xref: /linux/fs/proc/base.c (revision a429638cac1e5c656818a45aaff78df7b743004e)
1 /*
2  *  linux/fs/proc/base.c
3  *
4  *  Copyright (C) 1991, 1992 Linus Torvalds
5  *
6  *  proc base directory handling functions
7  *
8  *  1999, Al Viro. Rewritten. Now it covers the whole per-process part.
9  *  Instead of using magical inumbers to determine the kind of object
10  *  we allocate and fill in-core inodes upon lookup. They don't even
11  *  go into icache. We cache the reference to task_struct upon lookup too.
12  *  Eventually it should become a filesystem in its own. We don't use the
13  *  rest of procfs anymore.
14  *
15  *
16  *  Changelog:
17  *  17-Jan-2005
18  *  Allan Bezerra
19  *  Bruna Moreira <bruna.moreira@indt.org.br>
20  *  Edjard Mota <edjard.mota@indt.org.br>
21  *  Ilias Biris <ilias.biris@indt.org.br>
22  *  Mauricio Lin <mauricio.lin@indt.org.br>
23  *
24  *  Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT
25  *
26  *  A new process specific entry (smaps) included in /proc. It shows the
27  *  size of rss for each memory area. The maps entry lacks information
28  *  about physical memory size (rss) for each mapped file, i.e.,
29  *  rss information for executables and library files.
30  *  This additional information is useful for any tools that need to know
31  *  about physical memory consumption for a process specific library.
32  *
33  *  Changelog:
34  *  21-Feb-2005
35  *  Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT
36  *  Pud inclusion in the page table walking.
37  *
38  *  ChangeLog:
39  *  10-Mar-2005
40  *  10LE Instituto Nokia de Tecnologia - INdT:
41  *  A better way to walks through the page table as suggested by Hugh Dickins.
42  *
43  *  Simo Piiroinen <simo.piiroinen@nokia.com>:
44  *  Smaps information related to shared, private, clean and dirty pages.
45  *
46  *  Paul Mundt <paul.mundt@nokia.com>:
47  *  Overall revision about smaps.
48  */
49 
50 #include <asm/uaccess.h>
51 
52 #include <linux/errno.h>
53 #include <linux/time.h>
54 #include <linux/proc_fs.h>
55 #include <linux/stat.h>
56 #include <linux/task_io_accounting_ops.h>
57 #include <linux/init.h>
58 #include <linux/capability.h>
59 #include <linux/file.h>
60 #include <linux/fdtable.h>
61 #include <linux/string.h>
62 #include <linux/seq_file.h>
63 #include <linux/namei.h>
64 #include <linux/mnt_namespace.h>
65 #include <linux/mm.h>
66 #include <linux/swap.h>
67 #include <linux/rcupdate.h>
68 #include <linux/kallsyms.h>
69 #include <linux/stacktrace.h>
70 #include <linux/resource.h>
71 #include <linux/module.h>
72 #include <linux/mount.h>
73 #include <linux/security.h>
74 #include <linux/ptrace.h>
75 #include <linux/tracehook.h>
76 #include <linux/cgroup.h>
77 #include <linux/cpuset.h>
78 #include <linux/audit.h>
79 #include <linux/poll.h>
80 #include <linux/nsproxy.h>
81 #include <linux/oom.h>
82 #include <linux/elf.h>
83 #include <linux/pid_namespace.h>
84 #include <linux/fs_struct.h>
85 #include <linux/slab.h>
86 #include <linux/flex_array.h>
87 #ifdef CONFIG_HARDWALL
88 #include <asm/hardwall.h>
89 #endif
90 #include <trace/events/oom.h>
91 #include "internal.h"
92 
93 /* NOTE:
94  *	Implementing inode permission operations in /proc is almost
95  *	certainly an error.  Permission checks need to happen during
96  *	each system call not at open time.  The reason is that most of
97  *	what we wish to check for permissions in /proc varies at runtime.
98  *
99  *	The classic example of a problem is opening file descriptors
100  *	in /proc for a task before it execs a suid executable.
101  */
102 
103 struct pid_entry {
104 	char *name;
105 	int len;
106 	umode_t mode;
107 	const struct inode_operations *iop;
108 	const struct file_operations *fop;
109 	union proc_op op;
110 };
111 
112 #define NOD(NAME, MODE, IOP, FOP, OP) {			\
113 	.name = (NAME),					\
114 	.len  = sizeof(NAME) - 1,			\
115 	.mode = MODE,					\
116 	.iop  = IOP,					\
117 	.fop  = FOP,					\
118 	.op   = OP,					\
119 }
120 
121 #define DIR(NAME, MODE, iops, fops)	\
122 	NOD(NAME, (S_IFDIR|(MODE)), &iops, &fops, {} )
123 #define LNK(NAME, get_link)					\
124 	NOD(NAME, (S_IFLNK|S_IRWXUGO),				\
125 		&proc_pid_link_inode_operations, NULL,		\
126 		{ .proc_get_link = get_link } )
127 #define REG(NAME, MODE, fops)				\
128 	NOD(NAME, (S_IFREG|(MODE)), NULL, &fops, {})
129 #define INF(NAME, MODE, read)				\
130 	NOD(NAME, (S_IFREG|(MODE)), 			\
131 		NULL, &proc_info_file_operations,	\
132 		{ .proc_read = read } )
133 #define ONE(NAME, MODE, show)				\
134 	NOD(NAME, (S_IFREG|(MODE)), 			\
135 		NULL, &proc_single_file_operations,	\
136 		{ .proc_show = show } )
137 
138 static int proc_fd_permission(struct inode *inode, int mask);
139 
140 /*
141  * Count the number of hardlinks for the pid_entry table, excluding the .
142  * and .. links.
143  */
144 static unsigned int pid_entry_count_dirs(const struct pid_entry *entries,
145 	unsigned int n)
146 {
147 	unsigned int i;
148 	unsigned int count;
149 
150 	count = 0;
151 	for (i = 0; i < n; ++i) {
152 		if (S_ISDIR(entries[i].mode))
153 			++count;
154 	}
155 
156 	return count;
157 }
158 
159 static int get_task_root(struct task_struct *task, struct path *root)
160 {
161 	int result = -ENOENT;
162 
163 	task_lock(task);
164 	if (task->fs) {
165 		get_fs_root(task->fs, root);
166 		result = 0;
167 	}
168 	task_unlock(task);
169 	return result;
170 }
171 
172 static int proc_cwd_link(struct dentry *dentry, struct path *path)
173 {
174 	struct task_struct *task = get_proc_task(dentry->d_inode);
175 	int result = -ENOENT;
176 
177 	if (task) {
178 		task_lock(task);
179 		if (task->fs) {
180 			get_fs_pwd(task->fs, path);
181 			result = 0;
182 		}
183 		task_unlock(task);
184 		put_task_struct(task);
185 	}
186 	return result;
187 }
188 
189 static int proc_root_link(struct dentry *dentry, struct path *path)
190 {
191 	struct task_struct *task = get_proc_task(dentry->d_inode);
192 	int result = -ENOENT;
193 
194 	if (task) {
195 		result = get_task_root(task, path);
196 		put_task_struct(task);
197 	}
198 	return result;
199 }
200 
201 static struct mm_struct *__check_mem_permission(struct task_struct *task)
202 {
203 	struct mm_struct *mm;
204 
205 	mm = get_task_mm(task);
206 	if (!mm)
207 		return ERR_PTR(-EINVAL);
208 
209 	/*
210 	 * A task can always look at itself, in case it chooses
211 	 * to use system calls instead of load instructions.
212 	 */
213 	if (task == current)
214 		return mm;
215 
216 	/*
217 	 * If current is actively ptrace'ing, and would also be
218 	 * permitted to freshly attach with ptrace now, permit it.
219 	 */
220 	if (task_is_stopped_or_traced(task)) {
221 		int match;
222 		rcu_read_lock();
223 		match = (ptrace_parent(task) == current);
224 		rcu_read_unlock();
225 		if (match && ptrace_may_access(task, PTRACE_MODE_ATTACH))
226 			return mm;
227 	}
228 
229 	/*
230 	 * No one else is allowed.
231 	 */
232 	mmput(mm);
233 	return ERR_PTR(-EPERM);
234 }
235 
236 /*
237  * If current may access user memory in @task return a reference to the
238  * corresponding mm, otherwise ERR_PTR.
239  */
240 static struct mm_struct *check_mem_permission(struct task_struct *task)
241 {
242 	struct mm_struct *mm;
243 	int err;
244 
245 	/*
246 	 * Avoid racing if task exec's as we might get a new mm but validate
247 	 * against old credentials.
248 	 */
249 	err = mutex_lock_killable(&task->signal->cred_guard_mutex);
250 	if (err)
251 		return ERR_PTR(err);
252 
253 	mm = __check_mem_permission(task);
254 	mutex_unlock(&task->signal->cred_guard_mutex);
255 
256 	return mm;
257 }
258 
259 struct mm_struct *mm_for_maps(struct task_struct *task)
260 {
261 	struct mm_struct *mm;
262 	int err;
263 
264 	err =  mutex_lock_killable(&task->signal->cred_guard_mutex);
265 	if (err)
266 		return ERR_PTR(err);
267 
268 	mm = get_task_mm(task);
269 	if (mm && mm != current->mm &&
270 			!ptrace_may_access(task, PTRACE_MODE_READ)) {
271 		mmput(mm);
272 		mm = ERR_PTR(-EACCES);
273 	}
274 	mutex_unlock(&task->signal->cred_guard_mutex);
275 
276 	return mm;
277 }
278 
279 static int proc_pid_cmdline(struct task_struct *task, char * buffer)
280 {
281 	int res = 0;
282 	unsigned int len;
283 	struct mm_struct *mm = get_task_mm(task);
284 	if (!mm)
285 		goto out;
286 	if (!mm->arg_end)
287 		goto out_mm;	/* Shh! No looking before we're done */
288 
289  	len = mm->arg_end - mm->arg_start;
290 
291 	if (len > PAGE_SIZE)
292 		len = PAGE_SIZE;
293 
294 	res = access_process_vm(task, mm->arg_start, buffer, len, 0);
295 
296 	// If the nul at the end of args has been overwritten, then
297 	// assume application is using setproctitle(3).
298 	if (res > 0 && buffer[res-1] != '\0' && len < PAGE_SIZE) {
299 		len = strnlen(buffer, res);
300 		if (len < res) {
301 		    res = len;
302 		} else {
303 			len = mm->env_end - mm->env_start;
304 			if (len > PAGE_SIZE - res)
305 				len = PAGE_SIZE - res;
306 			res += access_process_vm(task, mm->env_start, buffer+res, len, 0);
307 			res = strnlen(buffer, res);
308 		}
309 	}
310 out_mm:
311 	mmput(mm);
312 out:
313 	return res;
314 }
315 
316 static int proc_pid_auxv(struct task_struct *task, char *buffer)
317 {
318 	struct mm_struct *mm = mm_for_maps(task);
319 	int res = PTR_ERR(mm);
320 	if (mm && !IS_ERR(mm)) {
321 		unsigned int nwords = 0;
322 		do {
323 			nwords += 2;
324 		} while (mm->saved_auxv[nwords - 2] != 0); /* AT_NULL */
325 		res = nwords * sizeof(mm->saved_auxv[0]);
326 		if (res > PAGE_SIZE)
327 			res = PAGE_SIZE;
328 		memcpy(buffer, mm->saved_auxv, res);
329 		mmput(mm);
330 	}
331 	return res;
332 }
333 
334 
335 #ifdef CONFIG_KALLSYMS
336 /*
337  * Provides a wchan file via kallsyms in a proper one-value-per-file format.
338  * Returns the resolved symbol.  If that fails, simply return the address.
339  */
340 static int proc_pid_wchan(struct task_struct *task, char *buffer)
341 {
342 	unsigned long wchan;
343 	char symname[KSYM_NAME_LEN];
344 
345 	wchan = get_wchan(task);
346 
347 	if (lookup_symbol_name(wchan, symname) < 0)
348 		if (!ptrace_may_access(task, PTRACE_MODE_READ))
349 			return 0;
350 		else
351 			return sprintf(buffer, "%lu", wchan);
352 	else
353 		return sprintf(buffer, "%s", symname);
354 }
355 #endif /* CONFIG_KALLSYMS */
356 
357 static int lock_trace(struct task_struct *task)
358 {
359 	int err = mutex_lock_killable(&task->signal->cred_guard_mutex);
360 	if (err)
361 		return err;
362 	if (!ptrace_may_access(task, PTRACE_MODE_ATTACH)) {
363 		mutex_unlock(&task->signal->cred_guard_mutex);
364 		return -EPERM;
365 	}
366 	return 0;
367 }
368 
369 static void unlock_trace(struct task_struct *task)
370 {
371 	mutex_unlock(&task->signal->cred_guard_mutex);
372 }
373 
374 #ifdef CONFIG_STACKTRACE
375 
376 #define MAX_STACK_TRACE_DEPTH	64
377 
378 static int proc_pid_stack(struct seq_file *m, struct pid_namespace *ns,
379 			  struct pid *pid, struct task_struct *task)
380 {
381 	struct stack_trace trace;
382 	unsigned long *entries;
383 	int err;
384 	int i;
385 
386 	entries = kmalloc(MAX_STACK_TRACE_DEPTH * sizeof(*entries), GFP_KERNEL);
387 	if (!entries)
388 		return -ENOMEM;
389 
390 	trace.nr_entries	= 0;
391 	trace.max_entries	= MAX_STACK_TRACE_DEPTH;
392 	trace.entries		= entries;
393 	trace.skip		= 0;
394 
395 	err = lock_trace(task);
396 	if (!err) {
397 		save_stack_trace_tsk(task, &trace);
398 
399 		for (i = 0; i < trace.nr_entries; i++) {
400 			seq_printf(m, "[<%pK>] %pS\n",
401 				   (void *)entries[i], (void *)entries[i]);
402 		}
403 		unlock_trace(task);
404 	}
405 	kfree(entries);
406 
407 	return err;
408 }
409 #endif
410 
411 #ifdef CONFIG_SCHEDSTATS
412 /*
413  * Provides /proc/PID/schedstat
414  */
415 static int proc_pid_schedstat(struct task_struct *task, char *buffer)
416 {
417 	return sprintf(buffer, "%llu %llu %lu\n",
418 			(unsigned long long)task->se.sum_exec_runtime,
419 			(unsigned long long)task->sched_info.run_delay,
420 			task->sched_info.pcount);
421 }
422 #endif
423 
424 #ifdef CONFIG_LATENCYTOP
425 static int lstats_show_proc(struct seq_file *m, void *v)
426 {
427 	int i;
428 	struct inode *inode = m->private;
429 	struct task_struct *task = get_proc_task(inode);
430 
431 	if (!task)
432 		return -ESRCH;
433 	seq_puts(m, "Latency Top version : v0.1\n");
434 	for (i = 0; i < 32; i++) {
435 		struct latency_record *lr = &task->latency_record[i];
436 		if (lr->backtrace[0]) {
437 			int q;
438 			seq_printf(m, "%i %li %li",
439 				   lr->count, lr->time, lr->max);
440 			for (q = 0; q < LT_BACKTRACEDEPTH; q++) {
441 				unsigned long bt = lr->backtrace[q];
442 				if (!bt)
443 					break;
444 				if (bt == ULONG_MAX)
445 					break;
446 				seq_printf(m, " %ps", (void *)bt);
447 			}
448 			seq_putc(m, '\n');
449 		}
450 
451 	}
452 	put_task_struct(task);
453 	return 0;
454 }
455 
456 static int lstats_open(struct inode *inode, struct file *file)
457 {
458 	return single_open(file, lstats_show_proc, inode);
459 }
460 
461 static ssize_t lstats_write(struct file *file, const char __user *buf,
462 			    size_t count, loff_t *offs)
463 {
464 	struct task_struct *task = get_proc_task(file->f_dentry->d_inode);
465 
466 	if (!task)
467 		return -ESRCH;
468 	clear_all_latency_tracing(task);
469 	put_task_struct(task);
470 
471 	return count;
472 }
473 
474 static const struct file_operations proc_lstats_operations = {
475 	.open		= lstats_open,
476 	.read		= seq_read,
477 	.write		= lstats_write,
478 	.llseek		= seq_lseek,
479 	.release	= single_release,
480 };
481 
482 #endif
483 
484 static int proc_oom_score(struct task_struct *task, char *buffer)
485 {
486 	unsigned long points = 0;
487 
488 	read_lock(&tasklist_lock);
489 	if (pid_alive(task))
490 		points = oom_badness(task, NULL, NULL,
491 					totalram_pages + total_swap_pages);
492 	read_unlock(&tasklist_lock);
493 	return sprintf(buffer, "%lu\n", points);
494 }
495 
496 struct limit_names {
497 	char *name;
498 	char *unit;
499 };
500 
501 static const struct limit_names lnames[RLIM_NLIMITS] = {
502 	[RLIMIT_CPU] = {"Max cpu time", "seconds"},
503 	[RLIMIT_FSIZE] = {"Max file size", "bytes"},
504 	[RLIMIT_DATA] = {"Max data size", "bytes"},
505 	[RLIMIT_STACK] = {"Max stack size", "bytes"},
506 	[RLIMIT_CORE] = {"Max core file size", "bytes"},
507 	[RLIMIT_RSS] = {"Max resident set", "bytes"},
508 	[RLIMIT_NPROC] = {"Max processes", "processes"},
509 	[RLIMIT_NOFILE] = {"Max open files", "files"},
510 	[RLIMIT_MEMLOCK] = {"Max locked memory", "bytes"},
511 	[RLIMIT_AS] = {"Max address space", "bytes"},
512 	[RLIMIT_LOCKS] = {"Max file locks", "locks"},
513 	[RLIMIT_SIGPENDING] = {"Max pending signals", "signals"},
514 	[RLIMIT_MSGQUEUE] = {"Max msgqueue size", "bytes"},
515 	[RLIMIT_NICE] = {"Max nice priority", NULL},
516 	[RLIMIT_RTPRIO] = {"Max realtime priority", NULL},
517 	[RLIMIT_RTTIME] = {"Max realtime timeout", "us"},
518 };
519 
520 /* Display limits for a process */
521 static int proc_pid_limits(struct task_struct *task, char *buffer)
522 {
523 	unsigned int i;
524 	int count = 0;
525 	unsigned long flags;
526 	char *bufptr = buffer;
527 
528 	struct rlimit rlim[RLIM_NLIMITS];
529 
530 	if (!lock_task_sighand(task, &flags))
531 		return 0;
532 	memcpy(rlim, task->signal->rlim, sizeof(struct rlimit) * RLIM_NLIMITS);
533 	unlock_task_sighand(task, &flags);
534 
535 	/*
536 	 * print the file header
537 	 */
538 	count += sprintf(&bufptr[count], "%-25s %-20s %-20s %-10s\n",
539 			"Limit", "Soft Limit", "Hard Limit", "Units");
540 
541 	for (i = 0; i < RLIM_NLIMITS; i++) {
542 		if (rlim[i].rlim_cur == RLIM_INFINITY)
543 			count += sprintf(&bufptr[count], "%-25s %-20s ",
544 					 lnames[i].name, "unlimited");
545 		else
546 			count += sprintf(&bufptr[count], "%-25s %-20lu ",
547 					 lnames[i].name, rlim[i].rlim_cur);
548 
549 		if (rlim[i].rlim_max == RLIM_INFINITY)
550 			count += sprintf(&bufptr[count], "%-20s ", "unlimited");
551 		else
552 			count += sprintf(&bufptr[count], "%-20lu ",
553 					 rlim[i].rlim_max);
554 
555 		if (lnames[i].unit)
556 			count += sprintf(&bufptr[count], "%-10s\n",
557 					 lnames[i].unit);
558 		else
559 			count += sprintf(&bufptr[count], "\n");
560 	}
561 
562 	return count;
563 }
564 
565 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK
566 static int proc_pid_syscall(struct task_struct *task, char *buffer)
567 {
568 	long nr;
569 	unsigned long args[6], sp, pc;
570 	int res = lock_trace(task);
571 	if (res)
572 		return res;
573 
574 	if (task_current_syscall(task, &nr, args, 6, &sp, &pc))
575 		res = sprintf(buffer, "running\n");
576 	else if (nr < 0)
577 		res = sprintf(buffer, "%ld 0x%lx 0x%lx\n", nr, sp, pc);
578 	else
579 		res = sprintf(buffer,
580 		       "%ld 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx\n",
581 		       nr,
582 		       args[0], args[1], args[2], args[3], args[4], args[5],
583 		       sp, pc);
584 	unlock_trace(task);
585 	return res;
586 }
587 #endif /* CONFIG_HAVE_ARCH_TRACEHOOK */
588 
589 /************************************************************************/
590 /*                       Here the fs part begins                        */
591 /************************************************************************/
592 
593 /* permission checks */
594 static int proc_fd_access_allowed(struct inode *inode)
595 {
596 	struct task_struct *task;
597 	int allowed = 0;
598 	/* Allow access to a task's file descriptors if it is us or we
599 	 * may use ptrace attach to the process and find out that
600 	 * information.
