xref: /linux/fs/proc/base.c (revision b9ccfda293ee6fca9a89a1584f0900e0627b975e)
1 /*
2  *  linux/fs/proc/base.c
3  *
4  *  Copyright (C) 1991, 1992 Linus Torvalds
5  *
6  *  proc base directory handling functions
7  *
8  *  1999, Al Viro. Rewritten. Now it covers the whole per-process part.
9  *  Instead of using magical inumbers to determine the kind of object
10  *  we allocate and fill in-core inodes upon lookup. They don't even
11  *  go into icache. We cache the reference to task_struct upon lookup too.
12  *  Eventually it should become a filesystem in its own. We don't use the
13  *  rest of procfs anymore.
14  *
15  *
16  *  Changelog:
17  *  17-Jan-2005
18  *  Allan Bezerra
19  *  Bruna Moreira <bruna.moreira@indt.org.br>
20  *  Edjard Mota <edjard.mota@indt.org.br>
21  *  Ilias Biris <ilias.biris@indt.org.br>
22  *  Mauricio Lin <mauricio.lin@indt.org.br>
23  *
24  *  Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT
25  *
26  *  A new process specific entry (smaps) included in /proc. It shows the
27  *  size of rss for each memory area. The maps entry lacks information
28  *  about physical memory size (rss) for each mapped file, i.e.,
29  *  rss information for executables and library files.
30  *  This additional information is useful for any tools that need to know
31  *  about physical memory consumption for a process specific library.
32  *
33  *  Changelog:
34  *  21-Feb-2005
35  *  Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT
36  *  Pud inclusion in the page table walking.
37  *
38  *  ChangeLog:
39  *  10-Mar-2005
40  *  10LE Instituto Nokia de Tecnologia - INdT:
41  *  A better way to walks through the page table as suggested by Hugh Dickins.
42  *
43  *  Simo Piiroinen <simo.piiroinen@nokia.com>:
44  *  Smaps information related to shared, private, clean and dirty pages.
45  *
46  *  Paul Mundt <paul.mundt@nokia.com>:
47  *  Overall revision about smaps.
48  */
49 
50 #include <asm/uaccess.h>
51 
52 #include <linux/errno.h>
53 #include <linux/time.h>
54 #include <linux/proc_fs.h>
55 #include <linux/stat.h>
56 #include <linux/task_io_accounting_ops.h>
57 #include <linux/init.h>
58 #include <linux/capability.h>
59 #include <linux/file.h>
60 #include <linux/fdtable.h>
61 #include <linux/string.h>
62 #include <linux/seq_file.h>
63 #include <linux/namei.h>
64 #include <linux/mnt_namespace.h>
65 #include <linux/mm.h>
66 #include <linux/swap.h>
67 #include <linux/rcupdate.h>
68 #include <linux/kallsyms.h>
69 #include <linux/stacktrace.h>
70 #include <linux/resource.h>
71 #include <linux/module.h>
72 #include <linux/mount.h>
73 #include <linux/security.h>
74 #include <linux/ptrace.h>
75 #include <linux/tracehook.h>
76 #include <linux/cgroup.h>
77 #include <linux/cpuset.h>
78 #include <linux/audit.h>
79 #include <linux/poll.h>
80 #include <linux/nsproxy.h>
81 #include <linux/oom.h>
82 #include <linux/elf.h>
83 #include <linux/pid_namespace.h>
84 #include <linux/user_namespace.h>
85 #include <linux/fs_struct.h>
86 #include <linux/slab.h>
87 #include <linux/flex_array.h>
88 #ifdef CONFIG_HARDWALL
89 #include <asm/hardwall.h>
90 #endif
91 #include <trace/events/oom.h>
92 #include "internal.h"
93 
94 /* NOTE:
95  *	Implementing inode permission operations in /proc is almost
96  *	certainly an error.  Permission checks need to happen during
97  *	each system call not at open time.  The reason is that most of
98  *	what we wish to check for permissions in /proc varies at runtime.
99  *
100  *	The classic example of a problem is opening file descriptors
101  *	in /proc for a task before it execs a suid executable.
102  */
103 
104 struct pid_entry {
105 	char *name;
106 	int len;
107 	umode_t mode;
108 	const struct inode_operations *iop;
109 	const struct file_operations *fop;
110 	union proc_op op;
111 };
112 
113 #define NOD(NAME, MODE, IOP, FOP, OP) {			\
114 	.name = (NAME),					\
115 	.len  = sizeof(NAME) - 1,			\
116 	.mode = MODE,					\
117 	.iop  = IOP,					\
118 	.fop  = FOP,					\
119 	.op   = OP,					\
120 }
121 
122 #define DIR(NAME, MODE, iops, fops)	\
123 	NOD(NAME, (S_IFDIR|(MODE)), &iops, &fops, {} )
124 #define LNK(NAME, get_link)					\
125 	NOD(NAME, (S_IFLNK|S_IRWXUGO),				\
126 		&proc_pid_link_inode_operations, NULL,		\
127 		{ .proc_get_link = get_link } )
128 #define REG(NAME, MODE, fops)				\
129 	NOD(NAME, (S_IFREG|(MODE)), NULL, &fops, {})
130 #define INF(NAME, MODE, read)				\
131 	NOD(NAME, (S_IFREG|(MODE)), 			\
132 		NULL, &proc_info_file_operations,	\
133 		{ .proc_read = read } )
134 #define ONE(NAME, MODE, show)				\
135 	NOD(NAME, (S_IFREG|(MODE)), 			\
136 		NULL, &proc_single_file_operations,	\
137 		{ .proc_show = show } )
138 
139 static int proc_fd_permission(struct inode *inode, int mask);
140 
141 /*
142  * Count the number of hardlinks for the pid_entry table, excluding the .
143  * and .. links.
144  */
145 static unsigned int pid_entry_count_dirs(const struct pid_entry *entries,
146 	unsigned int n)
147 {
148 	unsigned int i;
149 	unsigned int count;
150 
151 	count = 0;
152 	for (i = 0; i < n; ++i) {
153 		if (S_ISDIR(entries[i].mode))
154 			++count;
155 	}
156 
157 	return count;
158 }
159 
160 static int get_task_root(struct task_struct *task, struct path *root)
161 {
162 	int result = -ENOENT;
163 
164 	task_lock(task);
165 	if (task->fs) {
166 		get_fs_root(task->fs, root);
167 		result = 0;
168 	}
169 	task_unlock(task);
170 	return result;
171 }
172 
173 static int proc_cwd_link(struct dentry *dentry, struct path *path)
174 {
175 	struct task_struct *task = get_proc_task(dentry->d_inode);
176 	int result = -ENOENT;
177 
178 	if (task) {
179 		task_lock(task);
180 		if (task->fs) {
181 			get_fs_pwd(task->fs, path);
182 			result = 0;
183 		}
184 		task_unlock(task);
185 		put_task_struct(task);
186 	}
187 	return result;
188 }
189 
190 static int proc_root_link(struct dentry *dentry, struct path *path)
191 {
192 	struct task_struct *task = get_proc_task(dentry->d_inode);
193 	int result = -ENOENT;
194 
195 	if (task) {
196 		result = get_task_root(task, path);
197 		put_task_struct(task);
198 	}
199 	return result;
200 }
201 
202 static int proc_pid_cmdline(struct task_struct *task, char * buffer)
203 {
204 	int res = 0;
205 	unsigned int len;
206 	struct mm_struct *mm = get_task_mm(task);
207 	if (!mm)
208 		goto out;
209 	if (!mm->arg_end)
210 		goto out_mm;	/* Shh! No looking before we're done */
211 
212  	len = mm->arg_end - mm->arg_start;
213 
214 	if (len > PAGE_SIZE)
215 		len = PAGE_SIZE;
216 
217 	res = access_process_vm(task, mm->arg_start, buffer, len, 0);
218 
219 	// If the nul at the end of args has been overwritten, then
220 	// assume application is using setproctitle(3).
221 	if (res > 0 && buffer[res-1] != '\0' && len < PAGE_SIZE) {
222 		len = strnlen(buffer, res);
223 		if (len < res) {
224 		    res = len;
225 		} else {
226 			len = mm->env_end - mm->env_start;
227 			if (len > PAGE_SIZE - res)
228 				len = PAGE_SIZE - res;
229 			res += access_process_vm(task, mm->env_start, buffer+res, len, 0);
230 			res = strnlen(buffer, res);
231 		}
232 	}
233 out_mm:
234 	mmput(mm);
235 out:
236 	return res;
237 }
238 
239 static int proc_pid_auxv(struct task_struct *task, char *buffer)
240 {
241 	struct mm_struct *mm = mm_access(task, PTRACE_MODE_READ);
242 	int res = PTR_ERR(mm);
243 	if (mm && !IS_ERR(mm)) {
244 		unsigned int nwords = 0;
245 		do {
246 			nwords += 2;
247 		} while (mm->saved_auxv[nwords - 2] != 0); /* AT_NULL */
248 		res = nwords * sizeof(mm->saved_auxv[0]);
249 		if (res > PAGE_SIZE)
250 			res = PAGE_SIZE;
251 		memcpy(buffer, mm->saved_auxv, res);
252 		mmput(mm);
253 	}
254 	return res;
255 }
256 
257 
258 #ifdef CONFIG_KALLSYMS
259 /*
260  * Provides a wchan file via kallsyms in a proper one-value-per-file format.
261  * Returns the resolved symbol.  If that fails, simply return the address.
262  */
263 static int proc_pid_wchan(struct task_struct *task, char *buffer)
264 {
265 	unsigned long wchan;
266 	char symname[KSYM_NAME_LEN];
267 
268 	wchan = get_wchan(task);
269 
270 	if (lookup_symbol_name(wchan, symname) < 0)
271 		if (!ptrace_may_access(task, PTRACE_MODE_READ))
272 			return 0;
273 		else
274 			return sprintf(buffer, "%lu", wchan);
275 	else
276 		return sprintf(buffer, "%s", symname);
277 }
278 #endif /* CONFIG_KALLSYMS */
279 
280 static int lock_trace(struct task_struct *task)
281 {
282 	int err = mutex_lock_killable(&task->signal->cred_guard_mutex);
283 	if (err)
284 		return err;
285 	if (!ptrace_may_access(task, PTRACE_MODE_ATTACH)) {
286 		mutex_unlock(&task->signal->cred_guard_mutex);
287 		return -EPERM;
288 	}
289 	return 0;
290 }
291 
292 static void unlock_trace(struct task_struct *task)
293 {
294 	mutex_unlock(&task->signal->cred_guard_mutex);
295 }
296 
297 #ifdef CONFIG_STACKTRACE
298 
299 #define MAX_STACK_TRACE_DEPTH	64
300 
301 static int proc_pid_stack(struct seq_file *m, struct pid_namespace *ns,
302 			  struct pid *pid, struct task_struct *task)
303 {
304 	struct stack_trace trace;
305 	unsigned long *entries;
306 	int err;
307 	int i;
308 
309 	entries = kmalloc(MAX_STACK_TRACE_DEPTH * sizeof(*entries), GFP_KERNEL);
310 	if (!entries)
311 		return -ENOMEM;
312 
313 	trace.nr_entries	= 0;
314 	trace.max_entries	= MAX_STACK_TRACE_DEPTH;
315 	trace.entries		= entries;
316 	trace.skip		= 0;
317 
318 	err = lock_trace(task);
319 	if (!err) {
320 		save_stack_trace_tsk(task, &trace);
321 
322 		for (i = 0; i < trace.nr_entries; i++) {
323 			seq_printf(m, "[<%pK>] %pS\n",
324 				   (void *)entries[i], (void *)entries[i]);
325 		}
326 		unlock_trace(task);
327 	}
328 	kfree(entries);
329 
330 	return err;
331 }
332 #endif
333 
334 #ifdef CONFIG_SCHEDSTATS
335 /*
336  * Provides /proc/PID/schedstat
337  */
338 static int proc_pid_schedstat(struct task_struct *task, char *buffer)
339 {
340 	return sprintf(buffer, "%llu %llu %lu\n",
341 			(unsigned long long)task->se.sum_exec_runtime,
342 			(unsigned long long)task->sched_info.run_delay,
343 			task->sched_info.pcount);
344 }
345 #endif
346 
347 #ifdef CONFIG_LATENCYTOP
348 static int lstats_show_proc(struct seq_file *m, void *v)
349 {
350 	int i;
351 	struct inode *inode = m->private;
352 	struct task_struct *task = get_proc_task(inode);
353 
354 	if (!task)
355 		return -ESRCH;
356 	seq_puts(m, "Latency Top version : v0.1\n");
357 	for (i = 0; i < 32; i++) {
358 		struct latency_record *lr = &task->latency_record[i];
359 		if (lr->backtrace[0]) {
360 			int q;
361 			seq_printf(m, "%i %li %li",
362 				   lr->count, lr->time, lr->max);
363 			for (q = 0; q < LT_BACKTRACEDEPTH; q++) {
364 				unsigned long bt = lr->backtrace[q];
365 				if (!bt)
366 					break;
367 				if (bt == ULONG_MAX)
368 					break;
369 				seq_printf(m, " %ps", (void *)bt);
370 			}
371 			seq_putc(m, '\n');
372 		}
373 
374 	}
375 	put_task_struct(task);
376 	return 0;
377 }
378 
379 static int lstats_open(struct inode *inode, struct file *file)
380 {
381 	return single_open(file, lstats_show_proc, inode);
382 }
383 
384 static ssize_t lstats_write(struct file *file, const char __user *buf,
385 			    size_t count, loff_t *offs)
386 {
387 	struct task_struct *task = get_proc_task(file->f_dentry->d_inode);
388 
389 	if (!task)
390 		return -ESRCH;
391 	clear_all_latency_tracing(task);
392 	put_task_struct(task);
393 
394 	return count;
395 }
396 
397 static const struct file_operations proc_lstats_operations = {
398 	.open		= lstats_open,
399 	.read		= seq_read,
400 	.write		= lstats_write,
401 	.llseek		= seq_lseek,
402 	.release	= single_release,
403 };
404 
405 #endif
406 
407 static int proc_oom_score(struct task_struct *task, char *buffer)
408 {
409 	unsigned long totalpages = totalram_pages + total_swap_pages;
410 	unsigned long points = 0;
411 
412 	read_lock(&tasklist_lock);
413 	if (pid_alive(task))
414 		points = oom_badness(task, NULL, NULL, totalpages) *
415 						1000 / totalpages;
416 	read_unlock(&tasklist_lock);
417 	return sprintf(buffer, "%lu\n", points);
418 }
419 
420 struct limit_names {
421 	char *name;
422 	char *unit;
423 };
424 
425 static const struct limit_names lnames[RLIM_NLIMITS] = {
426 	[RLIMIT_CPU] = {"Max cpu time", "seconds"},
427 	[RLIMIT_FSIZE] = {"Max file size", "bytes"},
428 	[RLIMIT_DATA] = {"Max data size", "bytes"},
429 	[RLIMIT_STACK] = {"Max stack size", "bytes"},
430 	[RLIMIT_CORE] = {"Max core file size", "bytes"},
431 	[RLIMIT_RSS] = {"Max resident set", "bytes"},
432 	[RLIMIT_NPROC] = {"Max processes", "processes"},
433 	[RLIMIT_NOFILE] = {"Max open files", "files"},
434 	[RLIMIT_MEMLOCK] = {"Max locked memory", "bytes"},
435 	[RLIMIT_AS] = {"Max address space", "bytes"},
436 	[RLIMIT_LOCKS] = {"Max file locks", "locks"},
437 	[RLIMIT_SIGPENDING] = {"Max pending signals", "signals"},
438 	[RLIMIT_MSGQUEUE] = {"Max msgqueue size", "bytes"},
439 	[RLIMIT_NICE] = {"Max nice priority", NULL},
440 	[RLIMIT_RTPRIO] = {"Max realtime priority", NULL},
441 	[RLIMIT_RTTIME] = {"Max realtime timeout", "us"},
442 };
443 
444 /* Display limits for a process */
445 static int proc_pid_limits(struct task_struct *task, char *buffer)
446 {
447 	unsigned int i;
448 	int count = 0;
449 	unsigned long flags;
450 	char *bufptr = buffer;
451 
452 	struct rlimit rlim[RLIM_NLIMITS];
453 
454 	if (!lock_task_sighand(task, &flags))
455 		return 0;
456 	memcpy(rlim, task->signal->rlim, sizeof(struct rlimit) * RLIM_NLIMITS);
457 	unlock_task_sighand(task, &flags);
458 
459 	/*
460 	 * print the file header
461 	 */
462 	count += sprintf(&bufptr[count], "%-25s %-20s %-20s %-10s\n",
463 			"Limit", "Soft Limit", "Hard Limit", "Units");
464 
465 	for (i = 0; i < RLIM_NLIMITS; i++) {
466 		if (rlim[i].rlim_cur == RLIM_INFINITY)
467 			count += sprintf(&bufptr[count], "%-25s %-20s ",
468 					 lnames[i].name, "unlimited");
469 		else
470 			count += sprintf(&bufptr[count], "%-25s %-20lu ",
471 					 lnames[i].name, rlim[i].rlim_cur);
472 
473 		if (rlim[i].rlim_max == RLIM_INFINITY)
474 			count += sprintf(&bufptr[count], "%-20s ", "unlimited");
475 		else
476 			count += sprintf(&bufptr[count], "%-20lu ",
477 					 rlim[i].rlim_max);
478 
479 		if (lnames[i].unit)
480 			count += sprintf(&bufptr[count], "%-10s\n",
481 					 lnames[i].unit);
482 		else
483 			count += sprintf(&bufptr[count], "\n");
484 	}
485 
486 	return count;
487 }
488 
489 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK
490 static int proc_pid_syscall(struct task_struct *task, char *buffer)
491 {
492 	long nr;
493 	unsigned long args[6], sp, pc;
494 	int res = lock_trace(task);
495 	if (res)
496 		return res;
497 
498 	if (task_current_syscall(task, &nr, args, 6, &sp, &pc))
499 		res = sprintf(buffer, "running\n");
500 	else if (nr < 0)
501 		res = sprintf(buffer, "%ld 0x%lx 0x%lx\n", nr, sp, pc);
502 	else
503 		res = sprintf(buffer,
504 		       "%ld 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx\n",
505 		       nr,
506 		       args[0], args[1], args[2], args[3], args[4], args[5],
507 		       sp, pc);
508 	unlock_trace(task);
509 	return res;
510 }
511 #endif /* CONFIG_HAVE_ARCH_TRACEHOOK */
512 
513 /************************************************************************/
514 /*                       Here the fs part begins                        */
515 /************************************************************************/
516 
517 /* permission checks */
518 static int proc_fd_access_allowed(struct inode *inode)
519 {
520 	struct task_struct *task;
521 	int allowed = 0;
522 	/* Allow access to a task's file descriptors if it is us or we
523 	 * may use ptrace attach to the process and find out that
524 	 * information.
