xref: /linux/fs/proc/base.c (revision b233b28eac0cc37d07c2d007ea08c86c778c5af4)
1 /*
2  *  linux/fs/proc/base.c
3  *
4  *  Copyright (C) 1991, 1992 Linus Torvalds
5  *
6  *  proc base directory handling functions
7  *
8  *  1999, Al Viro. Rewritten. Now it covers the whole per-process part.
9  *  Instead of using magical inumbers to determine the kind of object
10  *  we allocate and fill in-core inodes upon lookup. They don't even
11  *  go into icache. We cache the reference to task_struct upon lookup too.
12  *  Eventually it should become a filesystem in its own. We don't use the
13  *  rest of procfs anymore.
14  *
15  *
16  *  Changelog:
17  *  17-Jan-2005
18  *  Allan Bezerra
19  *  Bruna Moreira <bruna.moreira@indt.org.br>
20  *  Edjard Mota <edjard.mota@indt.org.br>
21  *  Ilias Biris <ilias.biris@indt.org.br>
22  *  Mauricio Lin <mauricio.lin@indt.org.br>
23  *
24  *  Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT
25  *
26  *  A new process specific entry (smaps) included in /proc. It shows the
27  *  size of rss for each memory area. The maps entry lacks information
28  *  about physical memory size (rss) for each mapped file, i.e.,
29  *  rss information for executables and library files.
30  *  This additional information is useful for any tools that need to know
31  *  about physical memory consumption for a process specific library.
32  *
33  *  Changelog:
34  *  21-Feb-2005
35  *  Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT
36  *  Pud inclusion in the page table walking.
37  *
38  *  ChangeLog:
39  *  10-Mar-2005
40  *  10LE Instituto Nokia de Tecnologia - INdT:
41  *  A better way to walks through the page table as suggested by Hugh Dickins.
42  *
43  *  Simo Piiroinen <simo.piiroinen@nokia.com>:
44  *  Smaps information related to shared, private, clean and dirty pages.
45  *
46  *  Paul Mundt <paul.mundt@nokia.com>:
47  *  Overall revision about smaps.
48  */
49 
50 #include <asm/uaccess.h>
51 
52 #include <linux/errno.h>
53 #include <linux/time.h>
54 #include <linux/proc_fs.h>
55 #include <linux/stat.h>
56 #include <linux/task_io_accounting_ops.h>
57 #include <linux/init.h>
58 #include <linux/capability.h>
59 #include <linux/file.h>
60 #include <linux/fdtable.h>
61 #include <linux/string.h>
62 #include <linux/seq_file.h>
63 #include <linux/namei.h>
64 #include <linux/mnt_namespace.h>
65 #include <linux/mm.h>
66 #include <linux/rcupdate.h>
67 #include <linux/kallsyms.h>
68 #include <linux/stacktrace.h>
69 #include <linux/resource.h>
70 #include <linux/module.h>
71 #include <linux/mount.h>
72 #include <linux/security.h>
73 #include <linux/ptrace.h>
74 #include <linux/tracehook.h>
75 #include <linux/cgroup.h>
76 #include <linux/cpuset.h>
77 #include <linux/audit.h>
78 #include <linux/poll.h>
79 #include <linux/nsproxy.h>
80 #include <linux/oom.h>
81 #include <linux/elf.h>
82 #include <linux/pid_namespace.h>
83 #include "internal.h"
84 
85 /* NOTE:
86  *	Implementing inode permission operations in /proc is almost
87  *	certainly an error.  Permission checks need to happen during
88  *	each system call not at open time.  The reason is that most of
89  *	what we wish to check for permissions in /proc varies at runtime.
90  *
91  *	The classic example of a problem is opening file descriptors
92  *	in /proc for a task before it execs a suid executable.
93  */
94 
95 struct pid_entry {
96 	char *name;
97 	int len;
98 	mode_t mode;
99 	const struct inode_operations *iop;
100 	const struct file_operations *fop;
101 	union proc_op op;
102 };
103 
104 #define NOD(NAME, MODE, IOP, FOP, OP) {			\
105 	.name = (NAME),					\
106 	.len  = sizeof(NAME) - 1,			\
107 	.mode = MODE,					\
108 	.iop  = IOP,					\
109 	.fop  = FOP,					\
110 	.op   = OP,					\
111 }
112 
113 #define DIR(NAME, MODE, iops, fops)	\
114 	NOD(NAME, (S_IFDIR|(MODE)), &iops, &fops, {} )
115 #define LNK(NAME, get_link)					\
116 	NOD(NAME, (S_IFLNK|S_IRWXUGO),				\
117 		&proc_pid_link_inode_operations, NULL,		\
118 		{ .proc_get_link = get_link } )
119 #define REG(NAME, MODE, fops)				\
120 	NOD(NAME, (S_IFREG|(MODE)), NULL, &fops, {})
121 #define INF(NAME, MODE, read)				\
122 	NOD(NAME, (S_IFREG|(MODE)), 			\
123 		NULL, &proc_info_file_operations,	\
124 		{ .proc_read = read } )
125 #define ONE(NAME, MODE, show)				\
126 	NOD(NAME, (S_IFREG|(MODE)), 			\
127 		NULL, &proc_single_file_operations,	\
128 		{ .proc_show = show } )
129 
130 /*
131  * Count the number of hardlinks for the pid_entry table, excluding the .
132  * and .. links.
133  */
134 static unsigned int pid_entry_count_dirs(const struct pid_entry *entries,
135 	unsigned int n)
136 {
137 	unsigned int i;
138 	unsigned int count;
139 
140 	count = 0;
141 	for (i = 0; i < n; ++i) {
142 		if (S_ISDIR(entries[i].mode))
143 			++count;
144 	}
145 
146 	return count;
147 }
148 
149 static struct fs_struct *get_fs_struct(struct task_struct *task)
150 {
151 	struct fs_struct *fs;
152 	task_lock(task);
153 	fs = task->fs;
154 	if(fs)
155 		atomic_inc(&fs->count);
156 	task_unlock(task);
157 	return fs;
158 }
159 
160 static int get_nr_threads(struct task_struct *tsk)
161 {
162 	unsigned long flags;
163 	int count = 0;
164 
165 	if (lock_task_sighand(tsk, &flags)) {
166 		count = atomic_read(&tsk->signal->count);
167 		unlock_task_sighand(tsk, &flags);
168 	}
169 	return count;
170 }
171 
172 static int proc_cwd_link(struct inode *inode, struct path *path)
173 {
174 	struct task_struct *task = get_proc_task(inode);
175 	struct fs_struct *fs = NULL;
176 	int result = -ENOENT;
177 
178 	if (task) {
179 		fs = get_fs_struct(task);
180 		put_task_struct(task);
181 	}
182 	if (fs) {
183 		read_lock(&fs->lock);
184 		*path = fs->pwd;
185 		path_get(&fs->pwd);
186 		read_unlock(&fs->lock);
187 		result = 0;
188 		put_fs_struct(fs);
189 	}
190 	return result;
191 }
192 
193 static int proc_root_link(struct inode *inode, struct path *path)
194 {
195 	struct task_struct *task = get_proc_task(inode);
196 	struct fs_struct *fs = NULL;
197 	int result = -ENOENT;
198 
199 	if (task) {
200 		fs = get_fs_struct(task);
201 		put_task_struct(task);
202 	}
203 	if (fs) {
204 		read_lock(&fs->lock);
205 		*path = fs->root;
206 		path_get(&fs->root);
207 		read_unlock(&fs->lock);
208 		result = 0;
209 		put_fs_struct(fs);
210 	}
211 	return result;
212 }
213 
214 /*
215  * Return zero if current may access user memory in @task, -error if not.
216  */
217 static int check_mem_permission(struct task_struct *task)
218 {
219 	/*
220 	 * A task can always look at itself, in case it chooses
221 	 * to use system calls instead of load instructions.
222 	 */
223 	if (task == current)
224 		return 0;
225 
226 	/*
227 	 * If current is actively ptrace'ing, and would also be
228 	 * permitted to freshly attach with ptrace now, permit it.
229 	 */
230 	if (task_is_stopped_or_traced(task)) {
231 		int match;
232 		rcu_read_lock();
233 		match = (tracehook_tracer_task(task) == current);
234 		rcu_read_unlock();
235 		if (match && ptrace_may_access(task, PTRACE_MODE_ATTACH))
236 			return 0;
237 	}
238 
239 	/*
240 	 * Noone else is allowed.
241 	 */
242 	return -EPERM;
243 }
244 
245 struct mm_struct *mm_for_maps(struct task_struct *task)
246 {
247 	struct mm_struct *mm = get_task_mm(task);
248 	if (!mm)
249 		return NULL;
250 	down_read(&mm->mmap_sem);
251 	task_lock(task);
252 	if (task->mm != mm)
253 		goto out;
254 	if (task->mm != current->mm &&
255 	    __ptrace_may_access(task, PTRACE_MODE_READ) < 0)
256 		goto out;
257 	task_unlock(task);
258 	return mm;
259 out:
260 	task_unlock(task);
261 	up_read(&mm->mmap_sem);
262 	mmput(mm);
263 	return NULL;
264 }
265 
266 static int proc_pid_cmdline(struct task_struct *task, char * buffer)
267 {
268 	int res = 0;
269 	unsigned int len;
270 	struct mm_struct *mm = get_task_mm(task);
271 	if (!mm)
272 		goto out;
273 	if (!mm->arg_end)
274 		goto out_mm;	/* Shh! No looking before we're done */
275 
276  	len = mm->arg_end - mm->arg_start;
277 
278 	if (len > PAGE_SIZE)
279 		len = PAGE_SIZE;
280 
281 	res = access_process_vm(task, mm->arg_start, buffer, len, 0);
282 
283 	// If the nul at the end of args has been overwritten, then
284 	// assume application is using setproctitle(3).
285 	if (res > 0 && buffer[res-1] != '\0' && len < PAGE_SIZE) {
286 		len = strnlen(buffer, res);
287 		if (len < res) {
288 		    res = len;
289 		} else {
290 			len = mm->env_end - mm->env_start;
291 			if (len > PAGE_SIZE - res)
292 				len = PAGE_SIZE - res;
293 			res += access_process_vm(task, mm->env_start, buffer+res, len, 0);
294 			res = strnlen(buffer, res);
295 		}
296 	}
297 out_mm:
298 	mmput(mm);
299 out:
300 	return res;
301 }
302 
303 static int proc_pid_auxv(struct task_struct *task, char *buffer)
304 {
305 	int res = 0;
306 	struct mm_struct *mm = get_task_mm(task);
307 	if (mm) {
308 		unsigned int nwords = 0;
309 		do {
310 			nwords += 2;
311 		} while (mm->saved_auxv[nwords - 2] != 0); /* AT_NULL */
312 		res = nwords * sizeof(mm->saved_auxv[0]);
313 		if (res > PAGE_SIZE)
314 			res = PAGE_SIZE;
315 		memcpy(buffer, mm->saved_auxv, res);
316 		mmput(mm);
317 	}
318 	return res;
319 }
320 
321 
322 #ifdef CONFIG_KALLSYMS
323 /*
324  * Provides a wchan file via kallsyms in a proper one-value-per-file format.
325  * Returns the resolved symbol.  If that fails, simply return the address.
