1 /* 2 * linux/fs/proc/base.c 3 * 4 * Copyright (C) 1991, 1992 Linus Torvalds 5 * 6 * proc base directory handling functions 7 * 8 * 1999, Al Viro. Rewritten. Now it covers the whole per-process part. 9 * Instead of using magical inumbers to determine the kind of object 10 * we allocate and fill in-core inodes upon lookup. They don't even 11 * go into icache. We cache the reference to task_struct upon lookup too. 12 * Eventually it should become a filesystem in its own. We don't use the 13 * rest of procfs anymore. 14 * 15 * 16 * Changelog: 17 * 17-Jan-2005 18 * Allan Bezerra 19 * Bruna Moreira <bruna.moreira@indt.org.br> 20 * Edjard Mota <edjard.mota@indt.org.br> 21 * Ilias Biris <ilias.biris@indt.org.br> 22 * Mauricio Lin <mauricio.lin@indt.org.br> 23 * 24 * Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT 25 * 26 * A new process specific entry (smaps) included in /proc. It shows the 27 * size of rss for each memory area. The maps entry lacks information 28 * about physical memory size (rss) for each mapped file, i.e., 29 * rss information for executables and library files. 30 * This additional information is useful for any tools that need to know 31 * about physical memory consumption for a process specific library. 32 * 33 * Changelog: 34 * 21-Feb-2005 35 * Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT 36 * Pud inclusion in the page table walking. 37 * 38 * ChangeLog: 39 * 10-Mar-2005 40 * 10LE Instituto Nokia de Tecnologia - INdT: 41 * A better way to walks through the page table as suggested by Hugh Dickins. 42 * 43 * Simo Piiroinen <simo.piiroinen@nokia.com>: 44 * Smaps information related to shared, private, clean and dirty pages. 45 * 46 * Paul Mundt <paul.mundt@nokia.com>: 47 * Overall revision about smaps. 48 */ 49 50 #include <asm/uaccess.h> 51 52 #include <linux/errno.h> 53 #include <linux/time.h> 54 #include <linux/proc_fs.h> 55 #include <linux/stat.h> 56 #include <linux/task_io_accounting_ops.h> 57 #include <linux/init.h> 58 #include <linux/capability.h> 59 #include <linux/file.h> 60 #include <linux/fdtable.h> 61 #include <linux/string.h> 62 #include <linux/seq_file.h> 63 #include <linux/namei.h> 64 #include <linux/mnt_namespace.h> 65 #include <linux/mm.h> 66 #include <linux/swap.h> 67 #include <linux/rcupdate.h> 68 #include <linux/kallsyms.h> 69 #include <linux/stacktrace.h> 70 #include <linux/resource.h> 71 #include <linux/module.h> 72 #include <linux/mount.h> 73 #include <linux/security.h> 74 #include <linux/ptrace.h> 75 #include <linux/tracehook.h> 76 #include <linux/cgroup.h> 77 #include <linux/cpuset.h> 78 #include <linux/audit.h> 79 #include <linux/poll.h> 80 #include <linux/nsproxy.h> 81 #include <linux/oom.h> 82 #include <linux/elf.h> 83 #include <linux/pid_namespace.h> 84 #include <linux/fs_struct.h> 85 #include <linux/slab.h> 86 #include <linux/flex_array.h> 87 #ifdef CONFIG_HARDWALL 88 #include <asm/hardwall.h> 89 #endif 90 #include <trace/events/oom.h> 91 #include "internal.h" 92 93 /* NOTE: 94 * Implementing inode permission operations in /proc is almost 95 * certainly an error. Permission checks need to happen during 96 * each system call not at open time. The reason is that most of 97 * what we wish to check for permissions in /proc varies at runtime. 98 * 99 * The classic example of a problem is opening file descriptors 100 * in /proc for a task before it execs a suid executable. 101 */ 102 103 struct pid_entry { 104 char *name; 105 int len; 106 umode_t mode; 107 const struct inode_operations *iop; 108 const struct file_operations *fop; 109 union proc_op op; 110 }; 111 112 #define NOD(NAME, MODE, IOP, FOP, OP) { \ 113 .name = (NAME), \ 114 .len = sizeof(NAME) - 1, \ 115 .mode = MODE, \ 116 .iop = IOP, \ 117 .fop = FOP, \ 118 .op = OP, \ 119 } 120 121 #define DIR(NAME, MODE, iops, fops) \ 122 NOD(NAME, (S_IFDIR|(MODE)), &iops, &fops, {} ) 123 #define LNK(NAME, get_link) \ 124 NOD(NAME, (S_IFLNK|S_IRWXUGO), \ 125 &proc_pid_link_inode_operations, NULL, \ 126 { .proc_get_link = get_link } ) 127 #define REG(NAME, MODE, fops) \ 128 NOD(NAME, (S_IFREG|(MODE)), NULL, &fops, {}) 129 #define INF(NAME, MODE, read) \ 130 NOD(NAME, (S_IFREG|(MODE)), \ 131 NULL, &proc_info_file_operations, \ 132 { .proc_read = read } ) 133 #define ONE(NAME, MODE, show) \ 134 NOD(NAME, (S_IFREG|(MODE)), \ 135 NULL, &proc_single_file_operations, \ 136 { .proc_show = show } ) 137 138 static int proc_fd_permission(struct inode *inode, int mask); 139 140 /* 141 * Count the number of hardlinks for the pid_entry table, excluding the . 142 * and .. links. 143 */ 144 static unsigned int pid_entry_count_dirs(const struct pid_entry *entries, 145 unsigned int n) 146 { 147 unsigned int i; 148 unsigned int count; 149 150 count = 0; 151 for (i = 0; i < n; ++i) { 152 if (S_ISDIR(entries[i].mode)) 153 ++count; 154 } 155 156 return count; 157 } 158 159 static int get_task_root(struct task_struct *task, struct path *root) 160 { 161 int result = -ENOENT; 162 163 task_lock(task); 164 if (task->fs) { 165 get_fs_root(task->fs, root); 166 result = 0; 167 } 168 task_unlock(task); 169 return result; 170 } 171 172 static int proc_cwd_link(struct dentry *dentry, struct path *path) 173 { 174 struct task_struct *task = get_proc_task(dentry->d_inode); 175 int result = -ENOENT; 176 177 if (task) { 178 task_lock(task); 179 if (task->fs) { 180 get_fs_pwd(task->fs, path); 181 result = 0; 182 } 183 task_unlock(task); 184 put_task_struct(task); 185 } 186 return result; 187 } 188 189 static int proc_root_link(struct dentry *dentry, struct path *path) 190 { 191 struct task_struct *task = get_proc_task(dentry->d_inode); 192 int result = -ENOENT; 193 194 if (task) { 195 result = get_task_root(task, path); 196 put_task_struct(task); 197 } 198 return result; 199 } 200 201 static struct mm_struct *mm_access(struct task_struct *task, unsigned int mode) 202 { 203 struct mm_struct *mm; 204 int err; 205 206 err = mutex_lock_killable(&task->signal->cred_guard_mutex); 207 if (err) 208 return ERR_PTR(err); 209 210 mm = get_task_mm(task); 211 if (mm && mm != current->mm && 212 !ptrace_may_access(task, mode)) { 213 mmput(mm); 214 mm = ERR_PTR(-EACCES); 215 } 216 mutex_unlock(&task->signal->cred_guard_mutex); 217 218 return mm; 219 } 220 221 struct mm_struct *mm_for_maps(struct task_struct *task) 222 { 223 return mm_access(task, PTRACE_MODE_READ); 224 } 225 226 static int proc_pid_cmdline(struct task_struct *task, char * buffer) 227 { 228 int res = 0; 229 unsigned int len; 230 struct mm_struct *mm = get_task_mm(task); 231 if (!mm) 232 goto out; 233 if (!mm->arg_end) 234 goto out_mm; /* Shh! No looking before we're done */ 235 236 len = mm->arg_end - mm->arg_start; 237 238 if (len > PAGE_SIZE) 239 len = PAGE_SIZE; 240 241 res = access_process_vm(task, mm->arg_start, buffer, len, 0); 242 243 // If the nul at the end of args has been overwritten, then 244 // assume application is using setproctitle(3). 245 if (res > 0 && buffer[res-1] != '\0' && len < PAGE_SIZE) { 246 len = strnlen(buffer, res); 247 if (len < res) { 248 res = len; 249 } else { 250 len = mm->env_end - mm->env_start; 251 if (len > PAGE_SIZE - res) 252 len = PAGE_SIZE - res; 253 res += access_process_vm(task, mm->env_start, buffer+res, len, 0); 254 res = strnlen(buffer, res); 255 } 256 } 257 out_mm: 258 mmput(mm); 259 out: 260 return res; 261 } 262 263 static int proc_pid_auxv(struct task_struct *task, char *buffer) 264 { 265 struct mm_struct *mm = mm_for_maps(task); 266 int res = PTR_ERR(mm); 267 if (mm && !IS_ERR(mm)) { 268 unsigned int nwords = 0; 269 do { 270 nwords += 2; 271 } while (mm->saved_auxv[nwords - 2] != 0); /* AT_NULL */ 272 res = nwords * sizeof(mm->saved_auxv[0]); 273 if (res > PAGE_SIZE) 274 res = PAGE_SIZE; 275 memcpy(buffer, mm->saved_auxv, res); 276 mmput(mm); 277 } 278 return res; 279 } 280 281 282 #ifdef CONFIG_KALLSYMS 283 /* 284 * Provides a wchan file via kallsyms in a proper one-value-per-file format. 285 * Returns the resolved symbol. If that fails, simply return the address. 286 */ 287 static int proc_pid_wchan(struct task_struct *task, char *buffer) 288 { 289 unsigned long wchan; 290 char symname[KSYM_NAME_LEN]; 291 292 wchan = get_wchan(task); 293 294 if (lookup_symbol_name(wchan, symname) < 0) 295 if (!ptrace_may_access(task, PTRACE_MODE_READ)) 296 return 0; 297 else 298 return sprintf(buffer, "%lu", wchan); 299 else 300 return sprintf(buffer, "%s", symname); 301 } 302 #endif /* CONFIG_KALLSYMS */ 303 304 static int lock_trace(struct task_struct *task) 305 { 306 int err = mutex_lock_killable(&task->signal->cred_guard_mutex); 307 if (err) 308 return err; 309 if (!ptrace_may_access(task, PTRACE_MODE_ATTACH)) { 310 mutex_unlock(&task->signal->cred_guard_mutex); 311 return -EPERM; 312 } 313 return 0; 314 } 315 316 static void unlock_trace(struct task_struct *task) 317 { 318 mutex_unlock(&task->signal->cred_guard_mutex); 319 } 320 321 #ifdef CONFIG_STACKTRACE 322 323 #define MAX_STACK_TRACE_DEPTH 64 324 325 static int proc_pid_stack(struct seq_file *m, struct pid_namespace *ns, 326 struct pid *pid, struct task_struct *task) 327 { 328 struct stack_trace trace; 329 unsigned long *entries; 330 int err; 331 int i; 332 333 entries = kmalloc(MAX_STACK_TRACE_DEPTH * sizeof(*entries), GFP_KERNEL); 334 if (!entries) 335 return -ENOMEM; 336 337 trace.nr_entries = 0; 338 trace.max_entries = MAX_STACK_TRACE_DEPTH; 339 trace.entries = entries; 340 trace.skip = 0; 341 342 err = lock_trace(task); 343 if (!err) { 344 save_stack_trace_tsk(task, &trace); 345 346 for (i = 0; i < trace.nr_entries; i++) { 347 seq_printf(m, "[<%pK>] %pS\n", 348 (void *)entries[i], (void *)entries[i]); 349 } 350 unlock_trace(task); 351 } 352 kfree(entries); 353 354 return err; 355 } 356 #endif 357 358 #ifdef CONFIG_SCHEDSTATS 359 /* 360 * Provides /proc/PID/schedstat 361 */ 362 static int proc_pid_schedstat(struct task_struct *task, char *buffer) 363 { 364 return sprintf(buffer, "%llu %llu %lu\n", 365 (unsigned long long)task->se.sum_exec_runtime, 366 (unsigned long long)task->sched_info.run_delay, 367 task->sched_info.pcount); 368 } 369 #endif 370 371 #ifdef CONFIG_LATENCYTOP 372 static int lstats_show_proc(struct seq_file *m, void *v) 373 { 374 int i; 375 struct inode *inode = m->private; 376 struct task_struct *task = get_proc_task(inode); 377 378 if (!task) 379 return -ESRCH; 380 seq_puts(m, "Latency Top version : v0.1\n"); 381 for (i = 0; i < 32; i++) { 382 struct latency_record *lr = &task->latency_record[i]; 383 if (lr->backtrace[0]) { 384 int q; 385 seq_printf(m, "%i %li %li", 386 lr->count, lr->time, lr->max); 387 for (q = 0; q < LT_BACKTRACEDEPTH; q++) { 388 unsigned long bt = lr->backtrace[q]; 389 if (!bt) 390 break; 391 if (bt == ULONG_MAX) 392 break; 393 seq_printf(m, " %ps", (void *)bt); 394 } 395 seq_putc(m, '\n'); 396 } 397 398 } 399 put_task_struct(task); 400 return 0; 401 } 402 403 static int lstats_open(struct inode *inode, struct file *file) 404 { 405 return single_open(file, lstats_show_proc, inode); 406 } 407 408 static ssize_t lstats_write(struct file *file, const char __user *buf, 409 size_t count, loff_t *offs) 410 { 411 struct task_struct *task = get_proc_task(file->f_dentry->d_inode); 412 413 if (!task) 414 return -ESRCH; 415 clear_all_latency_tracing(task); 416 put_task_struct(task); 417 418 return count; 419 } 420 421 static const struct file_operations proc_lstats_operations = { 422 .open = lstats_open, 423 .read = seq_read, 424 .write = lstats_write, 425 .llseek = seq_lseek, 426 .release = single_release, 427 }; 428 429 #endif 430 431 static int proc_oom_score(struct task_struct *task, char *buffer) 432 { 433 unsigned long points = 0; 434 435 read_lock(&tasklist_lock); 436 if (pid_alive(task)) 437 points = oom_badness(task, NULL, NULL, 438 totalram_pages + total_swap_pages); 439 read_unlock(&tasklist_lock); 440 return sprintf(buffer, "%lu\n", points); 441 } 442 443 struct limit_names { 444 char *name; 445 char *unit; 446 }; 447 448 static const struct limit_names lnames[RLIM_NLIMITS] = { 449 [RLIMIT_CPU] = {"Max cpu time", "seconds"}, 450 [RLIMIT_FSIZE] = {"Max file size", "bytes"}, 451 [RLIMIT_DATA] = {"Max data size", "bytes"}, 452 [RLIMIT_STACK] = {"Max stack size", "bytes"}, 453 [RLIMIT_CORE] = {"Max core file size", "bytes"}, 454 [RLIMIT_RSS] = {"Max resident set", "bytes"}, 455 [RLIMIT_NPROC] = {"Max processes", "processes"}, 456 [RLIMIT_NOFILE] = {"Max open files", "files"}, 457 [RLIMIT_MEMLOCK] = {"Max locked memory", "bytes"}, 458 [RLIMIT_AS] = {"Max address space", "bytes"}, 459 [RLIMIT_LOCKS] = {"Max file locks", "locks"}, 460 [RLIMIT_SIGPENDING] = {"Max