1 /* 2 * linux/fs/proc/base.c 3 * 4 * Copyright (C) 1991, 1992 Linus Torvalds 5 * 6 * proc base directory handling functions 7 * 8 * 1999, Al Viro. Rewritten. Now it covers the whole per-process part. 9 * Instead of using magical inumbers to determine the kind of object 10 * we allocate and fill in-core inodes upon lookup. They don't even 11 * go into icache. We cache the reference to task_struct upon lookup too. 12 * Eventually it should become a filesystem in its own. We don't use the 13 * rest of procfs anymore. 14 * 15 * 16 * Changelog: 17 * 17-Jan-2005 18 * Allan Bezerra 19 * Bruna Moreira <bruna.moreira@indt.org.br> 20 * Edjard Mota <edjard.mota@indt.org.br> 21 * Ilias Biris <ilias.biris@indt.org.br> 22 * Mauricio Lin <mauricio.lin@indt.org.br> 23 * 24 * Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT 25 * 26 * A new process specific entry (smaps) included in /proc. It shows the 27 * size of rss for each memory area. The maps entry lacks information 28 * about physical memory size (rss) for each mapped file, i.e., 29 * rss information for executables and library files. 30 * This additional information is useful for any tools that need to know 31 * about physical memory consumption for a process specific library. 32 * 33 * Changelog: 34 * 21-Feb-2005 35 * Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT 36 * Pud inclusion in the page table walking. 37 * 38 * ChangeLog: 39 * 10-Mar-2005 40 * 10LE Instituto Nokia de Tecnologia - INdT: 41 * A better way to walks through the page table as suggested by Hugh Dickins. 42 * 43 * Simo Piiroinen <simo.piiroinen@nokia.com>: 44 * Smaps information related to shared, private, clean and dirty pages. 45 * 46 * Paul Mundt <paul.mundt@nokia.com>: 47 * Overall revision about smaps. 48 */ 49 50 #include <asm/uaccess.h> 51 52 #include <linux/errno.h> 53 #include <linux/time.h> 54 #include <linux/proc_fs.h> 55 #include <linux/stat.h> 56 #include <linux/task_io_accounting_ops.h> 57 #include <linux/init.h> 58 #include <linux/capability.h> 59 #include <linux/file.h> 60 #include <linux/fdtable.h> 61 #include <linux/string.h> 62 #include <linux/seq_file.h> 63 #include <linux/namei.h> 64 #include <linux/mnt_namespace.h> 65 #include <linux/mm.h> 66 #include <linux/rcupdate.h> 67 #include <linux/kallsyms.h> 68 #include <linux/stacktrace.h> 69 #include <linux/resource.h> 70 #include <linux/module.h> 71 #include <linux/mount.h> 72 #include <linux/security.h> 73 #include <linux/ptrace.h> 74 #include <linux/tracehook.h> 75 #include <linux/cgroup.h> 76 #include <linux/cpuset.h> 77 #include <linux/audit.h> 78 #include <linux/poll.h> 79 #include <linux/nsproxy.h> 80 #include <linux/oom.h> 81 #include <linux/elf.h> 82 #include <linux/pid_namespace.h> 83 #include "internal.h" 84 85 /* NOTE: 86 * Implementing inode permission operations in /proc is almost 87 * certainly an error. Permission checks need to happen during 88 * each system call not at open time. The reason is that most of 89 * what we wish to check for permissions in /proc varies at runtime. 90 * 91 * The classic example of a problem is opening file descriptors 92 * in /proc for a task before it execs a suid executable. 93 */ 94 95 struct pid_entry { 96 char *name; 97 int len; 98 mode_t mode; 99 const struct inode_operations *iop; 100 const struct file_operations *fop; 101 union proc_op op; 102 }; 103 104 #define NOD(NAME, MODE, IOP, FOP, OP) { \ 105 .name = (NAME), \ 106 .len = sizeof(NAME) - 1, \ 107 .mode = MODE, \ 108 .iop = IOP, \ 109 .fop = FOP, \ 110 .op = OP, \ 111 } 112 113 #define DIR(NAME, MODE, iops, fops) \ 114 NOD(NAME, (S_IFDIR|(MODE)), &iops, &fops, {} ) 115 #define LNK(NAME, get_link) \ 116 NOD(NAME, (S_IFLNK|S_IRWXUGO), \ 117 &proc_pid_link_inode_operations, NULL, \ 118 { .proc_get_link = get_link } ) 119 #define REG(NAME, MODE, fops) \ 120 NOD(NAME, (S_IFREG|(MODE)), NULL, &fops, {}) 121 #define INF(NAME, MODE, read) \ 122 NOD(NAME, (S_IFREG|(MODE)), \ 123 NULL, &proc_info_file_operations, \ 124 { .proc_read = read } ) 125 #define ONE(NAME, MODE, show) \ 126 NOD(NAME, (S_IFREG|(MODE)), \ 127 NULL, &proc_single_file_operations, \ 128 { .proc_show = show } ) 129 130 /* 131 * Count the number of hardlinks for the pid_entry table, excluding the . 132 * and .. links. 133 */ 134 static unsigned int pid_entry_count_dirs(const struct pid_entry *entries, 135 unsigned int n) 136 { 137 unsigned int i; 138 unsigned int count; 139 140 count = 0; 141 for (i = 0; i < n; ++i) { 142 if (S_ISDIR(entries[i].mode)) 143 ++count; 144 } 145 146 return count; 147 } 148 149 static struct fs_struct *get_fs_struct(struct task_struct *task) 150 { 151 struct fs_struct *fs; 152 task_lock(task); 153 fs = task->fs; 154 if(fs) 155 atomic_inc(&fs->count); 156 task_unlock(task); 157 return fs; 158 } 159 160 static int get_nr_threads(struct task_struct *tsk) 161 { 162 unsigned long flags; 163 int count = 0; 164 165 if (lock_task_sighand(tsk, &flags)) { 166 count = atomic_read(&tsk->signal->count); 167 unlock_task_sighand(tsk, &flags); 168 } 169 return count; 170 } 171 172 static int proc_cwd_link(struct inode *inode, struct path *path) 173 { 174 struct task_struct *task = get_proc_task(inode); 175 struct fs_struct *fs = NULL; 176 int result = -ENOENT; 177 178 if (task) { 179 fs = get_fs_struct(task); 180 put_task_struct(task); 181 } 182 if (fs) { 183 read_lock(&fs->lock); 184 *path = fs->pwd; 185 path_get(&fs->pwd); 186 read_unlock(&fs->lock); 187 result = 0; 188 put_fs_struct(fs); 189 } 190 return result; 191 } 192 193 static int proc_root_link(struct inode *inode, struct path *path) 194 { 195 struct task_struct *task = get_proc_task(inode); 196 struct fs_struct *fs = NULL; 197 int result = -ENOENT; 198 199 if (task) { 200 fs = get_fs_struct(task); 201 put_task_struct(task); 202 } 203 if (fs) { 204 read_lock(&fs->lock); 205 *path = fs->root; 206 path_get(&fs->root); 207 read_unlock(&fs->lock); 208 result = 0; 209 put_fs_struct(fs); 210 } 211 return result; 212 } 213 214 /* 215 * Return zero if current may access user memory in @task, -error if not. 216 */ 217 static int check_mem_permission(struct task_struct *task) 218 { 219 /* 220 * A task can always look at itself, in case it chooses 221 * to use system calls instead of load instructions. 222 */ 223 if (task == current) 224 return 0; 225 226 /* 227 * If current is actively ptrace'ing, and would also be 228 * permitted to freshly attach with ptrace now, permit it. 229 */ 230 if (task_is_stopped_or_traced(task)) { 231 int match; 232 rcu_read_lock(); 233 match = (tracehook_tracer_task(task) == current); 234 rcu_read_unlock(); 235 if (match && ptrace_may_access(task, PTRACE_MODE_ATTACH)) 236 return 0; 237 } 238 239 /* 240 * Noone else is allowed. 241 */ 242 return -EPERM; 243 } 244 245 struct mm_struct *mm_for_maps(struct task_struct *task) 246 { 247 struct mm_struct *mm = get_task_mm(task); 248 if (!mm) 249 return NULL; 250 down_read(&mm->mmap_sem); 251 task_lock(task); 252 if (task->mm != mm) 253 goto out; 254 if (task->mm != current->mm && 255 __ptrace_may_access(task, PTRACE_MODE_READ) < 0) 256 goto out; 257 task_unlock(task); 258 return mm; 259 out: 260 task_unlock(task); 261 up_read(&mm->mmap_sem); 262 mmput(mm); 263 return NULL; 264 } 265 266 static int proc_pid_cmdline(struct task_struct *task, char * buffer) 267 { 268 int res = 0; 269 unsigned int len; 270 struct mm_struct *mm = get_task_mm(task); 271 if (!mm) 272 goto out; 273 if (!mm->arg_end) 274 goto out_mm; /* Shh! No looking before we're done */ 275 276 len = mm->arg_end - mm->arg_start; 277 278 if (len > PAGE_SIZE) 279 len = PAGE_SIZE; 280 281 res = access_process_vm(task, mm->arg_start, buffer, len, 0); 282 283 // If the nul at the end of args has been overwritten, then 284 // assume application is using setproctitle(3). 285 if (res > 0 && buffer[res-1] != '\0' && len < PAGE_SIZE) { 286 len = strnlen(buffer, res); 287 if (len < res) { 288 res = len; 289 } else { 290 len = mm->env_end - mm->env_start; 291 if (len > PAGE_SIZE - res) 292 len = PAGE_SIZE - res; 293 res += access_process_vm(task, mm->env_start, buffer+res, len, 0); 294 res = strnlen(buffer, res); 295 } 296 } 297 out_mm: 298 mmput(mm); 299 out: 300 return res; 301 } 302 303 static int proc_pid_auxv(struct task_struct *task, char *buffer) 304 { 305 int res = 0; 306 struct mm_struct *mm = get_task_mm(task); 307 if (mm) { 308 unsigned int nwords = 0; 309 do { 310 nwords += 2; 311 } while (mm->saved_auxv[nwords - 2] != 0); /* AT_NULL */ 312 res = nwords * sizeof(mm->saved_auxv[0]); 313 if (res > PAGE_SIZE) 314 res = PAGE_SIZE; 315 memcpy(buffer, mm->saved_auxv, res); 316 mmput(mm); 317 } 318 return res; 319 } 320 321 322 #ifdef CONFIG_KALLSYMS 323 /* 324 * Provides a wchan file via kallsyms in a proper one-value-per-file format. 325 * Returns the resolved symbol. If that fails, simply return the address. 326 */ 327 static int proc_pid_wchan(struct task_struct *task, char *buffer) 328 { 329 unsigned long wchan; 330 char symname[KSYM_NAME_LEN]; 331 332 wchan = get_wchan(task); 333 334 if (lookup_symbol_name(wchan, symname) < 0) 335 return sprintf(buffer, "%lu", wchan); 336 else 337 return sprintf(buffer, "%s", symname); 338 } 339 #endif /* CONFIG_KALLSYMS */ 340 341 #ifdef CONFIG_STACKTRACE 342 343 #define MAX_STACK_TRACE_DEPTH 64 344 345 static int proc_pid_stack(struct seq_file *m, struct pid_namespace *ns, 346 struct pid *pid, struct task_struct *task) 347 { 348 struct stack_trace trace; 349 unsigned long *entries; 350 int i; 351 352 entries = kmalloc(MAX_STACK_TRACE_DEPTH * sizeof(*entries), GFP_KERNEL); 353 if (!entries) 354 return -ENOMEM; 355 356 trace.nr_entries = 0; 357 trace.max_entries = MAX_STACK_TRACE_DEPTH; 358 trace.entries = entries; 359 trace.skip = 0; 360 save_stack_trace_tsk(task, &trace); 361 362 for (i = 0; i < trace.nr_entries; i++) { 363 seq_printf(m, "[<%p>] %pS\n", 364 (void *)entries[i], (void *)entries[i]); 365 } 366 kfree(entries); 367 368 return 0; 369 } 370 #endif 371 372 #ifdef CONFIG_SCHEDSTATS 373 /* 374 * Provides /proc/PID/schedstat 375 */ 376 static int proc_pid_schedstat(struct task_struct *task, char *buffer) 377 { 378 return sprintf(buffer, "%llu %llu %lu\n", 379 (unsigned long long)task->se.sum_exec_runtime, 380 (unsigned long long)task->sched_info.run_delay, 381 task->sched_info.pcount); 382 } 383 #endif 384 385 #ifdef CONFIG_LATENCYTOP 386 static int lstats_show_proc(struct seq_file *m, void *v) 387 { 388 int i; 389 struct inode *inode = m->private; 390 struct task_struct *task = get_proc_task(inode); 391 392 if (!task) 393 return -ESRCH; 394 seq_puts(m, "Latency Top version : v0.1\n"); 395 for (i = 0; i < 32; i++) { 396 if (task->latency_record[i].backtrace[0]) { 397 int q; 398 seq_printf(m, "%i %li %li ", 399 task->latency_record[i].count, 400 task->latency_record[i].time, 401 task->latency_record[i].max); 402 for (q = 0; q < LT_BACKTRACEDEPTH; q++) { 403 char sym[KSYM_SYMBOL_LEN]; 404 char *c; 405 if (!task->latency_record[i].backtrace[q]) 406 break; 407 if (task->latency_record[i].backtrace[q] == ULONG_MAX) 408 break; 409 sprint_symbol(sym, task->latency_record[i].backtrace[q]); 410 c = strchr(sym, '+'); 411 if (c) 412 *c = 0; 413 seq_printf(m, "%s ", sym); 414 } 415 seq_printf(m, "\n"); 416 } 417 418 } 419 put_task_struct(task); 420 return 0; 421 } 422 423 static int lstats_open(struct inode *inode, struct file *file) 424 { 425 return single_open(file, lstats_show_proc, inode); 426 } 427 428 static ssize_t lstats_write(struct file *file, const char __user *buf, 429 size_t count, loff_t *offs) 430 { 431 struct task_struct *task = get_proc_task(file->f_dentry->d_inode); 432 433 if (!task) 434 return -ESRCH; 435 clear_all_latency_tracing(task); 436 put_task_struct(task); 437 438 return count; 439 } 440 441 static const struct file_operations proc_lstats_operations = { 442 .open = lstats_open, 443 .read = seq_read, 444 .write = lstats_write, 445 .llseek = seq_lseek, 446 .release = single_release, 447 }; 448 449 #endif 450 451 /* The badness from the OOM killer */ 452 unsigned long badness(struct task_struct *p, unsigned long uptime); 453 static int proc_oom_score(struct task_struct *task, char *buffer) 454 { 455 unsigned long points; 456 struct timespec uptime; 457 458 do_posix_clock_monotonic_gettime(&uptime); 459 read_lock(&tasklist_lock); 460 points = badness(task, uptime.tv_sec); 461 read_unlock(&tasklist_lock); 462 return sprintf(buffer, "%lu\n", points); 463 } 464 465 struct limit_names { 466 char *name; 467 char *unit; 468 }; 469 470 static const struct limit_names lnames[RLIM_NLIMITS] = { 471 [RLIMIT_CPU] = {"Max cpu time", "ms"}, 472 [RLIMIT_FSIZE] = {"Max file size", "bytes"}, 473 [RLIMIT_DATA] = {"Max data size", "bytes"}, 474 [RLIMIT_STACK] = {"Max stack size", "bytes"}, 475 [RLIMIT_CORE] = {"Max core file size", "bytes"}, 476 [RLIMIT_RSS] = {"Max resident set", "bytes"}, 477 [RLIMIT_NPROC] = {"Max processes", "processes"}, 478 [RLIMIT_NOFILE] = {"Max open files", "files"}, 479 [RLIMIT_MEMLOCK] = {"Max locked memory", "bytes"}, 480 [RLIMIT_AS] = {"Max address space", "bytes"}, 481 [RLIMIT_LOCKS] = {"Max file locks", "locks"}, 482 [RLIMIT_SIGPENDING] = {"Max pending signals", "signals"}, 483 [RLIMIT_MSGQUEUE] = {"Max msgqueue size", "bytes"}, 484 [RLIMIT_NICE] = {"Max nice priority", NULL}, 485 [RLIMIT_RTPRIO] = {"Max realtime priority", NULL}, 486 [RLIMIT_RTTIME] = {"Max realtime timeout", "us"}, 487 }; 488 489 /* Display limits for a process */ 490 static int proc_pid_limits(struct task_struct *task, char *buffer) 491 { 492 unsigned int i; 493 int count = 0; 494 unsigned long flags; 495 char *bufptr = buffer; 496 497 struct rlimit rlim[RLIM_NLIMITS]; 498 499 if (!lock_task_sighand(task, &flags)) 500 return 0; 501 memcpy(rlim, task->signal->rlim, sizeof(struct rlimit) * RLIM_NLIMITS); 502 unlock_task_sighand(task, &flags); 503 504 /* 505 * print the file header 506 */ 507 count += sprintf(&bufptr[count], "%-25s %-20s %-20s %-10s\n", 508 "Limit", "Soft Limit", "Hard Limit", "Units"); 509 510 for (i = 0; i < RLIM_NLIMITS; i++) { 511 if (rlim[i].rlim_cur == RLIM_INFINITY) 512 count += sprintf(&bufptr[count], "%-25s %-20s ", 513 lnames[i].name, "unlimited"); 514 else 515 count += sprintf(&bufptr[count], "%-25s %-20lu ", 516 lnames[i].name, rlim[i].rlim_cur); 517 518 if (rlim[i].rlim_max == RLIM_INFINITY) 519 count += sprintf(&bufptr[count], "%-20s ", "unlimited"); 520 else 521 count += sprintf(&bufptr[count], "%-20lu ", 522 rlim[i].rlim_max); 523 524 if (lnames[i].unit) 525 count += sprintf(&bufptr[count], "%-10s\n", 526 lnames[i].unit); 527 else 528 count += sprintf(&bufptr[count], "\n"); 529 } 530 531 return count; 532 } 533 534 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK 535 static int proc_pid_syscall(struct task_struct *task, char *buffer) 536 { 537 long nr; 538 unsigned long args[6], sp, pc; 539 540 if (task_current_syscall(task, &nr, args, 6, &sp, &pc)) 541 return sprintf(buffer, "running\n"); 542 543 if (nr < 0) 544 return sprintf(buffer, "%ld 0x%lx 0x%lx\n", nr, sp, pc); 545 546 return sprintf(buffer, 547 "%ld 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx\n", 548 nr, 549 args[0], args[1], args[2], args[3], args[4], args[5], 550 sp, pc); 551 } 552 #endif /* CONFIG_HAVE_ARCH_TRACEHOOK */ 553 554 /************************************************************************/ 555 /* Here the fs part begins */ 556 /************************************************************************/ 557 558 /* permission checks */ 559 static int proc_fd_access_allowed(struct inode *inode) 560 { 561 struct task_struct *task; 562 int allowed = 0; 563 /* Allow access to a task's file descriptors if it is us or we 564 * may use ptrace attach to the process and find out that 565 * information. 566 */ 567 task = get_proc_task(inode); 568 if (task) { 569 allowed = ptrace_may_access(task, PTRACE_MODE_READ); 570 put_task_struct(task); 571 } 572 return allowed; 573 } 574 575 static int proc_setattr(struct dentry *dentry, struct iattr *attr) 576 { 577 int error; 578 struct inode *inode = dentry->d_inode; 579 580 if (attr->ia_valid & ATTR_MODE) 581 return -EPERM; 582 583 error = inode_change_ok(inode, attr); 584 if (!error) 585 error = inode_setattr(inode, attr); 586 return error; 587 } 588 589 static const struct inode_operations proc_def_inode_operations = { 590 .setattr = proc_setattr, 591 }; 592 593 static int mounts_open_common(struct inode *inode, struct file *file, 594 const struct seq_operations *op) 595 { 596 struct task_struct *task = get_proc_task(inode); 597 struct nsproxy *nsp; 598 struct mnt_namespace *ns = NULL; 599 struct fs_struct *fs = NULL; 600 struct path root; 601 struct proc_mounts *p; 602 int ret = -EINVAL; 603 604 if (task) { 605 rcu_read_lock(); 606 nsp = task_nsproxy(task); 607 if (nsp) { 608 ns = nsp->mnt_ns; 609 if (ns) 610 get_mnt_ns(ns); 611 } 612 rcu_read_unlock(); 613 if (ns) 614 fs = get_fs_struct(task); 615 put_task_struct(task); 616 } 617 618 if (!ns) 619 goto err; 620 if (!fs) 621 goto err_put_ns; 622 623 read_lock(&fs->lock); 624 root = fs->root; 625 path_get(&root); 626 read_unlock(&fs->lock); 627 put_fs_struct(fs); 628 629 ret = -ENOMEM; 630 p = kmalloc(sizeof(struct proc_mounts), GFP_KERNEL); 631 if (!p) 632 goto err_put_path; 633 634 file->private_data = &p->m; 635 ret = seq_open(file, op); 636 if (ret) 637 goto err_free; 638 639 p->m.private = p; 640 p->ns = ns; 641 p->root = root; 642 p->event = ns->event; 643 644 return 0; 645 646 err_free: 647 kfree(p); 648 err_put_path: 649 path_put(&root); 650 err_put_ns: 651 put_mnt_ns(ns); 652 err: 653 return ret; 654 } 655 656 static int mounts_release(struct inode *inode, struct file *file) 657 { 658 struct proc_mounts *p = file->private_data; 659 path_put(&p->root); 660 put_mnt_ns(p->ns); 661 return seq_release(inode, file); 662 } 663 664 static unsigned mounts_poll(struct file *file, poll_table *wait) 665 { 666 struct proc_mounts *p = file->private_data; 667 struct mnt_namespace *ns = p->ns; 668 unsigned res = 0; 669 670 poll_wait(file, &ns->poll, wait); 671 672 spin_lock(&vfsmount_lock); 673 if (p->event != ns->event) { 674 p->event = ns->event; 675 res = POLLERR; 676 } 677 spin_unlock(&vfsmount_lock); 678 679 return res; 680 } 681 682 static int mounts_open(struct inode *inode, struct file *file) 683 { 684 return mounts_open_common(inode, file, &mounts_op); 685 } 686 687 static const struct file_operations proc_mounts_operations = { 688 .open = mounts_open, 689 .read = seq_read, 690 .llseek = seq_lseek, 691 .release = mounts_release, 692 .poll = mounts_poll, 693 }; 694 695 static int mountinfo_open(struct inode *inode, struct file *file) 696 { 697 return mounts_open_common(inode, file, &mountinfo_op); 698 } 699 700 static const struct file_operations proc_mountinfo_operations = { 701 .open = mountinfo_open, 702 .read = seq_read, 703 .llseek = seq_lseek, 704 .release = mounts_release, 705 .poll = mounts_poll, 706 }; 707 708 static int mountstats_open(struct inode *inode, struct file *file) 709 { 710 return mounts_open_common(inode, file, &mountstats_op); 711 } 712 713 static const struct file_operations proc_mountstats_operations = { 714 .open = mountstats_open, 715 .read = seq_read, 716 .llseek = seq_lseek, 717 .release = mounts_release, 718 }; 719 720 #define PROC_BLOCK_SIZE (3*1024) /* 4K page size but our output routines use some slack for overruns */ 721 722 static ssize_t proc_info_read(struct file * file, char __user * buf, 723 size_t count, loff_t *ppos) 724 { 725 struct inode * inode = file->f_path.dentry->d_inode; 726 unsigned long page; 727 ssize_t length; 728 struct task_struct *task = get_proc_task(inode); 729 730 length = -ESRCH; 731 if (!task) 732 goto out_no_task; 733 734 if (count > PROC_BLOCK_SIZE) 735 count = PROC_BLOCK_SIZE; 736 737 length = -ENOMEM; 738 if (!(page = __get_free_page(GFP_TEMPORARY))) 739 goto out; 740 741 length = PROC_I(inode)->op.proc_read(task, (char*)page); 742 743 if (length >= 0) 744 length = simple_read_from_buffer(buf, count, ppos, (char *)page, length); 745 free_page(page); 746 out: 747 put_task_struct(task); 748 out_no_task: 749 return length; 750 } 751 752 static const struct file_operations proc_info_file_operations = { 753 .read = proc_info_read, 754 }; 755 756 static int proc_single_show(struct seq_file *m, void *v) 757 { 758 struct inode *inode = m->private; 759 struct pid_namespace *ns; 760 struct pid *pid; 761 struct task_struct *task; 762 int ret; 763 764 ns = inode->i_sb->s_fs_info; 765 pid = proc_pid(inode); 766 task = get_pid_task(pid, PIDTYPE_PID); 767 if (!task) 768 return -ESRCH; 769 770 ret = PROC_I(inode)->op.proc_show(m, ns, pid, task); 771 772 put_task_struct(task); 773 return ret; 774 } 775 776 static int proc_single_open(struct inode *inode, struct file *filp) 777 { 778 int ret; 779 ret = single_open(filp, proc_single_show, NULL); 780 if (!ret) { 781 struct seq_file *m = filp->private_data; 782 783 m->private = inode; 784 } 785 return ret; 786 } 787 788 static const struct file_operations proc_single_file_operations = { 789 .open = proc_single_open, 790 .read = seq_read, 791 .llseek = seq_lseek, 792 .release = single_release, 793 }; 794 795 static int mem_open(struct inode* inode, struct file* file) 796 { 797 file->private_data = (void*)((long)current->self_exec_id); 798 return 0; 799 } 800 801 static ssize_t mem_read(struct file * file, char __user * buf, 802 size_t count, loff_t *ppos) 803 { 804 struct task_struct *task = get_proc_task(file->f_path.dentry->d_inode); 805 char *page; 806 unsigned long src = *ppos; 807 int ret = -ESRCH; 808 struct mm_struct *mm; 809 810 if (!task) 811 goto out_no_task; 812 813 if (check_mem_permission(task)) 814 goto out; 815 816 ret = -ENOMEM; 817 page = (char *)__get_free_page(GFP_TEMPORARY); 818 if (!page) 819 goto out; 820 821 ret = 0; 822 823 mm = get_task_mm(task); 824 if (!mm) 825 goto out_free; 826 827 ret = -EIO; 828 829 if (file->private_data != (void*)((long)current->self_exec_id)) 830 goto out_put; 831 832 ret = 0; 833 834 while (count > 0) { 835 int this_len, retval; 836 837 this_len = (count > PAGE_SIZE) ? PAGE_SIZE : count; 838 retval = access_process_vm(task, src, page, this_len, 0); 839 if (!retval || check_mem_permission(task)) { 840 if (!ret) 841 ret = -EIO; 842 break; 843 } 844 845 if (copy_to_user(buf, page, retval)) { 846 ret = -EFAULT; 847 break; 848 } 849 850 ret += retval; 851 src += retval; 852 buf += retval; 853 count -= retval; 854 } 855 *ppos = src; 856 857 out_put: 858 mmput(mm); 859 out_free: 860 free_page((unsigned long) page); 861 out: 862 put_task_struct(task); 863 out_no_task: 864 return ret; 865 } 866 867 #define mem_write NULL 868 869 #ifndef mem_write 870 /* This is a security hazard */ 871 static ssize_t mem_write(struct file * file, const char __user *buf, 872 size_t count, loff_t *ppos) 873 { 874 int copied; 875 char *page; 876 struct task_struct *task = get_proc_task(file->f_path.dentry->d_inode); 877 unsigned long dst = *ppos; 878 879 copied = -ESRCH; 880 if (!task) 881 goto out_no_task; 882 883 if (check_mem_permission(task)) 884 goto out; 885 886 copied = -ENOMEM; 887 page = (char *)__get_free_page(GFP_TEMPORARY); 888 if (!page) 889 goto out; 890 891 copied = 0; 892 while (count > 0) { 893 int this_len, retval; 894 895 this_len = (count > PAGE_SIZE) ? PAGE_SIZE : count; 896 if (copy_from_user(page, buf, this_len)) { 897 copied = -EFAULT; 898 break; 899 } 900 retval = access_process_vm(task, dst, page, this_len, 1); 901 if (!retval) { 902 if (!copied) 903 copied = -EIO; 904 break; 905 } 906 copied += retval; 907 buf += retval; 908 dst += retval; 909 count -= retval; 910 } 911 *ppos = dst; 912 free_page((unsigned long) page); 913 out: 914 put_task_struct(task); 915 out_no_task: 916 return copied; 917 } 918 #endif 919 920 loff_t mem_lseek(struct file *file, loff_t offset, int orig) 921 { 922 switch (orig) { 923 case 0: 924 file->f_pos = offset; 925 break; 926 case 1: 927 file->f_pos += offset; 928 break; 929 default: 930 return -EINVAL; 931 } 932 force_successful_syscall_return(); 933 return file->f_pos; 934 } 935 936 static const struct file_operations proc_mem_operations = { 937 .llseek = mem_lseek, 938 .read = mem_read, 939 .write = mem_write, 940 .open = mem_open, 941 }; 942 943 static ssize_t environ_read(struct file *file, char __user *buf, 944 size_t count, loff_t *ppos) 945 { 946 struct task_struct *task = get_proc_task(file->f_dentry->d_inode); 947 char *page; 948 unsigned long src = *ppos; 949 int ret = -ESRCH; 950 struct mm_struct *mm; 951 952 if (!task) 953 goto out_no_task; 954 955 if (!ptrace_may_access(task, PTRACE_MODE_READ)) 956 goto out; 957 958 ret = -ENOMEM; 959 page = (char *)__get_free_page(GFP_TEMPORARY); 960 if (!page) 961 goto out; 962 963 ret = 0; 964 965 mm = get_task_mm(task); 966 if (!mm) 967 goto out_free; 968 969 while (count > 0) { 970 int this_len, retval, max_len; 971 972 this_len = mm->env_end - (mm->env_start + src); 973 974 if (this_len <= 0) 975 break; 976 977 max_len = (count > PAGE_SIZE) ? PAGE_SIZE : count; 978 this_len = (this_len > max_len) ? max_len : this_len; 979 980 retval = access_process_vm(task, (mm->env_start + src), 981 page, this_len, 0); 982 983 if (retval <= 0) { 984 ret = retval; 985 break; 986 } 987 988 if (copy_to_user(buf, page, retval)) { 989 ret = -EFAULT; 990 break; 991 } 992 993 ret += retval; 994 src += retval; 995 buf += retval; 996 count -= retval; 997 } 998 *ppos = src; 999 1000 mmput(mm); 1001 out_free: 1002 free_page((unsigned long) page); 1003 out: 1004 put_task_struct(task); 1005 out_no_task: 1006 return ret; 1007 } 1008 1009 static const struct file_operations proc_environ_operations = { 1010 .read = environ_read, 1011 }; 1012 1013 static ssize_t oom_adjust_read(struct file *file, char __user *buf, 1014 size_t count, loff_t *ppos) 1015 { 1016 struct task_struct *task = get_proc_task(file->f_path.dentry->d_inode); 1017 char buffer[PROC_NUMBUF]; 1018 size_t len; 1019 int oom_adjust; 1020 1021 if (!task) 1022 return -ESRCH; 1023 oom_adjust = task->oomkilladj; 1024 put_task_struct(task); 1025 1026 len = snprintf(buffer, sizeof(buffer), "%i\n", oom_adjust); 1027 1028 return simple_read_from_buffer(buf, count, ppos, buffer, len); 1029 } 1030 1031 static ssize_t oom_adjust_write(struct file *file, const char __user *buf, 1032 size_t count, loff_t *ppos) 1033 { 1034 struct task_struct *task; 1035 char buffer[PROC_NUMBUF], *end; 1036 int oom_adjust; 1037 1038 memset(buffer, 0, sizeof(buffer)); 1039 if (count > sizeof(buffer) - 1) 1040 count = sizeof(buffer) - 1; 1041 if (copy_from_user(buffer, buf, count)) 1042 return -EFAULT; 1043 oom_adjust = simple_strtol(buffer, &end, 0); 1044 if ((oom_adjust < OOM_ADJUST_MIN || oom_adjust > OOM_ADJUST_MAX) && 1045 oom_adjust != OOM_DISABLE) 1046 return -EINVAL; 1047 if (*end == '\n') 1048 end++; 1049 task = get_proc_task(file->f_path.dentry->d_inode); 1050 if (!task) 1051 return -ESRCH; 1052 if (oom_adjust < task->oomkilladj && !capable(CAP_SYS_RESOURCE)) { 1053 put_task_struct(task); 1054 return -EACCES; 1055 } 1056 task->oomkilladj = oom_adjust; 1057 put_task_struct(task); 1058 if (end - buffer == 0) 1059 return -EIO; 1060 return end - buffer; 1061 } 1062 1063 static const struct file_operations proc_oom_adjust_operations = { 1064 .read = oom_adjust_read, 1065 .write = oom_adjust_write, 1066 }; 1067 1068 #ifdef CONFIG_AUDITSYSCALL 1069 #define TMPBUFLEN 21 1070 static ssize_t proc_loginuid_read(struct file * file, char __user * buf, 1071 size_t count, loff_t *ppos) 1072 { 1073 struct inode * inode = file->f_path.dentry->d_inode; 1074 struct task_struct *task = get_proc_task(inode); 1075 ssize_t length; 1076 char tmpbuf[TMPBUFLEN]; 1077 1078 if (!task) 1079 return -ESRCH; 1080 length = scnprintf(tmpbuf, TMPBUFLEN, "%u", 1081 audit_get_loginuid(task)); 1082 put_task_struct(task); 1083 return simple_read_from_buffer(buf, count, ppos, tmpbuf, length); 1084 } 1085 1086 static ssize_t proc_loginuid_write(struct file * file, const char __user * buf, 1087 size_t count, loff_t *ppos) 1088 { 1089 struct inode * inode = file->f_path.dentry->d_inode; 1090 char *page, *tmp; 1091 ssize_t length; 1092 uid_t loginuid; 1093 1094 if (!capable(CAP_AUDIT_CONTROL)) 1095 return -EPERM; 1096 1097 if (current != pid_task(proc_pid(inode), PIDTYPE_PID)) 1098 return -EPERM; 1099 1100 if (count >= PAGE_SIZE) 1101 count = PAGE_SIZE - 1; 1102 1103 if (*ppos != 0) { 1104 /* No partial writes. */ 1105 return -EINVAL; 1106 } 1107 page = (char*)__get_free_page(GFP_TEMPORARY); 1108 if (!page) 1109 return -ENOMEM; 1110 length = -EFAULT; 1111 if (copy_from_user(page, buf, count)) 1112 goto out_free_page; 1113 1114 page[count] = '\0'; 1115 loginuid = simple_strtoul(page, &tmp, 10); 1116 if (tmp == page) { 1117 length = -EINVAL; 1118 goto out_free_page; 1119 1120 } 1121 length = audit_set_loginuid(current, loginuid); 1122 if (likely(length == 0)) 1123 length = count; 1124 1125 out_free_page: 1126 free_page((unsigned long) page); 1127 return length; 1128 } 1129 1130 static const struct file_operations proc_loginuid_operations = { 1131 .read = proc_loginuid_read, 1132 .write = proc_loginuid_write, 1133 }; 1134 1135 static ssize_t proc_sessionid_read(struct file * file, char __user * buf, 1136 size_t count, loff_t *ppos) 1137 { 1138 struct inode * inode = file->f_path.dentry->d_inode; 1139 struct task_struct *task = get_proc_task(inode); 1140 ssize_t length; 1141 char tmpbuf[TMPBUFLEN]; 1142 1143 if (!task) 1144 return -ESRCH; 1145 length = scnprintf(tmpbuf, TMPBUFLEN, "%u", 1146 audit_get_sessionid(task)); 1147 put_task_struct(task); 1148 return simple_read_from_buffer(buf, count, ppos, tmpbuf, length); 1149 } 1150 1151 static const struct file_operations proc_sessionid_operations = { 1152 .read = proc_sessionid_read, 1153 }; 1154 #endif 1155 1156 #ifdef CONFIG_FAULT_INJECTION 1157 static ssize_t proc_fault_inject_read(struct file * file, char __user * buf, 1158 size_t count, loff_t *ppos) 1159 { 1160 struct task_struct *task = get_proc_task(file->f_dentry->d_inode); 1161 char buffer[PROC_NUMBUF]; 1162 size_t len; 1163 int make_it_fail; 1164 1165 if (!task) 1166 return -ESRCH; 1167 make_it_fail = task->make_it_fail; 1168 put_task_struct(task); 1169 1170 len = snprintf(buffer, sizeof(buffer), "%i\n", make_it_fail); 1171 1172 return simple_read_from_buffer(buf, count, ppos, buffer, len); 1173 } 1174 1175 static ssize_t proc_fault_inject_write(struct file * file, 1176 const char __user * buf, size_t count, loff_t *ppos) 1177 { 1178 struct task_struct *task; 1179 char buffer[PROC_NUMBUF], *end; 1180 int make_it_fail; 1181 1182 if (!capable(CAP_SYS_RESOURCE)) 1183 return -EPERM; 1184 memset(buffer, 0, sizeof(buffer)); 1185 if (count > sizeof(buffer) - 1) 1186 count = sizeof(buffer) - 1; 1187 if (copy_from_user(buffer, buf, count)) 1188 return -EFAULT; 1189 make_it_fail = simple_strtol(buffer, &end, 0); 1190 if (*end == '\n') 1191 end++; 1192 task = get_proc_task(file->f_dentry->d_inode); 1193 if (!task) 1194 return -ESRCH; 1195 task->make_it_fail = make_it_fail; 1196 put_task_struct(task); 1197 if (end - buffer == 0) 1198 return -EIO; 1199 return end - buffer; 1200 } 1201 1202 static const struct file_operations proc_fault_inject_operations = { 1203 .read = proc_fault_inject_read, 1204 .write = proc_fault_inject_write, 1205 }; 1206 #endif 1207 1208 1209 #ifdef CONFIG_SCHED_DEBUG 1210 /* 1211 * Print out various scheduling related per-task fields: 1212 */ 1213 static int sched_show(struct seq_file *m, void *v) 1214 { 1215 struct inode *inode = m->private; 1216 struct task_struct *p; 1217 1218 p = get_proc_task(inode); 1219 if (!p) 1220 return -ESRCH; 1221 proc_sched_show_task(p, m); 1222 1223 put_task_struct(p); 1224 1225 return 0; 1226 } 1227 1228 static ssize_t 1229 sched_write(struct file *file, const char __user *buf, 1230 size_t count, loff_t *offset) 1231 { 1232 struct inode *inode = file->f_path.dentry->d_inode; 1233 struct task_struct *p; 1234 1235 p = get_proc_task(inode); 1236 if (!p) 1237 return -ESRCH; 1238 proc_sched_set_task(p); 1239 1240 put_task_struct(p); 1241 1242 return count; 1243 } 1244 1245 static int sched_open(struct inode *inode, struct file *filp) 1246 { 1247 int ret; 1248 1249 ret = single_open(filp, sched_show, NULL); 1250 if (!ret) { 1251 struct seq_file *m = filp->private_data; 1252 1253 m->private = inode; 1254 } 1255 return ret; 1256 } 1257 1258 static const struct file_operations proc_pid_sched_operations = { 1259 .open = sched_open, 1260 .read = seq_read, 1261 .write = sched_write, 1262 .llseek = seq_lseek, 1263 .release = single_release, 