xref: /linux/fs/proc/base.c (revision a5c4300389bb33ade2515c082709217f0614cf15)
1 /*
2  *  linux/fs/proc/base.c
3  *
4  *  Copyright (C) 1991, 1992 Linus Torvalds
5  *
6  *  proc base directory handling functions
7  *
8  *  1999, Al Viro. Rewritten. Now it covers the whole per-process part.
9  *  Instead of using magical inumbers to determine the kind of object
10  *  we allocate and fill in-core inodes upon lookup. They don't even
11  *  go into icache. We cache the reference to task_struct upon lookup too.
12  *  Eventually it should become a filesystem in its own. We don't use the
13  *  rest of procfs anymore.
14  *
15  *
16  *  Changelog:
17  *  17-Jan-2005
18  *  Allan Bezerra
19  *  Bruna Moreira <bruna.moreira@indt.org.br>
20  *  Edjard Mota <edjard.mota@indt.org.br>
21  *  Ilias Biris <ilias.biris@indt.org.br>
22  *  Mauricio Lin <mauricio.lin@indt.org.br>
23  *
24  *  Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT
25  *
26  *  A new process specific entry (smaps) included in /proc. It shows the
27  *  size of rss for each memory area. The maps entry lacks information
28  *  about physical memory size (rss) for each mapped file, i.e.,
29  *  rss information for executables and library files.
30  *  This additional information is useful for any tools that need to know
31  *  about physical memory consumption for a process specific library.
32  *
33  *  Changelog:
34  *  21-Feb-2005
35  *  Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT
36  *  Pud inclusion in the page table walking.
37  *
38  *  ChangeLog:
39  *  10-Mar-2005
40  *  10LE Instituto Nokia de Tecnologia - INdT:
41  *  A better way to walks through the page table as suggested by Hugh Dickins.
42  *
43  *  Simo Piiroinen <simo.piiroinen@nokia.com>:
44  *  Smaps information related to shared, private, clean and dirty pages.
45  *
46  *  Paul Mundt <paul.mundt@nokia.com>:
47  *  Overall revision about smaps.
48  */
49 
50 #include <asm/uaccess.h>
51 
52 #include <linux/errno.h>
53 #include <linux/time.h>
54 #include <linux/proc_fs.h>
55 #include <linux/stat.h>
56 #include <linux/task_io_accounting_ops.h>
57 #include <linux/init.h>
58 #include <linux/capability.h>
59 #include <linux/file.h>
60 #include <linux/fdtable.h>
61 #include <linux/string.h>
62 #include <linux/seq_file.h>
63 #include <linux/namei.h>
64 #include <linux/mnt_namespace.h>
65 #include <linux/mm.h>
66 #include <linux/rcupdate.h>
67 #include <linux/kallsyms.h>
68 #include <linux/stacktrace.h>
69 #include <linux/resource.h>
70 #include <linux/module.h>
71 #include <linux/mount.h>
72 #include <linux/security.h>
73 #include <linux/ptrace.h>
74 #include <linux/tracehook.h>
75 #include <linux/cgroup.h>
76 #include <linux/cpuset.h>
77 #include <linux/audit.h>
78 #include <linux/poll.h>
79 #include <linux/nsproxy.h>
80 #include <linux/oom.h>
81 #include <linux/elf.h>
82 #include <linux/pid_namespace.h>
83 #include <linux/fs_struct.h>
84 #include <linux/slab.h>
85 #include "internal.h"
86 
87 /* NOTE:
88  *	Implementing inode permission operations in /proc is almost
89  *	certainly an error.  Permission checks need to happen during
90  *	each system call not at open time.  The reason is that most of
91  *	what we wish to check for permissions in /proc varies at runtime.
92  *
93  *	The classic example of a problem is opening file descriptors
94  *	in /proc for a task before it execs a suid executable.
95  */
96 
97 struct pid_entry {
98 	char *name;
99 	int len;
100 	mode_t mode;
101 	const struct inode_operations *iop;
102 	const struct file_operations *fop;
103 	union proc_op op;
104 };
105 
106 #define NOD(NAME, MODE, IOP, FOP, OP) {			\
107 	.name = (NAME),					\
108 	.len  = sizeof(NAME) - 1,			\
109 	.mode = MODE,					\
110 	.iop  = IOP,					\
111 	.fop  = FOP,					\
112 	.op   = OP,					\
113 }
114 
115 #define DIR(NAME, MODE, iops, fops)	\
116 	NOD(NAME, (S_IFDIR|(MODE)), &iops, &fops, {} )
117 #define LNK(NAME, get_link)					\
118 	NOD(NAME, (S_IFLNK|S_IRWXUGO),				\
119 		&proc_pid_link_inode_operations, NULL,		\
120 		{ .proc_get_link = get_link } )
121 #define REG(NAME, MODE, fops)				\
122 	NOD(NAME, (S_IFREG|(MODE)), NULL, &fops, {})
123 #define INF(NAME, MODE, read)				\
124 	NOD(NAME, (S_IFREG|(MODE)), 			\
125 		NULL, &proc_info_file_operations,	\
126 		{ .proc_read = read } )
127 #define ONE(NAME, MODE, show)				\
128 	NOD(NAME, (S_IFREG|(MODE)), 			\
129 		NULL, &proc_single_file_operations,	\
130 		{ .proc_show = show } )
131 
132 /*
133  * Count the number of hardlinks for the pid_entry table, excluding the .
134  * and .. links.
135  */
136 static unsigned int pid_entry_count_dirs(const struct pid_entry *entries,
137 	unsigned int n)
138 {
139 	unsigned int i;
140 	unsigned int count;
141 
142 	count = 0;
143 	for (i = 0; i < n; ++i) {
144 		if (S_ISDIR(entries[i].mode))
145 			++count;
146 	}
147 
148 	return count;
149 }
150 
151 static int get_fs_path(struct task_struct *task, struct path *path, bool root)
152 {
153 	struct fs_struct *fs;
154 	int result = -ENOENT;
155 
156 	task_lock(task);
157 	fs = task->fs;
158 	if (fs) {
159 		read_lock(&fs->lock);
160 		*path = root ? fs->root : fs->pwd;
161 		path_get(path);
162 		read_unlock(&fs->lock);
163 		result = 0;
164 	}
165 	task_unlock(task);
166 	return result;
167 }
168 
169 static int get_nr_threads(struct task_struct *tsk)
170 {
171 	unsigned long flags;
172 	int count = 0;
173 
174 	if (lock_task_sighand(tsk, &flags)) {
175 		count = atomic_read(&tsk->signal->count);
176 		unlock_task_sighand(tsk, &flags);
177 	}
178 	return count;
179 }
180 
181 static int proc_cwd_link(struct inode *inode, struct path *path)
182 {
183 	struct task_struct *task = get_proc_task(inode);
184 	int result = -ENOENT;
185 
186 	if (task) {
187 		result = get_fs_path(task, path, 0);
188 		put_task_struct(task);
189 	}
190 	return result;
191 }
192 
193 static int proc_root_link(struct inode *inode, struct path *path)
194 {
195 	struct task_struct *task = get_proc_task(inode);
196 	int result = -ENOENT;
197 
198 	if (task) {
199 		result = get_fs_path(task, path, 1);
200 		put_task_struct(task);
201 	}
202 	return result;
203 }
204 
205 /*
206  * Return zero if current may access user memory in @task, -error if not.
207  */
208 static int check_mem_permission(struct task_struct *task)
209 {
210 	/*
211 	 * A task can always look at itself, in case it chooses
212 	 * to use system calls instead of load instructions.
213 	 */
214 	if (task == current)
215 		return 0;
216 
217 	/*
218 	 * If current is actively ptrace'ing, and would also be
219 	 * permitted to freshly attach with ptrace now, permit it.
220 	 */
221 	if (task_is_stopped_or_traced(task)) {
222 		int match;
223 		rcu_read_lock();
224 		match = (tracehook_tracer_task(task) == current);
225 		rcu_read_unlock();
226 		if (match && ptrace_may_access(task, PTRACE_MODE_ATTACH))
227 			return 0;
228 	}
229 
230 	/*
231 	 * Noone else is allowed.
232 	 */
233 	return -EPERM;
234 }
235 
236 struct mm_struct *mm_for_maps(struct task_struct *task)
237 {
238 	struct mm_struct *mm;
239 
240 	if (mutex_lock_killable(&task->cred_guard_mutex))
241 		return NULL;
242 
243 	mm = get_task_mm(task);
244 	if (mm && mm != current->mm &&
245 			!ptrace_may_access(task, PTRACE_MODE_READ)) {
246 		mmput(mm);
247 		mm = NULL;
248 	}
249 	mutex_unlock(&task->cred_guard_mutex);
250 
251 	return mm;
252 }
253 
254 static int proc_pid_cmdline(struct task_struct *task, char * buffer)
255 {
256 	int res = 0;
257 	unsigned int len;
258 	struct mm_struct *mm = get_task_mm(task);
259 	if (!mm)
260 		goto out;
261 	if (!mm->arg_end)
262 		goto out_mm;	/* Shh! No looking before we're done */
263 
264  	len = mm->arg_end - mm->arg_start;
265 
266 	if (len > PAGE_SIZE)
267 		len = PAGE_SIZE;
268 
269 	res = access_process_vm(task, mm->arg_start, buffer, len, 0);
270 
271 	// If the nul at the end of args has been overwritten, then
272 	// assume application is using setproctitle(3).
273 	if (res > 0 && buffer[res-1] != '\0' && len < PAGE_SIZE) {
274 		len = strnlen(buffer, res);
275 		if (len < res) {
276 		    res = len;
277 		} else {
278 			len = mm->env_end - mm->env_start;
279 			if (len > PAGE_SIZE - res)
280 				len = PAGE_SIZE - res;
281 			res += access_process_vm(task, mm->env_start, buffer+res, len, 0);
282 			res = strnlen(buffer, res);
283 		}
284 	}
285 out_mm:
286 	mmput(mm);
287 out:
288 	return res;
289 }
290 
291 static int proc_pid_auxv(struct task_struct *task, char *buffer)
292 {
293 	int res = 0;
294 	struct mm_struct *mm = get_task_mm(task);
295 	if (mm) {
296 		unsigned int nwords = 0;
297 		do {
298 			nwords += 2;
299 		} while (mm->saved_auxv[nwords - 2] != 0); /* AT_NULL */
300 		res = nwords * sizeof(mm->saved_auxv[0]);
301 		if (res > PAGE_SIZE)
302 			res = PAGE_SIZE;
303 		memcpy(buffer, mm->saved_auxv, res);
304 		mmput(mm);
305 	}
306 	return res;
307 }
308 
309 
310 #ifdef CONFIG_KALLSYMS
311 /*
312  * Provides a wchan file via kallsyms in a proper one-value-per-file format.
313  * Returns the resolved symbol.  If that fails, simply return the address.