pending signals", "signals"}, 461 [RLIMIT_MSGQUEUE] = {"Max msgqueue size", "bytes"}, 462 [RLIMIT_NICE] = {"Max nice priority", NULL}, 463 [RLIMIT_RTPRIO] = {"Max realtime priority", NULL}, 464 [RLIMIT_RTTIME] = {"Max realtime timeout", "us"}, 465 }; 466 467 /* Display limits for a process */ 468 static int proc_pid_limits(struct task_struct *task, char *buffer) 469 { 470 unsigned int i; 471 int count = 0; 472 unsigned long flags; 473 char *bufptr = buffer; 474 475 struct rlimit rlim[RLIM_NLIMITS]; 476 477 if (!lock_task_sighand(task, &flags)) 478 return 0; 479 memcpy(rlim, task->signal->rlim, sizeof(struct rlimit) * RLIM_NLIMITS); 480 unlock_task_sighand(task, &flags); 481 482 /* 483 * print the file header 484 */ 485 count += sprintf(&bufptr[count], "%-25s %-20s %-20s %-10s\n", 486 "Limit", "Soft Limit", "Hard Limit", "Units"); 487 488 for (i = 0; i < RLIM_NLIMITS; i++) { 489 if (rlim[i].rlim_cur == RLIM_INFINITY) 490 count += sprintf(&bufptr[count], "%-25s %-20s ", 491 lnames[i].name, "unlimited"); 492 else 493 count += sprintf(&bufptr[count], "%-25s %-20lu ", 494 lnames[i].name, rlim[i].rlim_cur); 495 496 if (rlim[i].rlim_max == RLIM_INFINITY) 497 count += sprintf(&bufptr[count], "%-20s ", "unlimited"); 498 else 499 count += sprintf(&bufptr[count], "%-20lu ", 500 rlim[i].rlim_max); 501 502 if (lnames[i].unit) 503 count += sprintf(&bufptr[count], "%-10s\n", 504 lnames[i].unit); 505 else 506 count += sprintf(&bufptr[count], "\n"); 507 } 508 509 return count; 510 } 511 512 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK 513 static int proc_pid_syscall(struct task_struct *task, char *buffer) 514 { 515 long nr; 516 unsigned long args[6], sp, pc; 517 int res = lock_trace(task); 518 if (res) 519 return res; 520 521 if (task_current_syscall(task, &nr, args, 6, &sp, &pc)) 522 res = sprintf(buffer, "running\n"); 523 else if (nr < 0) 524 res = sprintf(buffer, "%ld 0x%lx 0x%lx\n", nr, sp, pc); 525 else 526 res = sprintf(buffer, 527 "%ld 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx\n", 528 nr, 529 args[0], args[1], args[2], args[3], args[4], args[5], 530 sp, pc); 531 unlock_trace(task); 532 return res; 533 } 534 #endif /* CONFIG_HAVE_ARCH_TRACEHOOK */ 535 536 /************************************************************************/ 537 /* Here the fs part begins */ 538 /************************************************************************/ 539 540 /* permission checks */ 541 static int proc_fd_access_allowed(struct inode *inode) 542 { 543 struct task_struct *task; 544 int allowed = 0; 545 /* Allow access to a task's file descriptors if it is us or we 546 * may use ptrace attach to the process and find out that 547 * information. 548 */ 549 task = get_proc_task(inode); 550 if (task) { 551 allowed = ptrace_may_access(task, PTRACE_MODE_READ); 552 put_task_struct(task); 553 } 554 return allowed; 555 } 556 557 int proc_setattr(struct dentry *dentry, struct iattr *attr) 558 { 559 int error; 560 struct inode *inode = dentry->d_inode; 561 562 if (attr->ia_valid & ATTR_MODE) 563 return -EPERM; 564 565 error = inode_change_ok(inode, attr); 566 if (error) 567 return error; 568 569 if ((attr->ia_valid & ATTR_SIZE) && 570 attr->ia_size != i_size_read(inode)) { 571 error = vmtruncate(inode, attr->ia_size); 572 if (error) 573 return error; 574 } 575 576 setattr_copy(inode, attr); 577 mark_inode_dirty(inode); 578 return 0; 579 } 580 581 /* 582 * May current process learn task's sched/cmdline info (for hide_pid_min=1) 583 * or euid/egid (for hide_pid_min=2)? 584 */ 585 static bool has_pid_permissions(struct pid_namespace *pid, 586 struct task_struct *task, 587 int hide_pid_min) 588 { 589 if (pid->hide_pid < hide_pid_min) 590 return true; 591 if (in_group_p(pid->pid_gid)) 592 return true; 593 return ptrace_may_access(task, PTRACE_MODE_READ); 594 } 595 596 597 static int proc_pid_permission(struct inode *inode, int mask) 598 { 599 struct pid_namespace *pid = inode->i_sb->s_fs_info; 600 struct task_struct *task; 601 bool has_perms; 602 603 task = get_proc_task(inode); 604 if (!task) 605 return -ESRCH; 606 has_perms = has_pid_permissions(pid, task, 1); 607 put_task_struct(task); 608 609 if (!has_perms) { 610 if (pid->hide_pid == 2) { 611 /* 612 * Let's make getdents(), stat(), and open() 613 * consistent with each other. If a process 614 * may not stat() a file, it shouldn't be seen 615 * in procfs at all. 616 */ 617 return -ENOENT; 618 } 619 620 return -EPERM; 621 } 622 return generic_permission(inode, mask); 623 } 624 625 626 627 static const struct inode_operations proc_def_inode_operations = { 628 .setattr = proc_setattr, 629 }; 630 631 #define PROC_BLOCK_SIZE (3*1024) /* 4K page size but our output routines use some slack for overruns */ 632 633 static ssize_t proc_info_read(struct file * file, char __user * buf, 634 size_t count, loff_t *ppos) 635 { 636 struct inode * inode = file->f_path.dentry->d_inode; 637 unsigned long page; 638 ssize_t length; 639 struct task_struct *task = get_proc_task(inode); 640 641 length = -ESRCH; 642 if (!task) 643 goto out_no_task; 644 645 if (count > PROC_BLOCK_SIZE) 646 count = PROC_BLOCK_SIZE; 647 648 length = -ENOMEM; 649 if (!(page = __get_free_page(GFP_TEMPORARY))) 650 goto out; 651 652 length = PROC_I(inode)->op.proc_read(task, (char*)page); 653 654 if (length >= 0) 655 length = simple_read_from_buffer(buf, count, ppos, (char *)page, length); 656 free_page(page); 657 out: 658 put_task_struct(task); 659 out_no_task: 660 return length; 661 } 662 663 static const struct file_operations proc_info_file_operations = { 664 .read = proc_info_read, 665 .llseek = generic_file_llseek, 666 }; 667 668 static int proc_single_show(struct seq_file *m, void *v) 669 { 670 struct inode *inode = m->private; 671 struct pid_namespace *ns; 672 struct pid *pid; 673 struct task_struct *task; 674 int ret; 675 676 ns = inode->i_sb->s_fs_info; 677 pid = proc_pid(inode); 678 task = get_pid_task(pid, PIDTYPE_PID); 679 if (!task) 680 return -ESRCH; 681 682 ret = PROC_I(inode)->op.proc_show(m, ns, pid, task); 683 684 put_task_struct(task); 685 return ret; 686 } 687 688 static int proc_single_open(struct inode *inode, struct file *filp) 689 { 690 return single_open(filp, proc_single_show, inode); 691 } 692 693 static const struct file_operations proc_single_file_operations = { 694 .open = proc_single_open, 695 .read = seq_read, 696 .llseek = seq_lseek, 697 .release = single_release, 698 }; 699 700 static int mem_open(struct inode* inode, struct file* file) 701 { 702 struct task_struct *task = get_proc_task(file->f_path.dentry->d_inode); 703 struct mm_struct *mm; 704 705 if (!task) 706 return -ESRCH; 707 708 mm = mm_access(task, PTRACE_MODE_ATTACH); 709 put_task_struct(task); 710 711 if (IS_ERR(mm)) 712 return PTR_ERR(mm); 713 714 /* OK to pass negative loff_t, we can catch out-of-range */ 715 file->f_mode |= FMODE_UNSIGNED_OFFSET; 716 file->private_data = mm; 717 718 return 0; 719 } 720 721 static ssize_t mem_read(struct file * file, char __user * buf, 722 size_t count, loff_t *ppos) 723 { 724 int ret; 725 char *page; 726 unsigned long src = *ppos; 727 struct mm_struct *mm = file->private_data; 728 729 if (!mm) 730 return 0; 731 732 page = (char *)__get_free_page(GFP_TEMPORARY); 733 if (!page) 734 return -ENOMEM; 735 736 ret = 0; 737 738 while (count > 0) { 739 int this_len, retval; 740 741 this_len = (count > PAGE_SIZE) ? PAGE_SIZE : count; 742 retval = access_remote_vm(mm, src, page, this_len, 0); 743 if (!retval) { 744 if (!ret) 745 ret = -EIO; 746 break; 747 } 748 749 if (copy_to_user(buf, page, retval)) { 750 ret = -EFAULT; 751 break; 752 } 753 754 ret += retval; 755 src += retval; 756 buf += retval; 757 count -= retval; 758 } 759 *ppos = src; 760 761 free_page((unsigned long) page); 762 return ret; 763 } 764 765 static ssize_t mem_write(struct file * file, const char __user *buf, 766 size_t count, loff_t *ppos) 767 { 768 int copied; 769 char *page; 770 unsigned long dst = *ppos; 771 struct mm_struct *mm = file->private_data; 772 773 if (!mm) 774 return 0; 775 776 page = (char *)__get_free_page(GFP_TEMPORARY); 777 if (!page) 778 return -ENOMEM; 779 780 copied = 0; 781 while (count > 0) { 782 int this_len, retval; 783 784 this_len = (count > PAGE_SIZE) ? PAGE_SIZE : count; 785 if (copy_from_user(page, buf, this_len)) { 786 copied = -EFAULT; 787 break; 788 } 789 retval = access_remote_vm(mm, dst, page, this_len, 1); 790 if (!retval) { 791 if (!copied) 792 copied = -EIO; 793 break; 794 } 795 copied += retval; 796 buf += retval; 797 dst += retval; 798 count -= retval; 799 } 800 *ppos = dst; 801 802 free_page((unsigned long) page); 803 return copied; 804 } 805 806 loff_t mem_lseek(struct file *file, loff_t offset, int orig) 807 { 808 switch (orig) { 809 case 0: 810 file->f_pos = offset; 811 break; 812 case 1: 813 file->f_pos += offset; 814 break; 815 default: 816 return -EINVAL; 817 } 818 force_successful_syscall_return(); 819 return file->f_pos; 820 } 821 822 static int mem_release(struct inode *inode, struct file *file) 823 { 824 struct mm_struct *mm = file->private_data; 825 826 mmput(mm); 827 return 0; 828 } 829 830 static const struct file_operations proc_mem_operations = { 831 .llseek = mem_lseek, 832 .read = mem_read, 833 .write = mem_write, 834 .open = mem_open, 835 .release = mem_release, 836 }; 837 838 static ssize_t environ_read(struct file *file, char __user *buf, 839 size_t count, loff_t *ppos) 840 { 841 struct task_struct *task = get_proc_task(file->f_dentry->d_inode); 842 char *page; 843 unsigned long src = *ppos; 844 int ret = -ESRCH; 845 struct mm_struct *mm; 846 847 if (!task) 848 goto out_no_task; 849 850 ret = -ENOMEM; 851 page = (char *)__get_free_page(GFP_TEMPORARY); 852 if (!page) 853 goto out; 854 855 856 mm = mm_for_maps(task); 857 ret = PTR_ERR(mm); 858 if (!mm || IS_ERR(mm)) 859 goto out_free; 860 861 ret = 0; 862 while (count > 0) { 863 int this_len, retval, max_len; 864 865 this_len = mm->env_end - (mm->env_start + src); 866 867 if (this_len <= 0) 868 break; 869 870 max_len = (count > PAGE_SIZE) ? PAGE_SIZE : count; 871 this_len = (this_len > max_len) ? max_len : this_len; 872 873 retval = access_process_vm(task, (mm->env_start + src), 874 page, this_len, 0); 875 876 if (retval <= 0) { 877 ret = retval; 878 break; 879 } 880 881 if (copy_to_user(buf, page, retval)) { 882 ret = -EFAULT; 883 break; 884 } 885 886 ret += retval; 887 src += retval; 888 buf += retval; 889 count -= retval; 890 } 891 *ppos = src; 892 893 mmput(mm); 894 out_free: 895 free_page((unsigned long) page); 896 out: 897 put_task_struct(task); 898 out_no_task: 899 return ret; 900 } 901 902 static const struct file_operations proc_environ_operations = { 903 .read = environ_read, 904 .llseek = generic_file_llseek, 905 }; 906 907 static ssize_t oom_adjust_read(struct file *file, char __user *buf, 908 size_t count, loff_t *ppos) 909 { 910 struct task_struct *task = get_proc_task(file->f_path.dentry->d_inode); 911 char buffer[PROC_NUMBUF]; 912 size_t len; 913 int oom_adjust = OOM_DISABLE; 914 unsigned long flags; 915 916 if (!task) 917 return -ESRCH; 918 919 if (lock_task_sighand(task, &flags)) { 920 oom_adjust = task->signal->oom_adj; 921 unlock_task_sighand(task, &flags); 922 } 923 924 put_task_struct(task); 925 926 len = snprintf(buffer, sizeof(buffer), "%i\n", oom_adjust); 927 928 return simple_read_from_buffer(buf, count, ppos, buffer, len); 929 } 930 931 static ssize_t oom_adjust_write(struct file *file, const char __user *buf, 932 size_t count, loff_t *ppos) 933 { 934 struct task_struct *task; 935 char buffer[PROC_NUMBUF]; 936 int oom_adjust; 937 unsigned long flags; 938 int err; 939 940 memset(buffer, 0, sizeof(buffer)); 941 if (count > sizeof(buffer) - 1) 942 count = sizeof(buffer) - 1; 943 if (copy_from_user(buffer, buf, count)) { 944 err = -EFAULT; 945 goto out; 946 } 947 948 err = kstrtoint(strstrip(buffer), 0, &oom_adjust); 949 if (err) 950 goto out; 951 if ((oom_adjust < OOM_ADJUST_MIN || oom_adjust > OOM_ADJUST_MAX) && 952 oom_adjust != OOM_DISABLE) { 953 err = -EINVAL; 954 goto out; 955 } 956 957 task = get_proc_task(file->f_path.dentry->d_inode); 958 if (!task) { 959 err = -ESRCH; 960 goto out; 961 } 962 963 task_lock(task); 964 if (!task->mm) { 965 err = -EINVAL; 966 goto err_task_lock; 967 } 968 969 if (!lock_task_sighand(task, &flags)) { 970 err = -ESRCH; 971 goto err_task_lock; 972 } 973 974 if (oom_adjust < task->signal->oom_adj && !capable(CAP_SYS_RESOURCE)) { 975 err = -EACCES; 976 goto err_sighand; 977 } 978 979 /* 980 * Warn that /proc/pid/oom_adj is deprecated, see 981 * Documentation/feature-removal-schedule.txt. 982 */ 983 printk_once(KERN_WARNING "%s (%d): /proc/%d/oom_adj is deprecated, please use /proc/%d/oom_score_adj instead.