xref: /linux/fs/proc/base.c (revision a8fe58cec351c25e09c393bf46117c0c47b5a17c)
1 /*
2  *  linux/fs/proc/base.c
3  *
4  *  Copyright (C) 1991, 1992 Linus Torvalds
5  *
6  *  proc base directory handling functions
7  *
8  *  1999, Al Viro. Rewritten. Now it covers the whole per-process part.
9  *  Instead of using magical inumbers to determine the kind of object
10  *  we allocate and fill in-core inodes upon lookup. They don't even
11  *  go into icache. We cache the reference to task_struct upon lookup too.
12  *  Eventually it should become a filesystem in its own. We don't use the
13  *  rest of procfs anymore.
14  *
15  *
16  *  Changelog:
17  *  17-Jan-2005
18  *  Allan Bezerra
19  *  Bruna Moreira <bruna.moreira@indt.org.br>
20  *  Edjard Mota <edjard.mota@indt.org.br>
21  *  Ilias Biris <ilias.biris@indt.org.br>
22  *  Mauricio Lin <mauricio.lin@indt.org.br>
23  *
24  *  Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT
25  *
26  *  A new process specific entry (smaps) included in /proc. It shows the
27  *  size of rss for each memory area. The maps entry lacks information
28  *  about physical memory size (rss) for each mapped file, i.e.,
29  *  rss information for executables and library files.
30  *  This additional information is useful for any tools that need to know
31  *  about physical memory consumption for a process specific library.
32  *
33  *  Changelog:
34  *  21-Feb-2005
35  *  Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT
36  *  Pud inclusion in the page table walking.
37  *
38  *  ChangeLog:
39  *  10-Mar-2005
40  *  10LE Instituto Nokia de Tecnologia - INdT:
41  *  A better way to walks through the page table as suggested by Hugh Dickins.
42  *
43  *  Simo Piiroinen <simo.piiroinen@nokia.com>:
44  *  Smaps information related to shared, private, clean and dirty pages.
45  *
46  *  Paul Mundt <paul.mundt@nokia.com>:
47  *  Overall revision about smaps.
48  */
49 
50 #include <asm/uaccess.h>
51 
52 #include <linux/errno.h>
53 #include <linux/time.h>
54 #include <linux/proc_fs.h>
55 #include <linux/stat.h>
56 #include <linux/task_io_accounting_ops.h>
57 #include <linux/init.h>
58 #include <linux/capability.h>
59 #include <linux/file.h>
60 #include <linux/fdtable.h>
61 #include <linux/string.h>
62 #include <linux/seq_file.h>
63 #include <linux/namei.h>
64 #include <linux/mnt_namespace.h>
65 #include <linux/mm.h>
66 #include <linux/swap.h>
67 #include <linux/rcupdate.h>
68 #include <linux/kallsyms.h>
69 #include <linux/stacktrace.h>
70 #include <linux/resource.h>
71 #include <linux/module.h>
72 #include <linux/mount.h>
73 #include <linux/security.h>
74 #include <linux/ptrace.h>
75 #include <linux/tracehook.h>
76 #include <linux/printk.h>
77 #include <linux/cgroup.h>
78 #include <linux/cpuset.h>
79 #include <linux/audit.h>
80 #include <linux/poll.h>
81 #include <linux/nsproxy.h>
82 #include <linux/oom.h>
83 #include <linux/elf.h>
84 #include <linux/pid_namespace.h>
85 #include <linux/user_namespace.h>
86 #include <linux/fs_struct.h>
87 #include <linux/slab.h>
88 #include <linux/flex_array.h>
89 #include <linux/posix-timers.h>
90 #ifdef CONFIG_HARDWALL
91 #include <asm/hardwall.h>
92 #endif
93 #include <trace/events/oom.h>
94 #include "internal.h"
95 #include "fd.h"
96 
97 /* NOTE:
98  *	Implementing inode permission operations in /proc is almost
99  *	certainly an error.  Permission checks need to happen during
100  *	each system call not at open time.  The reason is that most of
101  *	what we wish to check for permissions in /proc varies at runtime.
102  *
103  *	The classic example of a problem is opening file descriptors
104  *	in /proc for a task before it execs a suid executable.
105  */
106 
107 struct pid_entry {
108 	const char *name;
109 	int len;
110 	umode_t mode;
111 	const struct inode_operations *iop;
112 	const struct file_operations *fop;
113 	union proc_op op;
114 };
115 
116 #define NOD(NAME, MODE, IOP, FOP, OP) {			\
117 	.name = (NAME),					\
118 	.len  = sizeof(NAME) - 1,			\
119 	.mode = MODE,					\
120 	.iop  = IOP,					\
121 	.fop  = FOP,					\
122 	.op   = OP,					\
123 }
124 
125 #define DIR(NAME, MODE, iops, fops)	\
126 	NOD(NAME, (S_IFDIR|(MODE)), &iops, &fops, {} )
127 #define LNK(NAME, get_link)					\
128 	NOD(NAME, (S_IFLNK|S_IRWXUGO),				\
129 		&proc_pid_link_inode_operations, NULL,		\
130 		{ .proc_get_link = get_link } )
131 #define REG(NAME, MODE, fops)				\
132 	NOD(NAME, (S_IFREG|(MODE)), NULL, &fops, {})
133 #define ONE(NAME, MODE, show)				\
134 	NOD(NAME, (S_IFREG|(MODE)), 			\
135 		NULL, &proc_single_file_operations,	\
136 		{ .proc_show = show } )
137 
138 /*
139  * Count the number of hardlinks for the pid_entry table, excluding the .
140  * and .. links.
141  */
142 static unsigned int pid_entry_count_dirs(const struct pid_entry *entries,
143 	unsigned int n)
144 {
145 	unsigned int i;
146 	unsigned int count;
147 
148 	count = 0;
149 	for (i = 0; i < n; ++i) {
150 		if (S_ISDIR(entries[i].mode))
151 			++count;
152 	}
153 
154 	return count;
155 }
156 
157 static int get_task_root(struct task_struct *task, struct path *root)
158 {
159 	int result = -ENOENT;
160 
161 	task_lock(task);
162 	if (task->fs) {
163 		get_fs_root(task->fs, root);
164 		result = 0;
165 	}
166 	task_unlock(task);
167 	return result;
168 }
169 
170 static int proc_cwd_link(struct dentry *dentry, struct path *path)
171 {
172 	struct task_struct *task = get_proc_task(d_inode(dentry));
173 	int result = -ENOENT;
174 
175 	if (task) {
176 		task_lock(task);
177 		if (task->fs) {
178 			get_fs_pwd(task->fs, path);
179 			result = 0;
180 		}
181 		task_unlock(task);
182 		put_task_struct(task);
183 	}
184 	return result;
185 }
186 
187 static int proc_root_link(struct dentry *dentry, struct path *path)
188 {
189 	struct task_struct *task = get_proc_task(d_inode(dentry));
190 	int result = -ENOENT;
191 
192 	if (task) {
193 		result = get_task_root(task, path);
194 		put_task_struct(task);
195 	}
196 	return result;
197 }
198 
199 static ssize_t proc_pid_cmdline_read(struct file *file, char __user *buf,
200 				     size_t _count, loff_t *pos)
201 {
202 	struct task_struct *tsk;
203 	struct mm_struct *mm;
204 	char *page;
205 	unsigned long count = _count;
206 	unsigned long arg_start, arg_end, env_start, env_end;
207 	unsigned long len1, len2, len;
208 	unsigned long p;
209 	char c;
210 	ssize_t rv;
211 
212 	BUG_ON(*pos < 0);
213 
214 	tsk = get_proc_task(file_inode(file));
215 	if (!tsk)
216 		return -ESRCH;
217 	mm = get_task_mm(tsk);
218 	put_task_struct(tsk);
219 	if (!mm)
220 		return 0;
221 	/* Check if process spawned far enough to have cmdline. */
222 	if (!mm->env_end) {
223 		rv = 0;
224 		goto out_mmput;
225 	}
226 
227 	page = (char *)__get_free_page(GFP_TEMPORARY);
228 	if (!page) {
229 		rv = -ENOMEM;
230 		goto out_mmput;
231 	}
232 
233 	down_read(&mm->mmap_sem);
234 	arg_start = mm->arg_start;
235 	arg_end = mm->arg_end;
236 	env_start = mm->env_start;
237 	env_end = mm->env_end;
238 	up_read(&mm->mmap_sem);
239 
240 	BUG_ON(arg_start > arg_end);
241 	BUG_ON(env_start > env_end);
242 
243 	len1 = arg_end - arg_start;
244 	len2 = env_end - env_start;
245 
246 	/* Empty ARGV. */
247 	if (len1 == 0) {
248 		rv = 0;
249 		goto out_free_page;
250 	}
251 	/*
252 	 * Inherently racy -- command line shares address space
253 	 * with code and data.
254 	 */
255 	rv = access_remote_vm(mm, arg_end - 1, &c, 1, 0);
256 	if (rv <= 0)
257 		goto out_free_page;
258 
259 	rv = 0;
260 
261 	if (c == '\0') {
262 		/* Command line (set of strings) occupies whole ARGV. */
263 		if (len1 <= *pos)
264 			goto out_free_page;
265 
266 		p = arg_start + *pos;
267 		len = len1 - *pos;
268 		while (count > 0 && len > 0) {
269 			unsigned int _count;
270 			int nr_read;
271 
272 			_count = min3(count, len, PAGE_SIZE);
273 			nr_read = access_remote_vm(mm, p, page, _count, 0);
274 			if (nr_read < 0)
275 				rv = nr_read;
276 			if (nr_read <= 0)
277 				goto out_free_page;
278 
279 			if (copy_to_user(buf, page, nr_read)) {
280 				rv = -EFAULT;
281 				goto out_free_page;
282 			}
283 
284 			p	+= nr_read;
285 			len	-= nr_read;
286 			buf	+= nr_read;
287 			count	-= nr_read;
288 			rv	+= nr_read;
289 		}
290 	} else {
291 		/*
292 		 * Command line (1 string) occupies ARGV and maybe
293 		 * extends into ENVP.
294 		 */
295 		if (len1 + len2 <= *pos)
296 			goto skip_argv_envp;
297 		if (len1 <= *pos)
298 			goto skip_argv;
299 
300 		p = arg_start + *pos;
301 		len = len1 - *pos;
302 		while (count > 0 && len > 0) {
303 			unsigned int _count, l;
304 			int nr_read;
305 			bool final;
306 
307 			_count = min3(count, len, PAGE_SIZE);
308 			nr_read = access_remote_vm(mm, p, page, _count, 0);
309 			if (nr_read < 0)
310 				rv = nr_read;
311 			if (nr_read <= 0)
312 				goto out_free_page;
313 
314 			/*
315 			 * Command line can be shorter than whole ARGV
316 			 * even if last "marker" byte says it is not.
317 			 */
318 			final = false;
319 			l = strnlen(page, nr_read);
320 			if (l < nr_read) {
321 				nr_read = l;
322 				final = true;
323 			}
324 
325 			if (copy_to_user(buf, page, nr_read)) {
326 				rv = -EFAULT;
327 				goto out_free_page;
328 			}
329 
330 			p	+= nr_read;
331 			len	-= nr_read;
332 			buf	+= nr_read;
333 			count	-= nr_read;
334 			rv	+= nr_read;
335 
336 			if (final)
337 				goto out_free_page;
338 		}
339 skip_argv:
340 		/*
341 		 * Command line (1 string) occupies ARGV and
342 		 * extends into ENVP.
343 		 */
344 		if (len1 <= *pos) {
345 			p = env_start + *pos - len1;
346 			len = len1 + len2 - *pos;
347 		} else {
348 			p = env_start;
349 			len = len2;
350 		}
351 		while (count > 0 && len > 0) {
352 			unsigned int _count, l;
353 			int nr_read;
354 			bool final;
355 
356 			_count = min3(count, len, PAGE_SIZE);
357 			nr_read = access_remote_vm(mm, p, page, _count, 0);
358 			if (nr_read < 0)
359 				rv = nr_read;
360 			if (nr_read <= 0)
361 				goto out_free_page;
362 
363 			/* Find EOS. */
364 			final = false;
365 			l = strnlen(page, nr_read);
366 			if (l < nr_read) {
367 				nr_read = l;
368 				final = true;
369 			}
370 
371 			if (copy_to_user(buf, page, nr_read)) {
372 				rv = -EFAULT;
373 				goto out_free_page;
374 			}
375 
376 			p	+= nr_read;
377 			len	-= nr_read;
378 			buf	+= nr_read;
379 			count	-= nr_read;
380 			rv	+= nr_read;
381 
382 			if (final)
383 				goto out_free_page;
384 		}
385 skip_argv_envp:
386 		;
387 	}
388 
389 out_free_page:
390 	free_page((unsigned long)page);
391 out_mmput:
392 	mmput(mm);
393 	if (rv > 0)
394 		*pos += rv;
395 	return rv;
396 }
397 
398 static const struct file_operations proc_pid_cmdline_ops = {
399 	.read	= proc_pid_cmdline_read,
400 	.llseek	= generic_file_llseek,
401 };
402 
403 static int proc_pid_auxv(struct seq_file *m, struct pid_namespace *ns,
404 			 struct pid *pid, struct task_struct *task)
405 {
406 	struct mm_struct *mm = mm_access(task, PTRACE_MODE_READ_FSCREDS);
407 	if (mm && !IS_ERR(mm)) {
408 		unsigned int nwords = 0;
409 		do {
410 			nwords += 2;
411 		} while (mm->saved_auxv[nwords - 2] != 0); /* AT_NULL */
412 		seq_write(m, mm->saved_auxv, nwords * sizeof(mm->saved_auxv[0]));
413 		mmput(mm);
414 		return 0;
415 	} else
416 		return PTR_ERR(mm);
417 }
418 
419 
420 #ifdef CONFIG_KALLSYMS
421 /*
422  * Provides a wchan file via kallsyms in a proper one-value-per-file format.
423  * Returns the resolved symbol.  If that fails, simply return the address.