326  */
327 static int proc_pid_wchan(struct task_struct *task, char *buffer)
328 {
329 	unsigned long wchan;
330 	char symname[KSYM_NAME_LEN];
331 
332 	wchan = get_wchan(task);
333 
334 	if (lookup_symbol_name(wchan, symname) < 0)
335 		return sprintf(buffer, "%lu", wchan);
336 	else
337 		return sprintf(buffer, "%s", symname);
338 }
339 #endif /* CONFIG_KALLSYMS */
340 
341 #ifdef CONFIG_STACKTRACE
342 
343 #define MAX_STACK_TRACE_DEPTH	64
344 
345 static int proc_pid_stack(struct seq_file *m, struct pid_namespace *ns,
346 			  struct pid *pid, struct task_struct *task)
347 {
348 	struct stack_trace trace;
349 	unsigned long *entries;
350 	int i;
351 
352 	entries = kmalloc(MAX_STACK_TRACE_DEPTH * sizeof(*entries), GFP_KERNEL);
353 	if (!entries)
354 		return -ENOMEM;
355 
356 	trace.nr_entries	= 0;
357 	trace.max_entries	= MAX_STACK_TRACE_DEPTH;
358 	trace.entries		= entries;
359 	trace.skip		= 0;
360 	save_stack_trace_tsk(task, &trace);
361 
362 	for (i = 0; i < trace.nr_entries; i++) {
363 		seq_printf(m, "[<%p>] %pS\n",
364 			   (void *)entries[i], (void *)entries[i]);
365 	}
366 	kfree(entries);
367 
368 	return 0;
369 }
370 #endif
371 
372 #ifdef CONFIG_SCHEDSTATS
373 /*
374  * Provides /proc/PID/schedstat
375  */
376 static int proc_pid_schedstat(struct task_struct *task, char *buffer)
377 {
378 	return sprintf(buffer, "%llu %llu %lu\n",
379 			(unsigned long long)task->se.sum_exec_runtime,
380 			(unsigned long long)task->sched_info.run_delay,
381 			task->sched_info.pcount);
382 }
383 #endif
384 
385 #ifdef CONFIG_LATENCYTOP
386 static int lstats_show_proc(struct seq_file *m, void *v)
387 {
388 	int i;
389 	struct inode *inode = m->private;
390 	struct task_struct *task = get_proc_task(inode);
391 
392 	if (!task)
393 		return -ESRCH;
394 	seq_puts(m, "Latency Top version : v0.1\n");
395 	for (i = 0; i < 32; i++) {
396 		if (task->latency_record[i].backtrace[0]) {
397 			int q;
398 			seq_printf(m, "%i %li %li ",
399 				task->latency_record[i].count,
400 				task->latency_record[i].time,
401 				task->latency_record[i].max);
402 			for (q = 0; q < LT_BACKTRACEDEPTH; q++) {
403 				char sym[KSYM_SYMBOL_LEN];
404 				char *c;
405 				if (!task->latency_record[i].backtrace[q])
406 					break;
407 				if (task->latency_record[i].backtrace[q] == ULONG_MAX)
408 					break;
409 				sprint_symbol(sym, task->latency_record[i].backtrace[q]);
410 				c = strchr(sym, '+');
411 				if (c)
412 					*c = 0;
413 				seq_printf(m, "%s ", sym);
414 			}
415 			seq_printf(m, "\n");
416 		}
417 
418 	}
419 	put_task_struct(task);
420 	return 0;
421 }
422 
423 static int lstats_open(struct inode *inode, struct file *file)
424 {
425 	return single_open(file, lstats_show_proc, inode);
426 }
427 
428 static ssize_t lstats_write(struct file *file, const char __user *buf,
429 			    size_t count, loff_t *offs)
430 {
431 	struct task_struct *task = get_proc_task(file->f_dentry->d_inode);
432 
433 	if (!task)
434 		return -ESRCH;
435 	clear_all_latency_tracing(task);
436 	put_task_struct(task);
437 
438 	return count;
439 }
440 
441 static const struct file_operations proc_lstats_operations = {
442 	.open		= lstats_open,
443 	.read		= seq_read,
444 	.write		= lstats_write,
445 	.llseek		= seq_lseek,
446 	.release	= single_release,
447 };
448 
449 #endif
450 
451 /* The badness from the OOM killer */
452 unsigned long badness(struct task_struct *p, unsigned long uptime);
453 static int proc_oom_score(struct task_struct *task, char *buffer)
454 {
455 	unsigned long points;
456 	struct timespec uptime;
457 
458 	do_posix_clock_monotonic_gettime(&uptime);
459 	read_lock(&tasklist_lock);
460 	points = badness(task, uptime.tv_sec);
461 	read_unlock(&tasklist_lock);
462 	return sprintf(buffer, "%lu\n", points);
463 }
464 
465 struct limit_names {
466 	char *name;
467 	char *unit;
468 };
469 
470 static const struct limit_names lnames[RLIM_NLIMITS] = {
471 	[RLIMIT_CPU] = {"Max cpu time", "ms"},
472 	[RLIMIT_FSIZE] = {"Max file size", "bytes"},
473 	[RLIMIT_DATA] = {"Max data size", "bytes"},
474 	[RLIMIT_STACK] = {"Max stack size", "bytes"},
475 	[RLIMIT_CORE] = {"Max core file size", "bytes"},
476 	[RLIMIT_RSS] = {"Max resident set", "bytes"},
477 	[RLIMIT_NPROC] = {"Max processes", "processes"},
478 	[RLIMIT_NOFILE] = {"Max open files", "files"},
479 	[RLIMIT_MEMLOCK] = {"Max locked memory", "bytes"},
480 	[RLIMIT_AS] = {"Max address space", "bytes"},
481 	[RLIMIT_LOCKS] = {"Max file locks", "locks"},
482 	[RLIMIT_SIGPENDING] = {"Max pending signals", "signals"},
483 	[RLIMIT_MSGQUEUE] = {"Max msgqueue size", "bytes"},
484 	[RLIMIT_NICE] = {"Max nice priority", NULL},
485 	[RLIMIT_RTPRIO] = {"Max realtime priority", NULL},
486 	[RLIMIT_RTTIME] = {"Max realtime timeout", "us"},
487 };
488 
489 /* Display limits for a process */
490 static int proc_pid_limits(struct task_struct *task, char *buffer)
491 {
492 	unsigned int i;
493 	int count = 0;
494 	unsigned long flags;
495 	char *bufptr = buffer;
496 
497 	struct rlimit rlim[RLIM_NLIMITS];
498 
499 	if (!lock_task_sighand(task, &flags))
500 		return 0;
501 	memcpy(rlim, task->signal->rlim, sizeof(struct rlimit) * RLIM_NLIMITS);
502 	unlock_task_sighand(task, &flags);
503 
504 	/*
505 	 * print the file header
506 	 */
507 	count += sprintf(&bufptr[count], "%-25s %-20s %-20s %-10s\n",
508 			"Limit", "Soft Limit", "Hard Limit", "Units");
509 
510 	for (i = 0; i < RLIM_NLIMITS; i++) {
511 		if (rlim[i].rlim_cur == RLIM_INFINITY)
512 			count += sprintf(&bufptr[count], "%-25s %-20s ",
513 					 lnames[i].name, "unlimited");
514 		else
515 			count += sprintf(&bufptr[count], "%-25s %-20lu ",
516 					 lnames[i].name, rlim[i].rlim_cur);
517 
518 		if (rlim[i].rlim_max == RLIM_INFINITY)
519 			count += sprintf(&bufptr[count], "%-20s ", "unlimited");
520 		else
521 			count += sprintf(&bufptr[count], "%-20lu ",
522 					 rlim[i].rlim_max);
523 
524 		if (lnames[i].unit)
525 			count += sprintf(&bufptr[count], "%-10s\n",
526 					 lnames[i].unit);
527 		else
528 			count += sprintf(&bufptr[count], "\n");
529 	}
530 
531 	return count;
532 }
533 
534 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK
535 static int proc_pid_syscall(struct task_struct *task, char *buffer)
536 {
537 	long nr;
538 	unsigned long args[6], sp, pc;
539 
540 	if (task_current_syscall(task, &nr, args, 6, &sp, &pc))
541 		return sprintf(buffer, "running\n");
542 
543 	if (nr < 0)
544 		return sprintf(buffer, "%ld 0x%lx 0x%lx\n", nr, sp, pc);
545 
546 	return sprintf(buffer,
547 		       "%ld 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx\n",
548 		       nr,
549 		       args[0], args[1], args[2], args[3], args[4], args[5],
550 		       sp, pc);
551 }
552 #endif /* CONFIG_HAVE_ARCH_TRACEHOOK */
553 
554 /************************************************************************/
555 /*                       Here the fs part begins                        */
556 /************************************************************************/
557 
558 /* permission checks */
559 static int proc_fd_access_allowed(struct inode *inode)
560 {
561 	struct task_struct *task;
562 	int allowed = 0;
563 	/* Allow access to a task's file descriptors if it is us or we
564 	 * may use ptrace attach to the process and find out that
565 	 * information.
566 	 */
567 	task = get_proc_task(inode);
568 	if (task) {
569 		allowed = ptrace_may_access(task, PTRACE_MODE_READ);
570 		put_task_struct(task);
571 	}
572 	return allowed;
573 }
574 
575 static int proc_setattr(struct dentry *dentry, struct iattr *attr)
576 {
577 	int error;
578 	struct inode *inode = dentry->d_inode;
579 
580 	if (attr->ia_valid & ATTR_MODE)
581 		return -EPERM;
582 
583 	error = inode_change_ok(inode, attr);
584 	if (!error)
585 		error = inode_setattr(inode, attr);
586 	return error;
587 }
588 
589 static const struct inode_operations proc_def_inode_operations = {
590 	.setattr	= proc_setattr,
591 };
592 
593 static int mounts_open_common(struct inode *inode, struct file *file,
594 			      const struct seq_operations *op)
595 {
596 	struct task_struct *task = get_proc_task(inode);
597 	struct nsproxy *nsp;
598 	struct mnt_namespace *ns = NULL;
599 	struct fs_struct *fs = NULL;
600 	struct path root;
601 	struct proc_mounts *p;
602 	int ret = -EINVAL;
603 
604 	if (task) {
605 		rcu_read_lock();
606 		nsp = task_nsproxy(task);
607 		if (nsp) {
608 			ns = nsp->mnt_ns;
609 			if (ns)
610 				get_mnt_ns(ns);
611 		}
612 		rcu_read_unlock();
613 		if (ns)
614 			fs = get_fs_struct(task);
615 		put_task_struct(task);
616 	}
617 
618 	if (!ns)
619 		goto err;
620 	if (!fs)
621 		goto err_put_ns;
622 
623 	read_lock(&fs->lock);
624 	root = fs->root;
625 	path_get(&root);
626 	read_unlock(&fs->lock);
627 	put_fs_struct(fs);
628 
629 	ret = -ENOMEM;
630 	p = kmalloc(sizeof(struct proc_mounts), GFP_KERNEL);
631 	if (!p)
632 		goto err_put_path;
633 
634 	file->private_data = &p->m;
635 	ret = seq_open(file, op);
636 	if (ret)
637 		goto err_free;
638 
639 	p->m.private = p;
640 	p->ns = ns;
641 	p->root = root;
642 	p->event = ns->event;
643 
644 	return 0;
645 
646  err_free:
647 	kfree(p);
648  err_put_path:
649 	path_put(&root);
650  err_put_ns:
651 	put_mnt_ns(ns);
652  err:
653 	return ret;
654 }
655 
656 static int mounts_release(struct inode *inode, struct file *file)
657 {
658 	struct proc_mounts *p = file->private_data;
659 	path_put(&p->root);
660 	put_mnt_ns(p->ns);
661 	return seq_release(inode, file);
662 }
663 
664 static unsigned mounts_poll(struct file *file, poll_table *wait)
665 {
666 	struct proc_mounts *p = file->private_data;
667 	struct mnt_namespace *ns = p->ns;
668 	unsigned res = 0;
669 
670 	poll_wait(file, &ns->poll, wait);
671 
672 	spin_lock(&vfsmount_lock);
673 	if (p->event != ns->event) {
674 		p->event = ns->event;
675 		res = POLLERR;
676 	}
677 	spin_unlock(&vfsmount_lock);
678 
679 	return res;
680 }
681 
682 static int mounts_open(struct inode *inode, struct file *file)
683 {
684 	return mounts_open_common(inode, file, &mounts_op);
685 }
686 
687 static const struct file_operations proc_mounts_operations = {
688 	.open		= mounts_open,
689 	.read		= seq_read,
690 	.llseek		= seq_lseek,
691 	.release	= mounts_release,
692 	.poll		= mounts_poll,
693 };
694 
695 static int mountinfo_open(struct inode *inode, struct file *file)
696 {
697 	return mounts_open_common(inode, file, &mountinfo_op);
698 }
699 
700 static const struct file_operations proc_mountinfo_operations = {
701 	.open		= mountinfo_open,
702 	.read		= seq_read,
703 	.llseek		= seq_lseek,
704 	.release	= mounts_release,
705 	.poll		= mounts_poll,
706 };
707 
708 static int mountstats_open(struct inode *inode, struct file *file)
709 {
710 	return mounts_open_common(inode, file, &mountstats_op);
711 }
712 
713 static const struct file_operations proc_mountstats_operations = {
714 	.open		= mountstats_open,
715 	.read		= seq_read,
716 	.llseek		= seq_lseek,
717 	.release	= mounts_release,
718 };
719 
720 #define PROC_BLOCK_SIZE	(3*1024)		/* 4K page size but our output routines use some slack for overruns */
721 
722 static ssize_t proc_info_read(struct file * file, char __user * buf,
723 			  size_t count, loff_t *ppos)
724 {
725 	struct inode * inode = file->f_path.dentry->d_inode;
726 	unsigned long page;
727 	ssize_t length;
728 	struct task_struct *task = get_proc_task(inode);
729 
730 	length = -ESRCH;
731 	if (!task)
732 		goto out_no_task;
733 
734 	if (count > PROC_BLOCK_SIZE)
735 		count = PROC_BLOCK_SIZE;
736 
737 	length = -ENOMEM;
738 	if (!(page = __get_free_page(GFP_TEMPORARY)))
739 		goto out;
740 
741 	length = PROC_I(inode)->op.proc_read(task, (char*)page);
742 
743 	if (length >= 0)
744 		length = simple_read_from_buffer(buf, count, ppos, (char *)page, length);
745 	free_page(page);
746 out:
747 	put_task_struct(task);
748 out_no_task:
749 	return length;
750 }
751 
752 static const struct file_operations proc_info_file_operations = {
753 	.read		= proc_info_read,
754 };
755 
756 static int proc_single_show(struct seq_file *m, void *v)
757 {
758 	struct inode *inode = m->private;
759 	struct pid_namespace *ns;
760 	struct pid *pid;
761 	struct task_struct *task;
762 	int ret;
763 
764 	ns = inode->i_sb->s_fs_info;
765 	pid = proc_pid(inode);
766 	task = get_pid_task(pid, PIDTYPE_PID);
767 	if (!task)
768 		return -ESRCH;
769 
770 	ret = PROC_I(inode)->op.proc_show(m, ns, pid, task);
771 
772 	put_task_struct(task);
773 	return ret;
774 }
775 
776 static int proc_single_open(struct inode *inode, struct file *filp)
777 {
778 	int ret;