1264 }; 1265 1266 #endif 1267 1268 /* 1269 * We added or removed a vma mapping the executable. The vmas are only mapped 1270 * during exec and are not mapped with the mmap system call. 1271 * Callers must hold down_write() on the mm's mmap_sem for these 1272 */ 1273 void added_exe_file_vma(struct mm_struct *mm) 1274 { 1275 mm->num_exe_file_vmas++; 1276 } 1277 1278 void removed_exe_file_vma(struct mm_struct *mm) 1279 { 1280 mm->num_exe_file_vmas--; 1281 if ((mm->num_exe_file_vmas == 0) && mm->exe_file){ 1282 fput(mm->exe_file); 1283 mm->exe_file = NULL; 1284 } 1285 1286 } 1287 1288 void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file) 1289 { 1290 if (new_exe_file) 1291 get_file(new_exe_file); 1292 if (mm->exe_file) 1293 fput(mm->exe_file); 1294 mm->exe_file = new_exe_file; 1295 mm->num_exe_file_vmas = 0; 1296 } 1297 1298 struct file *get_mm_exe_file(struct mm_struct *mm) 1299 { 1300 struct file *exe_file; 1301 1302 /* We need mmap_sem to protect against races with removal of 1303 * VM_EXECUTABLE vmas */ 1304 down_read(&mm->mmap_sem); 1305 exe_file = mm->exe_file; 1306 if (exe_file) 1307 get_file(exe_file); 1308 up_read(&mm->mmap_sem); 1309 return exe_file; 1310 } 1311 1312 void dup_mm_exe_file(struct mm_struct *oldmm, struct mm_struct *newmm) 1313 { 1314 /* It's safe to write the exe_file pointer without exe_file_lock because 1315 * this is called during fork when the task is not yet in /proc */ 1316 newmm->exe_file = get_mm_exe_file(oldmm); 1317 } 1318 1319 static int proc_exe_link(struct inode *inode, struct path *exe_path) 1320 { 1321 struct task_struct *task; 1322 struct mm_struct *mm; 1323 struct file *exe_file; 1324 1325 task = get_proc_task(inode); 1326 if (!task) 1327 return -ENOENT; 1328 mm = get_task_mm(task); 1329 put_task_struct(task); 1330 if (!mm) 1331 return -ENOENT; 1332 exe_file = get_mm_exe_file(mm); 1333 mmput(mm); 1334 if (exe_file) { 1335 *exe_path = exe_file->f_path; 1336 path_get(&exe_file->f_path); 1337 fput(exe_file); 1338 return 0; 1339 } else 1340 return -ENOENT; 1341 } 1342 1343 static void *proc_pid_follow_link(struct dentry *dentry, struct nameidata *nd) 1344 { 1345 struct inode *inode = dentry->d_inode; 1346 int error = -EACCES; 1347 1348 /* We don't need a base pointer in the /proc filesystem */ 1349 path_put(&nd->path); 1350 1351 /* Are we allowed to snoop on the tasks file descriptors? */ 1352 if (!proc_fd_access_allowed(inode)) 1353 goto out; 1354 1355 error = PROC_I(inode)->op.proc_get_link(inode, &nd->path); 1356 nd->last_type = LAST_BIND; 1357 out: 1358 return ERR_PTR(error); 1359 } 1360 1361 static int do_proc_readlink(struct path *path, char __user *buffer, int buflen) 1362 { 1363 char *tmp = (char*)__get_free_page(GFP_TEMPORARY); 1364 char *pathname; 1365 int len; 1366 1367 if (!tmp) 1368 return -ENOMEM; 1369 1370 pathname = d_path(path, tmp, PAGE_SIZE); 1371 len = PTR_ERR(pathname); 1372 if (IS_ERR(pathname)) 1373 goto out; 1374 len = tmp + PAGE_SIZE - 1 - pathname; 1375 1376 if (len > buflen) 1377 len = buflen; 1378 if (copy_to_user(buffer, pathname, len)) 1379 len = -EFAULT; 1380 out: 1381 free_page((unsigned long)tmp); 1382 return len; 1383 } 1384 1385 static int proc_pid_readlink(struct dentry * dentry, char __user * buffer, int buflen) 1386 { 1387 int error = -EACCES; 1388 struct inode *inode = dentry->d_inode; 1389 struct path path; 1390 1391 /* Are we allowed to snoop on the tasks file descriptors? */ 1392 if (!proc_fd_access_allowed(inode)) 1393 goto out; 1394 1395 error = PROC_I(inode)->op.proc_get_link(inode, &path); 1396 if (error) 1397 goto out; 1398 1399 error = do_proc_readlink(&path, buffer, buflen); 1400 path_put(&path); 1401 out: 1402 return error; 1403 } 1404 1405 static const struct inode_operations proc_pid_link_inode_operations = { 1406 .readlink = proc_pid_readlink, 1407 .follow_link = proc_pid_follow_link, 1408 .setattr = proc_setattr, 1409 }; 1410 1411 1412 /* building an inode */ 1413 1414 static int task_dumpable(struct task_struct *task) 1415 { 1416 int dumpable = 0; 1417 struct mm_struct *mm; 1418 1419 task_lock(task); 1420 mm = task->mm; 1421 if (mm) 1422 dumpable = get_dumpable(mm); 1423 task_unlock(task); 1424 if(dumpable == 1) 1425 return 1; 1426 return 0; 1427 } 1428 1429 1430 static struct inode *proc_pid_make_inode(struct super_block * sb, struct task_struct *task) 1431 { 1432 struct inode * inode; 1433 struct proc_inode *ei; 1434 const struct cred *cred; 1435 1436 /* We need a new inode */ 1437 1438 inode = new_inode(sb); 1439 if (!inode) 1440 goto out; 1441 1442 /* Common stuff */ 1443 ei = PROC_I(inode); 1444 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME; 1445 inode->i_op = &proc_def_inode_operations; 1446 1447 /* 1448 * grab the reference to task. 1449 */ 1450 ei->pid = get_task_pid(task, PIDTYPE_PID); 1451 if (!ei->pid) 1452 goto out_unlock; 1453 1454 if (task_dumpable(task)) { 1455 rcu_read_lock(); 1456 cred = __task_cred(task); 1457 inode->i_uid = cred->euid; 1458 inode->i_gid = cred->egid; 1459 rcu_read_unlock(); 1460 } 1461 security_task_to_inode(task, inode); 1462 1463 out: 1464 return inode; 1465 1466 out_unlock: 1467 iput(inode); 1468 return NULL; 1469 } 1470 1471 static int pid_getattr(struct vfsmount *mnt, struct dentry *dentry, struct kstat *stat) 1472 { 1473 struct inode *inode = dentry->d_inode; 1474 struct task_struct *task; 1475 const struct cred *cred; 1476 1477 generic_fillattr(inode, stat); 1478 1479 rcu_read_lock(); 1480 stat->uid = 0; 1481 stat->gid = 0; 1482 task = pid_task(proc_pid(inode), PIDTYPE_PID); 1483 if (task) { 1484 if ((inode->i_mode == (S_IFDIR|S_IRUGO|S_IXUGO)) || 1485 task_dumpable(task)) { 1486 cred = __task_cred(task); 1487 stat->uid = cred->euid; 1488 stat->gid = cred->egid; 1489 } 1490 } 1491 rcu_read_unlock(); 1492 return 0; 1493 } 1494 1495 /* dentry stuff */ 1496 1497 /* 1498 * Exceptional case: normally we are not allowed to unhash a busy 1499 * directory. In this case, however, we can do it - no aliasing problems 1500 * due to the way we treat inodes. 1501 * 1502 * Rewrite the inode's ownerships here because the owning task may have 1503 * performed a setuid(), etc. 1504 * 1505 * Before the /proc/pid/status file was created the only way to read 1506 * the effective uid of a /process was to stat /proc/pid. Reading 1507 * /proc/pid/status is slow enough that procps and other packages 1508 * kept stating /proc/pid. To keep the rules in /proc simple I have 1509 * made this apply to all per process world readable and executable 1510 * directories. 1511 */ 1512 static int pid_revalidate(struct dentry *dentry, struct nameidata *nd) 1513 { 1514 struct inode *inode = dentry->d_inode; 1515 struct task_struct *task = get_proc_task(inode); 1516 const struct cred *cred; 1517 1518 if (task) { 1519 if ((inode->i_mode == (S_IFDIR|S_IRUGO|S_IXUGO)) || 1520 task_dumpable(task)) { 1521 rcu_read_lock(); 1522 cred = __task_cred(task); 1523 inode->i_uid = cred->euid; 1524 inode->i_gid = cred->egid; 1525 rcu_read_unlock(); 1526 } else { 1527 inode->i_uid = 0; 1528 inode->i_gid = 0; 1529 } 1530 inode->i_mode &= ~(S_ISUID | S_ISGID); 1531 security_task_to_inode(task, inode); 1532 put_task_struct(task); 1533 return 1; 1534 } 1535 d_drop(dentry); 1536 return 0; 1537 } 1538 1539 static int pid_delete_dentry(struct dentry * dentry) 1540 { 1541 /* Is the task we represent dead? 1542 * If so, then don't put the dentry on the lru list, 1543 * kill it immediately. 1544 */ 1545 return !proc_pid(dentry->d_inode)->tasks[PIDTYPE_PID].first; 1546 } 1547 1548 static struct dentry_operations pid_dentry_operations = 1549 { 1550 .d_revalidate = pid_revalidate, 1551 .d_delete = pid_delete_dentry, 1552 }; 1553 1554 /* Lookups */ 1555 1556 typedef struct dentry *instantiate_t(struct inode *, struct dentry *, 1557 struct task_struct *, const void *); 1558 1559 /* 1560 * Fill a directory entry. 1561 * 1562 * If possible create the dcache entry and derive our inode number and 1563 * file type from dcache entry. 1564 * 1565 * Since all of the proc inode numbers are dynamically generated, the inode 1566 * numbers do not exist until the inode is cache. This means creating the 1567 * the dcache entry in readdir is necessary to keep the inode numbers 1568 * reported by readdir in sync with the inode numbers reported 1569 * by stat. 1570 */ 1571 static int proc_fill_cache(struct file *filp, void *dirent, filldir_t filldir, 1572 char *name, int len, 1573 instantiate_t instantiate, struct task_struct *task, const void *ptr) 1574 { 1575 struct dentry *child, *dir = filp->f_path.dentry; 1576 struct inode *inode; 1577 struct qstr qname; 1578 ino_t ino = 0; 1579 unsigned type = DT_UNKNOWN; 1580 1581 qname.name = name; 1582 qname.len = len; 1583 qname.hash = full_name_hash(name, len); 1584 1585 child = d_lookup(dir, &qname); 1586 if (!child) { 1587 struct dentry *new; 1588 new = d_alloc(dir, &qname); 1589 if (new) { 1590 child = instantiate(dir->d_inode, new, task, ptr); 1591 if (child) 1592 dput(new); 1593 else 1594 child = new; 1595 } 1596 } 1597 if (!child || IS_ERR(child) || !child->d_inode) 1598 goto end_instantiate; 1599 inode = child->d_inode; 1600 if (inode) { 1601 ino = inode->i_ino; 1602 type = inode->i_mode >> 12; 1603 } 1604 dput(child); 1605 end_instantiate: 1606 if (!ino) 1607 ino = find_inode_number(dir, &qname); 1608 if (!ino) 1609 ino = 1; 1610 return filldir(dirent, name, len, filp->f_pos, ino, type); 1611 } 1612 1613 static unsigned name_to_int(struct dentry *dentry) 1614 { 1615 const char *name = dentry->d_name.name; 1616 int len = dentry->d_name.len; 1617 unsigned n = 0; 1618 1619 if (len > 1 && *name == '0') 1620 goto out; 1621 while (len-- > 0) { 1622 unsigned c = *name++ - '0'; 1623 if (c > 9) 1624 goto out; 1625 if (n >= (~0U-9)/10) 1626 goto out; 1627 n *= 10; 1628 n += c; 1629 } 1630 return n; 1631 out: 1632 return ~0U; 1633 } 1634 1635 #define PROC_FDINFO_MAX 64 1636 1637 static int proc_fd_info(struct inode *inode, struct path *path, char *info) 1638 { 1639 struct task_struct *task = get_proc_task(inode); 1640 struct files_struct *files = NULL; 1641 struct file *file; 1642 int fd = proc_fd(inode); 1643 1644 if (task) { 1645 files = get_files_struct(task); 1646 put_task_struct(task); 1647 } 1648 if (files) { 1649 /* 1650 * We are not taking a ref to the file structure, so we must 1651 * hold ->file_lock. 1652 */ 1653 spin_lock(&files->file_lock); 1654 file = fcheck_files(files, fd); 1655 if (file) { 1656 if (path) { 1657 *path = file->f_path; 1658 path_get(&file->f_path); 1659 } 1660 if (info) 1661 snprintf(info, PROC_FDINFO_MAX, 1662 "pos:\t%lli\n" 1663 "flags:\t0%o\n", 1664 (long long) file->f_pos, 1665 file->f_flags); 1666 spin_unlock(&files->file_lock); 1667 put_files_struct(files); 1668 return 0; 1669 } 1670 spin_unlock(&files->file_lock); 1671 put_files_struct(files); 1672 } 1673 return -ENOENT; 