314  */
315 static int proc_pid_wchan(struct task_struct *task, char *buffer)
316 {
317 	unsigned long wchan;
318 	char symname[KSYM_NAME_LEN];
319 
320 	wchan = get_wchan(task);
321 
322 	if (lookup_symbol_name(wchan, symname) < 0)
323 		if (!ptrace_may_access(task, PTRACE_MODE_READ))
324 			return 0;
325 		else
326 			return sprintf(buffer, "%lu", wchan);
327 	else
328 		return sprintf(buffer, "%s", symname);
329 }
330 #endif /* CONFIG_KALLSYMS */
331 
332 #ifdef CONFIG_STACKTRACE
333 
334 #define MAX_STACK_TRACE_DEPTH	64
335 
336 static int proc_pid_stack(struct seq_file *m, struct pid_namespace *ns,
337 			  struct pid *pid, struct task_struct *task)
338 {
339 	struct stack_trace trace;
340 	unsigned long *entries;
341 	int i;
342 
343 	entries = kmalloc(MAX_STACK_TRACE_DEPTH * sizeof(*entries), GFP_KERNEL);
344 	if (!entries)
345 		return -ENOMEM;
346 
347 	trace.nr_entries	= 0;
348 	trace.max_entries	= MAX_STACK_TRACE_DEPTH;
349 	trace.entries		= entries;
350 	trace.skip		= 0;
351 	save_stack_trace_tsk(task, &trace);
352 
353 	for (i = 0; i < trace.nr_entries; i++) {
354 		seq_printf(m, "[<%p>] %pS\n",
355 			   (void *)entries[i], (void *)entries[i]);
356 	}
357 	kfree(entries);
358 
359 	return 0;
360 }
361 #endif
362 
363 #ifdef CONFIG_SCHEDSTATS
364 /*
365  * Provides /proc/PID/schedstat
366  */
367 static int proc_pid_schedstat(struct task_struct *task, char *buffer)
368 {
369 	return sprintf(buffer, "%llu %llu %lu\n",
370 			(unsigned long long)task->se.sum_exec_runtime,
371 			(unsigned long long)task->sched_info.run_delay,
372 			task->sched_info.pcount);
373 }
374 #endif
375 
376 #ifdef CONFIG_LATENCYTOP
377 static int lstats_show_proc(struct seq_file *m, void *v)
378 {
379 	int i;
380 	struct inode *inode = m->private;
381 	struct task_struct *task = get_proc_task(inode);
382 
383 	if (!task)
384 		return -ESRCH;
385 	seq_puts(m, "Latency Top version : v0.1\n");
386 	for (i = 0; i < 32; i++) {
387 		if (task->latency_record[i].backtrace[0]) {
388 			int q;
389 			seq_printf(m, "%i %li %li ",
390 				task->latency_record[i].count,
391 				task->latency_record[i].time,
392 				task->latency_record[i].max);
393 			for (q = 0; q < LT_BACKTRACEDEPTH; q++) {
394 				char sym[KSYM_SYMBOL_LEN];
395 				char *c;
396 				if (!task->latency_record[i].backtrace[q])
397 					break;
398 				if (task->latency_record[i].backtrace[q] == ULONG_MAX)
399 					break;
400 				sprint_symbol(sym, task->latency_record[i].backtrace[q]);
401 				c = strchr(sym, '+');
402 				if (c)
403 					*c = 0;
404 				seq_printf(m, "%s ", sym);
405 			}
406 			seq_printf(m, "\n");
407 		}
408 
409 	}
410 	put_task_struct(task);
411 	return 0;
412 }
413 
414 static int lstats_open(struct inode *inode, struct file *file)
415 {
416 	return single_open(file, lstats_show_proc, inode);
417 }
418 
419 static ssize_t lstats_write(struct file *file, const char __user *buf,
420 			    size_t count, loff_t *offs)
421 {
422 	struct task_struct *task = get_proc_task(file->f_dentry->d_inode);
423 
424 	if (!task)
425 		return -ESRCH;
426 	clear_all_latency_tracing(task);
427 	put_task_struct(task);
428 
429 	return count;
430 }
431 
432 static const struct file_operations proc_lstats_operations = {
433 	.open		= lstats_open,
434 	.read		= seq_read,
435 	.write		= lstats_write,
436 	.llseek		= seq_lseek,
437 	.release	= single_release,
438 };
439 
440 #endif
441 
442 /* The badness from the OOM killer */
443 unsigned long badness(struct task_struct *p, unsigned long uptime);
444 static int proc_oom_score(struct task_struct *task, char *buffer)
445 {
446 	unsigned long points = 0;
447 	struct timespec uptime;
448 
449 	do_posix_clock_monotonic_gettime(&uptime);
450 	read_lock(&tasklist_lock);
451 	if (pid_alive(task))
452 		points = badness(task, uptime.tv_sec);
453 	read_unlock(&tasklist_lock);
454 	return sprintf(buffer, "%lu\n", points);
455 }
456 
457 struct limit_names {
458 	char *name;
459 	char *unit;
460 };
461 
462 static const struct limit_names lnames[RLIM_NLIMITS] = {
463 	[RLIMIT_CPU] = {"Max cpu time", "seconds"},
464 	[RLIMIT_FSIZE] = {"Max file size", "bytes"},
465 	[RLIMIT_DATA] = {"Max data size", "bytes"},
466 	[RLIMIT_STACK] = {"Max stack size", "bytes"},
467 	[RLIMIT_CORE] = {"Max core file size", "bytes"},
468 	[RLIMIT_RSS] = {"Max resident set", "bytes"},
469 	[RLIMIT_NPROC] = {"Max processes", "processes"},
470 	[RLIMIT_NOFILE] = {"Max open files", "files"},
471 	[RLIMIT_MEMLOCK] = {"Max locked memory", "bytes"},
472 	[RLIMIT_AS] = {"Max address space", "bytes"},
473 	[RLIMIT_LOCKS] = {"Max file locks", "locks"},
474 	[RLIMIT_SIGPENDING] = {"Max pending signals", "signals"},
475 	[RLIMIT_MSGQUEUE] = {"Max msgqueue size", "bytes"},
476 	[RLIMIT_NICE] = {"Max nice priority", NULL},
477 	[RLIMIT_RTPRIO] = {"Max realtime priority", NULL},
478 	[RLIMIT_RTTIME] = {"Max realtime timeout", "us"},
479 };
480 
481 /* Display limits for a process */
482 static int proc_pid_limits(struct task_struct *task, char *buffer)
483 {
484 	unsigned int i;
485 	int count = 0;
486 	unsigned long flags;
487 	char *bufptr = buffer;
488 
489 	struct rlimit rlim[RLIM_NLIMITS];
490 
491 	if (!lock_task_sighand(task, &flags))
492 		return 0;
493 	memcpy(rlim, task->signal->rlim, sizeof(struct rlimit) * RLIM_NLIMITS);
494 	unlock_task_sighand(task, &flags);
495 
496 	/*
497 	 * print the file header
498 	 */
499 	count += sprintf(&bufptr[count], "%-25s %-20s %-20s %-10s\n",
500 			"Limit", "Soft Limit", "Hard Limit", "Units");
501 
502 	for (i = 0; i < RLIM_NLIMITS; i++) {
503 		if (rlim[i].rlim_cur == RLIM_INFINITY)
504 			count += sprintf(&bufptr[count], "%-25s %-20s ",
505 					 lnames[i].name, "unlimited");
506 		else
507 			count += sprintf(&bufptr[count], "%-25s %-20lu ",
508 					 lnames[i].name, rlim[i].rlim_cur);
509 
510 		if (rlim[i].rlim_max == RLIM_INFINITY)
511 			count += sprintf(&bufptr[count], "%-20s ", "unlimited");
512 		else
513 			count += sprintf(&bufptr[count], "%-20lu ",
514 					 rlim[i].rlim_max);
515 
516 		if (lnames[i].unit)
517 			count += sprintf(&bufptr[count], "%-10s\n",
518 					 lnames[i].unit);
519 		else
520 			count += sprintf(&bufptr[count], "\n");
521 	}
522 
523 	return count;
524 }
525 
526 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK
527 static int proc_pid_syscall(struct task_struct *task, char *buffer)
528 {
529 	long nr;
530 	unsigned long args[6], sp, pc;
531 
532 	if (task_current_syscall(task, &nr, args, 6, &sp, &pc))
533 		return sprintf(buffer, "running\n");
534 
535 	if (nr < 0)
536 		return sprintf(buffer, "%ld 0x%lx 0x%lx\n", nr, sp, pc);
537 
538 	return sprintf(buffer,
539 		       "%ld 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx\n",
540 		       nr,
541 		       args[0], args[1], args[2], args[3], args[4], args[5],
542 		       sp, pc);
543 }
544 #endif /* CONFIG_HAVE_ARCH_TRACEHOOK */
545 
546 /************************************************************************/
547 /*                       Here the fs part begins                        */
548 /************************************************************************/
549 
550 /* permission checks */
551 static int proc_fd_access_allowed(struct inode *inode)
552 {
553 	struct task_struct *task;
554 	int allowed = 0;
555 	/* Allow access to a task's file descriptors if it is us or we
556 	 * may use ptrace attach to the process and find out that
557 	 * information.
558 	 */
559 	task = get_proc_task(inode);
560 	if (task) {
561 		allowed = ptrace_may_access(task, PTRACE_MODE_READ);
562 		put_task_struct(task);
563 	}
564 	return allowed;
565 }
566 
567 static int proc_setattr(struct dentry *dentry, struct iattr *attr)
568 {
569 	int error;
570 	struct inode *inode = dentry->d_inode;
571 
572 	if (attr->ia_valid & ATTR_MODE)
573 		return -EPERM;
574 
575 	error = inode_change_ok(inode, attr);
576 	if (!error)
577 		error = inode_setattr(inode, attr);
578 	return error;
579 }
580 
581 static const struct inode_operations proc_def_inode_operations = {
582 	.setattr	= proc_setattr,
583 };
584 
585 static int mounts_open_common(struct inode *inode, struct file *file,
586 			      const struct seq_operations *op)
587 {
588 	struct task_struct *task = get_proc_task(inode);
589 	struct nsproxy *nsp;
590 	struct mnt_namespace *ns = NULL;
591 	struct path root;
592 	struct proc_mounts *p;
593 	int ret = -EINVAL;
594 
595 	if (task) {
596 		rcu_read_lock();
597 		nsp = task_nsproxy(task);
598 		if (nsp) {
599 			ns = nsp->mnt_ns;
600 			if (ns)
601 				get_mnt_ns(ns);
602 		}
603 		rcu_read_unlock();
604 		if (ns && get_fs_path(task, &root, 1) == 0)
605 			ret = 0;
606 		put_task_struct(task);
607 	}
608 
609 	if (!ns)
610 		goto err;
611 	if (ret)
612 		goto err_put_ns;
613 
614 	ret = -ENOMEM;
615 	p = kmalloc(sizeof(struct proc_mounts), GFP_KERNEL);
616 	if (!p)
617 		goto err_put_path;
618 
619 	file->private_data = &p->m;
620 	ret = seq_open(file, op);
621 	if (ret)
622 		goto err_free;
623 
624 	p->m.private = p;
625 	p->ns = ns;
626 	p->root = root;
627 	p->event = ns->event;
628 
629 	return 0;
630 
631  err_free:
632 	kfree(p);
633  err_put_path:
634 	path_put(&root);
635  err_put_ns:
636 	put_mnt_ns(ns);
637  err:
638 	return ret;
639 }
640 
641 static int mounts_release(struct inode *inode, struct file *file)
642 {
643 	struct proc_mounts *p = file->private_data;
644 	path_put(&p->root);
645 	put_mnt_ns(p->ns);
646 	return seq_release(inode, file);
647 }
648 
649 static unsigned mounts_poll(struct file *file, poll_table *wait)
650 {
651 	struct proc_mounts *p = file->private_data;
652 	unsigned res = POLLIN | POLLRDNORM;
653 
654 	poll_wait(file, &p->ns->poll, wait);
655 	if (mnt_had_events(p))
656 		res |= POLLERR | POLLPRI;
657 
658 	return res;
659 }
660 
661 static int mounts_open(struct inode *inode, struct file *file)
662 {
663 	return mounts_open_common(inode, file, &mounts_op);
664 }
665 
666 static const struct file_operations proc_mounts_operations = {
667 	.open		= mounts_open,
668 	.read		= seq_read,
669 	.llseek		= seq_lseek,
670 	.release	= mounts_release,
671 	.poll		= mounts_poll,
672 };
673 
674 static int mountinfo_open(struct inode *inode, struct file *file)
675 {
676 	return mounts_open_common(inode, file, &mountinfo_op);
677 }
678 
679 static const struct file_operations proc_mountinfo_operations = {
680 	.open		= mountinfo_open,
681 	.read		= seq_read,
682 	.llseek		= seq_lseek,
683 	.release	= mounts_release,
684 	.poll		= mounts_poll,
685 };
686 
687 static int mountstats_open(struct inode *inode, struct file *file)
688 {
689 	return mounts_open_common(inode, file, &mountstats_op);
690 }
691 
692 static const struct file_operations proc_mountstats_operations = {
693 	.open		= mountstats_open,
694 	.read		= seq_read,
695 	.llseek		= seq_lseek,
696 	.release	= mounts_release,
697 };
698 
699 #define PROC_BLOCK_SIZE	(3*1024)		/* 4K page size but our output routines use some slack for overruns */
700 
701 static ssize_t proc_info_read(struct file * file, char __user * buf,
702 			  size_t count, loff_t *ppos)
703 {
704 	struct inode * inode = file->f_path.dentry->d_inode;
705 	unsigned long page;
706 	ssize_t length;
707 	struct task_struct *task = get_proc_task(inode);
708 
709 	length = -ESRCH;
710 	if (!task)
711 		goto out_no_task;
712 
713 	if (count > PROC_BLOCK_SIZE)
714 		count = PROC_BLOCK_SIZE;
715 
716 	length = -ENOMEM;
717 	if (!(page = __get_free_page(GFP_TEMPORARY)))
718 		goto out;
719 
720 	length = PROC_I(inode)->op.proc_read(task, (char*)page);
721 
722 	if (length >= 0)
723 		length = simple_read_from_buffer(buf, count, ppos, (char *)page, length);
724 	free_page(page);
725 out:
726 	put_task_struct(task);
727 out_no_task:
728 	return length;
729 }
730 
731 static const struct file_operations proc_info_file_operations = {
732 	.read		= proc_info_read,
733 	.llseek		= generic_file_llseek,
734 };
735 
736 static int proc_single_show(struct seq_file *m, void *v)
737 {
738 	struct inode *inode = m->private;
739 	struct pid_namespace *ns;
740 	struct pid *pid;
741 	struct task_struct *task;
742 	int ret;
743 
744 	ns = inode->i_sb->s_fs_info;
745 	pid = proc_pid(inode);
746 	task = get_pid_task(pid, PIDTYPE_PID);
747 	if (!task)
748 		return -ESRCH;
749 
750 	ret = PROC_I(inode)->op.proc_show(m, ns, pid, task);
751 
752 	put_task_struct(task);
753 	return ret;
754 }
755 
756 static int proc_single_open(struct inode *inode, struct file *filp)
757 {
758 	int ret;
759 	ret = single_open(filp, proc_single_show, NULL);
760 	if (!ret) {
761 		struct seq_file *m = filp->private_data;
762 
763 		m->private = inode;
764 	}
765 	return ret;
766 }
767 
768 static const struct file_operations proc_single_file_operations = {
769 	.open		= proc_single_open,
770 	.read		= seq_read,
771 	.llseek		= seq_lseek,
772 	.release	= single_release,
773 };
774 
775 static int mem_open(struct inode* inode, struct file* file)
776 {
777 	file->private_data = (void*)((long)current->self_exec_id);
778 	return 0;
779 }
780 
781 static ssize_t mem_read(struct file * file, char __user * buf,
782 			size_t count, loff_t *ppos)
783 {
784 	struct task_struct *task = get_proc_task(file->f_path.dentry->d_inode);
785 	char *page;
786 	unsigned long src = *ppos;
787 	int ret = -ESRCH;
788 	struct mm_struct *mm;
789 
790 	if (!task)
791 		goto out_no_task;
792 
793 	if (check_mem_permission(task))
794 		goto out;
795 
796 	ret = -ENOMEM;
797 	page = (char *)__get_free_page(GFP_TEMPORARY);
798 	if (!page)
799 		goto out;
800 
801 	ret = 0;
802 
803 	mm = get_task_mm(task);
804 	if (!mm)
805 		goto out_free;
806 