779 	ret = single_open(filp, proc_single_show, NULL);
780 	if (!ret) {
781 		struct seq_file *m = filp->private_data;
782 
783 		m->private = inode;
784 	}
785 	return ret;
786 }
787 
788 static const struct file_operations proc_single_file_operations = {
789 	.open		= proc_single_open,
790 	.read		= seq_read,
791 	.llseek		= seq_lseek,
792 	.release	= single_release,
793 };
794 
795 static int mem_open(struct inode* inode, struct file* file)
796 {
797 	file->private_data = (void*)((long)current->self_exec_id);
798 	return 0;
799 }
800 
801 static ssize_t mem_read(struct file * file, char __user * buf,
802 			size_t count, loff_t *ppos)
803 {
804 	struct task_struct *task = get_proc_task(file->f_path.dentry->d_inode);
805 	char *page;
806 	unsigned long src = *ppos;
807 	int ret = -ESRCH;
808 	struct mm_struct *mm;
809 
810 	if (!task)
811 		goto out_no_task;
812 
813 	if (check_mem_permission(task))
814 		goto out;
815 
816 	ret = -ENOMEM;
817 	page = (char *)__get_free_page(GFP_TEMPORARY);
818 	if (!page)
819 		goto out;
820 
821 	ret = 0;
822 
823 	mm = get_task_mm(task);
824 	if (!mm)
825 		goto out_free;
826 
827 	ret = -EIO;
828 
829 	if (file->private_data != (void*)((long)current->self_exec_id))
830 		goto out_put;
831 
832 	ret = 0;
833 
834 	while (count > 0) {
835 		int this_len, retval;
836 
837 		this_len = (count > PAGE_SIZE) ? PAGE_SIZE : count;
838 		retval = access_process_vm(task, src, page, this_len, 0);
839 		if (!retval || check_mem_permission(task)) {
840 			if (!ret)
841 				ret = -EIO;
842 			break;
843 		}
844 
845 		if (copy_to_user(buf, page, retval)) {
846 			ret = -EFAULT;
847 			break;
848 		}
849 
850 		ret += retval;
851 		src += retval;
852 		buf += retval;
853 		count -= retval;
854 	}
855 	*ppos = src;
856 
857 out_put:
858 	mmput(mm);
859 out_free:
860 	free_page((unsigned long) page);
861 out:
862 	put_task_struct(task);
863 out_no_task:
864 	return ret;
865 }
866 
867 #define mem_write NULL
868 
869 #ifndef mem_write
870 /* This is a security hazard */
871 static ssize_t mem_write(struct file * file, const char __user *buf,
872 			 size_t count, loff_t *ppos)
873 {
874 	int copied;
875 	char *page;
876 	struct task_struct *task = get_proc_task(file->f_path.dentry->d_inode);
877 	unsigned long dst = *ppos;
878 
879 	copied = -ESRCH;
880 	if (!task)
881 		goto out_no_task;
882 
883 	if (check_mem_permission(task))
884 		goto out;
885 
886 	copied = -ENOMEM;
887 	page = (char *)__get_free_page(GFP_TEMPORARY);
888 	if (!page)
889 		goto out;
890 
891 	copied = 0;
892 	while (count > 0) {
893 		int this_len, retval;
894 
895 		this_len = (count > PAGE_SIZE) ? PAGE_SIZE : count;
896 		if (copy_from_user(page, buf, this_len)) {
897 			copied = -EFAULT;
898 			break;
899 		}
900 		retval = access_process_vm(task, dst, page, this_len, 1);
901 		if (!retval) {
902 			if (!copied)
903 				copied = -EIO;
904 			break;
905 		}
906 		copied += retval;
907 		buf += retval;
908 		dst += retval;
909 		count -= retval;
910 	}
911 	*ppos = dst;
912 	free_page((unsigned long) page);
913 out:
914 	put_task_struct(task);
915 out_no_task:
916 	return copied;
917 }
918 #endif
919 
920 loff_t mem_lseek(struct file *file, loff_t offset, int orig)
921 {
922 	switch (orig) {
923 	case 0:
924 		file->f_pos = offset;
925 		break;
926 	case 1:
927 		file->f_pos += offset;
928 		break;
929 	default:
930 		return -EINVAL;
931 	}
932 	force_successful_syscall_return();
933 	return file->f_pos;
934 }
935 
936 static const struct file_operations proc_mem_operations = {
937 	.llseek		= mem_lseek,
938 	.read		= mem_read,
939 	.write		= mem_write,
940 	.open		= mem_open,
941 };
942 
943 static ssize_t environ_read(struct file *file, char __user *buf,
944 			size_t count, loff_t *ppos)
945 {
946 	struct task_struct *task = get_proc_task(file->f_dentry->d_inode);
947 	char *page;
948 	unsigned long src = *ppos;
949 	int ret = -ESRCH;
950 	struct mm_struct *mm;
951 
952 	if (!task)
953 		goto out_no_task;
954 
955 	if (!ptrace_may_access(task, PTRACE_MODE_READ))
956 		goto out;
957 
958 	ret = -ENOMEM;
959 	page = (char *)__get_free_page(GFP_TEMPORARY);
960 	if (!page)
961 		goto out;
962 
963 	ret = 0;
964 
965 	mm = get_task_mm(task);
966 	if (!mm)
967 		goto out_free;
968 
969 	while (count > 0) {
970 		int this_len, retval, max_len;
971 
972 		this_len = mm->env_end - (mm->env_start + src);
973 
974 		if (this_len <= 0)
975 			break;
976 
977 		max_len = (count > PAGE_SIZE) ? PAGE_SIZE : count;
978 		this_len = (this_len > max_len) ? max_len : this_len;
979 
980 		retval = access_process_vm(task, (mm->env_start + src),
981 			page, this_len, 0);
982 
983 		if (retval <= 0) {
984 			ret = retval;
985 			break;
986 		}
987 
988 		if (copy_to_user(buf, page, retval)) {
989 			ret = -EFAULT;
990 			break;
991 		}
992 
993 		ret += retval;
994 		src += retval;
995 		buf += retval;
996 		count -= retval;
997 	}
998 	*ppos = src;
999 
1000 	mmput(mm);
1001 out_free:
1002 	free_page((unsigned long) page);
1003 out:
1004 	put_task_struct(task);
1005 out_no_task:
1006 	return ret;
1007 }
1008 
1009 static const struct file_operations proc_environ_operations = {
1010 	.read		= environ_read,
1011 };
1012 
1013 static ssize_t oom_adjust_read(struct file *file, char __user *buf,
1014 				size_t count, loff_t *ppos)
1015 {
1016 	struct task_struct *task = get_proc_task(file->f_path.dentry->d_inode);
1017 	char buffer[PROC_NUMBUF];
1018 	size_t len;
1019 	int oom_adjust;
1020 
1021 	if (!task)
1022 		return -ESRCH;
1023 	oom_adjust = task->oomkilladj;
1024 	put_task_struct(task);
1025 
1026 	len = snprintf(buffer, sizeof(buffer), "%i\n", oom_adjust);
1027 
1028 	return simple_read_from_buffer(buf, count, ppos, buffer, len);
1029 }
1030 
1031 static ssize_t oom_adjust_write(struct file *file, const char __user *buf,
1032 				size_t count, loff_t *ppos)
1033 {
1034 	struct task_struct *task;
1035 	char buffer[PROC_NUMBUF], *end;
1036 	int oom_adjust;
1037 
1038 	memset(buffer, 0, sizeof(buffer));
1039 	if (count > sizeof(buffer) - 1)
1040 		count = sizeof(buffer) - 1;
1041 	if (copy_from_user(buffer, buf, count))
1042 		return -EFAULT;
1043 	oom_adjust = simple_strtol(buffer, &end, 0);
1044 	if ((oom_adjust < OOM_ADJUST_MIN || oom_adjust > OOM_ADJUST_MAX) &&
1045 	     oom_adjust != OOM_DISABLE)
1046 		return -EINVAL;
1047 	if (*end == '\n')
1048 		end++;
1049 	task = get_proc_task(file->f_path.dentry->d_inode);
1050 	if (!task)
1051 		return -ESRCH;
1052 	if (oom_adjust < task->oomkilladj && !capable(CAP_SYS_RESOURCE)) {
1053 		put_task_struct(task);
1054 		return -EACCES;
1055 	}
1056 	task->oomkilladj = oom_adjust;
1057 	put_task_struct(task);
1058 	if (end - buffer == 0)
1059 		return -EIO;
1060 	return end - buffer;
1061 }
1062 
1063 static const struct file_operations proc_oom_adjust_operations = {
1064 	.read		= oom_adjust_read,
1065 	.write		= oom_adjust_write,
1066 };
1067 
1068 #ifdef CONFIG_AUDITSYSCALL
1069 #define TMPBUFLEN 21
1070 static ssize_t proc_loginuid_read(struct file * file, char __user * buf,
1071 				  size_t count, loff_t *ppos)
1072 {
1073 	struct inode * inode = file->f_path.dentry->d_inode;
1074 	struct task_struct *task = get_proc_task(inode);
1075 	ssize_t length;
1076 	char tmpbuf[TMPBUFLEN];
1077 
1078 	if (!task)
1079 		return -ESRCH;
1080 	length = scnprintf(tmpbuf, TMPBUFLEN, "%u",
1081 				audit_get_loginuid(task));
1082 	put_task_struct(task);
1083 	return simple_read_from_buffer(buf, count, ppos, tmpbuf, length);
1084 }
1085 
1086 static ssize_t proc_loginuid_write(struct file * file, const char __user * buf,
1087 				   size_t count, loff_t *ppos)
1088 {
1089 	struct inode * inode = file->f_path.dentry->d_inode;
1090 	char *page, *tmp;
1091 	ssize_t length;
1092 	uid_t loginuid;
1093 
1094 	if (!capable(CAP_AUDIT_CONTROL))
1095 		return -EPERM;
1096 
1097 	if (current != pid_task(proc_pid(inode), PIDTYPE_PID))
1098 		return -EPERM;
1099 
1100 	if (count >= PAGE_SIZE)
1101 		count = PAGE_SIZE - 1;
1102 
1103 	if (*ppos != 0) {
1104 		/* No partial writes. */
1105 		return -EINVAL;
1106 	}
1107 	page = (char*)__get_free_page(GFP_TEMPORARY);
1108 	if (!page)
1109 		return -ENOMEM;
1110 	length = -EFAULT;
1111 	if (copy_from_user(page, buf, count))
1112 		goto out_free_page;
1113 
1114 	page[count] = '\0';
1115 	loginuid = simple_strtoul(page, &tmp, 10);
1116 	if (tmp == page) {
1117 		length = -EINVAL;
1118 		goto out_free_page;
1119 
1120 	}
1121 	length = audit_set_loginuid(current, loginuid);
1122 	if (likely(length == 0))
1123 		length = count;
1124 
1125 out_free_page:
1126 	free_page((unsigned long) page);
1127 	return length;
1128 }
1129 
1130 static const struct file_operations proc_loginuid_operations = {
1131 	.read		= proc_loginuid_read,
1132 	.write		= proc_loginuid_write,
1133 };
1134 
1135 static ssize_t proc_sessionid_read(struct file * file, char __user * buf,
1136 				  size_t count, loff_t *ppos)
1137 {
1138 	struct inode * inode = file->f_path.dentry->d_inode;
1139 	struct task_struct *task = get_proc_task(inode);
1140 	ssize_t length;
1141 	char tmpbuf[TMPBUFLEN];
1142 
1143 	if (!task)
1144 		return -ESRCH;
1145 	length = scnprintf(tmpbuf, TMPBUFLEN, "%u",
1146 				audit_get_sessionid(task));
1147 	put_task_struct(task);
1148 	return simple_read_from_buffer(buf, count, ppos, tmpbuf, length);
1149 }
1150 
1151 static const struct file_operations proc_sessionid_operations = {
1152 	.read		= proc_sessionid_read,
1153 };
1154 #endif
1155 
1156 #ifdef CONFIG_FAULT_INJECTION
1157 static ssize_t proc_fault_inject_read(struct file * file, char __user * buf,
1158 				      size_t count, loff_t *ppos)
1159 {
1160 	struct task_struct *task = get_proc_task(file->f_dentry->d_inode);
1161 	char buffer[PROC_NUMBUF];
1162 	size_t len;
1163 	int make_it_fail;
1164 
1165 	if (!task)
1166 		return -ESRCH;
1167 	make_it_fail = task->make_it_fail;
1168 	put_task_struct(task);
1169 
1170 	len = snprintf(buffer, sizeof(buffer), "%i\n", make_it_fail);
1171 
1172 	return simple_read_from_buffer(buf, count, ppos, buffer, len);
1173 }
1174 
1175 static ssize_t proc_fault_inject_write(struct file * file,
1176 			const char __user * buf, size_t count, loff_t *ppos)
1177 {
1178 	struct task_struct *task;
1179 	char buffer[PROC_NUMBUF], *end;
1180 	int make_it_fail;
1181 
1182 	if (!capable(CAP_SYS_RESOURCE))
1183 		return -EPERM;
1184 	memset(buffer, 0, sizeof(buffer));
1185 	if (count > sizeof(buffer) - 1)
1186 		count = sizeof(buffer) - 1;
1187 	if (copy_from_user(buffer, buf, count))
1188 		return -EFAULT;
1189 	make_it_fail = simple_strtol(buffer, &end, 0);
1190 	if (*end == '\n')
1191 		end++;
1192 	task = get_proc_task(file->f_dentry->d_inode);
1193 	if (!task)
1194 		return -ESRCH;
1195 	task->make_it_fail = make_it_fail;
1196 	put_task_struct(task);
1197 	if (end - buffer == 0)
1198 		return -EIO;
1199 	return end - buffer;
1200 }
1201 
1202 static const struct file_operations proc_fault_inject_operations = {
1203 	.read		= proc_fault_inject_read,
1204 	.write		= proc_fault_inject_write,
1205 };
1206 #endif
1207 
1208 
1209 #ifdef CONFIG_SCHED_DEBUG
1210 /*
1211  * Print out various scheduling related per-task fields:
1212  */
1213 static int sched_show(struct seq_file *m, void *v)
1214 {
1215 	struct inode *inode = m->private;
1216 	struct task_struct *p;
1217 
1218 	p = get_proc_task(inode);
1219 	if (!p)
1220 		return -ESRCH;
1221 	proc_sched_show_task(p, m);
1222 
1223 	put_task_struct(p);
1224 
1225 	return 0;
1226 }
1227 
1228 static ssize_t
1229 sched_write(struct file *file, const char __user *buf,
1230 	    size_t count, loff_t *offset)
1231 {
1232 	struct inode *inode = file->f_path.dentry->d_inode;
1233 	struct task_struct *p;
1234 
1235 	p = get_proc_task(inode);
1236 	if (!p)
1237 		return -ESRCH;
1238 	proc_sched_set_task(p);
1239 
1240 	put_task_struct(p);
1241 
1242 	return count;
1243 }
1244 
1245 static int sched_open(struct inode *inode, struct file *filp)
1246 {
1247 	int ret;
1248 
1249 	ret = single_open(filp, sched_show, NULL);
1250 	if (!ret) {
1251 		struct seq_file *m = filp->private_data;
1252 
1253 		m->private = inode;
1254 	}
1255 	return ret;
1256 }
1257 
1258 static const struct file_operations proc_pid_sched_operations = {
1259 	.open		= sched_open,
1260 	.read		= seq_read,
1261 	.write		= sched_write,
1262 	.llseek		= seq_lseek,
1263 	.release	= single_release,
1264 };
1265 
1266 #endif
1267 
1268 /*
1269  * We added or removed a vma mapping the executable. The vmas are only mapped
1270  * during exec and are not mapped with the mmap system call.