1674 } 1675 1676 static int proc_fd_link(struct inode *inode, struct path *path) 1677 { 1678 return proc_fd_info(inode, path, NULL); 1679 } 1680 1681 static int tid_fd_revalidate(struct dentry *dentry, struct nameidata *nd) 1682 { 1683 struct inode *inode = dentry->d_inode; 1684 struct task_struct *task = get_proc_task(inode); 1685 int fd = proc_fd(inode); 1686 struct files_struct *files; 1687 const struct cred *cred; 1688 1689 if (task) { 1690 files = get_files_struct(task); 1691 if (files) { 1692 rcu_read_lock(); 1693 if (fcheck_files(files, fd)) { 1694 rcu_read_unlock(); 1695 put_files_struct(files); 1696 if (task_dumpable(task)) { 1697 rcu_read_lock(); 1698 cred = __task_cred(task); 1699 inode->i_uid = cred->euid; 1700 inode->i_gid = cred->egid; 1701 rcu_read_unlock(); 1702 } else { 1703 inode->i_uid = 0; 1704 inode->i_gid = 0; 1705 } 1706 inode->i_mode &= ~(S_ISUID | S_ISGID); 1707 security_task_to_inode(task, inode); 1708 put_task_struct(task); 1709 return 1; 1710 } 1711 rcu_read_unlock(); 1712 put_files_struct(files); 1713 } 1714 put_task_struct(task); 1715 } 1716 d_drop(dentry); 1717 return 0; 1718 } 1719 1720 static struct dentry_operations tid_fd_dentry_operations = 1721 { 1722 .d_revalidate = tid_fd_revalidate, 1723 .d_delete = pid_delete_dentry, 1724 }; 1725 1726 static struct dentry *proc_fd_instantiate(struct inode *dir, 1727 struct dentry *dentry, struct task_struct *task, const void *ptr) 1728 { 1729 unsigned fd = *(const unsigned *)ptr; 1730 struct file *file; 1731 struct files_struct *files; 1732 struct inode *inode; 1733 struct proc_inode *ei; 1734 struct dentry *error = ERR_PTR(-ENOENT); 1735 1736 inode = proc_pid_make_inode(dir->i_sb, task); 1737 if (!inode) 1738 goto out; 1739 ei = PROC_I(inode); 1740 ei->fd = fd; 1741 files = get_files_struct(task); 1742 if (!files) 1743 goto out_iput; 1744 inode->i_mode = S_IFLNK; 1745 1746 /* 1747 * We are not taking a ref to the file structure, so we must 1748 * hold ->file_lock. 1749 */ 1750 spin_lock(&files->file_lock); 1751 file = fcheck_files(files, fd); 1752 if (!file) 1753 goto out_unlock; 1754 if (file->f_mode & FMODE_READ) 1755 inode->i_mode |= S_IRUSR | S_IXUSR; 1756 if (file->f_mode & FMODE_WRITE) 1757 inode->i_mode |= S_IWUSR | S_IXUSR; 1758 spin_unlock(&files->file_lock); 1759 put_files_struct(files); 1760 1761 inode->i_op = &proc_pid_link_inode_operations; 1762 inode->i_size = 64; 1763 ei->op.proc_get_link = proc_fd_link; 1764 dentry->d_op = &tid_fd_dentry_operations; 1765 d_add(dentry, inode); 1766 /* Close the race of the process dying before we return the dentry */ 1767 if (tid_fd_revalidate(dentry, NULL)) 1768 error = NULL; 1769 1770 out: 1771 return error; 1772 out_unlock: 1773 spin_unlock(&files->file_lock); 1774 put_files_struct(files); 1775 out_iput: 1776 iput(inode); 1777 goto out; 1778 } 1779 1780 static struct dentry *proc_lookupfd_common(struct inode *dir, 1781 struct dentry *dentry, 1782 instantiate_t instantiate) 1783 { 1784 struct task_struct *task = get_proc_task(dir); 1785 unsigned fd = name_to_int(dentry); 1786 struct dentry *result = ERR_PTR(-ENOENT); 1787 1788 if (!task) 1789 goto out_no_task; 1790 if (fd == ~0U) 1791 goto out; 1792 1793 result = instantiate(dir, dentry, task, &fd); 1794 out: 1795 put_task_struct(task); 1796 out_no_task: 1797 return result; 1798 } 1799 1800 static int proc_readfd_common(struct file * filp, void * dirent, 1801 filldir_t filldir, instantiate_t instantiate) 1802 { 1803 struct dentry *dentry = filp->f_path.dentry; 1804 struct inode *inode = dentry->d_inode; 1805 struct task_struct *p = get_proc_task(inode); 1806 unsigned int fd, ino; 1807 int retval; 1808 struct files_struct * files; 1809 1810 retval = -ENOENT; 1811 if (!p) 1812 goto out_no_task; 1813 retval = 0; 1814 1815 fd = filp->f_pos; 1816 switch (fd) { 1817 case 0: 1818 if (filldir(dirent, ".", 1, 0, inode->i_ino, DT_DIR) < 0) 1819 goto out; 1820 filp->f_pos++; 1821 case 1: 1822 ino = parent_ino(dentry); 1823 if (filldir(dirent, "..", 2, 1, ino, DT_DIR) < 0) 1824 goto out; 1825 filp->f_pos++; 1826 default: 1827 files = get_files_struct(p); 1828 if (!files) 1829 goto out; 1830 rcu_read_lock(); 1831 for (fd = filp->f_pos-2; 1832 fd < files_fdtable(files)->max_fds; 1833 fd++, filp->f_pos++) { 1834 char name[PROC_NUMBUF]; 1835 int len; 1836 1837 if (!fcheck_files(files, fd)) 1838 continue; 1839 rcu_read_unlock(); 1840 1841 len = snprintf(name, sizeof(name), "%d", fd); 1842 if (proc_fill_cache(filp, dirent, filldir, 1843 name, len, instantiate, 1844 p, &fd) < 0) { 1845 rcu_read_lock(); 1846 break; 1847 } 1848 rcu_read_lock(); 1849 } 1850 rcu_read_unlock(); 1851 put_files_struct(files); 1852 } 1853 out: 1854 put_task_struct(p); 1855 out_no_task: 1856 return retval; 1857 } 1858 1859 static struct dentry *proc_lookupfd(struct inode *dir, struct dentry *dentry, 1860 struct nameidata *nd) 1861 { 1862 return proc_lookupfd_common(dir, dentry, proc_fd_instantiate); 1863 } 1864 1865 static int proc_readfd(struct file *filp, void *dirent, filldir_t filldir) 1866 { 1867 return proc_readfd_common(filp, dirent, filldir, proc_fd_instantiate); 1868 } 1869 1870 static ssize_t proc_fdinfo_read(struct file *file, char __user *buf, 1871 size_t len, loff_t *ppos) 1872 { 1873 char tmp[PROC_FDINFO_MAX]; 1874 int err = proc_fd_info(file->f_path.dentry->d_inode, NULL, tmp); 1875 if (!err) 1876 err = simple_read_from_buffer(buf, len, ppos, tmp, strlen(tmp)); 1877 return err; 1878 } 1879 1880 static const struct file_operations proc_fdinfo_file_operations = { 1881 .open = nonseekable_open, 1882 .read = proc_fdinfo_read, 1883 }; 1884 1885 static const struct file_operations proc_fd_operations = { 1886 .read = generic_read_dir, 1887 .readdir = proc_readfd, 1888 }; 1889 1890 /* 1891 * /proc/pid/fd needs a special permission handler so that a process can still 1892 * access /proc/self/fd after it has executed a setuid(). 1893 */ 1894 static int proc_fd_permission(struct inode *inode, int mask) 1895 { 1896 int rv; 1897 1898 rv = generic_permission(inode, mask, NULL); 1899 if (rv == 0) 1900 return 0; 1901 if (task_pid(current) == proc_pid(inode)) 1902 rv = 0; 1903 return rv; 1904 } 1905 1906 /* 1907 * proc directories can do almost nothing.. 1908 */ 1909 static const struct inode_operations proc_fd_inode_operations = { 1910 .lookup = proc_lookupfd, 1911 .permission = proc_fd_permission, 1912 .setattr = proc_setattr, 1913 }; 1914 1915 static struct dentry *proc_fdinfo_instantiate(struct inode *dir, 1916 struct dentry *dentry, struct task_struct *task, const void *ptr) 1917 { 1918 unsigned fd = *(unsigned *)ptr; 1919 struct inode *inode; 1920 struct proc_inode *ei; 1921 struct dentry *error = ERR_PTR(-ENOENT); 1922 1923 inode = proc_pid_make_inode(dir->i_sb, task); 1924 if (!inode) 1925 goto out; 1926 ei = PROC_I(inode); 1927 ei->fd = fd; 1928 inode->i_mode = S_IFREG | S_IRUSR; 1929 inode->i_fop = &proc_fdinfo_file_operations; 1930 dentry->d_op = &tid_fd_dentry_operations; 1931 d_add(dentry, inode); 1932 /* Close the race of the process dying before we return the dentry */ 1933 if (tid_fd_revalidate(dentry, NULL)) 1934 error = NULL; 1935 1936 out: 1937 return error; 1938 } 1939 1940 static struct dentry *proc_lookupfdinfo(struct inode *dir, 1941 struct dentry *dentry, 1942 struct nameidata *nd) 1943 { 1944 return proc_lookupfd_common(dir, dentry, proc_fdinfo_instantiate); 1945 } 1946 1947 static int proc_readfdinfo(struct file *filp, void *dirent, filldir_t filldir) 1948 { 1949 return proc_readfd_common(filp, dirent, filldir, 1950 proc_fdinfo_instantiate); 1951 } 1952 1953 static const struct file_operations proc_fdinfo_operations = { 1954 .read = generic_read_dir, 1955 .readdir = proc_readfdinfo, 1956 }; 1957 1958 /* 1959 * proc directories can do almost nothing.. 1960 */ 1961 static const struct inode_operations proc_fdinfo_inode_operations = { 1962 .lookup = proc_lookupfdinfo, 1963 .setattr = proc_setattr, 1964 }; 1965 1966 1967 static struct dentry *proc_pident_instantiate(struct inode *dir, 1968 struct dentry *dentry, struct task_struct *task, const void *ptr) 1969 { 1970 const struct pid_entry *p = ptr; 1971 struct inode *inode; 1972 struct proc_inode *ei; 1973 struct dentry *error = ERR_PTR(-EINVAL); 1974 1975 inode = proc_pid_make_inode(dir->i_sb, task); 1976 if (!inode) 1977 goto out; 1978 1979 ei = PROC_I(inode); 1980 inode->i_mode = p->mode; 1981 if (S_ISDIR(inode->i_mode)) 1982 inode->i_nlink = 2; /* Use getattr to fix if necessary */ 1983 if (p->iop) 1984 inode->i_op = p->iop; 1985 if (p->fop) 1986 inode->i_fop = p->fop; 1987 ei->op = p->op; 1988 dentry->d_op = &pid_dentry_operations; 1989 d_add(dentry, inode); 1990 /* Close the race of the process dying before we return the dentry */ 1991 if (pid_revalidate(dentry, NULL)) 1992 error = NULL; 1993 out: 1994 return error; 1995 } 1996 1997 static struct dentry *proc_pident_lookup(struct inode *dir, 1998 struct dentry *dentry, 1999 const struct pid_entry *ents, 2000 unsigned int nents) 2001 { 2002 struct dentry *error; 2003 struct task_struct *task = get_proc_task(dir); 2004 const struct pid_entry *p, *last; 2005 2006 error = ERR_PTR(-ENOENT); 2007 2008 if (!task) 2009 goto out_no_task; 2010 2011 /* 2012 * Yes, it does not scale. And it should not. Don't add 2013 * new entries into /proc/<tgid>/ without very good reasons. 