525 	 */
526 	task = get_proc_task(inode);
527 	if (task) {
528 		allowed = ptrace_may_access(task, PTRACE_MODE_READ);
529 		put_task_struct(task);
530 	}
531 	return allowed;
532 }
533 
534 int proc_setattr(struct dentry *dentry, struct iattr *attr)
535 {
536 	int error;
537 	struct inode *inode = dentry->d_inode;
538 
539 	if (attr->ia_valid & ATTR_MODE)
540 		return -EPERM;
541 
542 	error = inode_change_ok(inode, attr);
543 	if (error)
544 		return error;
545 
546 	if ((attr->ia_valid & ATTR_SIZE) &&
547 	    attr->ia_size != i_size_read(inode)) {
548 		error = vmtruncate(inode, attr->ia_size);
549 		if (error)
550 			return error;
551 	}
552 
553 	setattr_copy(inode, attr);
554 	mark_inode_dirty(inode);
555 	return 0;
556 }
557 
558 /*
559  * May current process learn task's sched/cmdline info (for hide_pid_min=1)
560  * or euid/egid (for hide_pid_min=2)?
561  */
562 static bool has_pid_permissions(struct pid_namespace *pid,
563 				 struct task_struct *task,
564 				 int hide_pid_min)
565 {
566 	if (pid->hide_pid < hide_pid_min)
567 		return true;
568 	if (in_group_p(pid->pid_gid))
569 		return true;
570 	return ptrace_may_access(task, PTRACE_MODE_READ);
571 }
572 
573 
574 static int proc_pid_permission(struct inode *inode, int mask)
575 {
576 	struct pid_namespace *pid = inode->i_sb->s_fs_info;
577 	struct task_struct *task;
578 	bool has_perms;
579 
580 	task = get_proc_task(inode);
581 	if (!task)
582 		return -ESRCH;
583 	has_perms = has_pid_permissions(pid, task, 1);
584 	put_task_struct(task);
585 
586 	if (!has_perms) {
587 		if (pid->hide_pid == 2) {
588 			/*
589 			 * Let's make getdents(), stat(), and open()
590 			 * consistent with each other.  If a process
591 			 * may not stat() a file, it shouldn't be seen
592 			 * in procfs at all.
593 			 */
594 			return -ENOENT;
595 		}
596 
597 		return -EPERM;
598 	}
599 	return generic_permission(inode, mask);
600 }
601 
602 
603 
604 static const struct inode_operations proc_def_inode_operations = {
605 	.setattr	= proc_setattr,
606 };
607 
608 #define PROC_BLOCK_SIZE	(3*1024)		/* 4K page size but our output routines use some slack for overruns */
609 
610 static ssize_t proc_info_read(struct file * file, char __user * buf,
611 			  size_t count, loff_t *ppos)
612 {
613 	struct inode * inode = file->f_path.dentry->d_inode;
614 	unsigned long page;
615 	ssize_t length;
616 	struct task_struct *task = get_proc_task(inode);
617 
618 	length = -ESRCH;
619 	if (!task)
620 		goto out_no_task;
621 
622 	if (count > PROC_BLOCK_SIZE)
623 		count = PROC_BLOCK_SIZE;
624 
625 	length = -ENOMEM;
626 	if (!(page = __get_free_page(GFP_TEMPORARY)))
627 		goto out;
628 
629 	length = PROC_I(inode)->op.proc_read(task, (char*)page);
630 
631 	if (length >= 0)
632 		length = simple_read_from_buffer(buf, count, ppos, (char *)page, length);
633 	free_page(page);
634 out:
635 	put_task_struct(task);
636 out_no_task:
637 	return length;
638 }
639 
640 static const struct file_operations proc_info_file_operations = {
641 	.read		= proc_info_read,
642 	.llseek		= generic_file_llseek,
643 };
644 
645 static int proc_single_show(struct seq_file *m, void *v)
646 {
647 	struct inode *inode = m->private;
648 	struct pid_namespace *ns;
649 	struct pid *pid;
650 	struct task_struct *task;
651 	int ret;
652 
653 	ns = inode->i_sb->s_fs_info;
654 	pid = proc_pid(inode);
655 	task = get_pid_task(pid, PIDTYPE_PID);
656 	if (!task)
657 		return -ESRCH;
658 
659 	ret = PROC_I(inode)->op.proc_show(m, ns, pid, task);
660 
661 	put_task_struct(task);
662 	return ret;
663 }
664 
665 static int proc_single_open(struct inode *inode, struct file *filp)
666 {
667 	return single_open(filp, proc_single_show, inode);
668 }
669 
670 static const struct file_operations proc_single_file_operations = {
671 	.open		= proc_single_open,
672 	.read		= seq_read,
673 	.llseek		= seq_lseek,
674 	.release	= single_release,
675 };
676 
677 static int __mem_open(struct inode *inode, struct file *file, unsigned int mode)
678 {
679 	struct task_struct *task = get_proc_task(file->f_path.dentry->d_inode);
680 	struct mm_struct *mm;
681 
682 	if (!task)
683 		return -ESRCH;
684 
685 	mm = mm_access(task, mode);
686 	put_task_struct(task);
687 
688 	if (IS_ERR(mm))
689 		return PTR_ERR(mm);
690 
691 	if (mm) {
692 		/* ensure this mm_struct can't be freed */
693 		atomic_inc(&mm->mm_count);
694 		/* but do not pin its memory */
695 		mmput(mm);
696 	}
697 
698 	/* OK to pass negative loff_t, we can catch out-of-range */
699 	file->f_mode |= FMODE_UNSIGNED_OFFSET;
700 	file->private_data = mm;
701 
702 	return 0;
703 }
704 
705 static int mem_open(struct inode *inode, struct file *file)
706 {
707 	return __mem_open(inode, file, PTRACE_MODE_ATTACH);
708 }
709 
710 static ssize_t mem_rw(struct file *file, char __user *buf,
711 			size_t count, loff_t *ppos, int write)
712 {
713 	struct mm_struct *mm = file->private_data;
714 	unsigned long addr = *ppos;
715 	ssize_t copied;
716 	char *page;
717 
718 	if (!mm)
719 		return 0;
720 
721 	page = (char *)__get_free_page(GFP_TEMPORARY);
722 	if (!page)
723 		return -ENOMEM;
724 
725 	copied = 0;
726 	if (!atomic_inc_not_zero(&mm->mm_users))
727 		goto free;
728 
729 	while (count > 0) {
730 		int this_len = min_t(int, count, PAGE_SIZE);
731 
732 		if (write && copy_from_user(page, buf, this_len)) {
733 			copied = -EFAULT;
734 			break;
735 		}
736 
737 		this_len = access_remote_vm(mm, addr, page, this_len, write);
738 		if (!this_len) {
739 			if (!copied)
740 				copied = -EIO;
741 			break;
742 		}
743 
744 		if (!write && copy_to_user(buf, page, this_len)) {
745 			copied = -EFAULT;
746 			break;
747 		}
748 
749 		buf += this_len;
750 		addr += this_len;
751 		copied += this_len;
752 		count -= this_len;
753 	}
754 	*ppos = addr;
755 
756 	mmput(mm);
757 free:
758 	free_page((unsigned long) page);
759 	return copied;
760 }
761 
762 static ssize_t mem_read(struct file *file, char __user *buf,
763 			size_t count, loff_t *ppos)
764 {
765 	return mem_rw(file, buf, count, ppos, 0);
766 }
767 
768 static ssize_t mem_write(struct file *file, const char __user *buf,
769 			 size_t count, loff_t *ppos)
770 {
771 	return mem_rw(file, (char __user*)buf, count, ppos, 1);
772 }
773 
774 loff_t mem_lseek(struct file *file, loff_t offset, int orig)
775 {
776 	switch (orig) {
777 	case 0:
778 		file->f_pos = offset;
779 		break;
780 	case 1:
781 		file->f_pos += offset;
782 		break;
783 	default:
784 		return -EINVAL;
785 	}
786 	force_successful_syscall_return();
787 	return file->f_pos;
788 }
789 
790 static int mem_release(struct inode *inode, struct file *file)
791 {
792 	struct mm_struct *mm = file->private_data;
793 	if (mm)
794 		mmdrop(mm);
795 	return 0;
796 }
797 
798 static const struct file_operations proc_mem_operations = {
799 	.llseek		= mem_lseek,
800 	.read		= mem_read,
801 	.write		= mem_write,
802 	.open		= mem_open,
803 	.release	= mem_release,
804 };
805 
806 static int environ_open(struct inode *inode, struct file *file)
807 {
808 	return __mem_open(inode, file, PTRACE_MODE_READ);
809 }
810 
811 static ssize_t environ_read(struct file *file, char __user *buf,
812 			size_t count, loff_t *ppos)
813 {
814 	char *page;
815 	unsigned long src = *ppos;
816 	int ret = 0;
817 	struct mm_struct *mm = file->private_data;
818 
819 	if (!mm)
820 		return 0;
821 
822 	page = (char *)__get_free_page(GFP_TEMPORARY);
823 	if (!page)
824 		return -ENOMEM;
825 
826 	ret = 0;
827 	if (!atomic_inc_not_zero(&mm->mm_users))
828 		goto free;
829 	while (count > 0) {
830 		int this_len, retval, max_len;
831 
832 		this_len = mm->env_end - (mm->env_start + src);
833 
834 		if (this_len <= 0)
835 			break;
836 
837 		max_len = (count > PAGE_SIZE) ? PAGE_SIZE : count;
838 		this_len = (this_len > max_len) ? max_len : this_len;
839 
840 		retval = access_remote_vm(mm, (mm->env_start + src),
841 			page, this_len, 0);
842 
843 		if (retval <= 0) {
844 			ret = retval;
845 			break;
846 		}
847 
848 		if (copy_to_user(buf, page, retval)) {
849 			ret = -EFAULT;
850 			break;
851 		}
852 
853 		ret += retval;
854 		src += retval;
855 		buf += retval;
856 		count -= retval;
857 	}
858 	*ppos = src;
859 	mmput(mm);
860 
861 free:
862 	free_page((unsigned long) page);
863 	return ret;
864 }
865 
866 static const struct file_operations proc_environ_operations = {
867 	.open		= environ_open,
868 	.read		= environ_read,
869 	.llseek		= generic_file_llseek,
870 	.release	= mem_release,
871 };
872 
873 static ssize_t oom_adjust_read(struct file *file, char __user *buf,
874 				size_t count, loff_t *ppos)
875 {
876 	struct task_struct *task = get_proc_task(file->f_path.dentry->d_inode);
877 	char buffer[PROC_NUMBUF];
878 	size_t len;
879 	int oom_adjust = OOM_DISABLE;
880 	unsigned long flags;
881 
882 	if (!task)
883 		return -ESRCH;
884 
885 	if (lock_task_sighand(task, &flags)) {
886 		oom_adjust = task->signal->oom_adj;
887 		unlock_task_sighand(task, &flags);
888 	}
889 
890 	put_task_struct(task);
891 
892 	len = snprintf(buffer, sizeof(buffer), "%i\n", oom_adjust);
893 
894 	return simple_read_from_buffer(buf, count, ppos, buffer, len);
895 }
896 
897 static ssize_t oom_adjust_write(struct file *file, const char __user *buf,
898 				size_t count, loff_t *ppos)
899 {
900 	struct task_struct *task;
901 	char buffer[PROC_NUMBUF];
902 	int oom_adjust;
903 	unsigned long flags;
904 	int err;
905 
906 	memset(buffer, 0, sizeof(buffer));
907 	if (count > sizeof(buffer) - 1)
908 		count = sizeof(buffer) - 1;
909 	if (copy_from_user(buffer, buf, count)) {
910 		err = -EFAULT;
911 		goto out;
912 	}
913 
914 	err = kstrtoint(strstrip(buffer), 0, &oom_adjust);
915 	if (err)
916 		goto out;
917 	if ((oom_adjust < OOM_ADJUST_MIN || oom_adjust > OOM_ADJUST_MAX) &&
918 	     oom_adjust != OOM_DISABLE) {
919 		err = -EINVAL;
920 		goto out;
921 	}
922 
923 	task = get_proc_task(file->f_path.dentry->d_inode);
924 	if (!task) {
925 		err = -ESRCH;
926 		goto out;
927 	}
928 
929 	task_lock(task);
930 	if (!task->mm) {
931 		err = -EINVAL;
932 		goto err_task_lock;
933 	}
934 
935 	if (!lock_task_sighand(task, &flags)) {
936 		err = -ESRCH;
937 		goto err_task_lock;
938 	}
939 
940 	if (oom_adjust < task->signal->oom_adj && !capable(CAP_SYS_RESOURCE)) {
941 		err = -EACCES;
942 		goto err_sighand;
943 	}
944 
945 	/*
946 	 * Warn that /proc/pid/oom_adj is deprecated, see
947 	 * Documentation/feature-removal-schedule.txt.
948 	 */
949 	printk_once(KERN_WARNING "%s (%d): /proc/%d/oom_adj is deprecated, please use /proc/%d/oom_score_adj instead.\n",
950 		  current->comm, task_pid_nr(current), task_pid_nr(task),
951 		  task_pid_nr(task));
952 	task->signal->oom_adj = oom_adjust;
953 	/*
954 	 * Scale /proc/pid/oom_score_adj appropriately ensuring that a maximum
955 	 * value is always attainable.