424  */
425 static int proc_pid_wchan(struct seq_file *m, struct pid_namespace *ns,
426 			  struct pid *pid, struct task_struct *task)
427 {
428 	unsigned long wchan;
429 	char symname[KSYM_NAME_LEN];
430 
431 	wchan = get_wchan(task);
432 
433 	if (wchan && ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS)
434 			&& !lookup_symbol_name(wchan, symname))
435 		seq_printf(m, "%s", symname);
436 	else
437 		seq_putc(m, '0');
438 
439 	return 0;
440 }
441 #endif /* CONFIG_KALLSYMS */
442 
443 static int lock_trace(struct task_struct *task)
444 {
445 	int err = mutex_lock_killable(&task->signal->cred_guard_mutex);
446 	if (err)
447 		return err;
448 	if (!ptrace_may_access(task, PTRACE_MODE_ATTACH_FSCREDS)) {
449 		mutex_unlock(&task->signal->cred_guard_mutex);
450 		return -EPERM;
451 	}
452 	return 0;
453 }
454 
455 static void unlock_trace(struct task_struct *task)
456 {
457 	mutex_unlock(&task->signal->cred_guard_mutex);
458 }
459 
460 #ifdef CONFIG_STACKTRACE
461 
462 #define MAX_STACK_TRACE_DEPTH	64
463 
464 static int proc_pid_stack(struct seq_file *m, struct pid_namespace *ns,
465 			  struct pid *pid, struct task_struct *task)
466 {
467 	struct stack_trace trace;
468 	unsigned long *entries;
469 	int err;
470 	int i;
471 
472 	entries = kmalloc(MAX_STACK_TRACE_DEPTH * sizeof(*entries), GFP_KERNEL);
473 	if (!entries)
474 		return -ENOMEM;
475 
476 	trace.nr_entries	= 0;
477 	trace.max_entries	= MAX_STACK_TRACE_DEPTH;
478 	trace.entries		= entries;
479 	trace.skip		= 0;
480 
481 	err = lock_trace(task);
482 	if (!err) {
483 		save_stack_trace_tsk(task, &trace);
484 
485 		for (i = 0; i < trace.nr_entries; i++) {
486 			seq_printf(m, "[<%pK>] %pS\n",
487 				   (void *)entries[i], (void *)entries[i]);
488 		}
489 		unlock_trace(task);
490 	}
491 	kfree(entries);
492 
493 	return err;
494 }
495 #endif
496 
497 #ifdef CONFIG_SCHED_INFO
498 /*
499  * Provides /proc/PID/schedstat
500  */
501 static int proc_pid_schedstat(struct seq_file *m, struct pid_namespace *ns,
502 			      struct pid *pid, struct task_struct *task)
503 {
504 	if (unlikely(!sched_info_on()))
505 		seq_printf(m, "0 0 0\n");
506 	else
507 		seq_printf(m, "%llu %llu %lu\n",
508 		   (unsigned long long)task->se.sum_exec_runtime,
509 		   (unsigned long long)task->sched_info.run_delay,
510 		   task->sched_info.pcount);
511 
512 	return 0;
513 }
514 #endif
515 
516 #ifdef CONFIG_LATENCYTOP
517 static int lstats_show_proc(struct seq_file *m, void *v)
518 {
519 	int i;
520 	struct inode *inode = m->private;
521 	struct task_struct *task = get_proc_task(inode);
522 
523 	if (!task)
524 		return -ESRCH;
525 	seq_puts(m, "Latency Top version : v0.1\n");
526 	for (i = 0; i < 32; i++) {
527 		struct latency_record *lr = &task->latency_record[i];
528 		if (lr->backtrace[0]) {
529 			int q;
530 			seq_printf(m, "%i %li %li",
531 				   lr->count, lr->time, lr->max);
532 			for (q = 0; q < LT_BACKTRACEDEPTH; q++) {
533 				unsigned long bt = lr->backtrace[q];
534 				if (!bt)
535 					break;
536 				if (bt == ULONG_MAX)
537 					break;
538 				seq_printf(m, " %ps", (void *)bt);
539 			}
540 			seq_putc(m, '\n');
541 		}
542 
543 	}
544 	put_task_struct(task);
545 	return 0;
546 }
547 
548 static int lstats_open(struct inode *inode, struct file *file)
549 {
550 	return single_open(file, lstats_show_proc, inode);
551 }
552 
553 static ssize_t lstats_write(struct file *file, const char __user *buf,
554 			    size_t count, loff_t *offs)
555 {
556 	struct task_struct *task = get_proc_task(file_inode(file));
557 
558 	if (!task)
559 		return -ESRCH;
560 	clear_all_latency_tracing(task);
561 	put_task_struct(task);
562 
563 	return count;
564 }
565 
566 static const struct file_operations proc_lstats_operations = {
567 	.open		= lstats_open,
568 	.read		= seq_read,
569 	.write		= lstats_write,
570 	.llseek		= seq_lseek,
571 	.release	= single_release,
572 };
573 
574 #endif
575 
576 static int proc_oom_score(struct seq_file *m, struct pid_namespace *ns,
577 			  struct pid *pid, struct task_struct *task)
578 {
579 	unsigned long totalpages = totalram_pages + total_swap_pages;
580 	unsigned long points = 0;
581 
582 	read_lock(&tasklist_lock);
583 	if (pid_alive(task))
584 		points = oom_badness(task, NULL, NULL, totalpages) *
585 						1000 / totalpages;
586 	read_unlock(&tasklist_lock);
587 	seq_printf(m, "%lu\n", points);
588 
589 	return 0;
590 }
591 
592 struct limit_names {
593 	const char *name;
594 	const char *unit;
595 };
596 
597 static const struct limit_names lnames[RLIM_NLIMITS] = {
598 	[RLIMIT_CPU] = {"Max cpu time", "seconds"},
599 	[RLIMIT_FSIZE] = {"Max file size", "bytes"},
600 	[RLIMIT_DATA] = {"Max data size", "bytes"},
601 	[RLIMIT_STACK] = {"Max stack size", "bytes"},
602 	[RLIMIT_CORE] = {"Max core file size", "bytes"},
603 	[RLIMIT_RSS] = {"Max resident set", "bytes"},
604 	[RLIMIT_NPROC] = {"Max processes", "processes"},
605 	[RLIMIT_NOFILE] = {"Max open files", "files"},
606 	[RLIMIT_MEMLOCK] = {"Max locked memory", "bytes"},
607 	[RLIMIT_AS] = {"Max address space", "bytes"},
608 	[RLIMIT_LOCKS] = {"Max file locks", "locks"},
609 	[RLIMIT_SIGPENDING] = {"Max pending signals", "signals"},
610 	[RLIMIT_MSGQUEUE] = {"Max msgqueue size", "bytes"},
611 	[RLIMIT_NICE] = {"Max nice priority", NULL},
612 	[RLIMIT_RTPRIO] = {"Max realtime priority", NULL},
613 	[RLIMIT_RTTIME] = {"Max realtime timeout", "us"},
614 };
615 
616 /* Display limits for a process */
617 static int proc_pid_limits(struct seq_file *m, struct pid_namespace *ns,
618 			   struct pid *pid, struct task_struct *task)
619 {
620 	unsigned int i;
621 	unsigned long flags;
622 
623 	struct rlimit rlim[RLIM_NLIMITS];
624 
625 	if (!lock_task_sighand(task, &flags))
626 		return 0;
627 	memcpy(rlim, task->signal->rlim, sizeof(struct rlimit) * RLIM_NLIMITS);
628 	unlock_task_sighand(task, &flags);
629 
630 	/*
631 	 * print the file header
632 	 */
633        seq_printf(m, "%-25s %-20s %-20s %-10s\n",
634 		  "Limit", "Soft Limit", "Hard Limit", "Units");
635 
636 	for (i = 0; i < RLIM_NLIMITS; i++) {
637 		if (rlim[i].rlim_cur == RLIM_INFINITY)
638 			seq_printf(m, "%-25s %-20s ",
639 				   lnames[i].name, "unlimited");
640 		else
641 			seq_printf(m, "%-25s %-20lu ",
642 				   lnames[i].name, rlim[i].rlim_cur);
643 
644 		if (rlim[i].rlim_max == RLIM_INFINITY)
645 			seq_printf(m, "%-20s ", "unlimited");
646 		else
647 			seq_printf(m, "%-20lu ", rlim[i].rlim_max);
648 
649 		if (lnames[i].unit)
650 			seq_printf(m, "%-10s\n", lnames[i].unit);
651 		else
652 			seq_putc(m, '\n');
653 	}
654 
655 	return 0;
656 }
657 
658 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK
659 static int proc_pid_syscall(struct seq_file *m, struct pid_namespace *ns,
660 			    struct pid *pid, struct task_struct *task)
661 {
662 	long nr;
663 	unsigned long args[6], sp, pc;
664 	int res;
665 
666 	res = lock_trace(task);
667 	if (res)
668 		return res;
669 
670 	if (task_current_syscall(task, &nr, args, 6, &sp, &pc))
671 		seq_puts(m, "running\n");
672 	else if (nr < 0)
673 		seq_printf(m, "%ld 0x%lx 0x%lx\n", nr, sp, pc);
674 	else
675 		seq_printf(m,
676 		       "%ld 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx\n",
677 		       nr,
678 		       args[0], args[1], args[2], args[3], args[4], args[5],
679 		       sp, pc);
680 	unlock_trace(task);
681 
682 	return 0;
683 }
684 #endif /* CONFIG_HAVE_ARCH_TRACEHOOK */
685 
686 /************************************************************************/
687 /*                       Here the fs part begins                        */
688 /************************************************************************/
689 
690 /* permission checks */
691 static int proc_fd_access_allowed(struct inode *inode)
692 {
693 	struct task_struct *task;
694 	int allowed = 0;
695 	/* Allow access to a task's file descriptors if it is us or we
696 	 * may use ptrace attach to the process and find out that
697 	 * information.
698 	 */
699 	task = get_proc_task(inode);
700 	if (task) {
701 		allowed = ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS);
702 		put_task_struct(task);
703 	}
704 	return allowed;
705 }
706 
707 int proc_setattr(struct dentry *dentry, struct iattr *attr)
708 {
709 	int error;
710 	struct inode *inode = d_inode(dentry);
711 
712 	if (attr->ia_valid & ATTR_MODE)
713 		return -EPERM;
714 
715 	error = inode_change_ok(inode, attr);
716 	if (error)
717 		return error;
718 
719 	setattr_copy(inode, attr);
720 	mark_inode_dirty(inode);
721 	return 0;
722 }
723 
724 /*
725  * May current process learn task's sched/cmdline info (for hide_pid_min=1)
726  * or euid/egid (for hide_pid_min=2)?
727  */
728 static bool has_pid_permissions(struct pid_namespace *pid,
729 				 struct task_struct *task,
730 				 int hide_pid_min)
731 {
732 	if (pid->hide_pid < hide_pid_min)
733 		return true;
734 	if (in_group_p(pid->pid_gid))
735 		return true;
736 	return ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS);
737 }
738 
739 
740 static int proc_pid_permission(struct inode *inode, int mask)
741 {
742 	struct pid_namespace *pid = inode->i_sb->s_fs_info;
743 	struct task_struct *task;
744 	bool has_perms;
745 
746 	task = get_proc_task(inode);
747 	if (!task)
748 		return -ESRCH;
749 	has_perms = has_pid_permissions(pid, task, 1);
750 	put_task_struct(task);
751 
752 	if (!has_perms) {
753 		if (pid->hide_pid == 2) {
754 			/*
755 			 * Let's make getdents(), stat(), and open()
756 			 * consistent with each other.  If a process
757 			 * may not stat() a file, it shouldn't be seen
758 			 * in procfs at all.
759 			 */
760 			return -ENOENT;
761 		}
762 
763 		return -EPERM;
764 	}
765 	return generic_permission(inode, mask);
766 }
767 
768 
769 
770 static const struct inode_operations proc_def_inode_operations = {
771 	.setattr	= proc_setattr,
772 };
773 
774 static int proc_single_show(struct seq_file *m, void *v)
775 {
776 	struct inode *inode = m->private;
777 	struct pid_namespace *ns;
778 	struct pid *pid;
779 	struct task_struct *task;
780 	int ret;
781 
782 	ns = inode->i_sb->s_fs_info;
783 	pid = proc_pid(inode);
784 	task = get_pid_task(pid, PIDTYPE_PID);
785 	if (!task)
786 		return -ESRCH;
787 
788 	ret = PROC_I(inode)->op.proc_show(m, ns, pid, task);
789 
790 	put_task_struct(task);
791 	return ret;
792 }
793 
794 static int proc_single_open(struct inode *inode, struct file *filp)
795 {
796 	return single_open(filp, proc_single_show, inode);
797 }
798 
799 static const struct file_operations proc_single_file_operations = {
800 	.open		= proc_single_open,
801 	.read		= seq_read,
802 	.llseek		= seq_lseek,
803 	.release	= single_release,
804 };
805 
806 
807 struct mm_struct *proc_mem_open(struct inode *inode, unsigned int mode)
808 {
809 	struct task_struct *task = get_proc_task(inode);
810 	struct mm_struct *mm = ERR_PTR(-ESRCH);
811 
812 	if (task) {
813 		mm = mm_access(task, mode | PTRACE_MODE_FSCREDS);
814 		put_task_struct(task);
815 
816 		if (!IS_ERR_OR_NULL(mm)) {
817 			/* ensure this mm_struct can't be freed */
818 			atomic_inc(&mm->mm_count);
819 			/* but do not pin its memory */
820 			mmput(mm);
821 		}
822 	}
823 
824 	return mm;
825 }
826 
827 static int __mem_open(struct inode *inode, struct file *file, unsigned int mode)
828 {
829 	struct mm_struct *mm = proc_mem_open(inode, mode);
830 
831 	if (IS_ERR(mm))
832 		return PTR_ERR(mm);
833 
834 	file->private_data = mm;
835 	return 0;
836 }
837 
838 static int mem_open(struct inode *inode, struct file *file)
839 {
840 	int ret = __mem_open(inode, file, PTRACE_MODE_ATTACH);
841 
842 	/* OK to pass negative loff_t, we can catch out-of-range */
843 	file->f_mode |= FMODE_UNSIGNED_OFFSET;
844 
845 	return ret;
846 }
847 
848 static ssize_t mem_rw(struct file *file, char __user *buf,
849 			size_t count, loff_t *ppos, int write)
850 {
851 	struct mm_struct *mm = file->private_data;
852 	unsigned long addr = *ppos;
853 	ssize_t copied;
854 	char *page;
855 
856 	if (!mm)
857 		return 0;
858 
859 	page = (char *)__get_free_page(GFP_TEMPORARY);
860 	if (!page)
861 		return -ENOMEM;
862 
863 	copied = 0;
864 	if (!atomic_inc_not_zero(&mm->mm_users))
865 		goto free;
866 
867 	while (count > 0) {
868 		int this_len = min_t(int, count, PAGE_SIZE);
869 
870 		if (write && copy_from_user(page, buf, this_len)) {
871 			copied = -EFAULT;
872 			break;
873 		}
874 
875 		this_len = access_remote_vm(mm, addr, page, this_len, write);
876 		if (!this_len) {
877 			if (!copied)
878 				copied = -EIO;
879 			break;
880 		}
881 
882 		if (!write && copy_to_user(buf, page, this_len)) {
883 			copied = -EFAULT;
884 			break;
885 		}
886 
887 		buf += this_len;
888 		addr += this_len;
889 		copied += this_len;
890 		count -= this_len;
891 	}
892 	*ppos = addr;
893 
894 	mmput(mm);
895 free:
896 	free_page((unsigned long) page);
897 	return copied;
898 }
899 
900 static ssize_t mem_read(struct file *file, char __user *buf,
901 			size_t count, loff_t *ppos)
902 {
903 	return mem_rw(file, buf, count, ppos, 0);
904 }
905 
906 static ssize_t mem_write(struct file *file, const char __user *buf,
907 			 size_t count, loff_t *ppos)
908 {
909 	return mem_rw(file, (char __user*)buf, count, ppos, 1);
910 }
911 
912 loff_t mem_lseek(struct file *file, loff_t offset, int orig)
913 {
914 	switch (orig) {
915 	case 0:
916 		file->f_pos = offset;
917 		break;
918 	case 1:
919 		file->f_pos += offset;
920 		break;
921 	default:
922 		return -EINVAL;
923 	}
924 	force_successful_syscall_return();
925 	return file->f_pos;
926 }
927 
928 static int mem_release(struct inode *inode, struct file *file)
929 {
930 	struct mm_struct *mm = file->private_data;
931 	if (mm)
932 		mmdrop(mm);
933 	return 0;
934 }
935 
936 static const struct file_operations proc_mem_operations = {
937 	.llseek		= mem_lseek,
938 	.read		= mem_read,
939 	.write		= mem_write,
940 	.open		= mem_open,
941 	.release	= mem_release,
942 };
943 
944 static int environ_open(struct inode *inode, struct file *file)
945 {
946 	return __mem_open(inode, file, PTRACE_MODE_READ);
947 }
948 
949 static ssize_t environ_read(struct file *file, char __user *buf,
950 			size_t count, loff_t *ppos)
951 {
952 	char *page;
953 	unsigned long src = *ppos;
954 	int ret = 0;
955 	struct mm_struct *mm = file->private_data;
956 	unsigned long env_start, env_end;
957 
958 	if (!mm)
959 		return 0;
960 
961 	page = (char *)__get_free_page(GFP_TEMPORARY);
962 	if (!page)
963 		return -ENOMEM;
964 
965 	ret = 0;
966 	if (!atomic_inc_not_zero(&mm->mm_users))
967 		goto free;
968 
969 	down_read(&mm->mmap_sem);
970 	env_start = mm->env_start;
971 	env_end = mm->env_end;
972 	up_read(&mm->mmap_sem);
973 
974 	while (count > 0) {
975 		size_t this_len, max_len;
976 		int retval;
977 
978 		if (src >= (env_end - env_start))
979 			break;
980 
981 		this_len = env_end - (env_start + src);
982 
983 		max_len = min_t(size_t, PAGE_SIZE, count);
984 		this_len = min(max_len, this_len);
985 
986 		retval = access_remote_vm(mm, (env_start + src),
987 			page, this_len, 0);
988 
989 		if (retval <= 0) {
990 			ret = retval;
991 			break;
992 		}
993 
994 		if (copy_to_user(buf, page, retval)) {
995 			ret = -EFAULT;
996 			break;
997 		}
998 
999 		ret += retval;
1000 		src += retval;
1001 		buf += retval;
1002 		count -= retval;
1003 	}
1004 	*ppos = src;
1005 	mmput(mm);
1006 
1007 free:
1008 	free_page((unsigned long) page);
1009 	return ret;
1010 }
1011 
1012 static const struct file_operations proc_environ_operations = {
1013 	.open		= environ_open,
1014 	.read		= environ_read,
1015 	.llseek		= generic_file_llseek,
1016 	.release	= mem_release,
1017 };
1018 
1019 static ssize_t oom_adj_read(struct file *file, char __user *buf, size_t count,
1020 			    loff_t *ppos)
1021 {
1022 	struct task_struct *task = get_proc_task(file_inode(file));
1023 	char buffer[PROC_NUMBUF];
1024 	int oom_adj = OOM_ADJUST_MIN;
1025 	size_t len;
1026 	unsigned long flags;
1027 
1028 	if (!task)
1029 		return -ESRCH;
1030 	if (lock_task_sighand(task, &flags)) {
1031 		if (task->signal->oom_score_adj == OOM_SCORE_ADJ_MAX)
1032 			oom_adj = OOM_ADJUST_MAX;
1033 		else
1034 			oom_adj = (task->signal->oom_score_adj * -OOM_DISABLE) /
1035 				  OOM_SCORE_ADJ_MAX;
1036 		unlock_task_sighand(task, &flags);
1037 	}
1038 	put_task_struct(task);
1039 	len = snprintf(buffer, sizeof(buffer), "%d\n", oom_adj);
1040 	return simple_read_from_buffer(buf, count, ppos, buffer, len);
1041 }
1042 
1043 /*
1044  * /proc/pid/oom_adj exists solely for backwards compatibility with previous
1045  * kernels.  The effective policy is defined by oom_score_adj, which has a
1046  * different scale: oom_adj grew exponentially and oom_score_adj grows linearly.