601 	 */
602 	task = get_proc_task(inode);
603 	if (task) {
604 		allowed = ptrace_may_access(task, PTRACE_MODE_READ);
605 		put_task_struct(task);
606 	}
607 	return allowed;
608 }
609 
610 int proc_setattr(struct dentry *dentry, struct iattr *attr)
611 {
612 	int error;
613 	struct inode *inode = dentry->d_inode;
614 
615 	if (attr->ia_valid & ATTR_MODE)
616 		return -EPERM;
617 
618 	error = inode_change_ok(inode, attr);
619 	if (error)
620 		return error;
621 
622 	if ((attr->ia_valid & ATTR_SIZE) &&
623 	    attr->ia_size != i_size_read(inode)) {
624 		error = vmtruncate(inode, attr->ia_size);
625 		if (error)
626 			return error;
627 	}
628 
629 	setattr_copy(inode, attr);
630 	mark_inode_dirty(inode);
631 	return 0;
632 }
633 
634 /*
635  * May current process learn task's sched/cmdline info (for hide_pid_min=1)
636  * or euid/egid (for hide_pid_min=2)?
637  */
638 static bool has_pid_permissions(struct pid_namespace *pid,
639 				 struct task_struct *task,
640 				 int hide_pid_min)
641 {
642 	if (pid->hide_pid < hide_pid_min)
643 		return true;
644 	if (in_group_p(pid->pid_gid))
645 		return true;
646 	return ptrace_may_access(task, PTRACE_MODE_READ);
647 }
648 
649 
650 static int proc_pid_permission(struct inode *inode, int mask)
651 {
652 	struct pid_namespace *pid = inode->i_sb->s_fs_info;
653 	struct task_struct *task;
654 	bool has_perms;
655 
656 	task = get_proc_task(inode);
657 	has_perms = has_pid_permissions(pid, task, 1);
658 	put_task_struct(task);
659 
660 	if (!has_perms) {
661 		if (pid->hide_pid == 2) {
662 			/*
663 			 * Let's make getdents(), stat(), and open()
664 			 * consistent with each other.  If a process
665 			 * may not stat() a file, it shouldn't be seen
666 			 * in procfs at all.
667 			 */
668 			return -ENOENT;
669 		}
670 
671 		return -EPERM;
672 	}
673 	return generic_permission(inode, mask);
674 }
675 
676 
677 
678 static const struct inode_operations proc_def_inode_operations = {
679 	.setattr	= proc_setattr,
680 };
681 
682 #define PROC_BLOCK_SIZE	(3*1024)		/* 4K page size but our output routines use some slack for overruns */
683 
684 static ssize_t proc_info_read(struct file * file, char __user * buf,
685 			  size_t count, loff_t *ppos)
686 {
687 	struct inode * inode = file->f_path.dentry->d_inode;
688 	unsigned long page;
689 	ssize_t length;
690 	struct task_struct *task = get_proc_task(inode);
691 
692 	length = -ESRCH;
693 	if (!task)
694 		goto out_no_task;
695 
696 	if (count > PROC_BLOCK_SIZE)
697 		count = PROC_BLOCK_SIZE;
698 
699 	length = -ENOMEM;
700 	if (!(page = __get_free_page(GFP_TEMPORARY)))
701 		goto out;
702 
703 	length = PROC_I(inode)->op.proc_read(task, (char*)page);
704 
705 	if (length >= 0)
706 		length = simple_read_from_buffer(buf, count, ppos, (char *)page, length);
707 	free_page(page);
708 out:
709 	put_task_struct(task);
710 out_no_task:
711 	return length;
712 }
713 
714 static const struct file_operations proc_info_file_operations = {
715 	.read		= proc_info_read,
716 	.llseek		= generic_file_llseek,
717 };
718 
719 static int proc_single_show(struct seq_file *m, void *v)
720 {
721 	struct inode *inode = m->private;
722 	struct pid_namespace *ns;
723 	struct pid *pid;
724 	struct task_struct *task;
725 	int ret;
726 
727 	ns = inode->i_sb->s_fs_info;
728 	pid = proc_pid(inode);
729 	task = get_pid_task(pid, PIDTYPE_PID);
730 	if (!task)
731 		return -ESRCH;
732 
733 	ret = PROC_I(inode)->op.proc_show(m, ns, pid, task);
734 
735 	put_task_struct(task);
736 	return ret;
737 }
738 
739 static int proc_single_open(struct inode *inode, struct file *filp)
740 {
741 	return single_open(filp, proc_single_show, inode);
742 }
743 
744 static const struct file_operations proc_single_file_operations = {
745 	.open		= proc_single_open,
746 	.read		= seq_read,
747 	.llseek		= seq_lseek,
748 	.release	= single_release,
749 };
750 
751 static int mem_open(struct inode* inode, struct file* file)
752 {
753 	file->private_data = (void*)((long)current->self_exec_id);
754 	/* OK to pass negative loff_t, we can catch out-of-range */
755 	file->f_mode |= FMODE_UNSIGNED_OFFSET;
756 	return 0;
757 }
758 
759 static ssize_t mem_read(struct file * file, char __user * buf,
760 			size_t count, loff_t *ppos)
761 {
762 	struct task_struct *task = get_proc_task(file->f_path.dentry->d_inode);
763 	char *page;
764 	unsigned long src = *ppos;
765 	int ret = -ESRCH;
766 	struct mm_struct *mm;
767 
768 	if (!task)
769 		goto out_no_task;
770 
771 	ret = -ENOMEM;
772 	page = (char *)__get_free_page(GFP_TEMPORARY);
773 	if (!page)
774 		goto out;
775 
776 	mm = check_mem_permission(task);
777 	ret = PTR_ERR(mm);
778 	if (IS_ERR(mm))
779 		goto out_free;
780 
781 	ret = -EIO;
782 
783 	if (file->private_data != (void*)((long)current->self_exec_id))
784 		goto out_put;
785 
786 	ret = 0;
787 
788 	while (count > 0) {
789 		int this_len, retval;
790 
791 		this_len = (count > PAGE_SIZE) ? PAGE_SIZE : count;
792 		retval = access_remote_vm(mm, src, page, this_len, 0);
793 		if (!retval) {
794 			if (!ret)
795 				ret = -EIO;
796 			break;
797 		}
798 
799 		if (copy_to_user(buf, page, retval)) {
800 			ret = -EFAULT;
801 			break;
802 		}
803 
804 		ret += retval;
805 		src += retval;
806 		buf += retval;
807 		count -= retval;
808 	}
809 	*ppos = src;
810 
811 out_put:
812 	mmput(mm);
813 out_free:
814 	free_page((unsigned long) page);
815 out:
816 	put_task_struct(task);
817 out_no_task:
818 	return ret;
819 }
820 
821 static ssize_t mem_write(struct file * file, const char __user *buf,
822 			 size_t count, loff_t *ppos)
823 {
824 	int copied;
825 	char *page;
826 	struct task_struct *task = get_proc_task(file->f_path.dentry->d_inode);
827 	unsigned long dst = *ppos;
828 	struct mm_struct *mm;
829 
830 	copied = -ESRCH;
831 	if (!task)
832 		goto out_no_task;
833 
834 	copied = -ENOMEM;
835 	page = (char *)__get_free_page(GFP_TEMPORARY);
836 	if (!page)
837 		goto out_task;
838 
839 	mm = check_mem_permission(task);
840 	copied = PTR_ERR(mm);
841 	if (IS_ERR(mm))
842 		goto out_free;
843 
844 	copied = -EIO;
845 	if (file->private_data != (void *)((long)current->self_exec_id))
846 		goto out_mm;
847 
848 	copied = 0;
849 	while (count > 0) {
850 		int this_len, retval;
851 
852 		this_len = (count > PAGE_SIZE) ? PAGE_SIZE : count;
853 		if (copy_from_user(page, buf, this_len)) {
854 			copied = -EFAULT;
855 			break;
856 		}
857 		retval = access_remote_vm(mm, dst, page, this_len, 1);
858 		if (!retval) {
859 			if (!copied)
860 				copied = -EIO;
861 			break;
862 		}
863 		copied += retval;
864 		buf += retval;
865 		dst += retval;
866 		count -= retval;
867 	}
868 	*ppos = dst;
869 
870 out_mm:
871 	mmput(mm);
872 out_free:
873 	free_page((unsigned long) page);
874 out_task:
875 	put_task_struct(task);
876 out_no_task:
877 	return copied;
878 }
879 
880 loff_t mem_lseek(struct file *file, loff_t offset, int orig)
881 {
882 	switch (orig) {
883 	case 0:
884 		file->f_pos = offset;
885 		break;
886 	case 1:
887 		file->f_pos += offset;
888 		break;
889 	default:
890 		return -EINVAL;
891 	}
892 	force_successful_syscall_return();
893 	return file->f_pos;
894 }
895 
896 static const struct file_operations proc_mem_operations = {
897 	.llseek		= mem_lseek,
898 	.read		= mem_read,
899 	.write		= mem_write,
900 	.open		= mem_open,
901 };
902 
903 static ssize_t environ_read(struct file *file, char __user *buf,
904 			size_t count, loff_t *ppos)
905 {
906 	struct task_struct *task = get_proc_task(file->f_dentry->d_inode);
907 	char *page;
908 	unsigned long src = *ppos;
909 	int ret = -ESRCH;
910 	struct mm_struct *mm;
911 
912 	if (!task)
913 		goto out_no_task;
914 
915 	ret = -ENOMEM;
916 	page = (char *)__get_free_page(GFP_TEMPORARY);
917 	if (!page)
918 		goto out;
919 
920 
921 	mm = mm_for_maps(task);
922 	ret = PTR_ERR(mm);
923 	if (!mm || IS_ERR(mm))
924 		goto out_free;
925 
926 	ret = 0;
927 	while (count > 0) {
928 		int this_len, retval, max_len;
929 
930 		this_len = mm->env_end - (mm->env_start + src);
931 
932 		if (this_len <= 0)
933 			break;
934 
935 		max_len = (count > PAGE_SIZE) ? PAGE_SIZE : count;
936 		this_len = (this_len > max_len) ? max_len : this_len;
937 
938 		retval = access_process_vm(task, (mm->env_start + src),
939 			page, this_len, 0);
940 
941 		if (retval <= 0) {
942 			ret = retval;
943 			break;
944 		}
945 
946 		if (copy_to_user(buf, page, retval)) {
947 			ret = -EFAULT;
948 			break;
949 		}
950 
951 		ret += retval;
952 		src += retval;
953 		buf += retval;
954 		count -= retval;
955 	}
956 	*ppos = src;
957 
958 	mmput(mm);
959 out_free:
960 	free_page((unsigned long) page);
961 out:
962 	put_task_struct(task);
963 out_no_task:
964 	return ret;
965 }
966 
967 static const struct file_operations proc_environ_operations = {
968 	.read		= environ_read,
969 	.llseek		= generic_file_llseek,
970 };
971 
972 static ssize_t oom_adjust_read(struct file *file, char __user *buf,
973 				size_t count, loff_t *ppos)
974 {
975 	struct task_struct *task = get_proc_task(file->f_path.dentry->d_inode);
976 	char buffer[PROC_NUMBUF];
977 	size_t len;
978 	int oom_adjust = OOM_DISABLE;
979 	unsigned long flags;
980 
981 	if (!task)
982 		return -ESRCH;
983 
984 	if (lock_task_sighand(task, &flags)) {
985 		oom_adjust = task->signal->oom_adj;
986 		unlock_task_sighand(task, &flags);
987 	}
988 
989 	put_task_struct(task);
990 
991 	len = snprintf(buffer, sizeof(buffer), "%i\n", oom_adjust);
992 
993 	return simple_read_from_buffer(buf, count, ppos, buffer, len);
994 }
995 
996 static ssize_t oom_adjust_write(struct file *file, const char __user *buf,
997 				size_t count, loff_t *ppos)
998 {
999 	struct task_struct *task;
1000 	char buffer[PROC_NUMBUF];
1001 	int oom_adjust;
1002 	unsigned long flags;
1003 	int err;
1004 
1005 	memset(buffer, 0, sizeof(buffer));
1006 	if (count > sizeof(buffer) - 1)
1007 		count = sizeof(buffer) - 1;
1008 	if (copy_from_user(buffer, buf, count)) {
1009 		err = -EFAULT;
1010 		goto out;
1011 	}
1012 
1013 	err = kstrtoint(strstrip(buffer), 0, &oom_adjust);
1014 	if (err)
1015 		goto out;
1016 	if ((oom_adjust < OOM_ADJUST_MIN || oom_adjust > OOM_ADJUST_MAX) &&
1017 	     oom_adjust != OOM_DISABLE) {
1018 		err = -EINVAL;
1019 		goto out;
1020 	}
1021 
1022 	task = get_proc_task(file->f_path.dentry->d_inode);
1023 	if (!task) {
1024 		err = -ESRCH;
1025 		goto out;
1026 	}
1027 
1028 	task_lock(task);
1029 	if (!task->mm) {
1030 		err = -EINVAL;
1031 		goto err_task_lock;
1032 	}
1033 
1034 	if (!lock_task_sighand(task, &flags)) {
1035 		err = -ESRCH;
1036 		goto err_task_lock;
1037 	}
1038 
1039 	if (oom_adjust < task->signal->oom_adj && !capable(CAP_SYS_RESOURCE)) {
1040 		err = -EACCES;
1041 		goto err_sighand;
1042 	}
1043 
1044 	/*
1045 	 * Warn that /proc/pid/oom_adj is deprecated, see
1046 	 * Documentation/feature-removal-schedule.txt.