1271  * Callers must hold down_write() on the mm's mmap_sem for these
1272  */
1273 void added_exe_file_vma(struct mm_struct *mm)
1274 {
1275 	mm->num_exe_file_vmas++;
1276 }
1277 
1278 void removed_exe_file_vma(struct mm_struct *mm)
1279 {
1280 	mm->num_exe_file_vmas--;
1281 	if ((mm->num_exe_file_vmas == 0) && mm->exe_file){
1282 		fput(mm->exe_file);
1283 		mm->exe_file = NULL;
1284 	}
1285 
1286 }
1287 
1288 void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
1289 {
1290 	if (new_exe_file)
1291 		get_file(new_exe_file);
1292 	if (mm->exe_file)
1293 		fput(mm->exe_file);
1294 	mm->exe_file = new_exe_file;
1295 	mm->num_exe_file_vmas = 0;
1296 }
1297 
1298 struct file *get_mm_exe_file(struct mm_struct *mm)
1299 {
1300 	struct file *exe_file;
1301 
1302 	/* We need mmap_sem to protect against races with removal of
1303 	 * VM_EXECUTABLE vmas */
1304 	down_read(&mm->mmap_sem);
1305 	exe_file = mm->exe_file;
1306 	if (exe_file)
1307 		get_file(exe_file);
1308 	up_read(&mm->mmap_sem);
1309 	return exe_file;
1310 }
1311 
1312 void dup_mm_exe_file(struct mm_struct *oldmm, struct mm_struct *newmm)
1313 {
1314 	/* It's safe to write the exe_file pointer without exe_file_lock because
1315 	 * this is called during fork when the task is not yet in /proc */
1316 	newmm->exe_file = get_mm_exe_file(oldmm);
1317 }
1318 
1319 static int proc_exe_link(struct inode *inode, struct path *exe_path)
1320 {
1321 	struct task_struct *task;
1322 	struct mm_struct *mm;
1323 	struct file *exe_file;
1324 
1325 	task = get_proc_task(inode);
1326 	if (!task)
1327 		return -ENOENT;
1328 	mm = get_task_mm(task);
1329 	put_task_struct(task);
1330 	if (!mm)
1331 		return -ENOENT;
1332 	exe_file = get_mm_exe_file(mm);
1333 	mmput(mm);
1334 	if (exe_file) {
1335 		*exe_path = exe_file->f_path;
1336 		path_get(&exe_file->f_path);
1337 		fput(exe_file);
1338 		return 0;
1339 	} else
1340 		return -ENOENT;
1341 }
1342 
1343 static void *proc_pid_follow_link(struct dentry *dentry, struct nameidata *nd)
1344 {
1345 	struct inode *inode = dentry->d_inode;
1346 	int error = -EACCES;
1347 
1348 	/* We don't need a base pointer in the /proc filesystem */
1349 	path_put(&nd->path);
1350 
1351 	/* Are we allowed to snoop on the tasks file descriptors? */
1352 	if (!proc_fd_access_allowed(inode))
1353 		goto out;
1354 
1355 	error = PROC_I(inode)->op.proc_get_link(inode, &nd->path);
1356 	nd->last_type = LAST_BIND;
1357 out:
1358 	return ERR_PTR(error);
1359 }
1360 
1361 static int do_proc_readlink(struct path *path, char __user *buffer, int buflen)
1362 {
1363 	char *tmp = (char*)__get_free_page(GFP_TEMPORARY);
1364 	char *pathname;
1365 	int len;
1366 
1367 	if (!tmp)
1368 		return -ENOMEM;
1369 
1370 	pathname = d_path(path, tmp, PAGE_SIZE);
1371 	len = PTR_ERR(pathname);
1372 	if (IS_ERR(pathname))
1373 		goto out;
1374 	len = tmp + PAGE_SIZE - 1 - pathname;
1375 
1376 	if (len > buflen)
1377 		len = buflen;
1378 	if (copy_to_user(buffer, pathname, len))
1379 		len = -EFAULT;
1380  out:
1381 	free_page((unsigned long)tmp);
1382 	return len;
1383 }
1384 
1385 static int proc_pid_readlink(struct dentry * dentry, char __user * buffer, int buflen)
1386 {
1387 	int error = -EACCES;
1388 	struct inode *inode = dentry->d_inode;
1389 	struct path path;
1390 
1391 	/* Are we allowed to snoop on the tasks file descriptors? */
1392 	if (!proc_fd_access_allowed(inode))
1393 		goto out;
1394 
1395 	error = PROC_I(inode)->op.proc_get_link(inode, &path);
1396 	if (error)
1397 		goto out;
1398 
1399 	error = do_proc_readlink(&path, buffer, buflen);
1400 	path_put(&path);
1401 out:
1402 	return error;
1403 }
1404 
1405 static const struct inode_operations proc_pid_link_inode_operations = {
1406 	.readlink	= proc_pid_readlink,
1407 	.follow_link	= proc_pid_follow_link,
1408 	.setattr	= proc_setattr,
1409 };
1410 
1411 
1412 /* building an inode */
1413 
1414 static int task_dumpable(struct task_struct *task)
1415 {
1416 	int dumpable = 0;
1417 	struct mm_struct *mm;
1418 
1419 	task_lock(task);
1420 	mm = task->mm;
1421 	if (mm)
1422 		dumpable = get_dumpable(mm);
1423 	task_unlock(task);
1424 	if(dumpable == 1)
1425 		return 1;
1426 	return 0;
1427 }
1428 
1429 
1430 static struct inode *proc_pid_make_inode(struct super_block * sb, struct task_struct *task)
1431 {
1432 	struct inode * inode;
1433 	struct proc_inode *ei;
1434 	const struct cred *cred;
1435 
1436 	/* We need a new inode */
1437 
1438 	inode = new_inode(sb);
1439 	if (!inode)
1440 		goto out;
1441 
1442 	/* Common stuff */
1443 	ei = PROC_I(inode);
1444 	inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
1445 	inode->i_op = &proc_def_inode_operations;
1446 
1447 	/*
1448 	 * grab the reference to task.
1449 	 */
1450 	ei->pid = get_task_pid(task, PIDTYPE_PID);
1451 	if (!ei->pid)
1452 		goto out_unlock;
1453 
1454 	if (task_dumpable(task)) {
1455 		rcu_read_lock();
1456 		cred = __task_cred(task);
1457 		inode->i_uid = cred->euid;
1458 		inode->i_gid = cred->egid;
1459 		rcu_read_unlock();
1460 	}
1461 	security_task_to_inode(task, inode);
1462 
1463 out:
1464 	return inode;
1465 
1466 out_unlock:
1467 	iput(inode);
1468 	return NULL;
1469 }
1470 
1471 static int pid_getattr(struct vfsmount *mnt, struct dentry *dentry, struct kstat *stat)
1472 {
1473 	struct inode *inode = dentry->d_inode;
1474 	struct task_struct *task;
1475 	const struct cred *cred;
1476 
1477 	generic_fillattr(inode, stat);
1478 
1479 	rcu_read_lock();
1480 	stat->uid = 0;
1481 	stat->gid = 0;
1482 	task = pid_task(proc_pid(inode), PIDTYPE_PID);
1483 	if (task) {
1484 		if ((inode->i_mode == (S_IFDIR|S_IRUGO|S_IXUGO)) ||
1485 		    task_dumpable(task)) {
1486 			cred = __task_cred(task);
1487 			stat->uid = cred->euid;
1488 			stat->gid = cred->egid;
1489 		}
1490 	}
1491 	rcu_read_unlock();
1492 	return 0;
1493 }
1494 
1495 /* dentry stuff */
1496 
1497 /*
1498  *	Exceptional case: normally we are not allowed to unhash a busy
1499  * directory. In this case, however, we can do it - no aliasing problems
1500  * due to the way we treat inodes.
1501  *
1502  * Rewrite the inode's ownerships here because the owning task may have
1503  * performed a setuid(), etc.
1504  *
1505  * Before the /proc/pid/status file was created the only way to read
1506  * the effective uid of a /process was to stat /proc/pid.  Reading
1507  * /proc/pid/status is slow enough that procps and other packages
1508  * kept stating /proc/pid.  To keep the rules in /proc simple I have
1509  * made this apply to all per process world readable and executable
1510  * directories.
1511  */
1512 static int pid_revalidate(struct dentry *dentry, struct nameidata *nd)
1513 {
1514 	struct inode *inode = dentry->d_inode;
1515 	struct task_struct *task = get_proc_task(inode);
1516 	const struct cred *cred;
1517 
1518 	if (task) {
1519 		if ((inode->i_mode == (S_IFDIR|S_IRUGO|S_IXUGO)) ||
1520 		    task_dumpable(task)) {
1521 			rcu_read_lock();
1522 			cred = __task_cred(task);
1523 			inode->i_uid = cred->euid;
1524 			inode->i_gid = cred->egid;
1525 			rcu_read_unlock();
1526 		} else {
1527 			inode->i_uid = 0;
1528 			inode->i_gid = 0;
1529 		}
1530 		inode->i_mode &= ~(S_ISUID | S_ISGID);
1531 		security_task_to_inode(task, inode);
1532 		put_task_struct(task);
1533 		return 1;
1534 	}
1535 	d_drop(dentry);
1536 	return 0;
1537 }
1538 
1539 static int pid_delete_dentry(struct dentry * dentry)
1540 {
1541 	/* Is the task we represent dead?
1542 	 * If so, then don't put the dentry on the lru list,
1543 	 * kill it immediately.
1544 	 */
1545 	return !proc_pid(dentry->d_inode)->tasks[PIDTYPE_PID].first;
1546 }
1547 
1548 static struct dentry_operations pid_dentry_operations =
1549 {
1550 	.d_revalidate	= pid_revalidate,
1551 	.d_delete	= pid_delete_dentry,
1552 };
1553 
1554 /* Lookups */
1555 
1556 typedef struct dentry *instantiate_t(struct inode *, struct dentry *,
1557 				struct task_struct *, const void *);
1558 
1559 /*
1560  * Fill a directory entry.
1561  *
1562  * If possible create the dcache entry and derive our inode number and
1563  * file type from dcache entry.
1564  *
1565  * Since all of the proc inode numbers are dynamically generated, the inode
1566  * numbers do not exist until the inode is cache.  This means creating the
1567  * the dcache entry in readdir is necessary to keep the inode numbers
1568  * reported by readdir in sync with the inode numbers reported
1569  * by stat.
1570  */
1571 static int proc_fill_cache(struct file *filp, void *dirent, filldir_t filldir,
1572 	char *name, int len,
1573 	instantiate_t instantiate, struct task_struct *task, const void *ptr)
1574 {
1575 	struct dentry *child, *dir = filp->f_path.dentry;
1576 	struct inode *inode;
1577 	struct qstr qname;
1578 	ino_t ino = 0;
1579 	unsigned type = DT_UNKNOWN;
1580 
1581 	qname.name = name;
1582 	qname.len  = len;
1583 	qname.hash = full_name_hash(name, len);
1584 
1585 	child = d_lookup(dir, &qname);
1586 	if (!child) {
1587 		struct dentry *new;
1588 		new = d_alloc(dir, &qname);
1589 		if (new) {
1590 			child = instantiate(dir->d_inode, new, task, ptr);
1591 			if (child)
1592 				dput(new);
1593 			else
1594 				child = new;
1595 		}
1596 	}
1597 	if (!child || IS_ERR(child) || !child->d_inode)
1598 		goto end_instantiate;
1599 	inode = child->d_inode;
1600 	if (inode) {
1601 		ino = inode->i_ino;
1602 		type = inode->i_mode >> 12;
1603 	}
1604 	dput(child);
1605 end_instantiate:
1606 	if (!ino)
1607 		ino = find_inode_number(dir, &qname);
1608 	if (!ino)
1609 		ino = 1;
1610 	return filldir(dirent, name, len, filp->f_pos, ino, type);
1611 }
1612 
1613 static unsigned name_to_int(struct dentry *dentry)
1614 {
1615 	const char *name = dentry->d_name.name;
1616 	int len = dentry->d_name.len;
1617 	unsigned n = 0;
1618 
1619 	if (len > 1 && *name == '0')
1620 		goto out;
1621 	while (len-- > 0) {
1622 		unsigned c = *name++ - '0';
1623 		if (c > 9)
1624 			goto out;
1625 		if (n >= (~0U-9)/10)
1626 			goto out;
1627 		n *= 10;
1628 		n += c;
1629 	}
1630 	return n;
1631 out:
1632 	return ~0U;
1633 }
1634 
1635 #define PROC_FDINFO_MAX 64
1636 
1637 static int proc_fd_info(struct inode *inode, struct path *path, char *info)
1638 {
1639 	struct task_struct *task = get_proc_task(inode);
1640 	struct files_struct *files = NULL;
1641 	struct file *file;
1642 	int fd = proc_fd(inode);
1643 
1644 	if (task) {
1645 		files = get_files_struct(task);
1646 		put_task_struct(task);
1647 	}
1648 	if (files) {
1649 		/*
1650 		 * We are not taking a ref to the file structure, so we must
1651 		 * hold ->file_lock.
1652 		 */
1653 		spin_lock(&files->file_lock);
1654 		file = fcheck_files(files, fd);
1655 		if (file) {
1656 			if (path) {
1657 				*path = file->f_path;
1658 				path_get(&file->f_path);
1659 			}
1660 			if (info)
1661 				snprintf(info, PROC_FDINFO_MAX,
1662 					 "pos:\t%lli\n"
1663 					 "flags:\t0%o\n",
1664 					 (long long) file->f_pos,
1665 					 file->f_flags);
1666 			spin_unlock(&files->file_lock);
1667 			put_files_struct(files);
1668 			return 0;
1669 		}
1670 		spin_unlock(&files->file_lock);
1671 		put_files_struct(files);
1672 	}
1673 	return -ENOENT;
1674 }
1675 
1676 static int proc_fd_link(struct inode *inode, struct path *path)
1677 {
1678 	return proc_fd_info(inode, path, NULL);
1679 }
1680 
1681 static int tid_fd_revalidate(struct dentry *dentry, struct nameidata *nd)
1682 {
1683 	struct inode *inode = dentry->d_inode;
1684 	struct task_struct *task = get_proc_task(inode);
1685 	int fd = proc_fd(inode);
1686 	struct files_struct *files;
1687 	const struct cred *cred;
1688 
1689 	if (task) {
1690 		files = get_files_struct(task);
1691 		if (files) {
1692 			rcu_read_lock();
1693 			if (fcheck_files(files, fd)) {
1694 				rcu_read_unlock();
1695 				put_files_struct(files);
1696 				if (task_dumpable(task)) {
1697 					rcu_read_lock();
1698 					cred = __task_cred(task);
1699 					inode->i_uid = cred->euid;
1700 					inode->i_gid = cred->egid;
1701 					rcu_read_unlock();
1702 				} else {
1703 					inode->i_uid = 0;
1704 					inode->i_gid = 0;
1705 				}
1706 				inode->i_mode &= ~(S_ISUID | S_ISGID);
1707 				security_task_to_inode(task, inode);
1708 				put_task_struct(task);
1709 				return 1;
1710 			}
1711 			rcu_read_unlock();
1712 			put_files_struct(files);
1713 		}
1714 		put_task_struct(task);
1715 	}
1716 	d_drop(dentry);
1717 	return 0;
1718 }
1719 
1720 static struct dentry_operations tid_fd_dentry_operations =
1721 {
1722 	.d_revalidate	= tid_fd_revalidate,
1723 	.d_delete	= pid_delete_dentry,
1724 };
1725 
1726 static struct dentry *proc_fd_instantiate(struct inode *dir,
1727 	struct dentry *dentry, struct task_struct *task, const void *ptr)
1728 {
1729 	unsigned fd = *(const unsigned *)ptr;
1730 	struct file *file;
1731 	struct files_struct *files;
1732  	struct inode *inode;
1733  	struct proc_inode *ei;
1734 	struct dentry *error = ERR_PTR(-ENOENT);
1735 
1736 	inode = proc_pid_make_inode(dir->i_sb, task);
1737 	if (!inode)
1738 		goto out;
1739 	ei = PROC_I(inode);
1740 	ei->fd = fd;
1741 	files = get_files_struct(task);
1742 	if (!files)
1743 		goto out_iput;
1744 	inode->i_mode = S_IFLNK;
1745 
1746 	/*
1747 	 * We are not taking a ref to the file structure, so we must
1748 	 * hold ->file_lock.
