 3462 INF("hardwall", S_IRUGO, proc_pid_hardwall), 3463 #endif 3464 #ifdef CONFIG_USER_NS 3465 REG("uid_map", S_IRUGO|S_IWUSR, proc_uid_map_operations), 3466 REG("gid_map", S_IRUGO|S_IWUSR, proc_gid_map_operations), 3467 #endif 3468 }; 3469 3470 static int proc_tid_base_readdir(struct file * filp, 3471 void * dirent, filldir_t filldir) 3472 { 3473 return proc_pident_readdir(filp,dirent,filldir, 3474 tid_base_stuff,ARRAY_SIZE(tid_base_stuff)); 3475 } 3476 3477 static struct dentry *proc_tid_base_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags) 3478 { 3479 return proc_pident_lookup(dir, dentry, 3480 tid_base_stuff, ARRAY_SIZE(tid_base_stuff)); 3481 } 3482 3483 static const struct file_operations proc_tid_base_operations = { 3484 .read = generic_read_dir, 3485 .readdir = proc_tid_base_readdir, 3486 .llseek = default_llseek, 3487 }; 3488 3489 static const struct inode_operations proc_tid_base_inode_operations = { 3490 .lookup = proc_tid_base_lookup, 3491 .getattr = pid_getattr, 3492 .setattr = proc_setattr, 3493 }; 3494 3495 static struct dentry *proc_task_instantiate(struct inode *dir, 3496 struct dentry *dentry, struct task_struct *task, const void *ptr) 3497 { 3498 struct dentry *error = ERR_PTR(-ENOENT); 3499 struct inode *inode; 3500 inode = proc_pid_make_inode(dir->i_sb, task); 3501 3502 if (!inode) 3503 goto out; 3504 inode->i_mode = S_IFDIR|S_IRUGO|S_IXUGO; 3505 inode->i_op = &proc_tid_base_inode_operations; 3506 inode->i_fop = &proc_tid_base_operations; 3507 inode->i_flags|=S_IMMUTABLE; 3508 3509 set_nlink(inode, 2 + pid_entry_count_dirs(tid_base_stuff, 3510 ARRAY_SIZE(tid_base_stuff))); 3511 3512 d_set_d_op(dentry, &pid_dentry_operations); 3513 3514 d_add(dentry, inode); 3515 /* Close the race of the process dying before we return the dentry */ 3516 if (pid_revalidate(dentry, 0)) 3517 error = NULL; 3518 out: 3519 return error; 3520 } 3521 3522 static struct dentry *proc_task_lookup(struct inode *dir, struct dentry * dentry, unsigned int flags) 3523 { 3524 struct dentry *result = ERR_PTR(-ENOENT); 3525 struct task_struct *task; 3526 struct task_struct *leader = get_proc_task(dir); 3527 unsigned tid; 3528 struct pid_namespace *ns; 3529 3530 if (!leader) 3531 goto out_no_task; 3532 3533 tid = name_to_int(dentry); 3534 if (tid == ~0U) 3535 goto out; 3536 3537 ns = dentry->d_sb->s_fs_info; 3538 rcu_read_lock(); 3539 task = find_task_by_pid_ns(tid, ns); 3540 if (task) 3541 get_task_struct(task); 3542 rcu_read_unlock(); 3543 if (!task) 3544 goto out; 3545 if (!same_thread_group(leader, task)) 3546 goto out_drop_task; 3547 3548 result = proc_task_instantiate(dir, dentry, task, NULL); 3549 out_drop_task: 3550 put_task_struct(task); 3551 out: 3552 put_task_struct(leader); 3553 out_no_task: 3554 return result; 3555 } 3556 3557 /* 3558 * Find the first tid of a thread group to return to user space. 3559 * 3560 * Usually this is just the thread group leader, but if the users 3561 * buffer was too small or there was a seek into the middle of the 3562 * directory we have more work todo. 3563 * 3564 * In the case of a short read we start with find_task_by_pid. 3565 * 3566 * In the case of a seek we start with the leader and walk nr 3567 * threads past it. 3568 */ 3569 static struct task_struct *first_tid(struct task_struct *leader, 3570 int tid, int nr, struct pid_namespace *ns) 3571 { 3572 struct task_struct *pos; 3573 3574 rcu_read_lock(); 3575 /* Attempt to start with the pid of a thread */ 3576 if (tid && (nr > 0)) { 3577 pos = find_task_by_pid_ns(tid, ns); 3578 if (pos && (pos->group_leader == leader)) 3579 goto found; 3580 } 3581 3582 /* If nr exceeds the number of threads there is nothing todo */ 3583 pos = NULL; 3584 if (nr && nr >= get_nr_threads(leader)) 3585 goto out; 3586 3587 /* If we haven't found our starting place yet start 3588 * with the leader and walk nr threads forward. 