1 /* 2 * linux/fs/proc/base.c 3 * 4 * Copyright (C) 1991, 1992 Linus Torvalds 5 * 6 * proc base directory handling functions 7 * 8 * 1999, Al Viro. Rewritten. Now it covers the whole per-process part. 9 * Instead of using magical inumbers to determine the kind of object 10 * we allocate and fill in-core inodes upon lookup. They don't even 11 * go into icache. We cache the reference to task_struct upon lookup too. 12 * Eventually it should become a filesystem in its own. We don't use the 13 * rest of procfs anymore. 14 * 15 * 16 * Changelog: 17 * 17-Jan-2005 18 * Allan Bezerra 19 * Bruna Moreira <bruna.moreira@indt.org.br> 20 * Edjard Mota <edjard.mota@indt.org.br> 21 * Ilias Biris <ilias.biris@indt.org.br> 22 * Mauricio Lin <mauricio.lin@indt.org.br> 23 * 24 * Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT 25 * 26 * A new process specific entry (smaps) included in /proc. It shows the 27 * size of rss for each memory area. The maps entry lacks information 28 * about physical memory size (rss) for each mapped file, i.e., 29 * rss information for executables and library files. 30 * This additional information is useful for any tools that need to know 31 * about physical memory consumption for a process specific library. 32 * 33 * Changelog: 34 * 21-Feb-2005 35 * Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT 36 * Pud inclusion in the page table walking. 37 * 38 * ChangeLog: 39 * 10-Mar-2005 40 * 10LE Instituto Nokia de Tecnologia - INdT: 41 * A better way to walks through the page table as suggested by Hugh Dickins. 42 * 43 * Simo Piiroinen <simo.piiroinen@nokia.com>: 44 * Smaps information related to shared, private, clean and dirty pages. 45 * 46 * Paul Mundt <paul.mundt@nokia.com>: 47 * Overall revision about smaps. 48 */ 49 50 #include <asm/uaccess.h> 51 52 #include <linux/errno.h> 53 #include <linux/time.h> 54 #include <linux/proc_fs.h> 55 #include <linux/stat.h> 56 #include <linux/task_io_accounting_ops.h> 57 #include <linux/init.h> 58 #include <linux/capability.h> 59 #include <linux/file.h> 60 #include <linux/fdtable.h> 61 #include <linux/string.h> 62 #include <linux/seq_file.h> 63 #include <linux/namei.h> 64 #include <linux/mnt_namespace.h> 65 #include <linux/mm.h> 66 #include <linux/rcupdate.h> 67 #include <linux/kallsyms.h> 68 #include <linux/stacktrace.h> 69 #include <linux/resource.h> 70 #include <linux/module.h> 71 #include <linux/mount.h> 72 #include <linux/security.h> 73 #include <linux/ptrace.h> 74 #include <linux/tracehook.h> 75 #include <linux/cgroup.h> 76 #include <linux/cpuset.h> 77 #include <linux/audit.h> 78 #include <linux/poll.h> 79 #include <linux/nsproxy.h> 80 #include <linux/oom.h> 81 #include <linux/elf.h> 82 #include <linux/pid_namespace.h> 83 #include <linux/fs_struct.h> 84 #include <linux/slab.h> 85 #include "internal.h" 86 87 /* NOTE: 88 * Implementing inode permission operations in /proc is almost 89 * certainly an error. Permission checks need to happen during 90 * each system call not at open time. The reason is that most of 91 * what we wish to check for permissions in /proc varies at runtime. 92 * 93 * The classic example of a problem is opening file descriptors 94 * in /proc for a task before it execs a suid executable. 95 */ 96 97 struct pid_entry { 98 char *name; 99 int len; 100 mode_t mode; 101 const struct inode_operations *iop; 102 const struct file_operations *fop; 103 union proc_op op; 104 }; 105 106 #define NOD(NAME, MODE, IOP, FOP, OP) { \ 107 .name = (NAME), \ 108 .len = sizeof(NAME) - 1, \ 109 .mode = MODE, \ 110 .iop = IOP, \ 111 .fop = FOP, \ 112 .op = OP, \ 113 } 114 115 #define DIR(NAME, MODE, iops, fops) \ 116 NOD(NAME, (S_IFDIR|(MODE)), &iops, &fops, {} ) 117 #define LNK(NAME, get_link) \ 118 NOD(NAME, (S_IFLNK|S_IRWXUGO), \ 119 &proc_pid_link_inode_operations, NULL, \ 120 { .proc_get_link = get_link } ) 121 #define REG(NAME, MODE, fops) \ 122 NOD(NAME, (S_IFREG|(MODE)), NULL, &fops, {}) 123 #define INF(NAME, MODE, read) \ 124 NOD(NAME, (S_IFREG|(MODE)), \ 125 NULL, &proc_info_file_operations, \ 126 { .proc_read = read } ) 127 #define ONE(NAME, MODE, show) \ 128 NOD(NAME, (S_IFREG|(MODE)), \ 129 NULL, &proc_single_file_operations, \ 130 { .proc_show = show } ) 131 132 /* 133 * Count the number of hardlinks for the pid_entry table, excluding the . 134 * and .. links. 135 */ 136 static unsigned int pid_entry_count_dirs(const struct pid_entry *entries, 137 unsigned int n) 138 { 139 unsigned int i; 140 unsigned int count; 141 142 count = 0; 143 for (i = 0; i < n; ++i) { 144 if (S_ISDIR(entries[i].mode)) 145 ++count; 146 } 147 148 return count; 149 } 150 151 static int get_fs_path(struct task_struct *task, struct path *path, bool root) 152 { 153 struct fs_struct *fs; 154 int result = -ENOENT; 155 156 task_lock(task); 157 fs = task->fs; 158 if (fs) { 159 read_lock(&fs->lock); 160 *path = root ? fs->root : fs->pwd; 161 path_get(path); 162 read_unlock(&fs->lock); 163 result = 0; 164 } 165 task_unlock(task); 166 return result; 167 } 168 169 static int get_nr_threads(struct task_struct *tsk) 170 { 171 unsigned long flags; 172 int count = 0; 173 174 if (lock_task_sighand(tsk, &flags)) { 175 count = atomic_read(&tsk->signal->count); 176 unlock_task_sighand(tsk, &flags); 177 } 178 return count; 179 } 180 181 static int proc_cwd_link(struct inode *inode, struct path *path) 182 { 183 struct task_struct *task = get_proc_task(inode); 184 int result = -ENOENT; 185 186 if (task) { 187 result = get_fs_path(task, path, 0); 188 put_task_struct(task); 189 } 190 return result; 191 } 192 193 static int proc_root_link(struct inode *inode, struct path *path) 194 { 195 struct task_struct *task = get_proc_task(inode); 196 int result = -ENOENT; 197 198 if (task) { 199 result = get_fs_path(task, path, 1); 200 put_task_struct(task); 201 } 202 return result; 203 } 204 205 /* 206 * Return zero if current may access user memory in @task, -error if not. 207 */ 208 static int check_mem_permission(struct task_struct *task) 209 { 210 /* 211 * A task can always look at itself, in case it chooses 212 * to use system calls instead of load instructions. 213 */ 214 if (task == current) 215 return 0; 216 217 /* 218 * If current is actively ptrace'ing, and would also be 219 * permitted to freshly attach with ptrace now, permit it. 220 */ 221 if (task_is_stopped_or_traced(task)) { 222 int match; 223 rcu_read_lock(); 224 match = (tracehook_tracer_task(task) == current); 225 rcu_read_unlock(); 226 if (match && ptrace_may_access(task, PTRACE_MODE_ATTACH)) 227 return 0; 228 } 229 230 /* 231 * Noone else is allowed. 232 */ 233 return -EPERM; 234 } 235 236 struct mm_struct *mm_for_maps(struct task_struct *task) 237 { 238 struct mm_struct *mm; 239 240 if (mutex_lock_killable(&task->cred_guard_mutex)) 241 return NULL; 242 243 mm = get_task_mm(task); 244 if (mm && mm != current->mm && 245 !ptrace_may_access(task, PTRACE_MODE_READ)) { 246 mmput(mm); 247 mm = NULL; 248 } 249 mutex_unlock(&task->cred_guard_mutex); 250 251 return mm; 252 } 253 254 static int proc_pid_cmdline(struct task_struct *task, char * buffer) 255 { 256 int res = 0; 257 unsigned int len; 258 struct mm_struct *mm = get_task_mm(task); 259 if (!mm) 260 goto out; 261 if (!mm->arg_end) 262 goto out_mm; /* Shh! No looking before we're done */ 263 264 len = mm->arg_end - mm->arg_start; 265 266 if (len > PAGE_SIZE) 267 len = PAGE_SIZE; 268 269 res = access_process_vm(task, mm->arg_start, buffer, len, 0); 270 271 // If the nul at the end of args has been overwritten, then 272 // assume application is using setproctitle(3). 273 if (res > 0 && buffer[res-1] != '\0' && len < PAGE_SIZE) { 274 len = strnlen(buffer, res); 275 if (len < res) { 276 res = len; 277 } else { 278 len = mm->env_end - mm->env_start; 279 if (len > PAGE_SIZE - res) 280 len = PAGE_SIZE - res; 281 res += access_process_vm(task, mm->env_start, buffer+res, len, 0); 282 res = strnlen(buffer, res); 283 } 284 } 285 out_mm: 286 mmput(mm); 287 out: 288 return res; 289 } 290 291 static int proc_pid_auxv(struct task_struct *task, char *buffer) 292 { 293 int res = 0; 294 struct mm_struct *mm = get_task_mm(task); 295 if (mm) { 296 unsigned int nwords = 0; 297 do { 298 nwords += 2; 299 } while (mm->saved_auxv[nwords - 2] != 0); /* AT_NULL */ 300 res = nwords * sizeof(mm->saved_auxv[0]); 301 if (res > PAGE_SIZE) 302 res = PAGE_SIZE; 303 memcpy(buffer, mm->saved_auxv, res); 304 mmput(mm); 305 } 306 return res; 307 } 308 309 310 #ifdef CONFIG_KALLSYMS 311 /* 312 * Provides a wchan file via kallsyms in a proper one-value-per-file format. 313 * Returns the resolved symbol. If that fails, simply return the address. 314 */ 315 static int proc_pid_wchan(struct task_struct *task, char *buffer) 316 { 317 unsigned long wchan; 318 char symname[KSYM_NAME_LEN]; 319 320 wchan = get_wchan(task); 321 322 if (lookup_symbol_name(wchan, symname) < 0) 323 if (!ptrace_may_access(task, PTRACE_MODE_READ)) 324 return 0; 325 else 326 return sprintf(buffer, "%lu", wchan); 327 else 328 return sprintf(buffer, "%s", symname); 329 } 330 #endif /* CONFIG_KALLSYMS */ 331 332 #ifdef CONFIG_STACKTRACE 333 334 #define MAX_STACK_TRACE_DEPTH 64 335 336 static int proc_pid_stack(struct seq_file *m, struct pid_namespace *ns, 337 struct pid *pid, struct task_struct *task) 338 { 339 struct stack_trace trace; 340 unsigned long *entries; 341 int i; 342 343 entries = kmalloc(MAX_STACK_TRACE_DEPTH * sizeof(*entries), GFP_KERNEL); 344 if (!entries) 345 return -ENOMEM; 346 347 trace.nr_entries = 0; 348 trace.max_entries = MAX_STACK_TRACE_DEPTH; 349 trace.entries = entries; 350 trace.skip = 0; 351 save_stack_trace_tsk(task, &trace); 352 353 for (i = 0; i < trace.nr_entries; i++) { 354 seq_printf(m, "[<%p>] %pS\n", 355 (void *)entries[i], (void *)entries[i]); 356 } 357 kfree(entries); 358 359 return 0; 360 } 361 #endif 362 363 #ifdef CONFIG_SCHEDSTATS 364 /* 365 * Provides /proc/PID/schedstat 366 */ 367 static int proc_pid_schedstat(struct task_struct *task, char *buffer) 368 { 369 return sprintf(buffer, "%llu %llu %lu\n", 370 (unsigned long long)task->se.sum_exec_runtime, 371 (unsigned long long)task->sched_info.run_delay, 372 task->sched_info.pcount); 373 } 374 #endif 375 376 #ifdef CONFIG_LATENCYTOP 377 static int lstats_show_proc(struct seq_file *m, void *v) 378 { 379 int i; 380 struct inode *inode = m->private; 381 struct task_struct *task = get_proc_task(inode); 382 383 if (!task) 384 return -ESRCH; 385 seq_puts(m, "Latency Top version : v0.1\n"); 386 for (i = 0; i < 32; i++) { 387 if (task->latency_record[i].backtrace[0]) { 388 int q; 389 seq_printf(m, "%i %li %li ", 390 task->latency_record[i].count, 391 task->latency_record[i].time, 392 task->latency_record[i].max); 393 for (q = 0; q < LT_BACKTRACEDEPTH; q++) { 394 char sym[KSYM_SYMBOL_LEN]; 395 char *c; 396 if (!task->latency_record[i].backtrace[q]) 397 break; 398 if (task->latency_record[i].backtrace[q] == ULONG_MAX) 399 break; 400 sprint_symbol(sym, task->latency_record[i].backtrace[q]); 401 c = strchr(sym, '+'); 402 if (c) 403 *c = 0; 404 seq_printf(m, "%s ", sym); 405 } 406 seq_printf(m, "\n"); 407 } 408 409 } 410 put_task_struct(task); 411 