807 	ret = -EIO;
808 
809 	if (file->private_data != (void*)((long)current->self_exec_id))
810 		goto out_put;
811 
812 	ret = 0;
813 
814 	while (count > 0) {
815 		int this_len, retval;
816 
817 		this_len = (count > PAGE_SIZE) ? PAGE_SIZE : count;
818 		retval = access_process_vm(task, src, page, this_len, 0);
819 		if (!retval || check_mem_permission(task)) {
820 			if (!ret)
821 				ret = -EIO;
822 			break;
823 		}
824 
825 		if (copy_to_user(buf, page, retval)) {
826 			ret = -EFAULT;
827 			break;
828 		}
829 
830 		ret += retval;
831 		src += retval;
832 		buf += retval;
833 		count -= retval;
834 	}
835 	*ppos = src;
836 
837 out_put:
838 	mmput(mm);
839 out_free:
840 	free_page((unsigned long) page);
841 out:
842 	put_task_struct(task);
843 out_no_task:
844 	return ret;
845 }
846 
847 #define mem_write NULL
848 
849 #ifndef mem_write
850 /* This is a security hazard */
851 static ssize_t mem_write(struct file * file, const char __user *buf,
852 			 size_t count, loff_t *ppos)
853 {
854 	int copied;
855 	char *page;
856 	struct task_struct *task = get_proc_task(file->f_path.dentry->d_inode);
857 	unsigned long dst = *ppos;
858 
859 	copied = -ESRCH;
860 	if (!task)
861 		goto out_no_task;
862 
863 	if (check_mem_permission(task))
864 		goto out;
865 
866 	copied = -ENOMEM;
867 	page = (char *)__get_free_page(GFP_TEMPORARY);
868 	if (!page)
869 		goto out;
870 
871 	copied = 0;
872 	while (count > 0) {
873 		int this_len, retval;
874 
875 		this_len = (count > PAGE_SIZE) ? PAGE_SIZE : count;
876 		if (copy_from_user(page, buf, this_len)) {
877 			copied = -EFAULT;
878 			break;
879 		}
880 		retval = access_process_vm(task, dst, page, this_len, 1);
881 		if (!retval) {
882 			if (!copied)
883 				copied = -EIO;
884 			break;
885 		}
886 		copied += retval;
887 		buf += retval;
888 		dst += retval;
889 		count -= retval;
890 	}
891 	*ppos = dst;
892 	free_page((unsigned long) page);
893 out:
894 	put_task_struct(task);
895 out_no_task:
896 	return copied;
897 }
898 #endif
899 
900 loff_t mem_lseek(struct file *file, loff_t offset, int orig)
901 {
902 	switch (orig) {
903 	case 0:
904 		file->f_pos = offset;
905 		break;
906 	case 1:
907 		file->f_pos += offset;
908 		break;
909 	default:
910 		return -EINVAL;
911 	}
912 	force_successful_syscall_return();
913 	return file->f_pos;
914 }
915 
916 static const struct file_operations proc_mem_operations = {
917 	.llseek		= mem_lseek,
918 	.read		= mem_read,
919 	.write		= mem_write,
920 	.open		= mem_open,
921 };
922 
923 static ssize_t environ_read(struct file *file, char __user *buf,
924 			size_t count, loff_t *ppos)
925 {
926 	struct task_struct *task = get_proc_task(file->f_dentry->d_inode);
927 	char *page;
928 	unsigned long src = *ppos;
929 	int ret = -ESRCH;
930 	struct mm_struct *mm;
931 
932 	if (!task)
933 		goto out_no_task;
934 
935 	if (!ptrace_may_access(task, PTRACE_MODE_READ))
936 		goto out;
937 
938 	ret = -ENOMEM;
939 	page = (char *)__get_free_page(GFP_TEMPORARY);
940 	if (!page)
941 		goto out;
942 
943 	ret = 0;
944 
945 	mm = get_task_mm(task);
946 	if (!mm)
947 		goto out_free;
948 
949 	while (count > 0) {
950 		int this_len, retval, max_len;
951 
952 		this_len = mm->env_end - (mm->env_start + src);
953 
954 		if (this_len <= 0)
955 			break;
956 
957 		max_len = (count > PAGE_SIZE) ? PAGE_SIZE : count;
958 		this_len = (this_len > max_len) ? max_len : this_len;
959 
960 		retval = access_process_vm(task, (mm->env_start + src),
961 			page, this_len, 0);
962 
963 		if (retval <= 0) {
964 			ret = retval;
965 			break;
966 		}
967 
968 		if (copy_to_user(buf, page, retval)) {
969 			ret = -EFAULT;
970 			break;
971 		}
972 
973 		ret += retval;
974 		src += retval;
975 		buf += retval;
976 		count -= retval;
977 	}
978 	*ppos = src;
979 
980 	mmput(mm);
981 out_free:
982 	free_page((unsigned long) page);
983 out:
984 	put_task_struct(task);
985 out_no_task:
986 	return ret;
987 }
988 
989 static const struct file_operations proc_environ_operations = {
990 	.read		= environ_read,
991 	.llseek		= generic_file_llseek,
992 };
993 
994 static ssize_t oom_adjust_read(struct file *file, char __user *buf,
995 				size_t count, loff_t *ppos)
996 {
997 	struct task_struct *task = get_proc_task(file->f_path.dentry->d_inode);
998 	char buffer[PROC_NUMBUF];
999 	size_t len;
1000 	int oom_adjust = OOM_DISABLE;
1001 	unsigned long flags;
1002 
1003 	if (!task)
1004 		return -ESRCH;
1005 
1006 	if (lock_task_sighand(task, &flags)) {
1007 		oom_adjust = task->signal->oom_adj;
1008 		unlock_task_sighand(task, &flags);
1009 	}
1010 
1011 	put_task_struct(task);
1012 
1013 	len = snprintf(buffer, sizeof(buffer), "%i\n", oom_adjust);
1014 
1015 	return simple_read_from_buffer(buf, count, ppos, buffer, len);
1016 }
1017 
1018 static ssize_t oom_adjust_write(struct file *file, const char __user *buf,
1019 				size_t count, loff_t *ppos)
1020 {
1021 	struct task_struct *task;
1022 	char buffer[PROC_NUMBUF];
1023 	long oom_adjust;
1024 	unsigned long flags;
1025 	int err;
1026 
1027 	memset(buffer, 0, sizeof(buffer));
1028 	if (count > sizeof(buffer) - 1)
1029 		count = sizeof(buffer) - 1;
1030 	if (copy_from_user(buffer, buf, count))
1031 		return -EFAULT;
1032 
1033 	err = strict_strtol(strstrip(buffer), 0, &oom_adjust);
1034 	if (err)
1035 		return -EINVAL;
1036 	if ((oom_adjust < OOM_ADJUST_MIN || oom_adjust > OOM_ADJUST_MAX) &&
1037 	     oom_adjust != OOM_DISABLE)
1038 		return -EINVAL;
1039 
1040 	task = get_proc_task(file->f_path.dentry->d_inode);
1041 	if (!task)
1042 		return -ESRCH;
1043 	if (!lock_task_sighand(task, &flags)) {
1044 		put_task_struct(task);
1045 		return -ESRCH;
1046 	}
1047 
1048 	if (oom_adjust < task->signal->oom_adj && !capable(CAP_SYS_RESOURCE)) {
1049 		unlock_task_sighand(task, &flags);
1050 		put_task_struct(task);
1051 		return -EACCES;
1052 	}
1053 
1054 	task->signal->oom_adj = oom_adjust;
1055 
1056 	unlock_task_sighand(task, &flags);
1057 	put_task_struct(task);
1058 
1059 	return count;
1060 }
1061 
1062 static const struct file_operations proc_oom_adjust_operations = {
1063 	.read		= oom_adjust_read,
1064 	.write		= oom_adjust_write,
1065 	.llseek		= generic_file_llseek,
1066 };
1067 
1068 #ifdef CONFIG_AUDITSYSCALL
1069 #define TMPBUFLEN 21
1070 static ssize_t proc_loginuid_read(struct file * file, char __user * buf,
1071 				  size_t count, loff_t *ppos)
1072 {
1073 	struct inode * inode = file->f_path.dentry->d_inode;
1074 	struct task_struct *task = get_proc_task(inode);
1075 	ssize_t length;
1076 	char tmpbuf[TMPBUFLEN];
1077 
1078 	if (!task)
1079 		return -ESRCH;
1080 	length = scnprintf(tmpbuf, TMPBUFLEN, "%u",
1081 				audit_get_loginuid(task));
1082 	put_task_struct(task);
1083 	return simple_read_from_buffer(buf, count, ppos, tmpbuf, length);
1084 }
1085 
1086 static ssize_t proc_loginuid_write(struct file * file, const char __user * buf,
1087 				   size_t count, loff_t *ppos)
1088 {
1089 	struct inode * inode = file->f_path.dentry->d_inode;
1090 	char *page, *tmp;
1091 	ssize_t length;
1092 	uid_t loginuid;
1093 
1094 	if (!capable(CAP_AUDIT_CONTROL))
1095 		return -EPERM;
1096 
1097 	rcu_read_lock();
1098 	if (current != pid_task(proc_pid(inode), PIDTYPE_PID)) {
1099 		rcu_read_unlock();
1100 		return -EPERM;
1101 	}
1102 	rcu_read_unlock();
1103 
1104 	if (count >= PAGE_SIZE)
1105 		count = PAGE_SIZE - 1;
1106 
1107 	if (*ppos != 0) {
1108 		/* No partial writes. */
1109 		return -EINVAL;
1110 	}
1111 	page = (char*)__get_free_page(GFP_TEMPORARY);
1112 	if (!page)
1113 		return -ENOMEM;
1114 	length = -EFAULT;
1115 	if (copy_from_user(page, buf, count))
1116 		goto out_free_page;
1117 
1118 	page[count] = '\0';
1119 	loginuid = simple_strtoul(page, &tmp, 10);
1120 	if (tmp == page) {
1121 		length = -EINVAL;
1122 		goto out_free_page;
1123 
1124 	}
1125 	length = audit_set_loginuid(current, loginuid);
1126 	if (likely(length == 0))
1127 		length = count;
1128 
1129 out_free_page:
1130 	free_page((unsigned long) page);
1131 	return length;
1132 }
1133 
1134 static const struct file_operations proc_loginuid_operations = {
1135 	.read		= proc_loginuid_read,
1136 	.write		= proc_loginuid_write,
1137 	.llseek		= generic_file_llseek,
1138 };
1139 
1140 static ssize_t proc_sessionid_read(struct file * file, char __user * buf,
1141 				  size_t count, loff_t *ppos)
1142 {
1143 	struct inode * inode = file->f_path.dentry->d_inode;
1144 	struct task_struct *task = get_proc_task(inode);
1145 	ssize_t length;
1146 	char tmpbuf[TMPBUFLEN];
1147 
1148 	if (!task)
1149 		return -ESRCH;
1150 	length = scnprintf(tmpbuf, TMPBUFLEN, "%u",
1151 				audit_get_sessionid(task));
1152 	put_task_struct(task);
1153 	return simple_read_from_buffer(buf, count, ppos, tmpbuf, length);
1154 }
1155 
1156 static const struct file_operations proc_sessionid_operations = {
1157 	.read		= proc_sessionid_read,
1158 	.llseek		= generic_file_llseek,
1159 };
1160 #endif
1161 
1162 #ifdef CONFIG_FAULT_INJECTION
1163 static ssize_t proc_fault_inject_read(struct file * file, char __user * buf,
1164 				      size_t count, loff_t *ppos)
1165 {
1166 	struct task_struct *task = get_proc_task(file->f_dentry->d_inode);
1167 	char buffer[PROC_NUMBUF];
1168 	size_t len;
1169 	int make_it_fail;
1170 
1171 	if (!task)
1172 		return -ESRCH;
1173 	make_it_fail = task->make_it_fail;
1174 	put_task_struct(task);
1175 
1176 	len = snprintf(buffer, sizeof(buffer), "%i\n", make_it_fail);
1177 
1178 	return simple_read_from_buffer(buf, count, ppos, buffer, len);
1179 }
1180 
1181 static ssize_t proc_fault_inject_write(struct file * file,
1182 			const char __user * buf, size_t count, loff_t *ppos)
1183 {
1184 	struct task_struct *task;
1185 	char buffer[PROC_NUMBUF], *end;
1186 	int make_it_fail;
1187 
1188 	if (!capable(CAP_SYS_RESOURCE))
1189 		return -EPERM;
1190 	memset(buffer, 0, sizeof(buffer));
1191 	if (count > sizeof(buffer) - 1)
1192 		count = sizeof(buffer) - 1;
1193 	if (copy_from_user(buffer, buf, count))
1194 		return -EFAULT;
1195 	make_it_fail = simple_strtol(strstrip(buffer), &end, 0);
1196 	if (*end)
1197 		return -EINVAL;
1198 	task = get_proc_task(file->f_dentry->d_inode);
1199 	if (!task)
1200 		return -ESRCH;
1201 	task->make_it_fail = make_it_fail;
1202 	put_task_struct(task);
1203 
1204 	return count;
1205 }
1206 
1207 static const struct file_operations proc_fault_inject_operations = {
1208 	.read		= proc_fault_inject_read,
1209 	.write		= proc_fault_inject_write,
1210 	.llseek		= generic_file_llseek,
1211 };
1212 #endif
1213 
1214 
1215 #ifdef CONFIG_SCHED_DEBUG
1216 /*
1217  * Print out various scheduling related per-task fields:
1218  */
1219 static int sched_show(struct seq_file *m, void *v)
1220 {
1221 	struct inode *inode = m->private;
1222 	struct task_struct *p;
1223 
1224 	p = get_proc_task(inode);
1225 	if (!p)
1226 		return -ESRCH;
1227 	proc_sched_show_task(p, m);
1228 
1229 	put_task_struct(p);
1230 
1231 	return 0;
1232 }
1233 
1234 static ssize_t
1235 sched_write(struct file *file, const char __user *buf,
1236 	    size_t count, loff_t *offset)
1237 {
1238 	struct inode *inode = file->f_path.dentry->d_inode;
1239 	struct task_struct *p;
1240 
1241 	p = get_proc_task(inode);
1242 	if (!p)
1243 		return -ESRCH;
1244 	proc_sched_set_task(p);
1245 
1246 	put_task_struct(p);
1247 
1248 	return count;
1249 }
1250 
1251 static int sched_open(struct inode *inode, struct file *filp)
1252 {
1253 	int ret;
1254 
1255 	ret = single_open(filp, sched_show, NULL);
1256 	if (!ret) {
1257 		struct seq_file *m = filp->private_data;
1258 
1259 		m->private = inode;
1260 	}
1261 	return ret;
1262 }
1263 
1264 static const struct file_operations proc_pid_sched_operations = {
1265 	.open		= sched_open,
1266 	.read		= seq_read,
1267 	.write		= sched_write,
1268 	.llseek		= seq_lseek,
1269 	.release	= single_release,
1270 };
1271 
1272 #endif
1273 
1274 static ssize_t comm_write(struct file *file, const char __user *buf,
1275 				size_t count, loff_t *offset)
1276 {
1277 	struct inode *inode = file->f_path.dentry->d_inode;
1278 	struct task_struct *p;
1279 	char buffer[TASK_COMM_LEN];
1280 
1281 	memset(buffer, 0, sizeof(buffer));
1282 	if (count > sizeof(buffer) - 1)
1283 		count = sizeof(buffer) - 1;
1284 	if (copy_from_user(buffer, buf, count))
1285 		return -EFAULT;
1286 
1287 	p = get_proc_task(inode);
1288 	if (!p)
1289 		return -ESRCH;
1290 
1291 	if (same_thread_group(current, p))
1292 		set_task_comm(p, buffer);
1293 	else
1294 		count = -EINVAL;
1295 
1296 	put_task_struct(p);
1297 
1298 	return count;
1299 }
1300 
1301 static int comm_show(struct seq_file *m, void *v)
1302 {
1303 	struct inode *inode = m->private;
1304 	struct task_struct *p;
1305 
1306 	p = get_proc_task(inode);
1307 	if (!p)
1308 		return -ESRCH;
1309 
1310 	task_lock(p);
1311 	seq_printf(m, "%s\n", p->comm);
1312 	task_unlock(p);
1313 
1314 	put_task_struct(p);
1315 
1316 	return 0;
1317 }
1318 
1319 static int comm_open(struct inode *inode, struct file *filp)
1320 {
1321 	int ret;
1322 
1323 	ret = single_open(filp, comm_show, NULL);
1324 	if (!ret) {
1325 		struct seq_file *m = filp->private_data;
1326 
1327 		m->private = inode;
1328 	}
1329 	return ret;
1330 }
1331 
1332 static const struct file_operations proc_pid_set_comm_operations = {
1333 	.open		= comm_open,
1334 	.read		= seq_read,
1335 	.write		= comm_write,
1336 	.llseek		= seq_lseek,
1337 	.release	= single_release,
1338 };
1339 
1340 /*
1341  * We added or removed a vma mapping the executable. The vmas are only mapped
1342  * during exec and are not mapped with the mmap system call.