1047 	 */
1048 	printk_once(KERN_WARNING "%s (%d): /proc/%d/oom_adj is deprecated, please use /proc/%d/oom_score_adj instead.\n",
1049 		  current->comm, task_pid_nr(current), task_pid_nr(task),
1050 		  task_pid_nr(task));
1051 	task->signal->oom_adj = oom_adjust;
1052 	/*
1053 	 * Scale /proc/pid/oom_score_adj appropriately ensuring that a maximum
1054 	 * value is always attainable.
1055 	 */
1056 	if (task->signal->oom_adj == OOM_ADJUST_MAX)
1057 		task->signal->oom_score_adj = OOM_SCORE_ADJ_MAX;
1058 	else
1059 		task->signal->oom_score_adj = (oom_adjust * OOM_SCORE_ADJ_MAX) /
1060 								-OOM_DISABLE;
1061 	trace_oom_score_adj_update(task);
1062 err_sighand:
1063 	unlock_task_sighand(task, &flags);
1064 err_task_lock:
1065 	task_unlock(task);
1066 	put_task_struct(task);
1067 out:
1068 	return err < 0 ? err : count;
1069 }
1070 
1071 static const struct file_operations proc_oom_adjust_operations = {
1072 	.read		= oom_adjust_read,
1073 	.write		= oom_adjust_write,
1074 	.llseek		= generic_file_llseek,
1075 };
1076 
1077 static ssize_t oom_score_adj_read(struct file *file, char __user *buf,
1078 					size_t count, loff_t *ppos)
1079 {
1080 	struct task_struct *task = get_proc_task(file->f_path.dentry->d_inode);
1081 	char buffer[PROC_NUMBUF];
1082 	int oom_score_adj = OOM_SCORE_ADJ_MIN;
1083 	unsigned long flags;
1084 	size_t len;
1085 
1086 	if (!task)
1087 		return -ESRCH;
1088 	if (lock_task_sighand(task, &flags)) {
1089 		oom_score_adj = task->signal->oom_score_adj;
1090 		unlock_task_sighand(task, &flags);
1091 	}
1092 	put_task_struct(task);
1093 	len = snprintf(buffer, sizeof(buffer), "%d\n", oom_score_adj);
1094 	return simple_read_from_buffer(buf, count, ppos, buffer, len);
1095 }
1096 
1097 static ssize_t oom_score_adj_write(struct file *file, const char __user *buf,
1098 					size_t count, loff_t *ppos)
1099 {
1100 	struct task_struct *task;
1101 	char buffer[PROC_NUMBUF];
1102 	unsigned long flags;
1103 	int oom_score_adj;
1104 	int err;
1105 
1106 	memset(buffer, 0, sizeof(buffer));
1107 	if (count > sizeof(buffer) - 1)
1108 		count = sizeof(buffer) - 1;
1109 	if (copy_from_user(buffer, buf, count)) {
1110 		err = -EFAULT;
1111 		goto out;
1112 	}
1113 
1114 	err = kstrtoint(strstrip(buffer), 0, &oom_score_adj);
1115 	if (err)
1116 		goto out;
1117 	if (oom_score_adj < OOM_SCORE_ADJ_MIN ||
1118 			oom_score_adj > OOM_SCORE_ADJ_MAX) {
1119 		err = -EINVAL;
1120 		goto out;
1121 	}
1122 
1123 	task = get_proc_task(file->f_path.dentry->d_inode);
1124 	if (!task) {
1125 		err = -ESRCH;
1126 		goto out;
1127 	}
1128 
1129 	task_lock(task);
1130 	if (!task->mm) {
1131 		err = -EINVAL;
1132 		goto err_task_lock;
1133 	}
1134 
1135 	if (!lock_task_sighand(task, &flags)) {
1136 		err = -ESRCH;
1137 		goto err_task_lock;
1138 	}
1139 
1140 	if (oom_score_adj < task->signal->oom_score_adj_min &&
1141 			!capable(CAP_SYS_RESOURCE)) {
1142 		err = -EACCES;
1143 		goto err_sighand;
1144 	}
1145 
1146 	task->signal->oom_score_adj = oom_score_adj;
1147 	if (has_capability_noaudit(current, CAP_SYS_RESOURCE))
1148 		task->signal->oom_score_adj_min = oom_score_adj;
1149 	trace_oom_score_adj_update(task);
1150 	/*
1151 	 * Scale /proc/pid/oom_adj appropriately ensuring that OOM_DISABLE is
1152 	 * always attainable.
1153 	 */
1154 	if (task->signal->oom_score_adj == OOM_SCORE_ADJ_MIN)
1155 		task->signal->oom_adj = OOM_DISABLE;
1156 	else
1157 		task->signal->oom_adj = (oom_score_adj * OOM_ADJUST_MAX) /
1158 							OOM_SCORE_ADJ_MAX;
1159 err_sighand:
1160 	unlock_task_sighand(task, &flags);
1161 err_task_lock:
1162 	task_unlock(task);
1163 	put_task_struct(task);
1164 out:
1165 	return err < 0 ? err : count;
1166 }
1167 
1168 static const struct file_operations proc_oom_score_adj_operations = {
1169 	.read		= oom_score_adj_read,
1170 	.write		= oom_score_adj_write,
1171 	.llseek		= default_llseek,
1172 };
1173 
1174 #ifdef CONFIG_AUDITSYSCALL
1175 #define TMPBUFLEN 21
1176 static ssize_t proc_loginuid_read(struct file * file, char __user * buf,
1177 				  size_t count, loff_t *ppos)
1178 {
1179 	struct inode * inode = file->f_path.dentry->d_inode;
1180 	struct task_struct *task = get_proc_task(inode);
1181 	ssize_t length;
1182 	char tmpbuf[TMPBUFLEN];
1183 
1184 	if (!task)
1185 		return -ESRCH;
1186 	length = scnprintf(tmpbuf, TMPBUFLEN, "%u",
1187 				audit_get_loginuid(task));
1188 	put_task_struct(task);
1189 	return simple_read_from_buffer(buf, count, ppos, tmpbuf, length);
1190 }
1191 
1192 static ssize_t proc_loginuid_write(struct file * file, const char __user * buf,
1193 				   size_t count, loff_t *ppos)
1194 {
1195 	struct inode * inode = file->f_path.dentry->d_inode;
1196 	char *page, *tmp;
1197 	ssize_t length;
1198 	uid_t loginuid;
1199 
1200 	if (!capable(CAP_AUDIT_CONTROL))
1201 		return -EPERM;
1202 
1203 	rcu_read_lock();
1204 	if (current != pid_task(proc_pid(inode), PIDTYPE_PID)) {
1205 		rcu_read_unlock();
1206 		return -EPERM;
1207 	}
1208 	rcu_read_unlock();
1209 
1210 	if (count >= PAGE_SIZE)
1211 		count = PAGE_SIZE - 1;
1212 
1213 	if (*ppos != 0) {
1214 		/* No partial writes. */
1215 		return -EINVAL;
1216 	}
1217 	page = (char*)__get_free_page(GFP_TEMPORARY);
1218 	if (!page)
1219 		return -ENOMEM;
1220 	length = -EFAULT;
1221 	if (copy_from_user(page, buf, count))
1222 		goto out_free_page;
1223 
1224 	page[count] = '\0';
1225 	loginuid = simple_strtoul(page, &tmp, 10);
1226 	if (tmp == page) {
1227 		length = -EINVAL;
1228 		goto out_free_page;
1229 
1230 	}
1231 	length = audit_set_loginuid(current, loginuid);
1232 	if (likely(length == 0))
1233 		length = count;
1234 
1235 out_free_page:
1236 	free_page((unsigned long) page);
1237 	return length;
1238 }
1239 
1240 static const struct file_operations proc_loginuid_operations = {
1241 	.read		= proc_loginuid_read,
1242 	.write		= proc_loginuid_write,
1243 	.llseek		= generic_file_llseek,
1244 };
1245 
1246 static ssize_t proc_sessionid_read(struct file * file, char __user * buf,
1247 				  size_t count, loff_t *ppos)
1248 {
1249 	struct inode * inode = file->f_path.dentry->d_inode;
1250 	struct task_struct *task = get_proc_task(inode);
1251 	ssize_t length;
1252 	char tmpbuf[TMPBUFLEN];
1253 
1254 	if (!task)
1255 		return -ESRCH;
1256 	length = scnprintf(tmpbuf, TMPBUFLEN, "%u",
1257 				audit_get_sessionid(task));
1258 	put_task_struct(task);
1259 	return simple_read_from_buffer(buf, count, ppos, tmpbuf, length);
1260 }
1261 
1262 static const struct file_operations proc_sessionid_operations = {
1263 	.read		= proc_sessionid_read,
1264 	.llseek		= generic_file_llseek,
1265 };
1266 #endif
1267 
1268 #ifdef CONFIG_FAULT_INJECTION
1269 static ssize_t proc_fault_inject_read(struct file * file, char __user * buf,
1270 				      size_t count, loff_t *ppos)
1271 {
1272 	struct task_struct *task = get_proc_task(file->f_dentry->d_inode);
1273 	char buffer[PROC_NUMBUF];
1274 	size_t len;
1275 	int make_it_fail;
1276 
1277 	if (!task)
1278 		return -ESRCH;
1279 	make_it_fail = task->make_it_fail;
1280 	put_task_struct(task);
1281 
1282 	len = snprintf(buffer, sizeof(buffer), "%i\n", make_it_fail);
1283 
1284 	return simple_read_from_buffer(buf, count, ppos, buffer, len);
1285 }
1286 
1287 static ssize_t proc_fault_inject_write(struct file * file,
1288 			const char __user * buf, size_t count, loff_t *ppos)
1289 {
1290 	struct task_struct *task;
1291 	char buffer[PROC_NUMBUF], *end;
1292 	int make_it_fail;
1293 
1294 	if (!capable(CAP_SYS_RESOURCE))
1295 		return -EPERM;
1296 	memset(buffer, 0, sizeof(buffer));
1297 	if (count > sizeof(buffer) - 1)
1298 		count = sizeof(buffer) - 1;
1299 	if (copy_from_user(buffer, buf, count))
1300 		return -EFAULT;
1301 	make_it_fail = simple_strtol(strstrip(buffer), &end, 0);
1302 	if (*end)
1303 		return -EINVAL;
1304 	task = get_proc_task(file->f_dentry->d_inode);
1305 	if (!task)
1306 		return -ESRCH;
1307 	task->make_it_fail = make_it_fail;
1308 	put_task_struct(task);
1309 
1310 	return count;
1311 }
1312 
1313 static const struct file_operations proc_fault_inject_operations = {
1314 	.read		= proc_fault_inject_read,
1315 	.write		= proc_fault_inject_write,
1316 	.llseek		= generic_file_llseek,
1317 };
1318 #endif
1319 
1320 
1321 #ifdef CONFIG_SCHED_DEBUG
1322 /*
1323  * Print out various scheduling related per-task fields:
1324  */
1325 static int sched_show(struct seq_file *m, void *v)
1326 {
1327 	struct inode *inode = m->private;
1328 	struct task_struct *p;
1329 
1330 	p = get_proc_task(inode);
1331 	if (!p)
1332 		return -ESRCH;
1333 	proc_sched_show_task(p, m);
1334 
1335 	put_task_struct(p);
1336 
1337 	return 0;
1338 }
1339 
1340 static ssize_t
1341 sched_write(struct file *file, const char __user *buf,
1342 	    size_t count, loff_t *offset)
1343 {
1344 	struct inode *inode = file->f_path.dentry->d_inode;
1345 	struct task_struct *p;
1346 
1347 	p = get_proc_task(inode);
1348 	if (!p)
1349 		return -ESRCH;
1350 	proc_sched_set_task(p);
1351 
1352 	put_task_struct(p);
1353 
1354 	return count;
1355 }
1356 
1357 static int sched_open(struct inode *inode, struct file *filp)
1358 {
1359 	return single_open(filp, sched_show, inode);
1360 }
1361 
1362 static const struct file_operations proc_pid_sched_operations = {
1363 	.open		= sched_open,
1364 	.read		= seq_read,
1365 	.write		= sched_write,
1366 	.llseek		= seq_lseek,
1367 	.release	= single_release,
1368 };
1369 
1370 #endif
1371 
1372 #ifdef CONFIG_SCHED_AUTOGROUP
1373 /*
1374  * Print out autogroup related information:
1375  */
1376 static int sched_autogroup_show(struct seq_file *m, void *v)
1377 {
1378 	struct inode *inode = m->private;
1379 	struct task_struct *p;
1380 
1381 	p = get_proc_task(inode);
1382 	if (!p)
1383 		return -ESRCH;
1384 	proc_sched_autogroup_show_task(p, m);
1385 
1386 	put_task_struct(p);
1387 
1388 	return 0;
1389 }
1390 
1391 static ssize_t
1392 sched_autogroup_write(struct file *file, const char __user *buf,
1393 	    size_t count, loff_t *offset)
1394 {
1395 	struct inode *inode = file->f_path.dentry->d_inode;
1396 	struct task_struct *p;
1397 	char buffer[PROC_NUMBUF];
1398 	int nice;
1399 	int err;
1400 
1401 	memset(buffer, 0, sizeof(buffer));
1402 	if (count > sizeof(buffer) - 1)
1403 		count = sizeof(buffer) - 1;
1404 	if (copy_from_user(buffer, buf, count))
1405 		return -EFAULT;
1406 
1407 	err = kstrtoint(strstrip(buffer), 0, &nice);
1408 	if (err < 0)
1409 		return err;
1410 
1411 	p = get_proc_task(inode);
1412 	if (!p)
1413 		return -ESRCH;
1414 
1415 	err = nice;
1416 	err = proc_sched_autogroup_set_nice(p, &err);
1417 	if (err)
1418 		count = err;
1419 
1420 	put_task_struct(p);
1421 
1422 	return count;
1423 }
1424 
1425 static int sched_autogroup_open(struct inode *inode, struct file *filp)
1426 {
1427 	int ret;
1428 
1429 	ret = single_open(filp, sched_autogroup_show, NULL);
1430 	if (!ret) {
1431 		struct seq_file *m = filp->private_data;
1432 
1433 		m->private = inode;
1434 	}
1435 	return ret;
1436 }
1437 
1438 static const struct file_operations proc_pid_sched_autogroup_operations = {
1439 	.open		= sched_autogroup_open,
1440 	.read		= seq_read,
1441 	.write		= sched_autogroup_write,
1442 	.llseek		= seq_lseek,
1443 	.release	= single_release,
1444 };
1445 
1446 #endif /* CONFIG_SCHED_AUTOGROUP */
1447 
1448 static ssize_t comm_write(struct file *file, const char __user *buf,
1449 				size_t count, loff_t *offset)
1450 {
1451 	struct inode *inode = file->f_path.dentry->d_inode;
1452 	struct task_struct *p;
1453 	char buffer[TASK_COMM_LEN];
1454 
1455 	memset(buffer, 0, sizeof(buffer));
1456 	if (count > sizeof(buffer) - 1)
1457 		count = sizeof(buffer) - 1;
1458 	if (copy_from_user(buffer, buf, count))
1459 		return -EFAULT;
1460 
1461 	p = get_proc_task(inode);
1462 	if (!p)
1463 		return -ESRCH;
1464 
1465 	if (same_thread_group(current, p))
1466 		set_task_comm(p, buffer);
1467 	else
1468 		count = -EINVAL;
1469 
1470 	put_task_struct(p);
1471 
1472 	return count;
1473 }
1474 
1475 static int comm_show(struct seq_file *m, void *v)
1476 {
1477 	struct inode *inode = m->private;
1478 	struct task_struct *p;
1479 
1480 	p = get_proc_task(inode);
1481 	if (!p)
1482 		return -ESRCH;
1483 
1484 	task_lock(p);
1485 	seq_printf(m, "%s\n", p->comm);
1486 	task_unlock(p);
1487 
1488 	put_task_struct(p);
1489 
1490 	return 0;
1491 }
1492 
1493 static int comm_open(struct inode *inode, struct file *filp)
1494 {
1495 	return single_open(filp, comm_show, inode);
1496 }
1497 
1498 static const struct file_operations proc_pid_set_comm_operations = {
1499 	.open		= comm_open,
1500 	.read		= seq_read,
1501 	.write		= comm_write,
1502 	.llseek		= seq_lseek,
1503 	.release	= single_release,
1504 };
1505 
1506 static int proc_exe_link(struct dentry *dentry, struct path *exe_path)
1507 {
1508 	struct task_struct *task;
1509 	struct mm_struct *mm;
1510 	struct file *exe_file;
1511 
1512 	task = get_proc_task(dentry->d_inode);
1513 	if (!task)
1514 		return -ENOENT;
1515 	mm = get_task_mm(task);
1516 	put_task_struct(task);
1517 	if (!mm)
1518 		return -ENOENT;
1519 	exe_file = get_mm_exe_file(mm);
1520 	mmput(mm);
1521 	if (exe_file) {
1522 		*exe_path = exe_file->f_path;
1523 		path_get(&exe_file->f_path);
1524 		fput(exe_file);
1525 		return 0;
1526 	} else
1527 		return -ENOENT;
1528 }
1529 
1530 static void *proc_pid_follow_link(struct dentry *dentry, struct nameidata *nd)
1531 {
1532 	struct inode *inode = dentry->d_inode;
1533 	int error = -EACCES;
1534 
1535 	/* We don't need a base pointer in the /proc filesystem */
1536 	path_put(&nd->path);
1537 
1538 	/* Are we allowed to snoop on the tasks file descriptors? */
1539 	if (!proc_fd_access_allowed(inode))
1540 		goto out;
1541 
1542 	error = PROC_I(inode)->op.proc_get_link(dentry, &nd->path);
1543 out:
1544 	return ERR_PTR(error);
1545 }
1546 
1547 static int do_proc_readlink(struct path *path, char __user *buffer, int buflen)
1548 {
1549 	char *tmp = (char*)__get_free_page(GFP_TEMPORARY);
1550 	char *pathname;
1551 	int len;
1552 
1553 	if (!tmp)
1554 		return -ENOMEM;
1555 
1556 	pathname = d_path(path, tmp, PAGE_SIZE);
1557 	len = PTR_ERR(pathname);
1558 	if (IS_ERR(pathname))
1559 		goto out;
1560 	len = tmp + PAGE_SIZE - 1 - pathname;
1561 
1562 	if (len > buflen)
1563 		len = buflen;
1564 	if (copy_to_user(buffer, pathname, len))
1565 		len = -EFAULT;
1566  out:
1567 	free_page((unsigned long)tmp);
1568 	return len;
1569 }
1570 
1571 static int proc_pid_readlink(struct dentry * dentry, char __user * buffer, int buflen)
1572 {
1573 	int error = -EACCES;
1574 	struct inode *inode = dentry->d_inode;
1575 	struct path path;
1576 
1577 	/* Are we allowed to snoop on the tasks file descriptors? */
1578 	if (!proc_fd_access_allowed(inode))
1579 		goto out;
1580 
1581 	error = PROC_I(inode)->op.proc_get_link(dentry, &path);
1582 	if (error)
1583 		goto out;
1584 
1585 	error = do_proc_readlink(&path, buffer, buflen);
1586 	path_put(&path);
1587 out:
1588 	return error;
1589 }
1590 
1591 static const struct inode_operations proc_pid_link_inode_operations = {
1592 	.readlink	= proc_pid_readlink,
1593 	.follow_link	= proc_pid_follow_link,
1594 	.setattr	= proc_setattr,
1595 };
1596 
1597 
1598 /* building an inode */
1599 
1600 static int task_dumpable(struct task_struct *task)
1601 {
1602 	int dumpable = 0;
1603 	struct mm_struct *mm;
1604 
1605 	task_lock(task);
1606 	mm = task->mm;
1607 	if (mm)
1608 		dumpable = get_dumpable(mm);
1609 	task_unlock(task);
1610 	if(dumpable == 1)
1611 		return 1;
1612 	return 0;
1613 }
1614 
1615 struct inode *proc_pid_make_inode(struct super_block * sb, struct task_struct *task)
1616 {
1617 	struct inode * inode;
1618 	struct proc_inode *ei;
1619 	const struct cred *cred;
1620 
1621 	/* We need a new inode */
1622 
1623 	inode = new_inode(sb);
1624 	if (!inode)
1625 		goto out;
1626 
1627 	/* Common stuff */
1628 	ei = PROC_I(inode);
1629 	inode->i_ino = get_next_ino();
1630 	inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
1631 	inode->i_op = &proc_def_inode_operations;
1632 
1633 	/*
1634 	 * grab the reference to task.