1749 	 */
1750 	spin_lock(&files->file_lock);
1751 	file = fcheck_files(files, fd);
1752 	if (!file)
1753 		goto out_unlock;
1754 	if (file->f_mode & FMODE_READ)
1755 		inode->i_mode |= S_IRUSR | S_IXUSR;
1756 	if (file->f_mode & FMODE_WRITE)
1757 		inode->i_mode |= S_IWUSR | S_IXUSR;
1758 	spin_unlock(&files->file_lock);
1759 	put_files_struct(files);
1760 
1761 	inode->i_op = &proc_pid_link_inode_operations;
1762 	inode->i_size = 64;
1763 	ei->op.proc_get_link = proc_fd_link;
1764 	dentry->d_op = &tid_fd_dentry_operations;
1765 	d_add(dentry, inode);
1766 	/* Close the race of the process dying before we return the dentry */
1767 	if (tid_fd_revalidate(dentry, NULL))
1768 		error = NULL;
1769 
1770  out:
1771 	return error;
1772 out_unlock:
1773 	spin_unlock(&files->file_lock);
1774 	put_files_struct(files);
1775 out_iput:
1776 	iput(inode);
1777 	goto out;
1778 }
1779 
1780 static struct dentry *proc_lookupfd_common(struct inode *dir,
1781 					   struct dentry *dentry,
1782 					   instantiate_t instantiate)
1783 {
1784 	struct task_struct *task = get_proc_task(dir);
1785 	unsigned fd = name_to_int(dentry);
1786 	struct dentry *result = ERR_PTR(-ENOENT);
1787 
1788 	if (!task)
1789 		goto out_no_task;
1790 	if (fd == ~0U)
1791 		goto out;
1792 
1793 	result = instantiate(dir, dentry, task, &fd);
1794 out:
1795 	put_task_struct(task);
1796 out_no_task:
1797 	return result;
1798 }
1799 
1800 static int proc_readfd_common(struct file * filp, void * dirent,
1801 			      filldir_t filldir, instantiate_t instantiate)
1802 {
1803 	struct dentry *dentry = filp->f_path.dentry;
1804 	struct inode *inode = dentry->d_inode;
1805 	struct task_struct *p = get_proc_task(inode);
1806 	unsigned int fd, ino;
1807 	int retval;
1808 	struct files_struct * files;
1809 
1810 	retval = -ENOENT;
1811 	if (!p)
1812 		goto out_no_task;
1813 	retval = 0;
1814 
1815 	fd = filp->f_pos;
1816 	switch (fd) {
1817 		case 0:
1818 			if (filldir(dirent, ".", 1, 0, inode->i_ino, DT_DIR) < 0)
1819 				goto out;
1820 			filp->f_pos++;
1821 		case 1:
1822 			ino = parent_ino(dentry);
1823 			if (filldir(dirent, "..", 2, 1, ino, DT_DIR) < 0)
1824 				goto out;
1825 			filp->f_pos++;
1826 		default:
1827 			files = get_files_struct(p);
1828 			if (!files)
1829 				goto out;
1830 			rcu_read_lock();
1831 			for (fd = filp->f_pos-2;
1832 			     fd < files_fdtable(files)->max_fds;
1833 			     fd++, filp->f_pos++) {
1834 				char name[PROC_NUMBUF];
1835 				int len;
1836 
1837 				if (!fcheck_files(files, fd))
1838 					continue;
1839 				rcu_read_unlock();
1840 
1841 				len = snprintf(name, sizeof(name), "%d", fd);
1842 				if (proc_fill_cache(filp, dirent, filldir,
1843 						    name, len, instantiate,
1844 						    p, &fd) < 0) {
1845 					rcu_read_lock();
1846 					break;
1847 				}
1848 				rcu_read_lock();
1849 			}
1850 			rcu_read_unlock();
1851 			put_files_struct(files);
1852 	}
1853 out:
1854 	put_task_struct(p);
1855 out_no_task:
1856 	return retval;
1857 }
1858 
1859 static struct dentry *proc_lookupfd(struct inode *dir, struct dentry *dentry,
1860 				    struct nameidata *nd)
1861 {
1862 	return proc_lookupfd_common(dir, dentry, proc_fd_instantiate);
1863 }
1864 
1865 static int proc_readfd(struct file *filp, void *dirent, filldir_t filldir)
1866 {
1867 	return proc_readfd_common(filp, dirent, filldir, proc_fd_instantiate);
1868 }
1869 
1870 static ssize_t proc_fdinfo_read(struct file *file, char __user *buf,
1871 				      size_t len, loff_t *ppos)
1872 {
1873 	char tmp[PROC_FDINFO_MAX];
1874 	int err = proc_fd_info(file->f_path.dentry->d_inode, NULL, tmp);
1875 	if (!err)
1876 		err = simple_read_from_buffer(buf, len, ppos, tmp, strlen(tmp));
1877 	return err;
1878 }
1879 
1880 static const struct file_operations proc_fdinfo_file_operations = {
1881 	.open		= nonseekable_open,
1882 	.read		= proc_fdinfo_read,
1883 };
1884 
1885 static const struct file_operations proc_fd_operations = {
1886 	.read		= generic_read_dir,
1887 	.readdir	= proc_readfd,
1888 };
1889 
1890 /*
1891  * /proc/pid/fd needs a special permission handler so that a process can still
1892  * access /proc/self/fd after it has executed a setuid().
1893  */
1894 static int proc_fd_permission(struct inode *inode, int mask)
1895 {
1896 	int rv;
1897 
1898 	rv = generic_permission(inode, mask, NULL);
1899 	if (rv == 0)
1900 		return 0;
1901 	if (task_pid(current) == proc_pid(inode))
1902 		rv = 0;
1903 	return rv;
1904 }
1905 
1906 /*
1907  * proc directories can do almost nothing..
1908  */
1909 static const struct inode_operations proc_fd_inode_operations = {
1910 	.lookup		= proc_lookupfd,
1911 	.permission	= proc_fd_permission,
1912 	.setattr	= proc_setattr,
1913 };
1914 
1915 static struct dentry *proc_fdinfo_instantiate(struct inode *dir,
1916 	struct dentry *dentry, struct task_struct *task, const void *ptr)
1917 {
1918 	unsigned fd = *(unsigned *)ptr;
1919  	struct inode *inode;
1920  	struct proc_inode *ei;
1921 	struct dentry *error = ERR_PTR(-ENOENT);
1922 
1923 	inode = proc_pid_make_inode(dir->i_sb, task);
1924 	if (!inode)
1925 		goto out;
1926 	ei = PROC_I(inode);
1927 	ei->fd = fd;
1928 	inode->i_mode = S_IFREG | S_IRUSR;
1929 	inode->i_fop = &proc_fdinfo_file_operations;
1930 	dentry->d_op = &tid_fd_dentry_operations;
1931 	d_add(dentry, inode);
1932 	/* Close the race of the process dying before we return the dentry */
1933 	if (tid_fd_revalidate(dentry, NULL))
1934 		error = NULL;
1935 
1936  out:
1937 	return error;
1938 }
1939 
1940 static struct dentry *proc_lookupfdinfo(struct inode *dir,
1941 					struct dentry *dentry,
1942 					struct nameidata *nd)
1943 {
1944 	return proc_lookupfd_common(dir, dentry, proc_fdinfo_instantiate);
1945 }
1946 
1947 static int proc_readfdinfo(struct file *filp, void *dirent, filldir_t filldir)
1948 {
1949 	return proc_readfd_common(filp, dirent, filldir,
1950 				  proc_fdinfo_instantiate);
1951 }
1952 
1953 static const struct file_operations proc_fdinfo_operations = {
1954 	.read		= generic_read_dir,
1955 	.readdir	= proc_readfdinfo,
1956 };
1957 
1958 /*
1959  * proc directories can do almost nothing..
1960  */
1961 static const struct inode_operations proc_fdinfo_inode_operations = {
1962 	.lookup		= proc_lookupfdinfo,
1963 	.setattr	= proc_setattr,
1964 };
1965 
1966 
1967 static struct dentry *proc_pident_instantiate(struct inode *dir,
1968 	struct dentry *dentry, struct task_struct *task, const void *ptr)
1969 {
1970 	const struct pid_entry *p = ptr;
1971 	struct inode *inode;
1972 	struct proc_inode *ei;
1973 	struct dentry *error = ERR_PTR(-EINVAL);
1974 
1975 	inode = proc_pid_make_inode(dir->i_sb, task);
1976 	if (!inode)
1977 		goto out;
1978 
1979 	ei = PROC_I(inode);
1980 	inode->i_mode = p->mode;
1981 	if (S_ISDIR(inode->i_mode))
1982 		inode->i_nlink = 2;	/* Use getattr to fix if necessary */
1983 	if (p->iop)
1984 		inode->i_op = p->iop;
1985 	if (p->fop)
1986 		inode->i_fop = p->fop;
1987 	ei->op = p->op;
1988 	dentry->d_op = &pid_dentry_operations;
1989 	d_add(dentry, inode);
1990 	/* Close the race of the process dying before we return the dentry */
1991 	if (pid_revalidate(dentry, NULL))
1992 		error = NULL;
1993 out:
1994 	return error;
1995 }
1996 
1997 static struct dentry *proc_pident_lookup(struct inode *dir,
1998 					 struct dentry *dentry,
1999 					 const struct pid_entry *ents,
2000 					 unsigned int nents)
2001 {
2002 	struct dentry *error;
2003 	struct task_struct *task = get_proc_task(dir);
2004 	const struct pid_entry *p, *last;
2005 
2006 	error = ERR_PTR(-ENOENT);
2007 
2008 	if (!task)
2009 		goto out_no_task;
2010 
2011 	/*
2012 	 * Yes, it does not scale. And it should not. Don't add
2013 	 * new entries into /proc/<tgid>/ without very good reasons.
