xref: /linux/fs/proc/base.c (revision b43ab901d671e3e3cad425ea5e9a3c74e266dcdd)
1 /*
2  *  linux/fs/proc/base.c
3  *
4  *  Copyright (C) 1991, 1992 Linus Torvalds
5  *
6  *  proc base directory handling functions
7  *
8  *  1999, Al Viro. Rewritten. Now it covers the whole per-process part.
9  *  Instead of using magical inumbers to determine the kind of object
10  *  we allocate and fill in-core inodes upon lookup. They don't even
11  *  go into icache. We cache the reference to task_struct upon lookup too.
12  *  Eventually it should become a filesystem in its own. We don't use the
13  *  rest of procfs anymore.
14  *
15  *
16  *  Changelog:
17  *  17-Jan-2005
18  *  Allan Bezerra
19  *  Bruna Moreira <bruna.moreira@indt.org.br>
20  *  Edjard Mota <edjard.mota@indt.org.br>
21  *  Ilias Biris <ilias.biris@indt.org.br>
22  *  Mauricio Lin <mauricio.lin@indt.org.br>
23  *
24  *  Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT
25  *
26  *  A new process specific entry (smaps) included in /proc. It shows the
27  *  size of rss for each memory area. The maps entry lacks information
28  *  about physical memory size (rss) for each mapped file, i.e.,
29  *  rss information for executables and library files.
30  *  This additional information is useful for any tools that need to know
31  *  about physical memory consumption for a process specific library.
32  *
33  *  Changelog:
34  *  21-Feb-2005
35  *  Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT
36  *  Pud inclusion in the page table walking.
37  *
38  *  ChangeLog:
39  *  10-Mar-2005
40  *  10LE Instituto Nokia de Tecnologia - INdT:
41  *  A better way to walks through the page table as suggested by Hugh Dickins.
42  *
43  *  Simo Piiroinen <simo.piiroinen@nokia.com>:
44  *  Smaps information related to shared, private, clean and dirty pages.
45  *
46  *  Paul Mundt <paul.mundt@nokia.com>:
47  *  Overall revision about smaps.
48  */
49 
50 #include <asm/uaccess.h>
51 
52 #include <linux/errno.h>
53 #include <linux/time.h>
54 #include <linux/proc_fs.h>
55 #include <linux/stat.h>
56 #include <linux/task_io_accounting_ops.h>
57 #include <linux/init.h>
58 #include <linux/capability.h>
59 #include <linux/file.h>
60 #include <linux/fdtable.h>
61 #include <linux/string.h>
62 #include <linux/seq_file.h>
63 #include <linux/namei.h>
64 #include <linux/mnt_namespace.h>
65 #include <linux/mm.h>
66 #include <linux/swap.h>
67 #include <linux/rcupdate.h>
68 #include <linux/kallsyms.h>
69 #include <linux/stacktrace.h>
70 #include <linux/resource.h>
71 #include <linux/module.h>
72 #include <linux/mount.h>
73 #include <linux/security.h>
74 #include <linux/ptrace.h>
75 #include <linux/tracehook.h>
76 #include <linux/cgroup.h>
77 #include <linux/cpuset.h>
78 #include <linux/audit.h>
79 #include <linux/poll.h>
80 #include <linux/nsproxy.h>
81 #include <linux/oom.h>
82 #include <linux/elf.h>
83 #include <linux/pid_namespace.h>
84 #include <linux/fs_struct.h>
85 #include <linux/slab.h>
86 #include <linux/flex_array.h>
87 #ifdef CONFIG_HARDWALL
88 #include <asm/hardwall.h>
89 #endif
90 #include <trace/events/oom.h>
91 #include "internal.h"
92 
93 /* NOTE:
94  *	Implementing inode permission operations in /proc is almost
95  *	certainly an error.  Permission checks need to happen during
96  *	each system call not at open time.  The reason is that most of
97  *	what we wish to check for permissions in /proc varies at runtime.
98  *
99  *	The classic example of a problem is opening file descriptors
100  *	in /proc for a task before it execs a suid executable.
101  */
102 
103 struct pid_entry {
104 	char *name;
105 	int len;
106 	umode_t mode;
107 	const struct inode_operations *iop;
108 	const struct file_operations *fop;
109 	union proc_op op;
110 };
111 
112 #define NOD(NAME, MODE, IOP, FOP, OP) {			\
113 	.name = (NAME),					\
114 	.len  = sizeof(NAME) - 1,			\
115 	.mode = MODE,					\
116 	.iop  = IOP,					\
117 	.fop  = FOP,					\
118 	.op   = OP,					\
119 }
120 
121 #define DIR(NAME, MODE, iops, fops)	\
122 	NOD(NAME, (S_IFDIR|(MODE)), &iops, &fops, {} )
123 #define LNK(NAME, get_link)					\
124 	NOD(NAME, (S_IFLNK|S_IRWXUGO),				\
125 		&proc_pid_link_inode_operations, NULL,		\
126 		{ .proc_get_link = get_link } )
127 #define REG(NAME, MODE, fops)				\
128 	NOD(NAME, (S_IFREG|(MODE)), NULL, &fops, {})
129 #define INF(NAME, MODE, read)				\
130 	NOD(NAME, (S_IFREG|(MODE)), 			\
131 		NULL, &proc_info_file_operations,	\
132 		{ .proc_read = read } )
133 #define ONE(NAME, MODE, show)				\
134 	NOD(NAME, (S_IFREG|(MODE)), 			\
135 		NULL, &proc_single_file_operations,	\
136 		{ .proc_show = show } )
137 
138 static int proc_fd_permission(struct inode *inode, int mask);
139 
140 /*
141  * Count the number of hardlinks for the pid_entry table, excluding the .
142  * and .. links.
143  */
144 static unsigned int pid_entry_count_dirs(const struct pid_entry *entries,
145 	unsigned int n)
146 {
147 	unsigned int i;
148 	unsigned int count;
149 
150 	count = 0;
151 	for (i = 0; i < n; ++i) {
152 		if (S_ISDIR(entries[i].mode))
153 			++count;
154 	}
155 
156 	return count;
157 }
158 
159 static int get_task_root(struct task_struct *task, struct path *root)
160 {
161 	int result = -ENOENT;
162 
163 	task_lock(task);
164 	if (task->fs) {
165 		get_fs_root(task->fs, root);
166 		result = 0;
167 	}
168 	task_unlock(task);
169 	return result;
170 }
171 
172 static int proc_cwd_link(struct dentry *dentry, struct path *path)
173 {
174 	struct task_struct *task = get_proc_task(dentry->d_inode);
175 	int result = -ENOENT;
176 
177 	if (task) {
178 		task_lock(task);
179 		if (task->fs) {
180 			get_fs_pwd(task->fs, path);
181 			result = 0;
182 		}
183 		task_unlock(task);
184 		put_task_struct(task);
185 	}
186 	return result;
187 }
188 
189 static int proc_root_link(struct dentry *dentry, struct path *path)
190 {
191 	struct task_struct *task = get_proc_task(dentry->d_inode);
192 	int result = -ENOENT;
193 
194 	if (task) {
195 		result = get_task_root(task, path);
196 		put_task_struct(task);
197 	}
198 	return result;
199 }
200 
201 static struct mm_struct *mm_access(struct task_struct *task, unsigned int mode)
202 {
203 	struct mm_struct *mm;
204 	int err;
205 
206 	err =  mutex_lock_killable(&task->signal->cred_guard_mutex);
207 	if (err)
208 		return ERR_PTR(err);
209 
210 	mm = get_task_mm(task);
211 	if (mm && mm != current->mm &&
212 			!ptrace_may_access(task, mode)) {
213 		mmput(mm);
214 		mm = ERR_PTR(-EACCES);
215 	}
216 	mutex_unlock(&task->signal->cred_guard_mutex);
217 
218 	return mm;
219 }
220 
221 struct mm_struct *mm_for_maps(struct task_struct *task)
222 {
223 	return mm_access(task, PTRACE_MODE_READ);
224 }
225 
226 static int proc_pid_cmdline(struct task_struct *task, char * buffer)
227 {
228 	int res = 0;
229 	unsigned int len;
230 	struct mm_struct *mm = get_task_mm(task);
231 	if (!mm)
232 		goto out;
233 	if (!mm->arg_end)
234 		goto out_mm;	/* Shh! No looking before we're done */
235 
236  	len = mm->arg_end - mm->arg_start;
237 
238 	if (len > PAGE_SIZE)
239 		len = PAGE_SIZE;
240 
241 	res = access_process_vm(task, mm->arg_start, buffer, len, 0);
242 
243 	// If the nul at the end of args has been overwritten, then
244 	// assume application is using setproctitle(3).
245 	if (res > 0 && buffer[res-1] != '\0' && len < PAGE_SIZE) {
246 		len = strnlen(buffer, res);
247 		if (len < res) {
248 		    res = len;
249 		} else {
250 			len = mm->env_end - mm->env_start;
251 			if (len > PAGE_SIZE - res)
252 				len = PAGE_SIZE - res;
253 			res += access_process_vm(task, mm->env_start, buffer+res, len, 0);
254 			res = strnlen(buffer, res);
255 		}
256 	}
257 out_mm:
258 	mmput(mm);
259 out:
260 	return res;
261 }
262 
263 static int proc_pid_auxv(struct task_struct *task, char *buffer)
264 {
265 	struct mm_struct *mm = mm_for_maps(task);
266 	int res = PTR_ERR(mm);
267 	if (mm && !IS_ERR(mm)) {
268 		unsigned int nwords = 0;
269 		do {
270 			nwords += 2;
271 		} while (mm->saved_auxv[nwords - 2] != 0); /* AT_NULL */
272 		res = nwords * sizeof(mm->saved_auxv[0]);
273 		if (res > PAGE_SIZE)
274 			res = PAGE_SIZE;
275 		memcpy(buffer, mm->saved_auxv, res);
276 		mmput(mm);
277 	}
278 	return res;
279 }
280 
281 
282 #ifdef CONFIG_KALLSYMS
283 /*
284  * Provides a wchan file via kallsyms in a proper one-value-per-file format.
285  * Returns the resolved symbol.  If that fails, simply return the address.
286  */
287 static int proc_pid_wchan(struct task_struct *task, char *buffer)
288 {
289 	unsigned long wchan;
290 	char symname[KSYM_NAME_LEN];
291 
292 	wchan = get_wchan(task);
293 
294 	if (lookup_symbol_name(wchan, symname) < 0)
295 		if (!ptrace_may_access(task, PTRACE_MODE_READ))
296 			return 0;
297 		else
298 			return sprintf(buffer, "%lu", wchan);
299 	else
300 		return sprintf(buffer, "%s", symname);
301 }
302 #endif /* CONFIG_KALLSYMS */
303 
304 static int lock_trace(struct task_struct *task)
305 {
306 	int err = mutex_lock_killable(&task->signal->cred_guard_mutex);
307 	if (err)
308 		return err;
309 	if (!ptrace_may_access(task, PTRACE_MODE_ATTACH)) {
310 		mutex_unlock(&task->signal->cred_guard_mutex);
311 		return -EPERM;
312 	}
313 	return 0;
314 }
315 
316 static void unlock_trace(struct task_struct *task)
317 {
318 	mutex_unlock(&task->signal->cred_guard_mutex);
319 }
320 
321 #ifdef CONFIG_STACKTRACE
322 
323 #define MAX_STACK_TRACE_DEPTH	64
324 
325 static int proc_pid_stack(struct seq_file *m, struct pid_namespace *ns,
326 			  struct pid *pid, struct task_struct *task)
327 {
328 	struct stack_trace trace;
329 	unsigned long *entries;
330 	int err;
331 	int i;
332 
333 	entries = kmalloc(MAX_STACK_TRACE_DEPTH * sizeof(*entries), GFP_KERNEL);
334 	if (!entries)
335 		return -ENOMEM;
336 
337 	trace.nr_entries	= 0;
338 	trace.max_entries	= MAX_STACK_TRACE_DEPTH;
339 	trace.entries		= entries;
340 	trace.skip		= 0;
341 
342 	err = lock_trace(task);
343 	if (!err) {
344 		save_stack_trace_tsk(task, &trace);
345 
346 		for (i = 0; i < trace.nr_entries; i++) {
347 			seq_printf(m, "[<%pK>] %pS\n",
348 				   (void *)entries[i], (void *)entries[i]);
349 		}
350 		unlock_trace(task);
351 	}
352 	kfree(entries);
353 
354 	return err;
355 }
356 #endif
357 
358 #ifdef CONFIG_SCHEDSTATS
359 /*
360  * Provides /proc/PID/schedstat
361  */
362 static int proc_pid_schedstat(struct task_struct *task, char *buffer)
363 {
364 	return sprintf(buffer, "%llu %llu %lu\n",
365 			(unsigned long long)task->se.sum_exec_runtime,
366 			(unsigned long long)task->sched_info.run_delay,
367 			task->sched_info.pcount);
368 }
369 #endif
370 
371 #ifdef CONFIG_LATENCYTOP
372 static int lstats_show_proc(struct seq_file *m, void *v)
373 {
374 	int i;
375 	struct inode *inode = m->private;
376 	struct task_struct *task = get_proc_task(inode);
377 
378 	if (!task)
379 		return -ESRCH;
380 	seq_puts(m, "Latency Top version : v0.1\n");
381 	for (i = 0; i < 32; i++) {
382 		struct latency_record *lr = &task->latency_record[i];
383 		if (lr->backtrace[0]) {
384 			int q;
385 			seq_printf(m, "%i %li %li",
386 				   lr->count, lr->time, lr->max);
387 			for (q = 0; q < LT_BACKTRACEDEPTH; q++) {
388 				unsigned long bt = lr->backtrace[q];
389 				if (!bt)
390 					break;
391 				if (bt == ULONG_MAX)
392 					break;
393 				seq_printf(m, " %ps", (void *)bt);
394 			}
395 			seq_putc(m, '\n');
396 		}
397 
398 	}
399 	put_task_struct(task);
400 	return 0;
401 }
402 
403 static int lstats_open(struct inode *inode, struct file *file)
404 {
405 	return single_open(file, lstats_show_proc, inode);
406 }
407 
408 static ssize_t lstats_write(struct file *file, const char __user *buf,
409 			    size_t count, loff_t *offs)
410 {
411 	struct task_struct *task = get_proc_task(file->f_dentry->d_inode);
412 
413 	if (!task)
414 		return -ESRCH;
415 	clear_all_latency_tracing(task);
416 	put_task_struct(task);
417 
418 	return count;
419 }
420 
421 static const struct file_operations proc_lstats_operations = {
422 	.open		= lstats_open,
423 	.read		= seq_read,
424 	.write		= lstats_write,
425 	.llseek		= seq_lseek,
426 	.release	= single_release,
427 };
428 
429 #endif
430 
431 static int proc_oom_score(struct task_struct *task, char *buffer)
432 {
433 	unsigned long points = 0;
434 
435 	read_lock(&tasklist_lock);
436 	if (pid_alive(task))
437 		points = oom_badness(task, NULL, NULL,
438 					totalram_pages + total_swap_pages);
439 	read_unlock(&tasklist_lock);
440 	return sprintf(buffer, "%lu\n", points);
441 }
442 
443 struct limit_names {
444 	char *name;
445 	char *unit;
446 };
447 
448 static const struct limit_names lnames[RLIM_NLIMITS] = {
449 	[RLIMIT_CPU] = {"Max cpu time", "seconds"},
450 	[RLIMIT_FSIZE] = {"Max file size", "bytes"},
451 	[RLIMIT_DATA] = {"Max data size", "bytes"},
452 	[RLIMIT_STACK] = {"Max stack size", "bytes"},
453 	[RLIMIT_CORE] = {"Max core file size", "bytes"},
454 	[RLIMIT_RSS] = {"Max resident set", "bytes"},
455 	[RLIMIT_NPROC] = {"Max processes", "processes"},
456 	[RLIMIT_NOFILE] = {"Max open files", "files"},
457 	[RLIMIT_MEMLOCK] = {"Max locked memory", "bytes"},
458 	[RLIMIT_AS] = {"Max address space", "bytes"},
459 	[RLIMIT_LOCKS] = {"Max file locks", "locks"},
460 	[RLIMIT_SIGPENDING] = {"Max pending signals", "signals"},
461 	[RLIMIT_MSGQUEUE] = {"Max msgqueue size", "bytes"},
462 	[RLIMIT_NICE] = {"Max nice priority", NULL},
463 	[RLIMIT_RTPRIO] = {"Max realtime priority", NULL},
464 	[RLIMIT_RTTIME] = {"Max realtime timeout", "us"},
465 };
466 
467 /* Display limits for a process */
468 static int proc_pid_limits(struct task_struct *task, char *buffer)
469 {
470 	unsigned int i;
471 	int count = 0;
472 	unsigned long flags;
473 	char *bufptr = buffer;
474 
475 	struct rlimit rlim[RLIM_NLIMITS];
476 
477 	if (!lock_task_sighand(task, &flags))
478 		return 0;
479 	memcpy(rlim, task->signal->rlim, sizeof(struct rlimit) * RLIM_NLIMITS);
480 	unlock_task_sighand(task, &flags);
481 
482 	/*
483 	 * print the file header
484 	 */
485 	count += sprintf(&bufptr[count], "%-25s %-20s %-20s %-10s\n",
486 			"Limit", "Soft Limit", "Hard Limit", "Units");
487 
488 	for (i = 0; i < RLIM_NLIMITS; i++) {
489 		if (rlim[i].rlim_cur == RLIM_INFINITY)
490 			count += sprintf(&bufptr[count], "%-25s %-20s ",
491 					 lnames[i].name, "unlimited");
492 		else
493 			count += sprintf(&bufptr[count], "%-25s %-20lu ",
494 					 lnames[i].name, rlim[i].rlim_cur);
495 
496 		if (rlim[i].rlim_max == RLIM_INFINITY)
497 			count += sprintf(&bufptr[count], "%-20s ", "unlimited");
498 		else
499 			count += sprintf(&bufptr[count], "%-20lu ",
500 					 rlim[i].rlim_max);
501 
502 		if (lnames[i].unit)
503 			count += sprintf(&bufptr[count], "%-10s\n",
504 					 lnames[i].unit);
505 		else
506 			count += sprintf(&bufptr[count], "\n");
507 	}
508 
509 	return count;
510 }
511 
512 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK
513 static int proc_pid_syscall(struct task_struct *task, char *buffer)
514 {
515 	long nr;
516 	unsigned long args[6], sp, pc;
517 	int res = lock_trace(task);
518 	if (res)
519 		return res;
520 
521 	if (task_current_syscall(task, &nr, args, 6, &sp, &pc))
522 		res = sprintf(buffer, "running\n");
523 	else if (nr < 0)
524 		res = sprintf(buffer, "%ld 0x%lx 0x%lx\n", nr, sp, pc);
525 	else
526 		res = sprintf(buffer,
527 		       "%ld 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx\n",
528 		       nr,
529 		       args[0], args[1], args[2], args[3], args[4], args[5],
530 		       sp, pc);
531 	unlock_trace(task);
532 	return res;
533 }
534 #endif /* CONFIG_HAVE_ARCH_TRACEHOOK */
535 
536 /************************************************************************/
537 /*                       Here the fs part begins                        */
538 /************************************************************************/
539 
540 /* permission checks */
541 static int proc_fd_access_allowed(struct inode *inode)
542 {
543 	struct task_struct *task;
544 	int allowed = 0;
545 	/* Allow access to a task's file descriptors if it is us or we
546 	 * may use ptrace attach to the process and find out that
547 	 * information.