1343  * Callers must hold down_write() on the mm's mmap_sem for these
1344  */
1345 void added_exe_file_vma(struct mm_struct *mm)
1346 {
1347 	mm->num_exe_file_vmas++;
1348 }
1349 
1350 void removed_exe_file_vma(struct mm_struct *mm)
1351 {
1352 	mm->num_exe_file_vmas--;
1353 	if ((mm->num_exe_file_vmas == 0) && mm->exe_file){
1354 		fput(mm->exe_file);
1355 		mm->exe_file = NULL;
1356 	}
1357 
1358 }
1359 
1360 void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
1361 {
1362 	if (new_exe_file)
1363 		get_file(new_exe_file);
1364 	if (mm->exe_file)
1365 		fput(mm->exe_file);
1366 	mm->exe_file = new_exe_file;
1367 	mm->num_exe_file_vmas = 0;
1368 }
1369 
1370 struct file *get_mm_exe_file(struct mm_struct *mm)
1371 {
1372 	struct file *exe_file;
1373 
1374 	/* We need mmap_sem to protect against races with removal of
1375 	 * VM_EXECUTABLE vmas */
1376 	down_read(&mm->mmap_sem);
1377 	exe_file = mm->exe_file;
1378 	if (exe_file)
1379 		get_file(exe_file);
1380 	up_read(&mm->mmap_sem);
1381 	return exe_file;
1382 }
1383 
1384 void dup_mm_exe_file(struct mm_struct *oldmm, struct mm_struct *newmm)
1385 {
1386 	/* It's safe to write the exe_file pointer without exe_file_lock because
1387 	 * this is called during fork when the task is not yet in /proc */
1388 	newmm->exe_file = get_mm_exe_file(oldmm);
1389 }
1390 
1391 static int proc_exe_link(struct inode *inode, struct path *exe_path)
1392 {
1393 	struct task_struct *task;
1394 	struct mm_struct *mm;
1395 	struct file *exe_file;
1396 
1397 	task = get_proc_task(inode);
1398 	if (!task)
1399 		return -ENOENT;
1400 	mm = get_task_mm(task);
1401 	put_task_struct(task);
1402 	if (!mm)
1403 		return -ENOENT;
1404 	exe_file = get_mm_exe_file(mm);
1405 	mmput(mm);
1406 	if (exe_file) {
1407 		*exe_path = exe_file->f_path;
1408 		path_get(&exe_file->f_path);
1409 		fput(exe_file);
1410 		return 0;
1411 	} else
1412 		return -ENOENT;
1413 }
1414 
1415 static void *proc_pid_follow_link(struct dentry *dentry, struct nameidata *nd)
1416 {
1417 	struct inode *inode = dentry->d_inode;
1418 	int error = -EACCES;
1419 
1420 	/* We don't need a base pointer in the /proc filesystem */
1421 	path_put(&nd->path);
1422 
1423 	/* Are we allowed to snoop on the tasks file descriptors? */
1424 	if (!proc_fd_access_allowed(inode))
1425 		goto out;
1426 
1427 	error = PROC_I(inode)->op.proc_get_link(inode, &nd->path);
1428 out:
1429 	return ERR_PTR(error);
1430 }
1431 
1432 static int do_proc_readlink(struct path *path, char __user *buffer, int buflen)
1433 {
1434 	char *tmp = (char*)__get_free_page(GFP_TEMPORARY);
1435 	char *pathname;
1436 	int len;
1437 
1438 	if (!tmp)
1439 		return -ENOMEM;
1440 
1441 	pathname = d_path(path, tmp, PAGE_SIZE);
1442 	len = PTR_ERR(pathname);
1443 	if (IS_ERR(pathname))
1444 		goto out;
1445 	len = tmp + PAGE_SIZE - 1 - pathname;
1446 
1447 	if (len > buflen)
1448 		len = buflen;
1449 	if (copy_to_user(buffer, pathname, len))
1450 		len = -EFAULT;
1451  out:
1452 	free_page((unsigned long)tmp);
1453 	return len;
1454 }
1455 
1456 static int proc_pid_readlink(struct dentry * dentry, char __user * buffer, int buflen)
1457 {
1458 	int error = -EACCES;
1459 	struct inode *inode = dentry->d_inode;
1460 	struct path path;
1461 
1462 	/* Are we allowed to snoop on the tasks file descriptors? */
1463 	if (!proc_fd_access_allowed(inode))
1464 		goto out;
1465 
1466 	error = PROC_I(inode)->op.proc_get_link(inode, &path);
1467 	if (error)
1468 		goto out;
1469 
1470 	error = do_proc_readlink(&path, buffer, buflen);
1471 	path_put(&path);
1472 out:
1473 	return error;
1474 }
1475 
1476 static const struct inode_operations proc_pid_link_inode_operations = {
1477 	.readlink	= proc_pid_readlink,
1478 	.follow_link	= proc_pid_follow_link,
1479 	.setattr	= proc_setattr,
1480 };
1481 
1482 
1483 /* building an inode */
1484 
1485 static int task_dumpable(struct task_struct *task)
1486 {
1487 	int dumpable = 0;
1488 	struct mm_struct *mm;
1489 
1490 	task_lock(task);
1491 	mm = task->mm;
1492 	if (mm)
1493 		dumpable = get_dumpable(mm);
1494 	task_unlock(task);
1495 	if(dumpable == 1)
1496 		return 1;
1497 	return 0;
1498 }
1499 
1500 
1501 static struct inode *proc_pid_make_inode(struct super_block * sb, struct task_struct *task)
1502 {
1503 	struct inode * inode;
1504 	struct proc_inode *ei;
1505 	const struct cred *cred;
1506 
1507 	/* We need a new inode */
1508 
1509 	inode = new_inode(sb);
1510 	if (!inode)
1511 		goto out;
1512 
1513 	/* Common stuff */
1514 	ei = PROC_I(inode);
1515 	inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
1516 	inode->i_op = &proc_def_inode_operations;
1517 
1518 	/*
1519 	 * grab the reference to task.
1520 	 */
1521 	ei->pid = get_task_pid(task, PIDTYPE_PID);
1522 	if (!ei->pid)
1523 		goto out_unlock;
1524 
1525 	if (task_dumpable(task)) {
1526 		rcu_read_lock();
1527 		cred = __task_cred(task);
1528 		inode->i_uid = cred->euid;
1529 		inode->i_gid = cred->egid;
1530 		rcu_read_unlock();
1531 	}
1532 	security_task_to_inode(task, inode);
1533 
1534 out:
1535 	return inode;
1536 
1537 out_unlock:
1538 	iput(inode);
1539 	return NULL;
1540 }
1541 
1542 static int pid_getattr(struct vfsmount *mnt, struct dentry *dentry, struct kstat *stat)
1543 {
1544 	struct inode *inode = dentry->d_inode;
1545 	struct task_struct *task;
1546 	const struct cred *cred;
1547 
1548 	generic_fillattr(inode, stat);
1549 
1550 	rcu_read_lock();
1551 	stat->uid = 0;
1552 	stat->gid = 0;
1553 	task = pid_task(proc_pid(inode), PIDTYPE_PID);
1554 	if (task) {
1555 		if ((inode->i_mode == (S_IFDIR|S_IRUGO|S_IXUGO)) ||
1556 		    task_dumpable(task)) {
1557 			cred = __task_cred(task);
1558 			stat->uid = cred->euid;
1559 			stat->gid = cred->egid;
1560 		}
1561 	}
1562 	rcu_read_unlock();
1563 	return 0;
1564 }
1565 
1566 /* dentry stuff */
1567 
1568 /*
1569  *	Exceptional case: normally we are not allowed to unhash a busy
1570  * directory. In this case, however, we can do it - no aliasing problems
1571  * due to the way we treat inodes.
1572  *
1573  * Rewrite the inode's ownerships here because the owning task may have
1574  * performed a setuid(), etc.
1575  *
1576  * Before the /proc/pid/status file was created the only way to read
1577  * the effective uid of a /process was to stat /proc/pid.  Reading
1578  * /proc/pid/status is slow enough that procps and other packages
1579  * kept stating /proc/pid.  To keep the rules in /proc simple I have
1580  * made this apply to all per process world readable and executable
1581  * directories.
1582  */
1583 static int pid_revalidate(struct dentry *dentry, struct nameidata *nd)
1584 {
1585 	struct inode *inode = dentry->d_inode;
1586 	struct task_struct *task = get_proc_task(inode);
1587 	const struct cred *cred;
1588 
1589 	if (task) {
1590 		if ((inode->i_mode == (S_IFDIR|S_IRUGO|S_IXUGO)) ||
1591 		    task_dumpable(task)) {
1592 			rcu_read_lock();
1593 			cred = __task_cred(task);
1594 			inode->i_uid = cred->euid;
1595 			inode->i_gid = cred->egid;
1596 			rcu_read_unlock();
1597 		} else {
1598 			inode->i_uid = 0;
1599 			inode->i_gid = 0;
1600 		}
1601 		inode->i_mode &= ~(S_ISUID | S_ISGID);
1602 		security_task_to_inode(task, inode);
1603 		put_task_struct(task);
1604 		return 1;
1605 	}
1606 	d_drop(dentry);
1607 	return 0;
1608 }
1609 
1610 static int pid_delete_dentry(struct dentry * dentry)
1611 {
1612 	/* Is the task we represent dead?
1613 	 * If so, then don't put the dentry on the lru list,
1614 	 * kill it immediately.
1615 	 */
1616 	return !proc_pid(dentry->d_inode)->tasks[PIDTYPE_PID].first;
1617 }
1618 
1619 static const struct dentry_operations pid_dentry_operations =
1620 {
1621 	.d_revalidate	= pid_revalidate,
1622 	.d_delete	= pid_delete_dentry,
1623 };
1624 
1625 /* Lookups */
1626 
1627 typedef struct dentry *instantiate_t(struct inode *, struct dentry *,
1628 				struct task_struct *, const void *);
1629 
1630 /*
1631  * Fill a directory entry.
1632  *
1633  * If possible create the dcache entry and derive our inode number and
1634  * file type from dcache entry.
1635  *
1636  * Since all of the proc inode numbers are dynamically generated, the inode
1637  * numbers do not exist until the inode is cache.  This means creating the
1638  * the dcache entry in readdir is necessary to keep the inode numbers
1639  * reported by readdir in sync with the inode numbers reported
1640  * by stat.
1641  */
1642 static int proc_fill_cache(struct file *filp, void *dirent, filldir_t filldir,
1643 	char *name, int len,
1644 	instantiate_t instantiate, struct task_struct *task, const void *ptr)
1645 {
1646 	struct dentry *child, *dir = filp->f_path.dentry;
1647 	struct inode *inode;
1648 	struct qstr qname;
1649 	ino_t ino = 0;
1650 	unsigned type = DT_UNKNOWN;
1651 
1652 	qname.name = name;
1653 	qname.len  = len;
1654 	qname.hash = full_name_hash(name, len);
1655 
1656 	child = d_lookup(dir, &qname);
1657 	if (!child) {
1658 		struct dentry *new;
1659 		new = d_alloc(dir, &qname);
1660 		if (new) {
1661 			child = instantiate(dir->d_inode, new, task, ptr);
1662 			if (child)
1663 				dput(new);
1664 			else
1665 				child = new;
1666 		}
1667 	}
1668 	if (!child || IS_ERR(child) || !child->d_inode)
1669 		goto end_instantiate;
1670 	inode = child->d_inode;
1671 	if (inode) {
1672 		ino = inode->i_ino;
1673 		type = inode->i_mode >> 12;
1674 	}
1675 	dput(child);
1676 end_instantiate:
1677 	if (!ino)
1678 		ino = find_inode_number(dir, &qname);
1679 	if (!ino)
1680 		ino = 1;
1681 	return filldir(dirent, name, len, filp->f_pos, ino, type);
1682 }
1683 
1684 static unsigned name_to_int(struct dentry *dentry)
1685 {
1686 	const char *name = dentry->d_name.name;
1687 	int len = dentry->d_name.len;
1688 	unsigned n = 0;
1689 
1690 	if (len > 1 && *name == '0')
1691 		goto out;
1692 	while (len-- > 0) {
1693 		unsigned c = *name++ - '0';
1694 		if (c > 9)
1695 			goto out;
1696 		if (n >= (~0U-9)/10)
1697 			goto out;
1698 		n *= 10;
1699 		n += c;
1700 	}
1701 	return n;
1702 out:
1703 	return ~0U;
1704 }
1705 
1706 #define PROC_FDINFO_MAX 64
1707 
1708 static int proc_fd_info(struct inode *inode, struct path *path, char *info)
1709 {
1710 	struct task_struct *task = get_proc_task(inode);
1711 	struct files_struct *files = NULL;
1712 	struct file *file;
1713 	int fd = proc_fd(inode);
1714 
1715 	if (task) {
1716 		files = get_files_struct(task);
1717 		put_task_struct(task);
1718 	}
1719 	if (files) {
1720 		/*
1721 		 * We are not taking a ref to the file structure, so we must
1722 		 * hold ->file_lock.