956 	 */
957 	if (task->signal->oom_adj == OOM_ADJUST_MAX)
958 		task->signal->oom_score_adj = OOM_SCORE_ADJ_MAX;
959 	else
960 		task->signal->oom_score_adj = (oom_adjust * OOM_SCORE_ADJ_MAX) /
961 								-OOM_DISABLE;
962 	trace_oom_score_adj_update(task);
963 err_sighand:
964 	unlock_task_sighand(task, &flags);
965 err_task_lock:
966 	task_unlock(task);
967 	put_task_struct(task);
968 out:
969 	return err < 0 ? err : count;
970 }
971 
972 static const struct file_operations proc_oom_adjust_operations = {
973 	.read		= oom_adjust_read,
974 	.write		= oom_adjust_write,
975 	.llseek		= generic_file_llseek,
976 };
977 
978 static ssize_t oom_score_adj_read(struct file *file, char __user *buf,
979 					size_t count, loff_t *ppos)
980 {
981 	struct task_struct *task = get_proc_task(file->f_path.dentry->d_inode);
982 	char buffer[PROC_NUMBUF];
983 	int oom_score_adj = OOM_SCORE_ADJ_MIN;
984 	unsigned long flags;
985 	size_t len;
986 
987 	if (!task)
988 		return -ESRCH;
989 	if (lock_task_sighand(task, &flags)) {
990 		oom_score_adj = task->signal->oom_score_adj;
991 		unlock_task_sighand(task, &flags);
992 	}
993 	put_task_struct(task);
994 	len = snprintf(buffer, sizeof(buffer), "%d\n", oom_score_adj);
995 	return simple_read_from_buffer(buf, count, ppos, buffer, len);
996 }
997 
998 static ssize_t oom_score_adj_write(struct file *file, const char __user *buf,
999 					size_t count, loff_t *ppos)
1000 {
1001 	struct task_struct *task;
1002 	char buffer[PROC_NUMBUF];
1003 	unsigned long flags;
1004 	int oom_score_adj;
1005 	int err;
1006 
1007 	memset(buffer, 0, sizeof(buffer));
1008 	if (count > sizeof(buffer) - 1)
1009 		count = sizeof(buffer) - 1;
1010 	if (copy_from_user(buffer, buf, count)) {
1011 		err = -EFAULT;
1012 		goto out;
1013 	}
1014 
1015 	err = kstrtoint(strstrip(buffer), 0, &oom_score_adj);
1016 	if (err)
1017 		goto out;
1018 	if (oom_score_adj < OOM_SCORE_ADJ_MIN ||
1019 			oom_score_adj > OOM_SCORE_ADJ_MAX) {
1020 		err = -EINVAL;
1021 		goto out;
1022 	}
1023 
1024 	task = get_proc_task(file->f_path.dentry->d_inode);
1025 	if (!task) {
1026 		err = -ESRCH;
1027 		goto out;
1028 	}
1029 
1030 	task_lock(task);
1031 	if (!task->mm) {
1032 		err = -EINVAL;
1033 		goto err_task_lock;
1034 	}
1035 
1036 	if (!lock_task_sighand(task, &flags)) {
1037 		err = -ESRCH;
1038 		goto err_task_lock;
1039 	}
1040 
1041 	if (oom_score_adj < task->signal->oom_score_adj_min &&
1042 			!capable(CAP_SYS_RESOURCE)) {
1043 		err = -EACCES;
1044 		goto err_sighand;
1045 	}
1046 
1047 	task->signal->oom_score_adj = oom_score_adj;
1048 	if (has_capability_noaudit(current, CAP_SYS_RESOURCE))
1049 		task->signal->oom_score_adj_min = oom_score_adj;
1050 	trace_oom_score_adj_update(task);
1051 	/*
1052 	 * Scale /proc/pid/oom_adj appropriately ensuring that OOM_DISABLE is
1053 	 * always attainable.
1054 	 */
1055 	if (task->signal->oom_score_adj == OOM_SCORE_ADJ_MIN)
1056 		task->signal->oom_adj = OOM_DISABLE;
1057 	else
1058 		task->signal->oom_adj = (oom_score_adj * OOM_ADJUST_MAX) /
1059 							OOM_SCORE_ADJ_MAX;
1060 err_sighand:
1061 	unlock_task_sighand(task, &flags);
1062 err_task_lock:
1063 	task_unlock(task);
1064 	put_task_struct(task);
1065 out:
1066 	return err < 0 ? err : count;
1067 }
1068 
1069 static const struct file_operations proc_oom_score_adj_operations = {
1070 	.read		= oom_score_adj_read,
1071 	.write		= oom_score_adj_write,
1072 	.llseek		= default_llseek,
1073 };
1074 
1075 #ifdef CONFIG_AUDITSYSCALL
1076 #define TMPBUFLEN 21
1077 static ssize_t proc_loginuid_read(struct file * file, char __user * buf,
1078 				  size_t count, loff_t *ppos)
1079 {
1080 	struct inode * inode = file->f_path.dentry->d_inode;
1081 	struct task_struct *task = get_proc_task(inode);
1082 	ssize_t length;
1083 	char tmpbuf[TMPBUFLEN];
1084 
1085 	if (!task)
1086 		return -ESRCH;
1087 	length = scnprintf(tmpbuf, TMPBUFLEN, "%u",
1088 				audit_get_loginuid(task));
1089 	put_task_struct(task);
1090 	return simple_read_from_buffer(buf, count, ppos, tmpbuf, length);
1091 }
1092 
1093 static ssize_t proc_loginuid_write(struct file * file, const char __user * buf,
1094 				   size_t count, loff_t *ppos)
1095 {
1096 	struct inode * inode = file->f_path.dentry->d_inode;
1097 	char *page, *tmp;
1098 	ssize_t length;
1099 	uid_t loginuid;
1100 
1101 	rcu_read_lock();
1102 	if (current != pid_task(proc_pid(inode), PIDTYPE_PID)) {
1103 		rcu_read_unlock();
1104 		return -EPERM;
1105 	}
1106 	rcu_read_unlock();
1107 
1108 	if (count >= PAGE_SIZE)
1109 		count = PAGE_SIZE - 1;
1110 
1111 	if (*ppos != 0) {
1112 		/* No partial writes. */
1113 		return -EINVAL;
1114 	}
1115 	page = (char*)__get_free_page(GFP_TEMPORARY);
1116 	if (!page)
1117 		return -ENOMEM;
1118 	length = -EFAULT;
1119 	if (copy_from_user(page, buf, count))
1120 		goto out_free_page;
1121 
1122 	page[count] = '\0';
1123 	loginuid = simple_strtoul(page, &tmp, 10);
1124 	if (tmp == page) {
1125 		length = -EINVAL;
1126 		goto out_free_page;
1127 
1128 	}
1129 	length = audit_set_loginuid(loginuid);
1130 	if (likely(length == 0))
1131 		length = count;
1132 
1133 out_free_page:
1134 	free_page((unsigned long) page);
1135 	return length;
1136 }
1137 
1138 static const struct file_operations proc_loginuid_operations = {
1139 	.read		= proc_loginuid_read,
1140 	.write		= proc_loginuid_write,
1141 	.llseek		= generic_file_llseek,
1142 };
1143 
1144 static ssize_t proc_sessionid_read(struct file * file, char __user * buf,
1145 				  size_t count, loff_t *ppos)
1146 {
1147 	struct inode * inode = file->f_path.dentry->d_inode;
1148 	struct task_struct *task = get_proc_task(inode);
1149 	ssize_t length;
1150 	char tmpbuf[TMPBUFLEN];
1151 
1152 	if (!task)
1153 		return -ESRCH;
1154 	length = scnprintf(tmpbuf, TMPBUFLEN, "%u",
1155 				audit_get_sessionid(task));
1156 	put_task_struct(task);
1157 	return simple_read_from_buffer(buf, count, ppos, tmpbuf, length);
1158 }
1159 
1160 static const struct file_operations proc_sessionid_operations = {
1161 	.read		= proc_sessionid_read,
1162 	.llseek		= generic_file_llseek,
1163 };
1164 #endif
1165 
1166 #ifdef CONFIG_FAULT_INJECTION
1167 static ssize_t proc_fault_inject_read(struct file * file, char __user * buf,
1168 				      size_t count, loff_t *ppos)
1169 {
1170 	struct task_struct *task = get_proc_task(file->f_dentry->d_inode);
1171 	char buffer[PROC_NUMBUF];
1172 	size_t len;
1173 	int make_it_fail;
1174 
1175 	if (!task)
1176 		return -ESRCH;
1177 	make_it_fail = task->make_it_fail;
1178 	put_task_struct(task);
1179 
1180 	len = snprintf(buffer, sizeof(buffer), "%i\n", make_it_fail);
1181 
1182 	return simple_read_from_buffer(buf, count, ppos, buffer, len);
1183 }
1184 
1185 static ssize_t proc_fault_inject_write(struct file * file,
1186 			const char __user * buf, size_t count, loff_t *ppos)
1187 {
1188 	struct task_struct *task;
1189 	char buffer[PROC_NUMBUF], *end;
1190 	int make_it_fail;
1191 
1192 	if (!capable(CAP_SYS_RESOURCE))
1193 		return -EPERM;
1194 	memset(buffer, 0, sizeof(buffer));
1195 	if (count > sizeof(buffer) - 1)
1196 		count = sizeof(buffer) - 1;
1197 	if (copy_from_user(buffer, buf, count))
1198 		return -EFAULT;
1199 	make_it_fail = simple_strtol(strstrip(buffer), &end, 0);
1200 	if (*end)
1201 		return -EINVAL;
1202 	task = get_proc_task(file->f_dentry->d_inode);
1203 	if (!task)
1204 		return -ESRCH;
1205 	task->make_it_fail = make_it_fail;
1206 	put_task_struct(task);
1207 
1208 	return count;
1209 }
1210 
1211 static const struct file_operations proc_fault_inject_operations = {
1212 	.read		= proc_fault_inject_read,
1213 	.write		= proc_fault_inject_write,
1214 	.llseek		= generic_file_llseek,
1215 };
1216 #endif
1217 
1218 
1219 #ifdef CONFIG_SCHED_DEBUG
1220 /*
1221  * Print out various scheduling related per-task fields:
1222  */
1223 static int sched_show(struct seq_file *m, void *v)
1224 {
1225 	struct inode *inode = m->private;
1226 	struct task_struct *p;
1227 
1228 	p = get_proc_task(inode);
1229 	if (!p)
1230 		return -ESRCH;
1231 	proc_sched_show_task(p, m);
1232 
1233 	put_task_struct(p);
1234 
1235 	return 0;
1236 }
1237 
1238 static ssize_t
1239 sched_write(struct file *file, const char __user *buf,
1240 	    size_t count, loff_t *offset)
1241 {
1242 	struct inode *inode = file->f_path.dentry->d_inode;
1243 	struct task_struct *p;
1244 
1245 	p = get_proc_task(inode);
1246 	if (!p)
1247 		return -ESRCH;
1248 	proc_sched_set_task(p);
1249 
1250 	put_task_struct(p);
1251 
1252 	return count;
1253 }
1254 
1255 static int sched_open(struct inode *inode, struct file *filp)
1256 {
1257 	return single_open(filp, sched_show, inode);
1258 }
1259 
1260 static const struct file_operations proc_pid_sched_operations = {
1261 	.open		= sched_open,
1262 	.read		= seq_read,
1263 	.write		= sched_write,
1264 	.llseek		= seq_lseek,
1265 	.release	= single_release,
1266 };
1267 
1268 #endif
1269 
1270 #ifdef CONFIG_SCHED_AUTOGROUP
1271 /*
1272  * Print out autogroup related information:
1273  */
1274 static int sched_autogroup_show(struct seq_file *m, void *v)
1275 {
1276 	struct inode *inode = m->private;
1277 	struct task_struct *p;
1278 
1279 	p = get_proc_task(inode);
1280 	if (!p)
1281 		return -ESRCH;
1282 	proc_sched_autogroup_show_task(p, m);
1283 
1284 	put_task_struct(p);
1285 
1286 	return 0;
1287 }
1288 
1289 static ssize_t
1290 sched_autogroup_write(struct file *file, const char __user *buf,
1291 	    size_t count, loff_t *offset)
1292 {
1293 	struct inode *inode = file->f_path.dentry->d_inode;
1294 	struct task_struct *p;
1295 	char buffer[PROC_NUMBUF];
1296 	int nice;
1297 	int err;
1298 
1299 	memset(buffer, 0, sizeof(buffer));
1300 	if (count > sizeof(buffer) - 1)
1301 		count = sizeof(buffer) - 1;
1302 	if (copy_from_user(buffer, buf, count))
1303 		return -EFAULT;
1304 
1305 	err = kstrtoint(strstrip(buffer), 0, &nice);
1306 	if (err < 0)
1307 		return err;
1308 
1309 	p = get_proc_task(inode);
1310 	if (!p)
1311 		return -ESRCH;
1312 
1313 	err = proc_sched_autogroup_set_nice(p, nice);
1314 	if (err)
1315 		count = err;
1316 
1317 	put_task_struct(p);
1318 
1319 	return count;
1320 }
1321 
1322 static int sched_autogroup_open(struct inode *inode, struct file *filp)
1323 {
1324 	int ret;
1325 
1326 	ret = single_open(filp, sched_autogroup_show, NULL);
1327 	if (!ret) {
1328 		struct seq_file *m = filp->private_data;
1329 
1330 		m->private = inode;
1331 	}
1332 	return ret;
1333 }
1334 
1335 static const struct file_operations proc_pid_sched_autogroup_operations = {
1336 	.open		= sched_autogroup_open,
1337 	.read		= seq_read,
1338 	.write		= sched_autogroup_write,
1339 	.llseek		= seq_lseek,
1340 	.release	= single_release,
1341 };
1342 
1343 #endif /* CONFIG_SCHED_AUTOGROUP */
1344 
1345 static ssize_t comm_write(struct file *file, const char __user *buf,
1346 				size_t count, loff_t *offset)
1347 {
1348 	struct inode *inode = file->f_path.dentry->d_inode;
1349 	struct task_struct *p;
1350 	char buffer[TASK_COMM_LEN];
1351 
1352 	memset(buffer, 0, sizeof(buffer));
1353 	if (count > sizeof(buffer) - 1)
1354 		count = sizeof(buffer) - 1;
1355 	if (copy_from_user(buffer, buf, count))
1356 		return -EFAULT;
1357 
1358 	p = get_proc_task(inode);
1359 	if (!p)
1360 		return -ESRCH;
1361 
1362 	if (same_thread_group(current, p))
1363 		set_task_comm(p, buffer);
1364 	else
1365 		count = -EINVAL;
1366 
1367 	put_task_struct(p);
1368 
1369 	return count;
1370 }
1371 
1372 static int comm_show(struct seq_file *m, void *v)
1373 {
1374 	struct inode *inode = m->private;
1375 	struct task_struct *p;
1376 
1377 	p = get_proc_task(inode);
1378 	if (!p)
1379 		return -ESRCH;
1380 
1381 	task_lock(p);
1382 	seq_printf(m, "%s\n", p->comm);
1383 	task_unlock(p);
1384 
1385 	put_task_struct(p);
1386 
1387 	return 0;
1388 }
1389 
1390 static int comm_open(struct inode *inode, struct file *filp)
1391 {
1392 	return single_open(filp, comm_show, inode);
1393 }
1394 
1395 static const struct file_operations proc_pid_set_comm_operations = {
1396 	.open		= comm_open,
1397 	.read		= seq_read,
1398 	.write		= comm_write,
1399 	.llseek		= seq_lseek,
1400 	.release	= single_release,
1401 };
1402 
1403 static int proc_exe_link(struct dentry *dentry, struct path *exe_path)
1404 {
1405 	struct task_struct *task;
1406 	struct mm_struct *mm;
1407 	struct file *exe_file;
1408 
1409 	task = get_proc_task(dentry->d_inode);
1410 	if (!task)
1411 		return -ENOENT;
1412 	mm = get_task_mm(task);
1413 	put_task_struct(task);
1414 	if (!mm)
1415 		return -ENOENT;
1416 	exe_file = get_mm_exe_file(mm);
1417 	mmput(mm);
1418 	if (exe_file) {
1419 		*exe_path = exe_file->f_path;
1420 		path_get(&exe_file->f_path);
1421 		fput(exe_file);
1422 		return 0;
1423 	} else
1424 		return -ENOENT;
1425 }
1426 
1427 static void *proc_pid_follow_link(struct dentry *dentry, struct nameidata *nd)
1428 {
1429 	struct inode *inode = dentry->d_inode;
1430 	struct path path;
1431 	int error = -EACCES;
1432 
1433 	/* Are we allowed to snoop on the tasks file descriptors? */
1434 	if (!proc_fd_access_allowed(inode))
1435 		goto out;
1436 
1437 	error = PROC_I(inode)->op.proc_get_link(dentry, &path);
1438 	if (error)
1439 		goto out;
1440 
1441 	nd_jump_link(nd, &path);
1442 	return NULL;
1443 out:
1444 	return ERR_PTR(error);
1445 }
1446 
1447 static int do_proc_readlink(struct path *path, char __user *buffer, int buflen)
1448 {
1449 	char *tmp = (char*)__get_free_page(GFP_TEMPORARY);
1450 	char *pathname;
1451 	int len;
1452 
1453 	if (!tmp)
1454 		return -ENOMEM;
1455 
1456 	pathname = d_path(path, tmp, PAGE_SIZE);
1457 	len = PTR_ERR(pathname);
1458 	if (IS_ERR(pathname))
1459 		goto out;
1460 	len = tmp + PAGE_SIZE - 1 - pathname;
1461 
1462 	if (len > buflen)
1463 		len = buflen;
1464 	if (copy_to_user(buffer, pathname, len))
1465 		len = -EFAULT;
1466  out:
1467 	free_page((unsigned long)tmp);
1468 	return len;
1469 }
1470 
1471 static int proc_pid_readlink(struct dentry * dentry, char __user * buffer, int buflen)
1472 {
1473 	int error = -EACCES;
1474 	struct inode *inode = dentry->d_inode;
1475 	struct path path;
1476 
1477 	/* Are we allowed to snoop on the tasks file descriptors? */
1478 	if (!proc_fd_access_allowed(inode))
1479 		goto out;
1480 
1481 	error = PROC_I(inode)->op.proc_get_link(dentry, &path);
1482 	if (error)
1483 		goto out;
1484 
1485 	error = do_proc_readlink(&path, buffer, buflen);
1486 	path_put(&path);
1487 out:
1488 	return error;
1489 }
1490 
1491 static const struct inode_operations proc_pid_link_inode_operations = {
1492 	.readlink	= proc_pid_readlink,
1493 	.follow_link	= proc_pid_follow_link,
1494 	.setattr	= proc_setattr,
1495 };
1496 
1497 
1498 /* building an inode */
1499 
1500 static int task_dumpable(struct task_struct *task)
1501 {
1502 	int dumpable = 0;
1503 	struct mm_struct *mm;
1504 
1505 	task_lock(task);
1506 	mm = task->mm;
1507 	if (mm)
1508 		dumpable = get_dumpable(mm);
1509 	task_unlock(task);
1510 	if(dumpable == 1)
1511 		return 1;
1512 	return 0;
1513 }
1514 
1515 struct inode *proc_pid_make_inode(struct super_block * sb, struct task_struct *task)
1516 {
1517 	struct inode * inode;
1518 	struct proc_inode *ei;
1519 	const struct cred *cred;
1520 
1521 	/* We need a new inode */
1522 
1523 	inode = new_inode(sb);
1524 	if (!inode)
1525 		goto out;
1526 
1527 	/* Common stuff */
1528 	ei = PROC_I(inode);
1529 	inode->i_ino = get_next_ino();
1530 	inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
1531 	inode->i_op = &proc_def_inode_operations;
1532 
1533 	/*
1534 	 * grab the reference to task.