2014 	 */
2015 	last = &ents[nents - 1];
2016 	for (p = ents; p <= last; p++) {
2017 		if (p->len != dentry->d_name.len)
2018 			continue;
2019 		if (!memcmp(dentry->d_name.name, p->name, p->len))
2020 			break;
2021 	}
2022 	if (p > last)
2023 		goto out;
2024 
2025 	error = proc_pident_instantiate(dir, dentry, task, p);
2026 out:
2027 	put_task_struct(task);
2028 out_no_task:
2029 	return error;
2030 }
2031 
2032 static int proc_pident_fill_cache(struct file *filp, void *dirent,
2033 	filldir_t filldir, struct task_struct *task, const struct pid_entry *p)
2034 {
2035 	return proc_fill_cache(filp, dirent, filldir, p->name, p->len,
2036 				proc_pident_instantiate, task, p);
2037 }
2038 
2039 static int proc_pident_readdir(struct file *filp,
2040 		void *dirent, filldir_t filldir,
2041 		const struct pid_entry *ents, unsigned int nents)
2042 {
2043 	int i;
2044 	struct dentry *dentry = filp->f_path.dentry;
2045 	struct inode *inode = dentry->d_inode;
2046 	struct task_struct *task = get_proc_task(inode);
2047 	const struct pid_entry *p, *last;
2048 	ino_t ino;
2049 	int ret;
2050 
2051 	ret = -ENOENT;
2052 	if (!task)
2053 		goto out_no_task;
2054 
2055 	ret = 0;
2056 	i = filp->f_pos;
2057 	switch (i) {
2058 	case 0:
2059 		ino = inode->i_ino;
2060 		if (filldir(dirent, ".", 1, i, ino, DT_DIR) < 0)
2061 			goto out;
2062 		i++;
2063 		filp->f_pos++;
2064 		/* fall through */
2065 	case 1:
2066 		ino = parent_ino(dentry);
2067 		if (filldir(dirent, "..", 2, i, ino, DT_DIR) < 0)
2068 			goto out;
2069 		i++;
2070 		filp->f_pos++;
2071 		/* fall through */
2072 	default:
2073 		i -= 2;
2074 		if (i >= nents) {
2075 			ret = 1;
2076 			goto out;
2077 		}
2078 		p = ents + i;
2079 		last = &ents[nents - 1];
2080 		while (p <= last) {
2081 			if (proc_pident_fill_cache(filp, dirent, filldir, task, p) < 0)
2082 				goto out;
2083 			filp->f_pos++;
2084 			p++;
2085 		}
2086 	}
2087 
2088 	ret = 1;
2089 out:
2090 	put_task_struct(task);
2091 out_no_task:
2092 	return ret;
2093 }
2094 
2095 #ifdef CONFIG_SECURITY
2096 static ssize_t proc_pid_attr_read(struct file * file, char __user * buf,
2097 				  size_t count, loff_t *ppos)
2098 {
2099 	struct inode * inode = file->f_path.dentry->d_inode;
2100 	char *p = NULL;
2101 	ssize_t length;
2102 	struct task_struct *task = get_proc_task(inode);
2103 
2104 	if (!task)
2105 		return -ESRCH;
2106 
2107 	length = security_getprocattr(task,
2108 				      (char*)file->f_path.dentry->d_name.name,
2109 				      &p);
2110 	put_task_struct(task);
2111 	if (length > 0)
2112 		length = simple_read_from_buffer(buf, count, ppos, p, length);
2113 	kfree(p);
2114 	return length;
2115 }
2116 
2117 static ssize_t proc_pid_attr_write(struct file * file, const char __user * buf,
2118 				   size_t count, loff_t *ppos)
2119 {
2120 	struct inode * inode = file->f_path.dentry->d_inode;
2121 	char *page;
2122 	ssize_t length;
2123 	struct task_struct *task = get_proc_task(inode);
2124 
2125 	length = -ESRCH;
2126 	if (!task)
2127 		goto out_no_task;
2128 	if (count > PAGE_SIZE)
2129 		count = PAGE_SIZE;
2130 
2131 	/* No partial writes. */
2132 	length = -EINVAL;
2133 	if (*ppos != 0)
2134 		goto out;
2135 
2136 	length = -ENOMEM;
2137 	page = (char*)__get_free_page(GFP_TEMPORARY);
2138 	if (!page)
2139 		goto out;
2140 
2141 	length = -EFAULT;
2142 	if (copy_from_user(page, buf, count))
2143 		goto out_free;
2144 
2145 	length = security_setprocattr(task,
2146 				      (char*)file->f_path.dentry->d_name.name,
2147 				      (void*)page, count);
2148 out_free:
2149 	free_page((unsigned long) page);
2150 out:
2151 	put_task_struct(task);
2152 out_no_task:
2153 	return length;
2154 }
2155 
2156 static const struct file_operations proc_pid_attr_operations = {
2157 	.read		= proc_pid_attr_read,
2158 	.write		= proc_pid_attr_write,
2159 };
2160 
2161 static const struct pid_entry attr_dir_stuff[] = {
2162 	REG("current",    S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2163 	REG("prev",       S_IRUGO,	   proc_pid_attr_operations),
2164 	REG("exec",       S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2165 	REG("fscreate",   S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2166 	REG("keycreate",  S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2167 	REG("sockcreate", S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2168 };
2169 
2170 static int proc_attr_dir_readdir(struct file * filp,
2171 			     void * dirent, filldir_t filldir)
2172 {
2173 	return proc_pident_readdir(filp,dirent,filldir,
2174 				   attr_dir_stuff,ARRAY_SIZE(attr_dir_stuff));
2175 }
2176 
2177 static const struct file_operations proc_attr_dir_operations = {
2178 	.read		= generic_read_dir,
2179 	.readdir	= proc_attr_dir_readdir,
2180 };
2181 
2182 static struct dentry *proc_attr_dir_lookup(struct inode *dir,
2183 				struct dentry *dentry, struct nameidata *nd)
2184 {
2185 	return proc_pident_lookup(dir, dentry,
2186 				  attr_dir_stuff, ARRAY_SIZE(attr_dir_stuff));
2187 }
2188 
2189 static const struct inode_operations proc_attr_dir_inode_operations = {
2190 	.lookup		= proc_attr_dir_lookup,
2191 	.getattr	= pid_getattr,
2192 	.setattr	= proc_setattr,
2193 };
2194 
2195 #endif
2196 
2197 #if defined(USE_ELF_CORE_DUMP) && defined(CONFIG_ELF_CORE)
2198 static ssize_t proc_coredump_filter_read(struct file *file, char __user *buf,
2199 					 size_t count, loff_t *ppos)
2200 {
2201 	struct task_struct *task = get_proc_task(file->f_dentry->d_inode);
2202 	struct mm_struct *mm;
2203 	char buffer[PROC_NUMBUF];
2204 	size_t len;
2205 	int ret;
2206 
2207 	if (!task)
2208 		return -ESRCH;
2209 
2210 	ret = 0;
2211 	mm = get_task_mm(task);
2212 	if (mm) {
2213 		len = snprintf(buffer, sizeof(buffer), "%08lx\n",
2214 			       ((mm->flags & MMF_DUMP_FILTER_MASK) >>
2215 				MMF_DUMP_FILTER_SHIFT));
2216 		mmput(mm);
2217 		ret = simple_read_from_buffer(buf, count, ppos, buffer, len);
2218 	}
2219 
2220 	put_task_struct(task);
2221 
2222 	return ret;
2223 }
2224 
2225 static ssize_t proc_coredump_filter_write(struct file *file,
2226 					  const char __user *buf,
2227 					  size_t count,
2228 					  loff_t *ppos)
2229 {
2230 	struct task_struct *task;
2231 	struct mm_struct *mm;
2232 	char buffer[PROC_NUMBUF], *end;
2233 	unsigned int val;
2234 	int ret;
2235 	int i;
2236 	unsigned long mask;
2237 
2238 	ret = -EFAULT;
2239 	memset(buffer, 0, sizeof(buffer));
2240 	if (count > sizeof(buffer) - 1)
2241 		count = sizeof(buffer) - 1;
2242 	if (copy_from_user(buffer, buf, count))
2243 		goto out_no_task;
2244 
2245 	ret = -EINVAL;
2246 	val = (unsigned int)simple_strtoul(buffer, &end, 0);
2247 	if (*end == '\n')
2248 		end++;
2249 	if (end - buffer == 0)
2250 		goto out_no_task;
2251 
2252 	ret = -ESRCH;
2253 	task = get_proc_task(file->f_dentry->d_inode);
2254 	if (!task)
2255 		goto out_no_task;
2256 
2257 	ret = end - buffer;
2258 	mm = get_task_mm(task);
2259 	if (!mm)
2260 		goto out_no_mm;
2261 
2262 	for (i = 0, mask = 1; i < MMF_DUMP_FILTER_BITS; i++, mask <<= 1) {
2263 		if (val & mask)
2264 			set_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags);
2265 		else
2266 			clear_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags);
2267 	}
2268 
2269 	mmput(mm);
2270  out_no_mm:
2271 	put_task_struct(task);
2272  out_no_task:
2273 	return ret;
2274 }
2275 
2276 static const struct file_operations proc_coredump_filter_operations = {
2277 	.read		= proc_coredump_filter_read,
2278 	.write		= proc_coredump_filter_write,
2279 };
2280 #endif
2281 
2282 /*
2283  * /proc/self:
2284  */
2285 static int proc_self_readlink(struct dentry *dentry, char __user *buffer,
2286 			      int buflen)
2287 {
2288 	struct pid_namespace *ns = dentry->d_sb->s_fs_info;
2289 	pid_t tgid = task_tgid_nr_ns(current, ns);
2290 	char tmp[PROC_NUMBUF];
2291 	if (!tgid)
2292 		return -ENOENT;
2293 	sprintf(tmp, "%d", tgid);
2294 	return vfs_readlink(dentry,buffer,buflen,tmp);
2295 }
2296 
2297 static void *proc_self_follow_link(struct dentry *dentry, struct nameidata *nd)
2298 {
2299 	struct pid_namespace *ns = dentry->d_sb->s_fs_info;
2300 	pid_t tgid = task_tgid_nr_ns(current, ns);
2301 	char tmp[PROC_NUMBUF];
2302 	if (!tgid)
2303 		return ERR_PTR(-ENOENT);
2304 	sprintf(tmp, "%d", task_tgid_nr_ns(current, ns));
2305 	return ERR_PTR(vfs_follow_link(nd,tmp));
2306 }
2307 
2308 static const struct inode_operations proc_self_inode_operations = {
2309 	.readlink	= proc_self_readlink,
2310 	.follow_link	= proc_self_follow_link,
2311 };
2312 
2313 /*
2314  * proc base
2315  *
2316  * These are the directory entries in the root directory of /proc
2317  * that properly belong to the /proc filesystem, as they describe
2318  * describe something that is process related.
2319  */
2320 static const struct pid_entry proc_base_stuff[] = {
2321 	NOD("self", S_IFLNK|S_IRWXUGO,
2322 		&proc_self_inode_operations, NULL, {}),
2323 };
2324 
2325 /*
2326  *	Exceptional case: normally we are not allowed to unhash a busy
2327  * directory. In this case, however, we can do it - no aliasing problems
2328  * due to the way we treat inodes.
2329  */
2330 static int proc_base_revalidate(struct dentry *dentry, struct nameidata *nd)
2331 {
2332 	struct inode *inode = dentry->d_inode;
2333 	struct task_struct *task = get_proc_task(inode);
2334 	if (task) {
2335 		put_task_struct(task);
2336 		return 1;
2337 	}
2338 	d_drop(dentry);
2339 	return 0;
2340 }
2341 
2342 static struct dentry_operations proc_base_dentry_operations =
2343 {
2344 	.d_revalidate	= proc_base_revalidate,
2345 	.d_delete	= pid_delete_dentry,
2346 };
2347 
2348 static struct dentry *proc_base_instantiate(struct inode *dir,
2349 	struct dentry *dentry, struct task_struct *task, const void *ptr)
2350 {
2351 	const struct pid_entry *p = ptr;
2352 	struct inode *inode;
2353 	struct proc_inode *ei;
2354 	struct dentry *error = ERR_PTR(-EINVAL);
2355 
2356 	/* Allocate the inode */
2357 	error = ERR_PTR(-ENOMEM);
2358 	inode = new_inode(dir->i_sb);
2359 	if (!inode)
2360 		goto out;
2361 
2362 	/* Initialize the inode */
2363 	ei = PROC_I(inode);
2364 	inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
2365 
2366 	/*
2367 	 * grab the reference to the task.
2368 	 */
2369 	ei->pid = get_task_pid(task, PIDTYPE_PID);
2370 	if (!ei->pid)
2371 		goto out_iput;
2372 
2373 	inode->i_mode = p->mode;
2374 	if (S_ISDIR(inode->i_mode))
2375 		inode->i_nlink = 2;
2376 	if (S_ISLNK(inode->i_mode))
2377 		inode->i_size = 64;
2378 	if (p->iop)
2379 		inode->i_op = p->iop;
2380 	if (p->fop)
2381 		inode->i_fop = p->fop;
2382 	ei->op = p->op;
2383 	dentry->d_op = &proc_base_dentry_operations;
2384 	d_add(dentry, inode);
2385 	error = NULL;
2386 out:
2387 	return error;
2388 out_iput:
2389 	iput(inode);
2390 	goto out;
2391 }
2392 
2393 static struct dentry *proc_base_lookup(struct inode *dir, struct dentry *dentry)
2394 {
2395 	struct dentry *error;
2396 	struct task_struct *task = get_proc_task(dir);
2397 	const struct pid_entry *p, *last;
2398 
2399 	error = ERR_PTR(-ENOENT);
2400 
2401 	if (!task)
2402 		goto out_no_task;
2403 
2404 	/* Lookup the directory entry */
2405 	last = &proc_base_stuff[ARRAY_SIZE(proc_base_stuff) - 1];
2406 	for (p = proc_base_stuff; p <= last; p++) {
2407 		if (p->len != dentry->d_name.len)
2408 			continue;
2409 		if (!memcmp(dentry->d_name.name, p->name, p->len))
2410 			break;
2411 	}
2412 	if (p > last)
2413 		goto out;
2414 
2415 	error = proc_base_instantiate(dir, dentry, task, p);
2416 
2417 out:
2418 	put_task_struct(task);
2419 out_no_task:
2420 	return error;
2421 }
2422 
2423 static int proc_base_fill_cache(struct file *filp, void *dirent,
2424 	filldir_t filldir, struct task_struct *task, const struct pid_entry *p)