1635 	 */
1636 	ei->pid = get_task_pid(task, PIDTYPE_PID);
1637 	if (!ei->pid)
1638 		goto out_unlock;
1639 
1640 	if (task_dumpable(task)) {
1641 		rcu_read_lock();
1642 		cred = __task_cred(task);
1643 		inode->i_uid = cred->euid;
1644 		inode->i_gid = cred->egid;
1645 		rcu_read_unlock();
1646 	}
1647 	security_task_to_inode(task, inode);
1648 
1649 out:
1650 	return inode;
1651 
1652 out_unlock:
1653 	iput(inode);
1654 	return NULL;
1655 }
1656 
1657 int pid_getattr(struct vfsmount *mnt, struct dentry *dentry, struct kstat *stat)
1658 {
1659 	struct inode *inode = dentry->d_inode;
1660 	struct task_struct *task;
1661 	const struct cred *cred;
1662 	struct pid_namespace *pid = dentry->d_sb->s_fs_info;
1663 
1664 	generic_fillattr(inode, stat);
1665 
1666 	rcu_read_lock();
1667 	stat->uid = 0;
1668 	stat->gid = 0;
1669 	task = pid_task(proc_pid(inode), PIDTYPE_PID);
1670 	if (task) {
1671 		if (!has_pid_permissions(pid, task, 2)) {
1672 			rcu_read_unlock();
1673 			/*
1674 			 * This doesn't prevent learning whether PID exists,
1675 			 * it only makes getattr() consistent with readdir().
1676 			 */
1677 			return -ENOENT;
1678 		}
1679 		if ((inode->i_mode == (S_IFDIR|S_IRUGO|S_IXUGO)) ||
1680 		    task_dumpable(task)) {
1681 			cred = __task_cred(task);
1682 			stat->uid = cred->euid;
1683 			stat->gid = cred->egid;
1684 		}
1685 	}
1686 	rcu_read_unlock();
1687 	return 0;
1688 }
1689 
1690 /* dentry stuff */
1691 
1692 /*
1693  *	Exceptional case: normally we are not allowed to unhash a busy
1694  * directory. In this case, however, we can do it - no aliasing problems
1695  * due to the way we treat inodes.
1696  *
1697  * Rewrite the inode's ownerships here because the owning task may have
1698  * performed a setuid(), etc.
1699  *
1700  * Before the /proc/pid/status file was created the only way to read
1701  * the effective uid of a /process was to stat /proc/pid.  Reading
1702  * /proc/pid/status is slow enough that procps and other packages
1703  * kept stating /proc/pid.  To keep the rules in /proc simple I have
1704  * made this apply to all per process world readable and executable
1705  * directories.
1706  */
1707 int pid_revalidate(struct dentry *dentry, struct nameidata *nd)
1708 {
1709 	struct inode *inode;
1710 	struct task_struct *task;
1711 	const struct cred *cred;
1712 
1713 	if (nd && nd->flags & LOOKUP_RCU)
1714 		return -ECHILD;
1715 
1716 	inode = dentry->d_inode;
1717 	task = get_proc_task(inode);
1718 
1719 	if (task) {
1720 		if ((inode->i_mode == (S_IFDIR|S_IRUGO|S_IXUGO)) ||
1721 		    task_dumpable(task)) {
1722 			rcu_read_lock();
1723 			cred = __task_cred(task);
1724 			inode->i_uid = cred->euid;
1725 			inode->i_gid = cred->egid;
1726 			rcu_read_unlock();
1727 		} else {
1728 			inode->i_uid = 0;
1729 			inode->i_gid = 0;
1730 		}
1731 		inode->i_mode &= ~(S_ISUID | S_ISGID);
1732 		security_task_to_inode(task, inode);
1733 		put_task_struct(task);
1734 		return 1;
1735 	}
1736 	d_drop(dentry);
1737 	return 0;
1738 }
1739 
1740 static int pid_delete_dentry(const struct dentry * dentry)
1741 {
1742 	/* Is the task we represent dead?
1743 	 * If so, then don't put the dentry on the lru list,
1744 	 * kill it immediately.
1745 	 */
1746 	return !proc_pid(dentry->d_inode)->tasks[PIDTYPE_PID].first;
1747 }
1748 
1749 const struct dentry_operations pid_dentry_operations =
1750 {
1751 	.d_revalidate	= pid_revalidate,
1752 	.d_delete	= pid_delete_dentry,
1753 };
1754 
1755 /* Lookups */
1756 
1757 /*
1758  * Fill a directory entry.
1759  *
1760  * If possible create the dcache entry and derive our inode number and
1761  * file type from dcache entry.
1762  *
1763  * Since all of the proc inode numbers are dynamically generated, the inode
1764  * numbers do not exist until the inode is cache.  This means creating the
1765  * the dcache entry in readdir is necessary to keep the inode numbers
1766  * reported by readdir in sync with the inode numbers reported
1767  * by stat.
1768  */
1769 int proc_fill_cache(struct file *filp, void *dirent, filldir_t filldir,
1770 	const char *name, int len,
1771 	instantiate_t instantiate, struct task_struct *task, const void *ptr)
1772 {
1773 	struct dentry *child, *dir = filp->f_path.dentry;
1774 	struct inode *inode;
1775 	struct qstr qname;
1776 	ino_t ino = 0;
1777 	unsigned type = DT_UNKNOWN;
1778 
1779 	qname.name = name;
1780 	qname.len  = len;
1781 	qname.hash = full_name_hash(name, len);
1782 
1783 	child = d_lookup(dir, &qname);
1784 	if (!child) {
1785 		struct dentry *new;
1786 		new = d_alloc(dir, &qname);
1787 		if (new) {
1788 			child = instantiate(dir->d_inode, new, task, ptr);
1789 			if (child)
1790 				dput(new);
1791 			else
1792 				child = new;
1793 		}
1794 	}
1795 	if (!child || IS_ERR(child) || !child->d_inode)
1796 		goto end_instantiate;
1797 	inode = child->d_inode;
1798 	if (inode) {
1799 		ino = inode->i_ino;
1800 		type = inode->i_mode >> 12;
1801 	}
1802 	dput(child);
1803 end_instantiate:
1804 	if (!ino)
1805 		ino = find_inode_number(dir, &qname);
1806 	if (!ino)
1807 		ino = 1;
1808 	return filldir(dirent, name, len, filp->f_pos, ino, type);
1809 }
1810 
1811 static unsigned name_to_int(struct dentry *dentry)
1812 {
1813 	const char *name = dentry->d_name.name;
1814 	int len = dentry->d_name.len;
1815 	unsigned n = 0;
1816 
1817 	if (len > 1 && *name == '0')
1818 		goto out;
1819 	while (len-- > 0) {
1820 		unsigned c = *name++ - '0';
1821 		if (c > 9)
1822 			goto out;
1823 		if (n >= (~0U-9)/10)
1824 			goto out;
1825 		n *= 10;
1826 		n += c;
1827 	}
1828 	return n;
1829 out:
1830 	return ~0U;
1831 }
1832 
1833 #define PROC_FDINFO_MAX 64
1834 
1835 static int proc_fd_info(struct inode *inode, struct path *path, char *info)
1836 {
1837 	struct task_struct *task = get_proc_task(inode);
1838 	struct files_struct *files = NULL;
1839 	struct file *file;
1840 	int fd = proc_fd(inode);
1841 
1842 	if (task) {
1843 		files = get_files_struct(task);
1844 		put_task_struct(task);
1845 	}
1846 	if (files) {
1847 		/*
1848 		 * We are not taking a ref to the file structure, so we must
1849 		 * hold ->file_lock.
1850 		 */
1851 		spin_lock(&files->file_lock);
1852 		file = fcheck_files(files, fd);
1853 		if (file) {
1854 			unsigned int f_flags;
1855 			struct fdtable *fdt;
1856 
1857 			fdt = files_fdtable(files);
1858 			f_flags = file->f_flags & ~O_CLOEXEC;
1859 			if (FD_ISSET(fd, fdt->close_on_exec))
1860 				f_flags |= O_CLOEXEC;
1861 
1862 			if (path) {
1863 				*path = file->f_path;
1864 				path_get(&file->f_path);
1865 			}
1866 			if (info)
1867 				snprintf(info, PROC_FDINFO_MAX,
1868 					 "pos:\t%lli\n"
1869 					 "flags:\t0%o\n",
1870 					 (long long) file->f_pos,
1871 					 f_flags);
1872 			spin_unlock(&files->file_lock);
1873 			put_files_struct(files);
1874 			return 0;
1875 		}
1876 		spin_unlock(&files->file_lock);
1877 		put_files_struct(files);
1878 	}
1879 	return -ENOENT;
1880 }
1881 
1882 static int proc_fd_link(struct dentry *dentry, struct path *path)
1883 {
1884 	return proc_fd_info(dentry->d_inode, path, NULL);
1885 }
1886 
1887 static int tid_fd_revalidate(struct dentry *dentry, struct nameidata *nd)
1888 {
1889 	struct inode *inode;
1890 	struct task_struct *task;
1891 	int fd;
1892 	struct files_struct *files;
1893 	const struct cred *cred;
1894 
1895 	if (nd && nd->flags & LOOKUP_RCU)
1896 		return -ECHILD;
1897 
1898 	inode = dentry->d_inode;
1899 	task = get_proc_task(inode);
1900 	fd = proc_fd(inode);
1901 
1902 	if (task) {
1903 		files = get_files_struct(task);
1904 		if (files) {
1905 			rcu_read_lock();
1906 			if (fcheck_files(files, fd)) {
1907 				rcu_read_unlock();
1908 				put_files_struct(files);
1909 				if (task_dumpable(task)) {
1910 					rcu_read_lock();
1911 					cred = __task_cred(task);
1912 					inode->i_uid = cred->euid;
1913 					inode->i_gid = cred->egid;
1914 					rcu_read_unlock();
1915 				} else {
1916 					inode->i_uid = 0;
1917 					inode->i_gid = 0;
1918 				}
1919 				inode->i_mode &= ~(S_ISUID | S_ISGID);
1920 				security_task_to_inode(task, inode);
1921 				put_task_struct(task);
1922 				return 1;
1923 			}
1924 			rcu_read_unlock();
1925 			put_files_struct(files);
1926 		}
1927 		put_task_struct(task);
1928 	}
1929 	d_drop(dentry);
1930 	return 0;
1931 }
1932 
1933 static const struct dentry_operations tid_fd_dentry_operations =
1934 {
1935 	.d_revalidate	= tid_fd_revalidate,
1936 	.d_delete	= pid_delete_dentry,
1937 };
1938 
1939 static struct dentry *proc_fd_instantiate(struct inode *dir,
1940 	struct dentry *dentry, struct task_struct *task, const void *ptr)
1941 {
1942 	unsigned fd = *(const unsigned *)ptr;
1943 	struct file *file;
1944 	struct files_struct *files;
1945  	struct inode *inode;
1946  	struct proc_inode *ei;
1947 	struct dentry *error = ERR_PTR(-ENOENT);
1948 
1949 	inode = proc_pid_make_inode(dir->i_sb, task);
1950 	if (!inode)
1951 		goto out;
1952 	ei = PROC_I(inode);
1953 	ei->fd = fd;
1954 	files = get_files_struct(task);
1955 	if (!files)
1956 		goto out_iput;
1957 	inode->i_mode = S_IFLNK;
1958 
1959 	/*
1960 	 * We are not taking a ref to the file structure, so we must
1961 	 * hold ->file_lock.