\n", 984 current->comm, task_pid_nr(current), task_pid_nr(task), 985 task_pid_nr(task)); 986 task->signal->oom_adj = oom_adjust; 987 /* 988 * Scale /proc/pid/oom_score_adj appropriately ensuring that a maximum 989 * value is always attainable. 990 */ 991 if (task->signal->oom_adj == OOM_ADJUST_MAX) 992 task->signal->oom_score_adj = OOM_SCORE_ADJ_MAX; 993 else 994 task->signal->oom_score_adj = (oom_adjust * OOM_SCORE_ADJ_MAX) / 995 -OOM_DISABLE; 996 trace_oom_score_adj_update(task); 997 err_sighand: 998 unlock_task_sighand(task, &flags); 999 err_task_lock: 1000 task_unlock(task); 1001 put_task_struct(task); 1002 out: 1003 return err < 0 ? err : count; 1004 } 1005 1006 static const struct file_operations proc_oom_adjust_operations = { 1007 .read = oom_adjust_read, 1008 .write = oom_adjust_write, 1009 .llseek = generic_file_llseek, 1010 }; 1011 1012 static ssize_t oom_score_adj_read(struct file *file, char __user *buf, 1013 size_t count, loff_t *ppos) 1014 { 1015 struct task_struct *task = get_proc_task(file->f_path.dentry->d_inode); 1016 char buffer[PROC_NUMBUF]; 1017 int oom_score_adj = OOM_SCORE_ADJ_MIN; 1018 unsigned long flags; 1019 size_t len; 1020 1021 if (!task) 1022 return -ESRCH; 1023 if (lock_task_sighand(task, &flags)) { 1024 oom_score_adj = task->signal->oom_score_adj; 1025 unlock_task_sighand(task, &flags); 1026 } 1027 put_task_struct(task); 1028 len = snprintf(buffer, sizeof(buffer), "%d\n", oom_score_adj); 1029 return simple_read_from_buffer(buf, count, ppos, buffer, len); 1030 } 1031 1032 static ssize_t oom_score_adj_write(struct file *file, const char __user *buf, 1033 size_t count, loff_t *ppos) 1034 { 1035 struct task_struct *task; 1036 char buffer[PROC_NUMBUF]; 1037 unsigned long flags; 1038 int oom_score_adj; 1039 int err; 1040 1041 memset(buffer, 0, sizeof(buffer)); 1042 if (count > sizeof(buffer) - 1) 1043 count = sizeof(buffer) - 1; 1044 if (copy_from_user(buffer, buf, count)) { 1045 err = -EFAULT; 1046 goto out; 1047 } 1048 1049 err = kstrtoint(strstrip(buffer), 0, &oom_score_adj); 1050 if (err) 1051 goto out; 1052 if (oom_score_adj < OOM_SCORE_ADJ_MIN || 1053 oom_score_adj > OOM_SCORE_ADJ_MAX) { 1054 err = -EINVAL; 1055 goto out; 1056 } 1057 1058 task = get_proc_task(file->f_path.dentry->d_inode); 1059 if (!task) { 1060 err = -ESRCH; 1061 goto out; 1062 } 1063 1064 task_lock(task); 1065 if (!task->mm) { 1066 err = -EINVAL; 1067 goto err_task_lock; 1068 } 1069 1070 if (!lock_task_sighand(task, &flags)) { 1071 err = -ESRCH; 1072 goto err_task_lock; 1073 } 1074 1075 if (oom_score_adj < task->signal->oom_score_adj_min && 1076 !capable(CAP_SYS_RESOURCE)) { 1077 err = -EACCES; 1078 goto err_sighand; 1079 } 1080 1081 task->signal->oom_score_adj = oom_score_adj; 1082 if (has_capability_noaudit(current, CAP_SYS_RESOURCE)) 1083 task->signal->oom_score_adj_min = oom_score_adj; 1084 trace_oom_score_adj_update(task); 1085 /* 1086 * Scale /proc/pid/oom_adj appropriately ensuring that OOM_DISABLE is 1087 * always attainable. 1088 */ 1089 if (task->signal->oom_score_adj == OOM_SCORE_ADJ_MIN) 1090 task->signal->oom_adj = OOM_DISABLE; 1091 else 1092 task->signal->oom_adj = (oom_score_adj * OOM_ADJUST_MAX) / 1093 OOM_SCORE_ADJ_MAX; 1094 err_sighand: 1095 unlock_task_sighand(task, &flags); 1096 err_task_lock: 1097 task_unlock(task); 1098 put_task_struct(task); 1099 out: 1100 return err < 0 ? err : count; 1101 } 1102 1103 static const struct file_operations proc_oom_score_adj_operations = { 1104 .read = oom_score_adj_read, 1105 .write = oom_score_adj_write, 1106 .llseek = default_llseek, 1107 }; 1108 1109 #ifdef CONFIG_AUDITSYSCALL 1110 #define TMPBUFLEN 21 1111 static ssize_t proc_loginuid_read(struct file * file, char __user * buf, 1112 size_t count, loff_t *ppos) 1113 { 1114 struct inode * inode = file->f_path.dentry->d_inode; 1115 struct task_struct *task = get_proc_task(inode); 1116 ssize_t length; 1117 char tmpbuf[TMPBUFLEN]; 1118 1119 if (!task) 1120 return -ESRCH; 1121 length = scnprintf(tmpbuf, TMPBUFLEN, "%u", 1122 audit_get_loginuid(task)); 1123 put_task_struct(task); 1124 return simple_read_from_buffer(buf, count, ppos, tmpbuf, length); 1125 } 1126 1127 static ssize_t proc_loginuid_write(struct file * file, const char __user * buf, 1128 size_t count, loff_t *ppos) 1129 { 1130 struct inode * inode = file->f_path.dentry->d_inode; 1131 char *page, *tmp; 1132 ssize_t length; 1133 uid_t loginuid; 1134 1135 rcu_read_lock(); 1136 if (current != pid_task(proc_pid(inode), PIDTYPE_PID)) { 1137 rcu_read_unlock(); 1138 return -EPERM; 1139 } 1140 rcu_read_unlock(); 1141 1142 if (count >= PAGE_SIZE) 1143 count = PAGE_SIZE - 1; 1144 1145 if (*ppos != 0) { 1146 /* No partial writes. */ 1147 return -EINVAL; 1148 } 1149 page = (char*)__get_free_page(GFP_TEMPORARY); 1150 if (!page) 1151 return -ENOMEM; 1152 length = -EFAULT; 1153 if (copy_from_user(page, buf, count)) 1154 goto out_free_page; 1155 1156 page[count] = '\0'; 1157 loginuid = simple_strtoul(page, &tmp, 10); 1158 if (tmp == page) { 1159 length = -EINVAL; 1160 goto out_free_page; 1161 1162 } 1163 length = audit_set_loginuid(loginuid); 1164 if (likely(length == 0)) 1165 length = count; 1166 1167 out_free_page: 1168 free_page((unsigned long) page); 1169 return length; 1170 } 1171 1172 static const struct file_operations proc_loginuid_operations = { 1173 .read = proc_loginuid_read, 1174 .write = proc_loginuid_write, 1175 .llseek = generic_file_llseek, 1176 }; 1177 1178 static ssize_t proc_sessionid_read(struct file * file, char __user * buf, 1179 size_t count, loff_t *ppos) 1180 { 1181 struct inode * inode = file->f_path.dentry->d_inode; 1182 struct task_struct *task = get_proc_task(inode); 1183 ssize_t length; 1184 char tmpbuf[TMPBUFLEN]; 1185 1186 if (!task) 1187 return -ESRCH; 1188 length = scnprintf(tmpbuf, TMPBUFLEN, "%u", 1189 audit_get_sessionid(task)); 1190 put_task_struct(task); 1191 return simple_read_from_buffer(buf, count, ppos, tmpbuf, length); 1192 } 1193 1194 static const struct file_operations proc_sessionid_operations = { 1195 .read = proc_sessionid_read, 1196 .llseek = generic_file_llseek, 1197 }; 1198 #endif 1199 1200 #ifdef CONFIG_FAULT_INJECTION 1201 static ssize_t proc_fault_inject_read(struct file * file, char __user * buf, 1202 size_t count, loff_t *ppos) 1203 { 1204 struct task_struct *task = get_proc_task(file->f_dentry->d_inode); 1205 char buffer[PROC_NUMBUF]; 1206 size_t len; 1207 int make_it_fail; 1208 1209 if (!task) 1210 return -ESRCH; 1211 make_it_fail = task->make_it_fail; 1212 put_task_struct(task); 1213 1214 len = snprintf(buffer, sizeof(buffer), "%i\n", make_it_fail); 1215 1216 return simple_read_from_buffer(buf, count, ppos, buffer, len); 1217 } 1218 1219 static ssize_t proc_fault_inject_write(struct file * file, 1220 const char __user * buf, size_t count, loff_t *ppos) 1221 { 1222 struct task_struct *task; 1223 char buffer[PROC_NUMBUF], *end; 1224 int make_it_fail; 1225 1226 if (!capable(CAP_SYS_RESOURCE)) 1227 return -EPERM; 1228 memset(buffer, 0, sizeof(buffer)); 1229 if (count > sizeof(buffer) - 1) 1230 count = sizeof(buffer) - 1; 1231 if (copy_from_user(buffer, buf, count)) 1232 return -EFAULT; 1233 make_it_fail = simple_strtol(strstrip(buffer), &end, 0); 1234 if (*end) 1235 return -EINVAL; 1236 task = get_proc_task(file->f_dentry->d_inode); 1237 if (!task) 1238 return -ESRCH; 1239 task->make_it_fail = make_it_fail; 1240 put_task_struct(task); 1241 1242 return count; 1243 } 1244 1245 static const struct file_operations proc_fault_inject_operations = { 1246 .read = proc_fault_inject_read, 1247 .write = proc_fault_inject_write, 1248 .llseek = generic_file_llseek, 1249 }; 1250 #endif 1251 1252 1253 #ifdef CONFIG_SCHED_DEBUG 1254 /* 1255 * Print out various scheduling related per-task fields: 1256 */ 1257 static int sched_show(struct seq_file *m, void *v) 1258 { 1259 struct inode *inode = m->private; 1260 struct task_struct *p; 1261 1262 p = get_proc_task(inode); 1263 if (!p) 1264 return -ESRCH; 1265 proc_sched_show_task(p, m); 1266 1267 put_task_struct(p); 1268 1269 return 0; 1270 } 1271 1272 static ssize_t 1273 sched_write(struct file *file, const char __user *buf, 1274 size_t count, loff_t *offset) 1275 { 1276 struct inode *inode = file->f_path.dentry->d_inode; 1277 struct task_struct *p; 1278 1279 p = get_proc_task(inode); 1280 if (!p) 1281 return -ESRCH; 1282 proc_sched_set_task(p); 1283 1284 put_task_struct(p); 1285 1286 return count; 1287 } 1288 1289 static int sched_open(struct inode *inode, struct file *filp) 1290 { 1291 return single_open(filp, sched_show, inode); 1292 } 1293 1294 static const struct file_operations proc_pid_sched_operations = { 1295 .open = sched_open, 1296 .read = seq_read, 1297 .write = sched_write, 1298 .llseek = seq_lseek, 1299 .release = single_release, 1300 }; 1301 1302 #endif 1303 1304 #ifdef CONFIG_SCHED_AUTOGROUP 1305 /* 1306 * Print out autogroup related information: 1307 */ 1308 static int sched_autogroup_show(struct seq_file *m, void *v) 1309 { 1310 struct inode *inode = m->private; 1311 struct task_struct *p; 1312 1313 p = get_proc_task(inode); 1314 if (!p) 1315 return -ESRCH; 1316 proc_sched_autogroup_show_task(p, m); 1317 1318 put_task_struct(p); 1319 1320 return 0; 1321 } 1322 1323 static ssize_t 1324 sched_autogroup_write(struct file *file, const char __user *buf, 1325 size_t count, loff_t *offset) 1326 { 1327 struct inode *inode = file->f_path.dentry->d_inode; 1328 struct task_struct *p; 1329 char buffer[PROC_NUMBUF]; 1330 int nice; 1331 int err; 1332 1333 memset(buffer, 0, sizeof(buffer)); 1334 if (count > sizeof(buffer) - 1) 1335 count = sizeof(buffer) - 1; 1336 if (copy_from_user(buffer, buf, count)) 1337 return -EFAULT; 1338 1339 err = kstrtoint(strstrip(buffer), 0, &nice); 1340 if (err < 0) 1341 return err; 1342 1343 p = get_proc_task(inode); 1344 if (!p) 1345 return -ESRCH; 1346 1347 err = nice; 1348 err = proc_sched_autogroup_set_nice(p, &err); 1349 if (err) 1350 count = err; 1351 1352 put_task_struct(p); 1353 1354 return count; 1355 } 1356 1357 static int sched_autogroup_open(struct inode *inode, struct file *filp) 1358 { 1359 int ret; 1360 1361 ret = single_open(filp, sched_autogroup_show, NULL); 1362 if (!ret) { 1363 struct seq_file *m = filp->private_data; 1364 1365 m->private = inode; 1366 } 1367 return ret; 1368 } 1369 1370 static const struct file_operations proc_pid_sched_autogroup_operations = { 1371 .open = sched_autogroup_open, 1372 .read = seq_read, 1373 .write = sched_autogroup_write, 1374 .llseek = seq_lseek, 1375 .release = single_release, 1376 }; 1377 1378 #endif /* CONFIG_SCHED_AUTOGROUP */ 1379 1380 static ssize_t comm_write(struct file *file, const char __user *buf, 1381 size_t count, loff_t *offset) 1382 { 1383 struct inode *inode = file->f_path.dentry->d_inode; 1384 struct task_struct *p; 1385 char buffer[TASK_COMM_LEN]; 1386 1387 memset(buffer, 0, sizeof(buffer)); 1388 if (count > sizeof(buffer) - 1) 1389 count = sizeof(buffer) - 1; 1390 if (copy_from_user(buffer, buf, count)) 1391 return -EFAULT; 1392 1393 p = get_proc_task(inode); 1394 if (!p) 1395 return -ESRCH; 1396 1397 if (same_thread_group(current, p)) 1398 set_task_comm(p, buffer); 1399 else 1400 count = -EINVAL; 1401 1402 put_task_struct(p); 1403 1404 return count; 1405 } 1406 1407 static int comm_show(struct seq_file *m, void *v) 1408 { 1409 struct inode *inode = m->private; 1410 struct task_struct *p; 1411 1412 p = get_proc_task(inode); 1413 if (!p) 1414 return -ESRCH; 1415 1416 task_lock(p); 1417 seq_printf(m, "%s\n", p->comm); 1418 task_unlock(p); 1419 1420 put_task_struct(p); 1421 1422 return 0; 1423 } 1424 1425 static int comm_open(struct inode *inode, struct file *filp) 1426 { 1427 return single_open(filp, comm_show, inode); 1428 } 1429 1430 static const struct file_operations proc_pid_set_comm_operations = { 1431 .open = comm_open, 1432 .read = seq_read, 1433 .write = comm_write, 1434 .llseek = seq_lseek, 1435 .release = single_release, 1436 }; 1437 1438 static int proc_exe_link(struct dentry *dentry, struct path *exe_path) 1439 { 1440 struct task_struct *task; 1441 struct mm_struct *mm; 1442 struct file *exe_file; 1443 1444 task = get_proc_task(dentry->d_inode); 1445 if (!task) 1446 return -ENOENT; 1447 mm = get_task_mm(task); 1448 put_task_struct(task); 1449 if (!mm) 1450 return -ENOENT; 1451 exe_file = get_mm_exe_file(mm); 1452 mmput(mm); 1453 if (exe_file) { 1454 *exe_path = exe_file->f_path; 1455 path_get(&exe_file->f_path); 1456 