1535 	 */
1536 	ei->pid = get_task_pid(task, PIDTYPE_PID);
1537 	if (!ei->pid)
1538 		goto out_unlock;
1539 
1540 	if (task_dumpable(task)) {
1541 		rcu_read_lock();
1542 		cred = __task_cred(task);
1543 		inode->i_uid = cred->euid;
1544 		inode->i_gid = cred->egid;
1545 		rcu_read_unlock();
1546 	}
1547 	security_task_to_inode(task, inode);
1548 
1549 out:
1550 	return inode;
1551 
1552 out_unlock:
1553 	iput(inode);
1554 	return NULL;
1555 }
1556 
1557 int pid_getattr(struct vfsmount *mnt, struct dentry *dentry, struct kstat *stat)
1558 {
1559 	struct inode *inode = dentry->d_inode;
1560 	struct task_struct *task;
1561 	const struct cred *cred;
1562 	struct pid_namespace *pid = dentry->d_sb->s_fs_info;
1563 
1564 	generic_fillattr(inode, stat);
1565 
1566 	rcu_read_lock();
1567 	stat->uid = GLOBAL_ROOT_UID;
1568 	stat->gid = GLOBAL_ROOT_GID;
1569 	task = pid_task(proc_pid(inode), PIDTYPE_PID);
1570 	if (task) {
1571 		if (!has_pid_permissions(pid, task, 2)) {
1572 			rcu_read_unlock();
1573 			/*
1574 			 * This doesn't prevent learning whether PID exists,
1575 			 * it only makes getattr() consistent with readdir().
1576 			 */
1577 			return -ENOENT;
1578 		}
1579 		if ((inode->i_mode == (S_IFDIR|S_IRUGO|S_IXUGO)) ||
1580 		    task_dumpable(task)) {
1581 			cred = __task_cred(task);
1582 			stat->uid = cred->euid;
1583 			stat->gid = cred->egid;
1584 		}
1585 	}
1586 	rcu_read_unlock();
1587 	return 0;
1588 }
1589 
1590 /* dentry stuff */
1591 
1592 /*
1593  *	Exceptional case: normally we are not allowed to unhash a busy
1594  * directory. In this case, however, we can do it - no aliasing problems
1595  * due to the way we treat inodes.
1596  *
1597  * Rewrite the inode's ownerships here because the owning task may have
1598  * performed a setuid(), etc.
1599  *
1600  * Before the /proc/pid/status file was created the only way to read
1601  * the effective uid of a /process was to stat /proc/pid.  Reading
1602  * /proc/pid/status is slow enough that procps and other packages
1603  * kept stating /proc/pid.  To keep the rules in /proc simple I have
1604  * made this apply to all per process world readable and executable
1605  * directories.
1606  */
1607 int pid_revalidate(struct dentry *dentry, unsigned int flags)
1608 {
1609 	struct inode *inode;
1610 	struct task_struct *task;
1611 	const struct cred *cred;
1612 
1613 	if (flags & LOOKUP_RCU)
1614 		return -ECHILD;
1615 
1616 	inode = dentry->d_inode;
1617 	task = get_proc_task(inode);
1618 
1619 	if (task) {
1620 		if ((inode->i_mode == (S_IFDIR|S_IRUGO|S_IXUGO)) ||
1621 		    task_dumpable(task)) {
1622 			rcu_read_lock();
1623 			cred = __task_cred(task);
1624 			inode->i_uid = cred->euid;
1625 			inode->i_gid = cred->egid;
1626 			rcu_read_unlock();
1627 		} else {
1628 			inode->i_uid = GLOBAL_ROOT_UID;
1629 			inode->i_gid = GLOBAL_ROOT_GID;
1630 		}
1631 		inode->i_mode &= ~(S_ISUID | S_ISGID);
1632 		security_task_to_inode(task, inode);
1633 		put_task_struct(task);
1634 		return 1;
1635 	}
1636 	d_drop(dentry);
1637 	return 0;
1638 }
1639 
1640 static int pid_delete_dentry(const struct dentry * dentry)
1641 {
1642 	/* Is the task we represent dead?
1643 	 * If so, then don't put the dentry on the lru list,
1644 	 * kill it immediately.
1645 	 */
1646 	return !proc_pid(dentry->d_inode)->tasks[PIDTYPE_PID].first;
1647 }
1648 
1649 const struct dentry_operations pid_dentry_operations =
1650 {
1651 	.d_revalidate	= pid_revalidate,
1652 	.d_delete	= pid_delete_dentry,
1653 };
1654 
1655 /* Lookups */
1656 
1657 /*
1658  * Fill a directory entry.
1659  *
1660  * If possible create the dcache entry and derive our inode number and
1661  * file type from dcache entry.
1662  *
1663  * Since all of the proc inode numbers are dynamically generated, the inode
1664  * numbers do not exist until the inode is cache.  This means creating the
1665  * the dcache entry in readdir is necessary to keep the inode numbers
1666  * reported by readdir in sync with the inode numbers reported
1667  * by stat.
1668  */
1669 int proc_fill_cache(struct file *filp, void *dirent, filldir_t filldir,
1670 	const char *name, int len,
1671 	instantiate_t instantiate, struct task_struct *task, const void *ptr)
1672 {
1673 	struct dentry *child, *dir = filp->f_path.dentry;
1674 	struct inode *inode;
1675 	struct qstr qname;
1676 	ino_t ino = 0;
1677 	unsigned type = DT_UNKNOWN;
1678 
1679 	qname.name = name;
1680 	qname.len  = len;
1681 	qname.hash = full_name_hash(name, len);
1682 
1683 	child = d_lookup(dir, &qname);
1684 	if (!child) {
1685 		struct dentry *new;
1686 		new = d_alloc(dir, &qname);
1687 		if (new) {
1688 			child = instantiate(dir->d_inode, new, task, ptr);
1689 			if (child)
1690 				dput(new);
1691 			else
1692 				child = new;
1693 		}
1694 	}
1695 	if (!child || IS_ERR(child) || !child->d_inode)
1696 		goto end_instantiate;
1697 	inode = child->d_inode;
1698 	if (inode) {
1699 		ino = inode->i_ino;
1700 		type = inode->i_mode >> 12;
1701 	}
1702 	dput(child);
1703 end_instantiate:
1704 	if (!ino)
1705 		ino = find_inode_number(dir, &qname);
1706 	if (!ino)
1707 		ino = 1;
1708 	return filldir(dirent, name, len, filp->f_pos, ino, type);
1709 }
1710 
1711 static unsigned name_to_int(struct dentry *dentry)
1712 {
1713 	const char *name = dentry->d_name.name;
1714 	int len = dentry->d_name.len;
1715 	unsigned n = 0;
1716 
1717 	if (len > 1 && *name == '0')
1718 		goto out;
1719 	while (len-- > 0) {
1720 		unsigned c = *name++ - '0';
1721 		if (c > 9)
1722 			goto out;
1723 		if (n >= (~0U-9)/10)
1724 			goto out;
1725 		n *= 10;
1726 		n += c;
1727 	}
1728 	return n;
1729 out:
1730 	return ~0U;
1731 }
1732 
1733 #define PROC_FDINFO_MAX 64
1734 
1735 static int proc_fd_info(struct inode *inode, struct path *path, char *info)
1736 {
1737 	struct task_struct *task = get_proc_task(inode);
1738 	struct files_struct *files = NULL;
1739 	struct file *file;
1740 	int fd = proc_fd(inode);
1741 
1742 	if (task) {
1743 		files = get_files_struct(task);
1744 		put_task_struct(task);
1745 	}
1746 	if (files) {
1747 		/*
1748 		 * We are not taking a ref to the file structure, so we must
1749 		 * hold ->file_lock.
1750 		 */
1751 		spin_lock(&files->file_lock);
1752 		file = fcheck_files(files, fd);
1753 		if (file) {
1754 			unsigned int f_flags;
1755 			struct fdtable *fdt;
1756 
1757 			fdt = files_fdtable(files);
1758 			f_flags = file->f_flags & ~O_CLOEXEC;
1759 			if (close_on_exec(fd, fdt))
1760 				f_flags |= O_CLOEXEC;
1761 
1762 			if (path) {
1763 				*path = file->f_path;
1764 				path_get(&file->f_path);
1765 			}
1766 			if (info)
1767 				snprintf(info, PROC_FDINFO_MAX,
1768 					 "pos:\t%lli\n"
1769 					 "flags:\t0%o\n",
1770 					 (long long) file->f_pos,
1771 					 f_flags);
1772 			spin_unlock(&files->file_lock);
1773 			put_files_struct(files);
1774 			return 0;
1775 		}
1776 		spin_unlock(&files->file_lock);
1777 		put_files_struct(files);
1778 	}
1779 	return -ENOENT;
1780 }
1781 
1782 static int proc_fd_link(struct dentry *dentry, struct path *path)
1783 {
1784 	return proc_fd_info(dentry->d_inode, path, NULL);
1785 }
1786 
1787 static int tid_fd_revalidate(struct dentry *dentry, unsigned int flags)
1788 {
1789 	struct inode *inode;
1790 	struct task_struct *task;
1791 	int fd;
1792 	struct files_struct *files;
1793 	const struct cred *cred;
1794 
1795 	if (flags & LOOKUP_RCU)
1796 		return -ECHILD;
1797 
1798 	inode = dentry->d_inode;
1799 	task = get_proc_task(inode);
1800 	fd = proc_fd(inode);
1801 
1802 	if (task) {
1803 		files = get_files_struct(task);
1804 		if (files) {
1805 			struct file *file;
1806 			rcu_read_lock();
1807 			file = fcheck_files(files, fd);
1808 			if (file) {
1809 				unsigned f_mode = file->f_mode;
1810 
1811 				rcu_read_unlock();
1812 				put_files_struct(files);
1813 
1814 				if (task_dumpable(task)) {
1815 					rcu_read_lock();
1816 					cred = __task_cred(task);
1817 					inode->i_uid = cred->euid;
1818 					inode->i_gid = cred->egid;
1819 					rcu_read_unlock();
1820 				} else {
1821 					inode->i_uid = GLOBAL_ROOT_UID;
1822 					inode->i_gid = GLOBAL_ROOT_GID;
1823 				}
1824 
1825 				if (S_ISLNK(inode->i_mode)) {
1826 					unsigned i_mode = S_IFLNK;
1827 					if (f_mode & FMODE_READ)
1828 						i_mode |= S_IRUSR | S_IXUSR;
1829 					if (f_mode & FMODE_WRITE)
1830 						i_mode |= S_IWUSR | S_IXUSR;
1831 					inode->i_mode = i_mode;
1832 				}
1833 
1834 				security_task_to_inode(task, inode);
1835 				put_task_struct(task);
1836 				return 1;
1837 			}
1838 			rcu_read_unlock();
1839 			put_files_struct(files);
1840 		}
1841 		put_task_struct(task);
1842 	}
1843 	d_drop(dentry);
1844 	return 0;
1845 }
1846 
1847 static const struct dentry_operations tid_fd_dentry_operations =
1848 {
1849 	.d_revalidate	= tid_fd_revalidate,
1850 	.d_delete	= pid_delete_dentry,
1851 };
1852 
1853 static struct dentry *proc_fd_instantiate(struct inode *dir,
1854 	struct dentry *dentry, struct task_struct *task, const void *ptr)
1855 {
1856 	unsigned fd = (unsigned long)ptr;
1857  	struct inode *inode;
1858  	struct proc_inode *ei;
1859 	struct dentry *error = ERR_PTR(-ENOENT);
1860 
1861 	inode = proc_pid_make_inode(dir->i_sb, task);
1862 	if (!inode)
1863 		goto out;
1864 	ei = PROC_I(inode);
1865 	ei->fd = fd;
1866 
1867 	inode->i_mode = S_IFLNK;
1868 	inode->i_op = &proc_pid_link_inode_operations;
1869 	inode->i_size = 64;
1870 	ei->op.proc_get_link = proc_fd_link;
1871 	d_set_d_op(dentry, &tid_fd_dentry_operations);
1872 	d_add(dentry, inode);
1873 	/* Close the race of the process dying before we return the dentry */
1874 	if (tid_fd_revalidate(dentry, 0))
1875 		error = NULL;
1876 
1877  out:
1878 	return error;
1879 }
1880 
1881 static struct dentry *proc_lookupfd_common(struct inode *dir,
1882 					   struct dentry *dentry,
1883 					   instantiate_t instantiate)
1884 {
1885 	struct task_struct *task = get_proc_task(dir);
1886 	unsigned fd = name_to_int(dentry);
1887 	struct dentry *result = ERR_PTR(-ENOENT);
1888 
1889 	if (!task)
1890 		goto out_no_task;
1891 	if (fd == ~0U)
1892 		goto out;
1893 
1894 	result = instantiate(dir, dentry, task, (void *)(unsigned long)fd);
1895 out:
1896 	put_task_struct(task);
1897 out_no_task:
1898 	return result;
1899 }
1900 
1901 static int proc_readfd_common(struct file * filp, void * dirent,
1902 			      filldir_t filldir, instantiate_t instantiate)
1903 {
1904 	struct dentry *dentry = filp->f_path.dentry;
1905 	struct inode *inode = dentry->d_inode;
1906 	struct task_struct *p = get_proc_task(inode);
1907 	unsigned int fd, ino;
1908 	int retval;
1909 	struct files_struct * files;
1910 
1911 	retval = -ENOENT;
1912 	if (!p)
1913 		goto out_no_task;
1914 	retval = 0;
1915 
1916 	fd = filp->f_pos;
1917 	switch (fd) {
1918 		case 0:
1919 			if (filldir(dirent, ".", 1, 0, inode->i_ino, DT_DIR) < 0)
1920 				goto out;
1921 			filp->f_pos++;
1922 		case 1:
1923 			ino = parent_ino(dentry);
1924 			if (filldir(dirent, "..", 2, 1, ino, DT_DIR) < 0)
1925 				goto out;
1926 			filp->f_pos++;
1927 		default:
1928 			files = get_files_struct(p);
1929 			if (!files)
1930 				goto out;
1931 			rcu_read_lock();
1932 			for (fd = filp->f_pos-2;
1933 			     fd < files_fdtable(files)->max_fds;
1934 			     fd++, filp->f_pos++) {
1935 				char name[PROC_NUMBUF];
1936 				int len;
1937 				int rv;
1938 
1939 				if (!fcheck_files(files, fd))
1940 					continue;
1941 				rcu_read_unlock();
1942 
1943 				len = snprintf(name, sizeof(name), "%d", fd);
1944 				rv = proc_fill_cache(filp, dirent, filldir,
1945 						     name, len, instantiate, p,
1946 						     (void *)(unsigned long)fd);
1947 				if (rv < 0)
1948 					goto out_fd_loop;
1949 				rcu_read_lock();
1950 			}
1951 			rcu_read_unlock();
1952 out_fd_loop:
1953 			put_files_struct(files);
1954 	}
1955 out:
1956 	put_task_struct(p);
1957 out_no_task:
1958 	return retval;
1959 }
1960 
1961 static struct dentry *proc_lookupfd(struct inode *dir, struct dentry *dentry,
1962 				    unsigned int flags)
1963 {
1964 	return proc_lookupfd_common(dir, dentry, proc_fd_instantiate);
1965 }
1966 
1967 static int proc_readfd(struct file *filp, void *dirent, filldir_t filldir)
1968 {
1969 	return proc_readfd_common(filp, dirent, filldir, proc_fd_instantiate);
1970 }
1971 
1972 static ssize_t proc_fdinfo_read(struct file *file, char __user *buf,
1973 				      size_t len, loff_t *ppos)
1974 {
1975 	char tmp[PROC_FDINFO_MAX];
1976 	int err = proc_fd_info(file->f_path.dentry->d_inode, NULL, tmp);
1977 	if (!err)
1978 		err = simple_read_from_buffer(buf, len, ppos, tmp, strlen(tmp));
1979 	return err;
1980 }
1981 
1982 static const struct file_operations proc_fdinfo_file_operations = {
1983 	.open           = nonseekable_open,
1984 	.read		= proc_fdinfo_read,
1985 	.llseek		= no_llseek,
1986 };
1987 
1988 static const struct file_operations proc_fd_operations = {
1989 	.read		= generic_read_dir,
1990 	.readdir	= proc_readfd,
1991 	.llseek		= default_llseek,
1992 };
1993 
1994 #ifdef CONFIG_CHECKPOINT_RESTORE
1995 
1996 /*
1997  * dname_to_vma_addr - maps a dentry name into two unsigned longs
1998  * which represent vma start and end addresses.
