1 /* 2 * linux/fs/proc/base.c 3 * 4 * Copyright (C) 1991, 1992 Linus Torvalds 5 * 6 * proc base directory handling functions 7 * 8 * 1999, Al Viro. Rewritten. Now it covers the whole per-process part. 9 * Instead of using magical inumbers to determine the kind of object 10 * we allocate and fill in-core inodes upon lookup. They don't even 11 * go into icache. We cache the reference to task_struct upon lookup too. 12 * Eventually it should become a filesystem in its own. We don't use the 13 * rest of procfs anymore. 14 * 15 * 16 * Changelog: 17 * 17-Jan-2005 18 * Allan Bezerra 19 * Bruna Moreira <bruna.moreira@indt.org.br> 20 * Edjard Mota <edjard.mota@indt.org.br> 21 * Ilias Biris <ilias.biris@indt.org.br> 22 * Mauricio Lin <mauricio.lin@indt.org.br> 23 * 24 * Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT 25 * 26 * A new process specific entry (smaps) included in /proc. It shows the 27 * size of rss for each memory area. The maps entry lacks information 28 * about physical memory size (rss) for each mapped file, i.e., 29 * rss information for executables and library files. 30 * This additional information is useful for any tools that need to know 31 * about physical memory consumption for a process specific library. 32 * 33 * Changelog: 34 * 21-Feb-2005 35 * Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT 36 * Pud inclusion in the page table walking. 37 * 38 * ChangeLog: 39 * 10-Mar-2005 40 * 10LE Instituto Nokia de Tecnologia - INdT: 41 * A better way to walks through the page table as suggested by Hugh Dickins. 42 * 43 * Simo Piiroinen <simo.piiroinen@nokia.com>: 44 * Smaps information related to shared, private, clean and dirty pages. 45 * 46 * Paul Mundt <paul.mundt@nokia.com>: 47 * Overall revision about smaps. 48 */ 49 50 #include <asm/uaccess.h> 51 52 #include <linux/errno.h> 53 #include <linux/time.h> 54 #include <linux/proc_fs.h> 55 #include <linux/stat.h> 56 #include <linux/task_io_accounting_ops.h> 57 #include <linux/init.h> 58 #include <linux/capability.h> 59 #include <linux/file.h> 60 #include <linux/fdtable.h> 61 #include <linux/string.h> 62 #include <linux/seq_file.h> 63 #include <linux/namei.h> 64 #include <linux/mnt_namespace.h> 65 #include <linux/mm.h> 66 #include <linux/swap.h> 67 #include <linux/rcupdate.h> 68 #include <linux/kallsyms.h> 69 #include <linux/stacktrace.h> 70 #include <linux/resource.h> 71 #include <linux/module.h> 72 #include <linux/mount.h> 73 #include <linux/security.h> 74 #include <linux/ptrace.h> 75 #include <linux/tracehook.h> 76 #include <linux/cgroup.h> 77 #include <linux/cpuset.h> 78 #include <linux/audit.h> 79 #include <linux/poll.h> 80 #include <linux/nsproxy.h> 81 #include <linux/oom.h> 82 #include <linux/elf.h> 83 #include <linux/pid_namespace.h> 84 #include <linux/fs_struct.h> 85 #include <linux/slab.h> 86 #include <linux/flex_array.h> 87 #ifdef CONFIG_HARDWALL 88 #include <asm/hardwall.h> 89 #endif 90 #include <trace/events/oom.h> 91 #include "internal.h" 92 93 /* NOTE: 94 * Implementing inode permission operations in /proc is almost 95 * certainly an error. Permission checks need to happen during 96 * each system call not at open time. The reason is that most of 97 * what we wish to check for permissions in /proc varies at runtime. 98 * 99 * The classic example of a problem is opening file descriptors 100 * in /proc for a task before it execs a suid executable. 101 */ 102 103 struct pid_entry { 104 char *name; 105 int len; 106 umode_t mode; 107 const struct inode_operations *iop; 108 const struct file_operations *fop; 109 union proc_op op; 110 }; 111 112 #define NOD(NAME, MODE, IOP, FOP, OP) { \ 113 .name = (NAME), \ 114 .len = sizeof(NAME) - 1, \ 115 .mode = MODE, \ 116 .iop = IOP, \ 117 .fop = FOP, \ 118 .op = OP, \ 119 } 120 121 #define DIR(NAME, MODE, iops, fops) \ 122 NOD(NAME, (S_IFDIR|(MODE)), &iops, &fops, {} ) 123 #define LNK(NAME, get_link) \ 124 NOD(NAME, (S_IFLNK|S_IRWXUGO), \ 125 &proc_pid_link_inode_operations, NULL, \ 126 { .proc_get_link = get_link } ) 127 #define REG(NAME, MODE, fops) \ 128 NOD(NAME, (S_IFREG|(MODE)), NULL, &fops, {}) 129 #define INF(NAME, MODE, read) \ 130 NOD(NAME, (S_IFREG|(MODE)), \ 131 NULL, &proc_info_file_operations, \ 132 { .proc_read = read } ) 133 #define ONE(NAME, MODE, show) \ 134 NOD(NAME, (S_IFREG|(MODE)), \ 135 NULL, &proc_single_file_operations, \ 136 { .proc_show = show } ) 137 138 static int proc_fd_permission(struct inode *inode, int mask); 139 140 /* 141 * Count the number of hardlinks for the pid_entry table, excluding the . 142 * and .. links. 