1962 	 */
1963 	spin_lock(&files->file_lock);
1964 	file = fcheck_files(files, fd);
1965 	if (!file)
1966 		goto out_unlock;
1967 	if (file->f_mode & FMODE_READ)
1968 		inode->i_mode |= S_IRUSR | S_IXUSR;
1969 	if (file->f_mode & FMODE_WRITE)
1970 		inode->i_mode |= S_IWUSR | S_IXUSR;
1971 	spin_unlock(&files->file_lock);
1972 	put_files_struct(files);
1973 
1974 	inode->i_op = &proc_pid_link_inode_operations;
1975 	inode->i_size = 64;
1976 	ei->op.proc_get_link = proc_fd_link;
1977 	d_set_d_op(dentry, &tid_fd_dentry_operations);
1978 	d_add(dentry, inode);
1979 	/* Close the race of the process dying before we return the dentry */
1980 	if (tid_fd_revalidate(dentry, NULL))
1981 		error = NULL;
1982 
1983  out:
1984 	return error;
1985 out_unlock:
1986 	spin_unlock(&files->file_lock);
1987 	put_files_struct(files);
1988 out_iput:
1989 	iput(inode);
1990 	goto out;
1991 }
1992 
1993 static struct dentry *proc_lookupfd_common(struct inode *dir,
1994 					   struct dentry *dentry,
1995 					   instantiate_t instantiate)
1996 {
1997 	struct task_struct *task = get_proc_task(dir);
1998 	unsigned fd = name_to_int(dentry);
1999 	struct dentry *result = ERR_PTR(-ENOENT);
2000 
2001 	if (!task)
2002 		goto out_no_task;
2003 	if (fd == ~0U)
2004 		goto out;
2005 
2006 	result = instantiate(dir, dentry, task, &fd);
2007 out:
2008 	put_task_struct(task);
2009 out_no_task:
2010 	return result;
2011 }
2012 
2013 static int proc_readfd_common(struct file * filp, void * dirent,
2014 			      filldir_t filldir, instantiate_t instantiate)
2015 {
2016 	struct dentry *dentry = filp->f_path.dentry;
2017 	struct inode *inode = dentry->d_inode;
2018 	struct task_struct *p = get_proc_task(inode);
2019 	unsigned int fd, ino;
2020 	int retval;
2021 	struct files_struct * files;
2022 
2023 	retval = -ENOENT;
2024 	if (!p)
2025 		goto out_no_task;
2026 	retval = 0;
2027 
2028 	fd = filp->f_pos;
2029 	switch (fd) {
2030 		case 0:
2031 			if (filldir(dirent, ".", 1, 0, inode->i_ino, DT_DIR) < 0)
2032 				goto out;
2033 			filp->f_pos++;
2034 		case 1:
2035 			ino = parent_ino(dentry);
2036 			if (filldir(dirent, "..", 2, 1, ino, DT_DIR) < 0)
2037 				goto out;
2038 			filp->f_pos++;
2039 		default:
2040 			files = get_files_struct(p);
2041 			if (!files)
2042 				goto out;
2043 			rcu_read_lock();
2044 			for (fd = filp->f_pos-2;
2045 			     fd < files_fdtable(files)->max_fds;
2046 			     fd++, filp->f_pos++) {
2047 				char name[PROC_NUMBUF];
2048 				int len;
2049 
2050 				if (!fcheck_files(files, fd))
2051 					continue;
2052 				rcu_read_unlock();
2053 
2054 				len = snprintf(name, sizeof(name), "%d", fd);
2055 				if (proc_fill_cache(filp, dirent, filldir,
2056 						    name, len, instantiate,
2057 						    p, &fd) < 0) {
2058 					rcu_read_lock();
2059 					break;
2060 				}
2061 				rcu_read_lock();
2062 			}
2063 			rcu_read_unlock();
2064 			put_files_struct(files);
2065 	}
2066 out:
2067 	put_task_struct(p);
2068 out_no_task:
2069 	return retval;
2070 }
2071 
2072 static struct dentry *proc_lookupfd(struct inode *dir, struct dentry *dentry,
2073 				    struct nameidata *nd)
2074 {
2075 	return proc_lookupfd_common(dir, dentry, proc_fd_instantiate);
2076 }
2077 
2078 static int proc_readfd(struct file *filp, void *dirent, filldir_t filldir)
2079 {
2080 	return proc_readfd_common(filp, dirent, filldir, proc_fd_instantiate);
2081 }
2082 
2083 static ssize_t proc_fdinfo_read(struct file *file, char __user *buf,
2084 				      size_t len, loff_t *ppos)
2085 {
2086 	char tmp[PROC_FDINFO_MAX];
2087 	int err = proc_fd_info(file->f_path.dentry->d_inode, NULL, tmp);
2088 	if (!err)
2089 		err = simple_read_from_buffer(buf, len, ppos, tmp, strlen(tmp));
2090 	return err;
2091 }
2092 
2093 static const struct file_operations proc_fdinfo_file_operations = {
2094 	.open           = nonseekable_open,
2095 	.read		= proc_fdinfo_read,
2096 	.llseek		= no_llseek,
2097 };
2098 
2099 static const struct file_operations proc_fd_operations = {
2100 	.read		= generic_read_dir,
2101 	.readdir	= proc_readfd,
2102 	.llseek		= default_llseek,
2103 };
2104 
2105 #ifdef CONFIG_CHECKPOINT_RESTORE
2106 
2107 /*
2108  * dname_to_vma_addr - maps a dentry name into two unsigned longs
2109  * which represent vma start and end addresses.
2110  */
2111 static int dname_to_vma_addr(struct dentry *dentry,
2112 			     unsigned long *start, unsigned long *end)
2113 {
2114 	if (sscanf(dentry->d_name.name, "%lx-%lx", start, end) != 2)
2115 		return -EINVAL;
2116 
2117 	return 0;
2118 }
2119 
2120 static int map_files_d_revalidate(struct dentry *dentry, struct nameidata *nd)
2121 {
2122 	unsigned long vm_start, vm_end;
2123 	bool exact_vma_exists = false;
2124 	struct mm_struct *mm = NULL;
2125 	struct task_struct *task;
2126 	const struct cred *cred;
2127 	struct inode *inode;
2128 	int status = 0;
2129 
2130 	if (nd && nd->flags & LOOKUP_RCU)
2131 		return -ECHILD;
2132 
2133 	if (!capable(CAP_SYS_ADMIN)) {
2134 		status = -EACCES;
2135 		goto out_notask;
2136 	}
2137 
2138 	inode = dentry->d_inode;
2139 	task = get_proc_task(inode);
2140 	if (!task)
2141 		goto out_notask;
2142 
2143 	if (!ptrace_may_access(task, PTRACE_MODE_READ))
2144 		goto out;
2145 
2146 	mm = get_task_mm(task);
2147 	if (!mm)
2148 		goto out;
2149 
2150 	if (!dname_to_vma_addr(dentry, &vm_start, &vm_end)) {
2151 		down_read(&mm->mmap_sem);
2152 		exact_vma_exists = !!find_exact_vma(mm, vm_start, vm_end);
2153 		up_read(&mm->mmap_sem);
2154 	}
2155 
2156 	mmput(mm);
2157 
2158 	if (exact_vma_exists) {
2159 		if (task_dumpable(task)) {
2160 			rcu_read_lock();
2161 			cred = __task_cred(task);
2162 			inode->i_uid = cred->euid;
2163 			inode->i_gid = cred->egid;
2164 			rcu_read_unlock();
2165 		} else {
2166 			inode->i_uid = 0;
2167 			inode->i_gid = 0;
2168 		}
2169 		security_task_to_inode(task, inode);
2170 		status = 1;
2171 	}
2172 
2173 out:
2174 	put_task_struct(task);
2175 
2176 out_notask:
2177 	if (status <= 0)
2178 		d_drop(dentry);
2179 
2180 	return status;
2181 }
2182 
2183 static const struct dentry_operations tid_map_files_dentry_operations = {
2184 	.d_revalidate	= map_files_d_revalidate,
2185 	.d_delete	= pid_delete_dentry,
2186 };
2187 
2188 static int proc_map_files_get_link(struct dentry *dentry, struct path *path)
2189 {
2190 	unsigned long vm_start, vm_end;
2191 	struct vm_area_struct *vma;
2192 	struct task_struct *task;
2193 	struct mm_struct *mm;
2194 	int rc;
2195 
2196 	rc = -ENOENT;
2197 	task = get_proc_task(dentry->d_inode);
2198 	if (!task)
2199 		goto out;
2200 
2201 	mm = get_task_mm(task);
2202 	put_task_struct(task);
2203 	if (!mm)
2204 		goto out;
2205 
2206 	rc = dname_to_vma_addr(dentry, &vm_start, &vm_end);
2207 	if (rc)
2208 		goto out_mmput;
2209 
2210 	down_read(&mm->mmap_sem);
2211 	vma = find_exact_vma(mm, vm_start, vm_end);
2212 	if (vma && vma->vm_file) {
2213 		*path = vma->vm_file->f_path;
2214 		path_get(path);
2215 		rc = 0;
2216 	}
2217 	up_read(&mm->mmap_sem);
2218 
2219 out_mmput:
2220 	mmput(mm);
2221 out:
2222 	return rc;
2223 }
2224 
2225 struct map_files_info {
2226 	struct file	*file;
2227 	unsigned long	len;
2228 	unsigned char	name[4*sizeof(long)+2]; /* max: %lx-%lx\0 */
2229 };
2230 
2231 static struct dentry *
2232 proc_map_files_instantiate(struct inode *dir, struct dentry *dentry,
2233 			   struct task_struct *task, const void *ptr)
2234 {
2235 	const struct file *file = ptr;
2236 	struct proc_inode *ei;
2237 	struct inode *inode;
2238 
2239 	if (!file)
2240 		return ERR_PTR(-ENOENT);
2241 
2242 	inode = proc_pid_make_inode(dir->i_sb, task);
2243 	if (!inode)
2244 		return ERR_PTR(-ENOENT);
2245 
2246 	ei = PROC_I(inode);
2247 	ei->op.proc_get_link = proc_map_files_get_link;
2248 
2249 	inode->i_op = &proc_pid_link_inode_operations;
2250 	inode->i_size = 64;
2251 	inode->i_mode = S_IFLNK;
2252 
2253 	if (file->f_mode & FMODE_READ)
2254 		inode->i_mode |= S_IRUSR;
2255 	if (file->f_mode & FMODE_WRITE)
2256 		inode->i_mode |= S_IWUSR;
2257 
2258 	d_set_d_op(dentry, &tid_map_files_dentry_operations);
2259 	d_add(dentry, inode);
2260 
2261 	return NULL;
2262 }
2263 
2264 static struct dentry *proc_map_files_lookup(struct inode *dir,
2265 		struct dentry *dentry, struct nameidata *nd)
2266 {
2267 	unsigned long vm_start, vm_end;
2268 	struct vm_area_struct *vma;
2269 	struct task_struct *task;
2270 	struct dentry *result;
2271 	struct mm_struct *mm;
2272 
2273 	result = ERR_PTR(-EACCES);
2274 	if (!capable(CAP_SYS_ADMIN))
2275 		goto out;
2276 
2277 	result = ERR_PTR(-ENOENT);
2278 	task = get_proc_task(dir);
2279 	if (!task)
2280 		goto out;
2281 
2282 	result = ERR_PTR(-EACCES);
2283 	if (lock_trace(task))
2284 		goto out_put_task;
2285 
2286 	result = ERR_PTR(-ENOENT);
2287 	if (dname_to_vma_addr(dentry, &vm_start, &vm_end))
2288 		goto out_unlock;
2289 
2290 	mm = get_task_mm(task);
2291 	if (!mm)
2292 		goto out_unlock;
2293 
2294 	down_read(&mm->mmap_sem);
2295 	vma = find_exact_vma(mm, vm_start, vm_end);
2296 	if (!vma)
2297 		goto out_no_vma;
2298 
2299 	result = proc_map_files_instantiate(dir, dentry, task, vma->vm_file);
2300 
2301 out_no_vma:
2302 	up_read(&mm->mmap_sem);
2303 	mmput(mm);
2304 out_unlock:
2305 	unlock_trace(task);
2306 out_put_task:
2307 	put_task_struct(task);
2308 out:
2309 	return result;
2310 }
2311 
2312 static const struct inode_operations proc_map_files_inode_operations = {
2313 	.lookup		= proc_map_files_lookup,
2314 	.permission	= proc_fd_permission,
2315 	.setattr	= proc_setattr,
2316 };
2317 
2318 static int
2319 proc_map_files_readdir(struct file *filp, void *dirent, filldir_t filldir)
2320 {
2321 	struct dentry *dentry = filp->f_path.dentry;
2322 	struct inode *inode = dentry->d_inode;
2323 	struct vm_area_struct *vma;
2324 	struct task_struct *task;
2325 	struct mm_struct *mm;
2326 	ino_t ino;
2327 	int ret;
2328 
2329 	ret = -EACCES;
2330 	if (!capable(CAP_SYS_ADMIN))
2331 		goto out;
2332 
2333 	ret = -ENOENT;
2334 	task = get_proc_task(inode);
2335 	if (!task)
2336 		goto out;
2337 
2338 	ret = -EACCES;
2339 	if (lock_trace(task))
2340 		goto out_put_task;
2341 
2342 	ret = 0;
2343 	switch (filp->f_pos) {
2344 	case 0:
2345 		ino = inode->i_ino;
2346 		if (filldir(dirent, ".", 1, 0, ino, DT_DIR) < 0)
2347 			goto out_unlock;
2348 		filp->f_pos++;
2349 	case 1:
2350 		ino = parent_ino(dentry);
2351 		if (filldir(dirent, "..", 2, 1, ino, DT_DIR) < 0)
2352 			goto out_unlock;
2353 		filp->f_pos++;
2354 	default:
2355 	{
2356 		unsigned long nr_files, pos, i;
2357 		struct flex_array *fa = NULL;
2358 		struct map_files_info info;
2359 		struct map_files_info *p;
2360 
2361 		mm = get_task_mm(task);
2362 		if (!mm)
2363 			goto out_unlock;
2364 		down_read(&mm->mmap_sem);
2365 
2366 		nr_files = 0;
2367 
2368 		/*
2369 		 * We need two passes here:
2370 		 *
2371 		 *  1) Collect vmas of mapped files with mmap_sem taken
2372 		 *  2) Release mmap_sem and instantiate entries
2373 		 *
2374 		 * otherwise we get lockdep complained, since filldir()
2375 		 * routine might require mmap_sem taken in might_fault().
2376 		 */
2377 
2378 		for (vma = mm->mmap, pos = 2; vma; vma = vma->vm_next) {
2379 			if (vma->vm_file && ++pos > filp->f_pos)
2380 				nr_files++;
2381 		}
2382 
2383 		if (nr_files) {
2384 			fa = flex_array_alloc(sizeof(info), nr_files,
2385 						GFP_KERNEL);
2386 			if (!fa || flex_array_prealloc(fa, 0, nr_files,
2387 							GFP_KERNEL)) {
2388 				ret = -ENOMEM;
2389 				if (fa)
2390 					flex_array_free(fa);
2391 				up_read(&mm->mmap_sem);
2392 				mmput(mm);
2393 				goto out_unlock;
2394 			}
2395 			for (i = 0, vma = mm->mmap, pos = 2; vma;
2396 					vma = vma->vm_next) {
2397 				if (!vma->vm_file)
2398 					continue;
2399 				if (++pos <= filp->f_pos)
2400 					continue;
2401 
2402 				get_file(vma->vm_file);
2403 				info.file = vma->vm_file;
2404 				info.len = snprintf(info.name,
2405 						sizeof(info.name), "%lx-%lx",
2406 						vma->vm_start, vma->vm_end);
2407 				if (flex_array_put(fa, i++, &info, GFP_KERNEL))
2408 					BUG();
2409 			}
2410 		}
2411 		up_read(&mm->mmap_sem);
2412 
2413 		for (i = 0; i < nr_files; i++) {
2414 			p = flex_array_get(fa, i);
2415 			ret = proc_fill_cache(filp, dirent, filldir,
2416 					      p->name, p->len,
2417 					      proc_map_files_instantiate,
2418 					      task, p->file);
2419 			if (ret)
2420 				break;
2421 			filp->f_pos++;
2422 			fput(p->file);
2423 		}
2424 		for (; i < nr_files; i++) {
2425 			/*
2426 			 * In case of error don't forget
2427 			 * to put rest of file refs.
2428 			 */
2429 			p = flex_array_get(fa, i);
2430 			fput(p->file);
2431 		}
2432 		if (fa)
2433 			flex_array_free(fa);
2434 		mmput(mm);
2435 	}
2436 	}
2437 
2438 out_unlock:
2439 	unlock_trace(task);
2440 out_put_task:
2441 	put_task_struct(task);
2442 out:
2443 	return ret;
2444 }
2445 
2446 static const struct file_operations proc_map_files_operations = {
2447 	.read		= generic_read_dir,
2448 	.readdir	= proc_map_files_readdir,
2449 	.llseek		= default_llseek,
2450 };
2451 
2452 #endif /* CONFIG_CHECKPOINT_RESTORE */
2453 
2454 /*
2455  * /proc/pid/fd needs a special permission handler so that a process can still
2456  * access /proc/self/fd after it has executed a setuid().
2457  */
2458 static int proc_fd_permission(struct inode *inode, int mask)
2459 {
2460 	int rv = generic_permission(inode, mask);
2461 	if (rv == 0)
2462 		return 0;
2463 	if (task_pid(current) == proc_pid(inode))
2464 		rv = 0;
2465 	return rv;
2466 }
2467 
2468 /*
2469  * proc directories can do almost nothing..