548 	 */
549 	task = get_proc_task(inode);
550 	if (task) {
551 		allowed = ptrace_may_access(task, PTRACE_MODE_READ);
552 		put_task_struct(task);
553 	}
554 	return allowed;
555 }
556 
557 int proc_setattr(struct dentry *dentry, struct iattr *attr)
558 {
559 	int error;
560 	struct inode *inode = dentry->d_inode;
561 
562 	if (attr->ia_valid & ATTR_MODE)
563 		return -EPERM;
564 
565 	error = inode_change_ok(inode, attr);
566 	if (error)
567 		return error;
568 
569 	if ((attr->ia_valid & ATTR_SIZE) &&
570 	    attr->ia_size != i_size_read(inode)) {
571 		error = vmtruncate(inode, attr->ia_size);
572 		if (error)
573 			return error;
574 	}
575 
576 	setattr_copy(inode, attr);
577 	mark_inode_dirty(inode);
578 	return 0;
579 }
580 
581 /*
582  * May current process learn task's sched/cmdline info (for hide_pid_min=1)
583  * or euid/egid (for hide_pid_min=2)?
584  */
585 static bool has_pid_permissions(struct pid_namespace *pid,
586 				 struct task_struct *task,
587 				 int hide_pid_min)
588 {
589 	if (pid->hide_pid < hide_pid_min)
590 		return true;
591 	if (in_group_p(pid->pid_gid))
592 		return true;
593 	return ptrace_may_access(task, PTRACE_MODE_READ);
594 }
595 
596 
597 static int proc_pid_permission(struct inode *inode, int mask)
598 {
599 	struct pid_namespace *pid = inode->i_sb->s_fs_info;
600 	struct task_struct *task;
601 	bool has_perms;
602 
603 	task = get_proc_task(inode);
604 	if (!task)
605 		return -ESRCH;
606 	has_perms = has_pid_permissions(pid, task, 1);
607 	put_task_struct(task);
608 
609 	if (!has_perms) {
610 		if (pid->hide_pid == 2) {
611 			/*
612 			 * Let's make getdents(), stat(), and open()
613 			 * consistent with each other.  If a process
614 			 * may not stat() a file, it shouldn't be seen
615 			 * in procfs at all.
616 			 */
617 			return -ENOENT;
618 		}
619 
620 		return -EPERM;
621 	}
622 	return generic_permission(inode, mask);
623 }
624 
625 
626 
627 static const struct inode_operations proc_def_inode_operations = {
628 	.setattr	= proc_setattr,
629 };
630 
631 #define PROC_BLOCK_SIZE	(3*1024)		/* 4K page size but our output routines use some slack for overruns */
632 
633 static ssize_t proc_info_read(struct file * file, char __user * buf,
634 			  size_t count, loff_t *ppos)
635 {
636 	struct inode * inode = file->f_path.dentry->d_inode;
637 	unsigned long page;
638 	ssize_t length;
639 	struct task_struct *task = get_proc_task(inode);
640 
641 	length = -ESRCH;
642 	if (!task)
643 		goto out_no_task;
644 
645 	if (count > PROC_BLOCK_SIZE)
646 		count = PROC_BLOCK_SIZE;
647 
648 	length = -ENOMEM;
649 	if (!(page = __get_free_page(GFP_TEMPORARY)))
650 		goto out;
651 
652 	length = PROC_I(inode)->op.proc_read(task, (char*)page);
653 
654 	if (length >= 0)
655 		length = simple_read_from_buffer(buf, count, ppos, (char *)page, length);
656 	free_page(page);
657 out:
658 	put_task_struct(task);
659 out_no_task:
660 	return length;
661 }
662 
663 static const struct file_operations proc_info_file_operations = {
664 	.read		= proc_info_read,
665 	.llseek		= generic_file_llseek,
666 };
667 
668 static int proc_single_show(struct seq_file *m, void *v)
669 {
670 	struct inode *inode = m->private;
671 	struct pid_namespace *ns;
672 	struct pid *pid;
673 	struct task_struct *task;
674 	int ret;
675 
676 	ns = inode->i_sb->s_fs_info;
677 	pid = proc_pid(inode);
678 	task = get_pid_task(pid, PIDTYPE_PID);
679 	if (!task)
680 		return -ESRCH;
681 
682 	ret = PROC_I(inode)->op.proc_show(m, ns, pid, task);
683 
684 	put_task_struct(task);
685 	return ret;
686 }
687 
688 static int proc_single_open(struct inode *inode, struct file *filp)
689 {
690 	return single_open(filp, proc_single_show, inode);
691 }
692 
693 static const struct file_operations proc_single_file_operations = {
694 	.open		= proc_single_open,
695 	.read		= seq_read,
696 	.llseek		= seq_lseek,
697 	.release	= single_release,
698 };
699 
700 static int mem_open(struct inode* inode, struct file* file)
701 {
702 	struct task_struct *task = get_proc_task(file->f_path.dentry->d_inode);
703 	struct mm_struct *mm;
704 
705 	if (!task)
706 		return -ESRCH;
707 
708 	mm = mm_access(task, PTRACE_MODE_ATTACH);
709 	put_task_struct(task);
710 
711 	if (IS_ERR(mm))
712 		return PTR_ERR(mm);
713 
714 	/* OK to pass negative loff_t, we can catch out-of-range */
715 	file->f_mode |= FMODE_UNSIGNED_OFFSET;
716 	file->private_data = mm;
717 
718 	return 0;
719 }
720 
721 static ssize_t mem_read(struct file * file, char __user * buf,
722 			size_t count, loff_t *ppos)
723 {
724 	int ret;
725 	char *page;
726 	unsigned long src = *ppos;
727 	struct mm_struct *mm = file->private_data;
728 
729 	if (!mm)
730 		return 0;
731 
732 	page = (char *)__get_free_page(GFP_TEMPORARY);
733 	if (!page)
734 		return -ENOMEM;
735 
736 	ret = 0;
737 
738 	while (count > 0) {
739 		int this_len, retval;
740 
741 		this_len = (count > PAGE_SIZE) ? PAGE_SIZE : count;
742 		retval = access_remote_vm(mm, src, page, this_len, 0);
743 		if (!retval) {
744 			if (!ret)
745 				ret = -EIO;
746 			break;
747 		}
748 
749 		if (copy_to_user(buf, page, retval)) {
750 			ret = -EFAULT;
751 			break;
752 		}
753 
754 		ret += retval;
755 		src += retval;
756 		buf += retval;
757 		count -= retval;
758 	}
759 	*ppos = src;
760 
761 	free_page((unsigned long) page);
762 	return ret;
763 }
764 
765 static ssize_t mem_write(struct file * file, const char __user *buf,
766 			 size_t count, loff_t *ppos)
767 {
768 	int copied;
769 	char *page;
770 	unsigned long dst = *ppos;
771 	struct mm_struct *mm = file->private_data;
772 
773 	if (!mm)
774 		return 0;
775 
776 	page = (char *)__get_free_page(GFP_TEMPORARY);
777 	if (!page)
778 		return -ENOMEM;
779 
780 	copied = 0;
781 	while (count > 0) {
782 		int this_len, retval;
783 
784 		this_len = (count > PAGE_SIZE) ? PAGE_SIZE : count;
785 		if (copy_from_user(page, buf, this_len)) {
786 			copied = -EFAULT;
787 			break;
788 		}
789 		retval = access_remote_vm(mm, dst, page, this_len, 1);
790 		if (!retval) {
791 			if (!copied)
792 				copied = -EIO;
793 			break;
794 		}
795 		copied += retval;
796 		buf += retval;
797 		dst += retval;
798 		count -= retval;
799 	}
800 	*ppos = dst;
801 
802 	free_page((unsigned long) page);
803 	return copied;
804 }
805 
806 loff_t mem_lseek(struct file *file, loff_t offset, int orig)
807 {
808 	switch (orig) {
809 	case 0:
810 		file->f_pos = offset;
811 		break;
812 	case 1:
813 		file->f_pos += offset;
814 		break;
815 	default:
816 		return -EINVAL;
817 	}
818 	force_successful_syscall_return();
819 	return file->f_pos;
820 }
821 
822 static int mem_release(struct inode *inode, struct file *file)
823 {
824 	struct mm_struct *mm = file->private_data;
825 
826 	mmput(mm);
827 	return 0;
828 }
829 
830 static const struct file_operations proc_mem_operations = {
831 	.llseek		= mem_lseek,
832 	.read		= mem_read,
833 	.write		= mem_write,
834 	.open		= mem_open,
835 	.release	= mem_release,
836 };
837 
838 static ssize_t environ_read(struct file *file, char __user *buf,
839 			size_t count, loff_t *ppos)
840 {
841 	struct task_struct *task = get_proc_task(file->f_dentry->d_inode);
842 	char *page;
843 	unsigned long src = *ppos;
844 	int ret = -ESRCH;
845 	struct mm_struct *mm;
846 
847 	if (!task)
848 		goto out_no_task;
849 
850 	ret = -ENOMEM;
851 	page = (char *)__get_free_page(GFP_TEMPORARY);
852 	if (!page)
853 		goto out;
854 
855 
856 	mm = mm_for_maps(task);
857 	ret = PTR_ERR(mm);
858 	if (!mm || IS_ERR(mm))
859 		goto out_free;
860 
861 	ret = 0;
862 	while (count > 0) {
863 		int this_len, retval, max_len;
864 
865 		this_len = mm->env_end - (mm->env_start + src);
866 
867 		if (this_len <= 0)
868 			break;
869 
870 		max_len = (count > PAGE_SIZE) ? PAGE_SIZE : count;
871 		this_len = (this_len > max_len) ? max_len : this_len;
872 
873 		retval = access_process_vm(task, (mm->env_start + src),
874 			page, this_len, 0);
875 
876 		if (retval <= 0) {
877 			ret = retval;
878 			break;
879 		}
880 
881 		if (copy_to_user(buf, page, retval)) {
882 			ret = -EFAULT;
883 			break;
884 		}
885 
886 		ret += retval;
887 		src += retval;
888 		buf += retval;
889 		count -= retval;
890 	}
891 	*ppos = src;
892 
893 	mmput(mm);
894 out_free:
895 	free_page((unsigned long) page);
896 out:
897 	put_task_struct(task);
898 out_no_task:
899 	return ret;
900 }
901 
902 static const struct file_operations proc_environ_operations = {
903 	.read		= environ_read,
904 	.llseek		= generic_file_llseek,
905 };
906 
907 static ssize_t oom_adjust_read(struct file *file, char __user *buf,
908 				size_t count, loff_t *ppos)
909 {
910 	struct task_struct *task = get_proc_task(file->f_path.dentry->d_inode);
911 	char buffer[PROC_NUMBUF];
912 	size_t len;
913 	int oom_adjust = OOM_DISABLE;
914 	unsigned long flags;
915 
916 	if (!task)
917 		return -ESRCH;
918 
919 	if (lock_task_sighand(task, &flags)) {
920 		oom_adjust = task->signal->oom_adj;
921 		unlock_task_sighand(task, &flags);
922 	}
923 
924 	put_task_struct(task);
925 
926 	len = snprintf(buffer, sizeof(buffer), "%i\n", oom_adjust);
927 
928 	return simple_read_from_buffer(buf, count, ppos, buffer, len);
929 }
930 
931 static ssize_t oom_adjust_write(struct file *file, const char __user *buf,
932 				size_t count, loff_t *ppos)
933 {
934 	struct task_struct *task;
935 	char buffer[PROC_NUMBUF];
936 	int oom_adjust;
937 	unsigned long flags;
938 	int err;
939 
940 	memset(buffer, 0, sizeof(buffer));
941 	if (count > sizeof(buffer) - 1)
942 		count = sizeof(buffer) - 1;
943 	if (copy_from_user(buffer, buf, count)) {
944 		err = -EFAULT;
945 		goto out;
946 	}
947 
948 	err = kstrtoint(strstrip(buffer), 0, &oom_adjust);
949 	if (err)
950 		goto out;
951 	if ((oom_adjust < OOM_ADJUST_MIN || oom_adjust > OOM_ADJUST_MAX) &&
952 	     oom_adjust != OOM_DISABLE) {
953 		err = -EINVAL;
954 		goto out;
955 	}
956 
957 	task = get_proc_task(file->f_path.dentry->d_inode);
958 	if (!task) {
959 		err = -ESRCH;
960 		goto out;
961 	}
962 
963 	task_lock(task);
964 	if (!task->mm) {
965 		err = -EINVAL;
966 		goto err_task_lock;
967 	}
968 
969 	if (!lock_task_sighand(task, &flags)) {
970 		err = -ESRCH;
971 		goto err_task_lock;
972 	}
973 
974 	if (oom_adjust < task->signal->oom_adj && !capable(CAP_SYS_RESOURCE)) {
975 		err = -EACCES;
976 		goto err_sighand;
977 	}
978 
979 	/*
980 	 * Warn that /proc/pid/oom_adj is deprecated, see
981 	 * Documentation/feature-removal-schedule.txt.
982 	 */
983 	printk_once(KERN_WARNING "%s (%d): /proc/%d/oom_adj is deprecated, please use /proc/%d/oom_score_adj instead.\n",
984 		  current->comm, task_pid_nr(current), task_pid_nr(task),
985 		  task_pid_nr(task));
986 	task->signal->oom_adj = oom_adjust;
987 	/*
988 	 * Scale /proc/pid/oom_score_adj appropriately ensuring that a maximum
989 	 * value is always attainable.