return 0; 412 } 413 414 static int lstats_open(struct inode *inode, struct file *file) 415 { 416 return single_open(file, lstats_show_proc, inode); 417 } 418 419 static ssize_t lstats_write(struct file *file, const char __user *buf, 420 size_t count, loff_t *offs) 421 { 422 struct task_struct *task = get_proc_task(file->f_dentry->d_inode); 423 424 if (!task) 425 return -ESRCH; 426 clear_all_latency_tracing(task); 427 put_task_struct(task); 428 429 return count; 430 } 431 432 static const struct file_operations proc_lstats_operations = { 433 .open = lstats_open, 434 .read = seq_read, 435 .write = lstats_write, 436 .llseek = seq_lseek, 437 .release = single_release, 438 }; 439 440 #endif 441 442 /* The badness from the OOM killer */ 443 unsigned long badness(struct task_struct *p, unsigned long uptime); 444 static int proc_oom_score(struct task_struct *task, char *buffer) 445 { 446 unsigned long points = 0; 447 struct timespec uptime; 448 449 do_posix_clock_monotonic_gettime(&uptime); 450 read_lock(&tasklist_lock); 451 if (pid_alive(task)) 452 points = badness(task, uptime.tv_sec); 453 read_unlock(&tasklist_lock); 454 return sprintf(buffer, "%lu\n", points); 455 } 456 457 struct limit_names { 458 char *name; 459 char *unit; 460 }; 461 462 static const struct limit_names lnames[RLIM_NLIMITS] = { 463 [RLIMIT_CPU] = {"Max cpu time", "seconds"}, 464 [RLIMIT_FSIZE] = {"Max file size", "bytes"}, 465 [RLIMIT_DATA] = {"Max data size", "bytes"}, 466 [RLIMIT_STACK] = {"Max stack size", "bytes"}, 467 [RLIMIT_CORE] = {"Max core file size", "bytes"}, 468 [RLIMIT_RSS] = {"Max resident set", "bytes"}, 469 [RLIMIT_NPROC] = {"Max processes", "processes"}, 470 [RLIMIT_NOFILE] = {"Max open files", "files"}, 471 [RLIMIT_MEMLOCK] = {"Max locked memory", "bytes"}, 472 [RLIMIT_AS] = {"Max address space", "bytes"}, 473 [RLIMIT_LOCKS] = {"Max file locks", "locks"}, 474 [RLIMIT_SIGPENDING] = {"Max pending signals", "signals"}, 475 [RLIMIT_MSGQUEUE] = {"Max msgqueue size", "bytes"}, 476 [RLIMIT_NICE] = {"Max nice priority", NULL}, 477 [RLIMIT_RTPRIO] = {"Max realtime priority", NULL}, 478 [RLIMIT_RTTIME] = {"Max realtime timeout", "us"}, 479 }; 480 481 /* Display limits for a process */ 482 static int proc_pid_limits(struct task_struct *task, char *buffer) 483 { 484 unsigned int i; 485 int count = 0; 486 unsigned long flags; 487 char *bufptr = buffer; 488 489 struct rlimit rlim[RLIM_NLIMITS]; 490 491 if (!lock_task_sighand(task, &flags)) 492 return 0; 493 memcpy(rlim, task->signal->rlim, sizeof(struct rlimit) * RLIM_NLIMITS); 494 unlock_task_sighand(task, &flags); 495 496 /* 497 * print the file header 498 */ 499 count += sprintf(&bufptr[count], "%-25s %-20s %-20s %-10s\n", 500 "Limit", "Soft Limit", "Hard Limit", "Units"); 501 502 for (i = 0; i < RLIM_NLIMITS; i++) { 503 if (rlim[i].rlim_cur == RLIM_INFINITY) 504 count += sprintf(&bufptr[count], "%-25s %-20s ", 505 lnames[i].name, "unlimited"); 506 else 507 count += sprintf(&bufptr[count], "%-25s %-20lu ", 508 lnames[i].name, rlim[i].rlim_cur); 509 510 if (rlim[i].rlim_max == RLIM_INFINITY) 511 count += sprintf(&bufptr[count], "%-20s ", "unlimited"); 512 else 513 count += sprintf(&bufptr[count], "%-20lu ", 514 rlim[i].rlim_max); 515 516 if (lnames[i].unit) 517 count += sprintf(&bufptr[count], "%-10s\n", 518 lnames[i].unit); 519 else 520 count += sprintf(&bufptr[count], "\n"); 521 } 522 523 return count; 524 } 525 526 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK 527 static int proc_pid_syscall(struct task_struct *task, char *buffer) 528 { 529 long nr; 530 unsigned long args[6], sp, pc; 531 532 if (task_current_syscall(task, &nr, args, 6, &sp, &pc)) 533 return sprintf(buffer, "running\n"); 534 535 if (nr < 0) 536 return sprintf(buffer, "%ld 0x%lx 0x%lx\n", nr, sp, pc); 537 538 return sprintf(buffer, 539 "%ld 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx\n", 540 nr, 541 args[0], args[1], args[2], args[3], args[4], args[5], 542 sp, pc); 543 } 544 #endif /* CONFIG_HAVE_ARCH_TRACEHOOK */ 545 546 /************************************************************************/ 547 /* Here the fs part begins */ 548 /************************************************************************/ 549 550 /* permission checks */ 551 static int proc_fd_access_allowed(struct inode *inode) 552 { 553 struct task_struct *task; 554 int allowed = 0; 555 /* Allow access to a task's file descriptors if it is us or we 556 * may use ptrace attach to the process and find out that 557 * information. 558 */ 559 task = get_proc_task(inode); 560 if (task) { 561 allowed = ptrace_may_access(task, PTRACE_MODE_READ); 562 put_task_struct(task); 563 } 564 return allowed; 565 } 566 567 static int proc_setattr(struct dentry *dentry, struct iattr *attr) 568 { 569 int error; 570 struct inode *inode = dentry->d_inode; 571 572 if (attr->ia_valid & ATTR_MODE) 573 return -EPERM; 574 575 error = inode_change_ok(inode, attr); 576 if (!error) 577 error = inode_setattr(inode, attr); 578 return error; 579 } 580 581 static const struct inode_operations proc_def_inode_operations = { 582 .setattr = proc_setattr, 583 }; 584 585 static int mounts_open_common(struct inode *inode, struct file *file, 586 const struct seq_operations *op) 587 { 588 struct task_struct *task = get_proc_task(inode); 589 struct nsproxy *nsp; 590 struct mnt_namespace *ns = NULL; 591 struct path root; 592 struct proc_mounts *p; 593 int ret = -EINVAL; 594 595 if (task) { 596 rcu_read_lock(); 597 nsp = task_nsproxy(task); 598 if (nsp) { 599 ns = nsp->mnt_ns; 600 if (ns) 601 get_mnt_ns(ns); 602 } 603 rcu_read_unlock(); 604 if (ns && get_fs_path(task, &root, 1) == 0) 605 ret = 0; 606 put_task_struct(task); 607 } 608 609 if (!ns) 610 goto err; 611 if (ret) 612 goto err_put_ns; 613 614 ret = -ENOMEM; 615 p = kmalloc(sizeof(struct proc_mounts), GFP_KERNEL); 616 if (!p) 617 goto err_put_path; 618 619 file->private_data = &p->m; 620 ret = seq_open(file, op); 621 if (ret) 622 goto err_free; 623 624 p->m.private = p; 625 p->ns = ns; 626 p->root = root; 627 p->event = ns->event; 628 629 return 0; 630 631 err_free: 632 kfree(p); 633 err_put_path: 634 path_put(&root); 635 err_put_ns: 636 put_mnt_ns(ns); 637 err: 638 return ret; 639 } 640 641 static int mounts_release(struct inode *inode, struct file *file) 642 { 643 struct proc_mounts *p = file->private_data; 644 path_put(&p->root); 645 put_mnt_ns(p->ns); 646 return seq_release(inode, file); 647 } 648 649 static unsigned mounts_poll(struct file *file, poll_table *wait) 650 { 651 struct proc_mounts *p = file->private_data; 652 unsigned res = POLLIN | POLLRDNORM; 653 654 poll_wait(file, &p->ns->poll, wait); 655 if (mnt_had_events(p)) 656 res |= POLLERR | POLLPRI; 657 658 return res; 659 } 660 661 static int mounts_open(struct inode *inode, struct file *file) 662 { 663 return mounts_open_common(inode, file, &mounts_op); 664 } 665 666 static const struct file_operations proc_mounts_operations = { 667 .open = mounts_open, 668 .read = seq_read, 669 .llseek = seq_lseek, 670 .release = mounts_release, 671 .poll = mounts_poll, 672 }; 673 674 static int mountinfo_open(struct inode *inode, struct file *file) 675 { 676 return mounts_open_common(inode, file, &mountinfo_op); 677 } 678 679 static const struct file_operations proc_mountinfo_operations = { 680 .open = mountinfo_open, 681 .read = seq_read, 682 .llseek = seq_lseek, 683 .release = mounts_release, 684 .poll = mounts_poll, 685 }; 686 687 static int mountstats_open(struct inode *inode, struct file *file) 688 { 689 return mounts_open_common(inode, file, &mountstats_op); 690 } 691 692 static const struct file_operations proc_mountstats_operations = { 693 .open = mountstats_open, 694 .read = seq_read, 695 .llseek = seq_lseek, 696 .release = mounts_release, 697 }; 698 699 #define PROC_BLOCK_SIZE (3*1024) /* 4K page size but our output routines use some slack for overruns */ 700 701 static ssize_t proc_info_read(struct file * file, char __user * buf, 702 size_t count, loff_t *ppos) 703 { 704 struct inode * inode = file->f_path.dentry->d_inode; 705 unsigned long page; 706 ssize_t length; 707 struct task_struct *task = get_proc_task(inode); 708 709 length = -ESRCH; 710 if (!task) 711 goto out_no_task; 712 713 if (count > PROC_BLOCK_SIZE) 714 count = PROC_BLOCK_SIZE; 715 716 length = -ENOMEM; 717 if (!(page = __get_free_page(GFP_TEMPORARY))) 718 goto out; 719 720 length = PROC_I(inode)->op.proc_read(task, (char*)page); 721 722 if (length >= 0) 723 length = simple_read_from_buffer(buf, count, ppos, (char *)page, length); 724 free_page(page); 725 out: 726 put_task_struct(task); 727 out_no_task: 728 return length; 729 } 730 731 static const struct file_operations proc_info_file_operations = { 732 .read = proc_info_read, 733 .llseek = generic_file_llseek, 734 }; 735 736 static int proc_single_show(struct seq_file *m, void *v) 737 { 738 struct inode *inode = m->private; 739 struct pid_namespace *ns; 740 struct pid *pid; 741 struct task_struct *task; 742 int ret; 743 744 ns = inode->i_sb->s_fs_info; 745 pid = proc_pid(inode); 746 task = get_pid_task(pid, PIDTYPE_PID); 747 if (!task) 748 return -ESRCH; 749 750 ret = PROC_I(inode)->op.proc_show(m, ns, pid, task); 751 752 put_task_struct(task); 753 return ret; 754 } 755 756 static int proc_single_open(struct inode *inode, struct file *filp) 757 { 758 int ret; 759 ret = single_open(filp, proc_single_show, NULL); 760 if (!ret) { 761 struct seq_file *m = filp->private_data; 762 763 m->private = inode; 764 } 765 return ret; 766 } 767 768 static const struct file_operations proc_single_file_operations = { 769 .open = proc_single_open, 770 .read = seq_read, 771 .llseek = seq_lseek, 772 .release = single_release, 773 }; 774 775 static int mem_open(struct inode* inode, struct file* file) 776 { 777 file->private_data = (void*)((long)current->self_exec_id); 778 return 0; 779 } 780 781 static ssize_t mem_read(struct file * file, char __user * buf, 782 size_t count, loff_t *ppos) 783 { 784 struct task_struct *task = get_proc_task(file->f_path.dentry->d_inode); 785 char *page; 786 unsigned long src = *ppos; 787 int ret = -ESRCH; 788 struct mm_struct *mm; 789 790 if (!task) 791 goto out_no_task; 792 793 if (check_mem_permission(task)) 794 goto out; 795 796 ret = -ENOMEM; 797 page = (char *)__get_free_page(GFP_TEMPORARY); 798 if (!page) 799 goto out; 800 801 ret = 0; 802 803 mm = get_task_mm(task); 804 if (!mm) 805 goto out_free; 806 807 ret = -EIO; 808 809 if (file->private_data != (void*)((long)current->self_exec_id)) 810 goto out_put; 811 812 ret = 0; 813 814 while (count > 0) { 815 int this_len, retval; 816 817 this_len = (count > PAGE_SIZE) ? PAGE_SIZE : count; 818 retval = access_process_vm(task, src, page, this_len, 0); 819 if (!retval || check_mem_permission(task)) { 820 if (!ret) 821 ret = -EIO; 822 break; 823 } 824 825 if (copy_to_user(buf, page, retval)) { 826 ret = -EFAULT; 827 break; 828 } 829 830 ret += retval; 831 src += retval; 832 buf += retval; 833 count -= retval; 834 } 835 *ppos = src; 836 837 out_put: 838 mmput(mm); 839 out_free: 840 free_page((unsigned long) page); 841 out: 842 put_task_struct(task); 843 