143 */ 144 static unsigned int pid_entry_count_dirs(const struct pid_entry *entries, 145 unsigned int n) 146 { 147 unsigned int i; 148 unsigned int count; 149 150 count = 0; 151 for (i = 0; i < n; ++i) { 152 if (S_ISDIR(entries[i].mode)) 153 ++count; 154 } 155 156 return count; 157 } 158 159 static int get_task_root(struct task_struct *task, struct path *root) 160 { 161 int result = -ENOENT; 162 163 task_lock(task); 164 if (task->fs) { 165 get_fs_root(task->fs, root); 166 result = 0; 167 } 168 task_unlock(task); 169 return result; 170 } 171 172 static int proc_cwd_link(struct dentry *dentry, struct path *path) 173 { 174 struct task_struct *task = get_proc_task(dentry->d_inode); 175 int result = -ENOENT; 176 177 if (task) { 178 task_lock(task); 179 if (task->fs) { 180 get_fs_pwd(task->fs, path); 181 result = 0; 182 } 183 task_unlock(task); 184 put_task_struct(task); 185 } 186 return result; 187 } 188 189 static int proc_root_link(struct dentry *dentry, struct path *path) 190 { 191 struct task_struct *task = get_proc_task(dentry->d_inode); 192 int result = -ENOENT; 193 194 if (task) { 195 result = get_task_root(task, path); 196 put_task_struct(task); 197 } 198 return result; 199 } 200 201 static struct mm_struct *__check_mem_permission(struct task_struct *task) 202 { 203 struct mm_struct *mm; 204 205 mm = get_task_mm(task); 206 if (!mm) 207 return ERR_PTR(-EINVAL); 208 209 /* 210 * A task can always look at itself, in case it chooses 211 * to use system calls instead of load instructions. 212 */ 213 if (task == current) 214 return mm; 215 216 /* 217 * If current is actively ptrace'ing, and would also be 218 * permitted to freshly attach with ptrace now, permit it. 219 */ 220 if (task_is_stopped_or_traced(task)) { 221 int match; 222 rcu_read_lock(); 223 match = (ptrace_parent(task) == current); 224 rcu_read_unlock(); 225 if (match && ptrace_may_access(task, PTRACE_MODE_ATTACH)) 226 return mm; 227 } 228 229 /* 230 * No one else is allowed. 231 */ 232 mmput(mm); 233 return ERR_PTR(-EPERM); 234 } 235 236 /* 237 * If current may access user memory in @task return a reference to the 238 * corresponding mm, otherwise ERR_PTR. 239 */ 240 static struct mm_struct *check_mem_permission(struct task_struct *task) 241 { 242 struct mm_struct *mm; 243 int err; 244 245 /* 246 * Avoid racing if task exec's as we might get a new mm but validate 247 * against old credentials. 248 */ 249 err = mutex_lock_killable(&task->signal->cred_guard_mutex); 250 if (err) 251 return ERR_PTR(err); 252 253 mm = __check_mem_permission(task); 254 mutex_unlock(&task->signal->cred_guard_mutex); 255 256 return mm; 257 } 258 259 struct mm_struct *mm_for_maps(struct task_struct *task) 260 { 261 struct mm_struct *mm; 262 int err; 263 264 err = mutex_lock_killable(&task->signal->cred_guard_mutex); 265 if (err) 266 return ERR_PTR(err); 267 268 mm = get_task_mm(task); 269 if (mm && mm != current->mm && 270 !ptrace_may_access(task, PTRACE_MODE_READ)) { 271 mmput(mm); 272 mm = ERR_PTR(-EACCES); 273 } 274 mutex_unlock(&task->signal->cred_guard_mutex); 275 276 return mm; 277 } 278 279 static int proc_pid_cmdline(struct task_struct *task, char * buffer) 280 { 281 int res = 0; 282 unsigned int len; 283 struct mm_struct *mm = get_task_mm(task); 284 if (!mm) 285 goto out; 286 if (!mm->arg_end) 287 goto out_mm; /* Shh! No looking before we're done */ 288 289 len = mm->arg_end - mm->arg_start; 290 291 if (len > PAGE_SIZE) 292 len = PAGE_SIZE; 293 294 res = access_process_vm(task, mm->arg_start, buffer, len, 0); 295 296 // If the nul at the end of args has been overwritten, then 297 // assume application is using setproctitle(3). 298 if (res > 0 && buffer[res-1] != '\0' && len < PAGE_SIZE) { 299 len = strnlen(buffer, res); 300 if (len < res) { 301 res = len; 302 } else { 303 len = mm->env_end - mm->env_start; 304 if (len > PAGE_SIZE - res) 305 len = PAGE_SIZE - res; 306 res += access_process_vm(task, mm->env_start, buffer+res, len, 0); 307 res = strnlen(buffer, res); 308 } 309 } 310 out_mm: 311 mmput(mm); 312 out: 313 return res; 314 } 315 316 static int proc_pid_auxv(struct task_struct *task, char *buffer) 317 { 318 struct mm_struct *mm = mm_for_maps(task); 319 int res = PTR_ERR(mm); 320 if (mm && !IS_ERR(mm)) { 321 unsigned int nwords = 0; 322 do { 323 nwords += 2; 324 } while (mm->saved_auxv[nwords - 2] != 0); /* AT_NULL */ 325 res = nwords * sizeof(mm->saved_auxv[0]); 326 if (res > PAGE_SIZE) 327 res = PAGE_SIZE; 328 memcpy(buffer, mm->saved_auxv, res); 329 mmput(mm); 330 } 331 return res; 332 } 333 334 335 #ifdef CONFIG_KALLSYMS 336 /* 337 * Provides a wchan file via kallsyms in a proper one-value-per-file format. 338 * Returns the resolved symbol. If that fails, simply return the address. 339 */ 340 static int proc_pid_wchan(struct task_struct *task, char *buffer) 341 { 342 unsigned long wchan; 343 char symname[KSYM_NAME_LEN]; 344 345 wchan = get_wchan(task); 346 347 if (lookup_symbol_name(wchan, symname) < 0) 348 if (!ptrace_may_access(task, PTRACE_MODE_READ)) 349 return 0; 350 else 351 return sprintf(buffer, "%lu", wchan); 352 else 353 return sprintf(buffer, "%s", symname); 354 } 355 #endif /* CONFIG_KALLSYMS */ 356 357 static int lock_trace(struct task_struct *task) 358 { 359 int err = mutex_lock_killable(&task->signal->cred_guard_mutex); 360 if (err) 361 return err; 362 if (!ptrace_may_access(task, PTRACE_MODE_ATTACH)) { 363 mutex_unlock(&task->signal->cred_guard_mutex); 364 return -EPERM; 365 } 366 return 0; 367 } 368 369 static void unlock_trace(struct task_struct *task) 370 { 371 mutex_unlock(&task->signal->cred_guard_mutex); 372 } 373 374 #ifdef CONFIG_STACKTRACE 375 376 #define MAX_STACK_TRACE_DEPTH 64 377 378 static int proc_pid_stack(struct seq_file *m, struct pid_namespace *ns, 379 struct pid *pid, struct task_struct *task) 380 { 381 struct stack_trace trace; 382 unsigned long *entries; 383 int err; 384 int i; 385 386 entries = kmalloc(MAX_STACK_TRACE_DEPTH * sizeof(*entries), GFP_KERNEL); 387 if (!entries) 388 return -ENOMEM; 389 390 trace.nr_entries = 0; 391 trace.max_entries = MAX_STACK_TRACE_DEPTH; 392 trace.entries = entries; 393 trace.skip = 0; 394 395 err = lock_trace(task); 396 if (!err) { 397 save_stack_trace_tsk(task, &trace); 398 399 for (i = 0; i < trace.nr_entries; i++) { 400 seq_printf(m, "[<%pK>] %pS\n", 401 (void *)entries[i], (void *)entries[i]); 402 } 403 unlock_trace(task); 404 } 405 kfree(entries); 406 407 return err; 408 } 409 #endif 410 411 #ifdef CONFIG_SCHEDSTATS 412 /* 413 * Provides /proc/PID/schedstat 414 */ 415 static int proc_pid_schedstat(struct task_struct *task, char *buffer) 416 { 417 return sprintf(buffer, "%llu %llu %lu\n", 418 (unsigned long long)task->se.sum_exec_runtime, 419 (unsigned long long)task->sched_info.run_delay, 420 task->sched_info.pcount); 421 } 422 #endif 423 424 #ifdef CONFIG_LATENCYTOP 425 static int lstats_show_proc(struct seq_file *m, void *v) 426 { 427 int i; 428 struct inode *inode = m->private; 429 struct task_struct *task = get_proc_task(inode); 430 431 if (!task) 432 return -ESRCH; 433 seq_puts(m, "Latency Top version : v0.1\n"); 434 for (i = 0; i < 32; i++) { 435 struct latency_record *lr = &task->latency_record[i]; 436 if (lr->backtrace[0]) { 437 int q; 438 seq_printf(m, "%i %li %li", 439 lr->count, lr->time, lr->max); 440 for (q = 0; q < LT_BACKTRACEDEPTH; q++) { 441 unsigned long bt = lr->backtrace[q]; 442 if (!bt) 443 break; 444 if (bt == ULONG_MAX) 445 break; 446 seq_printf(m, " %ps", (void *)bt); 447 } 448 seq_putc(m, '\n'); 449 } 450 451 } 452 put_task_struct(task); 453 return 0; 454 } 455 456 static int lstats_open(struct inode *inode, struct file *file) 457 { 458 return single_open(file, lstats_show_proc, inode); 459 } 460 461 static ssize_t lstats_write(struct file *file, const char __user *buf, 462 size_t count, loff_t *offs) 463 { 464 struct task_struct *task = get_proc_task(file->f_dentry->d_inode); 465 466 if (!task) 467 return -ESRCH; 468 clear_all_latency_tracing(task); 469 put_task_struct(task); 470 471 return count; 472 } 473 474 static const struct file_operations proc_lstats_operations = { 475 .open = lstats_open, 476 .read = seq_read, 477 .write = lstats_write, 478 .llseek = seq_lseek, 479 .release = single_release, 480 }; 481 482 #endif 483 484 static int proc_oom_score(struct task_struct *task, char *buffer) 485 { 486 unsigned long points = 0; 487 488 read_lock(&tasklist_lock); 489 if (pid_alive(task)) 490 points = oom_badness(task, NULL, NULL, 491 totalram_pages + total_swap_pages); 492 read_unlock(&tasklist_lock); 493 return sprintf(buffer, "%lu\n", points); 494 } 495 496 struct limit_names { 497 char *name; 498 char *unit; 499 }; 500 501 static const struct limit_names lnames[RLIM_NLIMITS] = { 502 [RLIMIT_CPU] = {"Max cpu time", "seconds"}, 503 [RLIMIT_FSIZE] = {"Max file size", "bytes"}, 504 [RLIMIT_DATA] = {"Max data size", "bytes"}, 505 [RLIMIT_STACK] = {"Max stack size", "bytes"}, 506 [RLIMIT_CORE] = {"Max core file size", "bytes"}, 507 [RLIMIT_RSS] = {"Max resident set", "bytes"}, 508 [RLIMIT_NPROC] = {"Max processes", "processes"}, 509 [RLIMIT_NOFILE] = {"Max open files", "files"}, 510 [RLIMIT_MEMLOCK] = {"Max locked memory", "bytes"}, 511 [RLIMIT_AS] = {"Max address space", "bytes"}, 512 [RLIMIT_LOCKS] = {"Max file locks", "locks"}, 513 [RLIMIT_SIGPENDING] = {"Max pending signals", "signals"}, 514 [RLIMIT_MSGQUEUE] = {"Max msgqueue size", "bytes"}, 515 [RLIMIT_NICE] = {"Max nice priority", NULL}, 516 [RLIMIT_RTPRIO] = {"Max realtime priority", NULL}, 517 [RLIMIT_RTTIME] = {"Max realtime timeout", "us"}, 518 }; 519 520 /* Display limits for a process */ 521 static int proc_pid_limits(struct task_struct *task, char *buffer) 522 { 523 unsigned int i; 524 int count = 0; 525 unsigned long flags; 526 char *bufptr = buffer; 527 528 struct rlimit rlim[RLIM_NLIMITS]; 529 530 if (!lock_task_sighand(task, &flags)) 531 return 0; 532 memcpy(rlim, task->signal->rlim, sizeof(struct rlimit) * RLIM_NLIMITS); 533 unlock_task_sighand(task, &flags); 534 535 /* 536 * print the file header 537 */ 538 count += sprintf(&bufptr[count], "%-25s %-20s %-20s %-10s\n", 539 "Limit", "Soft Limit", "Hard Limit", "Units"); 540 541 for (i = 0; i < RLIM_NLIMITS; i++) { 542 if (rlim[i].rlim_cur == RLIM_INFINITY) 543 count += sprintf(&bufptr[count], "%-25s %-20s ", 544 lnames[i].name, "unlimited"); 545 else 546 count += sprintf(&bufptr[count], "%-25s %-20lu ", 547 lnames[i].name, rlim[i].rlim_cur); 548 549 if (rlim[i].rlim_max == RLIM_INFINITY) 550 count += sprintf(&bufptr[count], "%-20s ", "unlimited"); 551 else 552 count += sprintf(&bufptr[count], "%-20lu ", 553 rlim[i].rlim_max); 554 555 if (lnames[i].unit) 556 count += sprintf(&bufptr[count], "%-10s\n", 557 lnames[i].unit); 558 else 559 count += sprintf(&bufptr[count], "\n"); 560 } 561 562 return count; 563 } 564 565 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK 566 static int proc_pid_syscall(struct task_struct *task, char *buffer) 567 { 568 long nr; 569 unsigned long args[6], sp, pc; 570 int res = lock_trace(task); 571 if (res) 572 return res; 573 574 if (task_current_syscall(task, &nr, args, 6, &sp, &pc)) 575 res = sprintf(buffer, "running\n"); 576 else if (nr < 0) 577 res = sprintf(buffer, "%ld 0x%lx 0x%lx\n", nr, sp, pc); 578 else 579 res = sprintf(buffer, 580 "%ld 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx\n", 581 nr, 582 args[0], args[1], args[2], args[3], args[4], args[5], 583 sp, pc); 584 unlock_trace(task); 585 return res; 586 } 587 #endif /* CONFIG_HAVE_ARCH_TRACEHOOK */ 588 589 /************************************************************************/ 590 /* Here the fs part begins */ 591 /************************************************************************/ 592 593 /* permission checks */ 594 static int proc_fd_access_allowed(struct inode *inode) 595 { 596 struct task_struct *task; 597 int allowed = 0; 598 /* Allow access to a task's file descriptors if it is us or we 599 * may use ptrace attach to the process and find out that 600 * information. 601 */ 602 task = get_proc_task(inode); 603 if (task) { 604 allowed = ptrace_may_access(task, PTRACE_MODE_READ); 605 put_task_struct(task); 606 } 607 return allowed; 608 } 609 610 int proc_setattr(struct dentry *dentry, struct iattr *attr) 611 { 612 int error; 613 struct inode *inode = dentry->d_inode; 614 615 if (attr->ia_valid & ATTR_MODE) 616 return -EPERM; 617 618 error = inode_change_ok(inode, attr); 619 if (error) 620 return error; 621 622 if ((attr->ia_valid & ATTR_SIZE) && 623 attr->ia_size != i_size_read(inode)) { 624 error = vmtruncate(inode, attr->ia_size); 625 if (error) 626 return error; 627 } 628 629 setattr_copy(inode, attr); 630 mark_inode_dirty(inode); 631 return 0; 632 } 633 634 /* 635 * May current process learn task's sched/cmdline info (for hide_pid_min=1) 636 * or euid/egid (for hide_pid_min=2)? 637 */ 638 static bool has_pid_permissions(struct pid_namespace *pid, 639 struct task_struct *task, 640 int hide_pid_min) 641 { 642 if (pid->hide_pid < hide_pid_min) 643 return true; 644 if (in_group_p(pid->pid_gid)) 645 return true; 646 return ptrace_may_access(task, PTRACE_MODE_READ); 647 } 648 649 650 static int proc_pid_permission(struct inode *inode, int mask) 651 { 652 struct pid_namespace *pid = inode->i_sb->s_fs_info; 653 struct task_struct *task; 654 bool has_perms; 655 656 task = get_proc_task(inode); 657 has_perms = has_pid_permissions(pid, task, 1); 658 put_task_struct(task); 659 660 if (!has_perms) { 661 if (pid->hide_pid == 2) { 662 /* 663 * Let's make getdents(), stat(), and open() 664 * consistent with each other. If a process 665 * may not stat() a file, it shouldn't be seen 666 * in procfs at all. 667 */ 668 return -ENOENT; 669 } 670 671 return -EPERM; 672 } 673 return generic_permission(inode, mask); 674 } 675 676 677 678 static const struct inode_operations proc_def_inode_operations = { 679 .setattr = proc_setattr, 680 }; 681 682 #define PROC_BLOCK_SIZE (3*1024) /* 4K page size but our output routines use some slack for overruns */ 683 684 static ssize_t proc_info_read(struct file * file, char __user * buf, 685 size_t count, loff_t *ppos) 686 { 687 struct inode * inode = file->f_path.dentry->d_inode; 688 unsigned long page; 689 ssize_t length; 690 struct task_struct *task = get_proc_task(inode); 691 692 length = -ESRCH; 693 if (!task) 694 goto out_no_task; 695 696 if (count > PROC_BLOCK_SIZE) 697 count = PROC_BLOCK_SIZE; 698 699 length = -ENOMEM; 700 if (!(page = __get_free_page(GFP_TEMPORARY))) 701 goto out; 702 703 length = PROC_I(inode)->op.proc_read(task, (char*)page); 704 705 if (length >= 0) 706 length = simple_read_from_buffer(buf, count, ppos, (char *)page, length); 707 free_page(page); 708 out: 709 put_task_struct(task); 710 out_no_task: 711 return length; 712 } 713 714 static const struct file_operations proc_info_file_operations = { 715 .read = proc_info_read, 716 .llseek = generic_file_llseek, 717 }; 718 719 static int proc_single_show(struct seq_file *m, void *v) 720 { 721 struct inode *inode = m->private; 722 struct pid_namespace *ns; 723 struct pid *pid; 724 struct task_struct *task; 725 int ret; 726 727 ns = inode->i_sb->s_fs_info; 728 pid = proc_pid(inode); 729 task = get_pid_task(pid, PIDTYPE_PID); 730 if (!task) 731 return -ESRCH; 732 733 ret = PROC_I(inode)->op.proc_show(m, ns, pid, task); 734 735 put_task_struct(task); 736 return ret; 737 } 738 739 static int proc_single_open(struct inode *inode, struct file *filp) 740 { 741 return single_open(filp, proc_single_show, inode); 742 } 743 744 static const struct file_operations proc_single_file_operations = { 745 .open = proc_single_open, 746 .read = seq_read, 747 .llseek = seq_lseek, 748 .release = single_release, 749 }; 750 751 static int mem_open(struct inode* inode, struct file* file) 752 { 753 file->private_data = (void*)((long)current->self_exec_id); 754 /* OK to pass negative loff_t, we can catch out-of-range */ 755 file->f_mode |= FMODE_UNSIGNED_OFFSET; 756 return 0; 757 } 758 759 static ssize_t mem_read(struct file * file, char __user * buf, 760 size_t count, loff_t *ppos) 761 { 762 struct task_struct *task = get_proc_task(file->f_path.dentry->d_inode); 763 char *page; 764 unsigned long src = *ppos; 765 int ret = -ESRCH; 766 struct mm_struct *mm; 767 768 if (!task) 769 goto