990 	 */
991 	if (task->signal->oom_adj == OOM_ADJUST_MAX)
992 		task->signal->oom_score_adj = OOM_SCORE_ADJ_MAX;
993 	else
994 		task->signal->oom_score_adj = (oom_adjust * OOM_SCORE_ADJ_MAX) /
995 								-OOM_DISABLE;
996 	trace_oom_score_adj_update(task);
997 err_sighand:
998 	unlock_task_sighand(task, &flags);
999 err_task_lock:
1000 	task_unlock(task);
1001 	put_task_struct(task);
1002 out:
1003 	return err < 0 ? err : count;
1004 }
1005 
1006 static const struct file_operations proc_oom_adjust_operations = {
1007 	.read		= oom_adjust_read,
1008 	.write		= oom_adjust_write,
1009 	.llseek		= generic_file_llseek,
1010 };
1011 
1012 static ssize_t oom_score_adj_read(struct file *file, char __user *buf,
1013 					size_t count, loff_t *ppos)
1014 {
1015 	struct task_struct *task = get_proc_task(file->f_path.dentry->d_inode);
1016 	char buffer[PROC_NUMBUF];
1017 	int oom_score_adj = OOM_SCORE_ADJ_MIN;
1018 	unsigned long flags;
1019 	size_t len;
1020 
1021 	if (!task)
1022 		return -ESRCH;
1023 	if (lock_task_sighand(task, &flags)) {
1024 		oom_score_adj = task->signal->oom_score_adj;
1025 		unlock_task_sighand(task, &flags);
1026 	}
1027 	put_task_struct(task);
1028 	len = snprintf(buffer, sizeof(buffer), "%d\n", oom_score_adj);
1029 	return simple_read_from_buffer(buf, count, ppos, buffer, len);
1030 }
1031 
1032 static ssize_t oom_score_adj_write(struct file *file, const char __user *buf,
1033 					size_t count, loff_t *ppos)
1034 {
1035 	struct task_struct *task;
1036 	char buffer[PROC_NUMBUF];
1037 	unsigned long flags;
1038 	int oom_score_adj;
1039 	int err;
1040 
1041 	memset(buffer, 0, sizeof(buffer));
1042 	if (count > sizeof(buffer) - 1)
1043 		count = sizeof(buffer) - 1;
1044 	if (copy_from_user(buffer, buf, count)) {
1045 		err = -EFAULT;
1046 		goto out;
1047 	}
1048 
1049 	err = kstrtoint(strstrip(buffer), 0, &oom_score_adj);
1050 	if (err)
1051 		goto out;
1052 	if (oom_score_adj < OOM_SCORE_ADJ_MIN ||
1053 			oom_score_adj > OOM_SCORE_ADJ_MAX) {
1054 		err = -EINVAL;
1055 		goto out;
1056 	}
1057 
1058 	task = get_proc_task(file->f_path.dentry->d_inode);
1059 	if (!task) {
1060 		err = -ESRCH;
1061 		goto out;
1062 	}
1063 
1064 	task_lock(task);
1065 	if (!task->mm) {
1066 		err = -EINVAL;
1067 		goto err_task_lock;
1068 	}
1069 
1070 	if (!lock_task_sighand(task, &flags)) {
1071 		err = -ESRCH;
1072 		goto err_task_lock;
1073 	}
1074 
1075 	if (oom_score_adj < task->signal->oom_score_adj_min &&
1076 			!capable(CAP_SYS_RESOURCE)) {
1077 		err = -EACCES;
1078 		goto err_sighand;
1079 	}
1080 
1081 	task->signal->oom_score_adj = oom_score_adj;
1082 	if (has_capability_noaudit(current, CAP_SYS_RESOURCE))
1083 		task->signal->oom_score_adj_min = oom_score_adj;
1084 	trace_oom_score_adj_update(task);
1085 	/*
1086 	 * Scale /proc/pid/oom_adj appropriately ensuring that OOM_DISABLE is
1087 	 * always attainable.
1088 	 */
1089 	if (task->signal->oom_score_adj == OOM_SCORE_ADJ_MIN)
1090 		task->signal->oom_adj = OOM_DISABLE;
1091 	else
1092 		task->signal->oom_adj = (oom_score_adj * OOM_ADJUST_MAX) /
1093 							OOM_SCORE_ADJ_MAX;
1094 err_sighand:
1095 	unlock_task_sighand(task, &flags);
1096 err_task_lock:
1097 	task_unlock(task);
1098 	put_task_struct(task);
1099 out:
1100 	return err < 0 ? err : count;
1101 }
1102 
1103 static const struct file_operations proc_oom_score_adj_operations = {
1104 	.read		= oom_score_adj_read,
1105 	.write		= oom_score_adj_write,
1106 	.llseek		= default_llseek,
1107 };
1108 
1109 #ifdef CONFIG_AUDITSYSCALL
1110 #define TMPBUFLEN 21
1111 static ssize_t proc_loginuid_read(struct file * file, char __user * buf,
1112 				  size_t count, loff_t *ppos)
1113 {
1114 	struct inode * inode = file->f_path.dentry->d_inode;
1115 	struct task_struct *task = get_proc_task(inode);
1116 	ssize_t length;
1117 	char tmpbuf[TMPBUFLEN];
1118 
1119 	if (!task)
1120 		return -ESRCH;
1121 	length = scnprintf(tmpbuf, TMPBUFLEN, "%u",
1122 				audit_get_loginuid(task));
1123 	put_task_struct(task);
1124 	return simple_read_from_buffer(buf, count, ppos, tmpbuf, length);
1125 }
1126 
1127 static ssize_t proc_loginuid_write(struct file * file, const char __user * buf,
1128 				   size_t count, loff_t *ppos)
1129 {
1130 	struct inode * inode = file->f_path.dentry->d_inode;
1131 	char *page, *tmp;
1132 	ssize_t length;
1133 	uid_t loginuid;
1134 
1135 	rcu_read_lock();
1136 	if (current != pid_task(proc_pid(inode), PIDTYPE_PID)) {
1137 		rcu_read_unlock();
1138 		return -EPERM;
1139 	}
1140 	rcu_read_unlock();
1141 
1142 	if (count >= PAGE_SIZE)
1143 		count = PAGE_SIZE - 1;
1144 
1145 	if (*ppos != 0) {
1146 		/* No partial writes. */
1147 		return -EINVAL;
1148 	}
1149 	page = (char*)__get_free_page(GFP_TEMPORARY);
1150 	if (!page)
1151 		return -ENOMEM;
1152 	length = -EFAULT;
1153 	if (copy_from_user(page, buf, count))
1154 		goto out_free_page;
1155 
1156 	page[count] = '\0';
1157 	loginuid = simple_strtoul(page, &tmp, 10);
1158 	if (tmp == page) {
1159 		length = -EINVAL;
1160 		goto out_free_page;
1161 
1162 	}
1163 	length = audit_set_loginuid(loginuid);
1164 	if (likely(length == 0))
1165 		length = count;
1166 
1167 out_free_page:
1168 	free_page((unsigned long) page);
1169 	return length;
1170 }
1171 
1172 static const struct file_operations proc_loginuid_operations = {
1173 	.read		= proc_loginuid_read,
1174 	.write		= proc_loginuid_write,
1175 	.llseek		= generic_file_llseek,
1176 };
1177 
1178 static ssize_t proc_sessionid_read(struct file * file, char __user * buf,
1179 				  size_t count, loff_t *ppos)
1180 {
1181 	struct inode * inode = file->f_path.dentry->d_inode;
1182 	struct task_struct *task = get_proc_task(inode);
1183 	ssize_t length;
1184 	char tmpbuf[TMPBUFLEN];
1185 
1186 	if (!task)
1187 		return -ESRCH;
1188 	length = scnprintf(tmpbuf, TMPBUFLEN, "%u",
1189 				audit_get_sessionid(task));
1190 	put_task_struct(task);
1191 	return simple_read_from_buffer(buf, count, ppos, tmpbuf, length);
1192 }
1193 
1194 static const struct file_operations proc_sessionid_operations = {
1195 	.read		= proc_sessionid_read,
1196 	.llseek		= generic_file_llseek,
1197 };
1198 #endif
1199 
1200 #ifdef CONFIG_FAULT_INJECTION
1201 static ssize_t proc_fault_inject_read(struct file * file, char __user * buf,
1202 				      size_t count, loff_t *ppos)
1203 {
1204 	struct task_struct *task = get_proc_task(file->f_dentry->d_inode);
1205 	char buffer[PROC_NUMBUF];
1206 	size_t len;
1207 	int make_it_fail;
1208 
1209 	if (!task)
1210 		return -ESRCH;
1211 	make_it_fail = task->make_it_fail;
1212 	put_task_struct(task);
1213 
1214 	len = snprintf(buffer, sizeof(buffer), "%i\n", make_it_fail);
1215 
1216 	return simple_read_from_buffer(buf, count, ppos, buffer, len);
1217 }
1218 
1219 static ssize_t proc_fault_inject_write(struct file * file,
1220 			const char __user * buf, size_t count, loff_t *ppos)
1221 {
1222 	struct task_struct *task;
1223 	char buffer[PROC_NUMBUF], *end;
1224 	int make_it_fail;
1225 
1226 	if (!capable(CAP_SYS_RESOURCE))
1227 		return -EPERM;
1228 	memset(buffer, 0, sizeof(buffer));
1229 	if (count > sizeof(buffer) - 1)
1230 		count = sizeof(buffer) - 1;
1231 	if (copy_from_user(buffer, buf, count))
1232 		return -EFAULT;
1233 	make_it_fail = simple_strtol(strstrip(buffer), &end, 0);
1234 	if (*end)
1235 		return -EINVAL;
1236 	task = get_proc_task(file->f_dentry->d_inode);
1237 	if (!task)
1238 		return -ESRCH;
1239 	task->make_it_fail = make_it_fail;
1240 	put_task_struct(task);
1241 
1242 	return count;
1243 }
1244 
1245 static const struct file_operations proc_fault_inject_operations = {
1246 	.read		= proc_fault_inject_read,
1247 	.write		= proc_fault_inject_write,
1248 	.llseek		= generic_file_llseek,
1249 };
1250 #endif
1251 
1252 
1253 #ifdef CONFIG_SCHED_DEBUG
1254 /*
1255  * Print out various scheduling related per-task fields:
1256  */
1257 static int sched_show(struct seq_file *m, void *v)
1258 {
1259 	struct inode *inode = m->private;
1260 	struct task_struct *p;
1261 
1262 	p = get_proc_task(inode);
1263 	if (!p)
1264 		return -ESRCH;
1265 	proc_sched_show_task(p, m);
1266 
1267 	put_task_struct(p);
1268 
1269 	return 0;
1270 }
1271 
1272 static ssize_t
1273 sched_write(struct file *file, const char __user *buf,
1274 	    size_t count, loff_t *offset)
1275 {
1276 	struct inode *inode = file->f_path.dentry->d_inode;
1277 	struct task_struct *p;
1278 
1279 	p = get_proc_task(inode);
1280 	if (!p)
1281 		return -ESRCH;
1282 	proc_sched_set_task(p);
1283 
1284 	put_task_struct(p);
1285 
1286 	return count;
1287 }
1288 
1289 static int sched_open(struct inode *inode, struct file *filp)
1290 {
1291 	return single_open(filp, sched_show, inode);
1292 }
1293 
1294 static const struct file_operations proc_pid_sched_operations = {
1295 	.open		= sched_open,
1296 	.read		= seq_read,
1297 	.write		= sched_write,
1298 	.llseek		= seq_lseek,
1299 	.release	= single_release,
1300 };
1301 
1302 #endif
1303 
1304 #ifdef CONFIG_SCHED_AUTOGROUP
1305 /*
1306  * Print out autogroup related information:
1307  */
1308 static int sched_autogroup_show(struct seq_file *m, void *v)
1309 {
1310 	struct inode *inode = m->private;
1311 	struct task_struct *p;
1312 
1313 	p = get_proc_task(inode);
1314 	if (!p)
1315 		return -ESRCH;
1316 	proc_sched_autogroup_show_task(p, m);
1317 
1318 	put_task_struct(p);
1319 
1320 	return 0;
1321 }
1322 
1323 static ssize_t
1324 sched_autogroup_write(struct file *file, const char __user *buf,
1325 	    size_t count, loff_t *offset)
1326 {
1327 	struct inode *inode = file->f_path.dentry->d_inode;
1328 	struct task_struct *p;
1329 	char buffer[PROC_NUMBUF];
1330 	int nice;
1331 	int err;
1332 
1333 	memset(buffer, 0, sizeof(buffer));
1334 	if (count > sizeof(buffer) - 1)
1335 		count = sizeof(buffer) - 1;
1336 	if (copy_from_user(buffer, buf, count))
1337 		return -EFAULT;
1338 
1339 	err = kstrtoint(strstrip(buffer), 0, &nice);
1340 	if (err < 0)
1341 		return err;
1342 
1343 	p = get_proc_task(inode);
1344 	if (!p)
1345 		return -ESRCH;
1346 
1347 	err = nice;
1348 	err = proc_sched_autogroup_set_nice(p, &err);
1349 	if (err)
1350 		count = err;
1351 
1352 	put_task_struct(p);
1353 
1354 	return count;
1355 }
1356 
1357 static int sched_autogroup_open(struct inode *inode, struct file *filp)
1358 {
1359 	int ret;
1360 
1361 	ret = single_open(filp, sched_autogroup_show, NULL);
1362 	if (!ret) {
1363 		struct seq_file *m = filp->private_data;
1364 
1365 		m->private = inode;
1366 	}
1367 	return ret;
1368 }
1369 
1370 static const struct file_operations proc_pid_sched_autogroup_operations = {
1371 	.open		= sched_autogroup_open,
1372 	.read		= seq_read,
1373 	.write		= sched_autogroup_write,
1374 	.llseek		= seq_lseek,
1375 	.release	= single_release,
1376 };
1377 
1378 #endif /* CONFIG_SCHED_AUTOGROUP */
1379 
1380 static ssize_t comm_write(struct file *file, const char __user *buf,
1381 				size_t count, loff_t *offset)
1382 {
1383 	struct inode *inode = file->f_path.dentry->d_inode;
1384 	struct task_struct *p;
1385 	char buffer[TASK_COMM_LEN];
1386 
1387 	memset(buffer, 0, sizeof(buffer));
1388 	if (count > sizeof(buffer) - 1)
1389 		count = sizeof(buffer) - 1;
1390 	if (copy_from_user(buffer, buf, count))
1391 		return -EFAULT;
1392 
1393 	p = get_proc_task(inode);
1394 	if (!p)
1395 		return -ESRCH;
1396 
1397 	if (same_thread_group(current, p))
1398 		set_task_comm(p, buffer);
1399 	else
1400 		count = -EINVAL;
1401 
1402 	put_task_struct(p);
1403 
1404 	return count;
1405 }
1406 
1407 static int comm_show(struct seq_file *m, void *v)
1408 {
1409 	struct inode *inode = m->private;
1410 	struct task_struct *p;
1411 
1412 	p = get_proc_task(inode);
1413 	if (!p)
1414 		return -ESRCH;
1415 
1416 	task_lock(p);
1417 	seq_printf(m, "%s\n", p->comm);
1418 	task_unlock(p);
1419 
1420 	put_task_struct(p);
1421 
1422 	return 0;
1423 }
1424 
1425 static int comm_open(struct inode *inode, struct file *filp)
1426 {
1427 	return single_open(filp, comm_show, inode);
1428 }
1429 
1430 static const struct file_operations proc_pid_set_comm_operations = {
1431 	.open		= comm_open,
1432 	.read		= seq_read,
1433 	.write		= comm_write,
1434 	.llseek		= seq_lseek,
1435 	.release	= single_release,
1436 };
1437 
1438 static int proc_exe_link(struct dentry *dentry, struct path *exe_path)
1439 {
1440 	struct task_struct *task;
1441 	struct mm_struct *mm;
1442 	struct file *exe_file;
1443 
1444 	task = get_proc_task(dentry->d_inode);
1445 	if (!task)
1446 		return -ENOENT;
1447 	mm = get_task_mm(task);
1448 	put_task_struct(task);
1449 	if (!mm)
1450 		return -ENOENT;
1451 	exe_file = get_mm_exe_file(mm);
1452 	mmput(mm);
1453 	if (exe_file) {
1454 		*exe_path = exe_file->f_path;
1455 		path_get(&exe_file->f_path);
1456 		fput(exe_file);
1457 		return 0;
1458 	} else
1459 		return -ENOENT;
1460 }
1461 
1462 static void *proc_pid_follow_link(struct dentry *dentry, struct nameidata *nd)
1463 {
1464 	struct inode *inode = dentry->d_inode;
1465 	int error = -EACCES;
1466 
1467 	/* We don't need a base pointer in the /proc filesystem */
1468 	path_put(&nd->path);
1469 
1470 	/* Are we allowed to snoop on the tasks file descriptors? */
1471 	if (!proc_fd_access_allowed(inode))
1472 		goto out;
1473 
1474 	error = PROC_I(inode)->op.proc_get_link(dentry, &nd->path);
1475 out:
1476 	return ERR_PTR(error);
1477 }
1478 
1479 static int do_proc_readlink(struct path *path, char __user *buffer, int buflen)
1480 {
1481 	char *tmp = (char*)__get_free_page(GFP_TEMPORARY);
1482 	char *pathname;
1483 	int len;
1484 
1485 	if (!tmp)
1486 		return -ENOMEM;
1487 
1488 	pathname = d_path(path, tmp, PAGE_SIZE);
1489 	len = PTR_ERR(pathname);
1490 	if (IS_ERR(pathname))
1491 		goto out;
1492 	len = tmp + PAGE_SIZE - 1 - pathname;
1493 
1494 	if (len > buflen)
1495 		len = buflen;
1496 	if (copy_to_user(buffer, pathname, len))
1497 		len = -EFAULT;
1498  out:
1499 	free_page((unsigned long)tmp);
1500 	return len;
1501 }
1502 
1503 static int proc_pid_readlink(struct dentry * dentry, char __user * buffer, int buflen)
1504 {
1505 	int error = -EACCES;
1506 	struct inode *inode = dentry->d_inode;
1507 	struct path path;
1508 
1509 	/* Are we allowed to snoop on the tasks file descriptors? */
1510 	if (!proc_fd_access_allowed(inode))
1511 		goto out;
1512 
1513 	error = PROC_I(inode)->op.proc_get_link(dentry, &path);
1514 	if (error)
1515 		goto out;
1516 
1517 	error = do_proc_readlink(&path, buffer, buflen);
1518 	path_put(&path);
1519 out:
1520 	return error;
1521 }
1522 
1523 static const struct inode_operations proc_pid_link_inode_operations = {
1524 	.readlink	= proc_pid_readlink,
1525 	.follow_link	= proc_pid_follow_link,
1526 	.setattr	= proc_setattr,
1527 };
1528 
1529 
1530 /* building an inode */
1531 
1532 static int task_dumpable(struct task_struct *task)
1533 {
1534 	int dumpable = 0;
1535 	struct mm_struct *mm;
1536 
1537 	task_lock(task);
1538 	mm = task->mm;
1539 	if (mm)
1540 		dumpable = get_dumpable(mm);
1541 	task_unlock(task);
1542 	if(dumpable == 1)
1543 		return 1;
1544 	return 0;
1545 }
1546 
1547 struct inode *proc_pid_make_inode(struct super_block * sb, struct task_struct *task)
1548 {
1549 	struct inode * inode;
1550 	struct proc_inode *ei;
1551 	const struct cred *cred;
1552 
1553 	/* We need a new inode */
1554 
1555 	inode = new_inode(sb);
1556 	if (!inode)
1557 		goto out;
1558 
1559 	/* Common stuff */
1560 	ei = PROC_I(inode);
1561 	inode->i_ino = get_next_ino();
1562 	inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
1563 	inode->i_op = &proc_def_inode_operations;
1564 
1565 	/*
1566 	 * grab the reference to task.