out_no_task: 844 return ret; 845 } 846 847 #define mem_write NULL 848 849 #ifndef mem_write 850 /* This is a security hazard */ 851 static ssize_t mem_write(struct file * file, const char __user *buf, 852 size_t count, loff_t *ppos) 853 { 854 int copied; 855 char *page; 856 struct task_struct *task = get_proc_task(file->f_path.dentry->d_inode); 857 unsigned long dst = *ppos; 858 859 copied = -ESRCH; 860 if (!task) 861 goto out_no_task; 862 863 if (check_mem_permission(task)) 864 goto out; 865 866 copied = -ENOMEM; 867 page = (char *)__get_free_page(GFP_TEMPORARY); 868 if (!page) 869 goto out; 870 871 copied = 0; 872 while (count > 0) { 873 int this_len, retval; 874 875 this_len = (count > PAGE_SIZE) ? PAGE_SIZE : count; 876 if (copy_from_user(page, buf, this_len)) { 877 copied = -EFAULT; 878 break; 879 } 880 retval = access_process_vm(task, dst, page, this_len, 1); 881 if (!retval) { 882 if (!copied) 883 copied = -EIO; 884 break; 885 } 886 copied += retval; 887 buf += retval; 888 dst += retval; 889 count -= retval; 890 } 891 *ppos = dst; 892 free_page((unsigned long) page); 893 out: 894 put_task_struct(task); 895 out_no_task: 896 return copied; 897 } 898 #endif 899 900 loff_t mem_lseek(struct file *file, loff_t offset, int orig) 901 { 902 switch (orig) { 903 case 0: 904 file->f_pos = offset; 905 break; 906 case 1: 907 file->f_pos += offset; 908 break; 909 default: 910 return -EINVAL; 911 } 912 force_successful_syscall_return(); 913 return file->f_pos; 914 } 915 916 static const struct file_operations proc_mem_operations = { 917 .llseek = mem_lseek, 918 .read = mem_read, 919 .write = mem_write, 920 .open = mem_open, 921 }; 922 923 static ssize_t environ_read(struct file *file, char __user *buf, 924 size_t count, loff_t *ppos) 925 { 926 struct task_struct *task = get_proc_task(file->f_dentry->d_inode); 927 char *page; 928 unsigned long src = *ppos; 929 int ret = -ESRCH; 930 struct mm_struct *mm; 931 932 if (!task) 933 goto out_no_task; 934 935 if (!ptrace_may_access(task, PTRACE_MODE_READ)) 936 goto out; 937 938 ret = -ENOMEM; 939 page = (char *)__get_free_page(GFP_TEMPORARY); 940 if (!page) 941 goto out; 942 943 ret = 0; 944 945 mm = get_task_mm(task); 946 if (!mm) 947 goto out_free; 948 949 while (count > 0) { 950 int this_len, retval, max_len; 951 952 this_len = mm->env_end - (mm->env_start + src); 953 954 if (this_len <= 0) 955 break; 956 957 max_len = (count > PAGE_SIZE) ? PAGE_SIZE : count; 958 this_len = (this_len > max_len) ? max_len : this_len; 959 960 retval = access_process_vm(task, (mm->env_start + src), 961 page, this_len, 0); 962 963 if (retval <= 0) { 964 ret = retval; 965 break; 966 } 967 968 if (copy_to_user(buf, page, retval)) { 969 ret = -EFAULT; 970 break; 971 } 972 973 ret += retval; 974 src += retval; 975 buf += retval; 976 count -= retval; 977 } 978 *ppos = src; 979 980 mmput(mm); 981 out_free: 982 free_page((unsigned long) page); 983 out: 984 put_task_struct(task); 985 out_no_task: 986 return ret; 987 } 988 989 static const struct file_operations proc_environ_operations = { 990 .read = environ_read, 991 .llseek = generic_file_llseek, 992 }; 993 994 static ssize_t oom_adjust_read(struct file *file, char __user *buf, 995 size_t count, loff_t *ppos) 996 { 997 struct task_struct *task = get_proc_task(file->f_path.dentry->d_inode); 998 char buffer[PROC_NUMBUF]; 999 size_t len; 1000 int oom_adjust = OOM_DISABLE; 1001 unsigned long flags; 1002 1003 if (!task) 1004 return -ESRCH; 1005 1006 if (lock_task_sighand(task, &flags)) { 1007 oom_adjust = task->signal->oom_adj; 1008 unlock_task_sighand(task, &flags); 1009 } 1010 1011 put_task_struct(task); 1012 1013 len = snprintf(buffer, sizeof(buffer), "%i\n", oom_adjust); 1014 1015 return simple_read_from_buffer(buf, count, ppos, buffer, len); 1016 } 1017 1018 static ssize_t oom_adjust_write(struct file *file, const char __user *buf, 1019 size_t count, loff_t *ppos) 1020 { 1021 struct task_struct *task; 1022 char buffer[PROC_NUMBUF]; 1023 long oom_adjust; 1024 unsigned long flags; 1025 int err; 1026 1027 memset(buffer, 0, sizeof(buffer)); 1028 if (count > sizeof(buffer) - 1) 1029 count = sizeof(buffer) - 1; 1030 if (copy_from_user(buffer, buf, count)) 1031 return -EFAULT; 1032 1033 err = strict_strtol(strstrip(buffer), 0, &oom_adjust); 1034 if (err) 1035 return -EINVAL; 1036 if ((oom_adjust < OOM_ADJUST_MIN || oom_adjust > OOM_ADJUST_MAX) && 1037 oom_adjust != OOM_DISABLE) 1038 return -EINVAL; 1039 1040 task = get_proc_task(file->f_path.dentry->d_inode); 1041 if (!task) 1042 return -ESRCH; 1043 if (!lock_task_sighand(task, &flags)) { 1044 put_task_struct(task); 1045 return -ESRCH; 1046 } 1047 1048 if (oom_adjust < task->signal->oom_adj && !capable(CAP_SYS_RESOURCE)) { 1049 unlock_task_sighand(task, &flags); 1050 put_task_struct(task); 1051 return -EACCES; 1052 } 1053 1054 task->signal->oom_adj = oom_adjust; 1055 1056 unlock_task_sighand(task, &flags); 1057 put_task_struct(task); 1058 1059 return count; 1060 } 1061 1062 static const struct file_operations proc_oom_adjust_operations = { 1063 .read = oom_adjust_read, 1064 .write = oom_adjust_write, 1065 .llseek = generic_file_llseek, 1066 }; 1067 1068 #ifdef CONFIG_AUDITSYSCALL 1069 #define TMPBUFLEN 21 1070 static ssize_t proc_loginuid_read(struct file * file, char __user * buf, 1071 size_t count, loff_t *ppos) 1072 { 1073 struct inode * inode = file->f_path.dentry->d_inode; 1074 struct task_struct *task = get_proc_task(inode); 1075 ssize_t length; 1076 char tmpbuf[TMPBUFLEN]; 1077 1078 if (!task) 1079 return -ESRCH; 1080 length = scnprintf(tmpbuf, TMPBUFLEN, "%u", 1081 audit_get_loginuid(task)); 1082 put_task_struct(task); 1083 return simple_read_from_buffer(buf, count, ppos, tmpbuf, length); 1084 } 1085 1086 static ssize_t proc_loginuid_write(struct file * file, const char __user * buf, 1087 size_t count, loff_t *ppos) 1088 { 1089 struct inode * inode = file->f_path.dentry->d_inode; 1090 char *page, *tmp; 1091 ssize_t length; 1092 uid_t loginuid; 1093 1094 if (!capable(CAP_AUDIT_CONTROL)) 1095 return -EPERM; 1096 1097 rcu_read_lock(); 1098 if (current != pid_task(proc_pid(inode), PIDTYPE_PID)) { 1099 rcu_read_unlock(); 1100 return -EPERM; 1101 } 1102 rcu_read_unlock(); 1103 1104 if (count >= PAGE_SIZE) 1105 count = PAGE_SIZE - 1; 1106 1107 if (*ppos != 0) { 1108 /* No partial writes. */ 1109 return -EINVAL; 1110 } 1111 page = (char*)__get_free_page(GFP_TEMPORARY); 1112 if (!page) 1113 return -ENOMEM; 1114 length = -EFAULT; 1115 if (copy_from_user(page, buf, count)) 1116 goto out_free_page; 1117 1118 page[count] = '\0'; 1119 loginuid = simple_strtoul(page, &tmp, 10); 1120 if (tmp == page) { 1121 length = -EINVAL; 1122 goto out_free_page; 1123 1124 } 1125 length = audit_set_loginuid(current, loginuid); 1126 if (likely(length == 0)) 1127 length = count; 1128 1129 out_free_page: 1130 free_page((unsigned long) page); 1131 return length; 1132 } 1133 1134 static const struct file_operations proc_loginuid_operations = { 1135 .read = proc_loginuid_read, 1136 .write = proc_loginuid_write, 1137 .llseek = generic_file_llseek, 1138 }; 1139 1140 static ssize_t proc_sessionid_read(struct file * file, char __user * buf, 1141 size_t count, loff_t *ppos) 1142 { 1143 struct inode * inode = file->f_path.dentry->d_inode; 1144 struct task_struct *task = get_proc_task(inode); 1145 ssize_t length; 1146 char tmpbuf[TMPBUFLEN]; 1147 1148 if (!task) 1149 return -ESRCH; 1150 length = scnprintf(tmpbuf, TMPBUFLEN, "%u", 1151 audit_get_sessionid(task)); 1152 put_task_struct(task); 1153 return simple_read_from_buffer(buf, count, ppos, tmpbuf, length); 1154 } 1155 1156 static const struct file_operations proc_sessionid_operations = { 1157 .read = proc_sessionid_read, 1158 .llseek = generic_file_llseek, 1159 }; 1160 #endif 1161 1162 #ifdef CONFIG_FAULT_INJECTION 1163 static ssize_t proc_fault_inject_read(struct file * file, char __user * buf, 1164 size_t count, loff_t *ppos) 1165 { 1166 struct task_struct *task = get_proc_task(file->f_dentry->d_inode); 1167 char buffer[PROC_NUMBUF]; 1168 size_t len; 1169 int make_it_fail; 1170 1171 if (!task) 1172 return -ESRCH; 1173 make_it_fail = task->make_it_fail; 1174 put_task_struct(task); 1175 1176 len = snprintf(buffer, sizeof(buffer), "%i\n", make_it_fail); 1177 1178 return simple_read_from_buffer(buf, count, ppos, buffer, len); 1179 } 1180 1181 static ssize_t proc_fault_inject_write(struct file * file, 1182 const char __user * buf, size_t count, loff_t *ppos) 1183 { 1184 struct task_struct *task; 1185 char buffer[PROC_NUMBUF], *end; 1186 int make_it_fail; 1187 1188 if (!capable(CAP_SYS_RESOURCE)) 1189 return -EPERM; 1190 memset(buffer, 0, sizeof(buffer)); 1191 if (count > sizeof(buffer) - 1) 1192 count = sizeof(buffer) - 1; 1193 if (copy_from_user(buffer, buf, count)) 1194 return -EFAULT; 1195 make_it_fail = simple_strtol(strstrip(buffer), &end, 0); 1196 if (*end) 1197 return -EINVAL; 1198 task = get_proc_task(file->f_dentry->d_inode); 1199 if (!task) 1200 return -ESRCH; 1201 task->make_it_fail = make_it_fail; 1202 put_task_struct(task); 1203 1204 return count; 1205 } 1206 1207 static const struct file_operations proc_fault_inject_operations = { 1208 .read = proc_fault_inject_read, 1209 .write = proc_fault_inject_write, 1210 .llseek = generic_file_llseek, 1211 }; 1212 #endif 1213 1214 1215 #ifdef CONFIG_SCHED_DEBUG 1216 /* 1217 * Print out various scheduling related per-task fields: 1218 */ 1219 static int sched_show(struct seq_file *m, void *v) 1220 { 1221 struct inode *inode = m->private; 1222 struct task_struct *p; 1223 1224 p = get_proc_task(inode); 1225 if (!p) 1226 return -ESRCH; 1227 proc_sched_show_task(p, m); 1228 1229 put_task_struct(p); 1230 1231 return 0; 1232 } 1233 1234 static ssize_t 1235 sched_write(struct file *file, const char __user *buf, 1236 size_t count, loff_t *offset) 1237 { 1238 struct inode *inode = file->f_path.dentry->d_inode; 1239 struct task_struct *p; 1240 1241 p = get_proc_task(inode); 1242 if (!p) 1243 return -ESRCH; 1244 proc_sched_set_task(p); 1245 1246 put_task_struct(p); 1247 1248 return count; 1249 } 1250 1251 static int sched_open(struct inode *inode, struct file *filp) 1252 { 1253 int ret; 1254 1255 ret = single_open(filp, sched_show, NULL); 1256 if (!ret) { 1257 struct seq_file *m = filp->private_data; 1258 1259 m->private = inode; 1260 } 1261 return ret; 1262 } 1263 1264 static const struct file_operations proc_pid_sched_operations = { 1265 .open = sched_open, 1266 .read = seq_read, 1267 .write = sched_write, 1268 .llseek = seq_lseek, 1269 .release = single_release, 1270 }; 1271 1272 #endif 1273 1274 static ssize_t comm_write(struct file *file, const char __user *buf, 1275 size_t count, loff_t *offset) 1276 { 1277 struct inode *inode = file->f_path.dentry->d_inode; 1278 struct task_struct *p; 1279 char buffer[TASK_COMM_LEN]; 1280 1281 memset(buffer, 0, sizeof(buffer)); 1282 if (count > sizeof(buffer) - 1) 1283 count = sizeof(buffer) - 1; 1284 if (copy_from_user(buffer, buf, count)) 1285 return -EFAULT; 1286 1287 p = get_proc_task(inode); 1288 if (!p) 1289 return -ESRCH; 1290 1291 if (same_thread_group(current, p)) 1292 