1047  * Values written to oom_adj are simply mapped linearly to oom_score_adj.
1048  * Processes that become oom disabled via oom_adj will still be oom disabled
1049  * with this implementation.
1050  *
1051  * oom_adj cannot be removed since existing userspace binaries use it.
1052  */
1053 static ssize_t oom_adj_write(struct file *file, const char __user *buf,
1054 			     size_t count, loff_t *ppos)
1055 {
1056 	struct task_struct *task;
1057 	char buffer[PROC_NUMBUF];
1058 	int oom_adj;
1059 	unsigned long flags;
1060 	int err;
1061 
1062 	memset(buffer, 0, sizeof(buffer));
1063 	if (count > sizeof(buffer) - 1)
1064 		count = sizeof(buffer) - 1;
1065 	if (copy_from_user(buffer, buf, count)) {
1066 		err = -EFAULT;
1067 		goto out;
1068 	}
1069 
1070 	err = kstrtoint(strstrip(buffer), 0, &oom_adj);
1071 	if (err)
1072 		goto out;
1073 	if ((oom_adj < OOM_ADJUST_MIN || oom_adj > OOM_ADJUST_MAX) &&
1074 	     oom_adj != OOM_DISABLE) {
1075 		err = -EINVAL;
1076 		goto out;
1077 	}
1078 
1079 	task = get_proc_task(file_inode(file));
1080 	if (!task) {
1081 		err = -ESRCH;
1082 		goto out;
1083 	}
1084 
1085 	task_lock(task);
1086 	if (!task->mm) {
1087 		err = -EINVAL;
1088 		goto err_task_lock;
1089 	}
1090 
1091 	if (!lock_task_sighand(task, &flags)) {
1092 		err = -ESRCH;
1093 		goto err_task_lock;
1094 	}
1095 
1096 	/*
1097 	 * Scale /proc/pid/oom_score_adj appropriately ensuring that a maximum
1098 	 * value is always attainable.
1099 	 */
1100 	if (oom_adj == OOM_ADJUST_MAX)
1101 		oom_adj = OOM_SCORE_ADJ_MAX;
1102 	else
1103 		oom_adj = (oom_adj * OOM_SCORE_ADJ_MAX) / -OOM_DISABLE;
1104 
1105 	if (oom_adj < task->signal->oom_score_adj &&
1106 	    !capable(CAP_SYS_RESOURCE)) {
1107 		err = -EACCES;
1108 		goto err_sighand;
1109 	}
1110 
1111 	/*
1112 	 * /proc/pid/oom_adj is provided for legacy purposes, ask users to use
1113 	 * /proc/pid/oom_score_adj instead.
1114 	 */
1115 	pr_warn_once("%s (%d): /proc/%d/oom_adj is deprecated, please use /proc/%d/oom_score_adj instead.\n",
1116 		  current->comm, task_pid_nr(current), task_pid_nr(task),
1117 		  task_pid_nr(task));
1118 
1119 	task->signal->oom_score_adj = oom_adj;
1120 	trace_oom_score_adj_update(task);
1121 err_sighand:
1122 	unlock_task_sighand(task, &flags);
1123 err_task_lock:
1124 	task_unlock(task);
1125 	put_task_struct(task);
1126 out:
1127 	return err < 0 ? err : count;
1128 }
1129 
1130 static const struct file_operations proc_oom_adj_operations = {
1131 	.read		= oom_adj_read,
1132 	.write		= oom_adj_write,
1133 	.llseek		= generic_file_llseek,
1134 };
1135 
1136 static ssize_t oom_score_adj_read(struct file *file, char __user *buf,
1137 					size_t count, loff_t *ppos)
1138 {
1139 	struct task_struct *task = get_proc_task(file_inode(file));
1140 	char buffer[PROC_NUMBUF];
1141 	short oom_score_adj = OOM_SCORE_ADJ_MIN;
1142 	unsigned long flags;
1143 	size_t len;
1144 
1145 	if (!task)
1146 		return -ESRCH;
1147 	if (lock_task_sighand(task, &flags)) {
1148 		oom_score_adj = task->signal->oom_score_adj;
1149 		unlock_task_sighand(task, &flags);
1150 	}
1151 	put_task_struct(task);
1152 	len = snprintf(buffer, sizeof(buffer), "%hd\n", oom_score_adj);
1153 	return simple_read_from_buffer(buf, count, ppos, buffer, len);
1154 }
1155 
1156 static ssize_t oom_score_adj_write(struct file *file, const char __user *buf,
1157 					size_t count, loff_t *ppos)
1158 {
1159 	struct task_struct *task;
1160 	char buffer[PROC_NUMBUF];
1161 	unsigned long flags;
1162 	int oom_score_adj;
1163 	int err;
1164 
1165 	memset(buffer, 0, sizeof(buffer));
1166 	if (count > sizeof(buffer) - 1)
1167 		count = sizeof(buffer) - 1;
1168 	if (copy_from_user(buffer, buf, count)) {
1169 		err = -EFAULT;
1170 		goto out;
1171 	}
1172 
1173 	err = kstrtoint(strstrip(buffer), 0, &oom_score_adj);
1174 	if (err)
1175 		goto out;
1176 	if (oom_score_adj < OOM_SCORE_ADJ_MIN ||
1177 			oom_score_adj > OOM_SCORE_ADJ_MAX) {
1178 		err = -EINVAL;
1179 		goto out;
1180 	}
1181 
1182 	task = get_proc_task(file_inode(file));
1183 	if (!task) {
1184 		err = -ESRCH;
1185 		goto out;
1186 	}
1187 
1188 	task_lock(task);
1189 	if (!task->mm) {
1190 		err = -EINVAL;
1191 		goto err_task_lock;
1192 	}
1193 
1194 	if (!lock_task_sighand(task, &flags)) {
1195 		err = -ESRCH;
1196 		goto err_task_lock;
1197 	}
1198 
1199 	if ((short)oom_score_adj < task->signal->oom_score_adj_min &&
1200 			!capable(CAP_SYS_RESOURCE)) {
1201 		err = -EACCES;
1202 		goto err_sighand;
1203 	}
1204 
1205 	task->signal->oom_score_adj = (short)oom_score_adj;
1206 	if (has_capability_noaudit(current, CAP_SYS_RESOURCE))
1207 		task->signal->oom_score_adj_min = (short)oom_score_adj;
1208 	trace_oom_score_adj_update(task);
1209 
1210 err_sighand:
1211 	unlock_task_sighand(task, &flags);
1212 err_task_lock:
1213 	task_unlock(task);
1214 	put_task_struct(task);
1215 out:
1216 	return err < 0 ? err : count;
1217 }
1218 
1219 static const struct file_operations proc_oom_score_adj_operations = {
1220 	.read		= oom_score_adj_read,
1221 	.write		= oom_score_adj_write,
1222 	.llseek		= default_llseek,
1223 };
1224 
1225 #ifdef CONFIG_AUDITSYSCALL
1226 #define TMPBUFLEN 21
1227 static ssize_t proc_loginuid_read(struct file * file, char __user * buf,
1228 				  size_t count, loff_t *ppos)
1229 {
1230 	struct inode * inode = file_inode(file);
1231 	struct task_struct *task = get_proc_task(inode);
1232 	ssize_t length;
1233 	char tmpbuf[TMPBUFLEN];
1234 
1235 	if (!task)
1236 		return -ESRCH;
1237 	length = scnprintf(tmpbuf, TMPBUFLEN, "%u",
1238 			   from_kuid(file->f_cred->user_ns,
1239 				     audit_get_loginuid(task)));
1240 	put_task_struct(task);
1241 	return simple_read_from_buffer(buf, count, ppos, tmpbuf, length);
1242 }
1243 
1244 static ssize_t proc_loginuid_write(struct file * file, const char __user * buf,
1245 				   size_t count, loff_t *ppos)
1246 {
1247 	struct inode * inode = file_inode(file);
1248 	uid_t loginuid;
1249 	kuid_t kloginuid;
1250 	int rv;
1251 
1252 	rcu_read_lock();
1253 	if (current != pid_task(proc_pid(inode), PIDTYPE_PID)) {
1254 		rcu_read_unlock();
1255 		return -EPERM;
1256 	}
1257 	rcu_read_unlock();
1258 
1259 	if (*ppos != 0) {
1260 		/* No partial writes. */
1261 		return -EINVAL;
1262 	}
1263 
1264 	rv = kstrtou32_from_user(buf, count, 10, &loginuid);
1265 	if (rv < 0)
1266 		return rv;
1267 
1268 	/* is userspace tring to explicitly UNSET the loginuid? */
1269 	if (loginuid == AUDIT_UID_UNSET) {
1270 		kloginuid = INVALID_UID;
1271 	} else {
1272 		kloginuid = make_kuid(file->f_cred->user_ns, loginuid);
1273 		if (!uid_valid(kloginuid))
1274 			return -EINVAL;
1275 	}
1276 
1277 	rv = audit_set_loginuid(kloginuid);
1278 	if (rv < 0)
1279 		return rv;
1280 	return count;
1281 }
1282 
1283 static const struct file_operations proc_loginuid_operations = {
1284 	.read		= proc_loginuid_read,
1285 	.write		= proc_loginuid_write,
1286 	.llseek		= generic_file_llseek,
1287 };
1288 
1289 static ssize_t proc_sessionid_read(struct file * file, char __user * buf,
1290 				  size_t count, loff_t *ppos)
1291 {
1292 	struct inode * inode = file_inode(file);
1293 	struct task_struct *task = get_proc_task(inode);
1294 	ssize_t length;
1295 	char tmpbuf[TMPBUFLEN];
1296 
1297 	if (!task)
1298 		return -ESRCH;
1299 	length = scnprintf(tmpbuf, TMPBUFLEN, "%u",
1300 				audit_get_sessionid(task));
1301 	put_task_struct(task);
1302 	return simple_read_from_buffer(buf, count, ppos, tmpbuf, length);
1303 }
1304 
1305 static const struct file_operations proc_sessionid_operations = {
1306 	.read		= proc_sessionid_read,
1307 	.llseek		= generic_file_llseek,
1308 };
1309 #endif
1310 
1311 #ifdef CONFIG_FAULT_INJECTION
1312 static ssize_t proc_fault_inject_read(struct file * file, char __user * buf,
1313 				      size_t count, loff_t *ppos)
1314 {
1315 	struct task_struct *task = get_proc_task(file_inode(file));
1316 	char buffer[PROC_NUMBUF];
1317 	size_t len;
1318 	int make_it_fail;
1319 
1320 	if (!task)
1321 		return -ESRCH;
1322 	make_it_fail = task->make_it_fail;
1323 	put_task_struct(task);
1324 
1325 	len = snprintf(buffer, sizeof(buffer), "%i\n", make_it_fail);
1326 
1327 	return simple_read_from_buffer(buf, count, ppos, buffer, len);
1328 }
1329 
1330 static ssize_t proc_fault_inject_write(struct file * file,
1331 			const char __user * buf, size_t count, loff_t *ppos)
1332 {
1333 	struct task_struct *task;
1334 	char buffer[PROC_NUMBUF];
1335 	int make_it_fail;
1336 	int rv;
1337 
1338 	if (!capable(CAP_SYS_RESOURCE))
1339 		return -EPERM;
1340 	memset(buffer, 0, sizeof(buffer));
1341 	if (count > sizeof(buffer) - 1)
1342 		count = sizeof(buffer) - 1;
1343 	if (copy_from_user(buffer, buf, count))
1344 		return -EFAULT;
1345 	rv = kstrtoint(strstrip(buffer), 0, &make_it_fail);
1346 	if (rv < 0)
1347 		return rv;
1348 	if (make_it_fail < 0 || make_it_fail > 1)
1349 		return -EINVAL;
1350 
1351 	task = get_proc_task(file_inode(file));
1352 	if (!task)
1353 		return -ESRCH;
1354 	task->make_it_fail = make_it_fail;
1355 	put_task_struct(task);
1356 
1357 	return count;
1358 }
1359 
1360 static const struct file_operations proc_fault_inject_operations = {
1361 	.read		= proc_fault_inject_read,
1362 	.write		= proc_fault_inject_write,
1363 	.llseek		= generic_file_llseek,
1364 };
1365 #endif
1366 
1367 
1368 #ifdef CONFIG_SCHED_DEBUG
1369 /*
1370  * Print out various scheduling related per-task fields:
1371  */
1372 static int sched_show(struct seq_file *m, void *v)
1373 {
1374 	struct inode *inode = m->private;
1375 	struct task_struct *p;
1376 
1377 	p = get_proc_task(inode);
1378 	if (!p)
1379 		return -ESRCH;
1380 	proc_sched_show_task(p, m);
1381 
1382 	put_task_struct(p);
1383 
1384 	return 0;
1385 }
1386 
1387 static ssize_t
1388 sched_write(struct file *file, const char __user *buf,
1389 	    size_t count, loff_t *offset)
1390 {
1391 	struct inode *inode = file_inode(file);
1392 	struct task_struct *p;
1393 
1394 	p = get_proc_task(inode);
1395 	if (!p)
1396 		return -ESRCH;
1397 	proc_sched_set_task(p);
1398 
1399 	put_task_struct(p);
1400 
1401 	return count;
1402 }
1403 
1404 static int sched_open(struct inode *inode, struct file *filp)
1405 {
1406 	return single_open(filp, sched_show, inode);
1407 }
1408 
1409 static const struct file_operations proc_pid_sched_operations = {
1410 	.open		= sched_open,
1411 	.read		= seq_read,
1412 	.write		= sched_write,
1413 	.llseek		= seq_lseek,
1414 	.release	= single_release,
1415 };
1416 
1417 #endif
1418 
1419 #ifdef CONFIG_SCHED_AUTOGROUP
1420 /*
1421  * Print out autogroup related information:
1422  */
1423 static int sched_autogroup_show(struct seq_file *m, void *v)
1424 {
1425 	struct inode *inode = m->private;
1426 	struct task_struct *p;
1427 
1428 	p = get_proc_task(inode);
1429 	if (!p)
1430 		return -ESRCH;
1431 	proc_sched_autogroup_show_task(p, m);
1432 
1433 	put_task_struct(p);
1434 
1435 	return 0;
1436 }
1437 
1438 static ssize_t
1439 sched_autogroup_write(struct file *file, const char __user *buf,