1567 	 */
1568 	ei->pid = get_task_pid(task, PIDTYPE_PID);
1569 	if (!ei->pid)
1570 		goto out_unlock;
1571 
1572 	if (task_dumpable(task)) {
1573 		rcu_read_lock();
1574 		cred = __task_cred(task);
1575 		inode->i_uid = cred->euid;
1576 		inode->i_gid = cred->egid;
1577 		rcu_read_unlock();
1578 	}
1579 	security_task_to_inode(task, inode);
1580 
1581 out:
1582 	return inode;
1583 
1584 out_unlock:
1585 	iput(inode);
1586 	return NULL;
1587 }
1588 
1589 int pid_getattr(struct vfsmount *mnt, struct dentry *dentry, struct kstat *stat)
1590 {
1591 	struct inode *inode = dentry->d_inode;
1592 	struct task_struct *task;
1593 	const struct cred *cred;
1594 	struct pid_namespace *pid = dentry->d_sb->s_fs_info;
1595 
1596 	generic_fillattr(inode, stat);
1597 
1598 	rcu_read_lock();
1599 	stat->uid = 0;
1600 	stat->gid = 0;
1601 	task = pid_task(proc_pid(inode), PIDTYPE_PID);
1602 	if (task) {
1603 		if (!has_pid_permissions(pid, task, 2)) {
1604 			rcu_read_unlock();
1605 			/*
1606 			 * This doesn't prevent learning whether PID exists,
1607 			 * it only makes getattr() consistent with readdir().
1608 			 */
1609 			return -ENOENT;
1610 		}
1611 		if ((inode->i_mode == (S_IFDIR|S_IRUGO|S_IXUGO)) ||
1612 		    task_dumpable(task)) {
1613 			cred = __task_cred(task);
1614 			stat->uid = cred->euid;
1615 			stat->gid = cred->egid;
1616 		}
1617 	}
1618 	rcu_read_unlock();
1619 	return 0;
1620 }
1621 
1622 /* dentry stuff */
1623 
1624 /*
1625  *	Exceptional case: normally we are not allowed to unhash a busy
1626  * directory. In this case, however, we can do it - no aliasing problems
1627  * due to the way we treat inodes.
1628  *
1629  * Rewrite the inode's ownerships here because the owning task may have
1630  * performed a setuid(), etc.
1631  *
1632  * Before the /proc/pid/status file was created the only way to read
1633  * the effective uid of a /process was to stat /proc/pid.  Reading
1634  * /proc/pid/status is slow enough that procps and other packages
1635  * kept stating /proc/pid.  To keep the rules in /proc simple I have
1636  * made this apply to all per process world readable and executable
1637  * directories.
1638  */
1639 int pid_revalidate(struct dentry *dentry, struct nameidata *nd)
1640 {
1641 	struct inode *inode;
1642 	struct task_struct *task;
1643 	const struct cred *cred;
1644 
1645 	if (nd && nd->flags & LOOKUP_RCU)
1646 		return -ECHILD;
1647 
1648 	inode = dentry->d_inode;
1649 	task = get_proc_task(inode);
1650 
1651 	if (task) {
1652 		if ((inode->i_mode == (S_IFDIR|S_IRUGO|S_IXUGO)) ||
1653 		    task_dumpable(task)) {
1654 			rcu_read_lock();
1655 			cred = __task_cred(task);
1656 			inode->i_uid = cred->euid;
1657 			inode->i_gid = cred->egid;
1658 			rcu_read_unlock();
1659 		} else {
1660 			inode->i_uid = 0;
1661 			inode->i_gid = 0;
1662 		}
1663 		inode->i_mode &= ~(S_ISUID | S_ISGID);
1664 		security_task_to_inode(task, inode);
1665 		put_task_struct(task);
1666 		return 1;
1667 	}
1668 	d_drop(dentry);
1669 	return 0;
1670 }
1671 
1672 static int pid_delete_dentry(const struct dentry * dentry)
1673 {
1674 	/* Is the task we represent dead?
1675 	 * If so, then don't put the dentry on the lru list,
1676 	 * kill it immediately.
1677 	 */
1678 	return !proc_pid(dentry->d_inode)->tasks[PIDTYPE_PID].first;
1679 }
1680 
1681 const struct dentry_operations pid_dentry_operations =
1682 {
1683 	.d_revalidate	= pid_revalidate,
1684 	.d_delete	= pid_delete_dentry,
1685 };
1686 
1687 /* Lookups */
1688 
1689 /*
1690  * Fill a directory entry.
1691  *
1692  * If possible create the dcache entry and derive our inode number and
1693  * file type from dcache entry.
1694  *
1695  * Since all of the proc inode numbers are dynamically generated, the inode
1696  * numbers do not exist until the inode is cache.  This means creating the
1697  * the dcache entry in readdir is necessary to keep the inode numbers
1698  * reported by readdir in sync with the inode numbers reported
1699  * by stat.
1700  */
1701 int proc_fill_cache(struct file *filp, void *dirent, filldir_t filldir,
1702 	const char *name, int len,
1703 	instantiate_t instantiate, struct task_struct *task, const void *ptr)
1704 {
1705 	struct dentry *child, *dir = filp->f_path.dentry;
1706 	struct inode *inode;
1707 	struct qstr qname;
1708 	ino_t ino = 0;
1709 	unsigned type = DT_UNKNOWN;
1710 
1711 	qname.name = name;
1712 	qname.len  = len;
1713 	qname.hash = full_name_hash(name, len);
1714 
1715 	child = d_lookup(dir, &qname);
1716 	if (!child) {
1717 		struct dentry *new;
1718 		new = d_alloc(dir, &qname);
1719 		if (new) {
1720 			child = instantiate(dir->d_inode, new, task, ptr);
1721 			if (child)
1722 				dput(new);
1723 			else
1724 				child = new;
1725 		}
1726 	}
1727 	if (!child || IS_ERR(child) || !child->d_inode)
1728 		goto end_instantiate;
1729 	inode = child->d_inode;
1730 	if (inode) {
1731 		ino = inode->i_ino;
1732 		type = inode->i_mode >> 12;
1733 	}
1734 	dput(child);
1735 end_instantiate:
1736 	if (!ino)
1737 		ino = find_inode_number(dir, &qname);
1738 	if (!ino)
1739 		ino = 1;
1740 	return filldir(dirent, name, len, filp->f_pos, ino, type);
1741 }
1742 
1743 static unsigned name_to_int(struct dentry *dentry)
1744 {
1745 	const char *name = dentry->d_name.name;
1746 	int len = dentry->d_name.len;
1747 	unsigned n = 0;
1748 
1749 	if (len > 1 && *name == '0')
1750 		goto out;
1751 	while (len-- > 0) {
1752 		unsigned c = *name++ - '0';
1753 		if (c > 9)
1754 			goto out;
1755 		if (n >= (~0U-9)/10)
1756 			goto out;
1757 		n *= 10;
1758 		n += c;
1759 	}
1760 	return n;
1761 out:
1762 	return ~0U;
1763 }
1764 
1765 #define PROC_FDINFO_MAX 64
1766 
1767 static int proc_fd_info(struct inode *inode, struct path *path, char *info)
1768 {
1769 	struct task_struct *task = get_proc_task(inode);
1770 	struct files_struct *files = NULL;
1771 	struct file *file;
1772 	int fd = proc_fd(inode);
1773 
1774 	if (task) {
1775 		files = get_files_struct(task);
1776 		put_task_struct(task);
1777 	}
1778 	if (files) {
1779 		/*
1780 		 * We are not taking a ref to the file structure, so we must
1781 		 * hold ->file_lock.
1782 		 */
1783 		spin_lock(&files->file_lock);
1784 		file = fcheck_files(files, fd);
1785 		if (file) {
1786 			unsigned int f_flags;
1787 			struct fdtable *fdt;
1788 
1789 			fdt = files_fdtable(files);
1790 			f_flags = file->f_flags & ~O_CLOEXEC;
1791 			if (FD_ISSET(fd, fdt->close_on_exec))
1792 				f_flags |= O_CLOEXEC;
1793 
1794 			if (path) {
1795 				*path = file->f_path;
1796 				path_get(&file->f_path);
1797 			}
1798 			if (info)
1799 				snprintf(info, PROC_FDINFO_MAX,
1800 					 "pos:\t%lli\n"
1801 					 "flags:\t0%o\n",
1802 					 (long long) file->f_pos,
1803 					 f_flags);
1804 			spin_unlock(&files->file_lock);
1805 			put_files_struct(files);
1806 			return 0;
1807 		}
1808 		spin_unlock(&files->file_lock);
1809 		put_files_struct(files);
1810 	}
1811 	return -ENOENT;
1812 }
1813 
1814 static int proc_fd_link(struct dentry *dentry, struct path *path)
1815 {
1816 	return proc_fd_info(dentry->d_inode, path, NULL);
1817 }
1818 
1819 static int tid_fd_revalidate(struct dentry *dentry, struct nameidata *nd)
1820 {
1821 	struct inode *inode;
1822 	struct task_struct *task;
1823 	int fd;
1824 	struct files_struct *files;
1825 	const struct cred *cred;
1826 
1827 	if (nd && nd->flags & LOOKUP_RCU)
1828 		return -ECHILD;
1829 
1830 	inode = dentry->d_inode;
1831 	task = get_proc_task(inode);
1832 	fd = proc_fd(inode);
1833 
1834 	if (task) {
1835 		files = get_files_struct(task);
1836 		if (files) {
1837 			rcu_read_lock();
1838 			if (fcheck_files(files, fd)) {
1839 				rcu_read_unlock();
1840 				put_files_struct(files);
1841 				if (task_dumpable(task)) {
1842 					rcu_read_lock();
1843 					cred = __task_cred(task);
1844 					inode->i_uid = cred->euid;
1845 					inode->i_gid = cred->egid;
1846 					rcu_read_unlock();
1847 				} else {
1848 					inode->i_uid = 0;
1849 					inode->i_gid = 0;
1850 				}
1851 				inode->i_mode &= ~(S_ISUID | S_ISGID);
1852 				security_task_to_inode(task, inode);
1853 				put_task_struct(task);
1854 				return 1;
1855 			}
1856 			rcu_read_unlock();
1857 			put_files_struct(files);
1858 		}
1859 		put_task_struct(task);
1860 	}
1861 	d_drop(dentry);
1862 	return 0;
1863 }
1864 
1865 static const struct dentry_operations tid_fd_dentry_operations =
1866 {
1867 	.d_revalidate	= tid_fd_revalidate,
1868 	.d_delete	= pid_delete_dentry,
1869 };
1870 
1871 static struct dentry *proc_fd_instantiate(struct inode *dir,
1872 	struct dentry *dentry, struct task_struct *task, const void *ptr)
1873 {
1874 	unsigned fd = *(const unsigned *)ptr;
1875 	struct file *file;
1876 	struct files_struct *files;
1877  	struct inode *inode;
1878  	struct proc_inode *ei;
1879 	struct dentry *error = ERR_PTR(-ENOENT);
1880 
1881 	inode = proc_pid_make_inode(dir->i_sb, task);
1882 	if (!inode)
1883 		goto out;
1884 	ei = PROC_I(inode);
1885 	ei->fd = fd;
1886 	files = get_files_struct(task);
1887 	if (!files)
1888 		goto out_iput;
1889 	inode->i_mode = S_IFLNK;
1890 
1891 	/*
1892 	 * We are not taking a ref to the file structure, so we must
1893 	 * hold ->file_lock.