set_task_comm(p, buffer); 1293 else 1294 count = -EINVAL; 1295 1296 put_task_struct(p); 1297 1298 return count; 1299 } 1300 1301 static int comm_show(struct seq_file *m, void *v) 1302 { 1303 struct inode *inode = m->private; 1304 struct task_struct *p; 1305 1306 p = get_proc_task(inode); 1307 if (!p) 1308 return -ESRCH; 1309 1310 task_lock(p); 1311 seq_printf(m, "%s\n", p->comm); 1312 task_unlock(p); 1313 1314 put_task_struct(p); 1315 1316 return 0; 1317 } 1318 1319 static int comm_open(struct inode *inode, struct file *filp) 1320 { 1321 int ret; 1322 1323 ret = single_open(filp, comm_show, NULL); 1324 if (!ret) { 1325 struct seq_file *m = filp->private_data; 1326 1327 m->private = inode; 1328 } 1329 return ret; 1330 } 1331 1332 static const struct file_operations proc_pid_set_comm_operations = { 1333 .open = comm_open, 1334 .read = seq_read, 1335 .write = comm_write, 1336 .llseek = seq_lseek, 1337 .release = single_release, 1338 }; 1339 1340 /* 1341 * We added or removed a vma mapping the executable. The vmas are only mapped 1342 * during exec and are not mapped with the mmap system call. 1343 * Callers must hold down_write() on the mm's mmap_sem for these 1344 */ 1345 void added_exe_file_vma(struct mm_struct *mm) 1346 { 1347 mm->num_exe_file_vmas++; 1348 } 1349 1350 void removed_exe_file_vma(struct mm_struct *mm) 1351 { 1352 mm->num_exe_file_vmas--; 1353 if ((mm->num_exe_file_vmas == 0) && mm->exe_file){ 1354 fput(mm->exe_file); 1355 mm->exe_file = NULL; 1356 } 1357 1358 } 1359 1360 void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file) 1361 { 1362 if (new_exe_file) 1363 get_file(new_exe_file); 1364 if (mm->exe_file) 1365 fput(mm->exe_file); 1366 mm->exe_file = new_exe_file; 1367 mm->num_exe_file_vmas = 0; 1368 } 1369 1370 struct file *get_mm_exe_file(struct mm_struct *mm) 1371 { 1372 struct file *exe_file; 1373 1374 /* We need mmap_sem to protect against races with removal of 1375 * VM_EXECUTABLE vmas */ 1376 down_read(&mm->mmap_sem); 1377 exe_file = mm->exe_file; 1378 if (exe_file) 1379 get_file(exe_file); 1380 up_read(&mm->mmap_sem); 1381 return exe_file; 1382 } 1383 1384 void dup_mm_exe_file(struct mm_struct *oldmm, struct mm_struct *newmm) 1385 { 1386 /* It's safe to write the exe_file pointer without exe_file_lock because 1387 * this is called during fork when the task is not yet in /proc */ 1388 newmm->exe_file = get_mm_exe_file(oldmm); 1389 } 1390 1391 static int proc_exe_link(struct inode *inode, struct path *exe_path) 1392 { 1393 struct task_struct *task; 1394 struct mm_struct *mm; 1395 struct file *exe_file; 1396 1397 task = get_proc_task(inode); 1398 if (!task) 1399 return -ENOENT; 1400 mm = get_task_mm(task); 1401 put_task_struct(task); 1402 if (!mm) 1403 return -ENOENT; 1404 exe_file = get_mm_exe_file(mm); 1405 mmput(mm); 1406 if (exe_file) { 1407 *exe_path = exe_file->f_path; 1408 path_get(&exe_file->f_path); 1409 fput(exe_file); 1410 return 0; 1411 } else 1412 return -ENOENT; 1413 } 1414 1415 static void *proc_pid_follow_link(struct dentry *dentry, struct nameidata *nd) 1416 { 1417 struct inode *inode = dentry->d_inode; 1418 int error = -EACCES; 1419 1420 /* We don't need a base pointer in the /proc filesystem */ 1421 path_put(&nd->path); 1422 1423 /* Are we allowed to snoop on the tasks file descriptors? */ 1424 if (!proc_fd_access_allowed(inode)) 1425 goto out; 1426 1427 error = PROC_I(inode)->op.proc_get_link(inode, &nd->path); 1428 out: 1429 return ERR_PTR(error); 1430 } 1431 1432 static int do_proc_readlink(struct path *path, char __user *buffer, int buflen) 1433 { 1434 char *tmp = (char*)__get_free_page(GFP_TEMPORARY); 1435 char *pathname; 1436 int len; 1437 1438 if (!tmp) 1439 return -ENOMEM; 1440 1441 pathname = d_path(path, tmp, PAGE_SIZE); 1442 len = PTR_ERR(pathname); 1443 if (IS_ERR(pathname)) 1444 goto out; 1445 len = tmp + PAGE_SIZE - 1 - pathname; 1446 1447 if (len > buflen) 1448 len = buflen; 1449 if (copy_to_user(buffer, pathname, len)) 1450 len = -EFAULT; 1451 out: 1452 free_page((unsigned long)tmp); 1453 return len; 1454 } 1455 1456 static int proc_pid_readlink(struct dentry * dentry, char __user * buffer, int buflen) 1457 { 1458 int error = -EACCES; 1459 struct inode *inode = dentry->d_inode; 1460 struct path path; 1461 1462 /* Are we allowed to snoop on the tasks file descriptors? */ 1463 if (!proc_fd_access_allowed(inode)) 1464 goto out; 1465 1466 error = PROC_I(inode)->op.proc_get_link(inode, &path); 1467 if (error) 1468 goto out; 1469 1470 error = do_proc_readlink(&path, buffer, buflen); 1471 path_put(&path); 1472 out: 1473 return error; 1474 } 1475 1476 static const struct inode_operations proc_pid_link_inode_operations = { 1477 .readlink = proc_pid_readlink, 1478 .follow_link = proc_pid_follow_link, 1479 .setattr = proc_setattr, 1480 }; 1481 1482 1483 /* building an inode */ 1484 1485 static int task_dumpable(struct task_struct *task) 1486 { 1487 int dumpable = 0; 1488 struct mm_struct *mm; 1489 1490 task_lock(task); 1491 mm = task->mm; 1492 if (mm) 1493 dumpable = get_dumpable(mm); 1494 task_unlock(task); 1495 if(dumpable == 1) 1496 return 1; 1497 return 0; 1498 } 1499 1500 1501 static struct inode *proc_pid_make_inode(struct super_block * sb, struct task_struct *task) 1502 { 1503 struct inode * inode; 1504 struct proc_inode *ei; 1505 const struct cred *cred; 1506 1507 /* We need a new inode */ 1508 1509 inode = new_inode(sb); 1510 if (!inode) 1511 goto out; 1512 1513 /* Common stuff */ 1514 ei = PROC_I(inode); 1515 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME; 1516 inode->i_op = &proc_def_inode_operations; 1517 1518 /* 1519 * grab the reference to task. 1520 */ 1521 ei->pid = get_task_pid(task, PIDTYPE_PID); 1522 if (!ei->pid) 1523 goto out_unlock; 1524 1525 if (task_dumpable(task)) { 1526 rcu_read_lock(); 1527 cred = __task_cred(task); 1528 inode->i_uid = cred->euid; 1529 inode->i_gid = cred->egid; 1530 rcu_read_unlock(); 1531 } 1532 security_task_to_inode(task, inode); 1533 1534 out: 1535 return inode; 1536 1537 out_unlock: 1538 iput(inode); 1539 return NULL; 1540 } 1541 1542 static int pid_getattr(struct vfsmount *mnt, struct dentry *dentry, struct kstat *stat) 1543 { 1544 struct inode *inode = dentry->d_inode; 1545 struct task_struct *task; 1546 const struct cred *cred; 1547 1548 generic_fillattr(inode, stat); 1549 1550 rcu_read_lock(); 1551 stat->uid = 0; 1552 stat->gid = 0; 1553 task = pid_task(proc_pid(inode), PIDTYPE_PID); 1554 if (task) { 1555 if ((inode->i_mode == (S_IFDIR|S_IRUGO|S_IXUGO)) || 1556 task_dumpable(task)) { 1557 cred = __task_cred(task); 1558 stat->uid = cred->euid; 1559 stat->gid = cred->egid; 1560 } 1561 } 1562 rcu_read_unlock(); 1563 return 0; 1564 } 1565 1566 /* dentry stuff */ 1567 1568 /* 1569 * Exceptional case: normally we are not allowed to unhash a busy 1570 * directory. In this case, however, we can do it - no aliasing problems 1571 * due to the way we treat inodes. 1572 * 1573 * Rewrite the inode's ownerships here because the owning task may have 1574 * performed a setuid(), etc. 1575 * 1576 * Before the /proc/pid/status file was created the only way to read 1577 * the effective uid of a /process was to stat /proc/pid. Reading 1578 * /proc/pid/status is slow enough that procps and other packages 1579 * kept stating /proc/pid. To keep the rules in /proc simple I have 1580 * made this apply to all per process world readable and executable 1581 * directories. 1582 */ 1583 static int pid_revalidate(struct dentry *dentry, struct nameidata *nd) 1584 { 1585 struct inode *inode = dentry->d_inode; 1586 struct task_struct *task = get_proc_task(inode); 1587 const struct cred *cred; 1588 1589 if (task) { 1590 if ((inode->i_mode == (S_IFDIR|S_IRUGO|S_IXUGO)) || 1591 task_dumpable(task)) { 1592 rcu_read_lock(); 1593 cred = __task_cred(task); 1594 inode->i_uid = cred->euid; 1595 inode->i_gid = cred->egid; 1596 rcu_read_unlock(); 1597 } else { 1598 inode->i_uid = 0; 1599 inode->i_gid = 0; 1600 } 1601 inode->i_mode &= ~(S_ISUID | S_ISGID); 1602 security_task_to_inode(task, inode); 1603 put_task_struct(task); 1604 return 1; 1605 } 1606 d_drop(dentry); 1607 return 0; 1608 } 1609 1610 static int pid_delete_dentry(struct dentry * dentry) 1611 { 1612 /* Is the task we represent dead? 1613 * If so, then don't put the dentry on the lru list, 1614 * kill it immediately. 1615 */ 1616 return !proc_pid(dentry->d_inode)->tasks[PIDTYPE_PID].first; 1617 } 1618 1619 static const struct dentry_operations pid_dentry_operations = 1620 { 1621 .d_revalidate = pid_revalidate, 1622 .d_delete = pid_delete_dentry, 1623 }; 1624 1625 /* Lookups */ 1626 1627 typedef struct dentry *instantiate_t(struct inode *, struct dentry *, 1628 struct task_struct *, const void *); 1629 1630 /* 1631 * Fill a directory entry. 1632 * 1633 * If possible create the dcache entry and derive our inode number and 1634 * file type from dcache entry. 1635 * 1636 * Since all of the proc inode numbers are dynamically generated, the inode 1637 * numbers do not exist until the inode is cache. This means creating the 1638 * the dcache entry in readdir is necessary to keep the inode numbers 1639 * reported by readdir in sync with the inode numbers reported 1640 * by stat. 1641 */ 1642 static int proc_fill_cache(struct file *filp, void *dirent, filldir_t filldir, 1643 char *name, int len, 1644 instantiate_t instantiate, struct task_struct *task, const void *ptr) 1645 { 1646 struct dentry *child, *dir = filp->f_path.dentry; 1647 struct inode *inode; 1648 struct qstr qname; 1649 ino_t ino = 0; 1650 unsigned type = DT_UNKNOWN; 1651 1652 qname.name = name; 1653 qname.len = len; 1654 qname.hash = full_name_hash(name, len); 1655 1656 child = d_lookup(dir, &qname); 1657 if (!child) { 1658 struct dentry *new; 1659 new = d_alloc(dir, &qname); 1660 if (new) { 1661 child = instantiate(dir->d_inode, new, task, ptr); 1662 if (child) 1663 dput(new); 1664 else 1665 child = new; 1666 } 1667 } 1668 if (!child || IS_ERR(child) || !child->d_inode) 1669 goto end_instantiate; 1670 inode = child->d_inode; 1671 if (inode) { 1672 ino = inode->i_ino; 1673 type = inode->i_mode >> 12; 1674 } 1675 dput(child); 1676 end_instantiate: 1677 if (!ino) 1678 ino = find_inode_number(dir, &qname); 1679 if (!ino) 1680 ino = 1; 1681 return filldir(dirent, name, len, filp->f_pos, ino, type); 1682 } 1683 1684 static unsigned name_to_int(struct dentry *dentry) 1685 { 1686 const char *name = dentry->d_name.name; 1687 int len = dentry->d_name.len; 1688 unsigned n = 0; 1689 1690 if (len > 1 && *name == '0') 1691 goto out; 1692 while (len-- > 0) { 1693 unsigned c = *name++ - '0'; 1694 if (c > 9) 1695 goto out; 1696 if (n >= (~0U-9)/10) 1697 goto out; 1698 n *= 10; 1699 n += c; 1700 } 1701 return n; 1702 out: 1703 return ~0U; 1704 } 1705 1706 #define PROC_FDINFO_MAX 64 1707 1708 static int proc_fd_info(struct inode *inode, struct path *path, char *info) 1709 { 1710 struct task_struct *task = get_proc_task(inode); 1711 struct files_struct *files = NULL; 1712 struct file *file; 1713 int fd = proc_fd(inode); 1714 1715 if (task) { 1716 files = get_files_struct(task); 1717 put_task_struct(task); 1718 } 1719 if (files) { 1720 /* 1721 * We are not taking a ref to the file structure, so we must 1722 * hold ->file_lock. 1723 */ 1724 spin_lock(&files->file_lock); 1725 file = fcheck_files(files, fd); 1726 if (file) { 1727 if (path) { 1728 *path = file->f_path; 1729 path_get(&file->f_path); 1730 } 1731 if (info) 1732 snprintf(info, PROC_FDINFO_MAX, 1733 "pos:\t%lli\n" 1734 "flags:\t0%o\n", 1735 (long long) file->f_pos, 1736 file->f_flags); 1737 spin_unlock(&files->file_lock); 1738 put_files_struct(files); 1739 return 0; 1740 } 1741 spin_unlock(&files->file_lock); 1742 put_files_struct(files); 1743 } 1744 return -ENOENT; 1745 } 1746 1747 static int proc_fd_link(struct inode *inode, struct path *path) 1748 { 1749 return proc_fd_info(inode, path, NULL); 1750 } 1751 1752 static int tid_fd_revalidate(struct dentry *dentry, struct nameidata *nd) 1753 { 1754 struct inode *inode = dentry->d_inode; 1755 struct task_struct *task = get_proc_task(inode); 1756 int fd = proc_fd(inode); 1757 struct files_struct *files; 1758 const struct cred *cred; 1759 1760 if (task) { 1761 files = get_files_struct(task); 1762 if (files) { 1763 rcu_read_lock(); 1764 if (fcheck_files(files, fd)) { 1765 rcu_read_unlock(); 1766 put_files_struct(files); 1767 if (task_dumpable(task)) { 1768 rcu_read_lock(); 1769 cred = __task_cred(task); 1770 inode->i_uid = cred->euid; 1771 inode->i_gid = cred->egid; 1772 rcu_read_unlock(); 1773 } else { 1774 inode->i_uid = 0; 1775 inode->i_gid = 0; 1776 } 1777 inode->i_mode &= ~(S_ISUID | S_ISGID); 1778 security_task_to_inode(task, inode); 1779 put_task_struct(task); 1780 return 1; 1781 } 1782 rcu_read_unlock(); 1783 put_files_struct(files); 1784 } 1785 put_task_struct(task); 1786 } 1787 d_drop(dentry); 1788 return 0; 1789 } 1790 1791 static const struct dentry_operations tid_fd_dentry_operations = 1792 { 1793 .d_revalidate = tid_fd_revalidate, 1794 .d_delete = pid_delete_dentry, 1795 }; 1796 1797 static struct dentry *proc_fd_instantiate(struct inode *dir, 1798 struct dentry *dentry, struct task_struct *task, const void *ptr) 1799 { 1800 unsigned fd = *(const unsigned *)ptr; 1801 struct file *file; 1802 struct files_struct *files; 1803 struct inode *inode; 1804 struct proc_inode *ei; 1805 struct dentry *error = ERR_PTR(-ENOENT); 1806 1807 inode = proc_pid_make_inode(dir->i_sb, task); 1808 if (!inode) 1809 goto out; 1810 ei = PROC_I(inode); 1811 ei->fd = fd; 1812 files = get_files_struct(task); 1813 if (!files) 1814 goto out_iput; 1815 inode->i_mode = S_IFLNK; 1816 1817 /* 1818 * We are not taking a ref to the file structure, so we must 1819 * hold ->file_lock. 1820 */ 1821 spin_lock(&files->file_lock); 1822 file = fcheck_files(files, fd); 1823 if (!file) 1824 goto out_unlock; 1825 if (file->f_mode & FMODE_READ) 1826 inode->i_mode |= S_IRUSR | S_IXUSR; 1827 if (file->f_mode & FMODE_WRITE) 1828 inode->i_mode |= S_IWUSR | S_IXUSR; 1829 spin_unlock(&files->file_lock); 1830 put_files_struct(files); 1831 1832 inode->i_op = &proc_pid_link_inode_operations; 1833 inode->i_size = 64; 1834 ei->op.proc_get_link = proc_fd_link; 1835 dentry->d_op = &tid_fd_dentry_operations; 1836 d_add(dentry, inode); 1837 /* Close the race of the process dying before we return the dentry */ 1838 if (tid_fd_revalidate(dentry, NULL)) 1839 error = NULL; 1840 1841 out: 1842 return error; 1843 out_unlock: 1844 spin_unlock(&files->file_lock); 1845 put_files_struct(files); 1846 out_iput: 1847 iput(inode); 1848 goto out; 1849 } 1850 1851 static struct dentry *proc_lookupfd_common(struct inode *dir, 1852 struct dentry *dentry, 1853 instantiate_t instantiate) 1854 { 1855 struct task_struct *task = get_proc_task(dir); 1856 unsigned fd = name_to_int(dentry); 1857 struct dentry *result = ERR_PTR(-ENOENT); 1858 1859 if (!task) 1860 goto out_no_task; 1861 if (fd == ~0U) 1862 goto out; 1863 1864 result = instantiate(dir, dentry, task, &fd); 1865 out: 1866 put_task_struct(task); 1867 out_no_task: 1868 return result; 1869 } 1870 1871 static int proc_readfd_common(struct file * filp, void * dirent, 1872 filldir_t filldir, instantiate_t instantiate) 1873 { 1874 struct dentry *dentry = filp->f_path.dentry; 1875 struct inode *inode = dentry->d_inode; 1876 struct task_struct *p = get_proc_task(inode); 1877 unsigned int fd, ino; 1878 int retval; 1879 struct files_struct * files; 1880 1881 retval = -ENOENT; 1882 if (!p) 1883 goto out_no_task; 1884 retval = 0; 1885 1886 fd = filp->f_pos; 1887 switch (fd) { 1888 case 0: 1889 if (filldir(dirent, ".", 1, 0, inode->i_ino, DT_DIR) < 0) 1890 goto out; 1891 filp->f_pos++; 1892 case 1: 1893 ino = parent_ino(dentry); 1894 if (filldir(dirent, "..", 2, 1, ino, DT_DIR) < 0) 1895 goto out; 1896 filp->f_pos++; 1897 default: 1898 files = get_files_struct(p); 1899 if (!files) 1900 goto out; 1901 rcu_read_lock(); 1902 for (fd = filp->f_pos-2; 1903 fd < files_fdtable(files)->max_fds; 1904 fd++, filp->f_pos++) { 1905 char name[PROC_NUMBUF]; 1906 int len; 1907 1908 if (!fcheck_files(files, fd)) 1909 continue; 1910 rcu_read_unlock(); 1911 1912 len = snprintf(name, sizeof(name), "%d", fd); 1913 if (proc_fill_cache(filp, dirent, filldir, 1914 name, len, instantiate, 1915 p, &fd) < 0) { 1916 rcu_read_lock(); 1917 break; 1918 } 1919 rcu_read_lock(); 1920 } 1921 rcu_read_unlock(); 1922 put_files_struct(files); 1923 } 1924 out: 1925 put_task_struct(p); 1926 out_no_task: 1927 return retval; 1928 } 1929 1930 static struct dentry *proc_lookupfd(struct inode *dir, struct dentry *dentry, 1931 struct nameidata *nd) 1932 { 1933 return proc_lookupfd_common(dir, dentry, proc_fd_instantiate); 1934 } 1935 1936 static int proc_readfd(struct file *filp, void *dirent, filldir_t filldir) 1937 { 1938 return proc_readfd_common(filp, dirent, filldir, proc_fd_instantiate); 1939 } 1940 1941 static ssize_t proc_fdinfo_read(struct file *file, char __user *buf, 1942 size_t len, loff_t *ppos) 1943 { 1944 char tmp[PROC_FDINFO_MAX]; 1945 int err = proc_fd_info(file->f_path.dentry->d_inode, NULL, tmp); 1946 if (!err) 1947 err = simple_read_from_buffer(buf, len, ppos, tmp, strlen(tmp)); 1948 return err; 1949 } 1950 1951 static const struct file_operations proc_fdinfo_file_operations = { 1952 .open = nonseekable_open, 1953 .read = proc_fdinfo_read, 1954 }; 1955 1956 static const struct file_operations proc_fd_operations = { 1957 .read = generic_read_dir, 1958 .readdir = proc_readfd, 1959 }; 1960 1961 /* 1962 * /proc/pid/fd needs a special permission handler so that a process can still 1963 * access /proc/self/fd after it has executed a setuid(). 1964 */ 1965 static int proc_fd_permission(struct inode *inode, int mask) 1966 { 1967 int rv; 1968 1969 rv = generic_permission(inode, mask, NULL); 1970 if (rv == 0) 1971 return 0; 1972 if (task_pid(current) == proc_pid(inode)) 1973 rv = 0; 1974 return rv; 1975 } 1976 1977 /* 1978 * proc directories can do almost nothing.. 1979 */ 1980 static const struct inode_operations proc_fd_inode_operations = { 1981 .lookup = proc_lookupfd, 1982 .permission = proc_fd_permission, 1983 .setattr = proc_setattr, 1984 }; 1985 1986 static struct dentry *proc_fdinfo_instantiate(struct inode *dir, 1987 struct dentry *dentry, struct task_struct *task, const void *ptr) 1988 { 1989 unsigned fd = *(unsigned *)ptr; 1990 struct inode *inode; 1991 struct proc_inode *ei; 1992 struct dentry *error = ERR_PTR(-ENOENT); 1993 1994 inode = proc_pid_make_inode(dir->i_sb, task); 1995 if (!inode) 1996 goto out; 1997 ei = PROC_I(inode); 1998 ei->fd = fd; 1999 inode->i_mode = S_IFREG | S_IRUSR; 2000 inode->i_fop = &proc_fdinfo_file_operations; 2001 dentry->d_op = &tid_fd_dentry_operations; 2002 d_add(dentry, inode); 2003 /* Close the race of the process dying before we return the dentry */ 2004 if (tid_fd_revalidate(dentry, NULL)) 2005 error = NULL; 2006 2007 out: 2008 return error; 2009 } 2010 2011 static struct dentry *proc_lookupfdinfo(struct inode *dir, 2012 struct dentry *dentry, 2013 struct nameidata *nd) 2014 { 2015 return proc_lookupfd_common(dir, dentry, proc_fdinfo_instantiate); 2016 } 2017 2018 static int proc_readfdinfo(struct file *filp, void *dirent, filldir_t filldir) 2019 { 2020 return proc_readfd_common(filp, dirent, filldir, 2021 proc_fdinfo_instantiate); 2022 } 2023 2024 static const struct file_operations proc_fdinfo_operations = { 2025 .read = generic_read_dir, 2026 .readdir = proc_readfdinfo, 2027 }; 2028 2029 /* 2030 * proc directories can do almost nothing.. 2031 */ 2032 static const struct inode_operations proc_fdinfo_inode_operations = { 2033 .lookup = proc_lookupfdinfo, 2034 .setattr = proc_setattr, 2035 }; 2036 2037 2038 static struct dentry *proc_pident_instantiate(struct inode *dir, 2039 struct dentry *dentry, struct task_struct *task, const void *ptr) 2040 { 2041 const struct pid_entry *p = ptr; 2042 struct inode *inode; 2043 struct proc_inode *ei; 2044 struct dentry *error = ERR_PTR(-ENOENT); 2045 2046 inode = proc_pid_make_inode(dir->i_sb, task); 2047 if (!inode) 2048 goto out; 2049 2050 ei = PROC_I(inode); 2051 inode->i_mode = p->mode; 2052 if (S_ISDIR(inode->i_mode)) 2053 inode->i_nlink = 2; /* Use getattr to fix if necessary */ 2054 if (p->iop) 2055 inode->i_op = p->iop; 2056 if (p->fop) 2057 inode->i_fop = p->fop; 2058 ei->op = p->op; 2059 dentry->d_op = &pid_dentry_operations; 2060 d_add(dentry, inode); 2061 /* Close the race of the process dying before we return the dentry */ 2062 if (pid_revalidate(dentry, NULL)) 2063 error = NULL; 2064 out: 2065 return error; 2066 } 2067 2068 static struct dentry *proc_pident_lookup(struct inode *dir, 2069 struct dentry *dentry, 2070 const struct pid_entry *ents, 2071 unsigned int nents) 2072 { 2073 struct dentry *error; 2074 struct task_struct *task = get_proc_task(dir); 2075 const struct pid_entry *p, *last; 2076 2077 error = ERR_PTR(-ENOENT); 2078 2079 if (!task) 2080 goto out_no_task; 2081 2082 /* 2083 * Yes, it does not scale. And it should not. Don't add 2084 * new entries into /proc/<tgid>/ without very good reasons. 