1999  */
2000 static int dname_to_vma_addr(struct dentry *dentry,
2001 			     unsigned long *start, unsigned long *end)
2002 {
2003 	if (sscanf(dentry->d_name.name, "%lx-%lx", start, end) != 2)
2004 		return -EINVAL;
2005 
2006 	return 0;
2007 }
2008 
2009 static int map_files_d_revalidate(struct dentry *dentry, unsigned int flags)
2010 {
2011 	unsigned long vm_start, vm_end;
2012 	bool exact_vma_exists = false;
2013 	struct mm_struct *mm = NULL;
2014 	struct task_struct *task;
2015 	const struct cred *cred;
2016 	struct inode *inode;
2017 	int status = 0;
2018 
2019 	if (flags & LOOKUP_RCU)
2020 		return -ECHILD;
2021 
2022 	if (!capable(CAP_SYS_ADMIN)) {
2023 		status = -EACCES;
2024 		goto out_notask;
2025 	}
2026 
2027 	inode = dentry->d_inode;
2028 	task = get_proc_task(inode);
2029 	if (!task)
2030 		goto out_notask;
2031 
2032 	mm = mm_access(task, PTRACE_MODE_READ);
2033 	if (IS_ERR_OR_NULL(mm))
2034 		goto out;
2035 
2036 	if (!dname_to_vma_addr(dentry, &vm_start, &vm_end)) {
2037 		down_read(&mm->mmap_sem);
2038 		exact_vma_exists = !!find_exact_vma(mm, vm_start, vm_end);
2039 		up_read(&mm->mmap_sem);
2040 	}
2041 
2042 	mmput(mm);
2043 
2044 	if (exact_vma_exists) {
2045 		if (task_dumpable(task)) {
2046 			rcu_read_lock();
2047 			cred = __task_cred(task);
2048 			inode->i_uid = cred->euid;
2049 			inode->i_gid = cred->egid;
2050 			rcu_read_unlock();
2051 		} else {
2052 			inode->i_uid = GLOBAL_ROOT_UID;
2053 			inode->i_gid = GLOBAL_ROOT_GID;
2054 		}
2055 		security_task_to_inode(task, inode);
2056 		status = 1;
2057 	}
2058 
2059 out:
2060 	put_task_struct(task);
2061 
2062 out_notask:
2063 	if (status <= 0)
2064 		d_drop(dentry);
2065 
2066 	return status;
2067 }
2068 
2069 static const struct dentry_operations tid_map_files_dentry_operations = {
2070 	.d_revalidate	= map_files_d_revalidate,
2071 	.d_delete	= pid_delete_dentry,
2072 };
2073 
2074 static int proc_map_files_get_link(struct dentry *dentry, struct path *path)
2075 {
2076 	unsigned long vm_start, vm_end;
2077 	struct vm_area_struct *vma;
2078 	struct task_struct *task;
2079 	struct mm_struct *mm;
2080 	int rc;
2081 
2082 	rc = -ENOENT;
2083 	task = get_proc_task(dentry->d_inode);
2084 	if (!task)
2085 		goto out;
2086 
2087 	mm = get_task_mm(task);
2088 	put_task_struct(task);
2089 	if (!mm)
2090 		goto out;
2091 
2092 	rc = dname_to_vma_addr(dentry, &vm_start, &vm_end);
2093 	if (rc)
2094 		goto out_mmput;
2095 
2096 	down_read(&mm->mmap_sem);
2097 	vma = find_exact_vma(mm, vm_start, vm_end);
2098 	if (vma && vma->vm_file) {
2099 		*path = vma->vm_file->f_path;
2100 		path_get(path);
2101 		rc = 0;
2102 	}
2103 	up_read(&mm->mmap_sem);
2104 
2105 out_mmput:
2106 	mmput(mm);
2107 out:
2108 	return rc;
2109 }
2110 
2111 struct map_files_info {
2112 	struct file	*file;
2113 	unsigned long	len;
2114 	unsigned char	name[4*sizeof(long)+2]; /* max: %lx-%lx\0 */
2115 };
2116 
2117 static struct dentry *
2118 proc_map_files_instantiate(struct inode *dir, struct dentry *dentry,
2119 			   struct task_struct *task, const void *ptr)
2120 {
2121 	const struct file *file = ptr;
2122 	struct proc_inode *ei;
2123 	struct inode *inode;
2124 
2125 	if (!file)
2126 		return ERR_PTR(-ENOENT);
2127 
2128 	inode = proc_pid_make_inode(dir->i_sb, task);
2129 	if (!inode)
2130 		return ERR_PTR(-ENOENT);
2131 
2132 	ei = PROC_I(inode);
2133 	ei->op.proc_get_link = proc_map_files_get_link;
2134 
2135 	inode->i_op = &proc_pid_link_inode_operations;
2136 	inode->i_size = 64;
2137 	inode->i_mode = S_IFLNK;
2138 
2139 	if (file->f_mode & FMODE_READ)
2140 		inode->i_mode |= S_IRUSR;
2141 	if (file->f_mode & FMODE_WRITE)
2142 		inode->i_mode |= S_IWUSR;
2143 
2144 	d_set_d_op(dentry, &tid_map_files_dentry_operations);
2145 	d_add(dentry, inode);
2146 
2147 	return NULL;
2148 }
2149 
2150 static struct dentry *proc_map_files_lookup(struct inode *dir,
2151 		struct dentry *dentry, unsigned int flags)
2152 {
2153 	unsigned long vm_start, vm_end;
2154 	struct vm_area_struct *vma;
2155 	struct task_struct *task;
2156 	struct dentry *result;
2157 	struct mm_struct *mm;
2158 
2159 	result = ERR_PTR(-EACCES);
2160 	if (!capable(CAP_SYS_ADMIN))
2161 		goto out;
2162 
2163 	result = ERR_PTR(-ENOENT);
2164 	task = get_proc_task(dir);
2165 	if (!task)
2166 		goto out;
2167 
2168 	result = ERR_PTR(-EACCES);
2169 	if (!ptrace_may_access(task, PTRACE_MODE_READ))
2170 		goto out_put_task;
2171 
2172 	result = ERR_PTR(-ENOENT);
2173 	if (dname_to_vma_addr(dentry, &vm_start, &vm_end))
2174 		goto out_put_task;
2175 
2176 	mm = get_task_mm(task);
2177 	if (!mm)
2178 		goto out_put_task;
2179 
2180 	down_read(&mm->mmap_sem);
2181 	vma = find_exact_vma(mm, vm_start, vm_end);
2182 	if (!vma)
2183 		goto out_no_vma;
2184 
2185 	result = proc_map_files_instantiate(dir, dentry, task, vma->vm_file);
2186 
2187 out_no_vma:
2188 	up_read(&mm->mmap_sem);
2189 	mmput(mm);
2190 out_put_task:
2191 	put_task_struct(task);
2192 out:
2193 	return result;
2194 }
2195 
2196 static const struct inode_operations proc_map_files_inode_operations = {
2197 	.lookup		= proc_map_files_lookup,
2198 	.permission	= proc_fd_permission,
2199 	.setattr	= proc_setattr,
2200 };
2201 
2202 static int
2203 proc_map_files_readdir(struct file *filp, void *dirent, filldir_t filldir)
2204 {
2205 	struct dentry *dentry = filp->f_path.dentry;
2206 	struct inode *inode = dentry->d_inode;
2207 	struct vm_area_struct *vma;
2208 	struct task_struct *task;
2209 	struct mm_struct *mm;
2210 	ino_t ino;
2211 	int ret;
2212 
2213 	ret = -EACCES;
2214 	if (!capable(CAP_SYS_ADMIN))
2215 		goto out;
2216 
2217 	ret = -ENOENT;
2218 	task = get_proc_task(inode);
2219 	if (!task)
2220 		goto out;
2221 
2222 	ret = -EACCES;
2223 	if (!ptrace_may_access(task, PTRACE_MODE_READ))
2224 		goto out_put_task;
2225 
2226 	ret = 0;
2227 	switch (filp->f_pos) {
2228 	case 0:
2229 		ino = inode->i_ino;
2230 		if (filldir(dirent, ".", 1, 0, ino, DT_DIR) < 0)
2231 			goto out_put_task;
2232 		filp->f_pos++;
2233 	case 1:
2234 		ino = parent_ino(dentry);
2235 		if (filldir(dirent, "..", 2, 1, ino, DT_DIR) < 0)
2236 			goto out_put_task;
2237 		filp->f_pos++;
2238 	default:
2239 	{
2240 		unsigned long nr_files, pos, i;
2241 		struct flex_array *fa = NULL;
2242 		struct map_files_info info;
2243 		struct map_files_info *p;
2244 
2245 		mm = get_task_mm(task);
2246 		if (!mm)
2247 			goto out_put_task;
2248 		down_read(&mm->mmap_sem);
2249 
2250 		nr_files = 0;
2251 
2252 		/*
2253 		 * We need two passes here:
2254 		 *
2255 		 *  1) Collect vmas of mapped files with mmap_sem taken
2256 		 *  2) Release mmap_sem and instantiate entries
2257 		 *
2258 		 * otherwise we get lockdep complained, since filldir()
2259 		 * routine might require mmap_sem taken in might_fault().
2260 		 */
2261 
2262 		for (vma = mm->mmap, pos = 2; vma; vma = vma->vm_next) {
2263 			if (vma->vm_file && ++pos > filp->f_pos)
2264 				nr_files++;
2265 		}
2266 
2267 		if (nr_files) {
2268 			fa = flex_array_alloc(sizeof(info), nr_files,
2269 						GFP_KERNEL);
2270 			if (!fa || flex_array_prealloc(fa, 0, nr_files,
2271 							GFP_KERNEL)) {
2272 				ret = -ENOMEM;
2273 				if (fa)
2274 					flex_array_free(fa);
2275 				up_read(&mm->mmap_sem);
2276 				mmput(mm);
2277 				goto out_put_task;
2278 			}
2279 			for (i = 0, vma = mm->mmap, pos = 2; vma;
2280 					vma = vma->vm_next) {
2281 				if (!vma->vm_file)
2282 					continue;
2283 				if (++pos <= filp->f_pos)
2284 					continue;
2285 
2286 				get_file(vma->vm_file);
2287 				info.file = vma->vm_file;
2288 				info.len = snprintf(info.name,
2289 						sizeof(info.name), "%lx-%lx",
2290 						vma->vm_start, vma->vm_end);
2291 				if (flex_array_put(fa, i++, &info, GFP_KERNEL))
2292 					BUG();
2293 			}
2294 		}
2295 		up_read(&mm->mmap_sem);
2296 
2297 		for (i = 0; i < nr_files; i++) {
2298 			p = flex_array_get(fa, i);
2299 			ret = proc_fill_cache(filp, dirent, filldir,
2300 					      p->name, p->len,
2301 					      proc_map_files_instantiate,
2302 					      task, p->file);
2303 			if (ret)
2304 				break;
2305 			filp->f_pos++;
2306 			fput(p->file);
2307 		}
2308 		for (; i < nr_files; i++) {
2309 			/*
2310 			 * In case of error don't forget
2311 			 * to put rest of file refs.
2312 			 */
2313 			p = flex_array_get(fa, i);
2314 			fput(p->file);
2315 		}
2316 		if (fa)
2317 			flex_array_free(fa);
2318 		mmput(mm);
2319 	}
2320 	}
2321 
2322 out_put_task:
2323 	put_task_struct(task);
2324 out:
2325 	return ret;
2326 }
2327 
2328 static const struct file_operations proc_map_files_operations = {
2329 	.read		= generic_read_dir,
2330 	.readdir	= proc_map_files_readdir,
2331 	.llseek		= default_llseek,
2332 };
2333 
2334 #endif /* CONFIG_CHECKPOINT_RESTORE */
2335 
2336 /*
2337  * /proc/pid/fd needs a special permission handler so that a process can still
2338  * access /proc/self/fd after it has executed a setuid().
2339  */
2340 static int proc_fd_permission(struct inode *inode, int mask)
2341 {
2342 	int rv = generic_permission(inode, mask);
2343 	if (rv == 0)
2344 		return 0;
2345 	if (task_pid(current) == proc_pid(inode))
2346 		rv = 0;
2347 	return rv;
2348 }
2349 
2350 /*
2351  * proc directories can do almost nothing..
2352  */
2353 static const struct inode_operations proc_fd_inode_operations = {
2354 	.lookup		= proc_lookupfd,
2355 	.permission	= proc_fd_permission,
2356 	.setattr	= proc_setattr,
2357 };
2358 
2359 static struct dentry *proc_fdinfo_instantiate(struct inode *dir,
2360 	struct dentry *dentry, struct task_struct *task, const void *ptr)
2361 {
2362 	unsigned fd = (unsigned long)ptr;
2363  	struct inode *inode;
2364  	struct proc_inode *ei;
2365 	struct dentry *error = ERR_PTR(-ENOENT);
2366 
2367 	inode = proc_pid_make_inode(dir->i_sb, task);
2368 	if (!inode)
2369 		goto out;
2370 	ei = PROC_I(inode);
2371 	ei->fd = fd;
2372 	inode->i_mode = S_IFREG | S_IRUSR;
2373 	inode->i_fop = &proc_fdinfo_file_operations;
2374 	d_set_d_op(dentry, &tid_fd_dentry_operations);
2375 	d_add(dentry, inode);
2376 	/* Close the race of the process dying before we return the dentry */
2377 	if (tid_fd_revalidate(dentry, 0))
2378 		error = NULL;
2379 
2380  out:
2381 	return error;
2382 }
2383 
2384 static struct dentry *proc_lookupfdinfo(struct inode *dir,
2385 					struct dentry *dentry,
2386 					unsigned int flags)
2387 {
2388 	return proc_lookupfd_common(dir, dentry, proc_fdinfo_instantiate);
2389 }
2390 
2391 static int proc_readfdinfo(struct file *filp, void *dirent, filldir_t filldir)
2392 {
2393 	return proc_readfd_common(filp, dirent, filldir,
2394 				  proc_fdinfo_instantiate);
2395 }
2396 
2397 static const struct file_operations proc_fdinfo_operations = {
2398 	.read		= generic_read_dir,
2399 	.readdir	= proc_readfdinfo,
2400 	.llseek		= default_llseek,
2401 };
2402 
2403 /*
2404  * proc directories can do almost nothing..
2405  */
2406 static const struct inode_operations proc_fdinfo_inode_operations = {
2407 	.lookup		= proc_lookupfdinfo,
2408 	.setattr	= proc_setattr,
2409 };
2410 
2411 
2412 static struct dentry *proc_pident_instantiate(struct inode *dir,
2413 	struct dentry *dentry, struct task_struct *task, const void *ptr)
2414 {
2415 	const struct pid_entry *p = ptr;
2416 	struct inode *inode;
2417 	struct proc_inode *ei;
2418 	struct dentry *error = ERR_PTR(-ENOENT);
2419 
2420 	inode = proc_pid_make_inode(dir->i_sb, task);
2421 	if (!inode)
2422 		goto out;
2423 
2424 	ei = PROC_I(inode);
2425 	inode->i_mode = p->mode;
2426 	if (S_ISDIR(inode->i_mode))
2427 		set_nlink(inode, 2);	/* Use getattr to fix if necessary */
2428 	if (p->iop)
2429 		inode->i_op = p->iop;
2430 	if (p->fop)
2431 		inode->i_fop = p->fop;
2432 	ei->op = p->op;
2433 	d_set_d_op(dentry, &pid_dentry_operations);
2434 	d_add(dentry, inode);
2435 	/* Close the race of the process dying before we return the dentry */
2436 	if (pid_revalidate(dentry, 0))
2437 		error = NULL;
2438 out:
2439 	return error;
2440 }
2441 
2442 static struct dentry *proc_pident_lookup(struct inode *dir,
2443 					 struct dentry *dentry,
2444 					 const struct pid_entry *ents,
2445 					 unsigned int nents)
2446 {
2447 	struct dentry *error;
2448 	struct task_struct *task = get_proc_task(dir);
2449 	const struct pid_entry *p, *last;
2450 
2451 	error = ERR_PTR(-ENOENT);
2452 
2453 	if (!task)
2454 		goto out_no_task;
2455 
2456 	/*
2457 	 * Yes, it does not scale. And it should not. Don't add
2458 	 * new entries into /proc/<tgid>/ without very good reasons.