fput(exe_file); 1457 return 0; 1458 } else 1459 return -ENOENT; 1460 } 1461 1462 static void *proc_pid_follow_link(struct dentry *dentry, struct nameidata *nd) 1463 { 1464 struct inode *inode = dentry->d_inode; 1465 int error = -EACCES; 1466 1467 /* We don't need a base pointer in the /proc filesystem */ 1468 path_put(&nd->path); 1469 1470 /* Are we allowed to snoop on the tasks file descriptors? */ 1471 if (!proc_fd_access_allowed(inode)) 1472 goto out; 1473 1474 error = PROC_I(inode)->op.proc_get_link(dentry, &nd->path); 1475 out: 1476 return ERR_PTR(error); 1477 } 1478 1479 static int do_proc_readlink(struct path *path, char __user *buffer, int buflen) 1480 { 1481 char *tmp = (char*)__get_free_page(GFP_TEMPORARY); 1482 char *pathname; 1483 int len; 1484 1485 if (!tmp) 1486 return -ENOMEM; 1487 1488 pathname = d_path(path, tmp, PAGE_SIZE); 1489 len = PTR_ERR(pathname); 1490 if (IS_ERR(pathname)) 1491 goto out; 1492 len = tmp + PAGE_SIZE - 1 - pathname; 1493 1494 if (len > buflen) 1495 len = buflen; 1496 if (copy_to_user(buffer, pathname, len)) 1497 len = -EFAULT; 1498 out: 1499 free_page((unsigned long)tmp); 1500 return len; 1501 } 1502 1503 static int proc_pid_readlink(struct dentry * dentry, char __user * buffer, int buflen) 1504 { 1505 int error = -EACCES; 1506 struct inode *inode = dentry->d_inode; 1507 struct path path; 1508 1509 /* Are we allowed to snoop on the tasks file descriptors? */ 1510 if (!proc_fd_access_allowed(inode)) 1511 goto out; 1512 1513 error = PROC_I(inode)->op.proc_get_link(dentry, &path); 1514 if (error) 1515 goto out; 1516 1517 error = do_proc_readlink(&path, buffer, buflen); 1518 path_put(&path); 1519 out: 1520 return error; 1521 } 1522 1523 static const struct inode_operations proc_pid_link_inode_operations = { 1524 .readlink = proc_pid_readlink, 1525 .follow_link = proc_pid_follow_link, 1526 .setattr = proc_setattr, 1527 }; 1528 1529 1530 /* building an inode */ 1531 1532 static int task_dumpable(struct task_struct *task) 1533 { 1534 int dumpable = 0; 1535 struct mm_struct *mm; 1536 1537 task_lock(task); 1538 mm = task->mm; 1539 if (mm) 1540 dumpable = get_dumpable(mm); 1541 task_unlock(task); 1542 if(dumpable == 1) 1543 return 1; 1544 return 0; 1545 } 1546 1547 struct inode *proc_pid_make_inode(struct super_block * sb, struct task_struct *task) 1548 { 1549 struct inode * inode; 1550 struct proc_inode *ei; 1551 const struct cred *cred; 1552 1553 /* We need a new inode */ 1554 1555 inode = new_inode(sb); 1556 if (!inode) 1557 goto out; 1558 1559 /* Common stuff */ 1560 ei = PROC_I(inode); 1561 inode->i_ino = get_next_ino(); 1562 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME; 1563 inode->i_op = &proc_def_inode_operations; 1564 1565 /* 1566 * grab the reference to task. 1567 */ 1568 ei->pid = get_task_pid(task, PIDTYPE_PID); 1569 if (!ei->pid) 1570 goto out_unlock; 1571 1572 if (task_dumpable(task)) { 1573 rcu_read_lock(); 1574 cred = __task_cred(task); 1575 inode->i_uid = cred->euid; 1576 inode->i_gid = cred->egid; 1577 rcu_read_unlock(); 1578 } 1579 security_task_to_inode(task, inode); 1580 1581 out: 1582 return inode; 1583 1584 out_unlock: 1585 iput(inode); 1586 return NULL; 1587 } 1588 1589 int pid_getattr(struct vfsmount *mnt, struct dentry *dentry, struct kstat *stat) 1590 { 1591 struct inode *inode = dentry->d_inode; 1592 struct task_struct *task; 1593 const struct cred *cred; 1594 struct pid_namespace *pid = dentry->d_sb->s_fs_info; 1595 1596 generic_fillattr(inode, stat); 1597 1598 rcu_read_lock(); 1599 stat->uid = 0; 1600 stat->gid = 0; 1601 task = pid_task(proc_pid(inode), PIDTYPE_PID); 1602 if (task) { 1603 if (!has_pid_permissions(pid, task, 2)) { 1604 rcu_read_unlock(); 1605 /* 1606 * This doesn't prevent learning whether PID exists, 1607 * it only makes getattr() consistent with readdir(). 1608 */ 1609 return -ENOENT; 1610 } 1611 if ((inode->i_mode == (S_IFDIR|S_IRUGO|S_IXUGO)) || 1612 task_dumpable(task)) { 1613 cred = __task_cred(task); 1614 stat->uid = cred->euid; 1615 stat->gid = cred->egid; 1616 } 1617 } 1618 rcu_read_unlock(); 1619 return 0; 1620 } 1621 1622 /* dentry stuff */ 1623 1624 /* 1625 * Exceptional case: normally we are not allowed to unhash a busy 1626 * directory. In this case, however, we can do it - no aliasing problems 1627 * due to the way we treat inodes. 1628 * 1629 * Rewrite the inode's ownerships here because the owning task may have 1630 * performed a setuid(), etc. 1631 * 1632 * Before the /proc/pid/status file was created the only way to read 1633 * the effective uid of a /process was to stat /proc/pid. Reading 1634 * /proc/pid/status is slow enough that procps and other packages 1635 * kept stating /proc/pid. To keep the rules in /proc simple I have 1636 * made this apply to all per process world readable and executable 1637 * directories. 1638 */ 1639 int pid_revalidate(struct dentry *dentry, struct nameidata *nd) 1640 { 1641 struct inode *inode; 1642 struct task_struct *task; 1643 const struct cred *cred; 1644 1645 if (nd && nd->flags & LOOKUP_RCU) 1646 return -ECHILD; 1647 1648 inode = dentry->d_inode; 1649 task = get_proc_task(inode); 1650 1651 if (task) { 1652 if ((inode->i_mode == (S_IFDIR|S_IRUGO|S_IXUGO)) || 1653 task_dumpable(task)) { 1654 rcu_read_lock(); 1655 cred = __task_cred(task); 1656 inode->i_uid = cred->euid; 1657 inode->i_gid = cred->egid; 1658 rcu_read_unlock(); 1659 } else { 1660 inode->i_uid = 0; 1661 inode->i_gid = 0; 1662 } 1663 inode->i_mode &= ~(S_ISUID | S_ISGID); 1664 security_task_to_inode(task, inode); 1665 put_task_struct(task); 1666 return 1; 1667 } 1668 d_drop(dentry); 1669 return 0; 1670 } 1671 1672 static int pid_delete_dentry(const struct dentry * dentry) 1673 { 1674 /* Is the task we represent dead? 1675 * If so, then don't put the dentry on the lru list, 1676 * kill it immediately. 1677 */ 1678 return !proc_pid(dentry->d_inode)->tasks[PIDTYPE_PID].first; 1679 } 1680 1681 const struct dentry_operations pid_dentry_operations = 1682 { 1683 .d_revalidate = pid_revalidate, 1684 .d_delete = pid_delete_dentry, 1685 }; 1686 1687 /* Lookups */ 1688 1689 /* 1690 * Fill a directory entry. 1691 * 1692 * If possible create the dcache entry and derive our inode number and 1693 * file type from dcache entry. 1694 * 1695 * Since all of the proc inode numbers are dynamically generated, the inode 1696 * numbers do not exist until the inode is cache. This means creating the 1697 * the dcache entry in readdir is necessary to keep the inode numbers 1698 * reported by readdir in sync with the inode numbers reported 1699 * by stat. 1700 */ 1701 int proc_fill_cache(struct file *filp, void *dirent, filldir_t filldir, 1702 const char *name, int len, 1703 instantiate_t instantiate, struct task_struct *task, const void *ptr) 1704 { 1705 struct dentry *child, *dir = filp->f_path.dentry; 1706 struct inode *inode; 1707 struct qstr qname; 1708 ino_t ino = 0; 1709 unsigned type = DT_UNKNOWN; 1710 1711 qname.name = name; 1712 qname.len = len; 1713 qname.hash = full_name_hash(name, len); 1714 1715 child = d_lookup(dir, &qname); 1716 if (!child) { 1717 struct dentry *new; 1718 new = d_alloc(dir, &qname); 1719 if (new) { 1720 child = instantiate(dir->d_inode, new, task, ptr); 1721 if (child) 1722 dput(new); 1723 else 1724 child = new; 1725 } 1726 } 1727 if (!child || IS_ERR(child) || !child->d_inode) 1728 goto end_instantiate; 1729 inode = child->d_inode; 1730 if (inode) { 1731 ino = inode->i_ino; 1732 type = inode->i_mode >> 12; 1733 } 1734 dput(child); 1735 end_instantiate: 1736 if (!ino) 1737 ino = find_inode_number(dir, &qname); 1738 if (!ino) 1739 ino = 1; 1740 return filldir(dirent, name, len, filp->f_pos, ino, type); 1741 } 1742 1743 static unsigned name_to_int(struct dentry *dentry) 1744 { 1745 const char *name = dentry->d_name.name; 1746 int len = dentry->d_name.len; 1747 unsigned n = 0; 1748 1749 if (len > 1 && *name == '0') 1750 goto out; 1751 while (len-- > 0) { 1752 unsigned c = *name++ - '0'; 1753 if (c > 9) 1754 goto out; 1755 if (n >= (~0U-9)/10) 1756 goto out; 1757 n *= 10; 1758 n += c; 1759 } 1760 return n; 1761 out: 1762 return ~0U; 1763 } 1764 1765 #define PROC_FDINFO_MAX 64 1766 1767 static int proc_fd_info(struct inode *inode, struct path *path, char *info) 1768 { 1769 struct task_struct *task = get_proc_task(inode); 1770 struct files_struct *files = NULL; 1771 struct file *file; 1772 int fd = proc_fd(inode); 1773 1774 if (task) { 1775 files = get_files_struct(task); 1776 put_task_struct(task); 1777 } 1778 if (files) { 1779 /* 1780 * We are not taking a ref to the file structure, so we must 1781 * hold ->file_lock. 1782 */ 1783 spin_lock(&files->file_lock); 1784 file = fcheck_files(files, fd); 1785 if (file) { 1786 unsigned int f_flags; 1787 struct fdtable *fdt; 1788 1789 fdt = files_fdtable(files); 1790 f_flags = file->f_flags & ~O_CLOEXEC; 1791 if (FD_ISSET(fd, fdt->close_on_exec)) 1792 f_flags |= O_CLOEXEC; 1793 1794 if (path) { 1795 *path = file->f_path; 1796 path_get(&file->f_path); 1797 } 1798 if (info) 1799 snprintf(info, PROC_FDINFO_MAX, 1800 "pos:\t%lli\n" 1801 "flags:\t0%o\n", 1802 (long long) file->f_pos, 1803 f_flags); 1804 spin_unlock(&files->file_lock); 1805 put_files_struct(files); 1806 return 0; 1807 } 1808 spin_unlock(&files->file_lock); 1809 put_files_struct(files); 1810 } 1811 return -ENOENT; 1812 } 1813 1814 static int proc_fd_link(struct dentry *dentry, struct path *path) 1815 { 1816 return proc_fd_info(dentry->d_inode, path, NULL); 1817 } 1818 1819 static int tid_fd_revalidate(struct dentry *dentry, struct nameidata *nd) 1820 { 1821 struct inode *inode; 1822 struct task_struct *task; 1823 int fd; 1824 struct files_struct *files; 1825 const struct cred *cred; 1826 1827 if (nd && nd->flags & LOOKUP_RCU) 1828 return -ECHILD; 1829 1830 inode = dentry->d_inode; 1831 task = get_proc_task(inode); 1832 fd = proc_fd(inode); 1833 1834 if (task) { 1835 files = get_files_struct(task); 1836 if (files) { 1837 rcu_read_lock(); 1838 if (fcheck_files(files, fd)) { 1839 rcu_read_unlock(); 1840 put_files_struct(files); 1841 if (task_dumpable(task)) { 1842 rcu_read_lock(); 1843 cred = __task_cred(task); 1844 inode->i_uid = cred->euid; 1845 inode->i_gid = cred->egid; 1846 rcu_read_unlock(); 1847 } else { 1848 inode->i_uid = 0; 1849 inode->i_gid = 0; 1850 } 1851 inode->i_mode &= ~(S_ISUID | S_ISGID); 1852 security_task_to_inode(task, inode); 1853 put_task_struct(task); 1854 return 1; 1855 } 1856 rcu_read_unlock(); 1857 put_files_struct(files); 1858 } 1859 put_task_struct(task); 1860 } 1861 d_drop(dentry); 1862 return 0; 1863 } 1864 1865 static const struct dentry_operations tid_fd_dentry_operations = 1866 { 1867 .d_revalidate = tid_fd_revalidate, 1868 .d_delete = pid_delete_dentry, 1869 }; 1870 1871 static struct dentry *proc_fd_instantiate(struct inode *dir, 1872 struct dentry *dentry, struct task_struct *task, const void *ptr) 1873 { 1874 unsigned fd = *(const unsigned *)ptr; 1875 struct file *file; 1876 struct files_struct *files; 1877 struct inode *inode; 1878 struct proc_inode *ei; 1879 struct dentry *error = ERR_PTR(-ENOENT); 1880 1881 inode = proc_pid_make_inode(dir->i_sb, task); 1882 if (!inode) 1883 goto out; 1884 ei = PROC_I(inode); 1885 ei->fd = fd; 1886 files = get_files_struct(task); 1887 if (!files) 1888 goto out_iput; 1889 inode->i_mode = S_IFLNK; 1890 1891 /* 1892 * We are not taking a ref to the file structure, so we must 1893 * hold ->file_lock. 1894 */ 1895 spin_lock(&files->file_lock); 1896 file = fcheck_files(files, fd); 1897 if (!file) 1898 goto out_unlock; 1899 if (file->f_mode & FMODE_READ) 1900 inode->i_mode |= S_IRUSR | S_IXUSR; 1901 if (file->f_mode & FMODE_WRITE) 1902 inode->i_mode |= S_IWUSR | S_IXUSR; 1903 spin_unlock(&files->file_lock); 1904 put_files_struct(files); 1905 1906 inode->i_op = &proc_pid_link_inode_operations; 1907 inode->i_size = 64; 1908 ei->op.proc_get_link = proc_fd_link; 1909 d_set_d_op(dentry, &tid_fd_dentry_operations); 1910 d_add(dentry, inode); 1911 /* Close the race of the process dying before we return the dentry */ 1912 if (tid_fd_revalidate(dentry, NULL)) 1913 error = NULL; 1914 1915 out: 1916 return error; 1917 out_unlock: 1918 spin_unlock(&files->file_lock); 1919 put_files_struct(files); 1920 out_iput: 1921 iput(inode); 1922 goto out; 1923 } 1924 1925 static struct dentry *proc_lookupfd_common(struct inode *dir, 1926 struct dentry *dentry, 1927 instantiate_t instantiate) 1928 { 1929 struct task_struct *task = get_proc_task(dir); 1930 unsigned fd = name_to_int(dentry); 1931 struct dentry *result = ERR_PTR(-ENOENT); 1932 1933 if (!task) 1934 