1723 		 */
1724 		spin_lock(&files->file_lock);
1725 		file = fcheck_files(files, fd);
1726 		if (file) {
1727 			if (path) {
1728 				*path = file->f_path;
1729 				path_get(&file->f_path);
1730 			}
1731 			if (info)
1732 				snprintf(info, PROC_FDINFO_MAX,
1733 					 "pos:\t%lli\n"
1734 					 "flags:\t0%o\n",
1735 					 (long long) file->f_pos,
1736 					 file->f_flags);
1737 			spin_unlock(&files->file_lock);
1738 			put_files_struct(files);
1739 			return 0;
1740 		}
1741 		spin_unlock(&files->file_lock);
1742 		put_files_struct(files);
1743 	}
1744 	return -ENOENT;
1745 }
1746 
1747 static int proc_fd_link(struct inode *inode, struct path *path)
1748 {
1749 	return proc_fd_info(inode, path, NULL);
1750 }
1751 
1752 static int tid_fd_revalidate(struct dentry *dentry, struct nameidata *nd)
1753 {
1754 	struct inode *inode = dentry->d_inode;
1755 	struct task_struct *task = get_proc_task(inode);
1756 	int fd = proc_fd(inode);
1757 	struct files_struct *files;
1758 	const struct cred *cred;
1759 
1760 	if (task) {
1761 		files = get_files_struct(task);
1762 		if (files) {
1763 			rcu_read_lock();
1764 			if (fcheck_files(files, fd)) {
1765 				rcu_read_unlock();
1766 				put_files_struct(files);
1767 				if (task_dumpable(task)) {
1768 					rcu_read_lock();
1769 					cred = __task_cred(task);
1770 					inode->i_uid = cred->euid;
1771 					inode->i_gid = cred->egid;
1772 					rcu_read_unlock();
1773 				} else {
1774 					inode->i_uid = 0;
1775 					inode->i_gid = 0;
1776 				}
1777 				inode->i_mode &= ~(S_ISUID | S_ISGID);
1778 				security_task_to_inode(task, inode);
1779 				put_task_struct(task);
1780 				return 1;
1781 			}
1782 			rcu_read_unlock();
1783 			put_files_struct(files);
1784 		}
1785 		put_task_struct(task);
1786 	}
1787 	d_drop(dentry);
1788 	return 0;
1789 }
1790 
1791 static const struct dentry_operations tid_fd_dentry_operations =
1792 {
1793 	.d_revalidate	= tid_fd_revalidate,
1794 	.d_delete	= pid_delete_dentry,
1795 };
1796 
1797 static struct dentry *proc_fd_instantiate(struct inode *dir,
1798 	struct dentry *dentry, struct task_struct *task, const void *ptr)
1799 {
1800 	unsigned fd = *(const unsigned *)ptr;
1801 	struct file *file;
1802 	struct files_struct *files;
1803  	struct inode *inode;
1804  	struct proc_inode *ei;
1805 	struct dentry *error = ERR_PTR(-ENOENT);
1806 
1807 	inode = proc_pid_make_inode(dir->i_sb, task);
1808 	if (!inode)
1809 		goto out;
1810 	ei = PROC_I(inode);
1811 	ei->fd = fd;
1812 	files = get_files_struct(task);
1813 	if (!files)
1814 		goto out_iput;
1815 	inode->i_mode = S_IFLNK;
1816 
1817 	/*
1818 	 * We are not taking a ref to the file structure, so we must
1819 	 * hold ->file_lock.
1820 	 */
1821 	spin_lock(&files->file_lock);
1822 	file = fcheck_files(files, fd);
1823 	if (!file)
1824 		goto out_unlock;
1825 	if (file->f_mode & FMODE_READ)
1826 		inode->i_mode |= S_IRUSR | S_IXUSR;
1827 	if (file->f_mode & FMODE_WRITE)
1828 		inode->i_mode |= S_IWUSR | S_IXUSR;
1829 	spin_unlock(&files->file_lock);
1830 	put_files_struct(files);
1831 
1832 	inode->i_op = &proc_pid_link_inode_operations;
1833 	inode->i_size = 64;
1834 	ei->op.proc_get_link = proc_fd_link;
1835 	dentry->d_op = &tid_fd_dentry_operations;
1836 	d_add(dentry, inode);
1837 	/* Close the race of the process dying before we return the dentry */
1838 	if (tid_fd_revalidate(dentry, NULL))
1839 		error = NULL;
1840 
1841  out:
1842 	return error;
1843 out_unlock:
1844 	spin_unlock(&files->file_lock);
1845 	put_files_struct(files);
1846 out_iput:
1847 	iput(inode);
1848 	goto out;
1849 }
1850 
1851 static struct dentry *proc_lookupfd_common(struct inode *dir,
1852 					   struct dentry *dentry,
1853 					   instantiate_t instantiate)
1854 {
1855 	struct task_struct *task = get_proc_task(dir);
1856 	unsigned fd = name_to_int(dentry);
1857 	struct dentry *result = ERR_PTR(-ENOENT);
1858 
1859 	if (!task)
1860 		goto out_no_task;
1861 	if (fd == ~0U)
1862 		goto out;
1863 
1864 	result = instantiate(dir, dentry, task, &fd);
1865 out:
1866 	put_task_struct(task);
1867 out_no_task:
1868 	return result;
1869 }
1870 
1871 static int proc_readfd_common(struct file * filp, void * dirent,
1872 			      filldir_t filldir, instantiate_t instantiate)
1873 {
1874 	struct dentry *dentry = filp->f_path.dentry;
1875 	struct inode *inode = dentry->d_inode;
1876 	struct task_struct *p = get_proc_task(inode);
1877 	unsigned int fd, ino;
1878 	int retval;
1879 	struct files_struct * files;
1880 
1881 	retval = -ENOENT;
1882 	if (!p)
1883 		goto out_no_task;
1884 	retval = 0;
1885 
1886 	fd = filp->f_pos;
1887 	switch (fd) {
1888 		case 0:
1889 			if (filldir(dirent, ".", 1, 0, inode->i_ino, DT_DIR) < 0)
1890 				goto out;
1891 			filp->f_pos++;
1892 		case 1:
1893 			ino = parent_ino(dentry);
1894 			if (filldir(dirent, "..", 2, 1, ino, DT_DIR) < 0)
1895 				goto out;
1896 			filp->f_pos++;
1897 		default:
1898 			files = get_files_struct(p);
1899 			if (!files)
1900 				goto out;
1901 			rcu_read_lock();
1902 			for (fd = filp->f_pos-2;
1903 			     fd < files_fdtable(files)->max_fds;
1904 			     fd++, filp->f_pos++) {
1905 				char name[PROC_NUMBUF];
1906 				int len;
1907 
1908 				if (!fcheck_files(files, fd))
1909 					continue;
1910 				rcu_read_unlock();
1911 
1912 				len = snprintf(name, sizeof(name), "%d", fd);
1913 				if (proc_fill_cache(filp, dirent, filldir,
1914 						    name, len, instantiate,
1915 						    p, &fd) < 0) {
1916 					rcu_read_lock();
1917 					break;
1918 				}
1919 				rcu_read_lock();
1920 			}
1921 			rcu_read_unlock();
1922 			put_files_struct(files);
1923 	}
1924 out:
1925 	put_task_struct(p);
1926 out_no_task:
1927 	return retval;
1928 }
1929 
1930 static struct dentry *proc_lookupfd(struct inode *dir, struct dentry *dentry,
1931 				    struct nameidata *nd)
1932 {
1933 	return proc_lookupfd_common(dir, dentry, proc_fd_instantiate);
1934 }
1935 
1936 static int proc_readfd(struct file *filp, void *dirent, filldir_t filldir)
1937 {
1938 	return proc_readfd_common(filp, dirent, filldir, proc_fd_instantiate);
1939 }
1940 
1941 static ssize_t proc_fdinfo_read(struct file *file, char __user *buf,
1942 				      size_t len, loff_t *ppos)
1943 {
1944 	char tmp[PROC_FDINFO_MAX];
1945 	int err = proc_fd_info(file->f_path.dentry->d_inode, NULL, tmp);
1946 	if (!err)
1947 		err = simple_read_from_buffer(buf, len, ppos, tmp, strlen(tmp));
1948 	return err;
1949 }
1950 
1951 static const struct file_operations proc_fdinfo_file_operations = {
1952 	.open           = nonseekable_open,
1953 	.read		= proc_fdinfo_read,
1954 };
1955 
1956 static const struct file_operations proc_fd_operations = {
1957 	.read		= generic_read_dir,
1958 	.readdir	= proc_readfd,
1959 };
1960 
1961 /*
1962  * /proc/pid/fd needs a special permission handler so that a process can still
1963  * access /proc/self/fd after it has executed a setuid().
1964  */
1965 static int proc_fd_permission(struct inode *inode, int mask)
1966 {
1967 	int rv;
1968 
1969 	rv = generic_permission(inode, mask, NULL);
1970 	if (rv == 0)
1971 		return 0;
1972 	if (task_pid(current) == proc_pid(inode))
1973 		rv = 0;
1974 	return rv;
1975 }
1976 
1977 /*
1978  * proc directories can do almost nothing..
1979  */
1980 static const struct inode_operations proc_fd_inode_operations = {
1981 	.lookup		= proc_lookupfd,
1982 	.permission	= proc_fd_permission,
1983 	.setattr	= proc_setattr,
1984 };
1985 
1986 static struct dentry *proc_fdinfo_instantiate(struct inode *dir,
1987 	struct dentry *dentry, struct task_struct *task, const void *ptr)
1988 {
1989 	unsigned fd = *(unsigned *)ptr;
1990  	struct inode *inode;
1991  	struct proc_inode *ei;
1992 	struct dentry *error = ERR_PTR(-ENOENT);
1993 
1994 	inode = proc_pid_make_inode(dir->i_sb, task);
1995 	if (!inode)
1996 		goto out;
1997 	ei = PROC_I(inode);
1998 	ei->fd = fd;
1999 	inode->i_mode = S_IFREG | S_IRUSR;
2000 	inode->i_fop = &proc_fdinfo_file_operations;
2001 	dentry->d_op = &tid_fd_dentry_operations;
2002 	d_add(dentry, inode);
2003 	/* Close the race of the process dying before we return the dentry */
2004 	if (tid_fd_revalidate(dentry, NULL))
2005 		error = NULL;
2006 
2007  out:
2008 	return error;
2009 }
2010 
2011 static struct dentry *proc_lookupfdinfo(struct inode *dir,
2012 					struct dentry *dentry,
2013 					struct nameidata *nd)
2014 {
2015 	return proc_lookupfd_common(dir, dentry, proc_fdinfo_instantiate);
2016 }
2017 
2018 static int proc_readfdinfo(struct file *filp, void *dirent, filldir_t filldir)
2019 {
2020 	return proc_readfd_common(filp, dirent, filldir,
2021 				  proc_fdinfo_instantiate);
2022 }
2023 
2024 static const struct file_operations proc_fdinfo_operations = {
2025 	.read		= generic_read_dir,
2026 	.readdir	= proc_readfdinfo,
2027 };
2028 
2029 /*
2030  * proc directories can do almost nothing..
2031  */
2032 static const struct inode_operations proc_fdinfo_inode_operations = {
2033 	.lookup		= proc_lookupfdinfo,
2034 	.setattr	= proc_setattr,
2035 };
2036 
2037 
2038 static struct dentry *proc_pident_instantiate(struct inode *dir,
2039 	struct dentry *dentry, struct task_struct *task, const void *ptr)
2040 {
2041 	const struct pid_entry *p = ptr;
2042 	struct inode *inode;
2043 	struct proc_inode *ei;
2044 	struct dentry *error = ERR_PTR(-ENOENT);
2045 
2046 	inode = proc_pid_make_inode(dir->i_sb, task);
2047 	if (!inode)
2048 		goto out;
2049 
2050 	ei = PROC_I(inode);
2051 	inode->i_mode = p->mode;
2052 	if (S_ISDIR(inode->i_mode))
2053 		inode->i_nlink = 2;	/* Use getattr to fix if necessary */
2054 	if (p->iop)
2055 		inode->i_op = p->iop;
2056 	if (p->fop)
2057 		inode->i_fop = p->fop;
2058 	ei->op = p->op;
2059 	dentry->d_op = &pid_dentry_operations;
2060 	d_add(dentry, inode);
2061 	/* Close the race of the process dying before we return the dentry */
2062 	if (pid_revalidate(dentry, NULL))
2063 		error = NULL;
2064 out:
2065 	return error;
2066 }
2067 
2068 static struct dentry *proc_pident_lookup(struct inode *dir,
2069 					 struct dentry *dentry,
2070 					 const struct pid_entry *ents,
2071 					 unsigned int nents)
2072 {
2073 	struct dentry *error;
2074 	struct task_struct *task = get_proc_task(dir);
2075 	const struct pid_entry *p, *last;
2076 
2077 	error = ERR_PTR(-ENOENT);
2078 
2079 	if (!task)
2080 		goto out_no_task;
2081 
2082 	/*
2083 	 * Yes, it does not scale. And it should not. Don't add
2084 	 * new entries into /proc/<tgid>/ without very good reasons.