2014 */ 2015 last = &ents[nents - 1]; 2016 for (p = ents; p <= last; p++) { 2017 if (p->len != dentry->d_name.len) 2018 continue; 2019 if (!memcmp(dentry->d_name.name, p->name, p->len)) 2020 break; 2021 } 2022 if (p > last) 2023 goto out; 2024 2025 error = proc_pident_instantiate(dir, dentry, task, p); 2026 out: 2027 put_task_struct(task); 2028 out_no_task: 2029 return error; 2030 } 2031 2032 static int proc_pident_fill_cache(struct file *filp, void *dirent, 2033 filldir_t filldir, struct task_struct *task, const struct pid_entry *p) 2034 { 2035 return proc_fill_cache(filp, dirent, filldir, p->name, p->len, 2036 proc_pident_instantiate, task, p); 2037 } 2038 2039 static int proc_pident_readdir(struct file *filp, 2040 void *dirent, filldir_t filldir, 2041 const struct pid_entry *ents, unsigned int nents) 2042 { 2043 int i; 2044 struct dentry *dentry = filp->f_path.dentry; 2045 struct inode *inode = dentry->d_inode; 2046 struct task_struct *task = get_proc_task(inode); 2047 const struct pid_entry *p, *last; 2048 ino_t ino; 2049 int ret; 2050 2051 ret = -ENOENT; 2052 if (!task) 2053 goto out_no_task; 2054 2055 ret = 0; 2056 i = filp->f_pos; 2057 switch (i) { 2058 case 0: 2059 ino = inode->i_ino; 2060 if (filldir(dirent, ".", 1, i, ino, DT_DIR) < 0) 2061 goto out; 2062 i++; 2063 filp->f_pos++; 2064 /* fall through */ 2065 case 1: 2066 ino = parent_ino(dentry); 2067 if (filldir(dirent, "..", 2, i, ino, DT_DIR) < 0) 2068 goto out; 2069 i++; 2070 filp->f_pos++; 2071 /* fall through */ 2072 default: 2073 i -= 2; 2074 if (i >= nents) { 2075 ret = 1; 2076 goto out; 2077 } 2078 p = ents + i; 2079 last = &ents[nents - 1]; 2080 while (p <= last) { 2081 if (proc_pident_fill_cache(filp, dirent, filldir, task, p) < 0) 2082 goto out; 2083 filp->f_pos++; 2084 p++; 2085 } 2086 } 2087 2088 ret = 1; 2089 out: 2090 put_task_struct(task); 2091 out_no_task: 2092 return ret; 2093 } 2094 2095 #ifdef CONFIG_SECURITY 2096 static ssize_t proc_pid_attr_read(struct file * file, char __user * buf, 2097 size_t count, loff_t *ppos) 2098 { 2099 struct inode * inode = file->f_path.dentry->d_inode; 2100 char *p = NULL; 2101 ssize_t length; 2102 struct task_struct *task = get_proc_task(inode); 2103 2104 if (!task) 2105 return -ESRCH; 2106 2107 length = security_getprocattr(task, 2108 (char*)file->f_path.dentry->d_name.name, 2109 &p); 2110 put_task_struct(task); 2111 if (length > 0) 2112 length = simple_read_from_buffer(buf, count, ppos, p, length); 2113 kfree(p); 2114 return length; 2115 } 2116 2117 static ssize_t proc_pid_attr_write(struct file * file, const char __user * buf, 2118 size_t count, loff_t *ppos) 2119 { 2120 struct inode * inode = file->f_path.dentry->d_inode; 2121 char *page; 2122 ssize_t length; 2123 struct task_struct *task = get_proc_task(inode); 2124 2125 length = -ESRCH; 2126 if (!task) 2127 goto out_no_task; 2128 if (count > PAGE_SIZE) 2129 count = PAGE_SIZE; 2130 2131 /* No partial writes. */ 2132 length = -EINVAL; 2133 if (*ppos != 0) 2134 goto out; 2135 2136 length = -ENOMEM; 2137 page = (char*)__get_free_page(GFP_TEMPORARY); 2138 if (!page) 2139 goto out; 2140 2141 length = -EFAULT; 2142 if (copy_from_user(page, buf, count)) 2143 goto out_free; 2144 2145 length = security_setprocattr(task, 2146 (char*)file->f_path.dentry->d_name.name, 2147 (void*)page, count); 2148 out_free: 2149 free_page((unsigned long) page); 2150 out: 2151 put_task_struct(task); 2152 out_no_task: 2153 return length; 2154 } 2155 2156 static const struct file_operations proc_pid_attr_operations = { 2157 .read = proc_pid_attr_read, 2158 .write = proc_pid_attr_write, 2159 }; 2160 2161 static const struct pid_entry attr_dir_stuff[] = { 2162 REG("current", S_IRUGO|S_IWUGO, proc_pid_attr_operations), 2163 REG("prev", S_IRUGO, proc_pid_attr_operations), 2164 REG("exec", S_IRUGO|S_IWUGO, proc_pid_attr_operations), 2165 REG("fscreate", S_IRUGO|S_IWUGO, proc_pid_attr_operations), 2166 REG("keycreate", S_IRUGO|S_IWUGO, proc_pid_attr_operations), 2167 REG("sockcreate", S_IRUGO|S_IWUGO, proc_pid_attr_operations), 2168 }; 2169 2170 static int proc_attr_dir_readdir(struct file * filp, 2171 void * dirent, filldir_t filldir) 2172 { 2173 return proc_pident_readdir(filp,dirent,filldir, 2174 attr_dir_stuff,ARRAY_SIZE(attr_dir_stuff)); 2175 } 2176 2177 static const struct file_operations proc_attr_dir_operations = { 2178 .read = generic_read_dir, 2179 .readdir = proc_attr_dir_readdir, 2180 }; 2181 2182 static struct dentry *proc_attr_dir_lookup(struct inode *dir, 2183 struct dentry *dentry, struct nameidata *nd) 2184 { 2185 return proc_pident_lookup(dir, dentry, 2186 attr_dir_stuff, ARRAY_SIZE(attr_dir_stuff)); 2187 } 2188 2189 static const struct inode_operations proc_attr_dir_inode_operations = { 2190 .lookup = proc_attr_dir_lookup, 2191 .getattr = pid_getattr, 2192 .setattr = proc_setattr, 2193 }; 2194 2195 #endif 2196 2197 #if defined(USE_ELF_CORE_DUMP) && defined(CONFIG_ELF_CORE) 2198 static ssize_t proc_coredump_filter_read(struct file *file, char __user *buf, 2199 size_t count, loff_t *ppos) 2200 { 2201 struct task_struct *task = get_proc_task(file->f_dentry->d_inode); 2202 struct mm_struct *mm; 2203 char buffer[PROC_NUMBUF]; 2204 size_t len; 2205 int ret; 2206 2207 if (!task) 2208 return -ESRCH; 2209 2210 ret = 0; 2211 mm = get_task_mm(task); 2212 if (mm) { 2213 len = snprintf(buffer, sizeof(buffer), "%08lx\n", 2214 ((mm->flags & MMF_DUMP_FILTER_MASK) >> 2215 MMF_DUMP_FILTER_SHIFT)); 2216 mmput(mm); 2217 ret = simple_read_from_buffer(buf, count, ppos, buffer, len); 2218 } 2219 2220 put_task_struct(task); 2221 2222 return ret; 2223 } 2224 2225 static ssize_t proc_coredump_filter_write(struct file *file, 2226 const char __user *buf, 2227 size_t count, 2228 loff_t *ppos) 2229 { 2230 struct task_struct *task; 2231 struct mm_struct *mm; 2232 char buffer[PROC_NUMBUF], *end; 2233 unsigned int val; 2234 int ret; 2235 int i; 2236 unsigned long mask; 2237 2238 ret = -EFAULT; 2239 memset(buffer, 0, sizeof(buffer)); 2240 if (count > sizeof(buffer) - 1) 2241 count = sizeof(buffer) - 1; 2242 if (copy_from_user(buffer, buf, count)) 2243 goto out_no_task; 2244 2245 ret = -EINVAL; 2246 val = (unsigned int)simple_strtoul(buffer, &end, 0); 2247 if (*end == '\n') 2248 end++; 2249 if (end - buffer == 0) 2250 goto out_no_task; 2251 2252 ret = -ESRCH; 2253 task = get_proc_task(file->f_dentry->d_inode); 2254 if (!task) 2255 goto out_no_task; 2256 2257 ret = end - buffer; 2258 mm = get_task_mm(task); 2259 if (!mm) 2260 goto out_no_mm; 2261 2262 for (i = 0, mask = 1; i < MMF_DUMP_FILTER_BITS; i++, mask <<= 1) { 2263 if (val & mask) 2264 set_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags); 2265 else 2266 clear_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags); 2267 } 2268 2269 mmput(mm); 2270 out_no_mm: 2271 put_task_struct(task); 2272 out_no_task: 2273 return ret; 2274 } 2275 2276 static const struct file_operations proc_coredump_filter_operations = { 2277 .read = proc_coredump_filter_read, 2278 .write = proc_coredump_filter_write, 2279 }; 2280 #endif 2281 2282 /* 2283 * /proc/self: 2284 */ 2285 static int proc_self_readlink(struct dentry *dentry, char __user *buffer, 2286 int buflen) 2287 { 2288 struct pid_namespace *ns = dentry->d_sb->s_fs_info; 2289 pid_t tgid = task_tgid_nr_ns(current, ns); 2290 char tmp[PROC_NUMBUF]; 2291 if (!tgid) 2292 return -ENOENT; 2293 sprintf(tmp, "%d", tgid); 2294 return vfs_readlink(dentry,buffer,buflen,tmp); 2295 } 2296 2297 static void *proc_self_follow_link(struct dentry *dentry, struct nameidata *nd) 2298 { 2299 struct pid_namespace *ns = dentry->d_sb->s_fs_info; 2300 pid_t tgid = task_tgid_nr_ns(current, ns); 2301 char tmp[PROC_NUMBUF]; 2302 if (!tgid) 2303 return ERR_PTR(-ENOENT); 2304 sprintf(tmp, "%d", task_tgid_nr_ns(current, ns)); 2305 return ERR_PTR(vfs_follow_link(nd,tmp)); 2306 } 2307 2308 static const struct inode_operations proc_self_inode_operations = { 2309 .readlink = proc_self_readlink, 2310 .follow_link = proc_self_follow_link, 2311 }; 2312 2313 /* 2314 * proc base 2315 * 2316 * These are the directory entries in the root directory of /proc 2317 * that properly belong to the /proc filesystem, as they describe 2318 * describe something that is process related. 2319 */ 2320 static const struct pid_entry proc_base_stuff[] = { 2321 NOD("self", S_IFLNK|S_IRWXUGO, 2322 &proc_self_inode_operations, NULL, {}), 2323 }; 2324 2325 /* 2326 * Exceptional case: normally we are not allowed to unhash a busy 2327 * directory. In this case, however, we can do it - no aliasing problems 2328 * due to the way we treat inodes. 2329 */ 2330 static int proc_base_revalidate(struct dentry *dentry, struct nameidata *nd) 2331 { 2332 struct inode *inode = dentry->d_inode; 2333 struct task_struct *task = get_proc_task(inode); 2334 if (task) { 2335 put_task_struct(task); 2336 return 1; 2337 } 2338 d_drop(dentry); 2339 return 0; 2340 } 2341 2342 static struct dentry_operations proc_base_dentry_operations = 2343 { 2344 .d_revalidate = proc_base_revalidate, 2345 .d_delete = pid_delete_dentry, 2346 }; 2347 2348 static struct dentry *proc_base_instantiate(struct inode *dir, 2349 struct dentry *dentry, struct task_struct *task, const void *ptr) 2350 { 2351 const struct pid_entry *p = ptr; 2352 struct inode *inode; 2353 struct proc_inode *ei; 2354 struct dentry *error = ERR_PTR(-EINVAL); 2355 2356 /* Allocate the inode */ 2357 error = ERR_PTR(-ENOMEM); 2358 inode = new_inode(dir->i_sb); 2359 if (!inode) 2360 goto out; 2361 2362 /* Initialize the inode */ 2363 ei = PROC_I(inode); 2364 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME; 2365 2366 /* 2367 * grab the reference to the task. 2368 */ 2369 ei->pid = get_task_pid(task, PIDTYPE_PID); 2370 if (!ei->pid) 2371 goto out_iput; 2372 2373 inode->i_mode = p->mode; 2374 if (S_ISDIR(inode->i_mode)) 2375 inode->i_nlink = 2; 2376 if (S_ISLNK(inode->i_mode)) 2377 inode->i_size = 64; 2378 if (p->iop) 2379 inode->i_op = p->iop; 2380 if (p->fop) 2381 inode->i_fop = p->fop; 2382 ei->op = p->op; 2383 dentry->d_op = &proc_base_dentry_operations; 2384 d_add(dentry, inode); 2385 error = NULL; 2386 out: 2387 return error; 2388 out_iput: 2389 iput(inode); 2390 goto out; 2391 } 2392 2393 static struct dentry *proc_base_lookup(struct inode *dir, struct dentry *dentry) 2394 { 2395 struct dentry *error; 2396 struct task_struct *task = get_proc_task(dir); 2397 const struct pid_entry *p, *last; 2398 2399 error = ERR_PTR(-ENOENT); 2400 2401 if (!task) 2402 goto out_no_task; 2403 2404 /* Lookup the directory entry */ 2405 last = &proc_base_stuff[ARRAY_SIZE(proc_base_stuff) - 1]; 2406 for (p = proc_base_stuff; p <= last; p++) { 2407 if (p->len != dentry->d_name.len) 2408 continue; 2409 if (!memcmp(dentry->d_name.name, p->name, p->len)) 2410 break; 2411 } 2412 if (p > last) 2413 goto out; 2414 2415 error = proc_base_instantiate(dir, dentry, task, p); 2416 2417 out: 2418 put_task_struct(task); 2419 out_no_task: 2420 return error; 2421 } 2422 2423 static int proc_base_fill_cache(struct file *filp, void *dirent, 2424 filldir_t filldir, struct task_struct *task, const struct pid_entry *p) 2425 { 2426 return proc_fill_cache(filp, dirent, filldir, p->name, p->len, 2427 proc_base_instantiate, task, p); 2428 } 2429 2430 #ifdef CONFIG_TASK_IO_ACCOUNTING 2431 static int do_io_accounting(struct task_struct *task, char *buffer, int whole) 2432 { 2433 struct task_io_accounting acct = task->ioac; 2434 unsigned long flags; 2435 2436 if (whole && lock_task_sighand(task, &flags)) { 2437 struct task_struct *t = task; 2438 2439 task_io_accounting_add(&acct, &task->signal->ioac); 2440 while_each_thread(task, t) 2441 task_io_accounting_add(&acct, &t->ioac); 2442 2443 unlock_task_sighand(task, &flags); 2444 } 2445 return sprintf(buffer, 2446 "rchar: %llu\n" 2447 "wchar: %llu\n" 2448 "syscr: %llu\n" 2449 "syscw: %llu\n" 2450 "read_bytes: %llu\n" 2451 "write_bytes: %llu\n" 2452 "cancelled_write_bytes: %llu\n", 2453 (unsigned long long)acct.rchar, 2454 (unsigned long long)acct.wchar, 2455 (unsigned long long)acct.syscr, 2456 (unsigned long long)acct.syscw, 2457 (unsigned long long)acct.read_bytes, 2458 (unsigned long long)acct.write_bytes, 2459 (unsigned long long)acct.cancelled_write_bytes); 2460 } 2461 2462 static int proc_tid_io_accounting(struct task_struct *task, char *buffer) 2463 { 2464 return do_io_accounting(task, buffer, 0); 2465 } 2466 2467 static