goto out_no_task; 1935 if (fd == ~0U) 1936 goto out; 1937 1938 result = instantiate(dir, dentry, task, &fd); 1939 out: 1940 put_task_struct(task); 1941 out_no_task: 1942 return result; 1943 } 1944 1945 static int proc_readfd_common(struct file * filp, void * dirent, 1946 filldir_t filldir, instantiate_t instantiate) 1947 { 1948 struct dentry *dentry = filp->f_path.dentry; 1949 struct inode *inode = dentry->d_inode; 1950 struct task_struct *p = get_proc_task(inode); 1951 unsigned int fd, ino; 1952 int retval; 1953 struct files_struct * files; 1954 1955 retval = -ENOENT; 1956 if (!p) 1957 goto out_no_task; 1958 retval = 0; 1959 1960 fd = filp->f_pos; 1961 switch (fd) { 1962 case 0: 1963 if (filldir(dirent, ".", 1, 0, inode->i_ino, DT_DIR) < 0) 1964 goto out; 1965 filp->f_pos++; 1966 case 1: 1967 ino = parent_ino(dentry); 1968 if (filldir(dirent, "..", 2, 1, ino, DT_DIR) < 0) 1969 goto out; 1970 filp->f_pos++; 1971 default: 1972 files = get_files_struct(p); 1973 if (!files) 1974 goto out; 1975 rcu_read_lock(); 1976 for (fd = filp->f_pos-2; 1977 fd < files_fdtable(files)->max_fds; 1978 fd++, filp->f_pos++) { 1979 char name[PROC_NUMBUF]; 1980 int len; 1981 1982 if (!fcheck_files(files, fd)) 1983 continue; 1984 rcu_read_unlock(); 1985 1986 len = snprintf(name, sizeof(name), "%d", fd); 1987 if (proc_fill_cache(filp, dirent, filldir, 1988 name, len, instantiate, 1989 p, &fd) < 0) { 1990 rcu_read_lock(); 1991 break; 1992 } 1993 rcu_read_lock(); 1994 } 1995 rcu_read_unlock(); 1996 put_files_struct(files); 1997 } 1998 out: 1999 put_task_struct(p); 2000 out_no_task: 2001 return retval; 2002 } 2003 2004 static struct dentry *proc_lookupfd(struct inode *dir, struct dentry *dentry, 2005 struct nameidata *nd) 2006 { 2007 return proc_lookupfd_common(dir, dentry, proc_fd_instantiate); 2008 } 2009 2010 static int proc_readfd(struct file *filp, void *dirent, filldir_t filldir) 2011 { 2012 return proc_readfd_common(filp, dirent, filldir, proc_fd_instantiate); 2013 } 2014 2015 static ssize_t proc_fdinfo_read(struct file *file, char __user *buf, 2016 size_t len, loff_t *ppos) 2017 { 2018 char tmp[PROC_FDINFO_MAX]; 2019 int err = proc_fd_info(file->f_path.dentry->d_inode, NULL, tmp); 2020 if (!err) 2021 err = simple_read_from_buffer(buf, len, ppos, tmp, strlen(tmp)); 2022 return err; 2023 } 2024 2025 static const struct file_operations proc_fdinfo_file_operations = { 2026 .open = nonseekable_open, 2027 .read = proc_fdinfo_read, 2028 .llseek = no_llseek, 2029 }; 2030 2031 static const struct file_operations proc_fd_operations = { 2032 .read = generic_read_dir, 2033 .readdir = proc_readfd, 2034 .llseek = default_llseek, 2035 }; 2036 2037 #ifdef CONFIG_CHECKPOINT_RESTORE 2038 2039 /* 2040 * dname_to_vma_addr - maps a dentry name into two unsigned longs 2041 * which represent vma start and end addresses. 2042 */ 2043 static int dname_to_vma_addr(struct dentry *dentry, 2044 unsigned long *start, unsigned long *end) 2045 { 2046 if (sscanf(dentry->d_name.name, "%lx-%lx", start, end) != 2) 2047 return -EINVAL; 2048 2049 return 0; 2050 } 2051 2052 static int map_files_d_revalidate(struct dentry *dentry, struct nameidata *nd) 2053 { 2054 unsigned long vm_start, vm_end; 2055 bool exact_vma_exists = false; 2056 struct mm_struct *mm = NULL; 2057 struct task_struct *task; 2058 const struct cred *cred; 2059 struct inode *inode; 2060 int status = 0; 2061 2062 if (nd && nd->flags & LOOKUP_RCU) 2063 return -ECHILD; 2064 2065 if (!capable(CAP_SYS_ADMIN)) { 2066 status = -EACCES; 2067 goto out_notask; 2068 } 2069 2070 inode = dentry->d_inode; 2071 task = get_proc_task(inode); 2072 if (!task) 2073 goto out_notask; 2074 2075 if (!ptrace_may_access(task, PTRACE_MODE_READ)) 2076 goto out; 2077 2078 mm = get_task_mm(task); 2079 if (!mm) 2080 goto out; 2081 2082 if (!dname_to_vma_addr(dentry, &vm_start, &vm_end)) { 2083 down_read(&mm->mmap_sem); 2084 exact_vma_exists = !!find_exact_vma(mm, vm_start, vm_end); 2085 up_read(&mm->mmap_sem); 2086 } 2087 2088 mmput(mm); 2089 2090 if (exact_vma_exists) { 2091 if (task_dumpable(task)) { 2092 rcu_read_lock(); 2093 cred = __task_cred(task); 2094 inode->i_uid = cred->euid; 2095 inode->i_gid = cred->egid; 2096 rcu_read_unlock(); 2097 } else { 2098 inode->i_uid = 0; 2099 inode->i_gid = 0; 2100 } 2101 security_task_to_inode(task, inode); 2102 status = 1; 2103 } 2104 2105 out: 2106 put_task_struct(task); 2107 2108 out_notask: 2109 if (status <= 0) 2110 d_drop(dentry); 2111 2112 return status; 2113 } 2114 2115 static const struct dentry_operations tid_map_files_dentry_operations = { 2116 .d_revalidate = map_files_d_revalidate, 2117 .d_delete = pid_delete_dentry, 2118 }; 2119 2120 static int proc_map_files_get_link(struct dentry *dentry, struct path *path) 2121 { 2122 unsigned long vm_start, vm_end; 2123 struct vm_area_struct *vma; 2124 struct task_struct *task; 2125 struct mm_struct *mm; 2126 int rc; 2127 2128 rc = -ENOENT; 2129 task = get_proc_task(dentry->d_inode); 2130 if (!task) 2131 goto out; 2132 2133 mm = get_task_mm(task); 2134 put_task_struct(task); 2135 if (!mm) 2136 goto out; 2137 2138 rc = dname_to_vma_addr(dentry, &vm_start, &vm_end); 2139 if (rc) 2140 goto out_mmput; 2141 2142 down_read(&mm->mmap_sem); 2143 vma = find_exact_vma(mm, vm_start, vm_end); 2144 if (vma && vma->vm_file) { 2145 *path = vma->vm_file->f_path; 2146 path_get(path); 2147 rc = 0; 2148 } 2149 up_read(&mm->mmap_sem); 2150 2151 out_mmput: 2152 mmput(mm); 2153 out: 2154 return rc; 2155 } 2156 2157 struct map_files_info { 2158 struct file *file; 2159 unsigned long len; 2160 unsigned char name[4*sizeof(long)+2]; /* max: %lx-%lx\0 */ 2161 }; 2162 2163 static struct dentry * 2164 proc_map_files_instantiate(struct inode *dir, struct dentry *dentry, 2165 struct task_struct *task, const void *ptr) 2166 { 2167 const struct file *file = ptr; 2168 struct proc_inode *ei; 2169 struct inode *inode; 2170 2171 if (!file) 2172 return ERR_PTR(-ENOENT); 2173 2174 inode = proc_pid_make_inode(dir->i_sb, task); 2175 if (!inode) 2176 return ERR_PTR(-ENOENT); 2177 2178 ei = PROC_I(inode); 2179 ei->op.proc_get_link = proc_map_files_get_link; 2180 2181 inode->i_op = &proc_pid_link_inode_operations; 2182 inode->i_size = 64; 2183 inode->i_mode = S_IFLNK; 2184 2185 if (file->f_mode & FMODE_READ) 2186 inode->i_mode |= S_IRUSR; 2187 if (file->f_mode & FMODE_WRITE) 2188 inode->i_mode |= S_IWUSR; 2189 2190 d_set_d_op(dentry, &tid_map_files_dentry_operations); 2191 d_add(dentry, inode); 2192 2193 return NULL; 2194 } 2195 2196 static struct dentry *proc_map_files_lookup(struct inode *dir, 2197 struct dentry *dentry, struct nameidata *nd) 2198 { 2199 unsigned long vm_start, vm_end; 2200 struct vm_area_struct *vma; 2201 struct task_struct *task; 2202 struct dentry *result; 2203 struct mm_struct *mm; 2204 2205 result = ERR_PTR(-EACCES); 2206 if (!capable(CAP_SYS_ADMIN)) 2207 goto out; 2208 2209 result = ERR_PTR(-ENOENT); 2210 task = get_proc_task(dir); 2211 if (!task) 2212 goto out; 2213 2214 result = ERR_PTR(-EACCES); 2215 if (lock_trace(task)) 2216 goto out_put_task; 2217 2218 result = ERR_PTR(-ENOENT); 2219 if (dname_to_vma_addr(dentry, &vm_start, &vm_end)) 2220 goto out_unlock; 2221 2222 mm = get_task_mm(task); 2223 if (!mm) 2224 goto out_unlock; 2225 2226 down_read(&mm->mmap_sem); 2227 vma = find_exact_vma(mm, vm_start, vm_end); 2228 if (!vma) 2229 goto out_no_vma; 2230 2231 result = proc_map_files_instantiate(dir, dentry, task, vma->vm_file); 2232 2233 out_no_vma: 2234 up_read(&mm->mmap_sem); 2235 mmput(mm); 2236 out_unlock: 2237 unlock_trace(task); 2238 out_put_task: 2239 put_task_struct(task); 2240 out: 2241 return result; 2242 } 2243 2244 static const struct inode_operations proc_map_files_inode_operations = { 2245 .lookup = proc_map_files_lookup, 2246 .permission = proc_fd_permission, 2247 .setattr = proc_setattr, 2248 }; 2249 2250 static int 2251 proc_map_files_readdir(struct file *filp, void *dirent, filldir_t filldir) 2252 { 2253 struct dentry *dentry = filp->f_path.dentry; 2254 struct inode *inode = dentry->d_inode; 2255 struct vm_area_struct *vma; 2256 struct task_struct *task; 2257 struct mm_struct *mm; 2258 ino_t ino; 2259 int ret; 2260 2261 ret = -EACCES; 2262 if (!capable(CAP_SYS_ADMIN)) 2263 goto out; 2264 2265 ret = -ENOENT; 2266 task = get_proc_task(inode); 2267 if (!task) 2268 goto out; 2269 2270 ret = -EACCES; 2271 if (lock_trace(task)) 2272 goto out_put_task; 2273 2274 ret = 0; 2275 switch (filp->f_pos) { 2276 case 0: 2277 ino = inode->i_ino; 2278 if (filldir(dirent, ".", 1, 0, ino, DT_DIR) < 0) 2279 goto out_unlock; 2280 filp->f_pos++; 2281 case 1: 2282 ino = parent_ino(dentry); 2283 if (filldir(dirent, "..", 2, 1, ino, DT_DIR) < 0) 2284 goto out_unlock; 2285 filp->f_pos++; 2286 default: 2287 { 2288 unsigned long nr_files, pos, i; 2289 struct flex_array *fa = NULL; 2290 struct map_files_info info; 2291 struct map_files_info *p; 2292 2293 mm = get_task_mm(task); 2294 if (!mm) 2295 goto out_unlock; 2296 down_read(&mm->mmap_sem); 2297 2298 nr_files = 0; 2299 2300 /* 2301 * We need two passes here: 2302 * 2303 * 1) Collect vmas of mapped files with mmap_sem taken 2304 * 2) Release mmap_sem and instantiate entries 2305 * 2306 * otherwise we get lockdep complained, since filldir() 2307 * routine might require mmap_sem taken in might_fault(). 2308 */ 2309 2310 for (vma = mm->mmap, pos = 2; vma; vma = vma->vm_next) { 2311 if (vma->vm_file && ++pos > filp->f_pos) 2312 nr_files++; 2313 } 2314 2315 if (nr_files) { 2316 fa = flex_array_alloc(sizeof(info), nr_files, 2317 GFP_KERNEL); 2318 if (!fa || flex_array_prealloc(fa, 0, nr_files, 2319 GFP_KERNEL)) { 2320 ret = -ENOMEM; 2321 if (fa) 2322 flex_array_free(fa); 2323 up_read(&mm->mmap_sem); 2324 mmput(mm); 2325 goto out_unlock; 2326 } 2327 for (i = 0, vma = mm->mmap, pos = 2; vma; 2328 vma = vma->vm_next) { 2329 if (!vma->vm_file) 2330 continue; 2331 if (++pos <= filp->f_pos) 2332 continue; 2333 2334 get_file(vma->vm_file); 2335 info.file = vma->vm_file; 2336 info.len = snprintf(info.name, 2337 sizeof(info.name), "%lx-%lx", 2338 vma->vm_start, vma->vm_end); 2339 if (flex_array_put(fa, i++, &info, GFP_KERNEL)) 2340 BUG(); 2341 } 2342 } 2343 up_read(&mm->mmap_sem); 2344 2345 for (i = 0; i < nr_files; i++) { 2346 p = flex_array_get(fa, i); 2347 ret = proc_fill_cache(filp, dirent, filldir, 2348 p->name, p->len, 2349 proc_map_files_instantiate, 2350 task, p->file); 2351 if (ret) 2352 break; 2353 filp->f_pos++; 2354 fput(p->file); 2355 } 2356 for (; i < nr_files; i++) { 2357 /* 2358 * In case of error don't forget 2359 * to put rest of file refs. 2360 */ 2361 p = flex_array_get(fa, i); 2362 fput(p->file); 2363 } 2364 if (fa) 2365 flex_array_free(fa); 2366 mmput(mm); 2367 } 2368 } 2369 2370 out_unlock: 2371 unlock_trace(task); 2372 out_put_task: 2373 put_task_struct(task); 2374 out: 2375 return ret; 2376 } 2377 2378 static const struct file_operations proc_map_files_operations = { 2379 .read = generic_read_dir, 2380 .readdir = proc_map_files_readdir, 2381 .llseek = default_llseek, 2382 }; 2383 2384 #endif /* CONFIG_CHECKPOINT_RESTORE */ 2385 2386 /* 2387 * /proc/pid/fd needs a special permission handler so that a process can still 2388 * access /proc/self/fd after it has executed a setuid(). 2389 */ 2390 static int proc_fd_permission(struct inode *inode, int mask) 2391 { 2392 int rv = generic_permission(inode, mask); 2393 if (rv == 0) 2394 return 0; 2395 if (task_pid(current) == proc_pid(inode)) 2396 rv = 0; 2397 return rv; 2398 } 2399 2400 /* 2401 * proc directories can do almost nothing.. 2402 */ 2403 static const struct inode_operations proc_fd_inode_operations = { 2404 .lookup = proc_lookupfd, 2405 .permission = proc_fd_permission, 2406 .setattr = proc_setattr, 2407 }; 2408 2409 static struct dentry *proc_fdinfo_instantiate(struct inode *dir, 2410 struct dentry *dentry, struct task_struct *task, const void *ptr) 2411 { 2412 unsigned fd = *(unsigned *)ptr; 2413 struct inode *inode; 2414 struct proc_inode *ei; 2415 struct dentry *error = ERR_PTR(-ENOENT); 2416 2417 inode = proc_pid_make_inode(dir->i_sb, task); 2418 if (!inode) 2419 goto out; 2420 ei = PROC_I(inode); 2421 ei->fd = fd; 2422 inode->i_mode = S_IFREG | S_IRUSR; 2423 inode->i_fop = &proc_fdinfo_file_operations; 2424 d_set_d_op(dentry, &tid_fd_dentry_operations); 2425 d_add(dentry, inode); 2426 /* Close the race of the process dying before we return the dentry */ 2427 if (tid_fd_revalidate(dentry, NULL)) 2428 error = NULL; 2429 2430 out: 2431 return error; 2432 } 2433 2434 static struct dentry *proc_lookupfdinfo(struct inode *dir, 2435 struct dentry *dentry, 2436 struct nameidata *nd) 2437 { 2438 return proc_lookupfd_common(dir, dentry, proc_fdinfo_instantiate); 2439 } 2440 2441 static int proc_readfdinfo(struct file *filp, void *dirent, filldir_t filldir) 2442 { 2443 return proc_readfd_common(filp, dirent, filldir, 2444 proc_fdinfo_instantiate); 2445 } 2446 2447 static const struct file_operations proc_fdinfo_operations = { 2448 .read = generic_read_dir, 2449 .readdir = proc_readfdinfo, 2450 .llseek = default_llseek, 2451 }; 2452 2453 /* 2454 * proc directories can do almost nothing.. 