1440 	    size_t count, loff_t *offset)
1441 {
1442 	struct inode *inode = file_inode(file);
1443 	struct task_struct *p;
1444 	char buffer[PROC_NUMBUF];
1445 	int nice;
1446 	int err;
1447 
1448 	memset(buffer, 0, sizeof(buffer));
1449 	if (count > sizeof(buffer) - 1)
1450 		count = sizeof(buffer) - 1;
1451 	if (copy_from_user(buffer, buf, count))
1452 		return -EFAULT;
1453 
1454 	err = kstrtoint(strstrip(buffer), 0, &nice);
1455 	if (err < 0)
1456 		return err;
1457 
1458 	p = get_proc_task(inode);
1459 	if (!p)
1460 		return -ESRCH;
1461 
1462 	err = proc_sched_autogroup_set_nice(p, nice);
1463 	if (err)
1464 		count = err;
1465 
1466 	put_task_struct(p);
1467 
1468 	return count;
1469 }
1470 
1471 static int sched_autogroup_open(struct inode *inode, struct file *filp)
1472 {
1473 	int ret;
1474 
1475 	ret = single_open(filp, sched_autogroup_show, NULL);
1476 	if (!ret) {
1477 		struct seq_file *m = filp->private_data;
1478 
1479 		m->private = inode;
1480 	}
1481 	return ret;
1482 }
1483 
1484 static const struct file_operations proc_pid_sched_autogroup_operations = {
1485 	.open		= sched_autogroup_open,
1486 	.read		= seq_read,
1487 	.write		= sched_autogroup_write,
1488 	.llseek		= seq_lseek,
1489 	.release	= single_release,
1490 };
1491 
1492 #endif /* CONFIG_SCHED_AUTOGROUP */
1493 
1494 static ssize_t comm_write(struct file *file, const char __user *buf,
1495 				size_t count, loff_t *offset)
1496 {
1497 	struct inode *inode = file_inode(file);
1498 	struct task_struct *p;
1499 	char buffer[TASK_COMM_LEN];
1500 	const size_t maxlen = sizeof(buffer) - 1;
1501 
1502 	memset(buffer, 0, sizeof(buffer));
1503 	if (copy_from_user(buffer, buf, count > maxlen ? maxlen : count))
1504 		return -EFAULT;
1505 
1506 	p = get_proc_task(inode);
1507 	if (!p)
1508 		return -ESRCH;
1509 
1510 	if (same_thread_group(current, p))
1511 		set_task_comm(p, buffer);
1512 	else
1513 		count = -EINVAL;
1514 
1515 	put_task_struct(p);
1516 
1517 	return count;
1518 }
1519 
1520 static int comm_show(struct seq_file *m, void *v)
1521 {
1522 	struct inode *inode = m->private;
1523 	struct task_struct *p;
1524 
1525 	p = get_proc_task(inode);
1526 	if (!p)
1527 		return -ESRCH;
1528 
1529 	task_lock(p);
1530 	seq_printf(m, "%s\n", p->comm);
1531 	task_unlock(p);
1532 
1533 	put_task_struct(p);
1534 
1535 	return 0;
1536 }
1537 
1538 static int comm_open(struct inode *inode, struct file *filp)
1539 {
1540 	return single_open(filp, comm_show, inode);
1541 }
1542 
1543 static const struct file_operations proc_pid_set_comm_operations = {
1544 	.open		= comm_open,
1545 	.read		= seq_read,
1546 	.write		= comm_write,
1547 	.llseek		= seq_lseek,
1548 	.release	= single_release,
1549 };
1550 
1551 static int proc_exe_link(struct dentry *dentry, struct path *exe_path)
1552 {
1553 	struct task_struct *task;
1554 	struct mm_struct *mm;
1555 	struct file *exe_file;
1556 
1557 	task = get_proc_task(d_inode(dentry));
1558 	if (!task)
1559 		return -ENOENT;
1560 	mm = get_task_mm(task);
1561 	put_task_struct(task);
1562 	if (!mm)
1563 		return -ENOENT;
1564 	exe_file = get_mm_exe_file(mm);
1565 	mmput(mm);
1566 	if (exe_file) {
1567 		*exe_path = exe_file->f_path;
1568 		path_get(&exe_file->f_path);
1569 		fput(exe_file);
1570 		return 0;
1571 	} else
1572 		return -ENOENT;
1573 }
1574 
1575 static const char *proc_pid_get_link(struct dentry *dentry,
1576 				     struct inode *inode,
1577 				     struct delayed_call *done)
1578 {
1579 	struct path path;
1580 	int error = -EACCES;
1581 
1582 	if (!dentry)
1583 		return ERR_PTR(-ECHILD);
1584 
1585 	/* Are we allowed to snoop on the tasks file descriptors? */
1586 	if (!proc_fd_access_allowed(inode))
1587 		goto out;
1588 
1589 	error = PROC_I(inode)->op.proc_get_link(dentry, &path);
1590 	if (error)
1591 		goto out;
1592 
1593 	nd_jump_link(&path);
1594 	return NULL;
1595 out:
1596 	return ERR_PTR(error);
1597 }
1598 
1599 static int do_proc_readlink(struct path *path, char __user *buffer, int buflen)
1600 {
1601 	char *tmp = (char*)__get_free_page(GFP_TEMPORARY);
1602 	char *pathname;
1603 	int len;
1604 
1605 	if (!tmp)
1606 		return -ENOMEM;
1607 
1608 	pathname = d_path(path, tmp, PAGE_SIZE);
1609 	len = PTR_ERR(pathname);
1610 	if (IS_ERR(pathname))
1611 		goto out;
1612 	len = tmp + PAGE_SIZE - 1 - pathname;
1613 
1614 	if (len > buflen)
1615 		len = buflen;
1616 	if (copy_to_user(buffer, pathname, len))
1617 		len = -EFAULT;
1618  out:
1619 	free_page((unsigned long)tmp);
1620 	return len;
1621 }
1622 
1623 static int proc_pid_readlink(struct dentry * dentry, char __user * buffer, int buflen)
1624 {
1625 	int error = -EACCES;
1626 	struct inode *inode = d_inode(dentry);
1627 	struct path path;
1628 
1629 	/* Are we allowed to snoop on the tasks file descriptors? */
1630 	if (!proc_fd_access_allowed(inode))
1631 		goto out;
1632 
1633 	error = PROC_I(inode)->op.proc_get_link(dentry, &path);
1634 	if (error)
1635 		goto out;
1636 
1637 	error = do_proc_readlink(&path, buffer, buflen);
1638 	path_put(&path);
1639 out:
1640 	return error;
1641 }
1642 
1643 const struct inode_operations proc_pid_link_inode_operations = {
1644 	.readlink	= proc_pid_readlink,
1645 	.get_link	= proc_pid_get_link,
1646 	.setattr	= proc_setattr,
1647 };
1648 
1649 
1650 /* building an inode */
1651 
1652 struct inode *proc_pid_make_inode(struct super_block * sb, struct task_struct *task)
1653 {
1654 	struct inode * inode;
1655 	struct proc_inode *ei;
1656 	const struct cred *cred;
1657 
1658 	/* We need a new inode */
1659 
1660 	inode = new_inode(sb);
1661 	if (!inode)
1662 		goto out;
1663 
1664 	/* Common stuff */
1665 	ei = PROC_I(inode);
1666 	inode->i_ino = get_next_ino();
1667 	inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
1668 	inode->i_op = &proc_def_inode_operations;
1669 
1670 	/*
1671 	 * grab the reference to task.
1672 	 */
1673 	ei->pid = get_task_pid(task, PIDTYPE_PID);
1674 	if (!ei->pid)
1675 		goto out_unlock;
1676 
1677 	if (task_dumpable(task)) {
1678 		rcu_read_lock();
1679 		cred = __task_cred(task);
1680 		inode->i_uid = cred->euid;
1681 		inode->i_gid = cred->egid;
1682 		rcu_read_unlock();
1683 	}
1684 	security_task_to_inode(task, inode);
1685 
1686 out:
1687 	return inode;
1688 
1689 out_unlock:
1690 	iput(inode);
1691 	return NULL;
1692 }
1693 
1694 int pid_getattr(struct vfsmount *mnt, struct dentry *dentry, struct kstat *stat)
1695 {
1696 	struct inode *inode = d_inode(dentry);
1697 	struct task_struct *task;
1698 	const struct cred *cred;
1699 	struct pid_namespace *pid = dentry->d_sb->s_fs_info;
1700 
1701 	generic_fillattr(inode, stat);
1702 
1703 	rcu_read_lock();
1704 	stat->uid = GLOBAL_ROOT_UID;
1705 	stat->gid = GLOBAL_ROOT_GID;
1706 	task = pid_task(proc_pid(inode), PIDTYPE_PID);
1707 	if (task) {
1708 		if (!has_pid_permissions(pid, task, 2)) {
1709 			rcu_read_unlock();
1710 			/*
1711 			 * This doesn't prevent learning whether PID exists,
1712 			 * it only makes getattr() consistent with readdir().
1713 			 */
1714 			return -ENOENT;
1715 		}
1716 		if ((inode->i_mode == (S_IFDIR|S_IRUGO|S_IXUGO)) ||
1717 		    task_dumpable(task)) {
1718 			cred = __task_cred(task);
1719 			stat->uid = cred->euid;
1720 			stat->gid = cred->egid;
1721 		}
1722 	}
1723 	rcu_read_unlock();
1724 	return 0;
1725 }
1726 
1727 /* dentry stuff */
1728 
1729 /*
1730  *	Exceptional case: normally we are not allowed to unhash a busy
1731  * directory. In this case, however, we can do it - no aliasing problems
1732  * due to the way we treat inodes.
1733  *
1734  * Rewrite the inode's ownerships here because the owning task may have
1735  * performed a setuid(), etc.
1736  *
1737  * Before the /proc/pid/status file was created the only way to read
1738  * the effective uid of a /process was to stat /proc/pid.  Reading
1739  * /proc/pid/status is slow enough that procps and other packages
1740  * kept stating /proc/pid.  To keep the rules in /proc simple I have
1741  * made this apply to all per process world readable and executable
1742  * directories.
1743  */
1744 int pid_revalidate(struct dentry *dentry, unsigned int flags)
1745 {
1746 	struct inode *inode;
1747 	struct task_struct *task;
1748 	const struct cred *cred;
1749 
1750 	if (flags & LOOKUP_RCU)
1751 		return -ECHILD;
1752 
1753 	inode = d_inode(dentry);
1754 	task = get_proc_task(inode);
1755 
1756 	if (task) {
1757 		if ((inode->i_mode == (S_IFDIR|S_IRUGO|S_IXUGO)) ||
1758 		    task_dumpable(task)) {
1759 			rcu_read_lock();
1760 			cred = __task_cred(task);
1761 			inode->i_uid = cred->euid;
1762 			inode->i_gid = cred->egid;
1763 			rcu_read_unlock();
1764 		} else {
1765 			inode->i_uid = GLOBAL_ROOT_UID;
1766 			inode->i_gid = GLOBAL_ROOT_GID;
1767 		}
1768 		inode->i_mode &= ~(S_ISUID | S_ISGID);
1769 		security_task_to_inode(task, inode);
1770 		put_task_struct(task);
1771 		return 1;
1772 	}
1773 	return 0;
1774 }
1775 
1776 static inline bool proc_inode_is_dead(struct inode *inode)
1777 {
1778 	return !proc_pid(inode)->tasks[PIDTYPE_PID].first;
1779 }
1780 
1781 int pid_delete_dentry(const struct dentry *dentry)
1782 {
1783 	/* Is the task we represent dead?
1784 	 * If so, then don't put the dentry on the lru list,
1785 	 * kill it immediately.
1786 	 */
1787 	return proc_inode_is_dead(d_inode(dentry));
1788 }
1789 
1790 const struct dentry_operations pid_dentry_operations =
1791 {
1792 	.d_revalidate	= pid_revalidate,
1793 	.d_delete	= pid_delete_dentry,
1794 };
1795 
1796 /* Lookups */
1797 
1798 /*
1799  * Fill a directory entry.
1800  *
1801  * If possible create the dcache entry and derive our inode number and
1802  * file type from dcache entry.
1803  *
1804  * Since all of the proc inode numbers are dynamically generated, the inode
1805  * numbers do not exist until the inode is cache.  This means creating the
1806  * the dcache entry in readdir is necessary to keep the inode numbers
1807  * reported by readdir in sync with the inode numbers reported
1808  * by stat.
1809  */
1810 bool proc_fill_cache(struct file *file, struct dir_context *ctx,
1811 	const char *name, int len,
1812 	instantiate_t instantiate, struct task_struct *task, const void *ptr)
1813 {
1814 	struct dentry *child, *dir = file->f_path.dentry;
1815 	struct qstr qname = QSTR_INIT(name, len);
1816 	struct inode *inode;
1817 	unsigned type;
1818 	ino_t ino;
1819 
1820 	child = d_hash_and_lookup(dir, &qname);
1821 	if (!child) {
1822 		child = d_alloc(dir, &qname);
1823 		if (!child)
1824 			goto end_instantiate;
1825 		if (instantiate(d_inode(dir), child, task, ptr) < 0) {
1826 			dput(child);
1827 			goto end_instantiate;
1828 		}
1829 	}
1830 	inode = d_inode(child);
1831 	ino = inode->i_ino;
1832 	type = inode->i_mode >> 12;
1833 	dput(child);
1834 	return dir_emit(ctx, name, len, ino, type);
1835 
1836 end_instantiate:
1837 	return dir_emit(ctx, name, len, 1, DT_UNKNOWN);
1838 }
1839 
1840 /*
1841  * dname_to_vma_addr - maps a dentry name into two unsigned longs
1842  * which represent vma start and end addresses.