2085 	 */
2086 	last = &ents[nents - 1];
2087 	for (p = ents; p <= last; p++) {
2088 		if (p->len != dentry->d_name.len)
2089 			continue;
2090 		if (!memcmp(dentry->d_name.name, p->name, p->len))
2091 			break;
2092 	}
2093 	if (p > last)
2094 		goto out;
2095 
2096 	error = proc_pident_instantiate(dir, dentry, task, p);
2097 out:
2098 	put_task_struct(task);
2099 out_no_task:
2100 	return error;
2101 }
2102 
2103 static int proc_pident_fill_cache(struct file *filp, void *dirent,
2104 	filldir_t filldir, struct task_struct *task, const struct pid_entry *p)
2105 {
2106 	return proc_fill_cache(filp, dirent, filldir, p->name, p->len,
2107 				proc_pident_instantiate, task, p);
2108 }
2109 
2110 static int proc_pident_readdir(struct file *filp,
2111 		void *dirent, filldir_t filldir,
2112 		const struct pid_entry *ents, unsigned int nents)
2113 {
2114 	int i;
2115 	struct dentry *dentry = filp->f_path.dentry;
2116 	struct inode *inode = dentry->d_inode;
2117 	struct task_struct *task = get_proc_task(inode);
2118 	const struct pid_entry *p, *last;
2119 	ino_t ino;
2120 	int ret;
2121 
2122 	ret = -ENOENT;
2123 	if (!task)
2124 		goto out_no_task;
2125 
2126 	ret = 0;
2127 	i = filp->f_pos;
2128 	switch (i) {
2129 	case 0:
2130 		ino = inode->i_ino;
2131 		if (filldir(dirent, ".", 1, i, ino, DT_DIR) < 0)
2132 			goto out;
2133 		i++;
2134 		filp->f_pos++;
2135 		/* fall through */
2136 	case 1:
2137 		ino = parent_ino(dentry);
2138 		if (filldir(dirent, "..", 2, i, ino, DT_DIR) < 0)
2139 			goto out;
2140 		i++;
2141 		filp->f_pos++;
2142 		/* fall through */
2143 	default:
2144 		i -= 2;
2145 		if (i >= nents) {
2146 			ret = 1;
2147 			goto out;
2148 		}
2149 		p = ents + i;
2150 		last = &ents[nents - 1];
2151 		while (p <= last) {
2152 			if (proc_pident_fill_cache(filp, dirent, filldir, task, p) < 0)
2153 				goto out;
2154 			filp->f_pos++;
2155 			p++;
2156 		}
2157 	}
2158 
2159 	ret = 1;
2160 out:
2161 	put_task_struct(task);
2162 out_no_task:
2163 	return ret;
2164 }
2165 
2166 #ifdef CONFIG_SECURITY
2167 static ssize_t proc_pid_attr_read(struct file * file, char __user * buf,
2168 				  size_t count, loff_t *ppos)
2169 {
2170 	struct inode * inode = file->f_path.dentry->d_inode;
2171 	char *p = NULL;
2172 	ssize_t length;
2173 	struct task_struct *task = get_proc_task(inode);
2174 
2175 	if (!task)
2176 		return -ESRCH;
2177 
2178 	length = security_getprocattr(task,
2179 				      (char*)file->f_path.dentry->d_name.name,
2180 				      &p);
2181 	put_task_struct(task);
2182 	if (length > 0)
2183 		length = simple_read_from_buffer(buf, count, ppos, p, length);
2184 	kfree(p);
2185 	return length;
2186 }
2187 
2188 static ssize_t proc_pid_attr_write(struct file * file, const char __user * buf,
2189 				   size_t count, loff_t *ppos)
2190 {
2191 	struct inode * inode = file->f_path.dentry->d_inode;
2192 	char *page;
2193 	ssize_t length;
2194 	struct task_struct *task = get_proc_task(inode);
2195 
2196 	length = -ESRCH;
2197 	if (!task)
2198 		goto out_no_task;
2199 	if (count > PAGE_SIZE)
2200 		count = PAGE_SIZE;
2201 
2202 	/* No partial writes. */
2203 	length = -EINVAL;
2204 	if (*ppos != 0)
2205 		goto out;
2206 
2207 	length = -ENOMEM;
2208 	page = (char*)__get_free_page(GFP_TEMPORARY);
2209 	if (!page)
2210 		goto out;
2211 
2212 	length = -EFAULT;
2213 	if (copy_from_user(page, buf, count))
2214 		goto out_free;
2215 
2216 	/* Guard against adverse ptrace interaction */
2217 	length = mutex_lock_interruptible(&task->cred_guard_mutex);
2218 	if (length < 0)
2219 		goto out_free;
2220 
2221 	length = security_setprocattr(task,
2222 				      (char*)file->f_path.dentry->d_name.name,
2223 				      (void*)page, count);
2224 	mutex_unlock(&task->cred_guard_mutex);
2225 out_free:
2226 	free_page((unsigned long) page);
2227 out:
2228 	put_task_struct(task);
2229 out_no_task:
2230 	return length;
2231 }
2232 
2233 static const struct file_operations proc_pid_attr_operations = {
2234 	.read		= proc_pid_attr_read,
2235 	.write		= proc_pid_attr_write,
2236 	.llseek		= generic_file_llseek,
2237 };
2238 
2239 static const struct pid_entry attr_dir_stuff[] = {
2240 	REG("current",    S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2241 	REG("prev",       S_IRUGO,	   proc_pid_attr_operations),
2242 	REG("exec",       S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2243 	REG("fscreate",   S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2244 	REG("keycreate",  S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2245 	REG("sockcreate", S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2246 };
2247 
2248 static int proc_attr_dir_readdir(struct file * filp,
2249 			     void * dirent, filldir_t filldir)
2250 {
2251 	return proc_pident_readdir(filp,dirent,filldir,
2252 				   attr_dir_stuff,ARRAY_SIZE(attr_dir_stuff));
2253 }
2254 
2255 static const struct file_operations proc_attr_dir_operations = {
2256 	.read		= generic_read_dir,
2257 	.readdir	= proc_attr_dir_readdir,
2258 };
2259 
2260 static struct dentry *proc_attr_dir_lookup(struct inode *dir,
2261 				struct dentry *dentry, struct nameidata *nd)
2262 {
2263 	return proc_pident_lookup(dir, dentry,
2264 				  attr_dir_stuff, ARRAY_SIZE(attr_dir_stuff));
2265 }
2266 
2267 static const struct inode_operations proc_attr_dir_inode_operations = {
2268 	.lookup		= proc_attr_dir_lookup,
2269 	.getattr	= pid_getattr,
2270 	.setattr	= proc_setattr,
2271 };
2272 
2273 #endif
2274 
2275 #ifdef CONFIG_ELF_CORE
2276 static ssize_t proc_coredump_filter_read(struct file *file, char __user *buf,
2277 					 size_t count, loff_t *ppos)
2278 {
2279 	struct task_struct *task = get_proc_task(file->f_dentry->d_inode);
2280 	struct mm_struct *mm;
2281 	char buffer[PROC_NUMBUF];
2282 	size_t len;
2283 	int ret;
2284 
2285 	if (!task)
2286 		return -ESRCH;
2287 
2288 	ret = 0;
2289 	mm = get_task_mm(task);
2290 	if (mm) {
2291 		len = snprintf(buffer, sizeof(buffer), "%08lx\n",
2292 			       ((mm->flags & MMF_DUMP_FILTER_MASK) >>
2293 				MMF_DUMP_FILTER_SHIFT));
2294 		mmput(mm);
2295 		ret = simple_read_from_buffer(buf, count, ppos, buffer, len);
2296 	}
2297 
2298 	put_task_struct(task);
2299 
2300 	return ret;
2301 }
2302 
2303 static ssize_t proc_coredump_filter_write(struct file *file,
2304 					  const char __user *buf,
2305 					  size_t count,
2306 					  loff_t *ppos)
2307 {
2308 	struct task_struct *task;
2309 	struct mm_struct *mm;
2310 	char buffer[PROC_NUMBUF], *end;
2311 	unsigned int val;
2312 	int ret;
2313 	int i;
2314 	unsigned long mask;
2315 
2316 	ret = -EFAULT;
2317 	memset(buffer, 0, sizeof(buffer));
2318 	if (count > sizeof(buffer) - 1)
2319 		count = sizeof(buffer) - 1;
2320 	if (copy_from_user(buffer, buf, count))
2321 		goto out_no_task;
2322 
2323 	ret = -EINVAL;
2324 	val = (unsigned int)simple_strtoul(buffer, &end, 0);
2325 	if (*end == '\n')
2326 		end++;
2327 	if (end - buffer == 0)
2328 		goto out_no_task;
2329 
2330 	ret = -ESRCH;
2331 	task = get_proc_task(file->f_dentry->d_inode);
2332 	if (!task)
2333 		goto out_no_task;
2334 
2335 	ret = end - buffer;
2336 	mm = get_task_mm(task);
2337 	if (!mm)
2338 		goto out_no_mm;
2339 
2340 	for (i = 0, mask = 1; i < MMF_DUMP_FILTER_BITS; i++, mask <<= 1) {
2341 		if (val & mask)
2342 			set_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags);
2343 		else
2344 			clear_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags);
2345 	}
2346 
2347 	mmput(mm);
2348  out_no_mm:
2349 	put_task_struct(task);
2350  out_no_task:
2351 	return ret;
2352 }
2353 
2354 static const struct file_operations proc_coredump_filter_operations = {
2355 	.read		= proc_coredump_filter_read,
2356 	.write		= proc_coredump_filter_write,
2357 	.llseek		= generic_file_llseek,
2358 };
2359 #endif
2360 
2361 /*
2362  * /proc/self:
2363  */
2364 static int proc_self_readlink(struct dentry *dentry, char __user *buffer,
2365 			      int buflen)
2366 {
2367 	struct pid_namespace *ns = dentry->d_sb->s_fs_info;
2368 	pid_t tgid = task_tgid_nr_ns(current, ns);
2369 	char tmp[PROC_NUMBUF];
2370 	if (!tgid)
2371 		return -ENOENT;
2372 	sprintf(tmp, "%d", tgid);
2373 	return vfs_readlink(dentry,buffer,buflen,tmp);
2374 }
2375 
2376 static void *proc_self_follow_link(struct dentry *dentry, struct nameidata *nd)
2377 {
2378 	struct pid_namespace *ns = dentry->d_sb->s_fs_info;
2379 	pid_t tgid = task_tgid_nr_ns(current, ns);
2380 	char *name = ERR_PTR(-ENOENT);
2381 	if (tgid) {
2382 		name = __getname();
2383 		if (!name)
2384 			name = ERR_PTR(-ENOMEM);
2385 		else
2386 			sprintf(name, "%d", tgid);
2387 	}
2388 	nd_set_link(nd, name);
2389 	return NULL;
2390 }
2391 
2392 static void proc_self_put_link(struct dentry *dentry, struct nameidata *nd,
2393 				void *cookie)
2394 {
2395 	char *s = nd_get_link(nd);
2396 	if (!IS_ERR(s))
2397 		__putname(s);
2398 }
2399 
2400 static const struct inode_operations proc_self_inode_operations = {
2401 	.readlink	= proc_self_readlink,
2402 	.follow_link	= proc_self_follow_link,
2403 	.put_link	= proc_self_put_link,
2404 };
2405 
2406 /*
2407  * proc base
2408  *
2409  * These are the directory entries in the root directory of /proc
2410  * that properly belong to the /proc filesystem, as they describe
2411  * describe something that is process related.
2412  */
2413 static const struct pid_entry proc_base_stuff[] = {
2414 	NOD("self", S_IFLNK|S_IRWXUGO,
2415 		&proc_self_inode_operations, NULL, {}),
2416 };
2417 
2418 /*
2419  *	Exceptional case: normally we are not allowed to unhash a busy
2420  * directory. In this case, however, we can do it - no aliasing problems
2421  * due to the way we treat inodes.
2422  */
2423 static int proc_base_revalidate(struct dentry *dentry, struct nameidata *nd)
2424 {
2425 	struct inode *inode = dentry->d_inode;
2426 	struct task_struct *task = get_proc_task(inode);
2427 	if (task) {
2428 		put_task_struct(task);
2429 		return 1;
2430 	}
2431 	d_drop(dentry);
2432 	return 0;
2433 }
2434 
2435 static const struct dentry_operations proc_base_dentry_operations =
2436 {
2437 	.d_revalidate	= proc_base_revalidate,
2438 	.d_delete	= pid_delete_dentry,
2439 };
2440 
2441 static struct dentry *proc_base_instantiate(struct inode *dir,
2442 	struct dentry *dentry, struct task_struct *task, const void *ptr)
2443 {
2444 	const struct pid_entry *p = ptr;
2445 	struct inode *inode;
2446 	struct proc_inode *ei;
2447 	struct dentry *error = ERR_PTR(-EINVAL);
2448 
2449 	/* Allocate the inode */
2450 	error = ERR_PTR(-ENOMEM);
2451 	inode = new_inode(dir->i_sb);
2452 	if (!inode)
2453 		goto out;
2454 
2455 	/* Initialize the inode */
2456 	ei = PROC_I(inode);
2457 	inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
2458 
2459 	/*
2460 	 * grab the reference to the task.