2455 */ 2456 static const struct inode_operations proc_fdinfo_inode_operations = { 2457 .lookup = proc_lookupfdinfo, 2458 .setattr = proc_setattr, 2459 }; 2460 2461 2462 static struct dentry *proc_pident_instantiate(struct inode *dir, 2463 struct dentry *dentry, struct task_struct *task, const void *ptr) 2464 { 2465 const struct pid_entry *p = ptr; 2466 struct inode *inode; 2467 struct proc_inode *ei; 2468 struct dentry *error = ERR_PTR(-ENOENT); 2469 2470 inode = proc_pid_make_inode(dir->i_sb, task); 2471 if (!inode) 2472 goto out; 2473 2474 ei = PROC_I(inode); 2475 inode->i_mode = p->mode; 2476 if (S_ISDIR(inode->i_mode)) 2477 set_nlink(inode, 2); /* Use getattr to fix if necessary */ 2478 if (p->iop) 2479 inode->i_op = p->iop; 2480 if (p->fop) 2481 inode->i_fop = p->fop; 2482 ei->op = p->op; 2483 d_set_d_op(dentry, &pid_dentry_operations); 2484 d_add(dentry, inode); 2485 /* Close the race of the process dying before we return the dentry */ 2486 if (pid_revalidate(dentry, NULL)) 2487 error = NULL; 2488 out: 2489 return error; 2490 } 2491 2492 static struct dentry *proc_pident_lookup(struct inode *dir, 2493 struct dentry *dentry, 2494 const struct pid_entry *ents, 2495 unsigned int nents) 2496 { 2497 struct dentry *error; 2498 struct task_struct *task = get_proc_task(dir); 2499 const struct pid_entry *p, *last; 2500 2501 error = ERR_PTR(-ENOENT); 2502 2503 if (!task) 2504 goto out_no_task; 2505 2506 /* 2507 * Yes, it does not scale. And it should not. Don't add 2508 * new entries into /proc/<tgid>/ without very good reasons. 2509 */ 2510 last = &ents[nents - 1]; 2511 for (p = ents; p <= last; p++) { 2512 if (p->len != dentry->d_name.len) 2513 continue; 2514 if (!memcmp(dentry->d_name.name, p->name, p->len)) 2515 break; 2516 } 2517 if (p > last) 2518 goto out; 2519 2520 error = proc_pident_instantiate(dir, dentry, task, p); 2521 out: 2522 put_task_struct(task); 2523 out_no_task: 2524 return error; 2525 } 2526 2527 static int proc_pident_fill_cache(struct file *filp, void *dirent, 2528 filldir_t filldir, struct task_struct *task, const struct pid_entry *p) 2529 { 2530 return proc_fill_cache(filp, dirent, filldir, p->name, p->len, 2531 proc_pident_instantiate, task, p); 2532 } 2533 2534 static int proc_pident_readdir(struct file *filp, 2535 void *dirent, filldir_t filldir, 2536 const struct pid_entry *ents, unsigned int nents) 2537 { 2538 int i; 2539 struct dentry *dentry = filp->f_path.dentry; 2540 struct inode *inode = dentry->d_inode; 2541 struct task_struct *task = get_proc_task(inode); 2542 const struct pid_entry *p, *last; 2543 ino_t ino; 2544 int ret; 2545 2546 ret = -ENOENT; 2547 if (!task) 2548 goto out_no_task; 2549 2550 ret = 0; 2551 i = filp->f_pos; 2552 switch (i) { 2553 case 0: 2554 ino = inode->i_ino; 2555 if (filldir(dirent, ".", 1, i, ino, DT_DIR) < 0) 2556 goto out; 2557 i++; 2558 filp->f_pos++; 2559 /* fall through */ 2560 case 1: 2561 ino = parent_ino(dentry); 2562 if (filldir(dirent, "..", 2, i, ino, DT_DIR) < 0) 2563 goto out; 2564 i++; 2565 filp->f_pos++; 2566 /* fall through */ 2567 default: 2568 i -= 2; 2569 if (i >= nents) { 2570 ret = 1; 2571 goto out; 2572 } 2573 p = ents + i; 2574 last = &ents[nents - 1]; 2575 while (p <= last) { 2576 if (proc_pident_fill_cache(filp, dirent, filldir, task, p) < 0) 2577 goto out; 2578 filp->f_pos++; 2579 p++; 2580 } 2581 } 2582 2583 ret = 1; 2584 out: 2585 put_task_struct(task); 2586 out_no_task: 2587 return ret; 2588 } 2589 2590 #ifdef CONFIG_SECURITY 2591 static ssize_t proc_pid_attr_read(struct file * file, char __user * buf, 2592 size_t count, loff_t *ppos) 2593 { 2594 struct inode * inode = file->f_path.dentry->d_inode; 2595 char *p = NULL; 2596 ssize_t length; 2597 struct task_struct *task = get_proc_task(inode); 2598 2599 if (!task) 2600 return -ESRCH; 2601 2602 length = security_getprocattr(task, 2603 (char*)file->f_path.dentry->d_name.name, 2604 &p); 2605 put_task_struct(task); 2606 if (length > 0) 2607 length = simple_read_from_buffer(buf, count, ppos, p, length); 2608 kfree(p); 2609 return length; 2610 } 2611 2612 static ssize_t proc_pid_attr_write(struct file * file, const char __user * buf, 2613 size_t count, loff_t *ppos) 2614 { 2615 struct inode * inode = file->f_path.dentry->d_inode; 2616 char *page; 2617 ssize_t length; 2618 struct task_struct *task = get_proc_task(inode); 2619 2620 length = -ESRCH; 2621 if (!task) 2622 goto out_no_task; 2623 if (count > PAGE_SIZE) 2624 count = PAGE_SIZE; 2625 2626 /* No partial writes. */ 2627 length = -EINVAL; 2628 if (*ppos != 0) 2629 goto out; 2630 2631 length = -ENOMEM; 2632 page = (char*)__get_free_page(GFP_TEMPORARY); 2633 if (!page) 2634 goto out; 2635 2636 length = -EFAULT; 2637 if (copy_from_user(page, buf, count)) 2638 goto out_free; 2639 2640 /* Guard against adverse ptrace interaction */ 2641 length = mutex_lock_interruptible(&task->signal->cred_guard_mutex); 2642 if (length < 0) 2643 goto out_free; 2644 2645 length = security_setprocattr(task, 2646 (char*)file->f_path.dentry->d_name.name, 2647 (void*)page, count); 2648 mutex_unlock(&task->signal->cred_guard_mutex); 2649 out_free: 2650 free_page((unsigned long) page); 2651 out: 2652 put_task_struct(task); 2653 out_no_task: 2654 return length; 2655 } 2656 2657 static const struct file_operations proc_pid_attr_operations = { 2658 .read = proc_pid_attr_read, 2659 .write = proc_pid_attr_write, 2660 .llseek = generic_file_llseek, 2661 }; 2662 2663 static const struct pid_entry attr_dir_stuff[] = { 2664 REG("current", S_IRUGO|S_IWUGO, proc_pid_attr_operations), 2665 REG("prev", S_IRUGO, proc_pid_attr_operations), 2666 REG("exec", S_IRUGO|S_IWUGO, proc_pid_attr_operations), 2667 REG("fscreate", S_IRUGO|S_IWUGO, proc_pid_attr_operations), 2668 REG("keycreate", S_IRUGO|S_IWUGO, proc_pid_attr_operations), 2669 REG("sockcreate", S_IRUGO|S_IWUGO, proc_pid_attr_operations), 2670 }; 2671 2672 static int proc_attr_dir_readdir(struct file * filp, 2673 void * dirent, filldir_t filldir) 2674 { 2675 return proc_pident_readdir(filp,dirent,filldir, 2676 attr_dir_stuff,ARRAY_SIZE(attr_dir_stuff)); 2677 } 2678 2679 static const struct file_operations proc_attr_dir_operations = { 2680 .read = generic_read_dir, 2681 .readdir = proc_attr_dir_readdir, 2682 .llseek = default_llseek, 2683 }; 2684 2685 static struct dentry *proc_attr_dir_lookup(struct inode *dir, 2686 struct dentry *dentry, struct nameidata *nd) 2687 { 2688 return proc_pident_lookup(dir, dentry, 2689 attr_dir_stuff, ARRAY_SIZE(attr_dir_stuff)); 2690 } 2691 2692 static const struct inode_operations proc_attr_dir_inode_operations = { 2693 .lookup = proc_attr_dir_lookup, 2694 .getattr = pid_getattr, 2695 .setattr = proc_setattr, 2696 }; 2697 2698 #endif 2699 2700 #ifdef CONFIG_ELF_CORE 2701 static ssize_t proc_coredump_filter_read(struct file *file, char __user *buf, 2702 size_t count, loff_t *ppos) 2703 { 2704 struct task_struct *task = get_proc_task(file->f_dentry->d_inode); 2705 struct mm_struct *mm; 2706 char buffer[PROC_NUMBUF]; 2707 size_t len; 2708 int ret; 2709 2710 if (!task) 2711 return -ESRCH; 2712 2713 ret = 0; 2714 mm = get_task_mm(task); 2715 if (mm) { 2716 len = snprintf(buffer, sizeof(buffer), "%08lx\n", 2717 ((mm->flags & MMF_DUMP_FILTER_MASK) >> 2718 MMF_DUMP_FILTER_SHIFT)); 2719 mmput(mm); 2720 ret = simple_read_from_buffer(buf, count, ppos, buffer, len); 2721 } 2722 2723 put_task_struct(task); 2724 2725 return ret; 2726 } 2727 2728 static ssize_t proc_coredump_filter_write(struct file *file, 2729 const char __user *buf, 2730 size_t count, 2731 loff_t *ppos) 2732 { 2733 struct task_struct *task; 2734 struct mm_struct *mm; 2735 char buffer[PROC_NUMBUF], *end; 2736 unsigned int val; 2737 int ret; 2738 int i; 2739 unsigned long mask; 2740 2741 ret = -EFAULT; 2742 memset(buffer, 0, sizeof(buffer)); 2743 if (count > sizeof(buffer) - 1) 2744 count = sizeof(buffer) - 1; 2745 if (copy_from_user(buffer, buf, count)) 2746 goto out_no_task; 2747 2748 ret = -EINVAL; 2749 val = (unsigned int)simple_strtoul(buffer, &end, 0); 2750 if (*end == '\n') 2751 end++; 2752 if (end - buffer == 0) 2753 goto out_no_task; 2754 2755 ret = -ESRCH; 2756 task = get_proc_task(file->f_dentry->d_inode); 2757 if (!task) 2758 goto out_no_task; 2759 2760 ret = end - buffer; 2761 mm = get_task_mm(task); 2762 if (!mm) 2763 goto out_no_mm; 2764 2765 for (i = 0, mask = 1; i < MMF_DUMP_FILTER_BITS; i++, mask <<= 1) { 2766 if (val & mask) 2767 set_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags); 2768 else 2769 clear_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags); 2770 } 2771 2772 mmput(mm); 2773 out_no_mm: 2774 put_task_struct(task); 2775 out_no_task: 2776 return ret; 2777 } 2778 2779 static const struct file_operations proc_coredump_filter_operations = { 2780 .read = proc_coredump_filter_read, 2781 .write = proc_coredump_filter_write, 2782 .llseek = generic_file_llseek, 2783 }; 2784 #endif 2785 2786 /* 2787 * /proc/self: 2788 */ 2789 static int proc_self_readlink(struct dentry *dentry, char __user *buffer, 2790 int buflen) 2791 { 2792 struct pid_namespace *ns = dentry->d_sb->s_fs_info; 2793 pid_t tgid = task_tgid_nr_ns(current, ns); 2794 char tmp[PROC_NUMBUF]; 2795 if (!tgid) 2796 return -ENOENT; 2797 sprintf(tmp, "%d", tgid); 2798 return vfs_readlink(dentry,buffer,buflen,tmp); 2799 } 2800 2801 static void *proc_self_follow_link(struct dentry *dentry, struct nameidata *nd) 2802 { 2803 struct pid_namespace *ns = dentry->d_sb->s_fs_info; 2804 pid_t tgid = task_tgid_nr_ns(current, ns); 2805 char *name = ERR_PTR(-ENOENT); 2806 if (tgid) { 2807 name = __getname(); 2808 if (!name) 2809 name = ERR_PTR(-ENOMEM); 2810 else 2811 sprintf(name, "%d", tgid); 2812 } 2813 nd_set_link(nd, name); 2814 return NULL; 2815 } 2816 2817 static void proc_self_put_link(struct dentry *dentry, struct nameidata *nd, 2818 void *cookie) 2819 { 2820 char *s = nd_get_link(nd); 2821 if (!IS_ERR(s)) 2822 __putname(s); 2823 } 2824 2825 static const struct inode_operations proc_self_inode_operations = { 2826 .readlink = proc_self_readlink, 2827 .follow_link = proc_self_follow_link, 2828 .put_link = proc_self_put_link, 2829 }; 2830 2831 /* 2832 * proc base 2833 * 2834 * These are the directory entries in the root directory of /proc 2835 * that properly belong to the /proc filesystem, as they describe 2836 * describe something that is process related. 