int proc_tgid_io_accounting(struct task_struct *task, char *buffer) 2468 { 2469 return do_io_accounting(task, buffer, 1); 2470 } 2471 #endif /* CONFIG_TASK_IO_ACCOUNTING */ 2472 2473 static int proc_pid_personality(struct seq_file *m, struct pid_namespace *ns, 2474 struct pid *pid, struct task_struct *task) 2475 { 2476 seq_printf(m, "%08x\n", task->personality); 2477 return 0; 2478 } 2479 2480 /* 2481 * Thread groups 2482 */ 2483 static const struct file_operations proc_task_operations; 2484 static const struct inode_operations proc_task_inode_operations; 2485 2486 static const struct pid_entry tgid_base_stuff[] = { 2487 DIR("task", S_IRUGO|S_IXUGO, proc_task_inode_operations, proc_task_operations), 2488 DIR("fd", S_IRUSR|S_IXUSR, proc_fd_inode_operations, proc_fd_operations), 2489 DIR("fdinfo", S_IRUSR|S_IXUSR, proc_fdinfo_inode_operations, proc_fdinfo_operations), 2490 #ifdef CONFIG_NET 2491 DIR("net", S_IRUGO|S_IXUGO, proc_net_inode_operations, proc_net_operations), 2492 #endif 2493 REG("environ", S_IRUSR, proc_environ_operations), 2494 INF("auxv", S_IRUSR, proc_pid_auxv), 2495 ONE("status", S_IRUGO, proc_pid_status), 2496 ONE("personality", S_IRUSR, proc_pid_personality), 2497 INF("limits", S_IRUSR, proc_pid_limits), 2498 #ifdef CONFIG_SCHED_DEBUG 2499 REG("sched", S_IRUGO|S_IWUSR, proc_pid_sched_operations), 2500 #endif 2501 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK 2502 INF("syscall", S_IRUSR, proc_pid_syscall), 2503 #endif 2504 INF("cmdline", S_IRUGO, proc_pid_cmdline), 2505 ONE("stat", S_IRUGO, proc_tgid_stat), 2506 ONE("statm", S_IRUGO, proc_pid_statm), 2507 REG("maps", S_IRUGO, proc_maps_operations), 2508 #ifdef CONFIG_NUMA 2509 REG("numa_maps", S_IRUGO, proc_numa_maps_operations), 2510 #endif 2511 REG("mem", S_IRUSR|S_IWUSR, proc_mem_operations), 2512 LNK("cwd", proc_cwd_link), 2513 LNK("root", proc_root_link), 2514 LNK("exe", proc_exe_link), 2515 REG("mounts", S_IRUGO, proc_mounts_operations), 2516 REG("mountinfo", S_IRUGO, proc_mountinfo_operations), 2517 REG("mountstats", S_IRUSR, proc_mountstats_operations), 2518 #ifdef CONFIG_PROC_PAGE_MONITOR 2519 REG("clear_refs", S_IWUSR, proc_clear_refs_operations), 2520 REG("smaps", S_IRUGO, proc_smaps_operations), 2521 REG("pagemap", S_IRUSR, proc_pagemap_operations), 2522 #endif 2523 #ifdef CONFIG_SECURITY 2524 DIR("attr", S_IRUGO|S_IXUGO, proc_attr_dir_inode_operations, proc_attr_dir_operations), 2525 #endif 2526 #ifdef CONFIG_KALLSYMS 2527 INF("wchan", S_IRUGO, proc_pid_wchan), 2528 #endif 2529 #ifdef CONFIG_STACKTRACE 2530 ONE("stack", S_IRUSR, proc_pid_stack), 2531 #endif 2532 #ifdef CONFIG_SCHEDSTATS 2533 INF("schedstat", S_IRUGO, proc_pid_schedstat), 2534 #endif 2535 #ifdef CONFIG_LATENCYTOP 2536 REG("latency", S_IRUGO, proc_lstats_operations), 2537 #endif 2538 #ifdef CONFIG_PROC_PID_CPUSET 2539 REG("cpuset", S_IRUGO, proc_cpuset_operations), 2540 #endif 2541 #ifdef CONFIG_CGROUPS 2542 REG("cgroup", S_IRUGO, proc_cgroup_operations), 2543 #endif 2544 INF("oom_score", S_IRUGO, proc_oom_score), 2545 REG("oom_adj", S_IRUGO|S_IWUSR, proc_oom_adjust_operations), 2546 #ifdef CONFIG_AUDITSYSCALL 2547 REG("loginuid", S_IWUSR|S_IRUGO, proc_loginuid_operations), 2548 REG("sessionid", S_IRUGO, proc_sessionid_operations), 2549 #endif 2550 #ifdef CONFIG_FAULT_INJECTION 2551 REG("make-it-fail", S_IRUGO|S_IWUSR, proc_fault_inject_operations), 2552 #endif 2553 #if defined(USE_ELF_CORE_DUMP) && defined(CONFIG_ELF_CORE) 2554 REG("coredump_filter", S_IRUGO|S_IWUSR, proc_coredump_filter_operations), 2555 #endif 2556 #ifdef CONFIG_TASK_IO_ACCOUNTING 2557 INF("io", S_IRUGO, proc_tgid_io_accounting), 2558 #endif 2559 }; 2560 2561 static int proc_tgid_base_readdir(struct file * filp, 2562 void * dirent, filldir_t filldir) 2563 { 2564 return proc_pident_readdir(filp,dirent,filldir, 2565 tgid_base_stuff,ARRAY_SIZE(tgid_base_stuff)); 2566 } 2567 2568 static const struct file_operations proc_tgid_base_operations = { 2569 .read = generic_read_dir, 2570 .readdir = proc_tgid_base_readdir, 2571 }; 2572 2573 static struct dentry *proc_tgid_base_lookup(struct inode *dir, struct dentry *dentry, struct nameidata *nd){ 2574 return proc_pident_lookup(dir, dentry, 2575 tgid_base_stuff, ARRAY_SIZE(tgid_base_stuff)); 2576 } 2577 2578 static const struct inode_operations proc_tgid_base_inode_operations = { 2579 .lookup = proc_tgid_base_lookup, 2580 .getattr = pid_getattr, 2581 .setattr = proc_setattr, 2582 }; 2583 2584 static void proc_flush_task_mnt(struct vfsmount *mnt, pid_t pid, pid_t tgid) 2585 { 2586 struct dentry *dentry, *leader, *dir; 2587 char buf[PROC_NUMBUF]; 2588 struct qstr name; 2589 2590 name.name = buf; 2591 name.len = snprintf(buf, sizeof(buf), "%d", pid); 2592 dentry = d_hash_and_lookup(mnt->mnt_root, &name); 2593 if (dentry) { 2594 if (!(current->flags & PF_EXITING)) 2595 shrink_dcache_parent(dentry); 2596 d_drop(dentry); 2597 dput(dentry); 2598 } 2599 2600 if (tgid == 0) 2601 goto out; 2602 2603 name.name = buf; 2604 name.len = snprintf(buf, sizeof(buf), "%d", tgid); 2605 leader = d_hash_and_lookup(mnt->mnt_root, &name); 2606 if (!leader) 2607 goto out; 2608 2609 name.name = "task"; 2610 name.len = strlen(name.name); 2611 dir = d_hash_and_lookup(leader, &name); 2612 if (!dir) 2613 goto out_put_leader; 2614 2615 name.name = buf; 2616 name.len = snprintf(buf, sizeof(buf), "%d", pid); 2617 dentry = d_hash_and_lookup(dir, &name); 2618 if (dentry) { 2619 shrink_dcache_parent(dentry); 2620 d_drop(dentry); 2621 dput(dentry); 2622 } 2623 2624 dput(dir); 2625 out_put_leader: 2626 dput(leader); 2627 out: 2628 return; 2629 } 2630 2631 /** 2632 * proc_flush_task - Remove dcache entries for @task from the /proc dcache. 2633 * @task: task that should be flushed. 2634 * 2635 * When flushing dentries from proc, one needs to flush them from global 2636 * proc (proc_mnt) and from all the namespaces' procs this task was seen 2637 * in. This call is supposed to do all of this job. 2638 * 2639 * Looks in the dcache for 2640 * /proc/@pid 2641 * /proc/@tgid/task/@pid 2642 * if either directory is present flushes it and all of it'ts children 2643 * from the dcache. 2644 * 2645 * It is safe and reasonable to cache /proc entries for a task until 2646 * that task exits. After that they just clog up the dcache with 2647 * useless entries, possibly causing useful dcache entries to be 2648 * flushed instead. This routine is proved to flush those useless 2649 * dcache entries at process exit time. 2650 * 2651 * NOTE: This routine is just an optimization so it does not guarantee 2652 * that no dcache entries will exist at process exit time it 2653 * just makes it very unlikely that any will persist. 2654 */ 2655 2656 void proc_flush_task(struct task_struct *task) 2657 { 2658 int i; 2659 struct pid *pid, *tgid = NULL; 2660 struct upid *upid; 2661 2662 pid = task_pid(task); 2663 if (thread_group_leader(task)) 2664 tgid = task_tgid(task); 2665 2666 for (i = 0; i <= pid->level; i++) { 2667 upid = &pid->numbers[i]; 2668 proc_flush_task_mnt(upid->ns->proc_mnt, upid->nr, 2669 tgid ? tgid->numbers[i].nr : 0); 2670 } 2671 2672 upid = &pid->numbers[pid->level]; 2673 if (upid->nr == 1) 2674 pid_ns_release_proc(upid->ns); 2675 } 2676 2677 static struct dentry *proc_pid_instantiate(struct inode *dir, 2678 struct dentry * dentry, 2679 struct task_struct *task, const void *ptr) 2680 { 2681 struct dentry *error = ERR_PTR(-ENOENT); 2682 struct inode *inode; 2683 2684 inode = proc_pid_make_inode(dir->i_sb, task); 2685 if (!inode) 2686 goto out; 2687 2688 inode->i_mode = S_IFDIR|S_IRUGO|S_IXUGO; 2689 inode->i_op = &proc_tgid_base_inode_operations; 2690 inode->i_fop = &proc_tgid_base_operations; 2691 inode->i_flags|=S_IMMUTABLE; 2692 2693 inode->i_nlink = 2 + pid_entry_count_dirs(tgid_base_stuff, 2694 ARRAY_SIZE(tgid_base_stuff)); 2695 2696 dentry->d_op = &pid_dentry_operations; 2697 2698 d_add(dentry, inode); 2699 /* Close the race of the process dying before we return the dentry */ 2700 if (pid_revalidate(dentry, NULL)) 2701 error = NULL; 2702 out: 2703 return error; 2704 } 2705 2706 struct dentry *proc_pid_lookup(struct inode *dir, struct dentry * dentry, struct nameidata *nd) 2707 { 2708 struct dentry *result = ERR_PTR(-ENOENT); 2709 struct task_struct *task; 2710 unsigned tgid; 2711 struct pid_namespace *ns; 2712 2713 result = proc_base_lookup(dir, dentry); 2714 if (!IS_ERR(result) || PTR_ERR(result) != -ENOENT) 2715 goto out; 2716 2717 tgid = name_to_int(dentry); 2718 if (tgid == ~0U) 2719 goto out; 2720 2721 ns = dentry->d_sb->s_fs_info; 2722 rcu_read_lock(); 2723 task = find_task_by_pid_ns(tgid, ns); 2724 if (task) 2725 get_task_struct(task); 2726 rcu_read_unlock(); 2727 if (!task) 2728 goto out; 2729 2730 result = proc_pid_instantiate(dir, dentry, task, NULL); 2731 put_task_struct(task); 2732 out: 2733 return result; 2734 } 2735 2736 /* 2737 * Find the first task with tgid >= tgid 2738 * 2739 */ 2740 struct tgid_iter { 2741 unsigned int tgid; 2742 struct task_struct *task; 2743 }; 2744 static struct tgid_iter next_tgid(struct pid_namespace *ns, struct tgid_iter iter) 2745 { 2746 struct pid *pid; 2747 2748 if (iter.task) 2749 put_task_struct(iter.task); 2750 rcu_read_lock(); 2751 retry: 2752 iter.task = NULL; 2753 pid = find_ge_pid(iter.tgid, ns); 2754 if (pid) { 2755 iter.tgid = pid_nr_ns(pid, ns); 2756 iter.task = pid_task(pid, PIDTYPE_PID); 2757 /* What we to know is if the pid we have find is the 2758 * pid of a thread_group_leader. Testing for task 2759 * being a thread_group_leader is the obvious thing 2760 * todo but there is a window when it fails, due to 2761 * the pid transfer logic in de_thread. 2762 * 2763 * So we perform the straight forward test of seeing 2764 * if the pid we have found is the pid of a thread 2765 * group leader, and don't worry if the task we have 2766 * found doesn't happen to be a thread group leader. 2767 * As we don't care in the case of readdir. 