2470  */
2471 static const struct inode_operations proc_fd_inode_operations = {
2472 	.lookup		= proc_lookupfd,
2473 	.permission	= proc_fd_permission,
2474 	.setattr	= proc_setattr,
2475 };
2476 
2477 static struct dentry *proc_fdinfo_instantiate(struct inode *dir,
2478 	struct dentry *dentry, struct task_struct *task, const void *ptr)
2479 {
2480 	unsigned fd = *(unsigned *)ptr;
2481  	struct inode *inode;
2482  	struct proc_inode *ei;
2483 	struct dentry *error = ERR_PTR(-ENOENT);
2484 
2485 	inode = proc_pid_make_inode(dir->i_sb, task);
2486 	if (!inode)
2487 		goto out;
2488 	ei = PROC_I(inode);
2489 	ei->fd = fd;
2490 	inode->i_mode = S_IFREG | S_IRUSR;
2491 	inode->i_fop = &proc_fdinfo_file_operations;
2492 	d_set_d_op(dentry, &tid_fd_dentry_operations);
2493 	d_add(dentry, inode);
2494 	/* Close the race of the process dying before we return the dentry */
2495 	if (tid_fd_revalidate(dentry, NULL))
2496 		error = NULL;
2497 
2498  out:
2499 	return error;
2500 }
2501 
2502 static struct dentry *proc_lookupfdinfo(struct inode *dir,
2503 					struct dentry *dentry,
2504 					struct nameidata *nd)
2505 {
2506 	return proc_lookupfd_common(dir, dentry, proc_fdinfo_instantiate);
2507 }
2508 
2509 static int proc_readfdinfo(struct file *filp, void *dirent, filldir_t filldir)
2510 {
2511 	return proc_readfd_common(filp, dirent, filldir,
2512 				  proc_fdinfo_instantiate);
2513 }
2514 
2515 static const struct file_operations proc_fdinfo_operations = {
2516 	.read		= generic_read_dir,
2517 	.readdir	= proc_readfdinfo,
2518 	.llseek		= default_llseek,
2519 };
2520 
2521 /*
2522  * proc directories can do almost nothing..
2523  */
2524 static const struct inode_operations proc_fdinfo_inode_operations = {
2525 	.lookup		= proc_lookupfdinfo,
2526 	.setattr	= proc_setattr,
2527 };
2528 
2529 
2530 static struct dentry *proc_pident_instantiate(struct inode *dir,
2531 	struct dentry *dentry, struct task_struct *task, const void *ptr)
2532 {
2533 	const struct pid_entry *p = ptr;
2534 	struct inode *inode;
2535 	struct proc_inode *ei;
2536 	struct dentry *error = ERR_PTR(-ENOENT);
2537 
2538 	inode = proc_pid_make_inode(dir->i_sb, task);
2539 	if (!inode)
2540 		goto out;
2541 
2542 	ei = PROC_I(inode);
2543 	inode->i_mode = p->mode;
2544 	if (S_ISDIR(inode->i_mode))
2545 		set_nlink(inode, 2);	/* Use getattr to fix if necessary */
2546 	if (p->iop)
2547 		inode->i_op = p->iop;
2548 	if (p->fop)
2549 		inode->i_fop = p->fop;
2550 	ei->op = p->op;
2551 	d_set_d_op(dentry, &pid_dentry_operations);
2552 	d_add(dentry, inode);
2553 	/* Close the race of the process dying before we return the dentry */
2554 	if (pid_revalidate(dentry, NULL))
2555 		error = NULL;
2556 out:
2557 	return error;
2558 }
2559 
2560 static struct dentry *proc_pident_lookup(struct inode *dir,
2561 					 struct dentry *dentry,
2562 					 const struct pid_entry *ents,
2563 					 unsigned int nents)
2564 {
2565 	struct dentry *error;
2566 	struct task_struct *task = get_proc_task(dir);
2567 	const struct pid_entry *p, *last;
2568 
2569 	error = ERR_PTR(-ENOENT);
2570 
2571 	if (!task)
2572 		goto out_no_task;
2573 
2574 	/*
2575 	 * Yes, it does not scale. And it should not. Don't add
2576 	 * new entries into /proc/<tgid>/ without very good reasons.
2577 	 */
2578 	last = &ents[nents - 1];
2579 	for (p = ents; p <= last; p++) {
2580 		if (p->len != dentry->d_name.len)
2581 			continue;
2582 		if (!memcmp(dentry->d_name.name, p->name, p->len))
2583 			break;
2584 	}
2585 	if (p > last)
2586 		goto out;
2587 
2588 	error = proc_pident_instantiate(dir, dentry, task, p);
2589 out:
2590 	put_task_struct(task);
2591 out_no_task:
2592 	return error;
2593 }
2594 
2595 static int proc_pident_fill_cache(struct file *filp, void *dirent,
2596 	filldir_t filldir, struct task_struct *task, const struct pid_entry *p)
2597 {
2598 	return proc_fill_cache(filp, dirent, filldir, p->name, p->len,
2599 				proc_pident_instantiate, task, p);
2600 }
2601 
2602 static int proc_pident_readdir(struct file *filp,
2603 		void *dirent, filldir_t filldir,
2604 		const struct pid_entry *ents, unsigned int nents)
2605 {
2606 	int i;
2607 	struct dentry *dentry = filp->f_path.dentry;
2608 	struct inode *inode = dentry->d_inode;
2609 	struct task_struct *task = get_proc_task(inode);
2610 	const struct pid_entry *p, *last;
2611 	ino_t ino;
2612 	int ret;
2613 
2614 	ret = -ENOENT;
2615 	if (!task)
2616 		goto out_no_task;
2617 
2618 	ret = 0;
2619 	i = filp->f_pos;
2620 	switch (i) {
2621 	case 0:
2622 		ino = inode->i_ino;
2623 		if (filldir(dirent, ".", 1, i, ino, DT_DIR) < 0)
2624 			goto out;
2625 		i++;
2626 		filp->f_pos++;
2627 		/* fall through */
2628 	case 1:
2629 		ino = parent_ino(dentry);
2630 		if (filldir(dirent, "..", 2, i, ino, DT_DIR) < 0)
2631 			goto out;
2632 		i++;
2633 		filp->f_pos++;
2634 		/* fall through */
2635 	default:
2636 		i -= 2;
2637 		if (i >= nents) {
2638 			ret = 1;
2639 			goto out;
2640 		}
2641 		p = ents + i;
2642 		last = &ents[nents - 1];
2643 		while (p <= last) {
2644 			if (proc_pident_fill_cache(filp, dirent, filldir, task, p) < 0)
2645 				goto out;
2646 			filp->f_pos++;
2647 			p++;
2648 		}
2649 	}
2650 
2651 	ret = 1;
2652 out:
2653 	put_task_struct(task);
2654 out_no_task:
2655 	return ret;
2656 }
2657 
2658 #ifdef CONFIG_SECURITY
2659 static ssize_t proc_pid_attr_read(struct file * file, char __user * buf,
2660 				  size_t count, loff_t *ppos)
2661 {
2662 	struct inode * inode = file->f_path.dentry->d_inode;
2663 	char *p = NULL;
2664 	ssize_t length;
2665 	struct task_struct *task = get_proc_task(inode);
2666 
2667 	if (!task)
2668 		return -ESRCH;
2669 
2670 	length = security_getprocattr(task,
2671 				      (char*)file->f_path.dentry->d_name.name,
2672 				      &p);
2673 	put_task_struct(task);
2674 	if (length > 0)
2675 		length = simple_read_from_buffer(buf, count, ppos, p, length);
2676 	kfree(p);
2677 	return length;
2678 }
2679 
2680 static ssize_t proc_pid_attr_write(struct file * file, const char __user * buf,
2681 				   size_t count, loff_t *ppos)
2682 {
2683 	struct inode * inode = file->f_path.dentry->d_inode;
2684 	char *page;
2685 	ssize_t length;
2686 	struct task_struct *task = get_proc_task(inode);
2687 
2688 	length = -ESRCH;
2689 	if (!task)
2690 		goto out_no_task;
2691 	if (count > PAGE_SIZE)
2692 		count = PAGE_SIZE;
2693 
2694 	/* No partial writes. */
2695 	length = -EINVAL;
2696 	if (*ppos != 0)
2697 		goto out;
2698 
2699 	length = -ENOMEM;
2700 	page = (char*)__get_free_page(GFP_TEMPORARY);
2701 	if (!page)
2702 		goto out;
2703 
2704 	length = -EFAULT;
2705 	if (copy_from_user(page, buf, count))
2706 		goto out_free;
2707 
2708 	/* Guard against adverse ptrace interaction */
2709 	length = mutex_lock_interruptible(&task->signal->cred_guard_mutex);
2710 	if (length < 0)
2711 		goto out_free;
2712 
2713 	length = security_setprocattr(task,
2714 				      (char*)file->f_path.dentry->d_name.name,
2715 				      (void*)page, count);
2716 	mutex_unlock(&task->signal->cred_guard_mutex);
2717 out_free:
2718 	free_page((unsigned long) page);
2719 out:
2720 	put_task_struct(task);
2721 out_no_task:
2722 	return length;
2723 }
2724 
2725 static const struct file_operations proc_pid_attr_operations = {
2726 	.read		= proc_pid_attr_read,
2727 	.write		= proc_pid_attr_write,
2728 	.llseek		= generic_file_llseek,
2729 };
2730 
2731 static const struct pid_entry attr_dir_stuff[] = {
2732 	REG("current",    S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2733 	REG("prev",       S_IRUGO,	   proc_pid_attr_operations),
2734 	REG("exec",       S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2735 	REG("fscreate",   S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2736 	REG("keycreate",  S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2737 	REG("sockcreate", S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2738 };
2739 
2740 static int proc_attr_dir_readdir(struct file * filp,
2741 			     void * dirent, filldir_t filldir)
2742 {
2743 	return proc_pident_readdir(filp,dirent,filldir,
2744 				   attr_dir_stuff,ARRAY_SIZE(attr_dir_stuff));
2745 }
2746 
2747 static const struct file_operations proc_attr_dir_operations = {
2748 	.read		= generic_read_dir,
2749 	.readdir	= proc_attr_dir_readdir,
2750 	.llseek		= default_llseek,
2751 };
2752 
2753 static struct dentry *proc_attr_dir_lookup(struct inode *dir,
2754 				struct dentry *dentry, struct nameidata *nd)
2755 {
2756 	return proc_pident_lookup(dir, dentry,
2757 				  attr_dir_stuff, ARRAY_SIZE(attr_dir_stuff));
2758 }
2759 
2760 static const struct inode_operations proc_attr_dir_inode_operations = {
2761 	.lookup		= proc_attr_dir_lookup,
2762 	.getattr	= pid_getattr,
2763 	.setattr	= proc_setattr,
2764 };
2765 
2766 #endif
2767 
2768 #ifdef CONFIG_ELF_CORE
2769 static ssize_t proc_coredump_filter_read(struct file *file, char __user *buf,
2770 					 size_t count, loff_t *ppos)
2771 {
2772 	struct task_struct *task = get_proc_task(file->f_dentry->d_inode);
2773 	struct mm_struct *mm;
2774 	char buffer[PROC_NUMBUF];
2775 	size_t len;
2776 	int ret;
2777 
2778 	if (!task)
2779 		return -ESRCH;
2780 
2781 	ret = 0;
2782 	mm = get_task_mm(task);
2783 	if (mm) {
2784 		len = snprintf(buffer, sizeof(buffer), "%08lx\n",
2785 			       ((mm->flags & MMF_DUMP_FILTER_MASK) >>
2786 				MMF_DUMP_FILTER_SHIFT));
2787 		mmput(mm);
2788 		ret = simple_read_from_buffer(buf, count, ppos, buffer, len);
2789 	}
2790 
2791 	put_task_struct(task);
2792 
2793 	return ret;
2794 }
2795 
2796 static ssize_t proc_coredump_filter_write(struct file *file,
2797 					  const char __user *buf,
2798 					  size_t count,
2799 					  loff_t *ppos)
2800 {
2801 	struct task_struct *task;
2802 	struct mm_struct *mm;
2803 	char buffer[PROC_NUMBUF], *end;
2804 	unsigned int val;
2805 	int ret;
2806 	int i;
2807 	unsigned long mask;
2808 
2809 	ret = -EFAULT;
2810 	memset(buffer, 0, sizeof(buffer));
2811 	if (count > sizeof(buffer) - 1)
2812 		count = sizeof(buffer) - 1;
2813 	if (copy_from_user(buffer, buf, count))
2814 		goto out_no_task;
2815 
2816 	ret = -EINVAL;
2817 	val = (unsigned int)simple_strtoul(buffer, &end, 0);
2818 	if (*end == '\n')
2819 		end++;
2820 	if (end - buffer == 0)
2821 		goto out_no_task;
2822 
2823 	ret = -ESRCH;
2824 	task = get_proc_task(file->f_dentry->d_inode);
2825 	if (!task)
2826 		goto out_no_task;
2827 
2828 	ret = end - buffer;
2829 	mm = get_task_mm(task);
2830 	if (!mm)
2831 		goto out_no_mm;
2832 
2833 	for (i = 0, mask = 1; i < MMF_DUMP_FILTER_BITS; i++, mask <<= 1) {
2834 		if (val & mask)
2835 			set_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags);
2836 		else
2837 			clear_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags);
2838 	}
2839 
2840 	mmput(mm);
2841  out_no_mm:
2842 	put_task_struct(task);
2843  out_no_task:
2844 	return ret;
2845 }
2846 
2847 static const struct file_operations proc_coredump_filter_operations = {
2848 	.read		= proc_coredump_filter_read,
2849 	.write		= proc_coredump_filter_write,
2850 	.llseek		= generic_file_llseek,
2851 };
2852 #endif
2853 
2854 /*
2855  * /proc/self:
2856  */
2857 static int proc_self_readlink(struct dentry *dentry, char __user *buffer,
2858 			      int buflen)
2859 {
2860 	struct pid_namespace *ns = dentry->d_sb->s_fs_info;
2861 	pid_t tgid = task_tgid_nr_ns(current, ns);
2862 	char tmp[PROC_NUMBUF];
2863 	if (!tgid)
2864 		return -ENOENT;
2865 	sprintf(tmp, "%d", tgid);
2866 	return vfs_readlink(dentry,buffer,buflen,tmp);
2867 }
2868 
2869 static void *proc_self_follow_link(struct dentry *dentry, struct nameidata *nd)
2870 {
2871 	struct pid_namespace *ns = dentry->d_sb->s_fs_info;
2872 	pid_t tgid = task_tgid_nr_ns(current, ns);
2873 	char *name = ERR_PTR(-ENOENT);
2874 	if (tgid) {
2875 		name = __getname();
2876 		if (!name)
2877 			name = ERR_PTR(-ENOMEM);
2878 		else
2879 			sprintf(name, "%d", tgid);
2880 	}
2881 	nd_set_link(nd, name);
2882 	return NULL;
2883 }
2884 
2885 static void proc_self_put_link(struct dentry *dentry, struct nameidata *nd,
2886 				void *cookie)
2887 {
2888 	char *s = nd_get_link(nd);
2889 	if (!IS_ERR(s))
2890 		__putname(s);
2891 }
2892 
2893 static const struct inode_operations proc_self_inode_operations = {
2894 	.readlink	= proc_self_readlink,
2895 	.follow_link	= proc_self_follow_link,
2896 	.put_link	= proc_self_put_link,
2897 };
2898 
2899 /*
2900  * proc base
2901  *
2902  * These are the directory entries in the root directory of /proc
2903  * that properly belong to the /proc filesystem, as they describe
2904  * describe something that is process related.
2905  */
2906 static const struct pid_entry proc_base_stuff[] = {
2907 	NOD("self", S_IFLNK|S_IRWXUGO,
2908 		&proc_self_inode_operations, NULL, {}),
2909 };
2910 
2911 static struct dentry *proc_base_instantiate(struct inode *dir,
2912 	struct dentry *dentry, struct task_struct *task, const void *ptr)
2913 {
2914 	const struct pid_entry *p = ptr;
2915 	struct inode *inode;
2916 	struct proc_inode *ei;
2917 	struct dentry *error;
2918 
2919 	/* Allocate the inode */
2920 	error = ERR_PTR(-ENOMEM);
2921 	inode = new_inode(dir->i_sb);
2922 	if (!inode)
2923 		goto out;
2924 
2925 	/* Initialize the inode */
2926 	ei = PROC_I(inode);
2927 	inode->i_ino = get_next_ino();
2928 	inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
2929 
2930 	/*
2931 	 * grab the reference to the task.