3589 */ 3590 for (pos = leader; nr > 0; --nr) { 3591 pos = next_thread(pos); 3592 if (pos == leader) { 3593 pos = NULL; 3594 goto out; 3595 } 3596 } 3597 found: 3598 get_task_struct(pos); 3599 out: 3600 rcu_read_unlock(); 3601 return pos; 3602 } 3603 3604 /* 3605 * Find the next thread in the thread list. 3606 * Return NULL if there is an error or no next thread. 3607 * 3608 * The reference to the input task_struct is released. 3609 */ 3610 static struct task_struct *next_tid(struct task_struct *start) 3611 { 3612 struct task_struct *pos = NULL; 3613 rcu_read_lock(); 3614 if (pid_alive(start)) { 3615 pos = next_thread(start); 3616 if (thread_group_leader(pos)) 3617 pos = NULL; 3618 else 3619 get_task_struct(pos); 3620 } 3621 rcu_read_unlock(); 3622 put_task_struct(start); 3623 return pos; 3624 } 3625 3626 static int proc_task_fill_cache(struct file *filp, void *dirent, filldir_t filldir, 3627 struct task_struct *task, int tid) 3628 { 3629 char name[PROC_NUMBUF]; 3630 int len = snprintf(name, sizeof(name), "%d", tid); 3631 return proc_fill_cache(filp, dirent, filldir, name, len, 3632 proc_task_instantiate, task, NULL); 3633 } 3634 3635 /* for the /proc/TGID/task/ directories */ 3636 static int proc_task_readdir(struct file * filp, void * dirent, filldir_t filldir) 3637 { 3638 struct dentry *dentry = filp->f_path.dentry; 3639 struct inode *inode = dentry->d_inode; 3640 struct task_struct *leader = NULL; 3641 struct task_struct *task; 3642 int retval = -ENOENT; 3643 ino_t ino; 3644 int tid; 3645 struct pid_namespace *ns; 3646 3647 task = get_proc_task(inode); 3648 if (!task) 3649 goto out_no_task; 3650 rcu_read_lock(); 3651 if (pid_alive(task)) { 3652 leader = task->group_leader; 3653 get_task_struct(leader); 3654 } 3655 rcu_read_unlock(); 3656 put_task_struct(task); 3657 if (!leader) 3658 goto out_no_task; 3659 retval = 0; 3660 3661 switch ((unsigned long)filp->f_pos) { 3662 case 0: 3663 ino = inode->i_ino; 3664 if (filldir(dirent, ".", 1, filp->f_pos, ino, DT_DIR) < 0) 3665 goto out; 3666 filp->f_pos++; 3667 /* fall through */ 3668 case 1: 3669 ino = parent_ino(dentry); 3670 if (filldir(dirent, "..", 2, filp->f_pos, ino, DT_DIR) < 0) 3671 goto out; 3672 filp->f_pos++; 3673 /* fall through */ 3674 } 3675 3676 /* f_version caches the tgid value that the last readdir call couldn't 3677 * return. lseek aka telldir automagically resets f_version to 0. 3678 */ 3679 ns = filp->f_dentry->d_sb->s_fs_info; 3680 tid = (int)filp->f_version; 3681 filp->f_version = 0; 3682 for (task = first_tid(leader, tid, filp->f_pos - 2, ns); 3683 task; 3684 task = next_tid(task), filp->f_pos++) { 3685 tid = task_pid_nr_ns(task, ns); 3686 if (proc_task_fill_cache(filp, dirent, filldir, task, tid) < 0) { 3687 /* returning this tgid failed, save it as the first 3688 * pid for the next readir call */ 3689 filp->f_version = (u64)tid; 3690 put_task_struct(task); 3691 break; 3692 } 3693 } 3694 out: 3695 put_task_struct(leader); 3696 out_no_task: 3697 return retval; 3698 } 3699 3700 static int proc_task_getattr(struct vfsmount *mnt, struct dentry *dentry, struct kstat *stat) 3701 { 3702 struct inode *inode = dentry->d_inode; 3703 struct task_struct *p = get_proc_task(inode); 3704 generic_fillattr(inode, stat); 3705 3706 if (p) { 3707 stat->nlink += get_nr_threads(p); 3708 put_task_struct(p); 3709 } 3710 3711 return 0; 3712 } 3713 3714 static const struct inode_operations proc_task_inode_operations = { 3715 .lookup = proc_task_lookup, 3716 .getattr = proc_task_getattr, 3717 .setattr = proc_setattr, 3718 .permission = proc_pid_permission, 3719 }; 3720 3721 static const struct file_operations proc_task_operations = { 3722 .read = generic_read_dir, 3723 .readdir = proc_task_readdir, 3724 .llseek = default_llseek, 3725 }; 3726