out_no_task; 770 771 ret = -ENOMEM; 772 page = (char *)__get_free_page(GFP_TEMPORARY); 773 if (!page) 774 goto out; 775 776 mm = check_mem_permission(task); 777 ret = PTR_ERR(mm); 778 if (IS_ERR(mm)) 779 goto out_free; 780 781 ret = -EIO; 782 783 if (file->private_data != (void*)((long)current->self_exec_id)) 784 goto out_put; 785 786 ret = 0; 787 788 while (count > 0) { 789 int this_len, retval; 790 791 this_len = (count > PAGE_SIZE) ? PAGE_SIZE : count; 792 retval = access_remote_vm(mm, src, page, this_len, 0); 793 if (!retval) { 794 if (!ret) 795 ret = -EIO; 796 break; 797 } 798 799 if (copy_to_user(buf, page, retval)) { 800 ret = -EFAULT; 801 break; 802 } 803 804 ret += retval; 805 src += retval; 806 buf += retval; 807 count -= retval; 808 } 809 *ppos = src; 810 811 out_put: 812 mmput(mm); 813 out_free: 814 free_page((unsigned long) page); 815 out: 816 put_task_struct(task); 817 out_no_task: 818 return ret; 819 } 820 821 static ssize_t mem_write(struct file * file, const char __user *buf, 822 size_t count, loff_t *ppos) 823 { 824 int copied; 825 char *page; 826 struct task_struct *task = get_proc_task(file->f_path.dentry->d_inode); 827 unsigned long dst = *ppos; 828 struct mm_struct *mm; 829 830 copied = -ESRCH; 831 if (!task) 832 goto out_no_task; 833 834 copied = -ENOMEM; 835 page = (char *)__get_free_page(GFP_TEMPORARY); 836 if (!page) 837 goto out_task; 838 839 mm = check_mem_permission(task); 840 copied = PTR_ERR(mm); 841 if (IS_ERR(mm)) 842 goto out_free; 843 844 copied = -EIO; 845 if (file->private_data != (void *)((long)current->self_exec_id)) 846 goto out_mm; 847 848 copied = 0; 849 while (count > 0) { 850 int this_len, retval; 851 852 this_len = (count > PAGE_SIZE) ? PAGE_SIZE : count; 853 if (copy_from_user(page, buf, this_len)) { 854 copied = -EFAULT; 855 break; 856 } 857 retval = access_remote_vm(mm, dst, page, this_len, 1); 858 if (!retval) { 859 if (!copied) 860 copied = -EIO; 861 break; 862 } 863 copied += retval; 864 buf += retval; 865 dst += retval; 866 count -= retval; 867 } 868 *ppos = dst; 869 870 out_mm: 871 mmput(mm); 872 out_free: 873 free_page((unsigned long) page); 874 out_task: 875 put_task_struct(task); 876 out_no_task: 877 return copied; 878 } 879 880 loff_t mem_lseek(struct file *file, loff_t offset, int orig) 881 { 882 switch (orig) { 883 case 0: 884 file->f_pos = offset; 885 break; 886 case 1: 887 file->f_pos += offset; 888 break; 889 default: 890 return -EINVAL; 891 } 892 force_successful_syscall_return(); 893 return file->f_pos; 894 } 895 896 static const struct file_operations proc_mem_operations = { 897 .llseek = mem_lseek, 898 .read = mem_read, 899 .write = mem_write, 900 .open = mem_open, 901 }; 902 903 static ssize_t environ_read(struct file *file, char __user *buf, 904 size_t count, loff_t *ppos) 905 { 906 struct task_struct *task = get_proc_task(file->f_dentry->d_inode); 907 char *page; 908 unsigned long src = *ppos; 909 int ret = -ESRCH; 910 struct mm_struct *mm; 911 912 if (!task) 913 goto out_no_task; 914 915 ret = -ENOMEM; 916 page = (char *)__get_free_page(GFP_TEMPORARY); 917 if (!page) 918 goto out; 919 920 921 mm = mm_for_maps(task); 922 ret = PTR_ERR(mm); 923 if (!mm || IS_ERR(mm)) 924 goto out_free; 925 926 ret = 0; 927 while (count > 0) { 928 int this_len, retval, max_len; 929 930 this_len = mm->env_end - (mm->env_start + src); 931 932 if (this_len <= 0) 933 break; 934 935 max_len = (count > PAGE_SIZE) ? PAGE_SIZE : count; 936 this_len = (this_len > max_len) ? max_len : this_len; 937 938 retval = access_process_vm(task, (mm->env_start + src), 939 page, this_len, 0); 940 941 if (retval <= 0) { 942 ret = retval; 943 break; 944 } 945 946 if (copy_to_user(buf, page, retval)) { 947 ret = -EFAULT; 948 break; 949 } 950 951 ret += retval; 952 src += retval; 953 buf += retval; 954 count -= retval; 955 } 956 *ppos = src; 957 958 mmput(mm); 959 out_free: 960 free_page((unsigned long) page); 961 out: 962 put_task_struct(task); 963 out_no_task: 964 return ret; 965 } 966 967 static const struct file_operations proc_environ_operations = { 968 .read = environ_read, 969 .llseek = generic_file_llseek, 970 }; 971 972 static ssize_t oom_adjust_read(struct file *file, char __user *buf, 973 size_t count, loff_t *ppos) 974 { 975 struct task_struct *task = get_proc_task(file->f_path.dentry->d_inode); 976 char buffer[PROC_NUMBUF]; 977 size_t len; 978 int oom_adjust = OOM_DISABLE; 979 unsigned long flags; 980 981 if (!task) 982 return -ESRCH; 983 984 if (lock_task_sighand(task, &flags)) { 985 oom_adjust = task->signal->oom_adj; 986 unlock_task_sighand(task, &flags); 987 } 988 989 put_task_struct(task); 990 991 len = snprintf(buffer, sizeof(buffer), "%i\n", oom_adjust); 992 993 return simple_read_from_buffer(buf, count, ppos, buffer, len); 994 } 995 996 static ssize_t oom_adjust_write(struct file *file, const char __user *buf, 997 size_t count, loff_t *ppos) 998 { 999 struct task_struct *task; 1000 char buffer[PROC_NUMBUF]; 1001 int oom_adjust; 1002 unsigned long flags; 1003 int err; 1004 1005 memset(buffer, 0, sizeof(buffer)); 1006 if (count > sizeof(buffer) - 1) 1007 count = sizeof(buffer) - 1; 1008 if (copy_from_user(buffer, buf, count)) { 1009 err = -EFAULT; 1010 goto