2932 	 */
2933 	ei->pid = get_task_pid(task, PIDTYPE_PID);
2934 	if (!ei->pid)
2935 		goto out_iput;
2936 
2937 	inode->i_mode = p->mode;
2938 	if (S_ISDIR(inode->i_mode))
2939 		set_nlink(inode, 2);
2940 	if (S_ISLNK(inode->i_mode))
2941 		inode->i_size = 64;
2942 	if (p->iop)
2943 		inode->i_op = p->iop;
2944 	if (p->fop)
2945 		inode->i_fop = p->fop;
2946 	ei->op = p->op;
2947 	d_add(dentry, inode);
2948 	error = NULL;
2949 out:
2950 	return error;
2951 out_iput:
2952 	iput(inode);
2953 	goto out;
2954 }
2955 
2956 static struct dentry *proc_base_lookup(struct inode *dir, struct dentry *dentry)
2957 {
2958 	struct dentry *error;
2959 	struct task_struct *task = get_proc_task(dir);
2960 	const struct pid_entry *p, *last;
2961 
2962 	error = ERR_PTR(-ENOENT);
2963 
2964 	if (!task)
2965 		goto out_no_task;
2966 
2967 	/* Lookup the directory entry */
2968 	last = &proc_base_stuff[ARRAY_SIZE(proc_base_stuff) - 1];
2969 	for (p = proc_base_stuff; p <= last; p++) {
2970 		if (p->len != dentry->d_name.len)
2971 			continue;
2972 		if (!memcmp(dentry->d_name.name, p->name, p->len))
2973 			break;
2974 	}
2975 	if (p > last)
2976 		goto out;
2977 
2978 	error = proc_base_instantiate(dir, dentry, task, p);
2979 
2980 out:
2981 	put_task_struct(task);
2982 out_no_task:
2983 	return error;
2984 }
2985 
2986 static int proc_base_fill_cache(struct file *filp, void *dirent,
2987 	filldir_t filldir, struct task_struct *task, const struct pid_entry *p)
2988 {
2989 	return proc_fill_cache(filp, dirent, filldir, p->name, p->len,
2990 				proc_base_instantiate, task, p);
2991 }
2992 
2993 #ifdef CONFIG_TASK_IO_ACCOUNTING
2994 static int do_io_accounting(struct task_struct *task, char *buffer, int whole)
2995 {
2996 	struct task_io_accounting acct = task->ioac;
2997 	unsigned long flags;
2998 	int result;
2999 
3000 	result = mutex_lock_killable(&task->signal->cred_guard_mutex);
3001 	if (result)
3002 		return result;
3003 
3004 	if (!ptrace_may_access(task, PTRACE_MODE_READ)) {
3005 		result = -EACCES;
3006 		goto out_unlock;
3007 	}
3008 
3009 	if (whole && lock_task_sighand(task, &flags)) {
3010 		struct task_struct *t = task;
3011 
3012 		task_io_accounting_add(&acct, &task->signal->ioac);
3013 		while_each_thread(task, t)
3014 			task_io_accounting_add(&acct, &t->ioac);
3015 
3016 		unlock_task_sighand(task, &flags);
3017 	}
3018 	result = sprintf(buffer,
3019 			"rchar: %llu\n"
3020 			"wchar: %llu\n"
3021 			"syscr: %llu\n"
3022 			"syscw: %llu\n"
3023 			"read_bytes: %llu\n"
3024 			"write_bytes: %llu\n"
3025 			"cancelled_write_bytes: %llu\n",
3026 			(unsigned long long)acct.rchar,
3027 			(unsigned long long)acct.wchar,
3028 			(unsigned long long)acct.syscr,
3029 			(unsigned long long)acct.syscw,
3030 			(unsigned long long)acct.read_bytes,
3031 			(unsigned long long)acct.write_bytes,
3032 			(unsigned long long)acct.cancelled_write_bytes);
3033 out_unlock:
3034 	mutex_unlock(&task->signal->cred_guard_mutex);
3035 	return result;
3036 }
3037 
3038 static int proc_tid_io_accounting(struct task_struct *task, char *buffer)
3039 {
3040 	return do_io_accounting(task, buffer, 0);
3041 }
3042 
3043 static int proc_tgid_io_accounting(struct task_struct *task, char *buffer)
3044 {
3045 	return do_io_accounting(task, buffer, 1);
3046 }
3047 #endif /* CONFIG_TASK_IO_ACCOUNTING */
3048 
3049 static int proc_pid_personality(struct seq_file *m, struct pid_namespace *ns,
3050 				struct pid *pid, struct task_struct *task)
3051 {
3052 	int err = lock_trace(task);
3053 	if (!err) {
3054 		seq_printf(m, "%08x\n", task->personality);
3055 		unlock_trace(task);
3056 	}
3057 	return err;
3058 }
3059 
3060 /*
3061  * Thread groups
3062  */
3063 static const struct file_operations proc_task_operations;
3064 static const struct inode_operations proc_task_inode_operations;
3065 
3066 static const struct pid_entry tgid_base_stuff[] = {
3067 	DIR("task",       S_IRUGO|S_IXUGO, proc_task_inode_operations, proc_task_operations),
3068 	DIR("fd",         S_IRUSR|S_IXUSR, proc_fd_inode_operations, proc_fd_operations),
3069 #ifdef CONFIG_CHECKPOINT_RESTORE
3070 	DIR("map_files",  S_IRUSR|S_IXUSR, proc_map_files_inode_operations, proc_map_files_operations),
3071 #endif
3072 	DIR("fdinfo",     S_IRUSR|S_IXUSR, proc_fdinfo_inode_operations, proc_fdinfo_operations),
3073 	DIR("ns",	  S_IRUSR|S_IXUGO, proc_ns_dir_inode_operations, proc_ns_dir_operations),
3074 #ifdef CONFIG_NET
3075 	DIR("net",        S_IRUGO|S_IXUGO, proc_net_inode_operations, proc_net_operations),
3076 #endif
3077 	REG("environ",    S_IRUSR, proc_environ_operations),
3078 	INF("auxv",       S_IRUSR, proc_pid_auxv),
3079 	ONE("status",     S_IRUGO, proc_pid_status),
3080 	ONE("personality", S_IRUGO, proc_pid_personality),
3081 	INF("limits",	  S_IRUGO, proc_pid_limits),
3082 #ifdef CONFIG_SCHED_DEBUG
3083 	REG("sched",      S_IRUGO|S_IWUSR, proc_pid_sched_operations),
3084 #endif
3085 #ifdef CONFIG_SCHED_AUTOGROUP
3086 	REG("autogroup",  S_IRUGO|S_IWUSR, proc_pid_sched_autogroup_operations),
3087 #endif
3088 	REG("comm",      S_IRUGO|S_IWUSR, proc_pid_set_comm_operations),
3089 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK
3090 	INF("syscall",    S_IRUGO, proc_pid_syscall),
3091 #endif
3092 	INF("cmdline",    S_IRUGO, proc_pid_cmdline),
3093 	ONE("stat",       S_IRUGO, proc_tgid_stat),
3094 	ONE("statm",      S_IRUGO, proc_pid_statm),
3095 	REG("maps",       S_IRUGO, proc_maps_operations),
3096 #ifdef CONFIG_NUMA
3097 	REG("numa_maps",  S_IRUGO, proc_numa_maps_operations),
3098 #endif
3099 	REG("mem",        S_IRUSR|S_IWUSR, proc_mem_operations),
3100 	LNK("cwd",        proc_cwd_link),
3101 	LNK("root",       proc_root_link),
3102 	LNK("exe",        proc_exe_link),
3103 	REG("mounts",     S_IRUGO, proc_mounts_operations),
3104 	REG("mountinfo",  S_IRUGO, proc_mountinfo_operations),
3105 	REG("mountstats", S_IRUSR, proc_mountstats_operations),
3106 #ifdef CONFIG_PROC_PAGE_MONITOR
3107 	REG("clear_refs", S_IWUSR, proc_clear_refs_operations),
3108 	REG("smaps",      S_IRUGO, proc_smaps_operations),
3109 	REG("pagemap",    S_IRUGO, proc_pagemap_operations),
3110 #endif
3111 #ifdef CONFIG_SECURITY
3112 	DIR("attr",       S_IRUGO|S_IXUGO, proc_attr_dir_inode_operations, proc_attr_dir_operations),
3113 #endif
3114 #ifdef CONFIG_KALLSYMS
3115 	INF("wchan",      S_IRUGO, proc_pid_wchan),
3116 #endif
3117 #ifdef CONFIG_STACKTRACE
3118 	ONE("stack",      S_IRUGO, proc_pid_stack),
3119 #endif
3120 #ifdef CONFIG_SCHEDSTATS
3121 	INF("schedstat",  S_IRUGO, proc_pid_schedstat),
3122 #endif
3123 #ifdef CONFIG_LATENCYTOP
3124 	REG("latency",  S_IRUGO, proc_lstats_operations),
3125 #endif
3126 #ifdef CONFIG_PROC_PID_CPUSET
3127 	REG("cpuset",     S_IRUGO, proc_cpuset_operations),
3128 #endif
3129 #ifdef CONFIG_CGROUPS
3130 	REG("cgroup",  S_IRUGO, proc_cgroup_operations),
3131 #endif
3132 	INF("oom_score",  S_IRUGO, proc_oom_score),
3133 	REG("oom_adj",    S_IRUGO|S_IWUSR, proc_oom_adjust_operations),
3134 	REG("oom_score_adj", S_IRUGO|S_IWUSR, proc_oom_score_adj_operations),
3135 #ifdef CONFIG_AUDITSYSCALL
3136 	REG("loginuid",   S_IWUSR|S_IRUGO, proc_loginuid_operations),
3137 	REG("sessionid",  S_IRUGO, proc_sessionid_operations),
3138 #endif
3139 #ifdef CONFIG_FAULT_INJECTION
3140 	REG("make-it-fail", S_IRUGO|S_IWUSR, proc_fault_inject_operations),
3141 #endif
3142 #ifdef CONFIG_ELF_CORE
3143 	REG("coredump_filter", S_IRUGO|S_IWUSR, proc_coredump_filter_operations),
3144 #endif
3145 #ifdef CONFIG_TASK_IO_ACCOUNTING
3146 	INF("io",	S_IRUSR, proc_tgid_io_accounting),
3147 #endif
3148 #ifdef CONFIG_HARDWALL
3149 	INF("hardwall",   S_IRUGO, proc_pid_hardwall),
3150 #endif
3151 };
3152 
3153 static int proc_tgid_base_readdir(struct file * filp,
3154 			     void * dirent, filldir_t filldir)
3155 {
3156 	return proc_pident_readdir(filp,dirent,filldir,
3157 				   tgid_base_stuff,ARRAY_SIZE(tgid_base_stuff));
3158 }
3159 
3160 static const struct file_operations proc_tgid_base_operations = {
3161 	.read		= generic_read_dir,
3162 	.readdir	= proc_tgid_base_readdir,
3163 	.llseek		= default_llseek,
3164 };
3165 
3166 static struct dentry *proc_tgid_base_lookup(struct inode *dir, struct dentry *dentry, struct nameidata *nd){
3167 	return proc_pident_lookup(dir, dentry,
3168 				  tgid_base_stuff, ARRAY_SIZE(tgid_base_stuff));
3169 }
3170 
3171 static const struct inode_operations proc_tgid_base_inode_operations = {
3172 	.lookup		= proc_tgid_base_lookup,
3173 	.getattr	= pid_getattr,
3174 	.setattr	= proc_setattr,
3175 	.permission	= proc_pid_permission,
3176 };
3177 
3178 static void proc_flush_task_mnt(struct vfsmount *mnt, pid_t pid, pid_t tgid)
3179 {
3180 	struct dentry *dentry, *leader, *dir;
3181 	char buf[PROC_NUMBUF];
3182 	struct qstr name;
3183 
3184 	name.name = buf;
3185 	name.len = snprintf(buf, sizeof(buf), "%d", pid);
3186 	dentry = d_hash_and_lookup(mnt->mnt_root, &name);
3187 	if (dentry) {
3188 		shrink_dcache_parent(dentry);
3189 		d_drop(dentry);
3190 		dput(dentry);
3191 	}
3192 
3193 	name.name = buf;
3194 	name.len = snprintf(buf, sizeof(buf), "%d", tgid);
3195 	leader = d_hash_and_lookup(mnt->mnt_root, &name);
3196 	if (!leader)
3197 		goto out;
3198 
3199 	name.name = "task";
3200 	name.len = strlen(name.name);
3201 	dir = d_hash_and_lookup(leader, &name);
3202 	if (!dir)
3203 		goto out_put_leader;
3204 
3205 	name.name = buf;
3206 	name.len = snprintf(buf, sizeof(buf), "%d", pid);
3207 	dentry = d_hash_and_lookup(dir, &name);
3208 	if (dentry) {
3209 		shrink_dcache_parent(dentry);
3210 		d_drop(dentry);
3211 		dput(dentry);
3212 	}
3213 
3214 	dput(dir);
3215 out_put_leader:
3216 	dput(leader);
3217 out:
3218 	return;
3219 }
3220 
3221 /**
3222  * proc_flush_task -  Remove dcache entries for @task from the /proc dcache.
3223  * @task: task that should be flushed.
3224  *
3225  * When flushing dentries from proc, one needs to flush them from global
3226  * proc (proc_mnt) and from all the namespaces' procs this task was seen
3227  * in. This call is supposed to do all of this job.
3228  *
3229  * Looks in the dcache for
3230  * /proc/@pid
3231  * /proc/@tgid/task/@pid
3232  * if either directory is present flushes it and all of it'ts children
3233  * from the dcache.
3234  *
3235  * It is safe and reasonable to cache /proc entries for a task until
3236  * that task exits.  After that they just clog up the dcache with
3237  * useless entries, possibly causing useful dcache entries to be
3238  * flushed instead.  This routine is proved to flush those useless
3239  * dcache entries at process exit time.
3240  *
3241  * NOTE: This routine is just an optimization so it does not guarantee
3242  *       that no dcache entries will exist at process exit time it
3243  *       just makes it very unlikely that any will persist.
3244  */
3245 
3246 void proc_flush_task(struct task_struct *task)
3247 {
3248 	int i;
3249 	struct pid *pid, *tgid;
3250 	struct upid *upid;
3251 
3252 	pid = task_pid(task);
3253 	tgid = task_tgid(task);
3254 
3255 	for (i = 0; i <= pid->level; i++) {
3256 		upid = &pid->numbers[i];
3257 		proc_flush_task_mnt(upid->ns->proc_mnt, upid->nr,
3258 					tgid->numbers[i].nr);
3259 	}
3260 
3261 	upid = &pid->numbers[pid->level];
3262 	if (upid->nr == 1)
3263 		pid_ns_release_proc(upid->ns);
3264 }
3265 
3266 static struct dentry *proc_pid_instantiate(struct inode *dir,
3267 					   struct dentry * dentry,
3268 					   struct task_struct *task, const void *ptr)
3269 {
3270 	struct dentry *error = ERR_PTR(-ENOENT);
3271 	struct inode *inode;
3272 
3273 	inode = proc_pid_make_inode(dir->i_sb, task);
3274 	if (!inode)
3275 		goto out;
3276 
3277 	inode->i_mode = S_IFDIR|S_IRUGO|S_IXUGO;
3278 	inode->i_op = &proc_tgid_base_inode_operations;
3279 	inode->i_fop = &proc_tgid_base_operations;
3280 	inode->i_flags|=S_IMMUTABLE;
3281 
3282 	set_nlink(inode, 2 + pid_entry_count_dirs(tgid_base_stuff,
3283 						  ARRAY_SIZE(tgid_base_stuff)));
3284 
3285 	d_set_d_op(dentry, &pid_dentry_operations);
3286 
3287 	d_add(dentry, inode);
3288 	/* Close the race of the process dying before we return the dentry */
3289 	if (pid_revalidate(dentry, NULL))
3290 		error = NULL;
3291 out:
3292 	return error;
3293 }
3294 
3295 struct dentry *proc_pid_lookup(struct inode *dir, struct dentry * dentry, struct nameidata *nd)
3296 {
3297 	struct dentry *result;
3298 	struct task_struct *task;
3299 	unsigned tgid;
3300 	struct pid_namespace *ns;
3301 
3302 	result = proc_base_lookup(dir, dentry);
3303 	if (!IS_ERR(result) || PTR_ERR(result) != -ENOENT)
3304 		goto out;
3305 
3306 	tgid = name_to_int(dentry);
3307 	if (tgid == ~0U)
3308 		goto out;
3309 
3310 	ns = dentry->d_sb->s_fs_info;
3311 	rcu_read_lock();
3312 	task = find_task_by_pid_ns(tgid, ns);
3313 	if (task)
3314 		get_task_struct(task);
3315 	rcu_read_unlock();
3316 	if (!task)
3317 		goto out;
3318 
3319 	result = proc_pid_instantiate(dir, dentry, task, NULL);
3320 	put_task_struct(task);
3321 out:
3322 	return result;
3323 }
3324 
3325 /*
3326  * Find the first task with tgid >= tgid
3327  *
3328  */
3329 struct tgid_iter {
3330 	unsigned int tgid;
3331 	struct task_struct *task;
3332 };
3333 static struct tgid_iter next_tgid(struct pid_namespace *ns, struct tgid_iter iter)
3334 {
3335 	struct pid *pid;
3336 
3337 	if (iter.task)
3338 		put_task_struct(iter.task);
3339 	rcu_read_lock();
3340 retry:
3341 	iter.task = NULL;
3342 	pid = find_ge_pid(iter.tgid, ns);
3343 	if (pid) {
3344 		iter.tgid = pid_nr_ns(pid, ns);
3345 		iter.task = pid_task(pid, PIDTYPE_PID);
3346 		/* What we to know is if the pid we have find is the
3347 		 * pid of a thread_group_leader.  Testing for task
3348 		 * being a thread_group_leader is the obvious thing
3349 		 * todo but there is a window when it fails, due to
3350 		 * the pid transfer logic in de_thread.
3351 		 *
3352 		 * So we perform the straight forward test of seeing
3353 		 * if the pid we have found is the pid of a thread
3354 		 * group leader, and don't worry if the task we have
3355 		 * found doesn't happen to be a thread group leader.
3356 		 * As we don't care in the case of readdir.