2085 */ 2086 last = &ents[nents - 1]; 2087 for (p = ents; p <= last; p++) { 2088 if (p->len != dentry->d_name.len) 2089 continue; 2090 if (!memcmp(dentry->d_name.name, p->name, p->len)) 2091 break; 2092 } 2093 if (p > last) 2094 goto out; 2095 2096 error = proc_pident_instantiate(dir, dentry, task, p); 2097 out: 2098 put_task_struct(task); 2099 out_no_task: 2100 return error; 2101 } 2102 2103 static int proc_pident_fill_cache(struct file *filp, void *dirent, 2104 filldir_t filldir, struct task_struct *task, const struct pid_entry *p) 2105 { 2106 return proc_fill_cache(filp, dirent, filldir, p->name, p->len, 2107 proc_pident_instantiate, task, p); 2108 } 2109 2110 static int proc_pident_readdir(struct file *filp, 2111 void *dirent, filldir_t filldir, 2112 const struct pid_entry *ents, unsigned int nents) 2113 { 2114 int i; 2115 struct dentry *dentry = filp->f_path.dentry; 2116 struct inode *inode = dentry->d_inode; 2117 struct task_struct *task = get_proc_task(inode); 2118 const struct pid_entry *p, *last; 2119 ino_t ino; 2120 int ret; 2121 2122 ret = -ENOENT; 2123 if (!task) 2124 goto out_no_task; 2125 2126 ret = 0; 2127 i = filp->f_pos; 2128 switch (i) { 2129 case 0: 2130 ino = inode->i_ino; 2131 if (filldir(dirent, ".", 1, i, ino, DT_DIR) < 0) 2132 goto out; 2133 i++; 2134 filp->f_pos++; 2135 /* fall through */ 2136 case 1: 2137 ino = parent_ino(dentry); 2138 if (filldir(dirent, "..", 2, i, ino, DT_DIR) < 0) 2139 goto out; 2140 i++; 2141 filp->f_pos++; 2142 /* fall through */ 2143 default: 2144 i -= 2; 2145 if (i >= nents) { 2146 ret = 1; 2147 goto out; 2148 } 2149 p = ents + i; 2150 last = &ents[nents - 1]; 2151 while (p <= last) { 2152 if (proc_pident_fill_cache(filp, dirent, filldir, task, p) < 0) 2153 goto out; 2154 filp->f_pos++; 2155 p++; 2156 } 2157 } 2158 2159 ret = 1; 2160 out: 2161 put_task_struct(task); 2162 out_no_task: 2163 return ret; 2164 } 2165 2166 #ifdef CONFIG_SECURITY 2167 static ssize_t proc_pid_attr_read(struct file * file, char __user * buf, 2168 size_t count, loff_t *ppos) 2169 { 2170 struct inode * inode = file->f_path.dentry->d_inode; 2171 char *p = NULL; 2172 ssize_t length; 2173 struct task_struct *task = get_proc_task(inode); 2174 2175 if (!task) 2176 return -ESRCH; 2177 2178 length = security_getprocattr(task, 2179 (char*)file->f_path.dentry->d_name.name, 2180 &p); 2181 put_task_struct(task); 2182 if (length > 0) 2183 length = simple_read_from_buffer(buf, count, ppos, p, length); 2184 kfree(p); 2185 return length; 2186 } 2187 2188 static ssize_t proc_pid_attr_write(struct file * file, const char __user * buf, 2189 size_t count, loff_t *ppos) 2190 { 2191 struct inode * inode = file->f_path.dentry->d_inode; 2192 char *page; 2193 ssize_t length; 2194 struct task_struct *task = get_proc_task(inode); 2195 2196 length = -ESRCH; 2197 if (!task) 2198 goto out_no_task; 2199 if (count > PAGE_SIZE) 2200 count = PAGE_SIZE; 2201 2202 /* No partial writes. */ 2203 length = -EINVAL; 2204 if (*ppos != 0) 2205 goto out; 2206 2207 length = -ENOMEM; 2208 page = (char*)__get_free_page(GFP_TEMPORARY); 2209 if (!page) 2210 goto out; 2211 2212 length = -EFAULT; 2213 if (copy_from_user(page, buf, count)) 2214 goto out_free; 2215 2216 /* Guard against adverse ptrace interaction */ 2217 length = mutex_lock_interruptible(&task->cred_guard_mutex); 2218 if (length < 0) 2219 goto out_free; 2220 2221 length = security_setprocattr(task, 2222 (char*)file->f_path.dentry->d_name.name, 2223 (void*)page, count); 2224 mutex_unlock(&task->cred_guard_mutex); 2225 out_free: 2226 free_page((unsigned long) page); 2227 out: 2228 put_task_struct(task); 2229 out_no_task: 2230 return length; 2231 } 2232 2233 static const struct file_operations proc_pid_attr_operations = { 2234 .read = proc_pid_attr_read, 2235 .write = proc_pid_attr_write, 2236 .llseek = generic_file_llseek, 2237 }; 2238 2239 static const struct pid_entry attr_dir_stuff[] = { 2240 REG("current", S_IRUGO|S_IWUGO, proc_pid_attr_operations), 2241 REG("prev", S_IRUGO, proc_pid_attr_operations), 2242 REG("exec", S_IRUGO|S_IWUGO, proc_pid_attr_operations), 2243 REG("fscreate", S_IRUGO|S_IWUGO, proc_pid_attr_operations), 2244 REG("keycreate", S_IRUGO|S_IWUGO, proc_pid_attr_operations), 2245 REG("sockcreate", S_IRUGO|S_IWUGO, proc_pid_attr_operations), 2246 }; 2247 2248 static int proc_attr_dir_readdir(struct file * filp, 2249 void * dirent, filldir_t filldir) 2250 { 2251 return proc_pident_readdir(filp,dirent,filldir, 2252 attr_dir_stuff,ARRAY_SIZE(attr_dir_stuff)); 2253 } 2254 2255 static const struct file_operations proc_attr_dir_operations = { 2256 .read = generic_read_dir, 2257 .readdir = proc_attr_dir_readdir, 2258 }; 2259 2260 static struct dentry *proc_attr_dir_lookup(struct inode *dir, 2261 struct dentry *dentry, struct nameidata *nd) 2262 { 2263 return proc_pident_lookup(dir, dentry, 2264 attr_dir_stuff, ARRAY_SIZE(attr_dir_stuff)); 2265 } 2266 2267 static const struct inode_operations proc_attr_dir_inode_operations = { 2268 .lookup = proc_attr_dir_lookup, 2269 .getattr = pid_getattr, 2270 .setattr = proc_setattr, 2271 }; 2272 2273 #endif 2274 2275 #ifdef CONFIG_ELF_CORE 2276 static ssize_t proc_coredump_filter_read(struct file *file, char __user *buf, 2277 size_t count, loff_t *ppos) 2278 { 2279 struct task_struct *task = get_proc_task(file->f_dentry->d_inode); 2280 struct mm_struct *mm; 2281 char buffer[PROC_NUMBUF]; 2282 size_t len; 2283 int ret; 2284 2285 if (!task) 2286 return -ESRCH; 2287 2288 ret = 0; 2289 mm = get_task_mm(task); 2290 if (mm) { 2291 len = snprintf(buffer, sizeof(buffer), "%08lx\n", 2292 ((mm->flags & MMF_DUMP_FILTER_MASK) >> 2293 MMF_DUMP_FILTER_SHIFT)); 2294 mmput(mm); 2295 ret = simple_read_from_buffer(buf, count, ppos, buffer, len); 2296 } 2297 2298 put_task_struct(task); 2299 2300 return ret; 2301 } 2302 2303 static ssize_t proc_coredump_filter_write(struct file *file, 2304 const char __user *buf, 2305 size_t count, 2306 loff_t *ppos) 2307 { 2308 struct task_struct *task; 2309 struct mm_struct *mm; 2310 char buffer[PROC_NUMBUF], *end; 2311 unsigned int val; 2312 int ret; 2313 int i; 2314 unsigned long mask; 2315 2316 ret = -EFAULT; 2317 memset(buffer, 0, sizeof(buffer)); 2318 if (count > sizeof(buffer) - 1) 2319 count = sizeof(buffer) - 1; 2320 if (copy_from_user(buffer, buf, count)) 2321 goto out_no_task; 2322 2323 ret = -EINVAL; 2324 val = (unsigned int)simple_strtoul(buffer, &end, 0); 2325 if (*end == '\n') 2326 end++; 2327 if (end - buffer == 0) 2328 goto out_no_task; 2329 2330 ret = -ESRCH; 2331 task = get_proc_task(file->f_dentry->d_inode); 2332 if (!task) 2333 goto out_no_task; 2334 2335 ret = end - buffer; 2336 mm = get_task_mm(task); 2337 if (!mm) 2338 goto out_no_mm; 2339 2340 for (i = 0, mask = 1; i < MMF_DUMP_FILTER_BITS; i++, mask <<= 1) { 2341 if (val & mask) 2342 set_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags); 2343 else 2344 clear_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags); 2345 } 2346 2347 mmput(mm); 2348 out_no_mm: 2349 put_task_struct(task); 2350 out_no_task: 2351 return ret; 2352 } 2353 2354 static const struct file_operations proc_coredump_filter_operations = { 2355 .read = proc_coredump_filter_read, 2356 .write = proc_coredump_filter_write, 2357 .llseek = generic_file_llseek, 2358 }; 2359 #endif 2360 2361 /* 2362 * /proc/self: 2363 */ 2364 static int proc_self_readlink(struct dentry *dentry, char __user *buffer, 2365 int buflen) 2366 { 2367 struct pid_namespace *ns = dentry->d_sb->s_fs_info; 2368 pid_t tgid = task_tgid_nr_ns(current, ns); 2369 char tmp[PROC_NUMBUF]; 2370 if (!tgid) 2371 return -ENOENT; 2372 sprintf(tmp, "%d", tgid); 2373 return vfs_readlink(dentry,buffer,buflen,tmp); 2374 } 2375 2376 static void *proc_self_follow_link(struct dentry *dentry, struct nameidata *nd) 2377 { 2378 struct pid_namespace *ns = dentry->d_sb->s_fs_info; 2379 pid_t tgid = task_tgid_nr_ns(current, ns); 2380 char *name = ERR_PTR(-ENOENT); 2381 if (tgid) { 2382 name = __getname(); 2383 if (!name) 2384 name = ERR_PTR(-ENOMEM); 2385 else 2386 sprintf(name, "%d", tgid); 2387 } 2388 nd_set_link(nd, name); 2389 return NULL; 2390 } 2391 2392 static void proc_self_put_link(struct dentry *dentry, struct nameidata *nd, 2393 void *cookie) 2394 { 2395 char *s = nd_get_link(nd); 2396 if (!IS_ERR(s)) 2397 __putname(s); 2398 } 2399 2400 static const struct inode_operations proc_self_inode_operations = { 2401 .readlink = proc_self_readlink, 2402 .follow_link = proc_self_follow_link, 2403 .put_link = proc_self_put_link, 2404 }; 2405 2406 /* 2407 * proc base 2408 * 2409 * These are the directory entries in the root directory of /proc 2410 * that properly belong to the /proc filesystem, as they describe 2411 * describe something that is process related. 2412 */ 2413 static const struct pid_entry proc_base_stuff[] = { 2414 NOD("self", S_IFLNK|S_IRWXUGO, 2415 &proc_self_inode_operations, NULL, {}), 2416 }; 2417 2418 /* 2419 * Exceptional case: normally we are not allowed to unhash a busy 2420 * directory. In this case, however, we can do it - no aliasing problems 2421 * due to the way we treat inodes. 2422 */ 2423 static int proc_base_revalidate(struct dentry *dentry, struct nameidata *nd) 2424 { 2425 struct inode *inode = dentry->d_inode; 2426 struct task_struct *task = get_proc_task(inode); 2427 if (task) { 2428 put_task_struct(task); 2429 return 1; 2430 } 2431 d_drop(dentry); 2432 return 0; 2433 } 2434 2435 static const struct dentry_operations proc_base_dentry_operations = 2436 { 2437 .d_revalidate = proc_base_revalidate, 2438 .d_delete = pid_delete_dentry, 2439 }; 2440 2441 static struct dentry *proc_base_instantiate(struct inode *dir, 2442 struct dentry *dentry, struct task_struct *task, const void *ptr) 2443 { 2444 const struct pid_entry *p = ptr; 2445 struct inode *inode; 2446 struct proc_inode *ei; 2447 struct dentry *error = ERR_PTR(-EINVAL); 2448 2449 /* Allocate the inode */ 2450 error = ERR_PTR(-ENOMEM); 2451 inode = new_inode(dir->i_sb); 2452 if (!inode) 2453 goto out; 2454 2455 /* Initialize the inode */ 2456 ei = PROC_I(inode); 2457 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME; 2458 2459 /* 2460 * grab the reference to the task. 2461 */ 2462 ei->pid = get_task_pid(task, PIDTYPE_PID); 2463 if (!ei->pid) 2464 goto out_iput; 2465 2466 inode->i_mode = p->mode; 2467 if (S_ISDIR(inode->i_mode)) 2468 inode->i_nlink = 2; 2469 if (S_ISLNK(inode->i_mode)) 2470 inode->i_size = 64; 2471 if (p->iop) 2472 inode->i_op = p->iop; 2473 if (p->fop) 2474 inode->i_fop = p->fop; 2475 ei->op = p->op; 2476 dentry->d_op = &proc_base_dentry_operations; 2477 d_add(dentry, inode); 2478 error = NULL; 2479 out: 2480 return error; 2481 out_iput: 2482 iput(inode); 2483 goto out; 2484 } 2485 2486 static struct dentry *proc_base_lookup(struct inode *dir, struct dentry *dentry) 2487 { 2488 struct dentry *error; 2489 struct task_struct *task = get_proc_task(dir); 2490 const struct pid_entry *p, *last; 2491 2492 error = ERR_PTR(-ENOENT); 2493 2494 if (!task) 2495 goto out_no_task; 2496 2497 /* Lookup the directory entry */ 2498 last = &proc_base_stuff[ARRAY_SIZE(proc_base_stuff) - 1]; 2499 for (p = proc_base_stuff; p <= last; p++) { 2500 if (p->len != dentry->d_name.len) 2501 continue; 2502 if (!memcmp(dentry->d_name.name, p->name, p->len)) 2503 break; 2504 } 2505 if (p > last) 2506 goto out; 2507 2508 error = proc_base_instantiate(dir, dentry, task, p); 2509 2510 out: 2511 put_task_struct(task); 2512 out_no_task: 2513 return error; 2514 } 2515 2516 static int proc_base_fill_cache(struct file *filp, void *dirent, 2517 filldir_t filldir, struct task_struct *task, const struct pid_entry *p) 2518 { 2519 return proc_fill_cache(filp, dirent, filldir, p->name, p->len, 2520 proc_base_instantiate, task, p); 2521 } 2522 2523 #ifdef CONFIG_TASK_IO_ACCOUNTING 2524 static int do_io_accounting(struct task_struct *task, char *buffer, int whole) 2525 { 2526 struct task_io_accounting acct = task->ioac; 2527 unsigned long flags; 2528 2529 if (whole && lock_task_sighand(task, &flags)) { 2530 struct task_struct *t = task; 2531 2532 task_io_accounting_add(&acct, &task->signal->ioac); 2533 while_each_thread(task, t) 2534 task_io_accounting_add(&acct, &t->ioac); 2535 2536 unlock_task_sighand(task, &flags); 2537 } 2538 return sprintf(buffer, 2539 "rchar: %llu\n" 2540 "wchar: %llu\n" 2541 "syscr: %llu\n" 2542 "syscw: %llu\n" 2543 "read_bytes: %llu\n" 2544 "write_bytes: %llu\n" 2545 "cancelled_write_bytes: %llu\n", 2546 (unsigned long long)acct.rchar, 2547 (unsigned long long)acct.wchar, 2548 (unsigned long long)acct.syscr, 2549 (unsigned long long)acct.syscw, 2550 (unsigned long long)acct.read_bytes, 2551 (unsigned long long)acct.write_bytes, 2552 (unsigned long long)acct.cancelled_write_bytes); 2553 } 2554 2555 static int proc_tid_io_accounting(struct task_struct *task, char *buffer) 2556 { 2557 return do_io_accounting(task, buffer, 0); 2558 } 2559 2560 static int proc_tgid_io_accounting(struct task_struct *task, char *buffer) 2561 { 2562 return do_io_accounting(task, buffer, 1); 2563 } 2564 #endif /* CONFIG_TASK_IO_ACCOUNTING */ 2565 2566 static int proc_pid_personality(struct seq_file *m, struct pid_namespace *ns, 2567 struct pid *pid, struct task_struct *task) 2568 { 2569 seq_printf(m, "%08x\n", task->personality); 2570 return 0; 2571 } 2572 2573 /* 2574 * Thread groups 2575 */ 2576 static const struct file_operations proc_task_operations; 2577 static const struct inode_operations proc_task_inode_operations; 2578 2579 static const struct pid_entry tgid_base_stuff[] = { 2580 DIR("task", S_IRUGO|S_IXUGO, proc_task_inode_operations, proc_task_operations), 2581 DIR("fd", S_IRUSR|S_IXUSR, proc_fd_inode_operations, proc_fd_operations), 2582 DIR("fdinfo", S_IRUSR|S_IXUSR, proc_fdinfo_inode_operations, proc_fdinfo_operations), 2583 #ifdef CONFIG_NET 2584 DIR("net", S_IRUGO|S_IXUGO, proc_net_inode_operations, proc_net_operations), 2585 #endif 2586 REG("environ", S_IRUSR, proc_environ_operations), 2587 INF("auxv", S_IRUSR, proc_pid_auxv), 2588 ONE("status", S_IRUGO, proc_pid_status), 2589 ONE("personality", S_IRUSR, proc_pid_personality), 2590 INF("limits", S_IRUSR, proc_pid_limits), 2591 #ifdef CONFIG_SCHED_DEBUG 2592 REG("sched", S_IRUGO|S_IWUSR, proc_pid_sched_operations), 2593 #endif 2594 REG("comm", S_IRUGO|S_IWUSR, proc_pid_set_comm_operations), 2595 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK 2596 INF("syscall", S_IRUSR, proc_pid_syscall), 2597 #endif 2598 INF("cmdline", S_IRUGO, proc_pid_cmdline), 2599 ONE("stat", S_IRUGO, proc_tgid_stat), 2600 ONE("statm", S_IRUGO, proc_pid_statm), 2601 REG("maps", S_IRUGO, proc_maps_operations), 2602 #ifdef CONFIG_NUMA 2603 REG("numa_maps", S_IRUGO, proc_numa_maps_operations), 2604 #endif 2605 REG("mem", S_IRUSR|S_IWUSR, proc_mem_operations), 2606 LNK("cwd", proc_cwd_link), 2607 LNK("root", proc_root_link), 2608 LNK("exe", proc_exe_link), 2609 REG("mounts", S_IRUGO, proc_mounts_operations), 2610 REG("mountinfo", S_IRUGO, proc_mountinfo_operations), 2611 REG("mountstats", S_IRUSR, proc_mountstats_operations), 2612 #ifdef CONFIG_PROC_PAGE_MONITOR 2613 REG("clear_refs", S_IWUSR, proc_clear_refs_operations), 2614 REG("smaps", S_IRUGO, proc_smaps_operations), 2615 REG("pagemap", S_IRUSR, proc_pagemap_operations), 2616 #endif 2617 #ifdef CONFIG_SECURITY 2618 DIR("attr", S_IRUGO|S_IXUGO, proc_attr_dir_inode_operations, proc_attr_dir_operations), 2619 #endif 2620 #ifdef CONFIG_KALLSYMS 2621 INF("wchan", S_IRUGO, proc_pid_wchan), 2622 #endif 2623 #ifdef CONFIG_STACKTRACE 2624 ONE("stack", S_IRUSR, proc_pid_stack), 2625 #endif 2626 #ifdef CONFIG_SCHEDSTATS 2627 INF("schedstat", S_IRUGO, proc_pid_schedstat), 2628 #endif 2629 #ifdef CONFIG_LATENCYTOP 2630 REG("latency", S_IRUGO, proc_lstats_operations), 2631 #endif 2632 #ifdef CONFIG_PROC_PID_CPUSET 2633 REG("cpuset", S_IRUGO, proc_cpuset_operations), 2634 #endif 2635 #ifdef CONFIG_CGROUPS 2636 REG("cgroup", S_IRUGO, proc_cgroup_operations), 2637 #endif 2638 INF("oom_score", S_IRUGO, proc_oom_score), 2639 REG("oom_adj", S_IRUGO|S_IWUSR, proc_oom_adjust_operations), 2640 #ifdef CONFIG_AUDITSYSCALL 2641 REG("loginuid", S_IWUSR|S_IRUGO, proc_loginuid_operations), 2642 REG("sessionid", S_IRUGO, proc_sessionid_operations), 2643 #endif 2644 #ifdef CONFIG_FAULT_INJECTION 2645 REG("make-it-fail", S_IRUGO|S_IWUSR, proc_fault_inject_operations), 2646 #endif 2647 #ifdef CONFIG_ELF_CORE 2648 REG("coredump_filter", S_IRUGO|S_IWUSR, proc_coredump_filter_operations), 2649 #endif 2650 #ifdef CONFIG_TASK_IO_ACCOUNTING 2651 INF("io", S_IRUGO, proc_tgid_io_accounting), 2652 #endif 2653 }; 2654 2655 static int proc_tgid_base_readdir(struct file * filp, 2656 void * dirent, filldir_t filldir) 2657 { 2658 return proc_pident_readdir(filp,dirent,filldir, 2659 tgid_base_stuff,ARRAY_SIZE(tgid_base_stuff)); 2660 } 2661 2662 static const struct file_operations proc_tgid_base_operations = { 2663 .read = generic_read_dir, 2664 .readdir = proc_tgid_base_readdir, 2665 }; 2666 2667 static struct dentry *proc_tgid_base_lookup(struct inode *dir, struct dentry *dentry, struct nameidata *nd){ 2668 return proc_pident_lookup(dir, dentry, 2669 tgid_base_stuff, ARRAY_SIZE(tgid_base_stuff)); 2670 } 2671 2672 static const struct inode_operations proc_tgid_base_inode_operations = { 2673 .lookup = proc_tgid_base_lookup, 2674 .getattr = pid_getattr, 2675 .setattr = proc_setattr, 2676 }; 2677 2678 static void proc_flush_task_mnt(struct vfsmount *mnt, pid_t pid, pid_t tgid) 2679 { 2680 struct dentry *dentry, *leader, *dir; 2681 char buf[PROC_NUMBUF]; 2682 struct qstr name; 2683 2684 name.name = buf; 2685 name.len = snprintf(buf, sizeof(buf), "%d", pid); 2686 dentry = d_hash_and_lookup(mnt->mnt_root, &name); 2687 if (dentry) { 2688 shrink_dcache_parent(dentry); 2689 d_drop(dentry); 2690 dput(dentry); 2691 } 2692 2693 name.name = buf; 2694 name.len = snprintf(buf, sizeof(buf), "%d", tgid); 2695 leader = d_hash_and_lookup(mnt->mnt_root, &name); 2696 if (!leader) 2697 goto out; 2698 2699 name.name = "task"; 2700 name.len = strlen(name.name); 2701 dir = d_hash_and_lookup(leader, &name); 2702 if (!dir) 2703 goto out_put_leader; 2704 2705 name.name = buf; 2706 name.len = snprintf(buf, sizeof(buf), "%d", pid); 2707 dentry = d_hash_and_lookup(dir, &name); 2708 if (dentry) { 2709 shrink_dcache_parent(dentry); 2710 d_drop(dentry); 2711 dput(dentry); 2712 } 2713 2714 dput(dir); 2715 out_put_leader: 2716 dput(leader); 2717 out: 2718 return; 2719 } 2720 2721 /** 2722 * proc_flush_task - Remove dcache entries for @task from the /proc dcache. 2723 * @task: task that should be flushed. 2724 * 2725 * When flushing dentries from proc, one needs to flush them from global 2726 * proc (proc_mnt) and from all the namespaces' procs this task was seen 2727 * in. This call is supposed to do all of this job. 2728 * 2729 * Looks in the dcache for 2730 * /proc/@pid 2731 * /proc/@tgid/task/@pid 2732 * if either directory is present flushes it and all of it'ts children 2733 * from the dcache. 2734 * 2735 * It is safe and reasonable to cache /proc entries for a task until 2736 * that task exits. After that they just clog up the dcache with 2737 * useless entries, possibly causing useful dcache entries to be 2738 * flushed instead. This routine is proved to flush those useless 2739 * dcache entries at process exit time. 2740 * 2741 * NOTE: This routine is just an optimization so it does not guarantee 2742 * that no dcache entries will exist at process exit time it 2743 * just makes it very unlikely that any will persist. 2744 */ 2745 2746 void proc_flush_task(struct task_struct *task) 2747 { 2748 int i; 2749 struct pid *pid, *tgid; 2750 struct upid *upid; 2751 2752 pid = task_pid(task); 2753 tgid = task_tgid(task); 2754 2755 for (i = 0; i <= pid->level; i++) { 2756 upid = &pid->numbers[i]; 2757 proc_flush_task_mnt(upid->ns->proc_mnt, upid->nr, 2758 tgid->numbers[i].nr); 2759 } 2760 2761 upid = &pid->numbers[pid->level]; 2762 if (upid->nr == 1) 2763 pid_ns_release_proc(upid->ns); 2764 } 2765 2766 static struct dentry *proc_pid_instantiate(struct inode *dir, 2767 struct dentry * dentry, 2768 struct task_struct *task, const void *ptr) 2769 { 2770 struct dentry *error = ERR_PTR(-ENOENT); 2771 struct inode *inode; 2772 2773 inode = proc_pid_make_inode(dir->i_sb, task); 2774 if (!inode) 2775 goto out; 2776 2777 inode->i_mode = S_IFDIR|S_IRUGO|S_IXUGO; 2778 inode->i_op = &proc_tgid_base_inode_operations; 2779 inode->i_fop = &proc_tgid_base_operations; 2780 inode->i_flags|=S_IMMUTABLE; 2781 2782 inode->i_nlink = 2 + pid_entry_count_dirs(tgid_base_stuff, 2783 ARRAY_SIZE(tgid_base_stuff)); 2784 2785 dentry->d_op = &pid_dentry_operations; 2786 2787 d_add(dentry, inode); 2788 /* Close the race of the process dying before we return the dentry */ 2789 if (pid_revalidate(dentry, NULL)) 2790 error = NULL; 2791 out: 2792 return error; 2793 } 2794 2795 struct dentry *proc_pid_lookup(struct inode *dir, struct dentry * dentry, struct nameidata *nd) 2796 { 2797 struct dentry *result = ERR_PTR(-ENOENT); 2798 struct task_struct *task; 2799 unsigned tgid; 2800 struct pid_namespace *ns; 2801 2802 result = proc_base_lookup(dir, dentry); 2803 if (!IS_ERR(result) || PTR_ERR(result) != -ENOENT) 2804 goto out; 2805 2806 tgid = name_to_int(dentry); 2807 if (tgid == ~0U) 2808 goto out; 2809 2810 ns = dentry->d_sb->s_fs_info; 2811 rcu_read_lock(); 2812 task = find_task_by_pid_ns(tgid, ns); 2813 if (task) 2814 get_task_struct(task); 2815 rcu_read_unlock(); 2816 if (!task) 2817 goto out; 2818 2819 result = proc_pid_instantiate(dir, dentry, task, NULL); 2820 put_task_struct(task); 2821 out: 2822 return result; 2823 } 2824 2825 /* 2826 * Find the first task with tgid >= tgid 2827 * 2828 */ 2829 struct tgid_iter { 2830 unsigned int tgid; 2831 struct task_struct *task; 2832 }; 2833 static struct tgid_iter next_tgid(struct pid_namespace *ns, struct tgid_iter iter) 2834 { 2835 struct pid *pid; 2836 2837 if (iter.task) 2838 put_task_struct(iter.task); 2839 rcu_read_lock(); 2840 retry: 2841 iter.task = NULL; 2842 pid = find_ge_pid(iter.tgid, ns); 2843 if (pid) { 2844 iter.tgid = pid_nr_ns(pid, ns); 2845 iter.task = pid_task(pid, PIDTYPE_PID); 2846 /* What we to know is if the pid we have find is the 2847 * pid of a thread_group_leader. Testing for task 2848 * being a thread_group_leader is the obvious thing 2849 * todo but there is a window when it fails, due to 2850 * the pid transfer logic in de_thread. 2851 * 2852 * So we perform the straight forward test of seeing 2853 * if the pid we have found is the pid of a thread 2854 * group leader, and don't worry if the task we have 2855 * found doesn't happen to be a thread group leader. 2856 * As we don't care in the case of readdir. 