2768 */ 2769 if (!iter.task || !has_group_leader_pid(iter.task)) { 2770 iter.tgid += 1; 2771 goto retry; 2772 } 2773 get_task_struct(iter.task); 2774 } 2775 rcu_read_unlock(); 2776 return iter; 2777 } 2778 2779 #define TGID_OFFSET (FIRST_PROCESS_ENTRY + ARRAY_SIZE(proc_base_stuff)) 2780 2781 static int proc_pid_fill_cache(struct file *filp, void *dirent, filldir_t filldir, 2782 struct tgid_iter iter) 2783 { 2784 char name[PROC_NUMBUF]; 2785 int len = snprintf(name, sizeof(name), "%d", iter.tgid); 2786 return proc_fill_cache(filp, dirent, filldir, name, len, 2787 proc_pid_instantiate, iter.task, NULL); 2788 } 2789 2790 /* for the /proc/ directory itself, after non-process stuff has been done */ 2791 int proc_pid_readdir(struct file * filp, void * dirent, filldir_t filldir) 2792 { 2793 unsigned int nr = filp->f_pos - FIRST_PROCESS_ENTRY; 2794 struct task_struct *reaper = get_proc_task(filp->f_path.dentry->d_inode); 2795 struct tgid_iter iter; 2796 struct pid_namespace *ns; 2797 2798 if (!reaper) 2799 goto out_no_task; 2800 2801 for (; nr < ARRAY_SIZE(proc_base_stuff); filp->f_pos++, nr++) { 2802 const struct pid_entry *p = &proc_base_stuff[nr]; 2803 if (proc_base_fill_cache(filp, dirent, filldir, reaper, p) < 0) 2804 goto out; 2805 } 2806 2807 ns = filp->f_dentry->d_sb->s_fs_info; 2808 iter.task = NULL; 2809 iter.tgid = filp->f_pos - TGID_OFFSET; 2810 for (iter = next_tgid(ns, iter); 2811 iter.task; 2812 iter.tgid += 1, iter = next_tgid(ns, iter)) { 2813 filp->f_pos = iter.tgid + TGID_OFFSET; 2814 if (proc_pid_fill_cache(filp, dirent, filldir, iter) < 0) { 2815 put_task_struct(iter.task); 2816 goto out; 2817 } 2818 } 2819 filp->f_pos = PID_MAX_LIMIT + TGID_OFFSET; 2820 out: 2821 put_task_struct(reaper); 2822 out_no_task: 2823 return 0; 2824 } 2825 2826 /* 2827 * Tasks 2828 */ 2829 static const struct pid_entry tid_base_stuff[] = { 2830 DIR("fd", S_IRUSR|S_IXUSR, proc_fd_inode_operations, proc_fd_operations), 2831 DIR("fdinfo", S_IRUSR|S_IXUSR, proc_fdinfo_inode_operations, proc_fd_operations), 2832 REG("environ", S_IRUSR, proc_environ_operations), 2833 INF("auxv", S_IRUSR, proc_pid_auxv), 2834 ONE("status", S_IRUGO, proc_pid_status), 2835 ONE("personality", S_IRUSR, proc_pid_personality), 2836 INF("limits", S_IRUSR, proc_pid_limits), 2837 #ifdef CONFIG_SCHED_DEBUG 2838 REG("sched", S_IRUGO|S_IWUSR, proc_pid_sched_operations), 2839 #endif 2840 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK 2841 INF("syscall", S_IRUSR, proc_pid_syscall), 2842 #endif 2843 INF("cmdline", S_IRUGO, proc_pid_cmdline), 2844 ONE("stat", S_IRUGO, proc_tid_stat), 2845 ONE("statm", S_IRUGO, proc_pid_statm), 2846 REG("maps", S_IRUGO, proc_maps_operations), 2847 #ifdef CONFIG_NUMA 2848 REG("numa_maps", S_IRUGO, proc_numa_maps_operations), 2849 #endif 2850 REG("mem", S_IRUSR|S_IWUSR, proc_mem_operations), 2851 LNK("cwd", proc_cwd_link), 2852 LNK("root", proc_root_link), 2853 LNK("exe", proc_exe_link), 2854 REG("mounts", S_IRUGO, proc_mounts_operations), 2855 REG("mountinfo", S_IRUGO, proc_mountinfo_operations), 2856 #ifdef CONFIG_PROC_PAGE_MONITOR 2857 REG("clear_refs", S_IWUSR, proc_clear_refs_operations), 2858 REG("smaps", S_IRUGO, proc_smaps_operations), 2859 REG("pagemap", S_IRUSR, proc_pagemap_operations), 2860 #endif 2861 #ifdef CONFIG_SECURITY 2862 DIR("attr", S_IRUGO|S_IXUGO, proc_attr_dir_inode_operations, proc_attr_dir_operations), 2863 #endif 2864 #ifdef CONFIG_KALLSYMS 2865 INF("wchan", S_IRUGO, proc_pid_wchan), 2866 #endif 2867 #ifdef CONFIG_STACKTRACE 2868 ONE("stack", S_IRUSR, proc_pid_stack), 2869 #endif 2870 #ifdef CONFIG_SCHEDSTATS 2871 INF("schedstat", S_IRUGO, proc_pid_schedstat), 2872 #endif 2873 #ifdef CONFIG_LATENCYTOP 2874 REG("latency", S_IRUGO, proc_lstats_operations), 2875 #endif 2876 #ifdef CONFIG_PROC_PID_CPUSET 2877 REG("cpuset", S_IRUGO, proc_cpuset_operations), 2878 #endif 2879 #ifdef CONFIG_CGROUPS 2880 REG("cgroup", S_IRUGO, proc_cgroup_operations), 2881 #endif 2882 INF("oom_score", S_IRUGO, proc_oom_score), 2883 REG("oom_adj", S_IRUGO|S_IWUSR, proc_oom_adjust_operations), 2884 #ifdef CONFIG_AUDITSYSCALL 2885 REG("loginuid", S_IWUSR|S_IRUGO, proc_loginuid_operations), 2886 REG("sessionid", S_IRUSR, proc_sessionid_operations), 2887 #endif 2888 #ifdef CONFIG_FAULT_INJECTION 2889 REG("make-it-fail", S_IRUGO|S_IWUSR, proc_fault_inject_operations), 2890 #endif 2891 #ifdef CONFIG_TASK_IO_ACCOUNTING 2892 INF("io", S_IRUGO, proc_tid_io_accounting), 2893 #endif 2894 }; 2895 2896 static int proc_tid_base_readdir(struct file * filp, 2897 void * dirent, filldir_t filldir) 2898 { 2899 return proc_pident_readdir(filp,dirent,filldir, 2900 tid_base_stuff,ARRAY_SIZE(tid_base_stuff)); 2901 } 2902 2903 static struct dentry *proc_tid_base_lookup(struct inode *dir, struct dentry *dentry, struct nameidata *nd){ 2904 return proc_pident_lookup(dir, dentry, 2905 tid_base_stuff, ARRAY_SIZE(tid_base_stuff)); 2906 } 2907 2908 static const struct file_operations proc_tid_base_operations = { 2909 .read = generic_read_dir, 2910 .readdir = proc_tid_base_readdir, 2911 }; 2912 2913 static const struct inode_operations proc_tid_base_inode_operations = { 2914 .lookup = proc_tid_base_lookup, 2915 .getattr = pid_getattr, 2916 .setattr = proc_setattr, 2917 }; 2918 2919 static struct dentry *proc_task_instantiate(struct inode *dir, 2920 struct dentry *dentry, struct task_struct *task, const void *ptr) 2921 { 2922 struct dentry *error = ERR_PTR(-ENOENT); 2923 struct inode *inode; 2924 inode = proc_pid_make_inode(dir->i_sb, task); 2925 2926 if (!inode) 2927 goto out; 2928 inode->i_mode = S_IFDIR|S_IRUGO|S_IXUGO; 2929 inode->i_op = &proc_tid_base_inode_operations; 2930 inode->i_fop = &proc_tid_base_operations; 2931 inode->i_flags|=S_IMMUTABLE; 2932 2933 inode->i_nlink = 2 + pid_entry_count_dirs(tid_base_stuff, 2934 ARRAY_SIZE(tid_base_stuff)); 2935 2936 dentry->d_op = &pid_dentry_operations; 2937 2938 d_add(dentry, inode); 2939 /* Close the race of the process dying before we return the dentry */ 2940 if (pid_revalidate(dentry, NULL)) 2941 error = NULL; 2942 out: 2943 return error; 2944 } 2945 2946 static struct dentry *proc_task_lookup(struct inode *dir, struct dentry * dentry, struct nameidata *nd) 2947 { 2948 struct dentry *result = ERR_PTR(-ENOENT); 2949 struct task_struct *task; 2950 struct task_struct *leader = get_proc_task(dir); 2951 unsigned tid; 2952 struct pid_namespace *ns; 2953 2954 if (!leader) 2955 goto out_no_task; 2956 2957 tid = name_to_int(dentry); 2958 if (tid == ~0U) 2959 goto out; 2960 2961 ns = dentry->d_sb->s_fs_info; 2962 rcu_read_lock(); 2963 task = find_task_by_pid_ns(tid, ns); 2964 if (task) 2965 get_task_struct(task); 2966 rcu_read_unlock(); 2967 if (!task) 2968 goto out; 2969 if (!same_thread_group(leader, task)) 2970 goto out_drop_task; 2971 2972 result = proc_task_instantiate(dir, dentry, task, NULL); 2973 out_drop_task: 2974 put_task_struct(task); 2975 out: 2976 put_task_struct(leader); 2977 out_no_task: 2978 return result; 2979 } 2980 2981 /* 2982 * Find the first tid of a thread group to return to user space. 2983 * 2984 * Usually this is just the thread group leader, but if the users 2985 * buffer was too small or there was a seek into the middle of the 2986 * directory we have more work todo. 2987 * 2988 * In the case of a short read we start with find_task_by_pid. 2989 * 2990 * In the case of a seek we start with the leader and walk nr 2991 * threads past it. 2992 */ 2993 static struct task_struct *first_tid(struct task_struct *leader, 2994 int tid, int nr, struct pid_namespace *ns) 2995 { 2996 struct task_struct *pos; 2997 2998 rcu_read_lock(); 2999 /* Attempt to start with the pid of a thread */ 3000 if (tid && (nr > 0)) { 3001 pos = find_task_by_pid_ns(tid, ns); 3002 if (pos && (pos->group_leader == leader)) 3003 goto found; 3004 } 3005 3006 /* If nr exceeds the number of threads there is nothing todo */ 3007 pos = NULL; 3008 if (nr && nr >= get_nr_threads(leader)) 3009 goto out; 3010 3011 /* If we haven't found our starting place yet start 3012 * with the leader and walk nr threads forward. 3013 */ 3014 for (pos = leader; nr > 0; --nr) { 3015 pos = next_thread(pos); 3016 if (pos == leader) { 3017 pos = NULL; 3018 goto out; 3019 } 3020 } 3021 found: 3022 get_task_struct(pos); 3023 out: 3024 rcu_read_unlock(); 3025 return pos; 3026 } 3027 3028 /* 3029 * Find the next thread in the thread list. 3030 * Return NULL if there is an error or no next thread. 3031 * 3032 * The reference to the input task_struct is released. 3033 */ 3034 static struct task_struct *next_tid(struct task_struct *start) 3035 { 3036 struct task_struct *pos = NULL; 3037 rcu_read_lock(); 3038 if (pid_alive(start)) { 3039 pos = next_thread(start); 3040 if (thread_group_leader(pos)) 3041 pos = NULL; 3042 else 3043 get_task_struct(pos); 3044 } 3045 rcu_read_unlock(); 3046 put_task_struct(start); 3047 return pos; 3048 } 3049 3050 static int proc_task_fill_cache(struct file *filp, void *dirent, filldir_t filldir, 3051 struct task_struct *task, int tid) 3052 { 3053 char name[PROC_NUMBUF]; 3054 int len = snprintf(name, sizeof(name), "%d", tid); 3055 return proc_fill_cache(filp, dirent, filldir, name, len, 3056 proc_task_instantiate, task, NULL); 3057 } 3058 3059 /* for the /proc/TGID/task/ directories */ 3060 static int proc_task_readdir(struct file * filp, void * dirent, filldir_t filldir) 3061 { 3062 struct dentry *dentry = filp->f_path.dentry; 3063 struct inode *inode = dentry->d_inode; 3064 struct task_struct *leader = NULL; 3065 struct task_struct *task; 3066 int retval = -ENOENT; 3067 ino_t ino; 3068 int tid; 3069 unsigned long pos = filp->f_pos; /* avoiding "long long" filp->f_pos */ 3070 struct pid_namespace *ns; 3071 3072 task = get_proc_task(inode); 3073 if (!task) 3074 goto out_no_task; 3075 rcu_read_lock(); 3076 if (pid_alive(task)) { 3077 leader = task->group_leader; 3078 get_task_struct(leader); 3079 } 3080 rcu_read_unlock(); 3081 put_task_struct(task); 3082 if (!leader) 3083 goto out_no_task; 3084 retval = 0; 3085 3086 switch (pos) { 3087 case 0: 3088 ino = inode->i_ino; 3089 if (filldir(dirent, ".", 1, pos, ino, DT_DIR) < 0) 3090 goto out; 3091 pos++; 3092 /* fall through */ 3093 case 1: 3094 ino = parent_ino(dentry); 3095 if (filldir(dirent, "..", 2, pos, ino, DT_DIR) < 0) 3096 goto out; 3097 pos++; 3098 /* fall through */ 3099 } 3100 3101 /* f_version caches the tgid value that the last readdir call couldn't 3102 * return. lseek aka telldir automagically resets f_version to 0. 3103 */ 3104 ns = filp->f_dentry->d_sb->s_fs_info; 3105 tid = (int)filp->f_version; 3106 filp->f_version = 0; 3107 for (task = first_tid(leader, tid, pos - 2, ns); 3108 task; 3109 task = next_tid(task), pos++) { 3110 tid = task_pid_nr_ns(task, ns); 3111 if (proc_task_fill_cache(filp, dirent, filldir, task, tid) < 0) { 3112 /* returning this tgid failed, save it as the first 3113 * pid for the next readir call */ 3114 filp->f_version = (u64)tid; 3115 put_task_struct(task); 3116 break; 3117 } 3118 } 3119 out: 3120 filp->f_pos = pos; 3121 put_task_struct(leader); 3122 out_no_task: 3123 return retval; 3124 } 3125 3126 static int proc_task_getattr(struct vfsmount *mnt, struct dentry *dentry, struct kstat *stat) 3127 { 3128 struct inode *inode = dentry->d_inode; 3129 struct task_struct *p = get_proc_task(inode); 3130 generic_fillattr(inode, stat); 3131 3132 if (p) { 3133 stat->nlink += get_nr_threads(p); 3134 put_task_struct(p); 3135 } 3136 3137 return 0; 3138 } 3139 3140 static const struct inode_operations proc_task_inode_operations = { 3141 .lookup = proc_task_lookup, 3142 .getattr = proc_task_getattr, 3143 .setattr = proc_setattr, 3144 }; 3145 3146 static const struct file_operations proc_task_operations = { 3147 .read = generic_read_dir, 3148 .readdir = proc_task_readdir, 3149 }; 3150