3357 		 */
3358 		if (!iter.task || !has_group_leader_pid(iter.task)) {
3359 			iter.tgid += 1;
3360 			goto retry;
3361 		}
3362 		get_task_struct(iter.task);
3363 	}
3364 	rcu_read_unlock();
3365 	return iter;
3366 }
3367 
3368 #define TGID_OFFSET (FIRST_PROCESS_ENTRY + ARRAY_SIZE(proc_base_stuff))
3369 
3370 static int proc_pid_fill_cache(struct file *filp, void *dirent, filldir_t filldir,
3371 	struct tgid_iter iter)
3372 {
3373 	char name[PROC_NUMBUF];
3374 	int len = snprintf(name, sizeof(name), "%d", iter.tgid);
3375 	return proc_fill_cache(filp, dirent, filldir, name, len,
3376 				proc_pid_instantiate, iter.task, NULL);
3377 }
3378 
3379 static int fake_filldir(void *buf, const char *name, int namelen,
3380 			loff_t offset, u64 ino, unsigned d_type)
3381 {
3382 	return 0;
3383 }
3384 
3385 /* for the /proc/ directory itself, after non-process stuff has been done */
3386 int proc_pid_readdir(struct file * filp, void * dirent, filldir_t filldir)
3387 {
3388 	unsigned int nr;
3389 	struct task_struct *reaper;
3390 	struct tgid_iter iter;
3391 	struct pid_namespace *ns;
3392 	filldir_t __filldir;
3393 
3394 	if (filp->f_pos >= PID_MAX_LIMIT + TGID_OFFSET)
3395 		goto out_no_task;
3396 	nr = filp->f_pos - FIRST_PROCESS_ENTRY;
3397 
3398 	reaper = get_proc_task(filp->f_path.dentry->d_inode);
3399 	if (!reaper)
3400 		goto out_no_task;
3401 
3402 	for (; nr < ARRAY_SIZE(proc_base_stuff); filp->f_pos++, nr++) {
3403 		const struct pid_entry *p = &proc_base_stuff[nr];
3404 		if (proc_base_fill_cache(filp, dirent, filldir, reaper, p) < 0)
3405 			goto out;
3406 	}
3407 
3408 	ns = filp->f_dentry->d_sb->s_fs_info;
3409 	iter.task = NULL;
3410 	iter.tgid = filp->f_pos - TGID_OFFSET;
3411 	for (iter = next_tgid(ns, iter);
3412 	     iter.task;
3413 	     iter.tgid += 1, iter = next_tgid(ns, iter)) {
3414 		if (has_pid_permissions(ns, iter.task, 2))
3415 			__filldir = filldir;
3416 		else
3417 			__filldir = fake_filldir;
3418 
3419 		filp->f_pos = iter.tgid + TGID_OFFSET;
3420 		if (proc_pid_fill_cache(filp, dirent, __filldir, iter) < 0) {
3421 			put_task_struct(iter.task);
3422 			goto out;
3423 		}
3424 	}
3425 	filp->f_pos = PID_MAX_LIMIT + TGID_OFFSET;
3426 out:
3427 	put_task_struct(reaper);
3428 out_no_task:
3429 	return 0;
3430 }
3431 
3432 /*
3433  * Tasks
3434  */
3435 static const struct pid_entry tid_base_stuff[] = {
3436 	DIR("fd",        S_IRUSR|S_IXUSR, proc_fd_inode_operations, proc_fd_operations),
3437 	DIR("fdinfo",    S_IRUSR|S_IXUSR, proc_fdinfo_inode_operations, proc_fdinfo_operations),
3438 	DIR("ns",	 S_IRUSR|S_IXUGO, proc_ns_dir_inode_operations, proc_ns_dir_operations),
3439 	REG("environ",   S_IRUSR, proc_environ_operations),
3440 	INF("auxv",      S_IRUSR, proc_pid_auxv),
3441 	ONE("status",    S_IRUGO, proc_pid_status),
3442 	ONE("personality", S_IRUGO, proc_pid_personality),
3443 	INF("limits",	 S_IRUGO, proc_pid_limits),
3444 #ifdef CONFIG_SCHED_DEBUG
3445 	REG("sched",     S_IRUGO|S_IWUSR, proc_pid_sched_operations),
3446 #endif
3447 	REG("comm",      S_IRUGO|S_IWUSR, proc_pid_set_comm_operations),
3448 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK
3449 	INF("syscall",   S_IRUGO, proc_pid_syscall),
3450 #endif
3451 	INF("cmdline",   S_IRUGO, proc_pid_cmdline),
3452 	ONE("stat",      S_IRUGO, proc_tid_stat),
3453 	ONE("statm",     S_IRUGO, proc_pid_statm),
3454 	REG("maps",      S_IRUGO, proc_maps_operations),
3455 #ifdef CONFIG_NUMA
3456 	REG("numa_maps", S_IRUGO, proc_numa_maps_operations),
3457 #endif
3458 	REG("mem",       S_IRUSR|S_IWUSR, proc_mem_operations),
3459 	LNK("cwd",       proc_cwd_link),
3460 	LNK("root",      proc_root_link),
3461 	LNK("exe",       proc_exe_link),
3462 	REG("mounts",    S_IRUGO, proc_mounts_operations),
3463 	REG("mountinfo",  S_IRUGO, proc_mountinfo_operations),
3464 #ifdef CONFIG_PROC_PAGE_MONITOR
3465 	REG("clear_refs", S_IWUSR, proc_clear_refs_operations),
3466 	REG("smaps",     S_IRUGO, proc_smaps_operations),
3467 	REG("pagemap",    S_IRUGO, proc_pagemap_operations),
3468 #endif
3469 #ifdef CONFIG_SECURITY
3470 	DIR("attr",      S_IRUGO|S_IXUGO, proc_attr_dir_inode_operations, proc_attr_dir_operations),
3471 #endif
3472 #ifdef CONFIG_KALLSYMS
3473 	INF("wchan",     S_IRUGO, proc_pid_wchan),
3474 #endif
3475 #ifdef CONFIG_STACKTRACE
3476 	ONE("stack",      S_IRUGO, proc_pid_stack),
3477 #endif
3478 #ifdef CONFIG_SCHEDSTATS
3479 	INF("schedstat", S_IRUGO, proc_pid_schedstat),
3480 #endif
3481 #ifdef CONFIG_LATENCYTOP
3482 	REG("latency",  S_IRUGO, proc_lstats_operations),
3483 #endif
3484 #ifdef CONFIG_PROC_PID_CPUSET
3485 	REG("cpuset",    S_IRUGO, proc_cpuset_operations),
3486 #endif
3487 #ifdef CONFIG_CGROUPS
3488 	REG("cgroup",  S_IRUGO, proc_cgroup_operations),
3489 #endif
3490 	INF("oom_score", S_IRUGO, proc_oom_score),
3491 	REG("oom_adj",   S_IRUGO|S_IWUSR, proc_oom_adjust_operations),
3492 	REG("oom_score_adj", S_IRUGO|S_IWUSR, proc_oom_score_adj_operations),
3493 #ifdef CONFIG_AUDITSYSCALL
3494 	REG("loginuid",  S_IWUSR|S_IRUGO, proc_loginuid_operations),
3495 	REG("sessionid",  S_IRUGO, proc_sessionid_operations),
3496 #endif
3497 #ifdef CONFIG_FAULT_INJECTION
3498 	REG("make-it-fail", S_IRUGO|S_IWUSR, proc_fault_inject_operations),
3499 #endif
3500 #ifdef CONFIG_TASK_IO_ACCOUNTING
3501 	INF("io",	S_IRUSR, proc_tid_io_accounting),
3502 #endif
3503 #ifdef CONFIG_HARDWALL
3504 	INF("hardwall",   S_IRUGO, proc_pid_hardwall),
3505 #endif
3506 };
3507 
3508 static int proc_tid_base_readdir(struct file * filp,
3509 			     void * dirent, filldir_t filldir)
3510 {
3511 	return proc_pident_readdir(filp,dirent,filldir,
3512 				   tid_base_stuff,ARRAY_SIZE(tid_base_stuff));
3513 }
3514 
3515 static struct dentry *proc_tid_base_lookup(struct inode *dir, struct dentry *dentry, struct nameidata *nd){
3516 	return proc_pident_lookup(dir, dentry,
3517 				  tid_base_stuff, ARRAY_SIZE(tid_base_stuff));
3518 }
3519 
3520 static const struct file_operations proc_tid_base_operations = {
3521 	.read		= generic_read_dir,
3522 	.readdir	= proc_tid_base_readdir,
3523 	.llseek		= default_llseek,
3524 };
3525 
3526 static const struct inode_operations proc_tid_base_inode_operations = {
3527 	.lookup		= proc_tid_base_lookup,
3528 	.getattr	= pid_getattr,
3529 	.setattr	= proc_setattr,
3530 };
3531 
3532 static struct dentry *proc_task_instantiate(struct inode *dir,
3533 	struct dentry *dentry, struct task_struct *task, const void *ptr)
3534 {
3535 	struct dentry *error = ERR_PTR(-ENOENT);
3536 	struct inode *inode;
3537 	inode = proc_pid_make_inode(dir->i_sb, task);
3538 
3539 	if (!inode)
3540 		goto out;
3541 	inode->i_mode = S_IFDIR|S_IRUGO|S_IXUGO;
3542 	inode->i_op = &proc_tid_base_inode_operations;
3543 	inode->i_fop = &proc_tid_base_operations;
3544 	inode->i_flags|=S_IMMUTABLE;
3545 
3546 	set_nlink(inode, 2 + pid_entry_count_dirs(tid_base_stuff,
3547 						  ARRAY_SIZE(tid_base_stuff)));
3548 
3549 	d_set_d_op(dentry, &pid_dentry_operations);
3550 
3551 	d_add(dentry, inode);
3552 	/* Close the race of the process dying before we return the dentry */
3553 	if (pid_revalidate(dentry, NULL))
3554 		error = NULL;
3555 out:
3556 	return error;
3557 }
3558 
3559 static struct dentry *proc_task_lookup(struct inode *dir, struct dentry * dentry, struct nameidata *nd)
3560 {
3561 	struct dentry *result = ERR_PTR(-ENOENT);
3562 	struct task_struct *task;
3563 	struct task_struct *leader = get_proc_task(dir);
3564 	unsigned tid;
3565 	struct pid_namespace *ns;
3566 
3567 	if (!leader)
3568 		goto out_no_task;
3569 
3570 	tid = name_to_int(dentry);
3571 	if (tid == ~0U)
3572 		goto out;
3573 
3574 	ns = dentry->d_sb->s_fs_info;
3575 	rcu_read_lock();
3576 	task = find_task_by_pid_ns(tid, ns);
3577 	if (task)
3578 		get_task_struct(task);
3579 	rcu_read_unlock();
3580 	if (!task)
3581 		goto out;
3582 	if (!same_thread_group(leader, task))
3583 		goto out_drop_task;
3584 
3585 	result = proc_task_instantiate(dir, dentry, task, NULL);
3586 out_drop_task:
3587 	put_task_struct(task);
3588 out:
3589 	put_task_struct(leader);
3590 out_no_task:
3591 	return result;
3592 }
3593 
3594 /*
3595  * Find the first tid of a thread group to return to user space.
3596  *
3597  * Usually this is just the thread group leader, but if the users
3598  * buffer was too small or there was a seek into the middle of the
3599  * directory we have more work todo.
3600  *
3601  * In the case of a short read we start with find_task_by_pid.
3602  *
3603  * In the case of a seek we start with the leader and walk nr
3604  * threads past it.
3605  */
3606 static struct task_struct *first_tid(struct task_struct *leader,
3607 		int tid, int nr, struct pid_namespace *ns)
3608 {
3609 	struct task_struct *pos;
3610 
3611 	rcu_read_lock();
3612 	/* Attempt to start with the pid of a thread */
3613 	if (tid && (nr > 0)) {
3614 		pos = find_task_by_pid_ns(tid, ns);
3615 		if (pos && (pos->group_leader == leader))
3616 			goto found;
3617 	}
3618 
3619 	/* If nr exceeds the number of threads there is nothing todo */
3620 	pos = NULL;
3621 	if (nr && nr >= get_nr_threads(leader))
3622 		goto out;
3623 
3624 	/* If we haven't found our starting place yet start
3625 	 * with the leader and walk nr threads forward.
3626 	 */
3627 	for (pos = leader; nr > 0; --nr) {
3628 		pos = next_thread(pos);
3629 		if (pos == leader) {
3630 			pos = NULL;
3631 			goto out;
3632 		}
3633 	}
3634 found:
3635 	get_task_struct(pos);
3636 out:
3637 	rcu_read_unlock();
3638 	return pos;
3639 }
3640 
3641 /*
3642  * Find the next thread in the thread list.
3643  * Return NULL if there is an error or no next thread.
3644  *
3645  * The reference to the input task_struct is released.
3646  */
3647 static struct task_struct *next_tid(struct task_struct *start)
3648 {
3649 	struct task_struct *pos = NULL;
3650 	rcu_read_lock();
3651 	if (pid_alive(start)) {
3652 		pos = next_thread(start);
3653 		if (thread_group_leader(pos))
3654 			pos = NULL;
3655 		else
3656 			get_task_struct(pos);
3657 	}
3658 	rcu_read_unlock();
3659 	put_task_struct(start);
3660 	return pos;
3661 }
3662 
3663 static int proc_task_fill_cache(struct file *filp, void *dirent, filldir_t filldir,
3664 	struct task_struct *task, int tid)
3665 {
3666 	char name[PROC_NUMBUF];
3667 	int len = snprintf(name, sizeof(name), "%d", tid);
3668 	return proc_fill_cache(filp, dirent, filldir, name, len,
3669 				proc_task_instantiate, task, NULL);
3670 }
3671 
3672 /* for the /proc/TGID/task/ directories */
3673 static int proc_task_readdir(struct file * filp, void * dirent, filldir_t filldir)
3674 {
3675 	struct dentry *dentry = filp->f_path.dentry;
3676 	struct inode *inode = dentry->d_inode;
3677 	struct task_struct *leader = NULL;
3678 	struct task_struct *task;
3679 	int retval = -ENOENT;
3680 	ino_t ino;
3681 	int tid;
3682 	struct pid_namespace *ns;
3683 
3684 	task = get_proc_task(inode);
3685 	if (!task)
3686 		goto out_no_task;
3687 	rcu_read_lock();
3688 	if (pid_alive(task)) {
3689 		leader = task->group_leader;
3690 		get_task_struct(leader);
3691 	}
3692 	rcu_read_unlock();
3693 	put_task_struct(task);
3694 	if (!leader)
3695 		goto out_no_task;
3696 	retval = 0;
3697 
3698 	switch ((unsigned long)filp->f_pos) {
3699 	case 0:
3700 		ino = inode->i_ino;
3701 		if (filldir(dirent, ".", 1, filp->f_pos, ino, DT_DIR) < 0)
3702 			goto out;
3703 		filp->f_pos++;
3704 		/* fall through */
3705 	case 1:
3706 		ino = parent_ino(dentry);
3707 		if (filldir(dirent, "..", 2, filp->f_pos, ino, DT_DIR) < 0)
3708 			goto out;
3709 		filp->f_pos++;
3710 		/* fall through */
3711 	}
3712 
3713 	/* f_version caches the tgid value that the last readdir call couldn't
3714 	 * return. lseek aka telldir automagically resets f_version to 0.
3715 	 */
3716 	ns = filp->f_dentry->d_sb->s_fs_info;
3717 	tid = (int)filp->f_version;
3718 	filp->f_version = 0;
3719 	for (task = first_tid(leader, tid, filp->f_pos - 2, ns);
3720 	     task;
3721 	     task = next_tid(task), filp->f_pos++) {
3722 		tid = task_pid_nr_ns(task, ns);
3723 		if (proc_task_fill_cache(filp, dirent, filldir, task, tid) < 0) {
3724 			/* returning this tgid failed, save it as the first
3725 			 * pid for the next readir call */
3726 			filp->f_version = (u64)tid;
3727 			put_task_struct(task);
3728 			break;
3729 		}
3730 	}
3731 out:
3732 	put_task_struct(leader);
3733 out_no_task:
3734 	return retval;
3735 }
3736 
3737 static int proc_task_getattr(struct vfsmount *mnt, struct dentry *dentry, struct kstat *stat)
3738 {
3739 	struct inode *inode = dentry->d_inode;
3740 	struct task_struct *p = get_proc_task(inode);
3741 	generic_fillattr(inode, stat);
3742 
3743 	if (p) {
3744 		stat->nlink += get_nr_threads(p);
3745 		put_task_struct(p);
3746 	}
3747 
3748 	return 0;
3749 }
3750 
3751 static const struct inode_operations proc_task_inode_operations = {
3752 	.lookup		= proc_task_lookup,
3753 	.getattr	= proc_task_getattr,
3754 	.setattr	= proc_setattr,
3755 	.permission	= proc_pid_permission,
3756 };
3757 
3758 static const struct file_operations proc_task_operations = {
3759 	.read		= generic_read_dir,
3760 	.readdir	= proc_task_readdir,
3761 	.llseek		= default_llseek,
3762 };
3763