2857 */ 2858 if (!iter.task || !has_group_leader_pid(iter.task)) { 2859 iter.tgid += 1; 2860 goto retry; 2861 } 2862 get_task_struct(iter.task); 2863 } 2864 rcu_read_unlock(); 2865 return iter; 2866 } 2867 2868 #define TGID_OFFSET (FIRST_PROCESS_ENTRY + ARRAY_SIZE(proc_base_stuff)) 2869 2870 static int proc_pid_fill_cache(struct file *filp, void *dirent, filldir_t filldir, 2871 struct tgid_iter iter) 2872 { 2873 char name[PROC_NUMBUF]; 2874 int len = snprintf(name, sizeof(name), "%d", iter.tgid); 2875 return proc_fill_cache(filp, dirent, filldir, name, len, 2876 proc_pid_instantiate, iter.task, NULL); 2877 } 2878 2879 /* for the /proc/ directory itself, after non-process stuff has been done */ 2880 int proc_pid_readdir(struct file * filp, void * dirent, filldir_t filldir) 2881 { 2882 unsigned int nr = filp->f_pos - FIRST_PROCESS_ENTRY; 2883 struct task_struct *reaper = get_proc_task(filp->f_path.dentry->d_inode); 2884 struct tgid_iter iter; 2885 struct pid_namespace *ns; 2886 2887 if (!reaper) 2888 goto out_no_task; 2889 2890 for (; nr < ARRAY_SIZE(proc_base_stuff); filp->f_pos++, nr++) { 2891 const struct pid_entry *p = &proc_base_stuff[nr]; 2892 if (proc_base_fill_cache(filp, dirent, filldir, reaper, p) < 0) 2893 goto out; 2894 } 2895 2896 ns = filp->f_dentry->d_sb->s_fs_info; 2897 iter.task = NULL; 2898 iter.tgid = filp->f_pos - TGID_OFFSET; 2899 for (iter = next_tgid(ns, iter); 2900 iter.task; 2901 iter.tgid += 1, iter = next_tgid(ns, iter)) { 2902 filp->f_pos = iter.tgid + TGID_OFFSET; 2903 if (proc_pid_fill_cache(filp, dirent, filldir, iter) < 0) { 2904 put_task_struct(iter.task); 2905 goto out; 2906 } 2907 } 2908 filp->f_pos = PID_MAX_LIMIT + TGID_OFFSET; 2909 out: 2910 put_task_struct(reaper); 2911 out_no_task: 2912 return 0; 2913 } 2914 2915 /* 2916 * Tasks 2917 */ 2918 static const struct pid_entry tid_base_stuff[] = { 2919 DIR("fd", S_IRUSR|S_IXUSR, proc_fd_inode_operations, proc_fd_operations), 2920 DIR("fdinfo", S_IRUSR|S_IXUSR, proc_fdinfo_inode_operations, proc_fdinfo_operations), 2921 REG("environ", S_IRUSR, proc_environ_operations), 2922 INF("auxv", S_IRUSR, proc_pid_auxv), 2923 ONE("status", S_IRUGO, proc_pid_status), 2924 ONE("personality", S_IRUSR, proc_pid_personality), 2925 INF("limits", S_IRUSR, proc_pid_limits), 2926 #ifdef CONFIG_SCHED_DEBUG 2927 REG("sched", S_IRUGO|S_IWUSR, proc_pid_sched_operations), 2928 #endif 2929 REG("comm", S_IRUGO|S_IWUSR, proc_pid_set_comm_operations), 2930 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK 2931 INF("syscall", S_IRUSR, proc_pid_syscall), 2932 #endif 2933 INF("cmdline", S_IRUGO, proc_pid_cmdline), 2934 ONE("stat", S_IRUGO, proc_tid_stat), 2935 ONE("statm", S_IRUGO, proc_pid_statm), 2936 REG("maps", S_IRUGO, proc_maps_operations), 2937 #ifdef CONFIG_NUMA 2938 REG("numa_maps", S_IRUGO, proc_numa_maps_operations), 2939 #endif 2940 REG("mem", S_IRUSR|S_IWUSR, proc_mem_operations), 2941 LNK("cwd", proc_cwd_link), 2942 LNK("root", proc_root_link), 2943 LNK("exe", proc_exe_link), 2944 REG("mounts", S_IRUGO, proc_mounts_operations), 2945 REG("mountinfo", S_IRUGO, proc_mountinfo_operations), 2946 #ifdef CONFIG_PROC_PAGE_MONITOR 2947 REG("clear_refs", S_IWUSR, proc_clear_refs_operations), 2948 REG("smaps", S_IRUGO, proc_smaps_operations), 2949 REG("pagemap", S_IRUSR, proc_pagemap_operations), 2950 #endif 2951 #ifdef CONFIG_SECURITY 2952 DIR("attr", S_IRUGO|S_IXUGO, proc_attr_dir_inode_operations, proc_attr_dir_operations), 2953 #endif 2954 #ifdef CONFIG_KALLSYMS 2955 INF("wchan", S_IRUGO, proc_pid_wchan), 2956 #endif 2957 #ifdef CONFIG_STACKTRACE 2958 ONE("stack", S_IRUSR, proc_pid_stack), 2959 #endif 2960 #ifdef CONFIG_SCHEDSTATS 2961 INF("schedstat", S_IRUGO, proc_pid_schedstat), 2962 #endif 2963 #ifdef CONFIG_LATENCYTOP 2964 REG("latency", S_IRUGO, proc_lstats_operations), 2965 #endif 2966 #ifdef CONFIG_PROC_PID_CPUSET 2967 REG("cpuset", S_IRUGO, proc_cpuset_operations), 2968 #endif 2969 #ifdef CONFIG_CGROUPS 2970 REG("cgroup", S_IRUGO, proc_cgroup_operations), 2971 #endif 2972 INF("oom_score", S_IRUGO, proc_oom_score), 2973 REG("oom_adj", S_IRUGO|S_IWUSR, proc_oom_adjust_operations), 2974 #ifdef CONFIG_AUDITSYSCALL 2975 REG("loginuid", S_IWUSR|S_IRUGO, proc_loginuid_operations), 2976 REG("sessionid", S_IRUSR, proc_sessionid_operations), 2977 #endif 2978 #ifdef CONFIG_FAULT_INJECTION 2979 REG("make-it-fail", S_IRUGO|S_IWUSR, proc_fault_inject_operations), 2980 #endif 2981 #ifdef CONFIG_TASK_IO_ACCOUNTING 2982 INF("io", S_IRUGO, proc_tid_io_accounting), 2983 #endif 2984 }; 2985 2986 static int proc_tid_base_readdir(struct file * filp, 2987 void * dirent, filldir_t filldir) 2988 { 2989 return proc_pident_readdir(filp,dirent,filldir, 2990 tid_base_stuff,ARRAY_SIZE(tid_base_stuff)); 2991 } 2992 2993 static struct dentry *proc_tid_base_lookup(struct inode *dir, struct dentry *dentry, struct nameidata *nd){ 2994 return proc_pident_lookup(dir, dentry, 2995 tid_base_stuff, ARRAY_SIZE(tid_base_stuff)); 2996 } 2997 2998 static const struct file_operations proc_tid_base_operations = { 2999 .read = generic_read_dir, 3000 .readdir = proc_tid_base_readdir, 3001 }; 3002 3003 static const struct inode_operations proc_tid_base_inode_operations = { 3004 .lookup = proc_tid_base_lookup, 3005 .getattr = pid_getattr, 3006 .setattr = proc_setattr, 3007 }; 3008 3009 static struct dentry *proc_task_instantiate(struct inode *dir, 3010 struct dentry *dentry, struct task_struct *task, const void *ptr) 3011 { 3012 struct dentry *error = ERR_PTR(-ENOENT); 3013 struct inode *inode; 3014 inode = proc_pid_make_inode(dir->i_sb, task); 3015 3016 if (!inode) 3017 goto out; 3018 inode->i_mode = S_IFDIR|S_IRUGO|S_IXUGO; 3019 inode->i_op = &proc_tid_base_inode_operations; 3020 inode->i_fop = &proc_tid_base_operations; 3021 inode->i_flags|=S_IMMUTABLE; 3022 3023 inode->i_nlink = 2 + pid_entry_count_dirs(tid_base_stuff, 3024 ARRAY_SIZE(tid_base_stuff)); 3025 3026 dentry->d_op = &pid_dentry_operations; 3027 3028 d_add(dentry, inode); 3029 /* Close the race of the process dying before we return the dentry */ 3030 if (pid_revalidate(dentry, NULL)) 3031 error = NULL; 3032 out: 3033 return error; 3034 } 3035 3036 static struct dentry *proc_task_lookup(struct inode *dir, struct dentry * dentry, struct nameidata *nd) 3037 { 3038 struct dentry *result = ERR_PTR(-ENOENT); 3039 struct task_struct *task; 3040 struct task_struct *leader = get_proc_task(dir); 3041 unsigned tid; 3042 struct pid_namespace *ns; 3043 3044 if (!leader) 3045 goto out_no_task; 3046 3047 tid = name_to_int(dentry); 3048 if (tid == ~0U) 3049 goto out; 3050 3051 ns = dentry->d_sb->s_fs_info; 3052 rcu_read_lock(); 3053 task = find_task_by_pid_ns(tid, ns); 3054 if (task) 3055 get_task_struct(task); 3056 rcu_read_unlock(); 3057 if (!task) 3058 goto out; 3059 if (!same_thread_group(leader, task)) 3060 goto out_drop_task; 3061 3062 result = proc_task_instantiate(dir, dentry, task, NULL); 3063 out_drop_task: 3064 put_task_struct(task); 3065 out: 3066 put_task_struct(leader); 3067 out_no_task: 3068 return result; 3069 } 3070 3071 /* 3072 * Find the first tid of a thread group to return to user space. 3073 * 3074 * Usually this is just the thread group leader, but if the users 3075 * buffer was too small or there was a seek into the middle of the 3076 * directory we have more work todo. 3077 * 3078 * In the case of a short read we start with find_task_by_pid. 3079 * 3080 * In the case of a seek we start with the leader and walk nr 3081 * threads past it. 3082 */ 3083 static struct task_struct *first_tid(struct task_struct *leader, 3084 int tid, int nr, struct pid_namespace *ns) 3085 { 3086 struct task_struct *pos; 3087 3088 rcu_read_lock(); 3089 /* Attempt to start with the pid of a thread */ 3090 if (tid && (nr > 0)) { 3091 pos = find_task_by_pid_ns(tid, ns); 3092 if (pos && (pos->group_leader == leader)) 3093 goto found; 3094 } 3095 3096 /* If nr exceeds the number of threads there is nothing todo */ 3097 pos = NULL; 3098 if (nr && nr >= get_nr_threads(leader)) 3099 goto out; 3100 3101 /* If we haven't found our starting place yet start 3102 * with the leader and walk nr threads forward. 3103 */ 3104 for (pos = leader; nr > 0; --nr) { 3105 pos = next_thread(pos); 3106 if (pos == leader) { 3107 pos = NULL; 3108 goto out; 3109 } 3110 } 3111 found: 3112 get_task_struct(pos); 3113 out: 3114 rcu_read_unlock(); 3115 return pos; 3116 } 3117 3118 /* 3119 * Find the next thread in the thread list. 3120 * Return NULL if there is an error or no next thread. 3121 * 3122 * The reference to the input task_struct is released. 3123 */ 3124 static struct task_struct *next_tid(struct task_struct *start) 3125 { 3126 struct task_struct *pos = NULL; 3127 rcu_read_lock(); 3128 if (pid_alive(start)) { 3129 pos = next_thread(start); 3130 if (thread_group_leader(pos)) 3131 pos = NULL; 3132 else 3133 get_task_struct(pos); 3134 } 3135 rcu_read_unlock(); 3136 put_task_struct(start); 3137 return pos; 3138 } 3139 3140 static int proc_task_fill_cache(struct file *filp, void *dirent, filldir_t filldir, 3141 struct task_struct *task, int tid) 3142 { 3143 char name[PROC_NUMBUF]; 3144 int len = snprintf(name, sizeof(name), "%d", tid); 3145 return proc_fill_cache(filp, dirent, filldir, name, len, 3146 proc_task_instantiate, task, NULL); 3147 } 3148 3149 /* for the /proc/TGID/task/ directories */ 3150 static int proc_task_readdir(struct file * filp, void * dirent, filldir_t filldir) 3151 { 3152 struct dentry *dentry = filp->f_path.dentry; 3153 struct inode *inode = dentry->d_inode; 3154 struct task_struct *leader = NULL; 3155 struct task_struct *task; 3156 int retval = -ENOENT; 3157 ino_t ino; 3158 int tid; 3159 struct pid_namespace *ns; 3160 3161 task = get_proc_task(inode); 3162 if (!task) 3163 goto out_no_task; 3164 rcu_read_lock(); 3165 if (pid_alive(task)) { 3166 leader = task->group_leader; 3167 get_task_struct(leader); 3168 } 3169 rcu_read_unlock(); 3170 put_task_struct(task); 3171 if (!leader) 3172 goto out_no_task; 3173 retval = 0; 3174 3175 switch ((unsigned long)filp->f_pos) { 3176 case 0: 3177 ino = inode->i_ino; 3178 if (filldir(dirent, ".", 1, filp->f_pos, ino, DT_DIR) < 0) 3179 goto out; 3180 filp->f_pos++; 3181 /* fall through */ 3182 case 1: 3183 ino = parent_ino(dentry); 3184 if (filldir(dirent, "..", 2, filp->f_pos, ino, DT_DIR) < 0) 3185 goto out; 3186 filp->f_pos++; 3187 /* fall through */ 3188 } 3189 3190 /* f_version caches the tgid value that the last readdir call couldn't 3191 * return. lseek aka telldir automagically resets f_version to 0. 3192 */ 3193 ns = filp->f_dentry->d_sb->s_fs_info; 3194 tid = (int)filp->f_version; 3195 filp->f_version = 0; 3196 for (task = first_tid(leader, tid, filp->f_pos - 2, ns); 3197 task; 3198 task = next_tid(task), filp->f_pos++) { 3199 tid = task_pid_nr_ns(task, ns); 3200 if (proc_task_fill_cache(filp, dirent, filldir, task, tid) < 0) { 3201 /* returning this tgid failed, save it as the first 3202 * pid for the next readir call */ 3203 filp->f_version = (u64)tid; 3204 put_task_struct(task); 3205 break; 3206 } 3207 } 3208 out: 3209 put_task_struct(leader); 3210 out_no_task: 3211 return retval; 3212 } 3213 3214 static int proc_task_getattr(struct vfsmount *mnt, struct dentry *dentry, struct kstat *stat) 3215 { 3216 struct inode *inode = dentry->d_inode; 3217 struct task_struct *p = get_proc_task(inode); 3218 generic_fillattr(inode, stat); 3219 3220 if (p) { 3221 stat->nlink += get_nr_threads(p); 3222 put_task_struct(p); 3223 } 3224 3225 return 0; 3226 } 3227 3228 static const struct inode_operations proc_task_inode_operations = { 3229 .lookup = proc_task_lookup, 3230 .getattr = proc_task_getattr, 3231 .setattr = proc_setattr, 3232 }; 3233 3234 static const struct file_operations proc_task_operations = { 3235 .read = generic_read_dir, 3236 .readdir = proc_task_readdir, 3237 }; 3238