out; 1011 } 1012 1013 err = kstrtoint(strstrip(buffer), 0, &oom_adjust); 1014 if (err) 1015 goto out; 1016 if ((oom_adjust < OOM_ADJUST_MIN || oom_adjust > OOM_ADJUST_MAX) && 1017 oom_adjust != OOM_DISABLE) { 1018 err = -EINVAL; 1019 goto out; 1020 } 1021 1022 task = get_proc_task(file->f_path.dentry->d_inode); 1023 if (!task) { 1024 err = -ESRCH; 1025 goto out; 1026 } 1027 1028 task_lock(task); 1029 if (!task->mm) { 1030 err = -EINVAL; 1031 goto err_task_lock; 1032 } 1033 1034 if (!lock_task_sighand(task, &flags)) { 1035 err = -ESRCH; 1036 goto err_task_lock; 1037 } 1038 1039 if (oom_adjust < task->signal->oom_adj && !capable(CAP_SYS_RESOURCE)) { 1040 err = -EACCES; 1041 goto err_sighand; 1042 } 1043 1044 /* 1045 * Warn that /proc/pid/oom_adj is deprecated, see 1046 * Documentation/feature-removal-schedule.txt. 1047 */ 1048 printk_once(KERN_WARNING "%s (%d): /proc/%d/oom_adj is deprecated, please use /proc/%d/oom_score_adj instead.\n", 1049 current->comm, task_pid_nr(current), task_pid_nr(task), 1050 task_pid_nr(task)); 1051 task->signal->oom_adj = oom_adjust; 1052 /* 1053 * Scale /proc/pid/oom_score_adj appropriately ensuring that a maximum 1054 * value is always attainable. 1055 */ 1056 if (task->signal->oom_adj == OOM_ADJUST_MAX) 1057 task->signal->oom_score_adj = OOM_SCORE_ADJ_MAX; 1058 else 1059 task->signal->oom_score_adj = (oom_adjust * OOM_SCORE_ADJ_MAX) / 1060 -OOM_DISABLE; 1061 trace_oom_score_adj_update(task); 1062 err_sighand: 1063 unlock_task_sighand(task, &flags); 1064 err_task_lock: 1065 task_unlock(task); 1066 put_task_struct(task); 1067 out: 1068 return err < 0 ? err : count; 1069 } 1070 1071 static const struct file_operations proc_oom_adjust_operations = { 1072 .read = oom_adjust_read, 1073 .write = oom_adjust_write, 1074 .llseek = generic_file_llseek, 1075 }; 1076 1077 static ssize_t oom_score_adj_read(struct file *file, char __user *buf, 1078 size_t count, loff_t *ppos) 1079 { 1080 struct task_struct *task = get_proc_task(file->f_path.dentry->d_inode); 1081 char buffer[PROC_NUMBUF]; 1082 int oom_score_adj = OOM_SCORE_ADJ_MIN; 1083 unsigned long flags; 1084 size_t len; 1085 1086 if (!task) 1087 return -ESRCH; 1088 if (lock_task_sighand(task, &flags)) { 1089 oom_score_adj = task->signal->oom_score_adj; 1090 unlock_task_sighand(task, &flags); 1091 } 1092 put_task_struct(task); 1093 len = snprintf(buffer, sizeof(buffer), "%d\n", oom_score_adj); 1094 return simple_read_from_buffer(buf, count, ppos, buffer, len); 1095 } 1096 1097 static ssize_t oom_score_adj_write(struct file *file, const char __user *buf, 1098 size_t count, loff_t *ppos) 1099 { 1100 struct task_struct *task; 1101 char buffer[PROC_NUMBUF]; 1102 unsigned long flags; 1103 int oom_score_adj; 1104 int err; 1105 1106 memset(buffer, 0, sizeof(buffer)); 1107 if (count > sizeof(buffer) - 1) 1108 count = sizeof(buffer) - 1; 1109 if (copy_from_user(buffer, buf, count)) { 1110 err = -EFAULT; 1111 goto out; 1112 } 1113 1114 err = kstrtoint(strstrip(buffer), 0, &oom_score_adj); 1115 if (err) 1116 goto out; 1117 if (oom_score_adj < OOM_SCORE_ADJ_MIN || 1118 oom_score_adj > OOM_SCORE_ADJ_MAX) { 1119 err = -EINVAL; 1120 goto out; 1121 } 1122 1123 task = get_proc_task(file->f_path.dentry->d_inode); 1124 if (!task) { 1125 err = -ESRCH; 1126 goto out; 1127 } 1128 1129 task_lock(task); 1130 if (!task->mm) { 1131 err = -EINVAL; 1132 goto err_task_lock; 1133 } 1134 1135 if (!lock_task_sighand(task, &flags)) { 1136 err = -ESRCH; 1137 goto err_task_lock; 1138 } 1139 1140 if (oom_score_adj < task->signal->oom_score_adj_min && 1141 !capable(CAP_SYS_RESOURCE)) { 1142 err = -EACCES; 1143 goto err_sighand; 1144 } 1145 1146 task->signal->oom_score_adj = oom_score_adj; 1147 if (has_capability_noaudit(current, CAP_SYS_RESOURCE)) 1148 task->signal->oom_score_adj_min = oom_score_adj; 1149 trace_oom_score_adj_update(task); 1150 /* 1151 * Scale /proc/pid/oom_adj appropriately ensuring that OOM_DISABLE is 1152 * always attainable. 1153 */ 1154 if (task->signal->oom_score_adj == OOM_SCORE_ADJ_MIN) 1155 task->signal->oom_adj = OOM_DISABLE; 1156 else 1157 task->signal->oom_adj = (oom_score_adj * OOM_ADJUST_MAX) / 1158 OOM_SCORE_ADJ_MAX; 1159 err_sighand: 1160 unlock_task_sighand(task, &flags); 1161 err_task_lock: 1162 task_unlock(task); 1163 put_task_struct(task); 1164 out: 1165 return err < 0 ? err : count; 1166 } 1167 1168 static const struct file_operations proc_oom_score_adj_operations = { 1169 .read = oom_score_adj_read, 1170 .write = oom_score_adj_write, 1171 .llseek = default_llseek, 1172 }; 1173 1174 #ifdef CONFIG_AUDITSYSCALL 1175 #define TMPBUFLEN 21 1176 static ssize_t proc_loginuid_read(struct file * file, char __user * buf, 1177 size_t count, loff_t *ppos) 1178 { 1179 struct inode * inode = file->f_path.dentry->d_inode; 1180 struct task_struct *task = get_proc_task(inode); 1181 ssize_t length; 1182 char tmpbuf[TMPBUFLEN]; 1183 1184 if (!task) 1185 return -ESRCH; 1186 length = scnprintf(tmpbuf, TMPBUFLEN, "%u", 1187 audit_get_loginuid(task)); 1188 put_task_struct(task); 1189 return simple_read_from_buffer(buf, count, ppos, tmpbuf, length); 1190 } 1191 1192 static ssize_t proc_loginuid_write(struct file * file, const char __user * buf, 1193 