2837 */ 2838 static const struct pid_entry proc_base_stuff[] = { 2839 NOD("self", S_IFLNK|S_IRWXUGO, 2840 &proc_self_inode_operations, NULL, {}), 2841 }; 2842 2843 static struct dentry *proc_base_instantiate(struct inode *dir, 2844 struct dentry *dentry, struct task_struct *task, const void *ptr) 2845 { 2846 const struct pid_entry *p = ptr; 2847 struct inode *inode; 2848 struct proc_inode *ei; 2849 struct dentry *error; 2850 2851 /* Allocate the inode */ 2852 error = ERR_PTR(-ENOMEM); 2853 inode = new_inode(dir->i_sb); 2854 if (!inode) 2855 goto out; 2856 2857 /* Initialize the inode */ 2858 ei = PROC_I(inode); 2859 inode->i_ino = get_next_ino(); 2860 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME; 2861 2862 /* 2863 * grab the reference to the task. 2864 */ 2865 ei->pid = get_task_pid(task, PIDTYPE_PID); 2866 if (!ei->pid) 2867 goto out_iput; 2868 2869 inode->i_mode = p->mode; 2870 if (S_ISDIR(inode->i_mode)) 2871 set_nlink(inode, 2); 2872 if (S_ISLNK(inode->i_mode)) 2873 inode->i_size = 64; 2874 if (p->iop) 2875 inode->i_op = p->iop; 2876 if (p->fop) 2877 inode->i_fop = p->fop; 2878 ei->op = p->op; 2879 d_add(dentry, inode); 2880 error = NULL; 2881 out: 2882 return error; 2883 out_iput: 2884 iput(inode); 2885 goto out; 2886 } 2887 2888 static struct dentry *proc_base_lookup(struct inode *dir, struct dentry *dentry) 2889 { 2890 struct dentry *error; 2891 struct task_struct *task = get_proc_task(dir); 2892 const struct pid_entry *p, *last; 2893 2894 error = ERR_PTR(-ENOENT); 2895 2896 if (!task) 2897 goto out_no_task; 2898 2899 /* Lookup the directory entry */ 2900 last = &proc_base_stuff[ARRAY_SIZE(proc_base_stuff) - 1]; 2901 for (p = proc_base_stuff; p <= last; p++) { 2902 if (p->len != dentry->d_name.len) 2903 continue; 2904 if (!memcmp(dentry->d_name.name, p->name, p->len)) 2905 break; 2906 } 2907 if (p > last) 2908 goto out; 2909 2910 error = proc_base_instantiate(dir, dentry, task, p); 2911 2912 out: 2913 put_task_struct(task); 2914 out_no_task: 2915 return error; 2916 } 2917 2918 static int proc_base_fill_cache(struct file *filp, void *dirent, 2919 filldir_t filldir, struct task_struct *task, const struct pid_entry *p) 2920 { 2921 return proc_fill_cache(filp, dirent, filldir, p->name, p->len, 2922 proc_base_instantiate, task, p); 2923 } 2924 2925 #ifdef CONFIG_TASK_IO_ACCOUNTING 2926 static int do_io_accounting(struct task_struct *task, char *buffer, int whole) 2927 { 2928 struct task_io_accounting acct = task->ioac; 2929 unsigned long flags; 2930 int result; 2931 2932 result = mutex_lock_killable(&task->signal->cred_guard_mutex); 2933 if (result) 2934 return result; 2935 2936 if (!ptrace_may_access(task, PTRACE_MODE_READ)) { 2937 result = -EACCES; 2938 goto out_unlock; 2939 } 2940 2941 if (whole && lock_task_sighand(task, &flags)) { 2942 struct task_struct *t = task; 2943 2944 task_io_accounting_add(&acct, &task->signal->ioac); 2945 while_each_thread(task, t) 2946 task_io_accounting_add(&acct, &t->ioac); 2947 2948 unlock_task_sighand(task, &flags); 2949 } 2950 result = sprintf(buffer, 2951 "rchar: %llu\n" 2952 "wchar: %llu\n" 2953 "syscr: %llu\n" 2954 "syscw: %llu\n" 2955 "read_bytes: %llu\n" 2956 "write_bytes: %llu\n" 2957 "cancelled_write_bytes: %llu\n", 2958 (unsigned long long)acct.rchar, 2959 (unsigned long long)acct.wchar, 2960 (unsigned long long)acct.syscr, 2961 (unsigned long long)acct.syscw, 2962 (unsigned long long)acct.read_bytes, 2963 (unsigned long long)acct.write_bytes, 2964 (unsigned long long)acct.cancelled_write_bytes); 2965 out_unlock: 2966 mutex_unlock(&task->signal->cred_guard_mutex); 2967 return result; 2968 } 2969 2970 static int proc_tid_io_accounting(struct task_struct *task, char *buffer) 2971 { 2972 return do_io_accounting(task, buffer, 0); 2973 } 2974 2975 static int proc_tgid_io_accounting(struct task_struct *task, char *buffer) 2976 { 2977 return do_io_accounting(task, buffer, 1); 2978 } 2979 #endif /* CONFIG_TASK_IO_ACCOUNTING */ 2980 2981 static int proc_pid_personality(struct seq_file *m, struct pid_namespace *ns, 2982 struct pid *pid, struct task_struct *task) 2983 { 2984 int err = lock_trace(task); 2985 if (!err) { 2986 seq_printf(m, "%08x\n", task->personality); 2987 unlock_trace(task); 2988 } 2989 return err; 2990 } 2991 2992 /* 2993 * Thread groups 2994 */ 2995 static const struct file_operations proc_task_operations; 2996 static const struct inode_operations proc_task_inode_operations; 2997 2998 static const struct pid_entry tgid_base_stuff[] = { 2999 DIR("task", S_IRUGO|S_IXUGO, proc_task_inode_operations, proc_task_operations), 3000 DIR("fd", S_IRUSR|S_IXUSR, proc_fd_inode_operations, proc_fd_operations), 3001 #ifdef CONFIG_CHECKPOINT_RESTORE 3002 DIR("map_files", S_IRUSR|S_IXUSR, proc_map_files_inode_operations, proc_map_files_operations), 3003 #endif 3004 DIR("fdinfo", S_IRUSR|S_IXUSR, proc_fdinfo_inode_operations, proc_fdinfo_operations), 3005 DIR("ns", S_IRUSR|S_IXUGO, proc_ns_dir_inode_operations, proc_ns_dir_operations), 3006 #ifdef CONFIG_NET 3007 DIR("net", S_IRUGO|S_IXUGO, proc_net_inode_operations, proc_net_operations), 3008 #endif 3009 REG("environ", S_IRUSR, proc_environ_operations), 3010 INF("auxv", S_IRUSR, proc_pid_auxv), 3011 ONE("status", S_IRUGO, proc_pid_status), 3012 ONE("personality", S_IRUGO, proc_pid_personality), 3013 INF("limits", S_IRUGO, proc_pid_limits), 3014 #ifdef CONFIG_SCHED_DEBUG 3015 REG("sched", S_IRUGO|S_IWUSR, proc_pid_sched_operations), 3016 #endif 3017 #ifdef CONFIG_SCHED_AUTOGROUP 3018 REG("autogroup", S_IRUGO|S_IWUSR, proc_pid_sched_autogroup_operations), 3019 #endif 3020 REG("comm", S_IRUGO|S_IWUSR, proc_pid_set_comm_operations), 3021 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK 3022 INF("syscall", S_IRUGO, proc_pid_syscall), 3023 #endif 3024 INF("cmdline", S_IRUGO, proc_pid_cmdline), 3025 ONE("stat", S_IRUGO, proc_tgid_stat), 3026 ONE("statm", S_IRUGO, proc_pid_statm), 3027 REG("maps", S_IRUGO, proc_maps_operations), 3028 #ifdef CONFIG_NUMA 3029 REG("numa_maps", S_IRUGO, proc_numa_maps_operations), 3030 #endif 3031 REG("mem", S_IRUSR|S_IWUSR, proc_mem_operations), 3032 LNK("cwd", proc_cwd_link), 3033 LNK("root", proc_root_link), 3034 LNK("exe", proc_exe_link), 3035 REG("mounts", S_IRUGO, proc_mounts_operations), 3036 REG("mountinfo", S_IRUGO, proc_mountinfo_operations), 3037 REG("mountstats", S_IRUSR, proc_mountstats_operations), 3038 #ifdef CONFIG_PROC_PAGE_MONITOR 3039 REG("clear_refs", S_IWUSR, proc_clear_refs_operations), 3040 REG("smaps", S_IRUGO, proc_smaps_operations), 3041 REG("pagemap", S_IRUGO, proc_pagemap_operations), 3042 #endif 3043 #ifdef CONFIG_SECURITY 3044 DIR("attr", S_IRUGO|S_IXUGO, proc_attr_dir_inode_operations, proc_attr_dir_operations), 3045 #endif 3046 #ifdef CONFIG_KALLSYMS 3047 INF("wchan", S_IRUGO, proc_pid_wchan), 3048 #endif 3049 #ifdef CONFIG_STACKTRACE 3050 ONE("stack", S_IRUGO, proc_pid_stack), 3051 #endif 3052 #ifdef CONFIG_SCHEDSTATS 3053 INF("schedstat", S_IRUGO, proc_pid_schedstat), 3054 #endif 3055 #ifdef CONFIG_LATENCYTOP 3056 REG("latency", S_IRUGO, proc_lstats_operations), 3057 #endif 3058 #ifdef CONFIG_PROC_PID_CPUSET 3059 REG("cpuset", S_IRUGO, proc_cpuset_operations), 3060 #endif 3061 #ifdef CONFIG_CGROUPS 3062 REG("cgroup", S_IRUGO, proc_cgroup_operations), 3063 #endif 3064 INF("oom_score", S_IRUGO, proc_oom_score), 3065 REG("oom_adj", S_IRUGO|S_IWUSR, proc_oom_adjust_operations), 3066 REG("oom_score_adj", S_IRUGO|S_IWUSR, proc_oom_score_adj_operations), 3067 #ifdef CONFIG_AUDITSYSCALL 3068 REG("loginuid", S_IWUSR|S_IRUGO, proc_loginuid_operations), 3069 REG("sessionid", S_IRUGO, proc_sessionid_operations), 3070 #endif 3071 #ifdef CONFIG_FAULT_INJECTION 3072 REG("make-it-fail", S_IRUGO|S_IWUSR, proc_fault_inject_operations), 3073 #endif 3074 #ifdef CONFIG_ELF_CORE 3075 REG("coredump_filter", S_IRUGO|S_IWUSR, proc_coredump_filter_operations), 3076 #endif 3077 #ifdef CONFIG_TASK_IO_ACCOUNTING 3078 INF("io", S_IRUSR, proc_tgid_io_accounting), 3079 #endif 3080 #ifdef CONFIG_HARDWALL 3081 INF("hardwall", S_IRUGO, proc_pid_hardwall), 3082 #endif 3083 }; 3084 3085 static int proc_tgid_base_readdir(struct file * filp, 3086 void * dirent, filldir_t filldir) 3087 { 3088 return proc_pident_readdir(filp,dirent,filldir, 3089 tgid_base_stuff,ARRAY_SIZE(tgid_base_stuff)); 3090 } 3091 3092 static const struct file_operations proc_tgid_base_operations = { 3093 .read = generic_read_dir, 3094 .readdir = proc_tgid_base_readdir, 3095 .llseek = default_llseek, 3096 }; 3097 3098 static struct dentry *proc_tgid_base_lookup(struct inode *dir, struct dentry *dentry, struct nameidata *nd){ 3099 return proc_pident_lookup(dir, dentry, 3100 tgid_base_stuff, ARRAY_SIZE(tgid_base_stuff)); 3101 } 3102 3103 static const struct inode_operations proc_tgid_base_inode_operations = { 3104 .lookup = proc_tgid_base_lookup, 3105 .getattr = pid_getattr, 3106 .setattr = proc_setattr, 3107 .permission = proc_pid_permission, 3108 }; 3109 3110 static void proc_flush_task_mnt(struct vfsmount *mnt, pid_t pid, pid_t tgid) 3111 { 3112 struct dentry *dentry, *leader, *dir; 3113 char buf[PROC_NUMBUF]; 3114 struct qstr name; 3115 3116 name.name = buf; 3117 name.len = snprintf(buf, sizeof(buf), "%d", pid); 3118 dentry = d_hash_and_lookup(mnt->mnt_root, &name); 3119 if (dentry) { 3120 shrink_dcache_parent(dentry); 3121 d_drop(dentry); 3122 dput(dentry); 3123 } 3124 3125 name.name = buf; 3126 name.len = snprintf(buf, sizeof(buf), "%d", tgid); 3127 leader = d_hash_and_lookup(mnt->mnt_root, &name); 3128 if (!leader) 3129 goto out; 3130 3131 name.name = "task"; 3132 name.len = strlen(name.name); 3133 dir = d_hash_and_lookup(leader, &name); 3134 if (!dir) 3135 goto out_put_leader; 3136 3137 name.name = buf; 3138 name.len = snprintf(buf, sizeof(buf), "%d", pid); 3139 dentry = d_hash_and_lookup(dir, &name); 3140 if (dentry) { 3141 shrink_dcache_parent(dentry); 3142 d_drop(dentry); 3143 dput(dentry); 3144 } 3145 3146 dput(dir); 3147 out_put_leader: 3148 dput(leader); 3149 out: 3150 return; 3151 } 3152 3153 /** 3154 * proc_flush_task - Remove dcache entries for @task from the /proc dcache. 3155 * @task: task that should be flushed. 3156 * 3157 * When flushing dentries from proc, one needs to flush them from global 3158 * proc (proc_mnt) and from all the namespaces' procs this task was seen 3159 * in. This call is supposed to do all of this job. 3160 * 3161 * Looks in the dcache for 3162 * /proc/@pid 3163 * /proc/@tgid/task/@pid 3164 * if either directory is present flushes it and all of it'ts children 3165 * from the dcache. 3166 * 3167 * It is safe and reasonable to cache /proc entries for a task until 3168 * that task exits. After that they just clog up the dcache with 3169 * useless entries, possibly causing useful dcache entries to be 3170 * flushed instead. This routine is proved to flush those useless 3171 * dcache entries at process exit time. 3172 * 3173 * NOTE: This routine is just an optimization so it does not guarantee 3174 * that no dcache entries will exist at process exit time it 3175 * just makes it very unlikely that any will persist. 3176 */ 3177 3178 void proc_flush_task(struct task_struct *task) 3179 { 3180 int i; 3181 struct pid *pid, *tgid; 3182 struct upid *upid; 3183 3184 pid = task_pid(task); 3185 tgid = task_tgid(task); 3186 3187 for (i = 0; i <= pid->level; i++) { 3188 upid = &pid->numbers[i]; 3189 proc_flush_task_mnt(upid->ns->proc_mnt, upid->nr, 3190 tgid->numbers[i].nr); 3191 } 3192 3193 upid = &pid->numbers[pid->level]; 3194 if (upid->nr == 1) 3195 pid_ns_release_proc(upid->ns); 3196 } 3197 3198 static struct dentry *proc_pid_instantiate(struct inode *dir, 3199 struct dentry * dentry, 3200 struct task_struct *task, const void *ptr) 3201 { 3202 struct dentry *error = ERR_PTR(-ENOENT); 3203 struct inode *inode; 3204 3205 inode = proc_pid_make_inode(dir->i_sb, task); 3206 if (!inode) 3207 goto out; 3208 3209 inode->i_mode = S_IFDIR|S_IRUGO|S_IXUGO; 3210 inode->i_op = &proc_tgid_base_inode_operations; 3211 inode->i_fop = &proc_tgid_base_operations; 3212 inode->i_flags|=S_IMMUTABLE; 3213 3214 set_nlink(inode, 2 + pid_entry_count_dirs(tgid_base_stuff, 3215 ARRAY_SIZE(tgid_base_stuff))); 3216 3217 d_set_d_op(dentry, &pid_dentry_operations); 3218 3219 d_add(dentry, inode); 3220 /* Close the race of the process dying before we return the dentry */ 3221 if (pid_revalidate(dentry, NULL)) 3222 error = NULL; 3223 out: 3224 return error; 3225 } 3226 3227 struct dentry *proc_pid_lookup(struct inode *dir, struct dentry * dentry, struct nameidata *nd) 3228 { 3229 struct dentry *result; 3230 struct task_struct *task; 3231 unsigned tgid; 3232 struct pid_namespace *ns; 3233 3234 result = proc_base_lookup(dir, dentry); 3235 if (!IS_ERR(result) || PTR_ERR(result) != -ENOENT) 3236 goto out; 3237 3238 tgid = name_to_int(dentry); 3239 if (tgid == ~0U) 3240 goto out; 3241 3242 ns = dentry->d_sb->s_fs_info; 3243 rcu_read_lock(); 3244 task = find_task_by_pid_ns(tgid, ns); 3245 if (task) 3246 get_task_struct(task); 3247 rcu_read_unlock(); 3248 if (!task) 3249 goto out; 3250 3251 result = proc_pid_instantiate(dir, dentry, task, NULL); 3252 put_task_struct(task); 3253 out: 3254 return result; 3255 } 3256 3257 /* 3258 * Find the first task with tgid >= tgid 3259 * 3260 */ 3261 struct tgid_iter { 3262 unsigned int tgid; 3263 struct task_struct *task; 3264 }; 3265 static struct tgid_iter next_tgid(struct pid_namespace *ns, struct tgid_iter iter) 3266 { 3267 struct pid *pid; 3268 3269 if (iter.task) 3270 put_task_struct(iter.task); 3271 rcu_read_lock(); 3272 retry: 3273 iter.task = NULL; 3274 pid = find_ge_pid(iter.tgid, ns); 3275 if (pid) { 3276 iter.tgid = pid_nr_ns(pid, ns); 3277 iter.task = pid_task(pid, PIDTYPE_PID); 3278 /* What we to know is if the pid we have find is the 3279 * pid of a thread_group_leader. Testing for task 3280 * being a thread_group_leader is the obvious thing 3281 * todo but there is a window when it fails, due to 3282 * the pid transfer logic in de_thread. 3283 * 3284 * So we perform the straight forward test of seeing 3285 * if the pid we have found is the pid of a thread 3286 * group leader, and don't worry if the task we have 3287 * found doesn't happen to be a thread group leader. 3288 * As we don't care in the case of readdir. 