1843  */
1844 static int dname_to_vma_addr(struct dentry *dentry,
1845 			     unsigned long *start, unsigned long *end)
1846 {
1847 	if (sscanf(dentry->d_name.name, "%lx-%lx", start, end) != 2)
1848 		return -EINVAL;
1849 
1850 	return 0;
1851 }
1852 
1853 static int map_files_d_revalidate(struct dentry *dentry, unsigned int flags)
1854 {
1855 	unsigned long vm_start, vm_end;
1856 	bool exact_vma_exists = false;
1857 	struct mm_struct *mm = NULL;
1858 	struct task_struct *task;
1859 	const struct cred *cred;
1860 	struct inode *inode;
1861 	int status = 0;
1862 
1863 	if (flags & LOOKUP_RCU)
1864 		return -ECHILD;
1865 
1866 	inode = d_inode(dentry);
1867 	task = get_proc_task(inode);
1868 	if (!task)
1869 		goto out_notask;
1870 
1871 	mm = mm_access(task, PTRACE_MODE_READ_FSCREDS);
1872 	if (IS_ERR_OR_NULL(mm))
1873 		goto out;
1874 
1875 	if (!dname_to_vma_addr(dentry, &vm_start, &vm_end)) {
1876 		down_read(&mm->mmap_sem);
1877 		exact_vma_exists = !!find_exact_vma(mm, vm_start, vm_end);
1878 		up_read(&mm->mmap_sem);
1879 	}
1880 
1881 	mmput(mm);
1882 
1883 	if (exact_vma_exists) {
1884 		if (task_dumpable(task)) {
1885 			rcu_read_lock();
1886 			cred = __task_cred(task);
1887 			inode->i_uid = cred->euid;
1888 			inode->i_gid = cred->egid;
1889 			rcu_read_unlock();
1890 		} else {
1891 			inode->i_uid = GLOBAL_ROOT_UID;
1892 			inode->i_gid = GLOBAL_ROOT_GID;
1893 		}
1894 		security_task_to_inode(task, inode);
1895 		status = 1;
1896 	}
1897 
1898 out:
1899 	put_task_struct(task);
1900 
1901 out_notask:
1902 	return status;
1903 }
1904 
1905 static const struct dentry_operations tid_map_files_dentry_operations = {
1906 	.d_revalidate	= map_files_d_revalidate,
1907 	.d_delete	= pid_delete_dentry,
1908 };
1909 
1910 static int map_files_get_link(struct dentry *dentry, struct path *path)
1911 {
1912 	unsigned long vm_start, vm_end;
1913 	struct vm_area_struct *vma;
1914 	struct task_struct *task;
1915 	struct mm_struct *mm;
1916 	int rc;
1917 
1918 	rc = -ENOENT;
1919 	task = get_proc_task(d_inode(dentry));
1920 	if (!task)
1921 		goto out;
1922 
1923 	mm = get_task_mm(task);
1924 	put_task_struct(task);
1925 	if (!mm)
1926 		goto out;
1927 
1928 	rc = dname_to_vma_addr(dentry, &vm_start, &vm_end);
1929 	if (rc)
1930 		goto out_mmput;
1931 
1932 	rc = -ENOENT;
1933 	down_read(&mm->mmap_sem);
1934 	vma = find_exact_vma(mm, vm_start, vm_end);
1935 	if (vma && vma->vm_file) {
1936 		*path = vma->vm_file->f_path;
1937 		path_get(path);
1938 		rc = 0;
1939 	}
1940 	up_read(&mm->mmap_sem);
1941 
1942 out_mmput:
1943 	mmput(mm);
1944 out:
1945 	return rc;
1946 }
1947 
1948 struct map_files_info {
1949 	fmode_t		mode;
1950 	unsigned long	len;
1951 	unsigned char	name[4*sizeof(long)+2]; /* max: %lx-%lx\0 */
1952 };
1953 
1954 /*
1955  * Only allow CAP_SYS_ADMIN to follow the links, due to concerns about how the
1956  * symlinks may be used to bypass permissions on ancestor directories in the
1957  * path to the file in question.
1958  */
1959 static const char *
1960 proc_map_files_get_link(struct dentry *dentry,
1961 			struct inode *inode,
1962 		        struct delayed_call *done)
1963 {
1964 	if (!capable(CAP_SYS_ADMIN))
1965 		return ERR_PTR(-EPERM);
1966 
1967 	return proc_pid_get_link(dentry, inode, done);
1968 }
1969 
1970 /*
1971  * Identical to proc_pid_link_inode_operations except for get_link()
1972  */
1973 static const struct inode_operations proc_map_files_link_inode_operations = {
1974 	.readlink	= proc_pid_readlink,
1975 	.get_link	= proc_map_files_get_link,
1976 	.setattr	= proc_setattr,
1977 };
1978 
1979 static int
1980 proc_map_files_instantiate(struct inode *dir, struct dentry *dentry,
1981 			   struct task_struct *task, const void *ptr)
1982 {
1983 	fmode_t mode = (fmode_t)(unsigned long)ptr;
1984 	struct proc_inode *ei;
1985 	struct inode *inode;
1986 
1987 	inode = proc_pid_make_inode(dir->i_sb, task);
1988 	if (!inode)
1989 		return -ENOENT;
1990 
1991 	ei = PROC_I(inode);
1992 	ei->op.proc_get_link = map_files_get_link;
1993 
1994 	inode->i_op = &proc_map_files_link_inode_operations;
1995 	inode->i_size = 64;
1996 	inode->i_mode = S_IFLNK;
1997 
1998 	if (mode & FMODE_READ)
1999 		inode->i_mode |= S_IRUSR;
2000 	if (mode & FMODE_WRITE)
2001 		inode->i_mode |= S_IWUSR;
2002 
2003 	d_set_d_op(dentry, &tid_map_files_dentry_operations);
2004 	d_add(dentry, inode);
2005 
2006 	return 0;
2007 }
2008 
2009 static struct dentry *proc_map_files_lookup(struct inode *dir,
2010 		struct dentry *dentry, unsigned int flags)
2011 {
2012 	unsigned long vm_start, vm_end;
2013 	struct vm_area_struct *vma;
2014 	struct task_struct *task;
2015 	int result;
2016 	struct mm_struct *mm;
2017 
2018 	result = -ENOENT;
2019 	task = get_proc_task(dir);
2020 	if (!task)
2021 		goto out;
2022 
2023 	result = -EACCES;
2024 	if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS))
2025 		goto out_put_task;
2026 
2027 	result = -ENOENT;
2028 	if (dname_to_vma_addr(dentry, &vm_start, &vm_end))
2029 		goto out_put_task;
2030 
2031 	mm = get_task_mm(task);
2032 	if (!mm)
2033 		goto out_put_task;
2034 
2035 	down_read(&mm->mmap_sem);
2036 	vma = find_exact_vma(mm, vm_start, vm_end);
2037 	if (!vma)
2038 		goto out_no_vma;
2039 
2040 	if (vma->vm_file)
2041 		result = proc_map_files_instantiate(dir, dentry, task,
2042 				(void *)(unsigned long)vma->vm_file->f_mode);
2043 
2044 out_no_vma:
2045 	up_read(&mm->mmap_sem);
2046 	mmput(mm);
2047 out_put_task:
2048 	put_task_struct(task);
2049 out:
2050 	return ERR_PTR(result);
2051 }
2052 
2053 static const struct inode_operations proc_map_files_inode_operations = {
2054 	.lookup		= proc_map_files_lookup,
2055 	.permission	= proc_fd_permission,
2056 	.setattr	= proc_setattr,
2057 };
2058 
2059 static int
2060 proc_map_files_readdir(struct file *file, struct dir_context *ctx)
2061 {
2062 	struct vm_area_struct *vma;
2063 	struct task_struct *task;
2064 	struct mm_struct *mm;
2065 	unsigned long nr_files, pos, i;
2066 	struct flex_array *fa = NULL;
2067 	struct map_files_info info;
2068 	struct map_files_info *p;
2069 	int ret;
2070 
2071 	ret = -ENOENT;
2072 	task = get_proc_task(file_inode(file));
2073 	if (!task)
2074 		goto out;
2075 
2076 	ret = -EACCES;
2077 	if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS))
2078 		goto out_put_task;
2079 
2080 	ret = 0;
2081 	if (!dir_emit_dots(file, ctx))
2082 		goto out_put_task;
2083 
2084 	mm = get_task_mm(task);
2085 	if (!mm)
2086 		goto out_put_task;
2087 	down_read(&mm->mmap_sem);
2088 
2089 	nr_files = 0;
2090 
2091 	/*
2092 	 * We need two passes here:
2093 	 *
2094 	 *  1) Collect vmas of mapped files with mmap_sem taken
2095 	 *  2) Release mmap_sem and instantiate entries
2096 	 *
2097 	 * otherwise we get lockdep complained, since filldir()
2098 	 * routine might require mmap_sem taken in might_fault().
2099 	 */
2100 
2101 	for (vma = mm->mmap, pos = 2; vma; vma = vma->vm_next) {
2102 		if (vma->vm_file && ++pos > ctx->pos)
2103 			nr_files++;
2104 	}
2105 
2106 	if (nr_files) {
2107 		fa = flex_array_alloc(sizeof(info), nr_files,
2108 					GFP_KERNEL);
2109 		if (!fa || flex_array_prealloc(fa, 0, nr_files,
2110 						GFP_KERNEL)) {
2111 			ret = -ENOMEM;
2112 			if (fa)
2113 				flex_array_free(fa);
2114 			up_read(&mm->mmap_sem);
2115 			mmput(mm);
2116 			goto out_put_task;
2117 		}
2118 		for (i = 0, vma = mm->mmap, pos = 2; vma;
2119 				vma = vma->vm_next) {
2120 			if (!vma->vm_file)
2121 				continue;
2122 			if (++pos <= ctx->pos)
2123 				continue;
2124 
2125 			info.mode = vma->vm_file->f_mode;
2126 			info.len = snprintf(info.name,
2127 					sizeof(info.name), "%lx-%lx",
2128 					vma->vm_start, vma->vm_end);
2129 			if (flex_array_put(fa, i++, &info, GFP_KERNEL))
2130 				BUG();
2131 		}
2132 	}
2133 	up_read(&mm->mmap_sem);
2134 
2135 	for (i = 0; i < nr_files; i++) {
2136 		p = flex_array_get(fa, i);
2137 		if (!proc_fill_cache(file, ctx,
2138 				      p->name, p->len,
2139 				      proc_map_files_instantiate,
2140 				      task,
2141 				      (void *)(unsigned long)p->mode))
2142 			break;
2143 		ctx->pos++;
2144 	}
2145 	if (fa)
2146 		flex_array_free(fa);
2147 	mmput(mm);
2148 
2149 out_put_task:
2150 	put_task_struct(task);
2151 out:
2152 	return ret;
2153 }
2154 
2155 static const struct file_operations proc_map_files_operations = {
2156 	.read		= generic_read_dir,
2157 	.iterate	= proc_map_files_readdir,
2158 	.llseek		= default_llseek,
2159 };
2160 
2161 struct timers_private {
2162 	struct pid *pid;
2163 	struct task_struct *task;
2164 	struct sighand_struct *sighand;
2165 	struct pid_namespace *ns;
2166 	unsigned long flags;
2167 };
2168 
2169 static void *timers_start(struct seq_file *m, loff_t *pos)
2170 {
2171 	struct timers_private *tp = m->private;
2172 
2173 	tp->task = get_pid_task(tp->pid, PIDTYPE_PID);
2174 	if (!tp->task)
2175 		return ERR_PTR(-ESRCH);
2176 
2177 	tp->sighand = lock_task_sighand(tp->task, &tp->flags);
2178 	if (!tp->sighand)
2179 		return ERR_PTR(-ESRCH);
2180 
2181 	return seq_list_start(&tp->task->signal->posix_timers, *pos);
2182 }
2183 
2184 static void *timers_next(struct seq_file *m, void *v, loff_t *pos)
2185 {
2186 	struct timers_private *tp = m->private;
2187 	return seq_list_next(v, &tp->task->signal->posix_timers, pos);
2188 }
2189 
2190 static void timers_stop(struct seq_file *m, void *v)
2191 {
2192 	struct timers_private *tp = m->private;
2193 
2194 	if (tp->sighand) {
2195 		unlock_task_sighand(tp->task, &tp->flags);
2196 		tp->sighand = NULL;
2197 	}
2198 
2199 	if (tp->task) {
2200 		put_task_struct(tp->task);
2201 		tp->task = NULL;
2202 	}
2203 }
2204 
2205 static int show_timer(struct seq_file *m, void *v)
2206 {
2207 	struct k_itimer *timer;
2208 	struct timers_private *tp = m->private;
2209 	int notify;
2210 	static const char * const nstr[] = {
2211 		[SIGEV_SIGNAL] = "signal",
2212 		[SIGEV_NONE] = "none",
2213 		[SIGEV_THREAD] = "thread",
2214 	};
2215 
2216 	timer = list_entry((struct list_head *)v, struct k_itimer, list);
2217 	notify = timer->it_sigev_notify;
2218 
2219 	seq_printf(m, "ID: %d\n", timer->it_id);
2220 	seq_printf(m, "signal: %d/%p\n",
2221 		   timer->sigq->info.si_signo,
2222 		   timer->sigq->info.si_value.sival_ptr);
2223 	seq_printf(m, "notify: %s/%s.%d\n",
2224 		   nstr[notify & ~SIGEV_THREAD_ID],
2225 		   (notify & SIGEV_THREAD_ID) ? "tid" : "pid",
2226 		   pid_nr_ns(timer->it_pid, tp->ns));
2227 	seq_printf(m, "ClockID: %d\n", timer->it_clock);
2228 
2229 	return 0;
2230 }
2231 
2232 static const struct seq_operations proc_timers_seq_ops = {
2233 	.start	= timers_start,
2234 	.next	= timers_next,
2235 	.stop	= timers_stop,
2236 	.show	= show_timer,
2237 };
2238 
2239 static int proc_timers_open(struct inode *inode, struct file *file)
2240 {
2241 	struct timers_private *tp;
2242 
2243 	tp = __seq_open_private(file, &proc_timers_seq_ops,
2244 			sizeof(struct timers_private));
2245 	if (!tp)
2246 		return -ENOMEM;
2247 
2248 	tp->pid = proc_pid(inode);
2249 	tp->ns = inode->i_sb->s_fs_info;
2250 	return 0;
2251 }
2252 
2253 static const struct file_operations proc_timers_operations = {
2254 	.open		= proc_timers_open,
2255 	.read		= seq_read,
2256 	.llseek		= seq_lseek,
2257 	.release	= seq_release_private,
2258 };
2259 
2260 static int proc_pident_instantiate(struct inode *dir,
2261 	struct dentry *dentry, struct task_struct *task, const void *ptr)
2262 {
2263 	const struct pid_entry *p = ptr;
2264 	struct inode *inode;
2265 	struct proc_inode *ei;
2266 
2267 	inode = proc_pid_make_inode(dir->i_sb, task);
2268 	if (!inode)
2269 		goto out;
2270 
2271 	ei = PROC_I(inode);
2272 	inode->i_mode = p->mode;
2273 	if (S_ISDIR(inode->i_mode))
2274 		set_nlink(inode, 2);	/* Use getattr to fix if necessary */
2275 	if (p->iop)
2276 		inode->i_op = p->iop;
2277 	if (p->fop)
2278 		inode->i_fop = p->fop;
2279 	ei->op = p->op;
2280 	d_set_d_op(dentry, &pid_dentry_operations);
2281 	d_add(dentry, inode);
2282 	/* Close the race of the process dying before we return the dentry */
2283 	if (pid_revalidate(dentry, 0))
2284 		return 0;
2285 out:
2286 	return -ENOENT;
2287 }
2288 
2289 static struct dentry *proc_pident_lookup(struct inode *dir,
2290 					 struct dentry *dentry,
2291 					 const struct pid_entry *ents,
2292 					 unsigned int nents)
2293 {
2294 	int error;
2295 	struct task_struct *task = get_proc_task(dir);
2296 	const struct pid_entry *p, *last;
2297 
2298 	error = -ENOENT;
2299 
2300 	if (!task)
2301 		goto out_no_task;
2302 
2303 	/*
2304 	 * Yes, it does not scale. And it should not. Don't add
2305 	 * new entries into /proc/<tgid>/ without very good reasons.