2425 {
2426 	return proc_fill_cache(filp, dirent, filldir, p->name, p->len,
2427 				proc_base_instantiate, task, p);
2428 }
2429 
2430 #ifdef CONFIG_TASK_IO_ACCOUNTING
2431 static int do_io_accounting(struct task_struct *task, char *buffer, int whole)
2432 {
2433 	struct task_io_accounting acct = task->ioac;
2434 	unsigned long flags;
2435 
2436 	if (whole && lock_task_sighand(task, &flags)) {
2437 		struct task_struct *t = task;
2438 
2439 		task_io_accounting_add(&acct, &task->signal->ioac);
2440 		while_each_thread(task, t)
2441 			task_io_accounting_add(&acct, &t->ioac);
2442 
2443 		unlock_task_sighand(task, &flags);
2444 	}
2445 	return sprintf(buffer,
2446 			"rchar: %llu\n"
2447 			"wchar: %llu\n"
2448 			"syscr: %llu\n"
2449 			"syscw: %llu\n"
2450 			"read_bytes: %llu\n"
2451 			"write_bytes: %llu\n"
2452 			"cancelled_write_bytes: %llu\n",
2453 			(unsigned long long)acct.rchar,
2454 			(unsigned long long)acct.wchar,
2455 			(unsigned long long)acct.syscr,
2456 			(unsigned long long)acct.syscw,
2457 			(unsigned long long)acct.read_bytes,
2458 			(unsigned long long)acct.write_bytes,
2459 			(unsigned long long)acct.cancelled_write_bytes);
2460 }
2461 
2462 static int proc_tid_io_accounting(struct task_struct *task, char *buffer)
2463 {
2464 	return do_io_accounting(task, buffer, 0);
2465 }
2466 
2467 static int proc_tgid_io_accounting(struct task_struct *task, char *buffer)
2468 {
2469 	return do_io_accounting(task, buffer, 1);
2470 }
2471 #endif /* CONFIG_TASK_IO_ACCOUNTING */
2472 
2473 static int proc_pid_personality(struct seq_file *m, struct pid_namespace *ns,
2474 				struct pid *pid, struct task_struct *task)
2475 {
2476 	seq_printf(m, "%08x\n", task->personality);
2477 	return 0;
2478 }
2479 
2480 /*
2481  * Thread groups
2482  */
2483 static const struct file_operations proc_task_operations;
2484 static const struct inode_operations proc_task_inode_operations;
2485 
2486 static const struct pid_entry tgid_base_stuff[] = {
2487 	DIR("task",       S_IRUGO|S_IXUGO, proc_task_inode_operations, proc_task_operations),
2488 	DIR("fd",         S_IRUSR|S_IXUSR, proc_fd_inode_operations, proc_fd_operations),
2489 	DIR("fdinfo",     S_IRUSR|S_IXUSR, proc_fdinfo_inode_operations, proc_fdinfo_operations),
2490 #ifdef CONFIG_NET
2491 	DIR("net",        S_IRUGO|S_IXUGO, proc_net_inode_operations, proc_net_operations),
2492 #endif
2493 	REG("environ",    S_IRUSR, proc_environ_operations),
2494 	INF("auxv",       S_IRUSR, proc_pid_auxv),
2495 	ONE("status",     S_IRUGO, proc_pid_status),
2496 	ONE("personality", S_IRUSR, proc_pid_personality),
2497 	INF("limits",	  S_IRUSR, proc_pid_limits),
2498 #ifdef CONFIG_SCHED_DEBUG
2499 	REG("sched",      S_IRUGO|S_IWUSR, proc_pid_sched_operations),
2500 #endif
2501 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK
2502 	INF("syscall",    S_IRUSR, proc_pid_syscall),
2503 #endif
2504 	INF("cmdline",    S_IRUGO, proc_pid_cmdline),
2505 	ONE("stat",       S_IRUGO, proc_tgid_stat),
2506 	ONE("statm",      S_IRUGO, proc_pid_statm),
2507 	REG("maps",       S_IRUGO, proc_maps_operations),
2508 #ifdef CONFIG_NUMA
2509 	REG("numa_maps",  S_IRUGO, proc_numa_maps_operations),
2510 #endif
2511 	REG("mem",        S_IRUSR|S_IWUSR, proc_mem_operations),
2512 	LNK("cwd",        proc_cwd_link),
2513 	LNK("root",       proc_root_link),
2514 	LNK("exe",        proc_exe_link),
2515 	REG("mounts",     S_IRUGO, proc_mounts_operations),
2516 	REG("mountinfo",  S_IRUGO, proc_mountinfo_operations),
2517 	REG("mountstats", S_IRUSR, proc_mountstats_operations),
2518 #ifdef CONFIG_PROC_PAGE_MONITOR
2519 	REG("clear_refs", S_IWUSR, proc_clear_refs_operations),
2520 	REG("smaps",      S_IRUGO, proc_smaps_operations),
2521 	REG("pagemap",    S_IRUSR, proc_pagemap_operations),
2522 #endif
2523 #ifdef CONFIG_SECURITY
2524 	DIR("attr",       S_IRUGO|S_IXUGO, proc_attr_dir_inode_operations, proc_attr_dir_operations),
2525 #endif
2526 #ifdef CONFIG_KALLSYMS
2527 	INF("wchan",      S_IRUGO, proc_pid_wchan),
2528 #endif
2529 #ifdef CONFIG_STACKTRACE
2530 	ONE("stack",      S_IRUSR, proc_pid_stack),
2531 #endif
2532 #ifdef CONFIG_SCHEDSTATS
2533 	INF("schedstat",  S_IRUGO, proc_pid_schedstat),
2534 #endif
2535 #ifdef CONFIG_LATENCYTOP
2536 	REG("latency",  S_IRUGO, proc_lstats_operations),
2537 #endif
2538 #ifdef CONFIG_PROC_PID_CPUSET
2539 	REG("cpuset",     S_IRUGO, proc_cpuset_operations),
2540 #endif
2541 #ifdef CONFIG_CGROUPS
2542 	REG("cgroup",  S_IRUGO, proc_cgroup_operations),
2543 #endif
2544 	INF("oom_score",  S_IRUGO, proc_oom_score),
2545 	REG("oom_adj",    S_IRUGO|S_IWUSR, proc_oom_adjust_operations),
2546 #ifdef CONFIG_AUDITSYSCALL
2547 	REG("loginuid",   S_IWUSR|S_IRUGO, proc_loginuid_operations),
2548 	REG("sessionid",  S_IRUGO, proc_sessionid_operations),
2549 #endif
2550 #ifdef CONFIG_FAULT_INJECTION
2551 	REG("make-it-fail", S_IRUGO|S_IWUSR, proc_fault_inject_operations),
2552 #endif
2553 #if defined(USE_ELF_CORE_DUMP) && defined(CONFIG_ELF_CORE)
2554 	REG("coredump_filter", S_IRUGO|S_IWUSR, proc_coredump_filter_operations),
2555 #endif
2556 #ifdef CONFIG_TASK_IO_ACCOUNTING
2557 	INF("io",	S_IRUGO, proc_tgid_io_accounting),
2558 #endif
2559 };
2560 
2561 static int proc_tgid_base_readdir(struct file * filp,
2562 			     void * dirent, filldir_t filldir)
2563 {
2564 	return proc_pident_readdir(filp,dirent,filldir,
2565 				   tgid_base_stuff,ARRAY_SIZE(tgid_base_stuff));
2566 }
2567 
2568 static const struct file_operations proc_tgid_base_operations = {
2569 	.read		= generic_read_dir,
2570 	.readdir	= proc_tgid_base_readdir,
2571 };
2572 
2573 static struct dentry *proc_tgid_base_lookup(struct inode *dir, struct dentry *dentry, struct nameidata *nd){
2574 	return proc_pident_lookup(dir, dentry,
2575 				  tgid_base_stuff, ARRAY_SIZE(tgid_base_stuff));
2576 }
2577 
2578 static const struct inode_operations proc_tgid_base_inode_operations = {
2579 	.lookup		= proc_tgid_base_lookup,
2580 	.getattr	= pid_getattr,
2581 	.setattr	= proc_setattr,
2582 };
2583 
2584 static void proc_flush_task_mnt(struct vfsmount *mnt, pid_t pid, pid_t tgid)
2585 {
2586 	struct dentry *dentry, *leader, *dir;
2587 	char buf[PROC_NUMBUF];
2588 	struct qstr name;
2589 
2590 	name.name = buf;
2591 	name.len = snprintf(buf, sizeof(buf), "%d", pid);
2592 	dentry = d_hash_and_lookup(mnt->mnt_root, &name);
2593 	if (dentry) {
2594 		if (!(current->flags & PF_EXITING))
2595 			shrink_dcache_parent(dentry);
2596 		d_drop(dentry);
2597 		dput(dentry);
2598 	}
2599 
2600 	if (tgid == 0)
2601 		goto out;
2602 
2603 	name.name = buf;
2604 	name.len = snprintf(buf, sizeof(buf), "%d", tgid);
2605 	leader = d_hash_and_lookup(mnt->mnt_root, &name);
2606 	if (!leader)
2607 		goto out;
2608 
2609 	name.name = "task";
2610 	name.len = strlen(name.name);
2611 	dir = d_hash_and_lookup(leader, &name);
2612 	if (!dir)
2613 		goto out_put_leader;
2614 
2615 	name.name = buf;
2616 	name.len = snprintf(buf, sizeof(buf), "%d", pid);
2617 	dentry = d_hash_and_lookup(dir, &name);
2618 	if (dentry) {
2619 		shrink_dcache_parent(dentry);
2620 		d_drop(dentry);
2621 		dput(dentry);
2622 	}
2623 
2624 	dput(dir);
2625 out_put_leader:
2626 	dput(leader);
2627 out:
2628 	return;
2629 }
2630 
2631 /**
2632  * proc_flush_task -  Remove dcache entries for @task from the /proc dcache.
2633  * @task: task that should be flushed.
2634  *
2635  * When flushing dentries from proc, one needs to flush them from global
2636  * proc (proc_mnt) and from all the namespaces' procs this task was seen
2637  * in. This call is supposed to do all of this job.
2638  *
2639  * Looks in the dcache for
2640  * /proc/@pid
2641  * /proc/@tgid/task/@pid
2642  * if either directory is present flushes it and all of it'ts children
2643  * from the dcache.
2644  *
2645  * It is safe and reasonable to cache /proc entries for a task until
2646  * that task exits.  After that they just clog up the dcache with
2647  * useless entries, possibly causing useful dcache entries to be
2648  * flushed instead.  This routine is proved to flush those useless
2649  * dcache entries at process exit time.
2650  *
2651  * NOTE: This routine is just an optimization so it does not guarantee
2652  *       that no dcache entries will exist at process exit time it
2653  *       just makes it very unlikely that any will persist.
2654  */
2655 
2656 void proc_flush_task(struct task_struct *task)
2657 {
2658 	int i;
2659 	struct pid *pid, *tgid = NULL;
2660 	struct upid *upid;
2661 
2662 	pid = task_pid(task);
2663 	if (thread_group_leader(task))
2664 		tgid = task_tgid(task);
2665 
2666 	for (i = 0; i <= pid->level; i++) {
2667 		upid = &pid->numbers[i];
2668 		proc_flush_task_mnt(upid->ns->proc_mnt, upid->nr,
2669 			tgid ? tgid->numbers[i].nr : 0);
2670 	}
2671 
2672 	upid = &pid->numbers[pid->level];
2673 	if (upid->nr == 1)
2674 		pid_ns_release_proc(upid->ns);
2675 }
2676 
2677 static struct dentry *proc_pid_instantiate(struct inode *dir,
2678 					   struct dentry * dentry,
2679 					   struct task_struct *task, const void *ptr)
2680 {
2681 	struct dentry *error = ERR_PTR(-ENOENT);
2682 	struct inode *inode;
2683 
2684 	inode = proc_pid_make_inode(dir->i_sb, task);
2685 	if (!inode)
2686 		goto out;
2687 
2688 	inode->i_mode = S_IFDIR|S_IRUGO|S_IXUGO;
2689 	inode->i_op = &proc_tgid_base_inode_operations;
2690 	inode->i_fop = &proc_tgid_base_operations;
2691 	inode->i_flags|=S_IMMUTABLE;
2692 
2693 	inode->i_nlink = 2 + pid_entry_count_dirs(tgid_base_stuff,
2694 		ARRAY_SIZE(tgid_base_stuff));
2695 
2696 	dentry->d_op = &pid_dentry_operations;
2697 
2698 	d_add(dentry, inode);
2699 	/* Close the race of the process dying before we return the dentry */
2700 	if (pid_revalidate(dentry, NULL))
2701 		error = NULL;
2702 out:
2703 	return error;
2704 }
2705 
2706 struct dentry *proc_pid_lookup(struct inode *dir, struct dentry * dentry, struct nameidata *nd)
2707 {
2708 	struct dentry *result = ERR_PTR(-ENOENT);
2709 	struct task_struct *task;
2710 	unsigned tgid;
2711 	struct pid_namespace *ns;
2712 
2713 	result = proc_base_lookup(dir, dentry);
2714 	if (!IS_ERR(result) || PTR_ERR(result) != -ENOENT)
2715 		goto out;
2716 
2717 	tgid = name_to_int(dentry);
2718 	if (tgid == ~0U)
2719 		goto out;
2720 
2721 	ns = dentry->d_sb->s_fs_info;
2722 	rcu_read_lock();
2723 	task = find_task_by_pid_ns(tgid, ns);
2724 	if (task)
2725 		get_task_struct(task);
2726 	rcu_read_unlock();
2727 	if (!task)
2728 		goto out;
2729 
2730 	result = proc_pid_instantiate(dir, dentry, task, NULL);
2731 	put_task_struct(task);
2732 out:
2733 	return result;
2734 }
2735 
2736 /*
2737  * Find the first task with tgid >= tgid
2738  *
2739  */
2740 struct tgid_iter {
2741 	unsigned int tgid;
2742 	struct task_struct *task;
2743 };
2744 static struct tgid_iter next_tgid(struct pid_namespace *ns, struct tgid_iter iter)
2745 {
2746 	struct pid *pid;
2747 
2748 	if (iter.task)
2749 		put_task_struct(iter.task);
2750 	rcu_read_lock();
2751 retry:
2752 	iter.task = NULL;
2753 	pid = find_ge_pid(iter.tgid, ns);
2754 	if (pid) {
2755 		iter.tgid = pid_nr_ns(pid, ns);
2756 		iter.task = pid_task(pid, PIDTYPE_PID);
2757 		/* What we to know is if the pid we have find is the
2758 		 * pid of a thread_group_leader.  Testing for task
2759 		 * being a thread_group_leader is the obvious thing
2760 		 * todo but there is a window when it fails, due to
2761 		 * the pid transfer logic in de_thread.
2762 		 *
2763 		 * So we perform the straight forward test of seeing
2764 		 * if the pid we have found is the pid of a thread
2765 		 * group leader, and don't worry if the task we have
2766 		 * found doesn't happen to be a thread group leader.
2767 		 * As we don't care in the case of readdir.