1894 	 */
1895 	spin_lock(&files->file_lock);
1896 	file = fcheck_files(files, fd);
1897 	if (!file)
1898 		goto out_unlock;
1899 	if (file->f_mode & FMODE_READ)
1900 		inode->i_mode |= S_IRUSR | S_IXUSR;
1901 	if (file->f_mode & FMODE_WRITE)
1902 		inode->i_mode |= S_IWUSR | S_IXUSR;
1903 	spin_unlock(&files->file_lock);
1904 	put_files_struct(files);
1905 
1906 	inode->i_op = &proc_pid_link_inode_operations;
1907 	inode->i_size = 64;
1908 	ei->op.proc_get_link = proc_fd_link;
1909 	d_set_d_op(dentry, &tid_fd_dentry_operations);
1910 	d_add(dentry, inode);
1911 	/* Close the race of the process dying before we return the dentry */
1912 	if (tid_fd_revalidate(dentry, NULL))
1913 		error = NULL;
1914 
1915  out:
1916 	return error;
1917 out_unlock:
1918 	spin_unlock(&files->file_lock);
1919 	put_files_struct(files);
1920 out_iput:
1921 	iput(inode);
1922 	goto out;
1923 }
1924 
1925 static struct dentry *proc_lookupfd_common(struct inode *dir,
1926 					   struct dentry *dentry,
1927 					   instantiate_t instantiate)
1928 {
1929 	struct task_struct *task = get_proc_task(dir);
1930 	unsigned fd = name_to_int(dentry);
1931 	struct dentry *result = ERR_PTR(-ENOENT);
1932 
1933 	if (!task)
1934 		goto out_no_task;
1935 	if (fd == ~0U)
1936 		goto out;
1937 
1938 	result = instantiate(dir, dentry, task, &fd);
1939 out:
1940 	put_task_struct(task);
1941 out_no_task:
1942 	return result;
1943 }
1944 
1945 static int proc_readfd_common(struct file * filp, void * dirent,
1946 			      filldir_t filldir, instantiate_t instantiate)
1947 {
1948 	struct dentry *dentry = filp->f_path.dentry;
1949 	struct inode *inode = dentry->d_inode;
1950 	struct task_struct *p = get_proc_task(inode);
1951 	unsigned int fd, ino;
1952 	int retval;
1953 	struct files_struct * files;
1954 
1955 	retval = -ENOENT;
1956 	if (!p)
1957 		goto out_no_task;
1958 	retval = 0;
1959 
1960 	fd = filp->f_pos;
1961 	switch (fd) {
1962 		case 0:
1963 			if (filldir(dirent, ".", 1, 0, inode->i_ino, DT_DIR) < 0)
1964 				goto out;
1965 			filp->f_pos++;
1966 		case 1:
1967 			ino = parent_ino(dentry);
1968 			if (filldir(dirent, "..", 2, 1, ino, DT_DIR) < 0)
1969 				goto out;
1970 			filp->f_pos++;
1971 		default:
1972 			files = get_files_struct(p);
1973 			if (!files)
1974 				goto out;
1975 			rcu_read_lock();
1976 			for (fd = filp->f_pos-2;
1977 			     fd < files_fdtable(files)->max_fds;
1978 			     fd++, filp->f_pos++) {
1979 				char name[PROC_NUMBUF];
1980 				int len;
1981 
1982 				if (!fcheck_files(files, fd))
1983 					continue;
1984 				rcu_read_unlock();
1985 
1986 				len = snprintf(name, sizeof(name), "%d", fd);
1987 				if (proc_fill_cache(filp, dirent, filldir,
1988 						    name, len, instantiate,
1989 						    p, &fd) < 0) {
1990 					rcu_read_lock();
1991 					break;
1992 				}
1993 				rcu_read_lock();
1994 			}
1995 			rcu_read_unlock();
1996 			put_files_struct(files);
1997 	}
1998 out:
1999 	put_task_struct(p);
2000 out_no_task:
2001 	return retval;
2002 }
2003 
2004 static struct dentry *proc_lookupfd(struct inode *dir, struct dentry *dentry,
2005 				    struct nameidata *nd)
2006 {
2007 	return proc_lookupfd_common(dir, dentry, proc_fd_instantiate);
2008 }
2009 
2010 static int proc_readfd(struct file *filp, void *dirent, filldir_t filldir)
2011 {
2012 	return proc_readfd_common(filp, dirent, filldir, proc_fd_instantiate);
2013 }
2014 
2015 static ssize_t proc_fdinfo_read(struct file *file, char __user *buf,
2016 				      size_t len, loff_t *ppos)
2017 {
2018 	char tmp[PROC_FDINFO_MAX];
2019 	int err = proc_fd_info(file->f_path.dentry->d_inode, NULL, tmp);
2020 	if (!err)
2021 		err = simple_read_from_buffer(buf, len, ppos, tmp, strlen(tmp));
2022 	return err;
2023 }
2024 
2025 static const struct file_operations proc_fdinfo_file_operations = {
2026 	.open           = nonseekable_open,
2027 	.read		= proc_fdinfo_read,
2028 	.llseek		= no_llseek,
2029 };
2030 
2031 static const struct file_operations proc_fd_operations = {
2032 	.read		= generic_read_dir,
2033 	.readdir	= proc_readfd,
2034 	.llseek		= default_llseek,
2035 };
2036 
2037 #ifdef CONFIG_CHECKPOINT_RESTORE
2038 
2039 /*
2040  * dname_to_vma_addr - maps a dentry name into two unsigned longs
2041  * which represent vma start and end addresses.
2042  */
2043 static int dname_to_vma_addr(struct dentry *dentry,
2044 			     unsigned long *start, unsigned long *end)
2045 {
2046 	if (sscanf(dentry->d_name.name, "%lx-%lx", start, end) != 2)
2047 		return -EINVAL;
2048 
2049 	return 0;
2050 }
2051 
2052 static int map_files_d_revalidate(struct dentry *dentry, struct nameidata *nd)
2053 {
2054 	unsigned long vm_start, vm_end;
2055 	bool exact_vma_exists = false;
2056 	struct mm_struct *mm = NULL;
2057 	struct task_struct *task;
2058 	const struct cred *cred;
2059 	struct inode *inode;
2060 	int status = 0;
2061 
2062 	if (nd && nd->flags & LOOKUP_RCU)
2063 		return -ECHILD;
2064 
2065 	if (!capable(CAP_SYS_ADMIN)) {
2066 		status = -EACCES;
2067 		goto out_notask;
2068 	}
2069 
2070 	inode = dentry->d_inode;
2071 	task = get_proc_task(inode);
2072 	if (!task)
2073 		goto out_notask;
2074 
2075 	if (!ptrace_may_access(task, PTRACE_MODE_READ))
2076 		goto out;
2077 
2078 	mm = get_task_mm(task);
2079 	if (!mm)
2080 		goto out;
2081 
2082 	if (!dname_to_vma_addr(dentry, &vm_start, &vm_end)) {
2083 		down_read(&mm->mmap_sem);
2084 		exact_vma_exists = !!find_exact_vma(mm, vm_start, vm_end);
2085 		up_read(&mm->mmap_sem);
2086 	}
2087 
2088 	mmput(mm);
2089 
2090 	if (exact_vma_exists) {
2091 		if (task_dumpable(task)) {
2092 			rcu_read_lock();
2093 			cred = __task_cred(task);
2094 			inode->i_uid = cred->euid;
2095 			inode->i_gid = cred->egid;
2096 			rcu_read_unlock();
2097 		} else {
2098 			inode->i_uid = 0;
2099 			inode->i_gid = 0;
2100 		}
2101 		security_task_to_inode(task, inode);
2102 		status = 1;
2103 	}
2104 
2105 out:
2106 	put_task_struct(task);
2107 
2108 out_notask:
2109 	if (status <= 0)
2110 		d_drop(dentry);
2111 
2112 	return status;
2113 }
2114 
2115 static const struct dentry_operations tid_map_files_dentry_operations = {
2116 	.d_revalidate	= map_files_d_revalidate,
2117 	.d_delete	= pid_delete_dentry,
2118 };
2119 
2120 static int proc_map_files_get_link(struct dentry *dentry, struct path *path)
2121 {
2122 	unsigned long vm_start, vm_end;
2123 	struct vm_area_struct *vma;
2124 	struct task_struct *task;
2125 	struct mm_struct *mm;
2126 	int rc;
2127 
2128 	rc = -ENOENT;
2129 	task = get_proc_task(dentry->d_inode);
2130 	if (!task)
2131 		goto out;
2132 
2133 	mm = get_task_mm(task);
2134 	put_task_struct(task);
2135 	if (!mm)
2136 		goto out;
2137 
2138 	rc = dname_to_vma_addr(dentry, &vm_start, &vm_end);
2139 	if (rc)
2140 		goto out_mmput;
2141 
2142 	down_read(&mm->mmap_sem);
2143 	vma = find_exact_vma(mm, vm_start, vm_end);
2144 	if (vma && vma->vm_file) {
2145 		*path = vma->vm_file->f_path;
2146 		path_get(path);
2147 		rc = 0;
2148 	}
2149 	up_read(&mm->mmap_sem);
2150 
2151 out_mmput:
2152 	mmput(mm);
2153 out:
2154 	return rc;
2155 }
2156 
2157 struct map_files_info {
2158 	struct file	*file;
2159 	unsigned long	len;
2160 	unsigned char	name[4*sizeof(long)+2]; /* max: %lx-%lx\0 */
2161 };
2162 
2163 static struct dentry *
2164 proc_map_files_instantiate(struct inode *dir, struct dentry *dentry,
2165 			   struct task_struct *task, const void *ptr)
2166 {
2167 	const struct file *file = ptr;
2168 	struct proc_inode *ei;
2169 	struct inode *inode;
2170 
2171 	if (!file)
2172 		return ERR_PTR(-ENOENT);
2173 
2174 	inode = proc_pid_make_inode(dir->i_sb, task);
2175 	if (!inode)
2176 		return ERR_PTR(-ENOENT);
2177 
2178 	ei = PROC_I(inode);
2179 	ei->op.proc_get_link = proc_map_files_get_link;
2180 
2181 	inode->i_op = &proc_pid_link_inode_operations;
2182 	inode->i_size = 64;
2183 	inode->i_mode = S_IFLNK;
2184 
2185 	if (file->f_mode & FMODE_READ)
2186 		inode->i_mode |= S_IRUSR;
2187 	if (file->f_mode & FMODE_WRITE)
2188 		inode->i_mode |= S_IWUSR;
2189 
2190 	d_set_d_op(dentry, &tid_map_files_dentry_operations);
2191 	d_add(dentry, inode);
2192 
2193 	return NULL;
2194 }
2195 
2196 static struct dentry *proc_map_files_lookup(struct inode *dir,
2197 		struct dentry *dentry, struct nameidata *nd)
2198 {
2199 	unsigned long vm_start, vm_end;
2200 	struct vm_area_struct *vma;
2201 	struct task_struct *task;
2202 	struct dentry *result;
2203 	struct mm_struct *mm;
2204 
2205 	result = ERR_PTR(-EACCES);
2206 	if (!capable(CAP_SYS_ADMIN))
2207 		goto out;
2208 
2209 	result = ERR_PTR(-ENOENT);
2210 	task = get_proc_task(dir);
2211 	if (!task)
2212 		goto out;
2213 
2214 	result = ERR_PTR(-EACCES);
2215 	if (lock_trace(task))
2216 		goto out_put_task;
2217 
2218 	result = ERR_PTR(-ENOENT);
2219 	if (dname_to_vma_addr(dentry, &vm_start, &vm_end))
2220 		goto out_unlock;
2221 
2222 	mm = get_task_mm(task);
2223 	if (!mm)
2224 		goto out_unlock;
2225 
2226 	down_read(&mm->mmap_sem);
2227 	vma = find_exact_vma(mm, vm_start, vm_end);
2228 	if (!vma)
2229 		goto out_no_vma;
2230 
2231 	result = proc_map_files_instantiate(dir, dentry, task, vma->vm_file);
2232 
2233 out_no_vma:
2234 	up_read(&mm->mmap_sem);
2235 	mmput(mm);
2236 out_unlock:
2237 	unlock_trace(task);
2238 out_put_task:
2239 	put_task_struct(task);
2240 out:
2241 	return result;
2242 }
2243 
2244 static const struct inode_operations proc_map_files_inode_operations = {
2245 	.lookup		= proc_map_files_lookup,
2246 	.permission	= proc_fd_permission,
2247 	.setattr	= proc_setattr,
2248 };
2249 
2250 static int
2251 proc_map_files_readdir(struct file *filp, void *dirent, filldir_t filldir)
2252 {
2253 	struct dentry *dentry = filp->f_path.dentry;
2254 	struct inode *inode = dentry->d_inode;
2255 	struct vm_area_struct *vma;
2256 	struct task_struct *task;
2257 	struct mm_struct *mm;
2258 	ino_t ino;
2259 	int ret;
2260 
2261 	ret = -EACCES;
2262 	if (!capable(CAP_SYS_ADMIN))
2263 		goto out;
2264 
2265 	ret = -ENOENT;
2266 	task = get_proc_task(inode);
2267 	if (!task)
2268 		goto out;
2269 
2270 	ret = -EACCES;
2271 	if (lock_trace(task))
2272 		goto out_put_task;
2273 
2274 	ret = 0;
2275 	switch (filp->f_pos) {
2276 	case 0:
2277 		ino = inode->i_ino;
2278 		if (filldir(dirent, ".", 1, 0, ino, DT_DIR) < 0)
2279 			goto out_unlock;
2280 		filp->f_pos++;
2281 	case 1:
2282 		ino = parent_ino(dentry);
2283 		if (filldir(dirent, "..", 2, 1, ino, DT_DIR) < 0)
2284 			goto out_unlock;
2285 		filp->f_pos++;
2286 	default:
2287 	{
2288 		unsigned long nr_files, pos, i;
2289 		struct flex_array *fa = NULL;
2290 		struct map_files_info info;
2291 		struct map_files_info *p;
2292 
2293 		mm = get_task_mm(task);
2294 		if (!mm)
2295 			goto out_unlock;
2296 		down_read(&mm->mmap_sem);
2297 
2298 		nr_files = 0;
2299 
2300 		/*
2301 		 * We need two passes here:
2302 		 *
2303 		 *  1) Collect vmas of mapped files with mmap_sem taken
2304 		 *  2) Release mmap_sem and instantiate entries
2305 		 *
2306 		 * otherwise we get lockdep complained, since filldir()
2307 		 * routine might require mmap_sem taken in might_fault().
2308 		 */
2309 
2310 		for (vma = mm->mmap, pos = 2; vma; vma = vma->vm_next) {
2311 			if (vma->vm_file && ++pos > filp->f_pos)
2312 				nr_files++;
2313 		}
2314 
2315 		if (nr_files) {
2316 			fa = flex_array_alloc(sizeof(info), nr_files,
2317 						GFP_KERNEL);
2318 			if (!fa || flex_array_prealloc(fa, 0, nr_files,
2319 							GFP_KERNEL)) {
2320 				ret = -ENOMEM;
2321 				if (fa)
2322 					flex_array_free(fa);
2323 				up_read(&mm->mmap_sem);
2324 				mmput(mm);
2325 				goto out_unlock;
2326 			}
2327 			for (i = 0, vma = mm->mmap, pos = 2; vma;
2328 					vma = vma->vm_next) {
2329 				if (!vma->vm_file)
2330 					continue;
2331 				if (++pos <= filp->f_pos)
2332 					continue;
2333 
2334 				get_file(vma->vm_file);
2335 				info.file = vma->vm_file;
2336 				info.len = snprintf(info.name,
2337 						sizeof(info.name), "%lx-%lx",
2338 						vma->vm_start, vma->vm_end);
2339 				if (flex_array_put(fa, i++, &info, GFP_KERNEL))
2340 					BUG();
2341 			}
2342 		}
2343 		up_read(&mm->mmap_sem);
2344 
2345 		for (i = 0; i < nr_files; i++) {
2346 			p = flex_array_get(fa, i);
2347 			ret = proc_fill_cache(filp, dirent, filldir,
2348 					      p->name, p->len,
2349 					      proc_map_files_instantiate,
2350 					      task, p->file);
2351 			if (ret)
2352 				break;
2353 			filp->f_pos++;
2354 			fput(p->file);
2355 		}
2356 		for (; i < nr_files; i++) {
2357 			/*
2358 			 * In case of error don't forget
2359 			 * to put rest of file refs.
2360 			 */
2361 			p = flex_array_get(fa, i);
2362 			fput(p->file);
2363 		}
2364 		if (fa)
2365 			flex_array_free(fa);
2366 		mmput(mm);
2367 	}
2368 	}
2369 
2370 out_unlock:
2371 	unlock_trace(task);
2372 out_put_task:
2373 	put_task_struct(task);
2374 out:
2375 	return ret;
2376 }
2377 
2378 static const struct file_operations proc_map_files_operations = {
2379 	.read		= generic_read_dir,
2380 	.readdir	= proc_map_files_readdir,
2381 	.llseek		= default_llseek,
2382 };
2383 
2384 #endif /* CONFIG_CHECKPOINT_RESTORE */
2385 
2386 /*
2387  * /proc/pid/fd needs a special permission handler so that a process can still
2388  * access /proc/self/fd after it has executed a setuid().
2389  */
2390 static int proc_fd_permission(struct inode *inode, int mask)
2391 {
2392 	int rv = generic_permission(inode, mask);
2393 	if (rv == 0)
2394 		return 0;
2395 	if (task_pid(current) == proc_pid(inode))
2396 		rv = 0;
2397 	return rv;
2398 }
2399 
2400 /*
2401  * proc directories can do almost nothing..
2402  */
2403 static const struct inode_operations proc_fd_inode_operations = {
2404 	.lookup		= proc_lookupfd,
2405 	.permission	= proc_fd_permission,
2406 	.setattr	= proc_setattr,
2407 };
2408 
2409 static struct dentry *proc_fdinfo_instantiate(struct inode *dir,
2410 	struct dentry *dentry, struct task_struct *task, const void *ptr)
2411 {
2412 	unsigned fd = *(unsigned *)ptr;
2413  	struct inode *inode;
2414  	struct proc_inode *ei;
2415 	struct dentry *error = ERR_PTR(-ENOENT);
2416 
2417 	inode = proc_pid_make_inode(dir->i_sb, task);
2418 	if (!inode)
2419 		goto out;
2420 	ei = PROC_I(inode);
2421 	ei->fd = fd;
2422 	inode->i_mode = S_IFREG | S_IRUSR;
2423 	inode->i_fop = &proc_fdinfo_file_operations;
2424 	d_set_d_op(dentry, &tid_fd_dentry_operations);
2425 	d_add(dentry, inode);
2426 	/* Close the race of the process dying before we return the dentry */
2427 	if (tid_fd_revalidate(dentry, NULL))
2428 		error = NULL;
2429 
2430  out:
2431 	return error;
2432 }
2433 
2434 static struct dentry *proc_lookupfdinfo(struct inode *dir,
2435 					struct dentry *dentry,
2436 					struct nameidata *nd)
2437 {
2438 	return proc_lookupfd_common(dir, dentry, proc_fdinfo_instantiate);
2439 }
2440 
2441 static int proc_readfdinfo(struct file *filp, void *dirent, filldir_t filldir)
2442 {
2443 	return proc_readfd_common(filp, dirent, filldir,
2444 				  proc_fdinfo_instantiate);
2445 }
2446 
2447 static const struct file_operations proc_fdinfo_operations = {
2448 	.read		= generic_read_dir,
2449 	.readdir	= proc_readfdinfo,
2450 	.llseek		= default_llseek,
2451 };
2452 
2453 /*
2454  * proc directories can do almost nothing..