2306 	 */
2307 	last = &ents[nents - 1];
2308 	for (p = ents; p <= last; p++) {
2309 		if (p->len != dentry->d_name.len)
2310 			continue;
2311 		if (!memcmp(dentry->d_name.name, p->name, p->len))
2312 			break;
2313 	}
2314 	if (p > last)
2315 		goto out;
2316 
2317 	error = proc_pident_instantiate(dir, dentry, task, p);
2318 out:
2319 	put_task_struct(task);
2320 out_no_task:
2321 	return ERR_PTR(error);
2322 }
2323 
2324 static int proc_pident_readdir(struct file *file, struct dir_context *ctx,
2325 		const struct pid_entry *ents, unsigned int nents)
2326 {
2327 	struct task_struct *task = get_proc_task(file_inode(file));
2328 	const struct pid_entry *p;
2329 
2330 	if (!task)
2331 		return -ENOENT;
2332 
2333 	if (!dir_emit_dots(file, ctx))
2334 		goto out;
2335 
2336 	if (ctx->pos >= nents + 2)
2337 		goto out;
2338 
2339 	for (p = ents + (ctx->pos - 2); p <= ents + nents - 1; p++) {
2340 		if (!proc_fill_cache(file, ctx, p->name, p->len,
2341 				proc_pident_instantiate, task, p))
2342 			break;
2343 		ctx->pos++;
2344 	}
2345 out:
2346 	put_task_struct(task);
2347 	return 0;
2348 }
2349 
2350 #ifdef CONFIG_SECURITY
2351 static ssize_t proc_pid_attr_read(struct file * file, char __user * buf,
2352 				  size_t count, loff_t *ppos)
2353 {
2354 	struct inode * inode = file_inode(file);
2355 	char *p = NULL;
2356 	ssize_t length;
2357 	struct task_struct *task = get_proc_task(inode);
2358 
2359 	if (!task)
2360 		return -ESRCH;
2361 
2362 	length = security_getprocattr(task,
2363 				      (char*)file->f_path.dentry->d_name.name,
2364 				      &p);
2365 	put_task_struct(task);
2366 	if (length > 0)
2367 		length = simple_read_from_buffer(buf, count, ppos, p, length);
2368 	kfree(p);
2369 	return length;
2370 }
2371 
2372 static ssize_t proc_pid_attr_write(struct file * file, const char __user * buf,
2373 				   size_t count, loff_t *ppos)
2374 {
2375 	struct inode * inode = file_inode(file);
2376 	void *page;
2377 	ssize_t length;
2378 	struct task_struct *task = get_proc_task(inode);
2379 
2380 	length = -ESRCH;
2381 	if (!task)
2382 		goto out_no_task;
2383 	if (count > PAGE_SIZE)
2384 		count = PAGE_SIZE;
2385 
2386 	/* No partial writes. */
2387 	length = -EINVAL;
2388 	if (*ppos != 0)
2389 		goto out;
2390 
2391 	page = memdup_user(buf, count);
2392 	if (IS_ERR(page)) {
2393 		length = PTR_ERR(page);
2394 		goto out;
2395 	}
2396 
2397 	/* Guard against adverse ptrace interaction */
2398 	length = mutex_lock_interruptible(&task->signal->cred_guard_mutex);
2399 	if (length < 0)
2400 		goto out_free;
2401 
2402 	length = security_setprocattr(task,
2403 				      (char*)file->f_path.dentry->d_name.name,
2404 				      page, count);
2405 	mutex_unlock(&task->signal->cred_guard_mutex);
2406 out_free:
2407 	kfree(page);
2408 out:
2409 	put_task_struct(task);
2410 out_no_task:
2411 	return length;
2412 }
2413 
2414 static const struct file_operations proc_pid_attr_operations = {
2415 	.read		= proc_pid_attr_read,
2416 	.write		= proc_pid_attr_write,
2417 	.llseek		= generic_file_llseek,
2418 };
2419 
2420 static const struct pid_entry attr_dir_stuff[] = {
2421 	REG("current",    S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2422 	REG("prev",       S_IRUGO,	   proc_pid_attr_operations),
2423 	REG("exec",       S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2424 	REG("fscreate",   S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2425 	REG("keycreate",  S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2426 	REG("sockcreate", S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2427 };
2428 
2429 static int proc_attr_dir_readdir(struct file *file, struct dir_context *ctx)
2430 {
2431 	return proc_pident_readdir(file, ctx,
2432 				   attr_dir_stuff, ARRAY_SIZE(attr_dir_stuff));
2433 }
2434 
2435 static const struct file_operations proc_attr_dir_operations = {
2436 	.read		= generic_read_dir,
2437 	.iterate	= proc_attr_dir_readdir,
2438 	.llseek		= default_llseek,
2439 };
2440 
2441 static struct dentry *proc_attr_dir_lookup(struct inode *dir,
2442 				struct dentry *dentry, unsigned int flags)
2443 {
2444 	return proc_pident_lookup(dir, dentry,
2445 				  attr_dir_stuff, ARRAY_SIZE(attr_dir_stuff));
2446 }
2447 
2448 static const struct inode_operations proc_attr_dir_inode_operations = {
2449 	.lookup		= proc_attr_dir_lookup,
2450 	.getattr	= pid_getattr,
2451 	.setattr	= proc_setattr,
2452 };
2453 
2454 #endif
2455 
2456 #ifdef CONFIG_ELF_CORE
2457 static ssize_t proc_coredump_filter_read(struct file *file, char __user *buf,
2458 					 size_t count, loff_t *ppos)
2459 {
2460 	struct task_struct *task = get_proc_task(file_inode(file));
2461 	struct mm_struct *mm;
2462 	char buffer[PROC_NUMBUF];
2463 	size_t len;
2464 	int ret;
2465 
2466 	if (!task)
2467 		return -ESRCH;
2468 
2469 	ret = 0;
2470 	mm = get_task_mm(task);
2471 	if (mm) {
2472 		len = snprintf(buffer, sizeof(buffer), "%08lx\n",
2473 			       ((mm->flags & MMF_DUMP_FILTER_MASK) >>
2474 				MMF_DUMP_FILTER_SHIFT));
2475 		mmput(mm);
2476 		ret = simple_read_from_buffer(buf, count, ppos, buffer, len);
2477 	}
2478 
2479 	put_task_struct(task);
2480 
2481 	return ret;
2482 }
2483 
2484 static ssize_t proc_coredump_filter_write(struct file *file,
2485 					  const char __user *buf,
2486 					  size_t count,
2487 					  loff_t *ppos)
2488 {
2489 	struct task_struct *task;
2490 	struct mm_struct *mm;
2491 	unsigned int val;
2492 	int ret;
2493 	int i;
2494 	unsigned long mask;
2495 
2496 	ret = kstrtouint_from_user(buf, count, 0, &val);
2497 	if (ret < 0)
2498 		return ret;
2499 
2500 	ret = -ESRCH;
2501 	task = get_proc_task(file_inode(file));
2502 	if (!task)
2503 		goto out_no_task;
2504 
2505 	mm = get_task_mm(task);
2506 	if (!mm)
2507 		goto out_no_mm;
2508 	ret = 0;
2509 
2510 	for (i = 0, mask = 1; i < MMF_DUMP_FILTER_BITS; i++, mask <<= 1) {
2511 		if (val & mask)
2512 			set_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags);
2513 		else
2514 			clear_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags);
2515 	}
2516 
2517 	mmput(mm);
2518  out_no_mm:
2519 	put_task_struct(task);
2520  out_no_task:
2521 	if (ret < 0)
2522 		return ret;
2523 	return count;
2524 }
2525 
2526 static const struct file_operations proc_coredump_filter_operations = {
2527 	.read		= proc_coredump_filter_read,
2528 	.write		= proc_coredump_filter_write,
2529 	.llseek		= generic_file_llseek,
2530 };
2531 #endif
2532 
2533 #ifdef CONFIG_TASK_IO_ACCOUNTING
2534 static int do_io_accounting(struct task_struct *task, struct seq_file *m, int whole)
2535 {
2536 	struct task_io_accounting acct = task->ioac;
2537 	unsigned long flags;
2538 	int result;
2539 
2540 	result = mutex_lock_killable(&task->signal->cred_guard_mutex);
2541 	if (result)
2542 		return result;
2543 
2544 	if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS)) {
2545 		result = -EACCES;
2546 		goto out_unlock;
2547 	}
2548 
2549 	if (whole && lock_task_sighand(task, &flags)) {
2550 		struct task_struct *t = task;
2551 
2552 		task_io_accounting_add(&acct, &task->signal->ioac);
2553 		while_each_thread(task, t)
2554 			task_io_accounting_add(&acct, &t->ioac);
2555 
2556 		unlock_task_sighand(task, &flags);
2557 	}
2558 	seq_printf(m,
2559 		   "rchar: %llu\n"
2560 		   "wchar: %llu\n"
2561 		   "syscr: %llu\n"
2562 		   "syscw: %llu\n"
2563 		   "read_bytes: %llu\n"
2564 		   "write_bytes: %llu\n"
2565 		   "cancelled_write_bytes: %llu\n",
2566 		   (unsigned long long)acct.rchar,
2567 		   (unsigned long long)acct.wchar,
2568 		   (unsigned long long)acct.syscr,
2569 		   (unsigned long long)acct.syscw,
2570 		   (unsigned long long)acct.read_bytes,
2571 		   (unsigned long long)acct.write_bytes,
2572 		   (unsigned long long)acct.cancelled_write_bytes);
2573 	result = 0;
2574 
2575 out_unlock:
2576 	mutex_unlock(&task->signal->cred_guard_mutex);
2577 	return result;
2578 }
2579 
2580 static int proc_tid_io_accounting(struct seq_file *m, struct pid_namespace *ns,
2581 				  struct pid *pid, struct task_struct *task)
2582 {
2583 	return do_io_accounting(task, m, 0);
2584 }
2585 
2586 static int proc_tgid_io_accounting(struct seq_file *m, struct pid_namespace *ns,
2587 				   struct pid *pid, struct task_struct *task)
2588 {
2589 	return do_io_accounting(task, m, 1);
2590 }
2591 #endif /* CONFIG_TASK_IO_ACCOUNTING */
2592 
2593 #ifdef CONFIG_USER_NS
2594 static int proc_id_map_open(struct inode *inode, struct file *file,
2595 	const struct seq_operations *seq_ops)
2596 {
2597 	struct user_namespace *ns = NULL;
2598 	struct task_struct *task;
2599 	struct seq_file *seq;
2600 	int ret = -EINVAL;
2601 
2602 	task = get_proc_task(inode);
2603 	if (task) {
2604 		rcu_read_lock();
2605 		ns = get_user_ns(task_cred_xxx(task, user_ns));
2606 		rcu_read_unlock();
2607 		put_task_struct(task);
2608 	}
2609 	if (!ns)
2610 		goto err;
2611 
2612 	ret = seq_open(file, seq_ops);
2613 	if (ret)
2614 		goto err_put_ns;
2615 
2616 	seq = file->private_data;
2617 	seq->private = ns;
2618 
2619 	return 0;
2620 err_put_ns:
2621 	put_user_ns(ns);
2622 err:
2623 	return ret;
2624 }
2625 
2626 static int proc_id_map_release(struct inode *inode, struct file *file)
2627 {
2628 	struct seq_file *seq = file->private_data;
2629 	struct user_namespace *ns = seq->private;
2630 	put_user_ns(ns);
2631 	return seq_release(inode, file);
2632 }
2633 
2634 static int proc_uid_map_open(struct inode *inode, struct file *file)
2635 {
2636 	return proc_id_map_open(inode, file, &proc_uid_seq_operations);
2637 }
2638 
2639 static int proc_gid_map_open(struct inode *inode, struct file *file)
2640 {
2641 	return proc_id_map_open(inode, file, &proc_gid_seq_operations);
2642 }
2643 
2644 static int proc_projid_map_open(struct inode *inode, struct file *file)
2645 {
2646 	return proc_id_map_open(inode, file, &proc_projid_seq_operations);
2647 }
2648 
2649 static const struct file_operations proc_uid_map_operations = {
2650 	.open		= proc_uid_map_open,
2651 	.write		= proc_uid_map_write,
2652 	.read		= seq_read,
2653 	.llseek		= seq_lseek,
2654 	.release	= proc_id_map_release,
2655 };
2656 
2657 static const struct file_operations proc_gid_map_operations = {
2658 	.open		= proc_gid_map_open,
2659 	.write		= proc_gid_map_write,
2660 	.read		= seq_read,
2661 	.llseek		= seq_lseek,
2662 	.release	= proc_id_map_release,
2663 };
2664 
2665 static const struct file_operations proc_projid_map_operations = {
2666 	.open		= proc_projid_map_open,
2667 	.write		= proc_projid_map_write,
2668 	.read		= seq_read,
2669 	.llseek		= seq_lseek,
2670 	.release	= proc_id_map_release,
2671 };
2672 
2673 static int proc_setgroups_open(struct inode *inode, struct file *file)
2674 {
2675 	struct user_namespace *ns = NULL;
2676 	struct task_struct *task;
2677 	int ret;
2678 
2679 	ret = -ESRCH;
2680 	task = get_proc_task(inode);
2681 	if (task) {
2682 		rcu_read_lock();
2683 		ns = get_user_ns(task_cred_xxx(task, user_ns));
2684 		rcu_read_unlock();
2685 		put_task_struct(task);
2686 	}
2687 	if (!ns)
2688 		goto err;
2689 
2690 	if (file->f_mode & FMODE_WRITE) {
2691 		ret = -EACCES;
2692 		if (!ns_capable(ns, CAP_SYS_ADMIN))
2693 			goto err_put_ns;
2694 	}
2695 
2696 	ret = single_open(file, &proc_setgroups_show, ns);
2697 	if (ret)
2698 		goto err_put_ns;
2699 
2700 	return 0;
2701 err_put_ns:
2702 	put_user_ns(ns);
2703 err:
2704 	return ret;
2705 }
2706 