2768 		 */
2769 		if (!iter.task || !has_group_leader_pid(iter.task)) {
2770 			iter.tgid += 1;
2771 			goto retry;
2772 		}
2773 		get_task_struct(iter.task);
2774 	}
2775 	rcu_read_unlock();
2776 	return iter;
2777 }
2778 
2779 #define TGID_OFFSET (FIRST_PROCESS_ENTRY + ARRAY_SIZE(proc_base_stuff))
2780 
2781 static int proc_pid_fill_cache(struct file *filp, void *dirent, filldir_t filldir,
2782 	struct tgid_iter iter)
2783 {
2784 	char name[PROC_NUMBUF];
2785 	int len = snprintf(name, sizeof(name), "%d", iter.tgid);
2786 	return proc_fill_cache(filp, dirent, filldir, name, len,
2787 				proc_pid_instantiate, iter.task, NULL);
2788 }
2789 
2790 /* for the /proc/ directory itself, after non-process stuff has been done */
2791 int proc_pid_readdir(struct file * filp, void * dirent, filldir_t filldir)
2792 {
2793 	unsigned int nr = filp->f_pos - FIRST_PROCESS_ENTRY;
2794 	struct task_struct *reaper = get_proc_task(filp->f_path.dentry->d_inode);
2795 	struct tgid_iter iter;
2796 	struct pid_namespace *ns;
2797 
2798 	if (!reaper)
2799 		goto out_no_task;
2800 
2801 	for (; nr < ARRAY_SIZE(proc_base_stuff); filp->f_pos++, nr++) {
2802 		const struct pid_entry *p = &proc_base_stuff[nr];
2803 		if (proc_base_fill_cache(filp, dirent, filldir, reaper, p) < 0)
2804 			goto out;
2805 	}
2806 
2807 	ns = filp->f_dentry->d_sb->s_fs_info;
2808 	iter.task = NULL;
2809 	iter.tgid = filp->f_pos - TGID_OFFSET;
2810 	for (iter = next_tgid(ns, iter);
2811 	     iter.task;
2812 	     iter.tgid += 1, iter = next_tgid(ns, iter)) {
2813 		filp->f_pos = iter.tgid + TGID_OFFSET;
2814 		if (proc_pid_fill_cache(filp, dirent, filldir, iter) < 0) {
2815 			put_task_struct(iter.task);
2816 			goto out;
2817 		}
2818 	}
2819 	filp->f_pos = PID_MAX_LIMIT + TGID_OFFSET;
2820 out:
2821 	put_task_struct(reaper);
2822 out_no_task:
2823 	return 0;
2824 }
2825 
2826 /*
2827  * Tasks
2828  */
2829 static const struct pid_entry tid_base_stuff[] = {
2830 	DIR("fd",        S_IRUSR|S_IXUSR, proc_fd_inode_operations, proc_fd_operations),
2831 	DIR("fdinfo",    S_IRUSR|S_IXUSR, proc_fdinfo_inode_operations, proc_fd_operations),
2832 	REG("environ",   S_IRUSR, proc_environ_operations),
2833 	INF("auxv",      S_IRUSR, proc_pid_auxv),
2834 	ONE("status",    S_IRUGO, proc_pid_status),
2835 	ONE("personality", S_IRUSR, proc_pid_personality),
2836 	INF("limits",	 S_IRUSR, proc_pid_limits),
2837 #ifdef CONFIG_SCHED_DEBUG
2838 	REG("sched",     S_IRUGO|S_IWUSR, proc_pid_sched_operations),
2839 #endif
2840 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK
2841 	INF("syscall",   S_IRUSR, proc_pid_syscall),
2842 #endif
2843 	INF("cmdline",   S_IRUGO, proc_pid_cmdline),
2844 	ONE("stat",      S_IRUGO, proc_tid_stat),
2845 	ONE("statm",     S_IRUGO, proc_pid_statm),
2846 	REG("maps",      S_IRUGO, proc_maps_operations),
2847 #ifdef CONFIG_NUMA
2848 	REG("numa_maps", S_IRUGO, proc_numa_maps_operations),
2849 #endif
2850 	REG("mem",       S_IRUSR|S_IWUSR, proc_mem_operations),
2851 	LNK("cwd",       proc_cwd_link),
2852 	LNK("root",      proc_root_link),
2853 	LNK("exe",       proc_exe_link),
2854 	REG("mounts",    S_IRUGO, proc_mounts_operations),
2855 	REG("mountinfo",  S_IRUGO, proc_mountinfo_operations),
2856 #ifdef CONFIG_PROC_PAGE_MONITOR
2857 	REG("clear_refs", S_IWUSR, proc_clear_refs_operations),
2858 	REG("smaps",     S_IRUGO, proc_smaps_operations),
2859 	REG("pagemap",    S_IRUSR, proc_pagemap_operations),
2860 #endif
2861 #ifdef CONFIG_SECURITY
2862 	DIR("attr",      S_IRUGO|S_IXUGO, proc_attr_dir_inode_operations, proc_attr_dir_operations),
2863 #endif
2864 #ifdef CONFIG_KALLSYMS
2865 	INF("wchan",     S_IRUGO, proc_pid_wchan),
2866 #endif
2867 #ifdef CONFIG_STACKTRACE
2868 	ONE("stack",      S_IRUSR, proc_pid_stack),
2869 #endif
2870 #ifdef CONFIG_SCHEDSTATS
2871 	INF("schedstat", S_IRUGO, proc_pid_schedstat),
2872 #endif
2873 #ifdef CONFIG_LATENCYTOP
2874 	REG("latency",  S_IRUGO, proc_lstats_operations),
2875 #endif
2876 #ifdef CONFIG_PROC_PID_CPUSET
2877 	REG("cpuset",    S_IRUGO, proc_cpuset_operations),
2878 #endif
2879 #ifdef CONFIG_CGROUPS
2880 	REG("cgroup",  S_IRUGO, proc_cgroup_operations),
2881 #endif
2882 	INF("oom_score", S_IRUGO, proc_oom_score),
2883 	REG("oom_adj",   S_IRUGO|S_IWUSR, proc_oom_adjust_operations),
2884 #ifdef CONFIG_AUDITSYSCALL
2885 	REG("loginuid",  S_IWUSR|S_IRUGO, proc_loginuid_operations),
2886 	REG("sessionid",  S_IRUSR, proc_sessionid_operations),
2887 #endif
2888 #ifdef CONFIG_FAULT_INJECTION
2889 	REG("make-it-fail", S_IRUGO|S_IWUSR, proc_fault_inject_operations),
2890 #endif
2891 #ifdef CONFIG_TASK_IO_ACCOUNTING
2892 	INF("io",	S_IRUGO, proc_tid_io_accounting),
2893 #endif
2894 };
2895 
2896 static int proc_tid_base_readdir(struct file * filp,
2897 			     void * dirent, filldir_t filldir)
2898 {
2899 	return proc_pident_readdir(filp,dirent,filldir,
2900 				   tid_base_stuff,ARRAY_SIZE(tid_base_stuff));
2901 }
2902 
2903 static struct dentry *proc_tid_base_lookup(struct inode *dir, struct dentry *dentry, struct nameidata *nd){
2904 	return proc_pident_lookup(dir, dentry,
2905 				  tid_base_stuff, ARRAY_SIZE(tid_base_stuff));
2906 }
2907 
2908 static const struct file_operations proc_tid_base_operations = {
2909 	.read		= generic_read_dir,
2910 	.readdir	= proc_tid_base_readdir,
2911 };
2912 
2913 static const struct inode_operations proc_tid_base_inode_operations = {
2914 	.lookup		= proc_tid_base_lookup,
2915 	.getattr	= pid_getattr,
2916 	.setattr	= proc_setattr,
2917 };
2918 
2919 static struct dentry *proc_task_instantiate(struct inode *dir,
2920 	struct dentry *dentry, struct task_struct *task, const void *ptr)
2921 {
2922 	struct dentry *error = ERR_PTR(-ENOENT);
2923 	struct inode *inode;
2924 	inode = proc_pid_make_inode(dir->i_sb, task);
2925 
2926 	if (!inode)
2927 		goto out;
2928 	inode->i_mode = S_IFDIR|S_IRUGO|S_IXUGO;
2929 	inode->i_op = &proc_tid_base_inode_operations;
2930 	inode->i_fop = &proc_tid_base_operations;
2931 	inode->i_flags|=S_IMMUTABLE;
2932 
2933 	inode->i_nlink = 2 + pid_entry_count_dirs(tid_base_stuff,
2934 		ARRAY_SIZE(tid_base_stuff));
2935 
2936 	dentry->d_op = &pid_dentry_operations;
2937 
2938 	d_add(dentry, inode);
2939 	/* Close the race of the process dying before we return the dentry */
2940 	if (pid_revalidate(dentry, NULL))
2941 		error = NULL;
2942 out:
2943 	return error;
2944 }
2945 
2946 static struct dentry *proc_task_lookup(struct inode *dir, struct dentry * dentry, struct nameidata *nd)
2947 {
2948 	struct dentry *result = ERR_PTR(-ENOENT);
2949 	struct task_struct *task;
2950 	struct task_struct *leader = get_proc_task(dir);
2951 	unsigned tid;
2952 	struct pid_namespace *ns;
2953 
2954 	if (!leader)
2955 		goto out_no_task;
2956 
2957 	tid = name_to_int(dentry);
2958 	if (tid == ~0U)
2959 		goto out;
2960 
2961 	ns = dentry->d_sb->s_fs_info;
2962 	rcu_read_lock();
2963 	task = find_task_by_pid_ns(tid, ns);
2964 	if (task)
2965 		get_task_struct(task);
2966 	rcu_read_unlock();
2967 	if (!task)
2968 		goto out;
2969 	if (!same_thread_group(leader, task))
2970 		goto out_drop_task;
2971 
2972 	result = proc_task_instantiate(dir, dentry, task, NULL);
2973 out_drop_task:
2974 	put_task_struct(task);
2975 out:
2976 	put_task_struct(leader);
2977 out_no_task:
2978 	return result;
2979 }
2980 
2981 /*
2982  * Find the first tid of a thread group to return to user space.
2983  *
2984  * Usually this is just the thread group leader, but if the users
2985  * buffer was too small or there was a seek into the middle of the
2986  * directory we have more work todo.
2987  *
2988  * In the case of a short read we start with find_task_by_pid.
2989  *
2990  * In the case of a seek we start with the leader and walk nr
2991  * threads past it.
2992  */
2993 static struct task_struct *first_tid(struct task_struct *leader,
2994 		int tid, int nr, struct pid_namespace *ns)
2995 {
2996 	struct task_struct *pos;
2997 
2998 	rcu_read_lock();
2999 	/* Attempt to start with the pid of a thread */
3000 	if (tid && (nr > 0)) {
3001 		pos = find_task_by_pid_ns(tid, ns);
3002 		if (pos && (pos->group_leader == leader))
3003 			goto found;
3004 	}
3005 
3006 	/* If nr exceeds the number of threads there is nothing todo */
3007 	pos = NULL;
3008 	if (nr && nr >= get_nr_threads(leader))
3009 		goto out;
3010 
3011 	/* If we haven't found our starting place yet start
3012 	 * with the leader and walk nr threads forward.
3013 	 */
3014 	for (pos = leader; nr > 0; --nr) {
3015 		pos = next_thread(pos);
3016 		if (pos == leader) {
3017 			pos = NULL;
3018 			goto out;
3019 		}
3020 	}
3021 found:
3022 	get_task_struct(pos);
3023 out:
3024 	rcu_read_unlock();
3025 	return pos;
3026 }
3027 
3028 /*
3029  * Find the next thread in the thread list.
3030  * Return NULL if there is an error or no next thread.
3031  *
3032  * The reference to the input task_struct is released.
3033  */
3034 static struct task_struct *next_tid(struct task_struct *start)
3035 {
3036 	struct task_struct *pos = NULL;
3037 	rcu_read_lock();
3038 	if (pid_alive(start)) {
3039 		pos = next_thread(start);
3040 		if (thread_group_leader(pos))
3041 			pos = NULL;
3042 		else
3043 			get_task_struct(pos);
3044 	}
3045 	rcu_read_unlock();
3046 	put_task_struct(start);
3047 	return pos;
3048 }
3049 
3050 static int proc_task_fill_cache(struct file *filp, void *dirent, filldir_t filldir,
3051 	struct task_struct *task, int tid)
3052 {
3053 	char name[PROC_NUMBUF];
3054 	int len = snprintf(name, sizeof(name), "%d", tid);
3055 	return proc_fill_cache(filp, dirent, filldir, name, len,
3056 				proc_task_instantiate, task, NULL);
3057 }
3058 
3059 /* for the /proc/TGID/task/ directories */
3060 static int proc_task_readdir(struct file * filp, void * dirent, filldir_t filldir)
3061 {
3062 	struct dentry *dentry = filp->f_path.dentry;
3063 	struct inode *inode = dentry->d_inode;
3064 	struct task_struct *leader = NULL;
3065 	struct task_struct *task;
3066 	int retval = -ENOENT;
3067 	ino_t ino;
3068 	int tid;
3069 	unsigned long pos = filp->f_pos;  /* avoiding "long long" filp->f_pos */
3070 	struct pid_namespace *ns;
3071 
3072 	task = get_proc_task(inode);
3073 	if (!task)
3074 		goto out_no_task;
3075 	rcu_read_lock();
3076 	if (pid_alive(task)) {
3077 		leader = task->group_leader;
3078 		get_task_struct(leader);
3079 	}
3080 	rcu_read_unlock();
3081 	put_task_struct(task);
3082 	if (!leader)
3083 		goto out_no_task;
3084 	retval = 0;
3085 
3086 	switch (pos) {
3087 	case 0:
3088 		ino = inode->i_ino;
3089 		if (filldir(dirent, ".", 1, pos, ino, DT_DIR) < 0)
3090 			goto out;
3091 		pos++;
3092 		/* fall through */
3093 	case 1:
3094 		ino = parent_ino(dentry);
3095 		if (filldir(dirent, "..", 2, pos, ino, DT_DIR) < 0)
3096 			goto out;
3097 		pos++;
3098 		/* fall through */
3099 	}
3100 
3101 	/* f_version caches the tgid value that the last readdir call couldn't
3102 	 * return. lseek aka telldir automagically resets f_version to 0.
3103 	 */
3104 	ns = filp->f_dentry->d_sb->s_fs_info;
3105 	tid = (int)filp->f_version;
3106 	filp->f_version = 0;
3107 	for (task = first_tid(leader, tid, pos - 2, ns);
3108 	     task;
3109 	     task = next_tid(task), pos++) {
3110 		tid = task_pid_nr_ns(task, ns);
3111 		if (proc_task_fill_cache(filp, dirent, filldir, task, tid) < 0) {
3112 			/* returning this tgid failed, save it as the first
3113 			 * pid for the next readir call */
3114 			filp->f_version = (u64)tid;
3115 			put_task_struct(task);
3116 			break;
3117 		}
3118 	}
3119 out:
3120 	filp->f_pos = pos;
3121 	put_task_struct(leader);
3122 out_no_task:
3123 	return retval;
3124 }
3125 
3126 static int proc_task_getattr(struct vfsmount *mnt, struct dentry *dentry, struct kstat *stat)
3127 {
3128 	struct inode *inode = dentry->d_inode;
3129 	struct task_struct *p = get_proc_task(inode);
3130 	generic_fillattr(inode, stat);
3131 
3132 	if (p) {
3133 		stat->nlink += get_nr_threads(p);
3134 		put_task_struct(p);
3135 	}
3136 
3137 	return 0;
3138 }
3139 
3140 static const struct inode_operations proc_task_inode_operations = {
3141 	.lookup		= proc_task_lookup,
3142 	.getattr	= proc_task_getattr,
3143 	.setattr	= proc_setattr,
3144 };
3145 
3146 static const struct file_operations proc_task_operations = {
3147 	.read		= generic_read_dir,
3148 	.readdir	= proc_task_readdir,
3149 };
3150