2459 	 */
2460 	last = &ents[nents - 1];
2461 	for (p = ents; p <= last; p++) {
2462 		if (p->len != dentry->d_name.len)
2463 			continue;
2464 		if (!memcmp(dentry->d_name.name, p->name, p->len))
2465 			break;
2466 	}
2467 	if (p > last)
2468 		goto out;
2469 
2470 	error = proc_pident_instantiate(dir, dentry, task, p);
2471 out:
2472 	put_task_struct(task);
2473 out_no_task:
2474 	return error;
2475 }
2476 
2477 static int proc_pident_fill_cache(struct file *filp, void *dirent,
2478 	filldir_t filldir, struct task_struct *task, const struct pid_entry *p)
2479 {
2480 	return proc_fill_cache(filp, dirent, filldir, p->name, p->len,
2481 				proc_pident_instantiate, task, p);
2482 }
2483 
2484 static int proc_pident_readdir(struct file *filp,
2485 		void *dirent, filldir_t filldir,
2486 		const struct pid_entry *ents, unsigned int nents)
2487 {
2488 	int i;
2489 	struct dentry *dentry = filp->f_path.dentry;
2490 	struct inode *inode = dentry->d_inode;
2491 	struct task_struct *task = get_proc_task(inode);
2492 	const struct pid_entry *p, *last;
2493 	ino_t ino;
2494 	int ret;
2495 
2496 	ret = -ENOENT;
2497 	if (!task)
2498 		goto out_no_task;
2499 
2500 	ret = 0;
2501 	i = filp->f_pos;
2502 	switch (i) {
2503 	case 0:
2504 		ino = inode->i_ino;
2505 		if (filldir(dirent, ".", 1, i, ino, DT_DIR) < 0)
2506 			goto out;
2507 		i++;
2508 		filp->f_pos++;
2509 		/* fall through */
2510 	case 1:
2511 		ino = parent_ino(dentry);
2512 		if (filldir(dirent, "..", 2, i, ino, DT_DIR) < 0)
2513 			goto out;
2514 		i++;
2515 		filp->f_pos++;
2516 		/* fall through */
2517 	default:
2518 		i -= 2;
2519 		if (i >= nents) {
2520 			ret = 1;
2521 			goto out;
2522 		}
2523 		p = ents + i;
2524 		last = &ents[nents - 1];
2525 		while (p <= last) {
2526 			if (proc_pident_fill_cache(filp, dirent, filldir, task, p) < 0)
2527 				goto out;
2528 			filp->f_pos++;
2529 			p++;
2530 		}
2531 	}
2532 
2533 	ret = 1;
2534 out:
2535 	put_task_struct(task);
2536 out_no_task:
2537 	return ret;
2538 }
2539 
2540 #ifdef CONFIG_SECURITY
2541 static ssize_t proc_pid_attr_read(struct file * file, char __user * buf,
2542 				  size_t count, loff_t *ppos)
2543 {
2544 	struct inode * inode = file->f_path.dentry->d_inode;
2545 	char *p = NULL;
2546 	ssize_t length;
2547 	struct task_struct *task = get_proc_task(inode);
2548 
2549 	if (!task)
2550 		return -ESRCH;
2551 
2552 	length = security_getprocattr(task,
2553 				      (char*)file->f_path.dentry->d_name.name,
2554 				      &p);
2555 	put_task_struct(task);
2556 	if (length > 0)
2557 		length = simple_read_from_buffer(buf, count, ppos, p, length);
2558 	kfree(p);
2559 	return length;
2560 }
2561 
2562 static ssize_t proc_pid_attr_write(struct file * file, const char __user * buf,
2563 				   size_t count, loff_t *ppos)
2564 {
2565 	struct inode * inode = file->f_path.dentry->d_inode;
2566 	char *page;
2567 	ssize_t length;
2568 	struct task_struct *task = get_proc_task(inode);
2569 
2570 	length = -ESRCH;
2571 	if (!task)
2572 		goto out_no_task;
2573 	if (count > PAGE_SIZE)
2574 		count = PAGE_SIZE;
2575 
2576 	/* No partial writes. */
2577 	length = -EINVAL;
2578 	if (*ppos != 0)
2579 		goto out;
2580 
2581 	length = -ENOMEM;
2582 	page = (char*)__get_free_page(GFP_TEMPORARY);
2583 	if (!page)
2584 		goto out;
2585 
2586 	length = -EFAULT;
2587 	if (copy_from_user(page, buf, count))
2588 		goto out_free;
2589 
2590 	/* Guard against adverse ptrace interaction */
2591 	length = mutex_lock_interruptible(&task->signal->cred_guard_mutex);
2592 	if (length < 0)
2593 		goto out_free;
2594 
2595 	length = security_setprocattr(task,
2596 				      (char*)file->f_path.dentry->d_name.name,
2597 				      (void*)page, count);
2598 	mutex_unlock(&task->signal->cred_guard_mutex);
2599 out_free:
2600 	free_page((unsigned long) page);
2601 out:
2602 	put_task_struct(task);
2603 out_no_task:
2604 	return length;
2605 }
2606 
2607 static const struct file_operations proc_pid_attr_operations = {
2608 	.read		= proc_pid_attr_read,
2609 	.write		= proc_pid_attr_write,
2610 	.llseek		= generic_file_llseek,
2611 };
2612 
2613 static const struct pid_entry attr_dir_stuff[] = {
2614 	REG("current",    S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2615 	REG("prev",       S_IRUGO,	   proc_pid_attr_operations),
2616 	REG("exec",       S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2617 	REG("fscreate",   S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2618 	REG("keycreate",  S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2619 	REG("sockcreate", S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2620 };
2621 
2622 static int proc_attr_dir_readdir(struct file * filp,
2623 			     void * dirent, filldir_t filldir)
2624 {
2625 	return proc_pident_readdir(filp,dirent,filldir,
2626 				   attr_dir_stuff,ARRAY_SIZE(attr_dir_stuff));
2627 }
2628 
2629 static const struct file_operations proc_attr_dir_operations = {
2630 	.read		= generic_read_dir,
2631 	.readdir	= proc_attr_dir_readdir,
2632 	.llseek		= default_llseek,
2633 };
2634 
2635 static struct dentry *proc_attr_dir_lookup(struct inode *dir,
2636 				struct dentry *dentry, unsigned int flags)
2637 {
2638 	return proc_pident_lookup(dir, dentry,
2639 				  attr_dir_stuff, ARRAY_SIZE(attr_dir_stuff));
2640 }
2641 
2642 static const struct inode_operations proc_attr_dir_inode_operations = {
2643 	.lookup		= proc_attr_dir_lookup,
2644 	.getattr	= pid_getattr,
2645 	.setattr	= proc_setattr,
2646 };
2647 
2648 #endif
2649 
2650 #ifdef CONFIG_ELF_CORE
2651 static ssize_t proc_coredump_filter_read(struct file *file, char __user *buf,
2652 					 size_t count, loff_t *ppos)
2653 {
2654 	struct task_struct *task = get_proc_task(file->f_dentry->d_inode);
2655 	struct mm_struct *mm;
2656 	char buffer[PROC_NUMBUF];
2657 	size_t len;
2658 	int ret;
2659 
2660 	if (!task)
2661 		return -ESRCH;
2662 
2663 	ret = 0;
2664 	mm = get_task_mm(task);
2665 	if (mm) {
2666 		len = snprintf(buffer, sizeof(buffer), "%08lx\n",
2667 			       ((mm->flags & MMF_DUMP_FILTER_MASK) >>
2668 				MMF_DUMP_FILTER_SHIFT));
2669 		mmput(mm);
2670 		ret = simple_read_from_buffer(buf, count, ppos, buffer, len);
2671 	}
2672 
2673 	put_task_struct(task);
2674 
2675 	return ret;
2676 }
2677 
2678 static ssize_t proc_coredump_filter_write(struct file *file,
2679 					  const char __user *buf,
2680 					  size_t count,
2681 					  loff_t *ppos)
2682 {
2683 	struct task_struct *task;
2684 	struct mm_struct *mm;
2685 	char buffer[PROC_NUMBUF], *end;
2686 	unsigned int val;
2687 	int ret;
2688 	int i;
2689 	unsigned long mask;
2690 
2691 	ret = -EFAULT;
2692 	memset(buffer, 0, sizeof(buffer));
2693 	if (count > sizeof(buffer) - 1)
2694 		count = sizeof(buffer) - 1;
2695 	if (copy_from_user(buffer, buf, count))
2696 		goto out_no_task;
2697 
2698 	ret = -EINVAL;
2699 	val = (unsigned int)simple_strtoul(buffer, &end, 0);
2700 	if (*end == '\n')
2701 		end++;
2702 	if (end - buffer == 0)
2703 		goto out_no_task;
2704 
2705 	ret = -ESRCH;
2706 	task = get_proc_task(file->f_dentry->d_inode);
2707 	if (!task)
2708 		goto out_no_task;
2709 
2710 	ret = end - buffer;
2711 	mm = get_task_mm(task);
2712 	if (!mm)
2713 		goto out_no_mm;
2714 
2715 	for (i = 0, mask = 1; i < MMF_DUMP_FILTER_BITS; i++, mask <<= 1) {
2716 		if (val & mask)
2717 			set_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags);
2718 		else
2719 			clear_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags);
2720 	}
2721 
2722 	mmput(mm);
2723  out_no_mm:
2724 	put_task_struct(task);
2725  out_no_task:
2726 	return ret;
2727 }
2728 
2729 static const struct file_operations proc_coredump_filter_operations = {
2730 	.read		= proc_coredump_filter_read,
2731 	.write		= proc_coredump_filter_write,
2732 	.llseek		= generic_file_llseek,
2733 };
2734 #endif
2735 
2736 /*
2737  * /proc/self:
2738  */
2739 static int proc_self_readlink(struct dentry *dentry, char __user *buffer,
2740 			      int buflen)
2741 {
2742 	struct pid_namespace *ns = dentry->d_sb->s_fs_info;
2743 	pid_t tgid = task_tgid_nr_ns(current, ns);
2744 	char tmp[PROC_NUMBUF];
2745 	if (!tgid)
2746 		return -ENOENT;
2747 	sprintf(tmp, "%d", tgid);
2748 	return vfs_readlink(dentry,buffer,buflen,tmp);
2749 }
2750 
2751 static void *proc_self_follow_link(struct dentry *dentry, struct nameidata *nd)
2752 {
2753 	struct pid_namespace *ns = dentry->d_sb->s_fs_info;
2754 	pid_t tgid = task_tgid_nr_ns(current, ns);
2755 	char *name = ERR_PTR(-ENOENT);
2756 	if (tgid) {
2757 		name = __getname();
2758 		if (!name)
2759 			name = ERR_PTR(-ENOMEM);
2760 		else
2761 			sprintf(name, "%d", tgid);
2762 	}
2763 	nd_set_link(nd, name);
2764 	return NULL;
2765 }
2766 
2767 static void proc_self_put_link(struct dentry *dentry, struct nameidata *nd,
2768 				void *cookie)
2769 {
2770 	char *s = nd_get_link(nd);
2771 	if (!IS_ERR(s))
2772 		__putname(s);
2773 }
2774 
2775 static const struct inode_operations proc_self_inode_operations = {
2776 	.readlink	= proc_self_readlink,
2777 	.follow_link	= proc_self_follow_link,
2778 	.put_link	= proc_self_put_link,
2779 };
2780 
2781 /*
2782  * proc base
2783  *
2784  * These are the directory entries in the root directory of /proc
2785  * that properly belong to the /proc filesystem, as they describe
2786  * describe something that is process related.
2787  */
2788 static const struct pid_entry proc_base_stuff[] = {
2789 	NOD("self", S_IFLNK|S_IRWXUGO,
2790 		&proc_self_inode_operations, NULL, {}),
2791 };
2792 
2793 static struct dentry *proc_base_instantiate(struct inode *dir,
2794 	struct dentry *dentry, struct task_struct *task, const void *ptr)
2795 {
2796 	const struct pid_entry *p = ptr;
2797 	struct inode *inode;
2798 	struct proc_inode *ei;
2799 	struct dentry *error;
2800 
2801 	/* Allocate the inode */
2802 	error = ERR_PTR(-ENOMEM);
2803 	inode = new_inode(dir->i_sb);
2804 	if (!inode)
2805 		goto out;
2806 
2807 	/* Initialize the inode */
2808 	ei = PROC_I(inode);
2809 	inode->i_ino = get_next_ino();
2810 	inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
2811 
2812 	/*
2813 	 * grab the reference to the task.