2455  */
2456 static const struct inode_operations proc_fdinfo_inode_operations = {
2457 	.lookup		= proc_lookupfdinfo,
2458 	.setattr	= proc_setattr,
2459 };
2460 
2461 
2462 static struct dentry *proc_pident_instantiate(struct inode *dir,
2463 	struct dentry *dentry, struct task_struct *task, const void *ptr)
2464 {
2465 	const struct pid_entry *p = ptr;
2466 	struct inode *inode;
2467 	struct proc_inode *ei;
2468 	struct dentry *error = ERR_PTR(-ENOENT);
2469 
2470 	inode = proc_pid_make_inode(dir->i_sb, task);
2471 	if (!inode)
2472 		goto out;
2473 
2474 	ei = PROC_I(inode);
2475 	inode->i_mode = p->mode;
2476 	if (S_ISDIR(inode->i_mode))
2477 		set_nlink(inode, 2);	/* Use getattr to fix if necessary */
2478 	if (p->iop)
2479 		inode->i_op = p->iop;
2480 	if (p->fop)
2481 		inode->i_fop = p->fop;
2482 	ei->op = p->op;
2483 	d_set_d_op(dentry, &pid_dentry_operations);
2484 	d_add(dentry, inode);
2485 	/* Close the race of the process dying before we return the dentry */
2486 	if (pid_revalidate(dentry, NULL))
2487 		error = NULL;
2488 out:
2489 	return error;
2490 }
2491 
2492 static struct dentry *proc_pident_lookup(struct inode *dir,
2493 					 struct dentry *dentry,
2494 					 const struct pid_entry *ents,
2495 					 unsigned int nents)
2496 {
2497 	struct dentry *error;
2498 	struct task_struct *task = get_proc_task(dir);
2499 	const struct pid_entry *p, *last;
2500 
2501 	error = ERR_PTR(-ENOENT);
2502 
2503 	if (!task)
2504 		goto out_no_task;
2505 
2506 	/*
2507 	 * Yes, it does not scale. And it should not. Don't add
2508 	 * new entries into /proc/<tgid>/ without very good reasons.
2509 	 */
2510 	last = &ents[nents - 1];
2511 	for (p = ents; p <= last; p++) {
2512 		if (p->len != dentry->d_name.len)
2513 			continue;
2514 		if (!memcmp(dentry->d_name.name, p->name, p->len))
2515 			break;
2516 	}
2517 	if (p > last)
2518 		goto out;
2519 
2520 	error = proc_pident_instantiate(dir, dentry, task, p);
2521 out:
2522 	put_task_struct(task);
2523 out_no_task:
2524 	return error;
2525 }
2526 
2527 static int proc_pident_fill_cache(struct file *filp, void *dirent,
2528 	filldir_t filldir, struct task_struct *task, const struct pid_entry *p)
2529 {
2530 	return proc_fill_cache(filp, dirent, filldir, p->name, p->len,
2531 				proc_pident_instantiate, task, p);
2532 }
2533 
2534 static int proc_pident_readdir(struct file *filp,
2535 		void *dirent, filldir_t filldir,
2536 		const struct pid_entry *ents, unsigned int nents)
2537 {
2538 	int i;
2539 	struct dentry *dentry = filp->f_path.dentry;
2540 	struct inode *inode = dentry->d_inode;
2541 	struct task_struct *task = get_proc_task(inode);
2542 	const struct pid_entry *p, *last;
2543 	ino_t ino;
2544 	int ret;
2545 
2546 	ret = -ENOENT;
2547 	if (!task)
2548 		goto out_no_task;
2549 
2550 	ret = 0;
2551 	i = filp->f_pos;
2552 	switch (i) {
2553 	case 0:
2554 		ino = inode->i_ino;
2555 		if (filldir(dirent, ".", 1, i, ino, DT_DIR) < 0)
2556 			goto out;
2557 		i++;
2558 		filp->f_pos++;
2559 		/* fall through */
2560 	case 1:
2561 		ino = parent_ino(dentry);
2562 		if (filldir(dirent, "..", 2, i, ino, DT_DIR) < 0)
2563 			goto out;
2564 		i++;
2565 		filp->f_pos++;
2566 		/* fall through */
2567 	default:
2568 		i -= 2;
2569 		if (i >= nents) {
2570 			ret = 1;
2571 			goto out;
2572 		}
2573 		p = ents + i;
2574 		last = &ents[nents - 1];
2575 		while (p <= last) {
2576 			if (proc_pident_fill_cache(filp, dirent, filldir, task, p) < 0)
2577 				goto out;
2578 			filp->f_pos++;
2579 			p++;
2580 		}
2581 	}
2582 
2583 	ret = 1;
2584 out:
2585 	put_task_struct(task);
2586 out_no_task:
2587 	return ret;
2588 }
2589 
2590 #ifdef CONFIG_SECURITY
2591 static ssize_t proc_pid_attr_read(struct file * file, char __user * buf,
2592 				  size_t count, loff_t *ppos)
2593 {
2594 	struct inode * inode = file->f_path.dentry->d_inode;
2595 	char *p = NULL;
2596 	ssize_t length;
2597 	struct task_struct *task = get_proc_task(inode);
2598 
2599 	if (!task)
2600 		return -ESRCH;
2601 
2602 	length = security_getprocattr(task,
2603 				      (char*)file->f_path.dentry->d_name.name,
2604 				      &p);
2605 	put_task_struct(task);
2606 	if (length > 0)
2607 		length = simple_read_from_buffer(buf, count, ppos, p, length);
2608 	kfree(p);
2609 	return length;
2610 }
2611 
2612 static ssize_t proc_pid_attr_write(struct file * file, const char __user * buf,
2613 				   size_t count, loff_t *ppos)
2614 {
2615 	struct inode * inode = file->f_path.dentry->d_inode;
2616 	char *page;
2617 	ssize_t length;
2618 	struct task_struct *task = get_proc_task(inode);
2619 
2620 	length = -ESRCH;
2621 	if (!task)
2622 		goto out_no_task;
2623 	if (count > PAGE_SIZE)
2624 		count = PAGE_SIZE;
2625 
2626 	/* No partial writes. */
2627 	length = -EINVAL;
2628 	if (*ppos != 0)
2629 		goto out;
2630 
2631 	length = -ENOMEM;
2632 	page = (char*)__get_free_page(GFP_TEMPORARY);
2633 	if (!page)
2634 		goto out;
2635 
2636 	length = -EFAULT;
2637 	if (copy_from_user(page, buf, count))
2638 		goto out_free;
2639 
2640 	/* Guard against adverse ptrace interaction */
2641 	length = mutex_lock_interruptible(&task->signal->cred_guard_mutex);
2642 	if (length < 0)
2643 		goto out_free;
2644 
2645 	length = security_setprocattr(task,
2646 				      (char*)file->f_path.dentry->d_name.name,
2647 				      (void*)page, count);
2648 	mutex_unlock(&task->signal->cred_guard_mutex);
2649 out_free:
2650 	free_page((unsigned long) page);
2651 out:
2652 	put_task_struct(task);
2653 out_no_task:
2654 	return length;
2655 }
2656 
2657 static const struct file_operations proc_pid_attr_operations = {
2658 	.read		= proc_pid_attr_read,
2659 	.write		= proc_pid_attr_write,
2660 	.llseek		= generic_file_llseek,
2661 };
2662 
2663 static const struct pid_entry attr_dir_stuff[] = {
2664 	REG("current",    S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2665 	REG("prev",       S_IRUGO,	   proc_pid_attr_operations),
2666 	REG("exec",       S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2667 	REG("fscreate",   S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2668 	REG("keycreate",  S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2669 	REG("sockcreate", S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2670 };
2671 
2672 static int proc_attr_dir_readdir(struct file * filp,
2673 			     void * dirent, filldir_t filldir)
2674 {
2675 	return proc_pident_readdir(filp,dirent,filldir,
2676 				   attr_dir_stuff,ARRAY_SIZE(attr_dir_stuff));
2677 }
2678 
2679 static const struct file_operations proc_attr_dir_operations = {
2680 	.read		= generic_read_dir,
2681 	.readdir	= proc_attr_dir_readdir,
2682 	.llseek		= default_llseek,
2683 };
2684 
2685 static struct dentry *proc_attr_dir_lookup(struct inode *dir,
2686 				struct dentry *dentry, struct nameidata *nd)
2687 {
2688 	return proc_pident_lookup(dir, dentry,
2689 				  attr_dir_stuff, ARRAY_SIZE(attr_dir_stuff));
2690 }
2691 
2692 static const struct inode_operations proc_attr_dir_inode_operations = {
2693 	.lookup		= proc_attr_dir_lookup,
2694 	.getattr	= pid_getattr,
2695 	.setattr	= proc_setattr,
2696 };
2697 
2698 #endif
2699 
2700 #ifdef CONFIG_ELF_CORE
2701 static ssize_t proc_coredump_filter_read(struct file *file, char __user *buf,
2702 					 size_t count, loff_t *ppos)
2703 {
2704 	struct task_struct *task = get_proc_task(file->f_dentry->d_inode);
2705 	struct mm_struct *mm;
2706 	char buffer[PROC_NUMBUF];
2707 	size_t len;
2708 	int ret;
2709 
2710 	if (!task)
2711 		return -ESRCH;
2712 
2713 	ret = 0;
2714 	mm = get_task_mm(task);
2715 	if (mm) {
2716 		len = snprintf(buffer, sizeof(buffer), "%08lx\n",
2717 			       ((mm->flags & MMF_DUMP_FILTER_MASK) >>
2718 				MMF_DUMP_FILTER_SHIFT));
2719 		mmput(mm);
2720 		ret = simple_read_from_buffer(buf, count, ppos, buffer, len);
2721 	}
2722 
2723 	put_task_struct(task);
2724 
2725 	return ret;
2726 }
2727 
2728 static ssize_t proc_coredump_filter_write(struct file *file,
2729 					  const char __user *buf,
2730 					  size_t count,
2731 					  loff_t *ppos)
2732 {
2733 	struct task_struct *task;
2734 	struct mm_struct *mm;
2735 	char buffer[PROC_NUMBUF], *end;
2736 	unsigned int val;
2737 	int ret;
2738 	int i;
2739 	unsigned long mask;
2740 
2741 	ret = -EFAULT;
2742 	memset(buffer, 0, sizeof(buffer));
2743 	if (count > sizeof(buffer) - 1)
2744 		count = sizeof(buffer) - 1;
2745 	if (copy_from_user(buffer, buf, count))
2746 		goto out_no_task;
2747 
2748 	ret = -EINVAL;
2749 	val = (unsigned int)simple_strtoul(buffer, &end, 0);
2750 	if (*end == '\n')
2751 		end++;
2752 	if (end - buffer == 0)
2753 		goto out_no_task;
2754 
2755 	ret = -ESRCH;
2756 	task = get_proc_task(file->f_dentry->d_inode);
2757 	if (!task)
2758 		goto out_no_task;
2759 
2760 	ret = end - buffer;
2761 	mm = get_task_mm(task);
2762 	if (!mm)
2763 		goto out_no_mm;
2764 
2765 	for (i = 0, mask = 1; i < MMF_DUMP_FILTER_BITS; i++, mask <<= 1) {
2766 		if (val & mask)
2767 			set_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags);
2768 		else
2769 			clear_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags);
2770 	}
2771 
2772 	mmput(mm);
2773  out_no_mm:
2774 	put_task_struct(task);
2775  out_no_task:
2776 	return ret;
2777 }
2778 
2779 static const struct file_operations proc_coredump_filter_operations = {
2780 	.read		= proc_coredump_filter_read,
2781 	.write		= proc_coredump_filter_write,
2782 	.llseek		= generic_file_llseek,
2783 };
2784 #endif
2785 
2786 /*
2787  * /proc/self:
2788  */
2789 static int proc_self_readlink(struct dentry *dentry, char __user *buffer,
2790 			      int buflen)
2791 {
2792 	struct pid_namespace *ns = dentry->d_sb->s_fs_info;
2793 	pid_t tgid = task_tgid_nr_ns(current, ns);
2794 	char tmp[PROC_NUMBUF];
2795 	if (!tgid)
2796 		return -ENOENT;
2797 	sprintf(tmp, "%d", tgid);
2798 	return vfs_readlink(dentry,buffer,buflen,tmp);
2799 }
2800 
2801 static void *proc_self_follow_link(struct dentry *dentry, struct nameidata *nd)
2802 {
2803 	struct pid_namespace *ns = dentry->d_sb->s_fs_info;
2804 	pid_t tgid = task_tgid_nr_ns(current, ns);
2805 	char *name = ERR_PTR(-ENOENT);
2806 	if (tgid) {
2807 		name = __getname();
2808 		if (!name)
2809 			name = ERR_PTR(-ENOMEM);
2810 		else
2811 			sprintf(name, "%d", tgid);
2812 	}
2813 	nd_set_link(nd, name);
2814 	return NULL;
2815 }
2816 
2817 static void proc_self_put_link(struct dentry *dentry, struct nameidata *nd,
2818 				void *cookie)
2819 {
2820 	char *s = nd_get_link(nd);
2821 	if (!IS_ERR(s))
2822 		__putname(s);
2823 }
2824 
2825 static const struct inode_operations proc_self_inode_operations = {
2826 	.readlink	= proc_self_readlink,
2827 	.follow_link	= proc_self_follow_link,
2828 	.put_link	= proc_self_put_link,
2829 };
2830 
2831 /*
2832  * proc base
2833  *
2834  * These are the directory entries in the root directory of /proc
2835  * that properly belong to the /proc filesystem, as they describe
2836  * describe something that is process related.
2837  */
2838 static const struct pid_entry proc_base_stuff[] = {
2839 	NOD("self", S_IFLNK|S_IRWXUGO,
2840 		&proc_self_inode_operations, NULL, {}),
2841 };
2842 
2843 static struct dentry *proc_base_instantiate(struct inode *dir,
2844 	struct dentry *dentry, struct task_struct *task, const void *ptr)
2845 {
2846 	const struct pid_entry *p = ptr;
2847 	struct inode *inode;
2848 	struct proc_inode *ei;
2849 	struct dentry *error;
2850 
2851 	/* Allocate the inode */
2852 	error = ERR_PTR(-ENOMEM);
2853 	inode = new_inode(dir->i_sb);
2854 	if (!inode)
2855 		goto out;
2856 
2857 	/* Initialize the inode */
2858 	ei = PROC_I(inode);
2859 	inode->i_ino = get_next_ino();
2860 	inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
2861 
2862 	/*
2863 	 * grab the reference to the task.