2707 static int proc_setgroups_release(struct inode *inode, struct file *file)
2708 {
2709 	struct seq_file *seq = file->private_data;
2710 	struct user_namespace *ns = seq->private;
2711 	int ret = single_release(inode, file);
2712 	put_user_ns(ns);
2713 	return ret;
2714 }
2715 
2716 static const struct file_operations proc_setgroups_operations = {
2717 	.open		= proc_setgroups_open,
2718 	.write		= proc_setgroups_write,
2719 	.read		= seq_read,
2720 	.llseek		= seq_lseek,
2721 	.release	= proc_setgroups_release,
2722 };
2723 #endif /* CONFIG_USER_NS */
2724 
2725 static int proc_pid_personality(struct seq_file *m, struct pid_namespace *ns,
2726 				struct pid *pid, struct task_struct *task)
2727 {
2728 	int err = lock_trace(task);
2729 	if (!err) {
2730 		seq_printf(m, "%08x\n", task->personality);
2731 		unlock_trace(task);
2732 	}
2733 	return err;
2734 }
2735 
2736 /*
2737  * Thread groups
2738  */
2739 static const struct file_operations proc_task_operations;
2740 static const struct inode_operations proc_task_inode_operations;
2741 
2742 static const struct pid_entry tgid_base_stuff[] = {
2743 	DIR("task",       S_IRUGO|S_IXUGO, proc_task_inode_operations, proc_task_operations),
2744 	DIR("fd",         S_IRUSR|S_IXUSR, proc_fd_inode_operations, proc_fd_operations),
2745 	DIR("map_files",  S_IRUSR|S_IXUSR, proc_map_files_inode_operations, proc_map_files_operations),
2746 	DIR("fdinfo",     S_IRUSR|S_IXUSR, proc_fdinfo_inode_operations, proc_fdinfo_operations),
2747 	DIR("ns",	  S_IRUSR|S_IXUGO, proc_ns_dir_inode_operations, proc_ns_dir_operations),
2748 #ifdef CONFIG_NET
2749 	DIR("net",        S_IRUGO|S_IXUGO, proc_net_inode_operations, proc_net_operations),
2750 #endif
2751 	REG("environ",    S_IRUSR, proc_environ_operations),
2752 	ONE("auxv",       S_IRUSR, proc_pid_auxv),
2753 	ONE("status",     S_IRUGO, proc_pid_status),
2754 	ONE("personality", S_IRUSR, proc_pid_personality),
2755 	ONE("limits",	  S_IRUGO, proc_pid_limits),
2756 #ifdef CONFIG_SCHED_DEBUG
2757 	REG("sched",      S_IRUGO|S_IWUSR, proc_pid_sched_operations),
2758 #endif
2759 #ifdef CONFIG_SCHED_AUTOGROUP
2760 	REG("autogroup",  S_IRUGO|S_IWUSR, proc_pid_sched_autogroup_operations),
2761 #endif
2762 	REG("comm",      S_IRUGO|S_IWUSR, proc_pid_set_comm_operations),
2763 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK
2764 	ONE("syscall",    S_IRUSR, proc_pid_syscall),
2765 #endif
2766 	REG("cmdline",    S_IRUGO, proc_pid_cmdline_ops),
2767 	ONE("stat",       S_IRUGO, proc_tgid_stat),
2768 	ONE("statm",      S_IRUGO, proc_pid_statm),
2769 	REG("maps",       S_IRUGO, proc_pid_maps_operations),
2770 #ifdef CONFIG_NUMA
2771 	REG("numa_maps",  S_IRUGO, proc_pid_numa_maps_operations),
2772 #endif
2773 	REG("mem",        S_IRUSR|S_IWUSR, proc_mem_operations),
2774 	LNK("cwd",        proc_cwd_link),
2775 	LNK("root",       proc_root_link),
2776 	LNK("exe",        proc_exe_link),
2777 	REG("mounts",     S_IRUGO, proc_mounts_operations),
2778 	REG("mountinfo",  S_IRUGO, proc_mountinfo_operations),
2779 	REG("mountstats", S_IRUSR, proc_mountstats_operations),
2780 #ifdef CONFIG_PROC_PAGE_MONITOR
2781 	REG("clear_refs", S_IWUSR, proc_clear_refs_operations),
2782 	REG("smaps",      S_IRUGO, proc_pid_smaps_operations),
2783 	REG("pagemap",    S_IRUSR, proc_pagemap_operations),
2784 #endif
2785 #ifdef CONFIG_SECURITY
2786 	DIR("attr",       S_IRUGO|S_IXUGO, proc_attr_dir_inode_operations, proc_attr_dir_operations),
2787 #endif
2788 #ifdef CONFIG_KALLSYMS
2789 	ONE("wchan",      S_IRUGO, proc_pid_wchan),
2790 #endif
2791 #ifdef CONFIG_STACKTRACE
2792 	ONE("stack",      S_IRUSR, proc_pid_stack),
2793 #endif
2794 #ifdef CONFIG_SCHED_INFO
2795 	ONE("schedstat",  S_IRUGO, proc_pid_schedstat),
2796 #endif
2797 #ifdef CONFIG_LATENCYTOP
2798 	REG("latency",  S_IRUGO, proc_lstats_operations),
2799 #endif
2800 #ifdef CONFIG_PROC_PID_CPUSET
2801 	ONE("cpuset",     S_IRUGO, proc_cpuset_show),
2802 #endif
2803 #ifdef CONFIG_CGROUPS
2804 	ONE("cgroup",  S_IRUGO, proc_cgroup_show),
2805 #endif
2806 	ONE("oom_score",  S_IRUGO, proc_oom_score),
2807 	REG("oom_adj",    S_IRUGO|S_IWUSR, proc_oom_adj_operations),
2808 	REG("oom_score_adj", S_IRUGO|S_IWUSR, proc_oom_score_adj_operations),
2809 #ifdef CONFIG_AUDITSYSCALL
2810 	REG("loginuid",   S_IWUSR|S_IRUGO, proc_loginuid_operations),
2811 	REG("sessionid",  S_IRUGO, proc_sessionid_operations),
2812 #endif
2813 #ifdef CONFIG_FAULT_INJECTION
2814 	REG("make-it-fail", S_IRUGO|S_IWUSR, proc_fault_inject_operations),
2815 #endif
2816 #ifdef CONFIG_ELF_CORE
2817 	REG("coredump_filter", S_IRUGO|S_IWUSR, proc_coredump_filter_operations),
2818 #endif
2819 #ifdef CONFIG_TASK_IO_ACCOUNTING
2820 	ONE("io",	S_IRUSR, proc_tgid_io_accounting),
2821 #endif
2822 #ifdef CONFIG_HARDWALL
2823 	ONE("hardwall",   S_IRUGO, proc_pid_hardwall),
2824 #endif
2825 #ifdef CONFIG_USER_NS
2826 	REG("uid_map",    S_IRUGO|S_IWUSR, proc_uid_map_operations),
2827 	REG("gid_map",    S_IRUGO|S_IWUSR, proc_gid_map_operations),
2828 	REG("projid_map", S_IRUGO|S_IWUSR, proc_projid_map_operations),
2829 	REG("setgroups",  S_IRUGO|S_IWUSR, proc_setgroups_operations),
2830 #endif
2831 #ifdef CONFIG_CHECKPOINT_RESTORE
2832 	REG("timers",	  S_IRUGO, proc_timers_operations),
2833 #endif
2834 };
2835 
2836 static int proc_tgid_base_readdir(struct file *file, struct dir_context *ctx)
2837 {
2838 	return proc_pident_readdir(file, ctx,
2839 				   tgid_base_stuff, ARRAY_SIZE(tgid_base_stuff));
2840 }
2841 
2842 static const struct file_operations proc_tgid_base_operations = {
2843 	.read		= generic_read_dir,
2844 	.iterate	= proc_tgid_base_readdir,
2845 	.llseek		= default_llseek,
2846 };
2847 
2848 static struct dentry *proc_tgid_base_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
2849 {
2850 	return proc_pident_lookup(dir, dentry,
2851 				  tgid_base_stuff, ARRAY_SIZE(tgid_base_stuff));
2852 }
2853 
2854 static const struct inode_operations proc_tgid_base_inode_operations = {
2855 	.lookup		= proc_tgid_base_lookup,
2856 	.getattr	= pid_getattr,
2857 	.setattr	= proc_setattr,
2858 	.permission	= proc_pid_permission,
2859 };
2860 
2861 static void proc_flush_task_mnt(struct vfsmount *mnt, pid_t pid, pid_t tgid)
2862 {
2863 	struct dentry *dentry, *leader, *dir;
2864 	char buf[PROC_NUMBUF];
2865 	struct qstr name;
2866 
2867 	name.name = buf;
2868 	name.len = snprintf(buf, sizeof(buf), "%d", pid);
2869 	/* no ->d_hash() rejects on procfs */
2870 	dentry = d_hash_and_lookup(mnt->mnt_root, &name);
2871 	if (dentry) {
2872 		d_invalidate(dentry);
2873 		dput(dentry);
2874 	}
2875 
2876 	if (pid == tgid)
2877 		return;
2878 
2879 	name.name = buf;
2880 	name.len = snprintf(buf, sizeof(buf), "%d", tgid);
2881 	leader = d_hash_and_lookup(mnt->mnt_root, &name);
2882 	if (!leader)
2883 		goto out;
2884 
2885 	name.name = "task";
2886 	name.len = strlen(name.name);
2887 	dir = d_hash_and_lookup(leader, &name);
2888 	if (!dir)
2889 		goto out_put_leader;
2890 
2891 	name.name = buf;
2892 	name.len = snprintf(buf, sizeof(buf), "%d", pid);
2893 	dentry = d_hash_and_lookup(dir, &name);
2894 	if (dentry) {
2895 		d_invalidate(dentry);
2896 		dput(dentry);
2897 	}
2898 
2899 	dput(dir);
2900 out_put_leader:
2901 	dput(leader);
2902 out:
2903 	return;
2904 }
2905 
2906 /**
2907  * proc_flush_task -  Remove dcache entries for @task from the /proc dcache.
2908  * @task: task that should be flushed.
2909  *
2910  * When flushing dentries from proc, one needs to flush them from global
2911  * proc (proc_mnt) and from all the namespaces' procs this task was seen
2912  * in. This call is supposed to do all of this job.
2913  *
2914  * Looks in the dcache for
2915  * /proc/@pid
2916  * /proc/@tgid/task/@pid
2917  * if either directory is present flushes it and all of it'ts children
2918  * from the dcache.
2919  *
2920  * It is safe and reasonable to cache /proc entries for a task until
2921  * that task exits.  After that they just clog up the dcache with
2922  * useless entries, possibly causing useful dcache entries to be
2923  * flushed instead.  This routine is proved to flush those useless
2924  * dcache entries at process exit time.
2925  *
2926  * NOTE: This routine is just an optimization so it does not guarantee
2927  *       that no dcache entries will exist at process exit time it
2928  *       just makes it very unlikely that any will persist.
2929  */
2930 
2931 void proc_flush_task(struct task_struct *task)
2932 {
2933 	int i;
2934 	struct pid *pid, *tgid;
2935 	struct upid *upid;
2936 
2937 	pid = task_pid(task);
2938 	tgid = task_tgid(task);
2939 
2940 	for (i = 0; i <= pid->level; i++) {
2941 		upid = &pid->numbers[i];
2942 		proc_flush_task_mnt(upid->ns->proc_mnt, upid->nr,
2943 					tgid->numbers[i].nr);
2944 	}
2945 }
2946 
2947 static int proc_pid_instantiate(struct inode *dir,
2948 				   struct dentry * dentry,
2949 				   struct task_struct *task, const void *ptr)
2950 {
2951 	struct inode *inode;
2952 
2953 	inode = proc_pid_make_inode(dir->i_sb, task);
2954 	if (!inode)
2955 		goto out;
2956 
2957 	inode->i_mode = S_IFDIR|S_IRUGO|S_IXUGO;
2958 	inode->i_op = &proc_tgid_base_inode_operations;
2959 	inode->i_fop = &proc_tgid_base_operations;
2960 	inode->i_flags|=S_IMMUTABLE;
2961 
2962 	set_nlink(inode, 2 + pid_entry_count_dirs(tgid_base_stuff,
2963 						  ARRAY_SIZE(tgid_base_stuff)));
2964 
2965 	d_set_d_op(dentry, &pid_dentry_operations);
2966 
2967 	d_add(dentry, inode);
2968 	/* Close the race of the process dying before we return the dentry */
2969 	if (pid_revalidate(dentry, 0))
2970 		return 0;
2971 out:
2972 	return -ENOENT;
2973 }
2974 
2975 struct dentry *proc_pid_lookup(struct inode *dir, struct dentry * dentry, unsigned int flags)
2976 {
2977 	int result = -ENOENT;
2978 	struct task_struct *task;
2979 	unsigned tgid;
2980 	struct pid_namespace *ns;
2981 
2982 	tgid = name_to_int(&dentry->d_name);
2983 	if (tgid == ~0U)
2984 		goto out;
2985 
2986 	ns = dentry->d_sb->s_fs_info;
2987 	rcu_read_lock();
2988 	task = find_task_by_pid_ns(tgid, ns);
2989 	if (task)
2990 		get_task_struct(task);
2991 	rcu_read_unlock();
2992 	if (!task)
2993 		goto out;
2994 
2995 	result = proc_pid_instantiate(dir, dentry, task, NULL);
2996 	put_task_struct(task);
2997 out:
2998 	return ERR_PTR(result);
2999 }
3000 
3001 /*
3002  * Find the first task with tgid >= tgid
3003  *
3004  */
3005 struct tgid_iter {
3006 	unsigned int tgid;
3007 	struct task_struct *task;
3008 };
3009 static struct tgid_iter next_tgid(struct pid_namespace *ns, struct tgid_iter iter)
3010 {
3011 	struct pid *pid;
3012 
3013 	if (iter.task)
3014 		put_task_struct(iter.task);
3015 	rcu_read_lock();
3016 retry:
3017 	iter.task = NULL;
3018 	pid = find_ge_pid(iter.tgid, ns);
3019 	if (pid) {
3020 		iter.tgid = pid_nr_ns(pid, ns);
3021 		iter.task = pid_task(pid, PIDTYPE_PID);
3022 		/* What we to know is if the pid we have find is the
3023 		 * pid of a thread_group_leader.  Testing for task
3024 		 * being a thread_group_leader is the obvious thing
3025 		 * todo but there is a window when it fails, due to
3026 		 * the pid transfer logic in de_thread.
3027 		 *
3028 		 * So we perform the straight forward test of seeing
3029 		 * if the pid we have found is the pid of a thread
3030 		 * group leader, and don't worry if the task we have
3031 		 * found doesn't happen to be a thread group leader.
3032 		 * As we don't care in the case of readdir.