2461 	 */
2462 	ei->pid = get_task_pid(task, PIDTYPE_PID);
2463 	if (!ei->pid)
2464 		goto out_iput;
2465 
2466 	inode->i_mode = p->mode;
2467 	if (S_ISDIR(inode->i_mode))
2468 		inode->i_nlink = 2;
2469 	if (S_ISLNK(inode->i_mode))
2470 		inode->i_size = 64;
2471 	if (p->iop)
2472 		inode->i_op = p->iop;
2473 	if (p->fop)
2474 		inode->i_fop = p->fop;
2475 	ei->op = p->op;
2476 	dentry->d_op = &proc_base_dentry_operations;
2477 	d_add(dentry, inode);
2478 	error = NULL;
2479 out:
2480 	return error;
2481 out_iput:
2482 	iput(inode);
2483 	goto out;
2484 }
2485 
2486 static struct dentry *proc_base_lookup(struct inode *dir, struct dentry *dentry)
2487 {
2488 	struct dentry *error;
2489 	struct task_struct *task = get_proc_task(dir);
2490 	const struct pid_entry *p, *last;
2491 
2492 	error = ERR_PTR(-ENOENT);
2493 
2494 	if (!task)
2495 		goto out_no_task;
2496 
2497 	/* Lookup the directory entry */
2498 	last = &proc_base_stuff[ARRAY_SIZE(proc_base_stuff) - 1];
2499 	for (p = proc_base_stuff; p <= last; p++) {
2500 		if (p->len != dentry->d_name.len)
2501 			continue;
2502 		if (!memcmp(dentry->d_name.name, p->name, p->len))
2503 			break;
2504 	}
2505 	if (p > last)
2506 		goto out;
2507 
2508 	error = proc_base_instantiate(dir, dentry, task, p);
2509 
2510 out:
2511 	put_task_struct(task);
2512 out_no_task:
2513 	return error;
2514 }
2515 
2516 static int proc_base_fill_cache(struct file *filp, void *dirent,
2517 	filldir_t filldir, struct task_struct *task, const struct pid_entry *p)
2518 {
2519 	return proc_fill_cache(filp, dirent, filldir, p->name, p->len,
2520 				proc_base_instantiate, task, p);
2521 }
2522 
2523 #ifdef CONFIG_TASK_IO_ACCOUNTING
2524 static int do_io_accounting(struct task_struct *task, char *buffer, int whole)
2525 {
2526 	struct task_io_accounting acct = task->ioac;
2527 	unsigned long flags;
2528 
2529 	if (whole && lock_task_sighand(task, &flags)) {
2530 		struct task_struct *t = task;
2531 
2532 		task_io_accounting_add(&acct, &task->signal->ioac);
2533 		while_each_thread(task, t)
2534 			task_io_accounting_add(&acct, &t->ioac);
2535 
2536 		unlock_task_sighand(task, &flags);
2537 	}
2538 	return sprintf(buffer,
2539 			"rchar: %llu\n"
2540 			"wchar: %llu\n"
2541 			"syscr: %llu\n"
2542 			"syscw: %llu\n"
2543 			"read_bytes: %llu\n"
2544 			"write_bytes: %llu\n"
2545 			"cancelled_write_bytes: %llu\n",
2546 			(unsigned long long)acct.rchar,
2547 			(unsigned long long)acct.wchar,
2548 			(unsigned long long)acct.syscr,
2549 			(unsigned long long)acct.syscw,
2550 			(unsigned long long)acct.read_bytes,
2551 			(unsigned long long)acct.write_bytes,
2552 			(unsigned long long)acct.cancelled_write_bytes);
2553 }
2554 
2555 static int proc_tid_io_accounting(struct task_struct *task, char *buffer)
2556 {
2557 	return do_io_accounting(task, buffer, 0);
2558 }
2559 
2560 static int proc_tgid_io_accounting(struct task_struct *task, char *buffer)
2561 {
2562 	return do_io_accounting(task, buffer, 1);
2563 }
2564 #endif /* CONFIG_TASK_IO_ACCOUNTING */
2565 
2566 static int proc_pid_personality(struct seq_file *m, struct pid_namespace *ns,
2567 				struct pid *pid, struct task_struct *task)
2568 {
2569 	seq_printf(m, "%08x\n", task->personality);
2570 	return 0;
2571 }
2572 
2573 /*
2574  * Thread groups
2575  */
2576 static const struct file_operations proc_task_operations;
2577 static const struct inode_operations proc_task_inode_operations;
2578 
2579 static const struct pid_entry tgid_base_stuff[] = {
2580 	DIR("task",       S_IRUGO|S_IXUGO, proc_task_inode_operations, proc_task_operations),
2581 	DIR("fd",         S_IRUSR|S_IXUSR, proc_fd_inode_operations, proc_fd_operations),
2582 	DIR("fdinfo",     S_IRUSR|S_IXUSR, proc_fdinfo_inode_operations, proc_fdinfo_operations),
2583 #ifdef CONFIG_NET
2584 	DIR("net",        S_IRUGO|S_IXUGO, proc_net_inode_operations, proc_net_operations),
2585 #endif
2586 	REG("environ",    S_IRUSR, proc_environ_operations),
2587 	INF("auxv",       S_IRUSR, proc_pid_auxv),
2588 	ONE("status",     S_IRUGO, proc_pid_status),
2589 	ONE("personality", S_IRUSR, proc_pid_personality),
2590 	INF("limits",	  S_IRUSR, proc_pid_limits),
2591 #ifdef CONFIG_SCHED_DEBUG
2592 	REG("sched",      S_IRUGO|S_IWUSR, proc_pid_sched_operations),
2593 #endif
2594 	REG("comm",      S_IRUGO|S_IWUSR, proc_pid_set_comm_operations),
2595 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK
2596 	INF("syscall",    S_IRUSR, proc_pid_syscall),
2597 #endif
2598 	INF("cmdline",    S_IRUGO, proc_pid_cmdline),
2599 	ONE("stat",       S_IRUGO, proc_tgid_stat),
2600 	ONE("statm",      S_IRUGO, proc_pid_statm),
2601 	REG("maps",       S_IRUGO, proc_maps_operations),
2602 #ifdef CONFIG_NUMA
2603 	REG("numa_maps",  S_IRUGO, proc_numa_maps_operations),
2604 #endif
2605 	REG("mem",        S_IRUSR|S_IWUSR, proc_mem_operations),
2606 	LNK("cwd",        proc_cwd_link),
2607 	LNK("root",       proc_root_link),
2608 	LNK("exe",        proc_exe_link),
2609 	REG("mounts",     S_IRUGO, proc_mounts_operations),
2610 	REG("mountinfo",  S_IRUGO, proc_mountinfo_operations),
2611 	REG("mountstats", S_IRUSR, proc_mountstats_operations),
2612 #ifdef CONFIG_PROC_PAGE_MONITOR
2613 	REG("clear_refs", S_IWUSR, proc_clear_refs_operations),
2614 	REG("smaps",      S_IRUGO, proc_smaps_operations),
2615 	REG("pagemap",    S_IRUSR, proc_pagemap_operations),
2616 #endif
2617 #ifdef CONFIG_SECURITY
2618 	DIR("attr",       S_IRUGO|S_IXUGO, proc_attr_dir_inode_operations, proc_attr_dir_operations),
2619 #endif
2620 #ifdef CONFIG_KALLSYMS
2621 	INF("wchan",      S_IRUGO, proc_pid_wchan),
2622 #endif
2623 #ifdef CONFIG_STACKTRACE
2624 	ONE("stack",      S_IRUSR, proc_pid_stack),
2625 #endif
2626 #ifdef CONFIG_SCHEDSTATS
2627 	INF("schedstat",  S_IRUGO, proc_pid_schedstat),
2628 #endif
2629 #ifdef CONFIG_LATENCYTOP
2630 	REG("latency",  S_IRUGO, proc_lstats_operations),
2631 #endif
2632 #ifdef CONFIG_PROC_PID_CPUSET
2633 	REG("cpuset",     S_IRUGO, proc_cpuset_operations),
2634 #endif
2635 #ifdef CONFIG_CGROUPS
2636 	REG("cgroup",  S_IRUGO, proc_cgroup_operations),
2637 #endif
2638 	INF("oom_score",  S_IRUGO, proc_oom_score),
2639 	REG("oom_adj",    S_IRUGO|S_IWUSR, proc_oom_adjust_operations),
2640 #ifdef CONFIG_AUDITSYSCALL
2641 	REG("loginuid",   S_IWUSR|S_IRUGO, proc_loginuid_operations),
2642 	REG("sessionid",  S_IRUGO, proc_sessionid_operations),
2643 #endif
2644 #ifdef CONFIG_FAULT_INJECTION
2645 	REG("make-it-fail", S_IRUGO|S_IWUSR, proc_fault_inject_operations),
2646 #endif
2647 #ifdef CONFIG_ELF_CORE
2648 	REG("coredump_filter", S_IRUGO|S_IWUSR, proc_coredump_filter_operations),
2649 #endif
2650 #ifdef CONFIG_TASK_IO_ACCOUNTING
2651 	INF("io",	S_IRUGO, proc_tgid_io_accounting),
2652 #endif
2653 };
2654 
2655 static int proc_tgid_base_readdir(struct file * filp,
2656 			     void * dirent, filldir_t filldir)
2657 {
2658 	return proc_pident_readdir(filp,dirent,filldir,
2659 				   tgid_base_stuff,ARRAY_SIZE(tgid_base_stuff));
2660 }
2661 
2662 static const struct file_operations proc_tgid_base_operations = {
2663 	.read		= generic_read_dir,
2664 	.readdir	= proc_tgid_base_readdir,
2665 };
2666 
2667 static struct dentry *proc_tgid_base_lookup(struct inode *dir, struct dentry *dentry, struct nameidata *nd){
2668 	return proc_pident_lookup(dir, dentry,
2669 				  tgid_base_stuff, ARRAY_SIZE(tgid_base_stuff));
2670 }
2671 
2672 static const struct inode_operations proc_tgid_base_inode_operations = {
2673 	.lookup		= proc_tgid_base_lookup,
2674 	.getattr	= pid_getattr,
2675 	.setattr	= proc_setattr,
2676 };
2677 
2678 static void proc_flush_task_mnt(struct vfsmount *mnt, pid_t pid, pid_t tgid)
2679 {
2680 	struct dentry *dentry, *leader, *dir;
2681 	char buf[PROC_NUMBUF];
2682 	struct qstr name;
2683 
2684 	name.name = buf;
2685 	name.len = snprintf(buf, sizeof(buf), "%d", pid);
2686 	dentry = d_hash_and_lookup(mnt->mnt_root, &name);
2687 	if (dentry) {
2688 		shrink_dcache_parent(dentry);
2689 		d_drop(dentry);
2690 		dput(dentry);
2691 	}
2692 
2693 	name.name = buf;
2694 	name.len = snprintf(buf, sizeof(buf), "%d", tgid);
2695 	leader = d_hash_and_lookup(mnt->mnt_root, &name);
2696 	if (!leader)
2697 		goto out;
2698 
2699 	name.name = "task";
2700 	name.len = strlen(name.name);
2701 	dir = d_hash_and_lookup(leader, &name);
2702 	if (!dir)
2703 		goto out_put_leader;
2704 
2705 	name.name = buf;
2706 	name.len = snprintf(buf, sizeof(buf), "%d", pid);
2707 	dentry = d_hash_and_lookup(dir, &name);
2708 	if (dentry) {
2709 		shrink_dcache_parent(dentry);
2710 		d_drop(dentry);
2711 		dput(dentry);
2712 	}
2713 
2714 	dput(dir);
2715 out_put_leader:
2716 	dput(leader);
2717 out:
2718 	return;
2719 }
2720 
2721 /**
2722  * proc_flush_task -  Remove dcache entries for @task from the /proc dcache.
2723  * @task: task that should be flushed.
2724  *
2725  * When flushing dentries from proc, one needs to flush them from global
2726  * proc (proc_mnt) and from all the namespaces' procs this task was seen
2727  * in. This call is supposed to do all of this job.
2728  *
2729  * Looks in the dcache for
2730  * /proc/@pid
2731  * /proc/@tgid/task/@pid
2732  * if either directory is present flushes it and all of it'ts children
2733  * from the dcache.
2734  *
2735  * It is safe and reasonable to cache /proc entries for a task until
2736  * that task exits.  After that they just clog up the dcache with
2737  * useless entries, possibly causing useful dcache entries to be
2738  * flushed instead.  This routine is proved to flush those useless
2739  * dcache entries at process exit time.
2740  *
2741  * NOTE: This routine is just an optimization so it does not guarantee
2742  *       that no dcache entries will exist at process exit time it
2743  *       just makes it very unlikely that any will persist.
2744  */
2745 
2746 void proc_flush_task(struct task_struct *task)
2747 {
2748 	int i;
2749 	struct pid *pid, *tgid;
2750 	struct upid *upid;
2751 
2752 	pid = task_pid(task);
2753 	tgid = task_tgid(task);
2754 
2755 	for (i = 0; i <= pid->level; i++) {
2756 		upid = &pid->numbers[i];
2757 		proc_flush_task_mnt(upid->ns->proc_mnt, upid->nr,
2758 					tgid->numbers[i].nr);
2759 	}
2760 
2761 	upid = &pid->numbers[pid->level];
2762 	if (upid->nr == 1)
2763 		pid_ns_release_proc(upid->ns);
2764 }
2765 
2766 static struct dentry *proc_pid_instantiate(struct inode *dir,
2767 					   struct dentry * dentry,
2768 					   struct task_struct *task, const void *ptr)
2769 {
2770 	struct dentry *error = ERR_PTR(-ENOENT);
2771 	struct inode *inode;
2772 
2773 	inode = proc_pid_make_inode(dir->i_sb, task);
2774 	if (!inode)
2775 		goto out;
2776 
2777 	inode->i_mode = S_IFDIR|S_IRUGO|S_IXUGO;
2778 	inode->i_op = &proc_tgid_base_inode_operations;
2779 	inode->i_fop = &proc_tgid_base_operations;
2780 	inode->i_flags|=S_IMMUTABLE;
2781 
2782 	inode->i_nlink = 2 + pid_entry_count_dirs(tgid_base_stuff,
2783 		ARRAY_SIZE(tgid_base_stuff));
2784 
2785 	dentry->d_op = &pid_dentry_operations;
2786 
2787 	d_add(dentry, inode);
2788 	/* Close the race of the process dying before we return the dentry */
2789 	if (pid_revalidate(dentry, NULL))
2790 		error = NULL;
2791 out:
2792 	return error;
2793 }
2794 
2795 struct dentry *proc_pid_lookup(struct inode *dir, struct dentry * dentry, struct nameidata *nd)
2796 {
2797 	struct dentry *result = ERR_PTR(-ENOENT);
2798 	struct task_struct *task;
2799 	unsigned tgid;
2800 	struct pid_namespace *ns;
2801 
2802 	result = proc_base_lookup(dir, dentry);
2803 	if (!IS_ERR(result) || PTR_ERR(result) != -ENOENT)
2804 		goto out;
2805 
2806 	tgid = name_to_int(dentry);
2807 	if (tgid == ~0U)
2808 		goto out;
2809 
2810 	ns = dentry->d_sb->s_fs_info;
2811 	rcu_read_lock();
2812 	task = find_task_by_pid_ns(tgid, ns);
2813 	if (task)
2814 		get_task_struct(task);
2815 	rcu_read_unlock();
2816 	if (!task)
2817 		goto out;
2818 
2819 	result = proc_pid_instantiate(dir, dentry, task, NULL);
2820 	put_task_struct(task);
2821 out:
2822 	return result;
2823 }
2824 
2825 /*
2826  * Find the first task with tgid >= tgid
2827  *
2828  */
2829 struct tgid_iter {
2830 	unsigned int tgid;
2831 	struct task_struct *task;
2832 };
2833 static struct tgid_iter next_tgid(struct pid_namespace *ns, struct tgid_iter iter)
2834 {
2835 	struct pid *pid;
2836 
2837 	if (iter.task)
2838 		put_task_struct(iter.task);
2839 	rcu_read_lock();
2840 retry:
2841 	iter.task = NULL;
2842 	pid = find_ge_pid(iter.tgid, ns);
2843 	if (pid) {
2844 		iter.tgid = pid_nr_ns(pid, ns);
2845 		iter.task = pid_task(pid, PIDTYPE_PID);
2846 		/* What we to know is if the pid we have find is the
2847 		 * pid of a thread_group_leader.  Testing for task
2848 		 * being a thread_group_leader is the obvious thing
2849 		 * todo but there is a window when it fails, due to
2850 		 * the pid transfer logic in de_thread.
2851 		 *
2852 		 * So we perform the straight forward test of seeing
2853 		 * if the pid we have found is the pid of a thread
2854 		 * group leader, and don't worry if the task we have
2855 		 * found doesn't happen to be a thread group leader.
2856 		 * As we don't care in the case of readdir.