3289 */ 3290 if (!iter.task || !has_group_leader_pid(iter.task)) { 3291 iter.tgid += 1; 3292 goto retry; 3293 } 3294 get_task_struct(iter.task); 3295 } 3296 rcu_read_unlock(); 3297 return iter; 3298 } 3299 3300 #define TGID_OFFSET (FIRST_PROCESS_ENTRY + ARRAY_SIZE(proc_base_stuff)) 3301 3302 static int proc_pid_fill_cache(struct file *filp, void *dirent, filldir_t filldir, 3303 struct tgid_iter iter) 3304 { 3305 char name[PROC_NUMBUF]; 3306 int len = snprintf(name, sizeof(name), "%d", iter.tgid); 3307 return proc_fill_cache(filp, dirent, filldir, name, len, 3308 proc_pid_instantiate, iter.task, NULL); 3309 } 3310 3311 static int fake_filldir(void *buf, const char *name, int namelen, 3312 loff_t offset, u64 ino, unsigned d_type) 3313 { 3314 return 0; 3315 } 3316 3317 /* for the /proc/ directory itself, after non-process stuff has been done */ 3318 int proc_pid_readdir(struct file * filp, void * dirent, filldir_t filldir) 3319 { 3320 unsigned int nr; 3321 struct task_struct *reaper; 3322 struct tgid_iter iter; 3323 struct pid_namespace *ns; 3324 filldir_t __filldir; 3325 3326 if (filp->f_pos >= PID_MAX_LIMIT + TGID_OFFSET) 3327 goto out_no_task; 3328 nr = filp->f_pos - FIRST_PROCESS_ENTRY; 3329 3330 reaper = get_proc_task(filp->f_path.dentry->d_inode); 3331 if (!reaper) 3332 goto out_no_task; 3333 3334 for (; nr < ARRAY_SIZE(proc_base_stuff); filp->f_pos++, nr++) { 3335 const struct pid_entry *p = &proc_base_stuff[nr]; 3336 if (proc_base_fill_cache(filp, dirent, filldir, reaper, p) < 0) 3337 goto out; 3338 } 3339 3340 ns = filp->f_dentry->d_sb->s_fs_info; 3341 iter.task = NULL; 3342 iter.tgid = filp->f_pos - TGID_OFFSET; 3343 for (iter = next_tgid(ns, iter); 3344 iter.task; 3345 iter.tgid += 1, iter = next_tgid(ns, iter)) { 3346 if (has_pid_permissions(ns, iter.task, 2)) 3347 __filldir = filldir; 3348 else 3349 __filldir = fake_filldir; 3350 3351 filp->f_pos = iter.tgid + TGID_OFFSET; 3352 if (proc_pid_fill_cache(filp, dirent, __filldir, iter) < 0) { 3353 put_task_struct(iter.task); 3354 goto out; 3355 } 3356 } 3357 filp->f_pos = PID_MAX_LIMIT + TGID_OFFSET; 3358 out: 3359 put_task_struct(reaper); 3360 out_no_task: 3361 return 0; 3362 } 3363 3364 /* 3365 * Tasks 3366 */ 3367 static const struct pid_entry tid_base_stuff[] = { 3368 DIR("fd", S_IRUSR|S_IXUSR, proc_fd_inode_operations, proc_fd_operations), 3369 DIR("fdinfo", S_IRUSR|S_IXUSR, proc_fdinfo_inode_operations, proc_fdinfo_operations), 3370 DIR("ns", S_IRUSR|S_IXUGO, proc_ns_dir_inode_operations, proc_ns_dir_operations), 3371 REG("environ", S_IRUSR, proc_environ_operations), 3372 INF("auxv", S_IRUSR, proc_pid_auxv), 3373 ONE("status", S_IRUGO, proc_pid_status), 3374 ONE("personality", S_IRUGO, proc_pid_personality), 3375 INF("limits", S_IRUGO, proc_pid_limits), 3376 #ifdef CONFIG_SCHED_DEBUG 3377 REG("sched", S_IRUGO|S_IWUSR, proc_pid_sched_operations), 3378 #endif 3379 REG("comm", S_IRUGO|S_IWUSR, proc_pid_set_comm_operations), 3380 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK 3381 INF("syscall", S_IRUGO, proc_pid_syscall), 3382 #endif 3383 INF("cmdline", S_IRUGO, proc_pid_cmdline), 3384 ONE("stat", S_IRUGO, proc_tid_stat), 3385 ONE("statm", S_IRUGO, proc_pid_statm), 3386 REG("maps", S_IRUGO, proc_maps_operations), 3387 #ifdef CONFIG_NUMA 3388 REG("numa_maps", S_IRUGO, proc_numa_maps_operations), 3389 #endif 3390 REG("mem", S_IRUSR|S_IWUSR, proc_mem_operations), 3391 LNK("cwd", proc_cwd_link), 3392 LNK("root", proc_root_link), 3393 LNK("exe", proc_exe_link), 3394 REG("mounts", S_IRUGO, proc_mounts_operations), 3395 REG("mountinfo", S_IRUGO, proc_mountinfo_operations), 3396 #ifdef CONFIG_PROC_PAGE_MONITOR 3397 REG("clear_refs", S_IWUSR, proc_clear_refs_operations), 3398 REG("smaps", S_IRUGO, proc_smaps_operations), 3399 REG("pagemap", S_IRUGO, proc_pagemap_operations), 3400 #endif 3401 #ifdef CONFIG_SECURITY 3402 DIR("attr", S_IRUGO|S_IXUGO, proc_attr_dir_inode_operations, proc_attr_dir_operations), 3403 #endif 3404 #ifdef CONFIG_KALLSYMS 3405 INF("wchan", S_IRUGO, proc_pid_wchan), 3406 #endif 3407 #ifdef CONFIG_STACKTRACE 3408 ONE("stack", S_IRUGO, proc_pid_stack), 3409 #endif 3410 #ifdef CONFIG_SCHEDSTATS 3411 INF("schedstat", S_IRUGO, proc_pid_schedstat), 3412 #endif 3413 #ifdef CONFIG_LATENCYTOP 3414 REG("latency", S_IRUGO, proc_lstats_operations), 3415 #endif 3416 #ifdef CONFIG_PROC_PID_CPUSET 3417 REG("cpuset", S_IRUGO, proc_cpuset_operations), 3418 #endif 3419 #ifdef CONFIG_CGROUPS 3420 REG("cgroup", S_IRUGO, proc_cgroup_operations), 3421 #endif 3422 INF("oom_score", S_IRUGO, proc_oom_score), 3423 REG("oom_adj", S_IRUGO|S_IWUSR, proc_oom_adjust_operations), 3424 REG("oom_score_adj", S_IRUGO|S_IWUSR, proc_oom_score_adj_operations), 3425 #ifdef CONFIG_AUDITSYSCALL 3426 REG("loginuid", S_IWUSR|S_IRUGO, proc_loginuid_operations), 3427 REG("sessionid", S_IRUGO, proc_sessionid_operations), 3428 #endif 3429 #ifdef CONFIG_FAULT_INJECTION 3430 REG("make-it-fail", S_IRUGO|S_IWUSR, proc_fault_inject_operations), 3431 #endif 3432 #ifdef CONFIG_TASK_IO_ACCOUNTING 3433 INF("io", S_IRUSR, proc_tid_io_accounting), 3434 #endif 3435 #ifdef CONFIG_HARDWALL 3436 INF("hardwall", S_IRUGO, proc_pid_hardwall), 3437 #endif 3438 }; 3439 3440 static int proc_tid_base_readdir(struct file * filp, 3441 void * dirent, filldir_t filldir) 3442 { 3443 return proc_pident_readdir(filp,dirent,filldir, 3444 tid_base_stuff,ARRAY_SIZE(tid_base_stuff)); 3445 } 3446 3447 static struct dentry *proc_tid_base_lookup(struct inode *dir, struct dentry *dentry, struct nameidata *nd){ 3448 return proc_pident_lookup(dir, dentry, 3449 tid_base_stuff, ARRAY_SIZE(tid_base_stuff)); 3450 } 3451 3452 static const struct file_operations proc_tid_base_operations = { 3453 .read = generic_read_dir, 3454 .readdir = proc_tid_base_readdir, 3455 .llseek = default_llseek, 3456 }; 3457 3458 static const struct inode_operations proc_tid_base_inode_operations = { 3459 .lookup = proc_tid_base_lookup, 3460 .getattr = pid_getattr, 3461 .setattr = proc_setattr, 3462 }; 3463 3464 static struct dentry *proc_task_instantiate(struct inode *dir, 3465 struct dentry *dentry, struct task_struct *task, const void *ptr) 3466 { 3467 struct dentry *error = ERR_PTR(-ENOENT); 3468 struct inode *inode; 3469 inode = proc_pid_make_inode(dir->i_sb, task); 3470 3471 if (!inode) 3472 goto out; 3473 inode->i_mode = S_IFDIR|S_IRUGO|S_IXUGO; 3474 inode->i_op = &proc_tid_base_inode_operations; 3475 inode->i_fop = &proc_tid_base_operations; 3476 inode->i_flags|=S_IMMUTABLE; 3477 3478 set_nlink(inode, 2 + pid_entry_count_dirs(tid_base_stuff, 3479 ARRAY_SIZE(tid_base_stuff))); 3480 3481 d_set_d_op(dentry, &pid_dentry_operations); 3482 3483 d_add(dentry, inode); 3484 /* Close the race of the process dying before we return the dentry */ 3485 if (pid_revalidate(dentry, NULL)) 3486 error = NULL; 3487 out: 3488 return error; 3489 } 3490 3491 static struct dentry *proc_task_lookup(struct inode *dir, struct dentry * dentry, struct nameidata *nd) 3492 { 3493 struct dentry *result = ERR_PTR(-ENOENT); 3494 struct task_struct *task; 3495 struct task_struct *leader = get_proc_task(dir); 3496 unsigned tid; 3497 struct pid_namespace *ns; 3498 3499 if (!leader) 3500 goto out_no_task; 3501 3502 tid = name_to_int(dentry); 3503 if (tid == ~0U) 3504 goto out; 3505 3506 ns = dentry->d_sb->s_fs_info; 3507 rcu_read_lock(); 3508 task = find_task_by_pid_ns(tid, ns); 3509 if (task) 3510 get_task_struct(task); 3511 rcu_read_unlock(); 3512 if (!task) 3513 goto out; 3514 if (!same_thread_group(leader, task)) 3515 goto out_drop_task; 3516 3517 result = proc_task_instantiate(dir, dentry, task, NULL); 3518 out_drop_task: 3519 put_task_struct(task); 3520 out: 3521 put_task_struct(leader); 3522 out_no_task: 3523 return result; 3524 } 3525 3526 /* 3527 * Find the first tid of a thread group to return to user space. 3528 * 3529 * Usually this is just the thread group leader, but if the users 3530 * buffer was too small or there was a seek into the middle of the 3531 * directory we have more work todo. 3532 * 3533 * In the case of a short read we start with find_task_by_pid. 3534 * 3535 * In the case of a seek we start with the leader and walk nr 3536 * threads past it. 3537 */ 3538 static struct task_struct *first_tid(struct task_struct *leader, 3539 int tid, int nr, struct pid_namespace *ns) 3540 { 3541 struct task_struct *pos; 3542 3543 rcu_read_lock(); 3544 /* Attempt to start with the pid of a thread */ 3545 if (tid && (nr > 0)) { 3546 pos = find_task_by_pid_ns(tid, ns); 3547 if (pos && (pos->group_leader == leader)) 3548 goto found; 3549 } 3550 3551 /* If nr exceeds the number of threads there is nothing todo */ 3552 pos = NULL; 3553 if (nr && nr >= get_nr_threads(leader)) 3554 goto out; 3555 3556 /* If we haven't found our starting place yet start 3557 * with the leader and walk nr threads forward. 3558 */ 3559 for (pos = leader; nr > 0; --nr) { 3560 pos = next_thread(pos); 3561 if (pos == leader) { 3562 pos = NULL; 3563 goto out; 3564 } 3565 } 3566 found: 3567 get_task_struct(pos); 3568 out: 3569 rcu_read_unlock(); 3570 return pos; 3571 } 3572 3573 /* 3574 * Find the next thread in the thread list. 3575 * Return NULL if there is an error or no next thread. 3576 * 3577 * The reference to the input task_struct is released. 3578 */ 3579 static struct task_struct *next_tid(struct task_struct *start) 3580 { 3581 struct task_struct *pos = NULL; 3582 rcu_read_lock(); 3583 if (pid_alive(start)) { 3584 pos = next_thread(start); 3585 if (thread_group_leader(pos)) 3586 pos = NULL; 3587 else 3588 get_task_struct(pos); 3589 } 3590 rcu_read_unlock(); 3591 put_task_struct(start); 3592 return pos; 3593 } 3594 3595 static int proc_task_fill_cache(struct file *filp, void *dirent, filldir_t filldir, 3596 struct task_struct *task, int tid) 3597 { 3598 char name[PROC_NUMBUF]; 3599 int len = snprintf(name, sizeof(name), "%d", tid); 3600 return proc_fill_cache(filp, dirent, filldir, name, len, 3601 proc_task_instantiate, task, NULL); 3602 } 3603 3604 /* for the /proc/TGID/task/ directories */ 3605 static int proc_task_readdir(struct file * filp, void * dirent, filldir_t filldir) 3606 { 3607 struct dentry *dentry = filp->f_path.dentry; 3608 struct inode *inode = dentry->d_inode; 3609 struct task_struct *leader = NULL; 3610 struct task_struct *task; 3611 int retval = -ENOENT; 3612 ino_t ino; 3613 int tid; 3614 struct pid_namespace *ns; 3615 3616 task = get_proc_task(inode); 3617 if (!task) 3618 goto out_no_task; 3619 rcu_read_lock(); 3620 if (pid_alive(task)) { 3621 leader = task->group_leader; 3622 get_task_struct(leader); 3623 } 3624 rcu_read_unlock(); 3625 put_task_struct(task); 3626 if (!leader) 3627 goto out_no_task; 3628 retval = 0; 3629 3630 switch ((unsigned long)filp->f_pos) { 3631 case 0: 3632 ino = inode->i_ino; 3633 if (filldir(dirent, ".", 1, filp->f_pos, ino, DT_DIR) < 0) 3634 goto out; 3635 filp->f_pos++; 3636 /* fall through */ 3637 case 1: 3638 ino = parent_ino(dentry); 3639 if (filldir(dirent, "..", 2, filp->f_pos, ino, DT_DIR) < 0) 3640 goto out; 3641 filp->f_pos++; 3642 /* fall through */ 3643 } 3644 3645 /* f_version caches the tgid value that the last readdir call couldn't 3646 * return. lseek aka telldir automagically resets f_version to 0. 3647 */ 3648 ns = filp->f_dentry->d_sb->s_fs_info; 3649 tid = (int)filp->f_version; 3650 filp->f_version = 0; 3651 for (task = first_tid(leader, tid, filp->f_pos - 2, ns); 3652 task; 3653 task = next_tid(task), filp->f_pos++) { 3654 tid = task_pid_nr_ns(task, ns); 3655 if (proc_task_fill_cache(filp, dirent, filldir, task, tid) < 0) { 3656 /* returning this tgid failed, save it as the first 3657 * pid for the next readir call */ 3658 filp->f_version = (u64)tid; 3659 put_task_struct(task); 3660 break; 3661 } 3662 } 3663 out: 3664 put_task_struct(leader); 3665 out_no_task: 3666 return retval; 3667 } 3668 3669 static int proc_task_getattr(struct vfsmount *mnt, struct dentry *dentry, struct kstat *stat) 3670 { 3671 struct inode *inode = dentry->d_inode; 3672 struct task_struct *p = get_proc_task(inode); 3673 generic_fillattr(inode, stat); 3674 3675 if (p) { 3676 stat->nlink += get_nr_threads(p); 3677 put_task_struct(p); 3678 } 3679 3680 return 0; 3681 } 3682 3683 static const struct inode_operations proc_task_inode_operations = { 3684 .lookup = proc_task_lookup, 3685 .getattr = proc_task_getattr, 3686 .setattr = proc_setattr, 3687 .permission = proc_pid_permission, 3688 }; 3689 3690 static const struct file_operations proc_task_operations = { 3691 .read = generic_read_dir, 3692 .readdir = proc_task_readdir, 3693 .llseek = default_llseek, 3694 }; 3695