2864 	 */
2865 	ei->pid = get_task_pid(task, PIDTYPE_PID);
2866 	if (!ei->pid)
2867 		goto out_iput;
2868 
2869 	inode->i_mode = p->mode;
2870 	if (S_ISDIR(inode->i_mode))
2871 		set_nlink(inode, 2);
2872 	if (S_ISLNK(inode->i_mode))
2873 		inode->i_size = 64;
2874 	if (p->iop)
2875 		inode->i_op = p->iop;
2876 	if (p->fop)
2877 		inode->i_fop = p->fop;
2878 	ei->op = p->op;
2879 	d_add(dentry, inode);
2880 	error = NULL;
2881 out:
2882 	return error;
2883 out_iput:
2884 	iput(inode);
2885 	goto out;
2886 }
2887 
2888 static struct dentry *proc_base_lookup(struct inode *dir, struct dentry *dentry)
2889 {
2890 	struct dentry *error;
2891 	struct task_struct *task = get_proc_task(dir);
2892 	const struct pid_entry *p, *last;
2893 
2894 	error = ERR_PTR(-ENOENT);
2895 
2896 	if (!task)
2897 		goto out_no_task;
2898 
2899 	/* Lookup the directory entry */
2900 	last = &proc_base_stuff[ARRAY_SIZE(proc_base_stuff) - 1];
2901 	for (p = proc_base_stuff; p <= last; p++) {
2902 		if (p->len != dentry->d_name.len)
2903 			continue;
2904 		if (!memcmp(dentry->d_name.name, p->name, p->len))
2905 			break;
2906 	}
2907 	if (p > last)
2908 		goto out;
2909 
2910 	error = proc_base_instantiate(dir, dentry, task, p);
2911 
2912 out:
2913 	put_task_struct(task);
2914 out_no_task:
2915 	return error;
2916 }
2917 
2918 static int proc_base_fill_cache(struct file *filp, void *dirent,
2919 	filldir_t filldir, struct task_struct *task, const struct pid_entry *p)
2920 {
2921 	return proc_fill_cache(filp, dirent, filldir, p->name, p->len,
2922 				proc_base_instantiate, task, p);
2923 }
2924 
2925 #ifdef CONFIG_TASK_IO_ACCOUNTING
2926 static int do_io_accounting(struct task_struct *task, char *buffer, int whole)
2927 {
2928 	struct task_io_accounting acct = task->ioac;
2929 	unsigned long flags;
2930 	int result;
2931 
2932 	result = mutex_lock_killable(&task->signal->cred_guard_mutex);
2933 	if (result)
2934 		return result;
2935 
2936 	if (!ptrace_may_access(task, PTRACE_MODE_READ)) {
2937 		result = -EACCES;
2938 		goto out_unlock;
2939 	}
2940 
2941 	if (whole && lock_task_sighand(task, &flags)) {
2942 		struct task_struct *t = task;
2943 
2944 		task_io_accounting_add(&acct, &task->signal->ioac);
2945 		while_each_thread(task, t)
2946 			task_io_accounting_add(&acct, &t->ioac);
2947 
2948 		unlock_task_sighand(task, &flags);
2949 	}
2950 	result = sprintf(buffer,
2951 			"rchar: %llu\n"
2952 			"wchar: %llu\n"
2953 			"syscr: %llu\n"
2954 			"syscw: %llu\n"
2955 			"read_bytes: %llu\n"
2956 			"write_bytes: %llu\n"
2957 			"cancelled_write_bytes: %llu\n",
2958 			(unsigned long long)acct.rchar,
2959 			(unsigned long long)acct.wchar,
2960 			(unsigned long long)acct.syscr,
2961 			(unsigned long long)acct.syscw,
2962 			(unsigned long long)acct.read_bytes,
2963 			(unsigned long long)acct.write_bytes,
2964 			(unsigned long long)acct.cancelled_write_bytes);
2965 out_unlock:
2966 	mutex_unlock(&task->signal->cred_guard_mutex);
2967 	return result;
2968 }
2969 
2970 static int proc_tid_io_accounting(struct task_struct *task, char *buffer)
2971 {
2972 	return do_io_accounting(task, buffer, 0);
2973 }
2974 
2975 static int proc_tgid_io_accounting(struct task_struct *task, char *buffer)
2976 {
2977 	return do_io_accounting(task, buffer, 1);
2978 }
2979 #endif /* CONFIG_TASK_IO_ACCOUNTING */
2980 
2981 static int proc_pid_personality(struct seq_file *m, struct pid_namespace *ns,
2982 				struct pid *pid, struct task_struct *task)
2983 {
2984 	int err = lock_trace(task);
2985 	if (!err) {
2986 		seq_printf(m, "%08x\n", task->personality);
2987 		unlock_trace(task);
2988 	}
2989 	return err;
2990 }
2991 
2992 /*
2993  * Thread groups
2994  */
2995 static const struct file_operations proc_task_operations;
2996 static const struct inode_operations proc_task_inode_operations;
2997 
2998 static const struct pid_entry tgid_base_stuff[] = {
2999 	DIR("task",       S_IRUGO|S_IXUGO, proc_task_inode_operations, proc_task_operations),
3000 	DIR("fd",         S_IRUSR|S_IXUSR, proc_fd_inode_operations, proc_fd_operations),
3001 #ifdef CONFIG_CHECKPOINT_RESTORE
3002 	DIR("map_files",  S_IRUSR|S_IXUSR, proc_map_files_inode_operations, proc_map_files_operations),
3003 #endif
3004 	DIR("fdinfo",     S_IRUSR|S_IXUSR, proc_fdinfo_inode_operations, proc_fdinfo_operations),
3005 	DIR("ns",	  S_IRUSR|S_IXUGO, proc_ns_dir_inode_operations, proc_ns_dir_operations),
3006 #ifdef CONFIG_NET
3007 	DIR("net",        S_IRUGO|S_IXUGO, proc_net_inode_operations, proc_net_operations),
3008 #endif
3009 	REG("environ",    S_IRUSR, proc_environ_operations),
3010 	INF("auxv",       S_IRUSR, proc_pid_auxv),
3011 	ONE("status",     S_IRUGO, proc_pid_status),
3012 	ONE("personality", S_IRUGO, proc_pid_personality),
3013 	INF("limits",	  S_IRUGO, proc_pid_limits),
3014 #ifdef CONFIG_SCHED_DEBUG
3015 	REG("sched",      S_IRUGO|S_IWUSR, proc_pid_sched_operations),
3016 #endif
3017 #ifdef CONFIG_SCHED_AUTOGROUP
3018 	REG("autogroup",  S_IRUGO|S_IWUSR, proc_pid_sched_autogroup_operations),
3019 #endif
3020 	REG("comm",      S_IRUGO|S_IWUSR, proc_pid_set_comm_operations),
3021 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK
3022 	INF("syscall",    S_IRUGO, proc_pid_syscall),
3023 #endif
3024 	INF("cmdline",    S_IRUGO, proc_pid_cmdline),
3025 	ONE("stat",       S_IRUGO, proc_tgid_stat),
3026 	ONE("statm",      S_IRUGO, proc_pid_statm),
3027 	REG("maps",       S_IRUGO, proc_maps_operations),
3028 #ifdef CONFIG_NUMA
3029 	REG("numa_maps",  S_IRUGO, proc_numa_maps_operations),
3030 #endif
3031 	REG("mem",        S_IRUSR|S_IWUSR, proc_mem_operations),
3032 	LNK("cwd",        proc_cwd_link),
3033 	LNK("root",       proc_root_link),
3034 	LNK("exe",        proc_exe_link),
3035 	REG("mounts",     S_IRUGO, proc_mounts_operations),
3036 	REG("mountinfo",  S_IRUGO, proc_mountinfo_operations),
3037 	REG("mountstats", S_IRUSR, proc_mountstats_operations),
3038 #ifdef CONFIG_PROC_PAGE_MONITOR
3039 	REG("clear_refs", S_IWUSR, proc_clear_refs_operations),
3040 	REG("smaps",      S_IRUGO, proc_smaps_operations),
3041 	REG("pagemap",    S_IRUGO, proc_pagemap_operations),
3042 #endif
3043 #ifdef CONFIG_SECURITY
3044 	DIR("attr",       S_IRUGO|S_IXUGO, proc_attr_dir_inode_operations, proc_attr_dir_operations),
3045 #endif
3046 #ifdef CONFIG_KALLSYMS
3047 	INF("wchan",      S_IRUGO, proc_pid_wchan),
3048 #endif
3049 #ifdef CONFIG_STACKTRACE
3050 	ONE("stack",      S_IRUGO, proc_pid_stack),
3051 #endif
3052 #ifdef CONFIG_SCHEDSTATS
3053 	INF("schedstat",  S_IRUGO, proc_pid_schedstat),
3054 #endif
3055 #ifdef CONFIG_LATENCYTOP
3056 	REG("latency",  S_IRUGO, proc_lstats_operations),
3057 #endif
3058 #ifdef CONFIG_PROC_PID_CPUSET
3059 	REG("cpuset",     S_IRUGO, proc_cpuset_operations),
3060 #endif
3061 #ifdef CONFIG_CGROUPS
3062 	REG("cgroup",  S_IRUGO, proc_cgroup_operations),
3063 #endif
3064 	INF("oom_score",  S_IRUGO, proc_oom_score),
3065 	REG("oom_adj",    S_IRUGO|S_IWUSR, proc_oom_adjust_operations),
3066 	REG("oom_score_adj", S_IRUGO|S_IWUSR, proc_oom_score_adj_operations),
3067 #ifdef CONFIG_AUDITSYSCALL
3068 	REG("loginuid",   S_IWUSR|S_IRUGO, proc_loginuid_operations),
3069 	REG("sessionid",  S_IRUGO, proc_sessionid_operations),
3070 #endif
3071 #ifdef CONFIG_FAULT_INJECTION
3072 	REG("make-it-fail", S_IRUGO|S_IWUSR, proc_fault_inject_operations),
3073 #endif
3074 #ifdef CONFIG_ELF_CORE
3075 	REG("coredump_filter", S_IRUGO|S_IWUSR, proc_coredump_filter_operations),
3076 #endif
3077 #ifdef CONFIG_TASK_IO_ACCOUNTING
3078 	INF("io",	S_IRUSR, proc_tgid_io_accounting),
3079 #endif
3080 #ifdef CONFIG_HARDWALL
3081 	INF("hardwall",   S_IRUGO, proc_pid_hardwall),
3082 #endif
3083 };
3084 
3085 static int proc_tgid_base_readdir(struct file * filp,
3086 			     void * dirent, filldir_t filldir)
3087 {
3088 	return proc_pident_readdir(filp,dirent,filldir,
3089 				   tgid_base_stuff,ARRAY_SIZE(tgid_base_stuff));
3090 }
3091 
3092 static const struct file_operations proc_tgid_base_operations = {
3093 	.read		= generic_read_dir,
3094 	.readdir	= proc_tgid_base_readdir,
3095 	.llseek		= default_llseek,
3096 };
3097 
3098 static struct dentry *proc_tgid_base_lookup(struct inode *dir, struct dentry *dentry, struct nameidata *nd){
3099 	return proc_pident_lookup(dir, dentry,
3100 				  tgid_base_stuff, ARRAY_SIZE(tgid_base_stuff));
3101 }
3102 
3103 static const struct inode_operations proc_tgid_base_inode_operations = {
3104 	.lookup		= proc_tgid_base_lookup,
3105 	.getattr	= pid_getattr,
3106 	.setattr	= proc_setattr,
3107 	.permission	= proc_pid_permission,
3108 };
3109 
3110 static void proc_flush_task_mnt(struct vfsmount *mnt, pid_t pid, pid_t tgid)
3111 {
3112 	struct dentry *dentry, *leader, *dir;
3113 	char buf[PROC_NUMBUF];
3114 	struct qstr name;
3115 
3116 	name.name = buf;
3117 	name.len = snprintf(buf, sizeof(buf), "%d", pid);
3118 	dentry = d_hash_and_lookup(mnt->mnt_root, &name);
3119 	if (dentry) {
3120 		shrink_dcache_parent(dentry);
3121 		d_drop(dentry);
3122 		dput(dentry);
3123 	}
3124 
3125 	name.name = buf;
3126 	name.len = snprintf(buf, sizeof(buf), "%d", tgid);
3127 	leader = d_hash_and_lookup(mnt->mnt_root, &name);
3128 	if (!leader)
3129 		goto out;
3130 
3131 	name.name = "task";
3132 	name.len = strlen(name.name);
3133 	dir = d_hash_and_lookup(leader, &name);
3134 	if (!dir)
3135 		goto out_put_leader;
3136 
3137 	name.name = buf;
3138 	name.len = snprintf(buf, sizeof(buf), "%d", pid);
3139 	dentry = d_hash_and_lookup(dir, &name);
3140 	if (dentry) {
3141 		shrink_dcache_parent(dentry);
3142 		d_drop(dentry);
3143 		dput(dentry);
3144 	}
3145 
3146 	dput(dir);
3147 out_put_leader:
3148 	dput(leader);
3149 out:
3150 	return;
3151 }
3152 
3153 /**
3154  * proc_flush_task -  Remove dcache entries for @task from the /proc dcache.
3155  * @task: task that should be flushed.
3156  *
3157  * When flushing dentries from proc, one needs to flush them from global
3158  * proc (proc_mnt) and from all the namespaces' procs this task was seen
3159  * in. This call is supposed to do all of this job.
3160  *
3161  * Looks in the dcache for
3162  * /proc/@pid
3163  * /proc/@tgid/task/@pid
3164  * if either directory is present flushes it and all of it'ts children
3165  * from the dcache.
3166  *
3167  * It is safe and reasonable to cache /proc entries for a task until
3168  * that task exits.  After that they just clog up the dcache with
3169  * useless entries, possibly causing useful dcache entries to be
3170  * flushed instead.  This routine is proved to flush those useless
3171  * dcache entries at process exit time.
3172  *
3173  * NOTE: This routine is just an optimization so it does not guarantee
3174  *       that no dcache entries will exist at process exit time it
3175  *       just makes it very unlikely that any will persist.
3176  */
3177 
3178 void proc_flush_task(struct task_struct *task)
3179 {
3180 	int i;
3181 	struct pid *pid, *tgid;
3182 	struct upid *upid;
3183 
3184 	pid = task_pid(task);
3185 	tgid = task_tgid(task);
3186 
3187 	for (i = 0; i <= pid->level; i++) {
3188 		upid = &pid->numbers[i];
3189 		proc_flush_task_mnt(upid->ns->proc_mnt, upid->nr,
3190 					tgid->numbers[i].nr);
3191 	}
3192 
3193 	upid = &pid->numbers[pid->level];
3194 	if (upid->nr == 1)
3195 		pid_ns_release_proc(upid->ns);
3196 }
3197 
3198 static struct dentry *proc_pid_instantiate(struct inode *dir,
3199 					   struct dentry * dentry,
3200 					   struct task_struct *task, const void *ptr)
3201 {
3202 	struct dentry *error = ERR_PTR(-ENOENT);
3203 	struct inode *inode;
3204 
3205 	inode = proc_pid_make_inode(dir->i_sb, task);
3206 	if (!inode)
3207 		goto out;
3208 
3209 	inode->i_mode = S_IFDIR|S_IRUGO|S_IXUGO;
3210 	inode->i_op = &proc_tgid_base_inode_operations;
3211 	inode->i_fop = &proc_tgid_base_operations;
3212 	inode->i_flags|=S_IMMUTABLE;
3213 
3214 	set_nlink(inode, 2 + pid_entry_count_dirs(tgid_base_stuff,
3215 						  ARRAY_SIZE(tgid_base_stuff)));
3216 
3217 	d_set_d_op(dentry, &pid_dentry_operations);
3218 
3219 	d_add(dentry, inode);
3220 	/* Close the race of the process dying before we return the dentry */
3221 	if (pid_revalidate(dentry, NULL))
3222 		error = NULL;
3223 out:
3224 	return error;
3225 }
3226 
3227 struct dentry *proc_pid_lookup(struct inode *dir, struct dentry * dentry, struct nameidata *nd)
3228 {
3229 	struct dentry *result;
3230 	struct task_struct *task;
3231 	unsigned tgid;
3232 	struct pid_namespace *ns;
3233 
3234 	result = proc_base_lookup(dir, dentry);
3235 	if (!IS_ERR(result) || PTR_ERR(result) != -ENOENT)
3236 		goto out;
3237 
3238 	tgid = name_to_int(dentry);
3239 	if (tgid == ~0U)
3240 		goto out;
3241 
3242 	ns = dentry->d_sb->s_fs_info;
3243 	rcu_read_lock();
3244 	task = find_task_by_pid_ns(tgid, ns);
3245 	if (task)
3246 		get_task_struct(task);
3247 	rcu_read_unlock();
3248 	if (!task)
3249 		goto out;
3250 
3251 	result = proc_pid_instantiate(dir, dentry, task, NULL);
3252 	put_task_struct(task);
3253 out:
3254 	return result;
3255 }
3256 
3257 /*
3258  * Find the first task with tgid >= tgid
3259  *
3260  */
3261 struct tgid_iter {
3262 	unsigned int tgid;
3263 	struct task_struct *task;
3264 };
3265 static struct tgid_iter next_tgid(struct pid_namespace *ns, struct tgid_iter iter)
3266 {
3267 	struct pid *pid;
3268 
3269 	if (iter.task)
3270 		put_task_struct(iter.task);
3271 	rcu_read_lock();
3272 retry:
3273 	iter.task = NULL;
3274 	pid = find_ge_pid(iter.tgid, ns);
3275 	if (pid) {
3276 		iter.tgid = pid_nr_ns(pid, ns);
3277 		iter.task = pid_task(pid, PIDTYPE_PID);
3278 		/* What we to know is if the pid we have find is the
3279 		 * pid of a thread_group_leader.  Testing for task
3280 		 * being a thread_group_leader is the obvious thing
3281 		 * todo but there is a window when it fails, due to
3282 		 * the pid transfer logic in de_thread.
3283 		 *
3284 		 * So we perform the straight forward test of seeing
3285 		 * if the pid we have found is the pid of a thread
3286 		 * group leader, and don't worry if the task we have
3287 		 * found doesn't happen to be a thread group leader.
3288 		 * As we don't care in the case of readdir.