2857 		 */
2858 		if (!iter.task || !has_group_leader_pid(iter.task)) {
2859 			iter.tgid += 1;
2860 			goto retry;
2861 		}
2862 		get_task_struct(iter.task);
2863 	}
2864 	rcu_read_unlock();
2865 	return iter;
2866 }
2867 
2868 #define TGID_OFFSET (FIRST_PROCESS_ENTRY + ARRAY_SIZE(proc_base_stuff))
2869 
2870 static int proc_pid_fill_cache(struct file *filp, void *dirent, filldir_t filldir,
2871 	struct tgid_iter iter)
2872 {
2873 	char name[PROC_NUMBUF];
2874 	int len = snprintf(name, sizeof(name), "%d", iter.tgid);
2875 	return proc_fill_cache(filp, dirent, filldir, name, len,
2876 				proc_pid_instantiate, iter.task, NULL);
2877 }
2878 
2879 /* for the /proc/ directory itself, after non-process stuff has been done */
2880 int proc_pid_readdir(struct file * filp, void * dirent, filldir_t filldir)
2881 {
2882 	unsigned int nr = filp->f_pos - FIRST_PROCESS_ENTRY;
2883 	struct task_struct *reaper = get_proc_task(filp->f_path.dentry->d_inode);
2884 	struct tgid_iter iter;
2885 	struct pid_namespace *ns;
2886 
2887 	if (!reaper)
2888 		goto out_no_task;
2889 
2890 	for (; nr < ARRAY_SIZE(proc_base_stuff); filp->f_pos++, nr++) {
2891 		const struct pid_entry *p = &proc_base_stuff[nr];
2892 		if (proc_base_fill_cache(filp, dirent, filldir, reaper, p) < 0)
2893 			goto out;
2894 	}
2895 
2896 	ns = filp->f_dentry->d_sb->s_fs_info;
2897 	iter.task = NULL;
2898 	iter.tgid = filp->f_pos - TGID_OFFSET;
2899 	for (iter = next_tgid(ns, iter);
2900 	     iter.task;
2901 	     iter.tgid += 1, iter = next_tgid(ns, iter)) {
2902 		filp->f_pos = iter.tgid + TGID_OFFSET;
2903 		if (proc_pid_fill_cache(filp, dirent, filldir, iter) < 0) {
2904 			put_task_struct(iter.task);
2905 			goto out;
2906 		}
2907 	}
2908 	filp->f_pos = PID_MAX_LIMIT + TGID_OFFSET;
2909 out:
2910 	put_task_struct(reaper);
2911 out_no_task:
2912 	return 0;
2913 }
2914 
2915 /*
2916  * Tasks
2917  */
2918 static const struct pid_entry tid_base_stuff[] = {
2919 	DIR("fd",        S_IRUSR|S_IXUSR, proc_fd_inode_operations, proc_fd_operations),
2920 	DIR("fdinfo",    S_IRUSR|S_IXUSR, proc_fdinfo_inode_operations, proc_fdinfo_operations),
2921 	REG("environ",   S_IRUSR, proc_environ_operations),
2922 	INF("auxv",      S_IRUSR, proc_pid_auxv),
2923 	ONE("status",    S_IRUGO, proc_pid_status),
2924 	ONE("personality", S_IRUSR, proc_pid_personality),
2925 	INF("limits",	 S_IRUSR, proc_pid_limits),
2926 #ifdef CONFIG_SCHED_DEBUG
2927 	REG("sched",     S_IRUGO|S_IWUSR, proc_pid_sched_operations),
2928 #endif
2929 	REG("comm",      S_IRUGO|S_IWUSR, proc_pid_set_comm_operations),
2930 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK
2931 	INF("syscall",   S_IRUSR, proc_pid_syscall),
2932 #endif
2933 	INF("cmdline",   S_IRUGO, proc_pid_cmdline),
2934 	ONE("stat",      S_IRUGO, proc_tid_stat),
2935 	ONE("statm",     S_IRUGO, proc_pid_statm),
2936 	REG("maps",      S_IRUGO, proc_maps_operations),
2937 #ifdef CONFIG_NUMA
2938 	REG("numa_maps", S_IRUGO, proc_numa_maps_operations),
2939 #endif
2940 	REG("mem",       S_IRUSR|S_IWUSR, proc_mem_operations),
2941 	LNK("cwd",       proc_cwd_link),
2942 	LNK("root",      proc_root_link),
2943 	LNK("exe",       proc_exe_link),
2944 	REG("mounts",    S_IRUGO, proc_mounts_operations),
2945 	REG("mountinfo",  S_IRUGO, proc_mountinfo_operations),
2946 #ifdef CONFIG_PROC_PAGE_MONITOR
2947 	REG("clear_refs", S_IWUSR, proc_clear_refs_operations),
2948 	REG("smaps",     S_IRUGO, proc_smaps_operations),
2949 	REG("pagemap",    S_IRUSR, proc_pagemap_operations),
2950 #endif
2951 #ifdef CONFIG_SECURITY
2952 	DIR("attr",      S_IRUGO|S_IXUGO, proc_attr_dir_inode_operations, proc_attr_dir_operations),
2953 #endif
2954 #ifdef CONFIG_KALLSYMS
2955 	INF("wchan",     S_IRUGO, proc_pid_wchan),
2956 #endif
2957 #ifdef CONFIG_STACKTRACE
2958 	ONE("stack",      S_IRUSR, proc_pid_stack),
2959 #endif
2960 #ifdef CONFIG_SCHEDSTATS
2961 	INF("schedstat", S_IRUGO, proc_pid_schedstat),
2962 #endif
2963 #ifdef CONFIG_LATENCYTOP
2964 	REG("latency",  S_IRUGO, proc_lstats_operations),
2965 #endif
2966 #ifdef CONFIG_PROC_PID_CPUSET
2967 	REG("cpuset",    S_IRUGO, proc_cpuset_operations),
2968 #endif
2969 #ifdef CONFIG_CGROUPS
2970 	REG("cgroup",  S_IRUGO, proc_cgroup_operations),
2971 #endif
2972 	INF("oom_score", S_IRUGO, proc_oom_score),
2973 	REG("oom_adj",   S_IRUGO|S_IWUSR, proc_oom_adjust_operations),
2974 #ifdef CONFIG_AUDITSYSCALL
2975 	REG("loginuid",  S_IWUSR|S_IRUGO, proc_loginuid_operations),
2976 	REG("sessionid",  S_IRUSR, proc_sessionid_operations),
2977 #endif
2978 #ifdef CONFIG_FAULT_INJECTION
2979 	REG("make-it-fail", S_IRUGO|S_IWUSR, proc_fault_inject_operations),
2980 #endif
2981 #ifdef CONFIG_TASK_IO_ACCOUNTING
2982 	INF("io",	S_IRUGO, proc_tid_io_accounting),
2983 #endif
2984 };
2985 
2986 static int proc_tid_base_readdir(struct file * filp,
2987 			     void * dirent, filldir_t filldir)
2988 {
2989 	return proc_pident_readdir(filp,dirent,filldir,
2990 				   tid_base_stuff,ARRAY_SIZE(tid_base_stuff));
2991 }
2992 
2993 static struct dentry *proc_tid_base_lookup(struct inode *dir, struct dentry *dentry, struct nameidata *nd){
2994 	return proc_pident_lookup(dir, dentry,
2995 				  tid_base_stuff, ARRAY_SIZE(tid_base_stuff));
2996 }
2997 
2998 static const struct file_operations proc_tid_base_operations = {
2999 	.read		= generic_read_dir,
3000 	.readdir	= proc_tid_base_readdir,
3001 };
3002 
3003 static const struct inode_operations proc_tid_base_inode_operations = {
3004 	.lookup		= proc_tid_base_lookup,
3005 	.getattr	= pid_getattr,
3006 	.setattr	= proc_setattr,
3007 };
3008 
3009 static struct dentry *proc_task_instantiate(struct inode *dir,
3010 	struct dentry *dentry, struct task_struct *task, const void *ptr)
3011 {
3012 	struct dentry *error = ERR_PTR(-ENOENT);
3013 	struct inode *inode;
3014 	inode = proc_pid_make_inode(dir->i_sb, task);
3015 
3016 	if (!inode)
3017 		goto out;
3018 	inode->i_mode = S_IFDIR|S_IRUGO|S_IXUGO;
3019 	inode->i_op = &proc_tid_base_inode_operations;
3020 	inode->i_fop = &proc_tid_base_operations;
3021 	inode->i_flags|=S_IMMUTABLE;
3022 
3023 	inode->i_nlink = 2 + pid_entry_count_dirs(tid_base_stuff,
3024 		ARRAY_SIZE(tid_base_stuff));
3025 
3026 	dentry->d_op = &pid_dentry_operations;
3027 
3028 	d_add(dentry, inode);
3029 	/* Close the race of the process dying before we return the dentry */
3030 	if (pid_revalidate(dentry, NULL))
3031 		error = NULL;
3032 out:
3033 	return error;
3034 }
3035 
3036 static struct dentry *proc_task_lookup(struct inode *dir, struct dentry * dentry, struct nameidata *nd)
3037 {
3038 	struct dentry *result = ERR_PTR(-ENOENT);
3039 	struct task_struct *task;
3040 	struct task_struct *leader = get_proc_task(dir);
3041 	unsigned tid;
3042 	struct pid_namespace *ns;
3043 
3044 	if (!leader)
3045 		goto out_no_task;
3046 
3047 	tid = name_to_int(dentry);
3048 	if (tid == ~0U)
3049 		goto out;
3050 
3051 	ns = dentry->d_sb->s_fs_info;
3052 	rcu_read_lock();
3053 	task = find_task_by_pid_ns(tid, ns);
3054 	if (task)
3055 		get_task_struct(task);
3056 	rcu_read_unlock();
3057 	if (!task)
3058 		goto out;
3059 	if (!same_thread_group(leader, task))
3060 		goto out_drop_task;
3061 
3062 	result = proc_task_instantiate(dir, dentry, task, NULL);
3063 out_drop_task:
3064 	put_task_struct(task);
3065 out:
3066 	put_task_struct(leader);
3067 out_no_task:
3068 	return result;
3069 }
3070 
3071 /*
3072  * Find the first tid of a thread group to return to user space.
3073  *
3074  * Usually this is just the thread group leader, but if the users
3075  * buffer was too small or there was a seek into the middle of the
3076  * directory we have more work todo.
3077  *
3078  * In the case of a short read we start with find_task_by_pid.
3079  *
3080  * In the case of a seek we start with the leader and walk nr
3081  * threads past it.
3082  */
3083 static struct task_struct *first_tid(struct task_struct *leader,
3084 		int tid, int nr, struct pid_namespace *ns)
3085 {
3086 	struct task_struct *pos;
3087 
3088 	rcu_read_lock();
3089 	/* Attempt to start with the pid of a thread */
3090 	if (tid && (nr > 0)) {
3091 		pos = find_task_by_pid_ns(tid, ns);
3092 		if (pos && (pos->group_leader == leader))
3093 			goto found;
3094 	}
3095 
3096 	/* If nr exceeds the number of threads there is nothing todo */
3097 	pos = NULL;
3098 	if (nr && nr >= get_nr_threads(leader))
3099 		goto out;
3100 
3101 	/* If we haven't found our starting place yet start
3102 	 * with the leader and walk nr threads forward.
3103 	 */
3104 	for (pos = leader; nr > 0; --nr) {
3105 		pos = next_thread(pos);
3106 		if (pos == leader) {
3107 			pos = NULL;
3108 			goto out;
3109 		}
3110 	}
3111 found:
3112 	get_task_struct(pos);
3113 out:
3114 	rcu_read_unlock();
3115 	return pos;
3116 }
3117 
3118 /*
3119  * Find the next thread in the thread list.
3120  * Return NULL if there is an error or no next thread.
3121  *
3122  * The reference to the input task_struct is released.
3123  */
3124 static struct task_struct *next_tid(struct task_struct *start)
3125 {
3126 	struct task_struct *pos = NULL;
3127 	rcu_read_lock();
3128 	if (pid_alive(start)) {
3129 		pos = next_thread(start);
3130 		if (thread_group_leader(pos))
3131 			pos = NULL;
3132 		else
3133 			get_task_struct(pos);
3134 	}
3135 	rcu_read_unlock();
3136 	put_task_struct(start);
3137 	return pos;
3138 }
3139 
3140 static int proc_task_fill_cache(struct file *filp, void *dirent, filldir_t filldir,
3141 	struct task_struct *task, int tid)
3142 {
3143 	char name[PROC_NUMBUF];
3144 	int len = snprintf(name, sizeof(name), "%d", tid);
3145 	return proc_fill_cache(filp, dirent, filldir, name, len,
3146 				proc_task_instantiate, task, NULL);
3147 }
3148 
3149 /* for the /proc/TGID/task/ directories */
3150 static int proc_task_readdir(struct file * filp, void * dirent, filldir_t filldir)
3151 {
3152 	struct dentry *dentry = filp->f_path.dentry;
3153 	struct inode *inode = dentry->d_inode;
3154 	struct task_struct *leader = NULL;
3155 	struct task_struct *task;
3156 	int retval = -ENOENT;
3157 	ino_t ino;
3158 	int tid;
3159 	struct pid_namespace *ns;
3160 
3161 	task = get_proc_task(inode);
3162 	if (!task)
3163 		goto out_no_task;
3164 	rcu_read_lock();
3165 	if (pid_alive(task)) {
3166 		leader = task->group_leader;
3167 		get_task_struct(leader);
3168 	}
3169 	rcu_read_unlock();
3170 	put_task_struct(task);
3171 	if (!leader)
3172 		goto out_no_task;
3173 	retval = 0;
3174 
3175 	switch ((unsigned long)filp->f_pos) {
3176 	case 0:
3177 		ino = inode->i_ino;
3178 		if (filldir(dirent, ".", 1, filp->f_pos, ino, DT_DIR) < 0)
3179 			goto out;
3180 		filp->f_pos++;
3181 		/* fall through */
3182 	case 1:
3183 		ino = parent_ino(dentry);
3184 		if (filldir(dirent, "..", 2, filp->f_pos, ino, DT_DIR) < 0)
3185 			goto out;
3186 		filp->f_pos++;
3187 		/* fall through */
3188 	}
3189 
3190 	/* f_version caches the tgid value that the last readdir call couldn't
3191 	 * return. lseek aka telldir automagically resets f_version to 0.
3192 	 */
3193 	ns = filp->f_dentry->d_sb->s_fs_info;
3194 	tid = (int)filp->f_version;
3195 	filp->f_version = 0;
3196 	for (task = first_tid(leader, tid, filp->f_pos - 2, ns);
3197 	     task;
3198 	     task = next_tid(task), filp->f_pos++) {
3199 		tid = task_pid_nr_ns(task, ns);
3200 		if (proc_task_fill_cache(filp, dirent, filldir, task, tid) < 0) {
3201 			/* returning this tgid failed, save it as the first
3202 			 * pid for the next readir call */
3203 			filp->f_version = (u64)tid;
3204 			put_task_struct(task);
3205 			break;
3206 		}
3207 	}
3208 out:
3209 	put_task_struct(leader);
3210 out_no_task:
3211 	return retval;
3212 }
3213 
3214 static int proc_task_getattr(struct vfsmount *mnt, struct dentry *dentry, struct kstat *stat)
3215 {
3216 	struct inode *inode = dentry->d_inode;
3217 	struct task_struct *p = get_proc_task(inode);
3218 	generic_fillattr(inode, stat);
3219 
3220 	if (p) {
3221 		stat->nlink += get_nr_threads(p);
3222 		put_task_struct(p);
3223 	}
3224 
3225 	return 0;
3226 }
3227 
3228 static const struct inode_operations proc_task_inode_operations = {
3229 	.lookup		= proc_task_lookup,
3230 	.getattr	= proc_task_getattr,
3231 	.setattr	= proc_setattr,
3232 };
3233 
3234 static const struct file_operations proc_task_operations = {
3235 	.read		= generic_read_dir,
3236 	.readdir	= proc_task_readdir,
3237 };
3238