2814 	 */
2815 	ei->pid = get_task_pid(task, PIDTYPE_PID);
2816 	if (!ei->pid)
2817 		goto out_iput;
2818 
2819 	inode->i_mode = p->mode;
2820 	if (S_ISDIR(inode->i_mode))
2821 		set_nlink(inode, 2);
2822 	if (S_ISLNK(inode->i_mode))
2823 		inode->i_size = 64;
2824 	if (p->iop)
2825 		inode->i_op = p->iop;
2826 	if (p->fop)
2827 		inode->i_fop = p->fop;
2828 	ei->op = p->op;
2829 	d_add(dentry, inode);
2830 	error = NULL;
2831 out:
2832 	return error;
2833 out_iput:
2834 	iput(inode);
2835 	goto out;
2836 }
2837 
2838 static struct dentry *proc_base_lookup(struct inode *dir, struct dentry *dentry)
2839 {
2840 	struct dentry *error;
2841 	struct task_struct *task = get_proc_task(dir);
2842 	const struct pid_entry *p, *last;
2843 
2844 	error = ERR_PTR(-ENOENT);
2845 
2846 	if (!task)
2847 		goto out_no_task;
2848 
2849 	/* Lookup the directory entry */
2850 	last = &proc_base_stuff[ARRAY_SIZE(proc_base_stuff) - 1];
2851 	for (p = proc_base_stuff; p <= last; p++) {
2852 		if (p->len != dentry->d_name.len)
2853 			continue;
2854 		if (!memcmp(dentry->d_name.name, p->name, p->len))
2855 			break;
2856 	}
2857 	if (p > last)
2858 		goto out;
2859 
2860 	error = proc_base_instantiate(dir, dentry, task, p);
2861 
2862 out:
2863 	put_task_struct(task);
2864 out_no_task:
2865 	return error;
2866 }
2867 
2868 static int proc_base_fill_cache(struct file *filp, void *dirent,
2869 	filldir_t filldir, struct task_struct *task, const struct pid_entry *p)
2870 {
2871 	return proc_fill_cache(filp, dirent, filldir, p->name, p->len,
2872 				proc_base_instantiate, task, p);
2873 }
2874 
2875 #ifdef CONFIG_TASK_IO_ACCOUNTING
2876 static int do_io_accounting(struct task_struct *task, char *buffer, int whole)
2877 {
2878 	struct task_io_accounting acct = task->ioac;
2879 	unsigned long flags;
2880 	int result;
2881 
2882 	result = mutex_lock_killable(&task->signal->cred_guard_mutex);
2883 	if (result)
2884 		return result;
2885 
2886 	if (!ptrace_may_access(task, PTRACE_MODE_READ)) {
2887 		result = -EACCES;
2888 		goto out_unlock;
2889 	}
2890 
2891 	if (whole && lock_task_sighand(task, &flags)) {
2892 		struct task_struct *t = task;
2893 
2894 		task_io_accounting_add(&acct, &task->signal->ioac);
2895 		while_each_thread(task, t)
2896 			task_io_accounting_add(&acct, &t->ioac);
2897 
2898 		unlock_task_sighand(task, &flags);
2899 	}
2900 	result = sprintf(buffer,
2901 			"rchar: %llu\n"
2902 			"wchar: %llu\n"
2903 			"syscr: %llu\n"
2904 			"syscw: %llu\n"
2905 			"read_bytes: %llu\n"
2906 			"write_bytes: %llu\n"
2907 			"cancelled_write_bytes: %llu\n",
2908 			(unsigned long long)acct.rchar,
2909 			(unsigned long long)acct.wchar,
2910 			(unsigned long long)acct.syscr,
2911 			(unsigned long long)acct.syscw,
2912 			(unsigned long long)acct.read_bytes,
2913 			(unsigned long long)acct.write_bytes,
2914 			(unsigned long long)acct.cancelled_write_bytes);
2915 out_unlock:
2916 	mutex_unlock(&task->signal->cred_guard_mutex);
2917 	return result;
2918 }
2919 
2920 static int proc_tid_io_accounting(struct task_struct *task, char *buffer)
2921 {
2922 	return do_io_accounting(task, buffer, 0);
2923 }
2924 
2925 static int proc_tgid_io_accounting(struct task_struct *task, char *buffer)
2926 {
2927 	return do_io_accounting(task, buffer, 1);
2928 }
2929 #endif /* CONFIG_TASK_IO_ACCOUNTING */
2930 
2931 #ifdef CONFIG_USER_NS
2932 static int proc_id_map_open(struct inode *inode, struct file *file,
2933 	struct seq_operations *seq_ops)
2934 {
2935 	struct user_namespace *ns = NULL;
2936 	struct task_struct *task;
2937 	struct seq_file *seq;
2938 	int ret = -EINVAL;
2939 
2940 	task = get_proc_task(inode);
2941 	if (task) {
2942 		rcu_read_lock();
2943 		ns = get_user_ns(task_cred_xxx(task, user_ns));
2944 		rcu_read_unlock();
2945 		put_task_struct(task);
2946 	}
2947 	if (!ns)
2948 		goto err;
2949 
2950 	ret = seq_open(file, seq_ops);
2951 	if (ret)
2952 		goto err_put_ns;
2953 
2954 	seq = file->private_data;
2955 	seq->private = ns;
2956 
2957 	return 0;
2958 err_put_ns:
2959 	put_user_ns(ns);
2960 err:
2961 	return ret;
2962 }
2963 
2964 static int proc_id_map_release(struct inode *inode, struct file *file)
2965 {
2966 	struct seq_file *seq = file->private_data;
2967 	struct user_namespace *ns = seq->private;
2968 	put_user_ns(ns);
2969 	return seq_release(inode, file);
2970 }
2971 
2972 static int proc_uid_map_open(struct inode *inode, struct file *file)
2973 {
2974 	return proc_id_map_open(inode, file, &proc_uid_seq_operations);
2975 }
2976 
2977 static int proc_gid_map_open(struct inode *inode, struct file *file)
2978 {
2979 	return proc_id_map_open(inode, file, &proc_gid_seq_operations);
2980 }
2981 
2982 static const struct file_operations proc_uid_map_operations = {
2983 	.open		= proc_uid_map_open,
2984 	.write		= proc_uid_map_write,
2985 	.read		= seq_read,
2986 	.llseek		= seq_lseek,
2987 	.release	= proc_id_map_release,
2988 };
2989 
2990 static const struct file_operations proc_gid_map_operations = {
2991 	.open		= proc_gid_map_open,
2992 	.write		= proc_gid_map_write,
2993 	.read		= seq_read,
2994 	.llseek		= seq_lseek,
2995 	.release	= proc_id_map_release,
2996 };
2997 #endif /* CONFIG_USER_NS */
2998 
2999 static int proc_pid_personality(struct seq_file *m, struct pid_namespace *ns,
3000 				struct pid *pid, struct task_struct *task)
3001 {
3002 	int err = lock_trace(task);
3003 	if (!err) {
3004 		seq_printf(m, "%08x\n", task->personality);
3005 		unlock_trace(task);
3006 	}
3007 	return err;
3008 }
3009 
3010 /*
3011  * Thread groups
3012  */
3013 static const struct file_operations proc_task_operations;
3014 static const struct inode_operations proc_task_inode_operations;
3015 
3016 static const struct pid_entry tgid_base_stuff[] = {
3017 	DIR("task",       S_IRUGO|S_IXUGO, proc_task_inode_operations, proc_task_operations),
3018 	DIR("fd",         S_IRUSR|S_IXUSR, proc_fd_inode_operations, proc_fd_operations),
3019 #ifdef CONFIG_CHECKPOINT_RESTORE
3020 	DIR("map_files",  S_IRUSR|S_IXUSR, proc_map_files_inode_operations, proc_map_files_operations),
3021 #endif
3022 	DIR("fdinfo",     S_IRUSR|S_IXUSR, proc_fdinfo_inode_operations, proc_fdinfo_operations),
3023 	DIR("ns",	  S_IRUSR|S_IXUGO, proc_ns_dir_inode_operations, proc_ns_dir_operations),
3024 #ifdef CONFIG_NET
3025 	DIR("net",        S_IRUGO|S_IXUGO, proc_net_inode_operations, proc_net_operations),
3026 #endif
3027 	REG("environ",    S_IRUSR, proc_environ_operations),
3028 	INF("auxv",       S_IRUSR, proc_pid_auxv),
3029 	ONE("status",     S_IRUGO, proc_pid_status),
3030 	ONE("personality", S_IRUGO, proc_pid_personality),
3031 	INF("limits",	  S_IRUGO, proc_pid_limits),
3032 #ifdef CONFIG_SCHED_DEBUG
3033 	REG("sched",      S_IRUGO|S_IWUSR, proc_pid_sched_operations),
3034 #endif
3035 #ifdef CONFIG_SCHED_AUTOGROUP
3036 	REG("autogroup",  S_IRUGO|S_IWUSR, proc_pid_sched_autogroup_operations),
3037 #endif
3038 	REG("comm",      S_IRUGO|S_IWUSR, proc_pid_set_comm_operations),
3039 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK
3040 	INF("syscall",    S_IRUGO, proc_pid_syscall),
3041 #endif
3042 	INF("cmdline",    S_IRUGO, proc_pid_cmdline),
3043 	ONE("stat",       S_IRUGO, proc_tgid_stat),
3044 	ONE("statm",      S_IRUGO, proc_pid_statm),
3045 	REG("maps",       S_IRUGO, proc_pid_maps_operations),
3046 #ifdef CONFIG_NUMA
3047 	REG("numa_maps",  S_IRUGO, proc_pid_numa_maps_operations),
3048 #endif
3049 	REG("mem",        S_IRUSR|S_IWUSR, proc_mem_operations),
3050 	LNK("cwd",        proc_cwd_link),
3051 	LNK("root",       proc_root_link),
3052 	LNK("exe",        proc_exe_link),
3053 	REG("mounts",     S_IRUGO, proc_mounts_operations),
3054 	REG("mountinfo",  S_IRUGO, proc_mountinfo_operations),
3055 	REG("mountstats", S_IRUSR, proc_mountstats_operations),
3056 #ifdef CONFIG_PROC_PAGE_MONITOR
3057 	REG("clear_refs", S_IWUSR, proc_clear_refs_operations),
3058 	REG("smaps",      S_IRUGO, proc_pid_smaps_operations),
3059 	REG("pagemap",    S_IRUGO, proc_pagemap_operations),
3060 #endif
3061 #ifdef CONFIG_SECURITY
3062 	DIR("attr",       S_IRUGO|S_IXUGO, proc_attr_dir_inode_operations, proc_attr_dir_operations),
3063 #endif
3064 #ifdef CONFIG_KALLSYMS
3065 	INF("wchan",      S_IRUGO, proc_pid_wchan),
3066 #endif
3067 #ifdef CONFIG_STACKTRACE
3068 	ONE("stack",      S_IRUGO, proc_pid_stack),
3069 #endif
3070 #ifdef CONFIG_SCHEDSTATS
3071 	INF("schedstat",  S_IRUGO, proc_pid_schedstat),
3072 #endif
3073 #ifdef CONFIG_LATENCYTOP
3074 	REG("latency",  S_IRUGO, proc_lstats_operations),
3075 #endif
3076 #ifdef CONFIG_PROC_PID_CPUSET
3077 	REG("cpuset",     S_IRUGO, proc_cpuset_operations),
3078 #endif
3079 #ifdef CONFIG_CGROUPS
3080 	REG("cgroup",  S_IRUGO, proc_cgroup_operations),
3081 #endif
3082 	INF("oom_score",  S_IRUGO, proc_oom_score),
3083 	REG("oom_adj",    S_IRUGO|S_IWUSR, proc_oom_adjust_operations),
3084 	REG("oom_score_adj", S_IRUGO|S_IWUSR, proc_oom_score_adj_operations),
3085 #ifdef CONFIG_AUDITSYSCALL
3086 	REG("loginuid",   S_IWUSR|S_IRUGO, proc_loginuid_operations),
3087 	REG("sessionid",  S_IRUGO, proc_sessionid_operations),
3088 #endif
3089 #ifdef CONFIG_FAULT_INJECTION
3090 	REG("make-it-fail", S_IRUGO|S_IWUSR, proc_fault_inject_operations),
3091 #endif
3092 #ifdef CONFIG_ELF_CORE
3093 	REG("coredump_filter", S_IRUGO|S_IWUSR, proc_coredump_filter_operations),
3094 #endif
3095 #ifdef CONFIG_TASK_IO_ACCOUNTING
3096 	INF("io",	S_IRUSR, proc_tgid_io_accounting),
3097 #endif
3098 #ifdef CONFIG_HARDWALL
3099 	INF("hardwall",   S_IRUGO, proc_pid_hardwall),
3100 #endif
3101 #ifdef CONFIG_USER_NS
3102 	REG("uid_map",    S_IRUGO|S_IWUSR, proc_uid_map_operations),
3103 	REG("gid_map",    S_IRUGO|S_IWUSR, proc_gid_map_operations),
3104 #endif
3105 };
3106 
3107 static int proc_tgid_base_readdir(struct file * filp,
3108 			     void * dirent, filldir_t filldir)
3109 {
3110 	return proc_pident_readdir(filp,dirent,filldir,
3111 				   tgid_base_stuff,ARRAY_SIZE(tgid_base_stuff));
3112 }
3113 
3114 static const struct file_operations proc_tgid_base_operations = {
3115 	.read		= generic_read_dir,
3116 	.readdir	= proc_tgid_base_readdir,
3117 	.llseek		= default_llseek,
3118 };
3119 
3120 static struct dentry *proc_tgid_base_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
3121 {
3122 	return proc_pident_lookup(dir, dentry,
3123 				  tgid_base_stuff, ARRAY_SIZE(tgid_base_stuff));
3124 }
3125 
3126 static const struct inode_operations proc_tgid_base_inode_operations = {
3127 	.lookup		= proc_tgid_base_lookup,
3128 	.getattr	= pid_getattr,
3129 	.setattr	= proc_setattr,
3130 	.permission	= proc_pid_permission,
3131 };
3132 
3133 static void proc_flush_task_mnt(struct vfsmount *mnt, pid_t pid, pid_t tgid)
3134 {
3135 	struct dentry *dentry, *leader, *dir;
3136 	char buf[PROC_NUMBUF];
3137 	struct qstr name;
3138 
3139 	name.name = buf;
3140 	name.len = snprintf(buf, sizeof(buf), "%d", pid);
3141 	dentry = d_hash_and_lookup(mnt->mnt_root, &name);
3142 	if (dentry) {
3143 		shrink_dcache_parent(dentry);
3144 		d_drop(dentry);
3145 		dput(dentry);
3146 	}
3147 
3148 	name.name = buf;
3149 	name.len = snprintf(buf, sizeof(buf), "%d", tgid);
3150 	leader = d_hash_and_lookup(mnt->mnt_root, &name);
3151 	if (!leader)
3152 		goto out;
3153 
3154 	name.name = "task";
3155 	name.len = strlen(name.name);
3156 	dir = d_hash_and_lookup(leader, &name);
3157 	if (!dir)
3158 		goto out_put_leader;
3159 
3160 	name.name = buf;
3161 	name.len = snprintf(buf, sizeof(buf), "%d", pid);
3162 	dentry = d_hash_and_lookup(dir, &name);
3163 	if (dentry) {
3164 		shrink_dcache_parent(dentry);
3165 		d_drop(dentry);
3166 		dput(dentry);
3167 	}
3168 
3169 	dput(dir);
3170 out_put_leader:
3171 	dput(leader);
3172 out:
3173 	return;
3174 }
3175 
3176 /**
3177  * proc_flush_task -  Remove dcache entries for @task from the /proc dcache.
3178  * @task: task that should be flushed.
3179  *
3180  * When flushing dentries from proc, one needs to flush them from global
3181  * proc (proc_mnt) and from all the namespaces' procs this task was seen
3182  * in. This call is supposed to do all of this job.
3183  *
3184  * Looks in the dcache for
3185  * /proc/@pid
3186  * /proc/@tgid/task/@pid
3187  * if either directory is present flushes it and all of it'ts children
3188  * from the dcache.
3189  *
3190  * It is safe and reasonable to cache /proc entries for a task until
3191  * that task exits.  After that they just clog up the dcache with
3192  * useless entries, possibly causing useful dcache entries to be
3193  * flushed instead.  This routine is proved to flush those useless
3194  * dcache entries at process exit time.
3195  *
3196  * NOTE: This routine is just an optimization so it does not guarantee
3197  *       that no dcache entries will exist at process exit time it
3198  *       just makes it very unlikely that any will persist.
3199  */
3200 
3201 void proc_flush_task(struct task_struct *task)
3202 {
3203 	int i;
3204 	struct pid *pid, *tgid;
3205 	struct upid *upid;
3206 
3207 	pid = task_pid(task);
3208 	tgid = task_tgid(task);
3209 
3210 	for (i = 0; i <= pid->level; i++) {
3211 		upid = &pid->numbers[i];
3212 		proc_flush_task_mnt(upid->ns->proc_mnt, upid->nr,
3213 					tgid->numbers[i].nr);
3214 	}
3215 
3216 	upid = &pid->numbers[pid->level];
3217 	if (upid->nr == 1)
3218 		pid_ns_release_proc(upid->ns);
3219 }
3220 
3221 static struct dentry *proc_pid_instantiate(struct inode *dir,
3222 					   struct dentry * dentry,
3223 					   struct task_struct *task, const void *ptr)
3224 {
3225 	struct dentry *error = ERR_PTR(-ENOENT);
3226 	struct inode *inode;
3227 
3228 	inode = proc_pid_make_inode(dir->i_sb, task);
3229 	if (!inode)
3230 		goto out;
3231 
3232 	inode->i_mode = S_IFDIR|S_IRUGO|S_IXUGO;
3233 	inode->i_op = &proc_tgid_base_inode_operations;
3234 	inode->i_fop = &proc_tgid_base_operations;
3235 	inode->i_flags|=S_IMMUTABLE;
3236 
3237 	set_nlink(inode, 2 + pid_entry_count_dirs(tgid_base_stuff,
3238 						  ARRAY_SIZE(tgid_base_stuff)));
3239 
3240 	d_set_d_op(dentry, &pid_dentry_operations);
3241 
3242 	d_add(dentry, inode);
3243 	/* Close the race of the process dying before we return the dentry */
3244 	if (pid_revalidate(dentry, 0))
3245 		error = NULL;
3246 out:
3247 	return error;
3248 }
3249 
3250 struct dentry *proc_pid_lookup(struct inode *dir, struct dentry * dentry, unsigned int flags)
3251 {
3252 	struct dentry *result;
3253 	struct task_struct *task;
3254 	unsigned tgid;
3255 	struct pid_namespace *ns;
3256 
3257 	result = proc_base_lookup(dir, dentry);
3258 	if (!IS_ERR(result) || PTR_ERR(result) != -ENOENT)
3259 		goto out;
3260 
3261 	tgid = name_to_int(dentry);
3262 	if (tgid == ~0U)
3263 		goto out;
3264 
3265 	ns = dentry->d_sb->s_fs_info;
3266 	rcu_read_lock();
3267 	task = find_task_by_pid_ns(tgid, ns);
3268 	if (task)
3269 		get_task_struct(task);
3270 	rcu_read_unlock();
3271 	if (!task)
3272 		goto out;
3273 
3274 	result = proc_pid_instantiate(dir, dentry, task, NULL);
3275 	put_task_struct(task);
3276 out:
3277 	return result;
3278 }
3279 
3280 /*
3281  * Find the first task with tgid >= tgid
3282  *
3283  */
3284 struct tgid_iter {
3285 	unsigned int tgid;
3286 	struct task_struct *task;
3287 };
3288 static struct tgid_iter next_tgid(struct pid_namespace *ns, struct tgid_iter iter)
3289 {
3290 	struct pid *pid;
3291 
3292 	if (iter.task)
3293 		put_task_struct(iter.task);
3294 	rcu_read_lock();
3295 retry:
3296 	iter.task = NULL;
3297 	pid = find_ge_pid(iter.tgid, ns);
3298 	if (pid) {
3299 		iter.tgid = pid_nr_ns(pid, ns);
3300 		iter.task = pid_task(pid, PIDTYPE_PID);
3301 		/* What we to know is if the pid we have find is the
3302 		 * pid of a thread_group_leader.  Testing for task
3303 		 * being a thread_group_leader is the obvious thing
3304 		 * todo but there is a window when it fails, due to
3305 		 * the pid transfer logic in de_thread.
3306 		 *
3307 		 * So we perform the straight forward test of seeing
3308 		 * if the pid we have found is the pid of a thread
3309 		 * group leader, and don't worry if the task we have
3310 		 * found doesn't happen to be a thread group leader.
3311 		 * As we don't care in the case of readdir.