3289 		 */
3290 		if (!iter.task || !has_group_leader_pid(iter.task)) {
3291 			iter.tgid += 1;
3292 			goto retry;
3293 		}
3294 		get_task_struct(iter.task);
3295 	}
3296 	rcu_read_unlock();
3297 	return iter;
3298 }
3299 
3300 #define TGID_OFFSET (FIRST_PROCESS_ENTRY + ARRAY_SIZE(proc_base_stuff))
3301 
3302 static int proc_pid_fill_cache(struct file *filp, void *dirent, filldir_t filldir,
3303 	struct tgid_iter iter)
3304 {
3305 	char name[PROC_NUMBUF];
3306 	int len = snprintf(name, sizeof(name), "%d", iter.tgid);
3307 	return proc_fill_cache(filp, dirent, filldir, name, len,
3308 				proc_pid_instantiate, iter.task, NULL);
3309 }
3310 
3311 static int fake_filldir(void *buf, const char *name, int namelen,
3312 			loff_t offset, u64 ino, unsigned d_type)
3313 {
3314 	return 0;
3315 }
3316 
3317 /* for the /proc/ directory itself, after non-process stuff has been done */
3318 int proc_pid_readdir(struct file * filp, void * dirent, filldir_t filldir)
3319 {
3320 	unsigned int nr;
3321 	struct task_struct *reaper;
3322 	struct tgid_iter iter;
3323 	struct pid_namespace *ns;
3324 	filldir_t __filldir;
3325 
3326 	if (filp->f_pos >= PID_MAX_LIMIT + TGID_OFFSET)
3327 		goto out_no_task;
3328 	nr = filp->f_pos - FIRST_PROCESS_ENTRY;
3329 
3330 	reaper = get_proc_task(filp->f_path.dentry->d_inode);
3331 	if (!reaper)
3332 		goto out_no_task;
3333 
3334 	for (; nr < ARRAY_SIZE(proc_base_stuff); filp->f_pos++, nr++) {
3335 		const struct pid_entry *p = &proc_base_stuff[nr];
3336 		if (proc_base_fill_cache(filp, dirent, filldir, reaper, p) < 0)
3337 			goto out;
3338 	}
3339 
3340 	ns = filp->f_dentry->d_sb->s_fs_info;
3341 	iter.task = NULL;
3342 	iter.tgid = filp->f_pos - TGID_OFFSET;
3343 	for (iter = next_tgid(ns, iter);
3344 	     iter.task;
3345 	     iter.tgid += 1, iter = next_tgid(ns, iter)) {
3346 		if (has_pid_permissions(ns, iter.task, 2))
3347 			__filldir = filldir;
3348 		else
3349 			__filldir = fake_filldir;
3350 
3351 		filp->f_pos = iter.tgid + TGID_OFFSET;
3352 		if (proc_pid_fill_cache(filp, dirent, __filldir, iter) < 0) {
3353 			put_task_struct(iter.task);
3354 			goto out;
3355 		}
3356 	}
3357 	filp->f_pos = PID_MAX_LIMIT + TGID_OFFSET;
3358 out:
3359 	put_task_struct(reaper);
3360 out_no_task:
3361 	return 0;
3362 }
3363 
3364 /*
3365  * Tasks
3366  */
3367 static const struct pid_entry tid_base_stuff[] = {
3368 	DIR("fd",        S_IRUSR|S_IXUSR, proc_fd_inode_operations, proc_fd_operations),
3369 	DIR("fdinfo",    S_IRUSR|S_IXUSR, proc_fdinfo_inode_operations, proc_fdinfo_operations),
3370 	DIR("ns",	 S_IRUSR|S_IXUGO, proc_ns_dir_inode_operations, proc_ns_dir_operations),
3371 	REG("environ",   S_IRUSR, proc_environ_operations),
3372 	INF("auxv",      S_IRUSR, proc_pid_auxv),
3373 	ONE("status",    S_IRUGO, proc_pid_status),
3374 	ONE("personality", S_IRUGO, proc_pid_personality),
3375 	INF("limits",	 S_IRUGO, proc_pid_limits),
3376 #ifdef CONFIG_SCHED_DEBUG
3377 	REG("sched",     S_IRUGO|S_IWUSR, proc_pid_sched_operations),
3378 #endif
3379 	REG("comm",      S_IRUGO|S_IWUSR, proc_pid_set_comm_operations),
3380 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK
3381 	INF("syscall",   S_IRUGO, proc_pid_syscall),
3382 #endif
3383 	INF("cmdline",   S_IRUGO, proc_pid_cmdline),
3384 	ONE("stat",      S_IRUGO, proc_tid_stat),
3385 	ONE("statm",     S_IRUGO, proc_pid_statm),
3386 	REG("maps",      S_IRUGO, proc_maps_operations),
3387 #ifdef CONFIG_NUMA
3388 	REG("numa_maps", S_IRUGO, proc_numa_maps_operations),
3389 #endif
3390 	REG("mem",       S_IRUSR|S_IWUSR, proc_mem_operations),
3391 	LNK("cwd",       proc_cwd_link),
3392 	LNK("root",      proc_root_link),
3393 	LNK("exe",       proc_exe_link),
3394 	REG("mounts",    S_IRUGO, proc_mounts_operations),
3395 	REG("mountinfo",  S_IRUGO, proc_mountinfo_operations),
3396 #ifdef CONFIG_PROC_PAGE_MONITOR
3397 	REG("clear_refs", S_IWUSR, proc_clear_refs_operations),
3398 	REG("smaps",     S_IRUGO, proc_smaps_operations),
3399 	REG("pagemap",    S_IRUGO, proc_pagemap_operations),
3400 #endif
3401 #ifdef CONFIG_SECURITY
3402 	DIR("attr",      S_IRUGO|S_IXUGO, proc_attr_dir_inode_operations, proc_attr_dir_operations),
3403 #endif
3404 #ifdef CONFIG_KALLSYMS
3405 	INF("wchan",     S_IRUGO, proc_pid_wchan),
3406 #endif
3407 #ifdef CONFIG_STACKTRACE
3408 	ONE("stack",      S_IRUGO, proc_pid_stack),
3409 #endif
3410 #ifdef CONFIG_SCHEDSTATS
3411 	INF("schedstat", S_IRUGO, proc_pid_schedstat),
3412 #endif
3413 #ifdef CONFIG_LATENCYTOP
3414 	REG("latency",  S_IRUGO, proc_lstats_operations),
3415 #endif
3416 #ifdef CONFIG_PROC_PID_CPUSET
3417 	REG("cpuset",    S_IRUGO, proc_cpuset_operations),
3418 #endif
3419 #ifdef CONFIG_CGROUPS
3420 	REG("cgroup",  S_IRUGO, proc_cgroup_operations),
3421 #endif
3422 	INF("oom_score", S_IRUGO, proc_oom_score),
3423 	REG("oom_adj",   S_IRUGO|S_IWUSR, proc_oom_adjust_operations),
3424 	REG("oom_score_adj", S_IRUGO|S_IWUSR, proc_oom_score_adj_operations),
3425 #ifdef CONFIG_AUDITSYSCALL
3426 	REG("loginuid",  S_IWUSR|S_IRUGO, proc_loginuid_operations),
3427 	REG("sessionid",  S_IRUGO, proc_sessionid_operations),
3428 #endif
3429 #ifdef CONFIG_FAULT_INJECTION
3430 	REG("make-it-fail", S_IRUGO|S_IWUSR, proc_fault_inject_operations),
3431 #endif
3432 #ifdef CONFIG_TASK_IO_ACCOUNTING
3433 	INF("io",	S_IRUSR, proc_tid_io_accounting),
3434 #endif
3435 #ifdef CONFIG_HARDWALL
3436 	INF("hardwall",   S_IRUGO, proc_pid_hardwall),
3437 #endif
3438 };
3439 
3440 static int proc_tid_base_readdir(struct file * filp,
3441 			     void * dirent, filldir_t filldir)
3442 {
3443 	return proc_pident_readdir(filp,dirent,filldir,
3444 				   tid_base_stuff,ARRAY_SIZE(tid_base_stuff));
3445 }
3446 
3447 static struct dentry *proc_tid_base_lookup(struct inode *dir, struct dentry *dentry, struct nameidata *nd){
3448 	return proc_pident_lookup(dir, dentry,
3449 				  tid_base_stuff, ARRAY_SIZE(tid_base_stuff));
3450 }
3451 
3452 static const struct file_operations proc_tid_base_operations = {
3453 	.read		= generic_read_dir,
3454 	.readdir	= proc_tid_base_readdir,
3455 	.llseek		= default_llseek,
3456 };
3457 
3458 static const struct inode_operations proc_tid_base_inode_operations = {
3459 	.lookup		= proc_tid_base_lookup,
3460 	.getattr	= pid_getattr,
3461 	.setattr	= proc_setattr,
3462 };
3463 
3464 static struct dentry *proc_task_instantiate(struct inode *dir,
3465 	struct dentry *dentry, struct task_struct *task, const void *ptr)
3466 {
3467 	struct dentry *error = ERR_PTR(-ENOENT);
3468 	struct inode *inode;
3469 	inode = proc_pid_make_inode(dir->i_sb, task);
3470 
3471 	if (!inode)
3472 		goto out;
3473 	inode->i_mode = S_IFDIR|S_IRUGO|S_IXUGO;
3474 	inode->i_op = &proc_tid_base_inode_operations;
3475 	inode->i_fop = &proc_tid_base_operations;
3476 	inode->i_flags|=S_IMMUTABLE;
3477 
3478 	set_nlink(inode, 2 + pid_entry_count_dirs(tid_base_stuff,
3479 						  ARRAY_SIZE(tid_base_stuff)));
3480 
3481 	d_set_d_op(dentry, &pid_dentry_operations);
3482 
3483 	d_add(dentry, inode);
3484 	/* Close the race of the process dying before we return the dentry */
3485 	if (pid_revalidate(dentry, NULL))
3486 		error = NULL;
3487 out:
3488 	return error;
3489 }
3490 
3491 static struct dentry *proc_task_lookup(struct inode *dir, struct dentry * dentry, struct nameidata *nd)
3492 {
3493 	struct dentry *result = ERR_PTR(-ENOENT);
3494 	struct task_struct *task;
3495 	struct task_struct *leader = get_proc_task(dir);
3496 	unsigned tid;
3497 	struct pid_namespace *ns;
3498 
3499 	if (!leader)
3500 		goto out_no_task;
3501 
3502 	tid = name_to_int(dentry);
3503 	if (tid == ~0U)
3504 		goto out;
3505 
3506 	ns = dentry->d_sb->s_fs_info;
3507 	rcu_read_lock();
3508 	task = find_task_by_pid_ns(tid, ns);
3509 	if (task)
3510 		get_task_struct(task);
3511 	rcu_read_unlock();
3512 	if (!task)
3513 		goto out;
3514 	if (!same_thread_group(leader, task))
3515 		goto out_drop_task;
3516 
3517 	result = proc_task_instantiate(dir, dentry, task, NULL);
3518 out_drop_task:
3519 	put_task_struct(task);
3520 out:
3521 	put_task_struct(leader);
3522 out_no_task:
3523 	return result;
3524 }
3525 
3526 /*
3527  * Find the first tid of a thread group to return to user space.
3528  *
3529  * Usually this is just the thread group leader, but if the users
3530  * buffer was too small or there was a seek into the middle of the
3531  * directory we have more work todo.
3532  *
3533  * In the case of a short read we start with find_task_by_pid.
3534  *
3535  * In the case of a seek we start with the leader and walk nr
3536  * threads past it.
3537  */
3538 static struct task_struct *first_tid(struct task_struct *leader,
3539 		int tid, int nr, struct pid_namespace *ns)
3540 {
3541 	struct task_struct *pos;
3542 
3543 	rcu_read_lock();
3544 	/* Attempt to start with the pid of a thread */
3545 	if (tid && (nr > 0)) {
3546 		pos = find_task_by_pid_ns(tid, ns);
3547 		if (pos && (pos->group_leader == leader))
3548 			goto found;
3549 	}
3550 
3551 	/* If nr exceeds the number of threads there is nothing todo */
3552 	pos = NULL;
3553 	if (nr && nr >= get_nr_threads(leader))
3554 		goto out;
3555 
3556 	/* If we haven't found our starting place yet start
3557 	 * with the leader and walk nr threads forward.
3558 	 */
3559 	for (pos = leader; nr > 0; --nr) {
3560 		pos = next_thread(pos);
3561 		if (pos == leader) {
3562 			pos = NULL;
3563 			goto out;
3564 		}
3565 	}
3566 found:
3567 	get_task_struct(pos);
3568 out:
3569 	rcu_read_unlock();
3570 	return pos;
3571 }
3572 
3573 /*
3574  * Find the next thread in the thread list.
3575  * Return NULL if there is an error or no next thread.
3576  *
3577  * The reference to the input task_struct is released.
3578  */
3579 static struct task_struct *next_tid(struct task_struct *start)
3580 {
3581 	struct task_struct *pos = NULL;
3582 	rcu_read_lock();
3583 	if (pid_alive(start)) {
3584 		pos = next_thread(start);
3585 		if (thread_group_leader(pos))
3586 			pos = NULL;
3587 		else
3588 			get_task_struct(pos);
3589 	}
3590 	rcu_read_unlock();
3591 	put_task_struct(start);
3592 	return pos;
3593 }
3594 
3595 static int proc_task_fill_cache(struct file *filp, void *dirent, filldir_t filldir,
3596 	struct task_struct *task, int tid)
3597 {
3598 	char name[PROC_NUMBUF];
3599 	int len = snprintf(name, sizeof(name), "%d", tid);
3600 	return proc_fill_cache(filp, dirent, filldir, name, len,
3601 				proc_task_instantiate, task, NULL);
3602 }
3603 
3604 /* for the /proc/TGID/task/ directories */
3605 static int proc_task_readdir(struct file * filp, void * dirent, filldir_t filldir)
3606 {
3607 	struct dentry *dentry = filp->f_path.dentry;
3608 	struct inode *inode = dentry->d_inode;
3609 	struct task_struct *leader = NULL;
3610 	struct task_struct *task;
3611 	int retval = -ENOENT;
3612 	ino_t ino;
3613 	int tid;
3614 	struct pid_namespace *ns;
3615 
3616 	task = get_proc_task(inode);
3617 	if (!task)
3618 		goto out_no_task;
3619 	rcu_read_lock();
3620 	if (pid_alive(task)) {
3621 		leader = task->group_leader;
3622 		get_task_struct(leader);
3623 	}
3624 	rcu_read_unlock();
3625 	put_task_struct(task);
3626 	if (!leader)
3627 		goto out_no_task;
3628 	retval = 0;
3629 
3630 	switch ((unsigned long)filp->f_pos) {
3631 	case 0:
3632 		ino = inode->i_ino;
3633 		if (filldir(dirent, ".", 1, filp->f_pos, ino, DT_DIR) < 0)
3634 			goto out;
3635 		filp->f_pos++;
3636 		/* fall through */
3637 	case 1:
3638 		ino = parent_ino(dentry);
3639 		if (filldir(dirent, "..", 2, filp->f_pos, ino, DT_DIR) < 0)
3640 			goto out;
3641 		filp->f_pos++;
3642 		/* fall through */
3643 	}
3644 
3645 	/* f_version caches the tgid value that the last readdir call couldn't
3646 	 * return. lseek aka telldir automagically resets f_version to 0.
3647 	 */
3648 	ns = filp->f_dentry->d_sb->s_fs_info;
3649 	tid = (int)filp->f_version;
3650 	filp->f_version = 0;
3651 	for (task = first_tid(leader, tid, filp->f_pos - 2, ns);
3652 	     task;
3653 	     task = next_tid(task), filp->f_pos++) {
3654 		tid = task_pid_nr_ns(task, ns);
3655 		if (proc_task_fill_cache(filp, dirent, filldir, task, tid) < 0) {
3656 			/* returning this tgid failed, save it as the first
3657 			 * pid for the next readir call */
3658 			filp->f_version = (u64)tid;
3659 			put_task_struct(task);
3660 			break;
3661 		}
3662 	}
3663 out:
3664 	put_task_struct(leader);
3665 out_no_task:
3666 	return retval;
3667 }
3668 
3669 static int proc_task_getattr(struct vfsmount *mnt, struct dentry *dentry, struct kstat *stat)
3670 {
3671 	struct inode *inode = dentry->d_inode;
3672 	struct task_struct *p = get_proc_task(inode);
3673 	generic_fillattr(inode, stat);
3674 
3675 	if (p) {
3676 		stat->nlink += get_nr_threads(p);
3677 		put_task_struct(p);
3678 	}
3679 
3680 	return 0;
3681 }
3682 
3683 static const struct inode_operations proc_task_inode_operations = {
3684 	.lookup		= proc_task_lookup,
3685 	.getattr	= proc_task_getattr,
3686 	.setattr	= proc_setattr,
3687 	.permission	= proc_pid_permission,
3688 };
3689 
3690 static const struct file_operations proc_task_operations = {
3691 	.read		= generic_read_dir,
3692 	.readdir	= proc_task_readdir,
3693 	.llseek		= default_llseek,
3694 };
3695