3033 		 */
3034 		if (!iter.task || !has_group_leader_pid(iter.task)) {
3035 			iter.tgid += 1;
3036 			goto retry;
3037 		}
3038 		get_task_struct(iter.task);
3039 	}
3040 	rcu_read_unlock();
3041 	return iter;
3042 }
3043 
3044 #define TGID_OFFSET (FIRST_PROCESS_ENTRY + 2)
3045 
3046 /* for the /proc/ directory itself, after non-process stuff has been done */
3047 int proc_pid_readdir(struct file *file, struct dir_context *ctx)
3048 {
3049 	struct tgid_iter iter;
3050 	struct pid_namespace *ns = file_inode(file)->i_sb->s_fs_info;
3051 	loff_t pos = ctx->pos;
3052 
3053 	if (pos >= PID_MAX_LIMIT + TGID_OFFSET)
3054 		return 0;
3055 
3056 	if (pos == TGID_OFFSET - 2) {
3057 		struct inode *inode = d_inode(ns->proc_self);
3058 		if (!dir_emit(ctx, "self", 4, inode->i_ino, DT_LNK))
3059 			return 0;
3060 		ctx->pos = pos = pos + 1;
3061 	}
3062 	if (pos == TGID_OFFSET - 1) {
3063 		struct inode *inode = d_inode(ns->proc_thread_self);
3064 		if (!dir_emit(ctx, "thread-self", 11, inode->i_ino, DT_LNK))
3065 			return 0;
3066 		ctx->pos = pos = pos + 1;
3067 	}
3068 	iter.tgid = pos - TGID_OFFSET;
3069 	iter.task = NULL;
3070 	for (iter = next_tgid(ns, iter);
3071 	     iter.task;
3072 	     iter.tgid += 1, iter = next_tgid(ns, iter)) {
3073 		char name[PROC_NUMBUF];
3074 		int len;
3075 		if (!has_pid_permissions(ns, iter.task, 2))
3076 			continue;
3077 
3078 		len = snprintf(name, sizeof(name), "%d", iter.tgid);
3079 		ctx->pos = iter.tgid + TGID_OFFSET;
3080 		if (!proc_fill_cache(file, ctx, name, len,
3081 				     proc_pid_instantiate, iter.task, NULL)) {
3082 			put_task_struct(iter.task);
3083 			return 0;
3084 		}
3085 	}
3086 	ctx->pos = PID_MAX_LIMIT + TGID_OFFSET;
3087 	return 0;
3088 }
3089 
3090 /*
3091  * Tasks
3092  */
3093 static const struct pid_entry tid_base_stuff[] = {
3094 	DIR("fd",        S_IRUSR|S_IXUSR, proc_fd_inode_operations, proc_fd_operations),
3095 	DIR("fdinfo",    S_IRUSR|S_IXUSR, proc_fdinfo_inode_operations, proc_fdinfo_operations),
3096 	DIR("ns",	 S_IRUSR|S_IXUGO, proc_ns_dir_inode_operations, proc_ns_dir_operations),
3097 #ifdef CONFIG_NET
3098 	DIR("net",        S_IRUGO|S_IXUGO, proc_net_inode_operations, proc_net_operations),
3099 #endif
3100 	REG("environ",   S_IRUSR, proc_environ_operations),
3101 	ONE("auxv",      S_IRUSR, proc_pid_auxv),
3102 	ONE("status",    S_IRUGO, proc_pid_status),
3103 	ONE("personality", S_IRUSR, proc_pid_personality),
3104 	ONE("limits",	 S_IRUGO, proc_pid_limits),
3105 #ifdef CONFIG_SCHED_DEBUG
3106 	REG("sched",     S_IRUGO|S_IWUSR, proc_pid_sched_operations),
3107 #endif
3108 	REG("comm",      S_IRUGO|S_IWUSR, proc_pid_set_comm_operations),
3109 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK
3110 	ONE("syscall",   S_IRUSR, proc_pid_syscall),
3111 #endif
3112 	REG("cmdline",   S_IRUGO, proc_pid_cmdline_ops),
3113 	ONE("stat",      S_IRUGO, proc_tid_stat),
3114 	ONE("statm",     S_IRUGO, proc_pid_statm),
3115 	REG("maps",      S_IRUGO, proc_tid_maps_operations),
3116 #ifdef CONFIG_PROC_CHILDREN
3117 	REG("children",  S_IRUGO, proc_tid_children_operations),
3118 #endif
3119 #ifdef CONFIG_NUMA
3120 	REG("numa_maps", S_IRUGO, proc_tid_numa_maps_operations),
3121 #endif
3122 	REG("mem",       S_IRUSR|S_IWUSR, proc_mem_operations),
3123 	LNK("cwd",       proc_cwd_link),
3124 	LNK("root",      proc_root_link),
3125 	LNK("exe",       proc_exe_link),
3126 	REG("mounts",    S_IRUGO, proc_mounts_operations),
3127 	REG("mountinfo",  S_IRUGO, proc_mountinfo_operations),
3128 #ifdef CONFIG_PROC_PAGE_MONITOR
3129 	REG("clear_refs", S_IWUSR, proc_clear_refs_operations),
3130 	REG("smaps",     S_IRUGO, proc_tid_smaps_operations),
3131 	REG("pagemap",    S_IRUSR, proc_pagemap_operations),
3132 #endif
3133 #ifdef CONFIG_SECURITY
3134 	DIR("attr",      S_IRUGO|S_IXUGO, proc_attr_dir_inode_operations, proc_attr_dir_operations),
3135 #endif
3136 #ifdef CONFIG_KALLSYMS
3137 	ONE("wchan",     S_IRUGO, proc_pid_wchan),
3138 #endif
3139 #ifdef CONFIG_STACKTRACE
3140 	ONE("stack",      S_IRUSR, proc_pid_stack),
3141 #endif
3142 #ifdef CONFIG_SCHED_INFO
3143 	ONE("schedstat", S_IRUGO, proc_pid_schedstat),
3144 #endif
3145 #ifdef CONFIG_LATENCYTOP
3146 	REG("latency",  S_IRUGO, proc_lstats_operations),
3147 #endif
3148 #ifdef CONFIG_PROC_PID_CPUSET
3149 	ONE("cpuset",    S_IRUGO, proc_cpuset_show),
3150 #endif
3151 #ifdef CONFIG_CGROUPS
3152 	ONE("cgroup",  S_IRUGO, proc_cgroup_show),
3153 #endif
3154 	ONE("oom_score", S_IRUGO, proc_oom_score),
3155 	REG("oom_adj",   S_IRUGO|S_IWUSR, proc_oom_adj_operations),
3156 	REG("oom_score_adj", S_IRUGO|S_IWUSR, proc_oom_score_adj_operations),
3157 #ifdef CONFIG_AUDITSYSCALL
3158 	REG("loginuid",  S_IWUSR|S_IRUGO, proc_loginuid_operations),
3159 	REG("sessionid",  S_IRUGO, proc_sessionid_operations),
3160 #endif
3161 #ifdef CONFIG_FAULT_INJECTION
3162 	REG("make-it-fail", S_IRUGO|S_IWUSR, proc_fault_inject_operations),
3163 #endif
3164 #ifdef CONFIG_TASK_IO_ACCOUNTING
3165 	ONE("io",	S_IRUSR, proc_tid_io_accounting),
3166 #endif
3167 #ifdef CONFIG_HARDWALL
3168 	ONE("hardwall",   S_IRUGO, proc_pid_hardwall),
3169 #endif
3170 #ifdef CONFIG_USER_NS
3171 	REG("uid_map",    S_IRUGO|S_IWUSR, proc_uid_map_operations),
3172 	REG("gid_map",    S_IRUGO|S_IWUSR, proc_gid_map_operations),
3173 	REG("projid_map", S_IRUGO|S_IWUSR, proc_projid_map_operations),
3174 	REG("setgroups",  S_IRUGO|S_IWUSR, proc_setgroups_operations),
3175 #endif
3176 };
3177 
3178 static int proc_tid_base_readdir(struct file *file, struct dir_context *ctx)
3179 {
3180 	return proc_pident_readdir(file, ctx,
3181 				   tid_base_stuff, ARRAY_SIZE(tid_base_stuff));
3182 }
3183 
3184 static struct dentry *proc_tid_base_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
3185 {
3186 	return proc_pident_lookup(dir, dentry,
3187 				  tid_base_stuff, ARRAY_SIZE(tid_base_stuff));
3188 }
3189 
3190 static const struct file_operations proc_tid_base_operations = {
3191 	.read		= generic_read_dir,
3192 	.iterate	= proc_tid_base_readdir,
3193 	.llseek		= default_llseek,
3194 };
3195 
3196 static const struct inode_operations proc_tid_base_inode_operations = {
3197 	.lookup		= proc_tid_base_lookup,
3198 	.getattr	= pid_getattr,
3199 	.setattr	= proc_setattr,
3200 };
3201 
3202 static int proc_task_instantiate(struct inode *dir,
3203 	struct dentry *dentry, struct task_struct *task, const void *ptr)
3204 {
3205 	struct inode *inode;
3206 	inode = proc_pid_make_inode(dir->i_sb, task);
3207 
3208 	if (!inode)
3209 		goto out;
3210 	inode->i_mode = S_IFDIR|S_IRUGO|S_IXUGO;
3211 	inode->i_op = &proc_tid_base_inode_operations;
3212 	inode->i_fop = &proc_tid_base_operations;
3213 	inode->i_flags|=S_IMMUTABLE;
3214 
3215 	set_nlink(inode, 2 + pid_entry_count_dirs(tid_base_stuff,
3216 						  ARRAY_SIZE(tid_base_stuff)));
3217 
3218 	d_set_d_op(dentry, &pid_dentry_operations);
3219 
3220 	d_add(dentry, inode);
3221 	/* Close the race of the process dying before we return the dentry */
3222 	if (pid_revalidate(dentry, 0))
3223 		return 0;
3224 out:
3225 	return -ENOENT;
3226 }
3227 
3228 static struct dentry *proc_task_lookup(struct inode *dir, struct dentry * dentry, unsigned int flags)
3229 {
3230 	int result = -ENOENT;
3231 	struct task_struct *task;
3232 	struct task_struct *leader = get_proc_task(dir);
3233 	unsigned tid;
3234 	struct pid_namespace *ns;
3235 
3236 	if (!leader)
3237 		goto out_no_task;
3238 
3239 	tid = name_to_int(&dentry->d_name);
3240 	if (tid == ~0U)
3241 		goto out;
3242 
3243 	ns = dentry->d_sb->s_fs_info;
3244 	rcu_read_lock();
3245 	task = find_task_by_pid_ns(tid, ns);
3246 	if (task)
3247 		get_task_struct(task);
3248 	rcu_read_unlock();
3249 	if (!task)
3250 		goto out;
3251 	if (!same_thread_group(leader, task))
3252 		goto out_drop_task;
3253 
3254 	result = proc_task_instantiate(dir, dentry, task, NULL);
3255 out_drop_task:
3256 	put_task_struct(task);
3257 out:
3258 	put_task_struct(leader);
3259 out_no_task:
3260 	return ERR_PTR(result);
3261 }
3262 
3263 /*
3264  * Find the first tid of a thread group to return to user space.
3265  *
3266  * Usually this is just the thread group leader, but if the users
3267  * buffer was too small or there was a seek into the middle of the
3268  * directory we have more work todo.
3269  *
3270  * In the case of a short read we start with find_task_by_pid.
3271  *
3272  * In the case of a seek we start with the leader and walk nr
3273  * threads past it.
3274  */
3275 static struct task_struct *first_tid(struct pid *pid, int tid, loff_t f_pos,
3276 					struct pid_namespace *ns)
3277 {
3278 	struct task_struct *pos, *task;
3279 	unsigned long nr = f_pos;
3280 
3281 	if (nr != f_pos)	/* 32bit overflow? */
3282 		return NULL;
3283 
3284 	rcu_read_lock();
3285 	task = pid_task(pid, PIDTYPE_PID);
3286 	if (!task)
3287 		goto fail;
3288 
3289 	/* Attempt to start with the tid of a thread */
3290 	if (tid && nr) {
3291 		pos = find_task_by_pid_ns(tid, ns);
3292 		if (pos && same_thread_group(pos, task))
3293 			goto found;
3294 	}
3295 
3296 	/* If nr exceeds the number of threads there is nothing todo */
3297 	if (nr >= get_nr_threads(task))
3298 		goto fail;
3299 
3300 	/* If we haven't found our starting place yet start
3301 	 * with the leader and walk nr threads forward.
3302 	 */
3303 	pos = task = task->group_leader;
3304 	do {
3305 		if (!nr--)
3306 			goto found;
3307 	} while_each_thread(task, pos);
3308 fail:
3309 	pos = NULL;
3310 	goto out;
3311 found:
3312 	get_task_struct(pos);
3313 out:
3314 	rcu_read_unlock();
3315 	return pos;
3316 }
3317 
3318 /*
3319  * Find the next thread in the thread list.
3320  * Return NULL if there is an error or no next thread.
3321  *
3322  * The reference to the input task_struct is released.
3323  */
3324 static struct task_struct *next_tid(struct task_struct *start)
3325 {
3326 	struct task_struct *pos = NULL;
3327 	rcu_read_lock();
3328 	if (pid_alive(start)) {
3329 		pos = next_thread(start);
3330 		if (thread_group_leader(pos))
3331 			pos = NULL;
3332 		else
3333 			get_task_struct(pos);
3334 	}
3335 	rcu_read_unlock();
3336 	put_task_struct(start);
3337 	return pos;
3338 }
3339 
3340 /* for the /proc/TGID/task/ directories */
3341 static int proc_task_readdir(struct file *file, struct dir_context *ctx)
3342 {
3343 	struct inode *inode = file_inode(file);
3344 	struct task_struct *task;
3345 	struct pid_namespace *ns;
3346 	int tid;
3347 
3348 	if (proc_inode_is_dead(inode))
3349 		return -ENOENT;
3350 
3351 	if (!dir_emit_dots(file, ctx))
3352 		return 0;
3353 
3354 	/* f_version caches the tgid value that the last readdir call couldn't
3355 	 * return. lseek aka telldir automagically resets f_version to 0.
3356 	 */
3357 	ns = inode->i_sb->s_fs_info;
3358 	tid = (int)file->f_version;
3359 	file->f_version = 0;
3360 	for (task = first_tid(proc_pid(inode), tid, ctx->pos - 2, ns);
3361 	     task;
3362 	     task = next_tid(task), ctx->pos++) {
3363 		char name[PROC_NUMBUF];
3364 		int len;
3365 		tid = task_pid_nr_ns(task, ns);
3366 		len = snprintf(name, sizeof(name), "%d", tid);
3367 		if (!proc_fill_cache(file, ctx, name, len,
3368 				proc_task_instantiate, task, NULL)) {
3369 			/* returning this tgid failed, save it as the first
3370 			 * pid for the next readir call */
3371 			file->f_version = (u64)tid;
3372 			put_task_struct(task);
3373 			break;
3374 		}
3375 	}
3376 
3377 	return 0;
3378 }
3379 
3380 static int proc_task_getattr(struct vfsmount *mnt, struct dentry *dentry, struct kstat *stat)
3381 {
3382 	struct inode *inode = d_inode(dentry);
3383 	struct task_struct *p = get_proc_task(inode);
3384 	generic_fillattr(inode, stat);
3385 
3386 	if (p) {
3387 		stat->nlink += get_nr_threads(p);
3388 		put_task_struct(p);
3389 	}
3390 
3391 	return 0;
3392 }
3393 
3394 static const struct inode_operations proc_task_inode_operations = {
3395 	.lookup		= proc_task_lookup,
3396 	.getattr	= proc_task_getattr,
3397 	.setattr	= proc_setattr,
3398 	.permission	= proc_pid_permission,
3399 };
3400 
3401 static const struct file_operations proc_task_operations = {
3402 	.read		= generic_read_dir,
3403 	.iterate	= proc_task_readdir,
3404 	.llseek		= default_llseek,
3405 };
3406