3312 		 */
3313 		if (!iter.task || !has_group_leader_pid(iter.task)) {
3314 			iter.tgid += 1;
3315 			goto retry;
3316 		}
3317 		get_task_struct(iter.task);
3318 	}
3319 	rcu_read_unlock();
3320 	return iter;
3321 }
3322 
3323 #define TGID_OFFSET (FIRST_PROCESS_ENTRY + ARRAY_SIZE(proc_base_stuff))
3324 
3325 static int proc_pid_fill_cache(struct file *filp, void *dirent, filldir_t filldir,
3326 	struct tgid_iter iter)
3327 {
3328 	char name[PROC_NUMBUF];
3329 	int len = snprintf(name, sizeof(name), "%d", iter.tgid);
3330 	return proc_fill_cache(filp, dirent, filldir, name, len,
3331 				proc_pid_instantiate, iter.task, NULL);
3332 }
3333 
3334 static int fake_filldir(void *buf, const char *name, int namelen,
3335 			loff_t offset, u64 ino, unsigned d_type)
3336 {
3337 	return 0;
3338 }
3339 
3340 /* for the /proc/ directory itself, after non-process stuff has been done */
3341 int proc_pid_readdir(struct file * filp, void * dirent, filldir_t filldir)
3342 {
3343 	unsigned int nr;
3344 	struct task_struct *reaper;
3345 	struct tgid_iter iter;
3346 	struct pid_namespace *ns;
3347 	filldir_t __filldir;
3348 
3349 	if (filp->f_pos >= PID_MAX_LIMIT + TGID_OFFSET)
3350 		goto out_no_task;
3351 	nr = filp->f_pos - FIRST_PROCESS_ENTRY;
3352 
3353 	reaper = get_proc_task(filp->f_path.dentry->d_inode);
3354 	if (!reaper)
3355 		goto out_no_task;
3356 
3357 	for (; nr < ARRAY_SIZE(proc_base_stuff); filp->f_pos++, nr++) {
3358 		const struct pid_entry *p = &proc_base_stuff[nr];
3359 		if (proc_base_fill_cache(filp, dirent, filldir, reaper, p) < 0)
3360 			goto out;
3361 	}
3362 
3363 	ns = filp->f_dentry->d_sb->s_fs_info;
3364 	iter.task = NULL;
3365 	iter.tgid = filp->f_pos - TGID_OFFSET;
3366 	for (iter = next_tgid(ns, iter);
3367 	     iter.task;
3368 	     iter.tgid += 1, iter = next_tgid(ns, iter)) {
3369 		if (has_pid_permissions(ns, iter.task, 2))
3370 			__filldir = filldir;
3371 		else
3372 			__filldir = fake_filldir;
3373 
3374 		filp->f_pos = iter.tgid + TGID_OFFSET;
3375 		if (proc_pid_fill_cache(filp, dirent, __filldir, iter) < 0) {
3376 			put_task_struct(iter.task);
3377 			goto out;
3378 		}
3379 	}
3380 	filp->f_pos = PID_MAX_LIMIT + TGID_OFFSET;
3381 out:
3382 	put_task_struct(reaper);
3383 out_no_task:
3384 	return 0;
3385 }
3386 
3387 /*
3388  * Tasks
3389  */
3390 static const struct pid_entry tid_base_stuff[] = {
3391 	DIR("fd",        S_IRUSR|S_IXUSR, proc_fd_inode_operations, proc_fd_operations),
3392 	DIR("fdinfo",    S_IRUSR|S_IXUSR, proc_fdinfo_inode_operations, proc_fdinfo_operations),
3393 	DIR("ns",	 S_IRUSR|S_IXUGO, proc_ns_dir_inode_operations, proc_ns_dir_operations),
3394 	REG("environ",   S_IRUSR, proc_environ_operations),
3395 	INF("auxv",      S_IRUSR, proc_pid_auxv),
3396 	ONE("status",    S_IRUGO, proc_pid_status),
3397 	ONE("personality", S_IRUGO, proc_pid_personality),
3398 	INF("limits",	 S_IRUGO, proc_pid_limits),
3399 #ifdef CONFIG_SCHED_DEBUG
3400 	REG("sched",     S_IRUGO|S_IWUSR, proc_pid_sched_operations),
3401 #endif
3402 	REG("comm",      S_IRUGO|S_IWUSR, proc_pid_set_comm_operations),
3403 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK
3404 	INF("syscall",   S_IRUGO, proc_pid_syscall),
3405 #endif
3406 	INF("cmdline",   S_IRUGO, proc_pid_cmdline),
3407 	ONE("stat",      S_IRUGO, proc_tid_stat),
3408 	ONE("statm",     S_IRUGO, proc_pid_statm),
3409 	REG("maps",      S_IRUGO, proc_tid_maps_operations),
3410 #ifdef CONFIG_CHECKPOINT_RESTORE
3411 	REG("children",  S_IRUGO, proc_tid_children_operations),
3412 #endif
3413 #ifdef CONFIG_NUMA
3414 	REG("numa_maps", S_IRUGO, proc_tid_numa_maps_operations),
3415 #endif
3416 	REG("mem",       S_IRUSR|S_IWUSR, proc_mem_operations),
3417 	LNK("cwd",       proc_cwd_link),
3418 	LNK("root",      proc_root_link),
3419 	LNK("exe",       proc_exe_link),
3420 	REG("mounts",    S_IRUGO, proc_mounts_operations),
3421 	REG("mountinfo",  S_IRUGO, proc_mountinfo_operations),
3422 #ifdef CONFIG_PROC_PAGE_MONITOR
3423 	REG("clear_refs", S_IWUSR, proc_clear_refs_operations),
3424 	REG("smaps",     S_IRUGO, proc_tid_smaps_operations),
3425 	REG("pagemap",    S_IRUGO, proc_pagemap_operations),
3426 #endif
3427 #ifdef CONFIG_SECURITY
3428 	DIR("attr",      S_IRUGO|S_IXUGO, proc_attr_dir_inode_operations, proc_attr_dir_operations),
3429 #endif
3430 #ifdef CONFIG_KALLSYMS
3431 	INF("wchan",     S_IRUGO, proc_pid_wchan),
3432 #endif
3433 #ifdef CONFIG_STACKTRACE
3434 	ONE("stack",      S_IRUGO, proc_pid_stack),
3435 #endif
3436 #ifdef CONFIG_SCHEDSTATS
3437 	INF("schedstat", S_IRUGO, proc_pid_schedstat),
3438 #endif
3439 #ifdef CONFIG_LATENCYTOP
3440 	REG("latency",  S_IRUGO, proc_lstats_operations),
3441 #endif
3442 #ifdef CONFIG_PROC_PID_CPUSET
3443 	REG("cpuset",    S_IRUGO, proc_cpuset_operations),
3444 #endif
3445 #ifdef CONFIG_CGROUPS
3446 	REG("cgroup",  S_IRUGO, proc_cgroup_operations),
3447 #endif
3448 	INF("oom_score", S_IRUGO, proc_oom_score),
3449 	REG("oom_adj",   S_IRUGO|S_IWUSR, proc_oom_adjust_operations),
3450 	REG("oom_score_adj", S_IRUGO|S_IWUSR, proc_oom_score_adj_operations),
3451 #ifdef CONFIG_AUDITSYSCALL
3452 	REG("loginuid",  S_IWUSR|S_IRUGO, proc_loginuid_operations),
3453 	REG("sessionid",  S_IRUGO, proc_sessionid_operations),
3454 #endif
3455 #ifdef CONFIG_FAULT_INJECTION
3456 	REG("make-it-fail", S_IRUGO|S_IWUSR, proc_fault_inject_operations),
3457 #endif
3458 #ifdef CONFIG_TASK_IO_ACCOUNTING
3459 	INF("io",	S_IRUSR, proc_tid_io_accounting),
3460 #endif
3461 #ifdef CONFIG_HARDWALL
3462 	INF("hardwall",   S_IRUGO, proc_pid_hardwall),
3463 #endif
3464 #ifdef CONFIG_USER_NS
3465 	REG("uid_map",    S_IRUGO|S_IWUSR, proc_uid_map_operations),
3466 	REG("gid_map",    S_IRUGO|S_IWUSR, proc_gid_map_operations),
3467 #endif
3468 };
3469 
3470 static int proc_tid_base_readdir(struct file * filp,
3471 			     void * dirent, filldir_t filldir)
3472 {
3473 	return proc_pident_readdir(filp,dirent,filldir,
3474 				   tid_base_stuff,ARRAY_SIZE(tid_base_stuff));
3475 }
3476 
3477 static struct dentry *proc_tid_base_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
3478 {
3479 	return proc_pident_lookup(dir, dentry,
3480 				  tid_base_stuff, ARRAY_SIZE(tid_base_stuff));
3481 }
3482 
3483 static const struct file_operations proc_tid_base_operations = {
3484 	.read		= generic_read_dir,
3485 	.readdir	= proc_tid_base_readdir,
3486 	.llseek		= default_llseek,
3487 };
3488 
3489 static const struct inode_operations proc_tid_base_inode_operations = {
3490 	.lookup		= proc_tid_base_lookup,
3491 	.getattr	= pid_getattr,
3492 	.setattr	= proc_setattr,
3493 };
3494 
3495 static struct dentry *proc_task_instantiate(struct inode *dir,
3496 	struct dentry *dentry, struct task_struct *task, const void *ptr)
3497 {
3498 	struct dentry *error = ERR_PTR(-ENOENT);
3499 	struct inode *inode;
3500 	inode = proc_pid_make_inode(dir->i_sb, task);
3501 
3502 	if (!inode)
3503 		goto out;
3504 	inode->i_mode = S_IFDIR|S_IRUGO|S_IXUGO;
3505 	inode->i_op = &proc_tid_base_inode_operations;
3506 	inode->i_fop = &proc_tid_base_operations;
3507 	inode->i_flags|=S_IMMUTABLE;
3508 
3509 	set_nlink(inode, 2 + pid_entry_count_dirs(tid_base_stuff,
3510 						  ARRAY_SIZE(tid_base_stuff)));
3511 
3512 	d_set_d_op(dentry, &pid_dentry_operations);
3513 
3514 	d_add(dentry, inode);
3515 	/* Close the race of the process dying before we return the dentry */
3516 	if (pid_revalidate(dentry, 0))
3517 		error = NULL;
3518 out:
3519 	return error;
3520 }
3521 
3522 static struct dentry *proc_task_lookup(struct inode *dir, struct dentry * dentry, unsigned int flags)
3523 {
3524 	struct dentry *result = ERR_PTR(-ENOENT);
3525 	struct task_struct *task;
3526 	struct task_struct *leader = get_proc_task(dir);
3527 	unsigned tid;
3528 	struct pid_namespace *ns;
3529 
3530 	if (!leader)
3531 		goto out_no_task;
3532 
3533 	tid = name_to_int(dentry);
3534 	if (tid == ~0U)
3535 		goto out;
3536 
3537 	ns = dentry->d_sb->s_fs_info;
3538 	rcu_read_lock();
3539 	task = find_task_by_pid_ns(tid, ns);
3540 	if (task)
3541 		get_task_struct(task);
3542 	rcu_read_unlock();
3543 	if (!task)
3544 		goto out;
3545 	if (!same_thread_group(leader, task))
3546 		goto out_drop_task;
3547 
3548 	result = proc_task_instantiate(dir, dentry, task, NULL);
3549 out_drop_task:
3550 	put_task_struct(task);
3551 out:
3552 	put_task_struct(leader);
3553 out_no_task:
3554 	return result;
3555 }
3556 
3557 /*
3558  * Find the first tid of a thread group to return to user space.
3559  *
3560  * Usually this is just the thread group leader, but if the users
3561  * buffer was too small or there was a seek into the middle of the
3562  * directory we have more work todo.
3563  *
3564  * In the case of a short read we start with find_task_by_pid.
3565  *
3566  * In the case of a seek we start with the leader and walk nr
3567  * threads past it.
3568  */
3569 static struct task_struct *first_tid(struct task_struct *leader,
3570 		int tid, int nr, struct pid_namespace *ns)
3571 {
3572 	struct task_struct *pos;
3573 
3574 	rcu_read_lock();
3575 	/* Attempt to start with the pid of a thread */
3576 	if (tid && (nr > 0)) {
3577 		pos = find_task_by_pid_ns(tid, ns);
3578 		if (pos && (pos->group_leader == leader))
3579 			goto found;
3580 	}
3581 
3582 	/* If nr exceeds the number of threads there is nothing todo */
3583 	pos = NULL;
3584 	if (nr && nr >= get_nr_threads(leader))
3585 		goto out;
3586 
3587 	/* If we haven't found our starting place yet start
3588 	 * with the leader and walk nr threads forward.
3589 	 */
3590 	for (pos = leader; nr > 0; --nr) {
3591 		pos = next_thread(pos);
3592 		if (pos == leader) {
3593 			pos = NULL;
3594 			goto out;
3595 		}
3596 	}
3597 found:
3598 	get_task_struct(pos);
3599 out:
3600 	rcu_read_unlock();
3601 	return pos;
3602 }
3603 
3604 /*
3605  * Find the next thread in the thread list.
3606  * Return NULL if there is an error or no next thread.
3607  *
3608  * The reference to the input task_struct is released.
3609  */
3610 static struct task_struct *next_tid(struct task_struct *start)
3611 {
3612 	struct task_struct *pos = NULL;
3613 	rcu_read_lock();
3614 	if (pid_alive(start)) {
3615 		pos = next_thread(start);
3616 		if (thread_group_leader(pos))
3617 			pos = NULL;
3618 		else
3619 			get_task_struct(pos);
3620 	}
3621 	rcu_read_unlock();
3622 	put_task_struct(start);
3623 	return pos;
3624 }
3625 
3626 static int proc_task_fill_cache(struct file *filp, void *dirent, filldir_t filldir,
3627 	struct task_struct *task, int tid)
3628 {
3629 	char name[PROC_NUMBUF];
3630 	int len = snprintf(name, sizeof(name), "%d", tid);
3631 	return proc_fill_cache(filp, dirent, filldir, name, len,
3632 				proc_task_instantiate, task, NULL);
3633 }
3634 
3635 /* for the /proc/TGID/task/ directories */
3636 static int proc_task_readdir(struct file * filp, void * dirent, filldir_t filldir)
3637 {
3638 	struct dentry *dentry = filp->f_path.dentry;
3639 	struct inode *inode = dentry->d_inode;
3640 	struct task_struct *leader = NULL;
3641 	struct task_struct *task;
3642 	int retval = -ENOENT;
3643 	ino_t ino;
3644 	int tid;
3645 	struct pid_namespace *ns;
3646 
3647 	task = get_proc_task(inode);
3648 	if (!task)
3649 		goto out_no_task;
3650 	rcu_read_lock();
3651 	if (pid_alive(task)) {
3652 		leader = task->group_leader;
3653 		get_task_struct(leader);
3654 	}
3655 	rcu_read_unlock();
3656 	put_task_struct(task);
3657 	if (!leader)
3658 		goto out_no_task;
3659 	retval = 0;
3660 
3661 	switch ((unsigned long)filp->f_pos) {
3662 	case 0:
3663 		ino = inode->i_ino;
3664 		if (filldir(dirent, ".", 1, filp->f_pos, ino, DT_DIR) < 0)
3665 			goto out;
3666 		filp->f_pos++;
3667 		/* fall through */
3668 	case 1:
3669 		ino = parent_ino(dentry);
3670 		if (filldir(dirent, "..", 2, filp->f_pos, ino, DT_DIR) < 0)
3671 			goto out;
3672 		filp->f_pos++;
3673 		/* fall through */
3674 	}
3675 
3676 	/* f_version caches the tgid value that the last readdir call couldn't
3677 	 * return. lseek aka telldir automagically resets f_version to 0.
3678 	 */
3679 	ns = filp->f_dentry->d_sb->s_fs_info;
3680 	tid = (int)filp->f_version;
3681 	filp->f_version = 0;
3682 	for (task = first_tid(leader, tid, filp->f_pos - 2, ns);
3683 	     task;
3684 	     task = next_tid(task), filp->f_pos++) {
3685 		tid = task_pid_nr_ns(task, ns);
3686 		if (proc_task_fill_cache(filp, dirent, filldir, task, tid) < 0) {
3687 			/* returning this tgid failed, save it as the first
3688 			 * pid for the next readir call */
3689 			filp->f_version = (u64)tid;
3690 			put_task_struct(task);
3691 			break;
3692 		}
3693 	}
3694 out:
3695 	put_task_struct(leader);
3696 out_no_task:
3697 	return retval;
3698 }
3699 
3700 static int proc_task_getattr(struct vfsmount *mnt, struct dentry *dentry, struct kstat *stat)
3701 {
3702 	struct inode *inode = dentry->d_inode;
3703 	struct task_struct *p = get_proc_task(inode);
3704 	generic_fillattr(inode, stat);
3705 
3706 	if (p) {
3707 		stat->nlink += get_nr_threads(p);
3708 		put_task_struct(p);
3709 	}
3710 
3711 	return 0;
3712 }
3713 
3714 static const struct inode_operations proc_task_inode_operations = {
3715 	.lookup		= proc_task_lookup,
3716 	.getattr	= proc_task_getattr,
3717 	.setattr	= proc_setattr,
3718 	.permission	= proc_pid_permission,
3719 };
3720 
3721 static const struct file_operations proc_task_operations = {
3722 	.read		= generic_read_dir,
3723 	.readdir	= proc_task_readdir,
3724 	.llseek		= default_llseek,
3725 };
3726