size_t count, loff_t *ppos) 1194 { 1195 struct inode * inode = file->f_path.dentry->d_inode; 1196 char *page, *tmp; 1197 ssize_t length; 1198 uid_t loginuid; 1199 1200 if (!capable(CAP_AUDIT_CONTROL)) 1201 return -EPERM; 1202 1203 rcu_read_lock(); 1204 if (current != pid_task(proc_pid(inode), PIDTYPE_PID)) { 1205 rcu_read_unlock(); 1206 return -EPERM; 1207 } 1208 rcu_read_unlock(); 1209 1210 if (count >= PAGE_SIZE) 1211 count = PAGE_SIZE - 1; 1212 1213 if (*ppos != 0) { 1214 /* No partial writes. */ 1215 return -EINVAL; 1216 } 1217 page = (char*)__get_free_page(GFP_TEMPORARY); 1218 if (!page) 1219 return -ENOMEM; 1220 length = -EFAULT; 1221 if (copy_from_user(page, buf, count)) 1222 goto out_free_page; 1223 1224 page[count] = '\0'; 1225 loginuid = simple_strtoul(page, &tmp, 10); 1226 if (tmp == page) { 1227 length = -EINVAL; 1228 goto out_free_page; 1229 1230 } 1231 length = audit_set_loginuid(current, loginuid); 1232 if (likely(length == 0)) 1233 length = count; 1234 1235 out_free_page: 1236 free_page((unsigned long) page); 1237 return length; 1238 } 1239 1240 static const struct file_operations proc_loginuid_operations = { 1241 .read = proc_loginuid_read, 1242 .write = proc_loginuid_write, 1243 .llseek = generic_file_llseek, 1244 }; 1245 1246 static ssize_t proc_sessionid_read(struct file * file, char __user * buf, 1247 size_t count, loff_t *ppos) 1248 { 1249 struct inode * inode = file->f_path.dentry->d_inode; 1250 struct task_struct *task = get_proc_task(inode); 1251 ssize_t length; 1252 char tmpbuf[TMPBUFLEN]; 1253 1254 if (!task) 1255 return -ESRCH; 1256 length = scnprintf(tmpbuf, TMPBUFLEN, "%u", 1257 audit_get_sessionid(task)); 1258 put_task_struct(task); 1259 return simple_read_from_buffer(buf, count, ppos, tmpbuf, length); 1260 } 1261 1262 static const struct file_operations proc_sessionid_operations = { 1263 .read = proc_sessionid_read, 1264 .llseek = generic_file_llseek, 1265 }; 1266 #endif 1267 1268 #ifdef CONFIG_FAULT_INJECTION 1269 static ssize_t proc_fault_inject_read(struct file * file, char __user * buf, 1270 size_t count, loff_t *ppos) 1271 { 1272 struct task_struct *task = get_proc_task(file->f_dentry->d_inode); 1273 char buffer[PROC_NUMBUF]; 1274 size_t len; 1275 int make_it_fail; 1276 1277 if (!task) 1278 return -ESRCH; 1279 make_it_fail = task->make_it_fail; 1280 put_task_struct(task); 1281 1282 len = snprintf(buffer, sizeof(buffer), "%i\n", make_it_fail); 1283 1284 return simple_read_from_buffer(buf, count, ppos, buffer, len); 1285 } 1286 1287 static ssize_t proc_fault_inject_write(struct file * file, 1288 const char __user * buf, size_t count, loff_t *ppos) 1289 { 1290 struct task_struct *task; 1291 char buffer[PROC_NUMBUF], *end; 1292 int make_it_fail; 1293 1294 if (!capable(CAP_SYS_RESOURCE)) 1295 return -EPERM; 1296 memset(buffer, 0, sizeof(buffer)); 1297 if (count > sizeof(buffer) - 1) 1298 count = sizeof(buffer) - 1; 1299 if (copy_from_user(buffer, buf, count)) 1300 return -EFAULT; 1301 make_it_fail = simple_strtol(strstrip(buffer), &end, 0); 1302 if (*end) 1303 return -EINVAL; 1304 task = get_proc_task(file->f_dentry->d_inode); 1305 if (!task) 1306 return -ESRCH; 1307 task->make_it_fail = make_it_fail; 1308 put_task_struct(task); 1309 1310 return count; 1311 } 1312 1313 static const struct file_operations proc_fault_inject_operations = { 1314 .read = proc_fault_inject_read, 1315 .write = proc_fault_inject_write, 1316 .llseek = generic_file_llseek, 1317 }; 1318 #endif 1319 1320 1321 #ifdef CONFIG_SCHED_DEBUG 1322 /* 1323 * Print out various scheduling related per-task fields: 1324 */ 1325 static int sched_show(struct seq_file *m, void *v) 1326 { 1327 struct inode *inode = m->private; 1328 struct task_struct *p; 1329 1330 p = get_proc_task(inode); 1331 if (!p) 1332 return -ESRCH; 1333 proc_sched_show_task(p, m); 1334 1335 put_task_struct(p); 1336 1337 return 0; 1338 } 1339 1340 static ssize_t 1341 sched_write(struct file *file, const char __user *buf, 1342 size_t count, loff_t *offset) 1343 { 1344 struct inode *inode = file->f_path.dentry->d_inode; 1345 struct task_struct *p; 1346 1347 p = get_proc_task(inode); 1348 if (!p) 1349 return -ESRCH; 1350 proc_sched_set_task(p); 1351 1352 put_task_struct(p); 1353 1354 return count; 1355 } 1356 1357 static int sched_open(struct inode *inode, struct file *filp) 1358 { 1359 return single_open(filp, sched_show, inode); 1360 } 1361 1362 static const struct file_operations proc_pid_sched_operations = { 1363 .open = sched_open, 1364 .read = seq_read, 1365 .write = sched_write, 1366 .llseek = seq_lseek, 1367 .release = single_release, 1368 }; 1369 1370 #endif 1371 1372 #ifdef CONFIG_SCHED_AUTOGROUP 1373 /* 1374 * Print out autogroup related information: 1375 */ 1376 static int sched_autogroup_show(struct seq_file *m, void *v) 1377 { 1378 struct inode *inode = m->private; 1379 struct task_struct *p; 1380 1381 p = get_proc_task(inode); 1382 if (!p) 1383 return -ESRCH; 1384 proc_sched_autogroup_show_task(p, m); 1385 1386 put_task_struct(p); 1387 1388 return 0; 1389 } 1390 1391 static ssize_t 1392 sched_autogroup_write(struct file *file, const char __user *buf, 1393 size_t count, loff_t *offset) 1394 { 1395 struct inode *inode = file->f_path.dentry->d_inode; 1396 struct task_struct *p; 1397 char buffer[PROC_NUMBUF]; 1398 int nice; 1399 int err; 1400 1401 memset(buffer, 0, sizeof(buffer)); 1402 if (count > sizeof(buffer) - 1) 1403 count = sizeof(buffer) - 1; 1404 if (copy_from_user(buffer, buf, count)) 1405 return -EFAULT; 1406 1407 err = kstrtoint(strstrip(buffer), 0, &nice); 1408 if (err < 0) 1409 return err; 1410 1411 p = get_proc_task(inode); 1412 if (!p) 1413 return -ESRCH; 1414 1415 err = nice; 1416 err = proc_sched_autogroup_set_nice(p, &err); 1417 if (err) 1418 count = err; 1419 1420 put_task_struct(p); 1421 1422 return count; 1423 } 1424 1425 static int sched_autogroup_open(struct inode *inode, struct file *filp) 1426 { 1427 int ret; 1428 1429 ret = single_open(filp, sched_autogroup_show, NULL); 1430 if (!ret) { 1431 struct seq_file *m = filp->private_data; 1432 1433 m->private = inode; 1434 } 1435 return ret; 1436 } 1437 1438 static const struct file_operations proc_pid_sched_autogroup_operations = { 1439 .open = sched_autogroup_open, 1440 .read = seq_read, 1441 .write = sched_autogroup_write, 1442 .llseek = seq_lseek, 1443 .release = single_release, 1444 }; 1445 1446 #endif /* CONFIG_SCHED_AUTOGROUP */ 1447 1448 static ssize_t comm_write(struct file *file, const char __user *buf, 1449 size_t count, loff_t *offset) 1450 { 1451 struct inode *inode = file->f_path.dentry->d_inode; 1452 struct task_struct *p; 1453 char buffer[TASK_COMM_LEN]; 1454 1455 memset(buffer, 0, sizeof(buffer)); 1456 if (count > sizeof(buffer) - 1) 1457 count = sizeof(buffer) - 1; 1458 if (copy_from_user(buffer, buf, count)) 1459 return -EFAULT; 1460 1461 p = get_proc_task(inode); 1462 if (!p) 1463 return -ESRCH; 1464 1465 if (same_thread_group(current, p)) 1466 set_task_comm(p, buffer); 1467 else 1468 count = -EINVAL; 1469 1470 put_task_struct(p); 1471 1472 return count; 1473 } 1474 1475 static int comm_show(struct seq_file *m, void *v) 1476 { 1477 struct inode *inode = m->private; 1478 struct task_struct *p; 1479 1480 p = get_proc_task(inode); 1481 if (!p) 1482 return -ESRCH; 1483 1484 task_lock(p); 1485 seq_printf(m, "%s\n", p->comm); 1486 task_unlock(p); 1487 1488 put_task_struct(p); 1489 1490 return 0; 1491 } 1492 1493 static int comm_open(struct inode *inode, struct file *filp) 1494 { 1495 return single_open(filp, comm_show, inode); 1496 } 1497 1498 static const struct file_operations proc_pid_set_comm_operations = { 1499 .open = comm_open, 1500 .read = seq_read, 1501 .write = comm_write, 1502 .llseek = seq_lseek, 1503 .release = single_release, 1504 }; 1505 1506 static int proc_exe_link(struct dentry *dentry, struct path *exe_path) 1507 { 1508 struct task_struct *task; 1509 struct mm_struct *mm; 1510 struct file *exe_file; 1511 1512 task = get_proc_task(dentry->d_inode); 1513 if (!task) 1514 return -ENOENT; 1515 mm = get_task_mm(task); 1516 put_task_struct(task); 1517 if (!mm) 1518 return -ENOENT; 1519 exe_file = get_mm_exe_file(mm); 1520 mmput(mm); 1521 if (exe_file) { 1522 *exe_path = exe_file->f_path; 1523 path_get(&exe_file->f_path); 1524 fput(exe_file); 1525 return 0; 1526 } else 1527 return -ENOENT; 1528 } 1529 1530 static void *proc_pid_follow_link(struct dentry *dentry, struct nameidata *nd) 1531 { 1532 struct inode *inode = dentry->d_inode; 1533 int error = -EACCES; 1534 1535 /* We don't need a base pointer in the /proc filesystem */ 1536 path_put(&nd->path); 1537 1538 /* Are we allowed to snoop on the tasks file descriptors? */ 1539 if (!proc_fd_access_allowed(inode)) 1540 goto out; 1541 1542 error = PROC_I(inode)->op.proc_get_link(dentry, &nd->path); 1543 out: 1544 return ERR_PTR(error); 1545 } 1546 1547 static int do_proc_readlink(struct path *path, char __user *buffer, int buflen) 1548 { 1549 char *tmp = (char*)__get_free_page(GFP_TEMPORARY); 1550 char *pathname; 1551 int len; 1552 1553 if (!tmp) 1554 return -ENOMEM; 1555 1556 pathname = d_path(path, tmp, PAGE_SIZE); 1557 len = PTR_ERR(pathname); 1558 if (IS_ERR(pathname)) 1559 goto out; 1560 len = tmp + PAGE_SIZE - 1 - pathname; 1561 1562 if (len > buflen) 1563 len = buflen; 1564 if (copy_to_user(buffer, pathname, len)) 1565 len = -EFAULT; 1566 out: 1567 free_page((unsigned long)tmp); 1568 return len; 1569 } 1570 1571 static int proc_pid_readlink(struct dentry * dentry, char __user * buffer, int buflen) 1572 { 1573 int error = -EACCES; 1574 struct inode *inode = dentry->d_inode; 1575 struct path path; 1576 1577 /* Are we allowed to snoop on the tasks file descriptors? */ 1578 if (!proc_fd_access_allowed(inode)) 1579 goto out; 1580 1581 error = PROC_I(inode)->op.proc_get_link(dentry, &path); 1582 if (error) 1583 goto out; 1584 1585 error = do_proc_readlink(&path, buffer, buflen); 1586 path_put(&path); 1587 out: 1588 return error; 1589 } 1590 1591 static const struct inode_operations proc_pid_link_inode_operations = { 1592 .readlink = proc_pid_readlink, 1593 .follow_link = proc_pid_follow_link, 1594 .setattr = proc_setattr, 1595 }; 1596 1597 1598 /* building an inode */ 1599 1600 static int task_dumpable(struct task_struct *task) 1601 { 1602 int dumpable = 0; 1603 struct mm_struct *mm; 1604 1605 task_lock(task); 1606 mm = task->mm; 1607 if (mm) 1608 dumpable = get_dumpable(mm); 1609 task_unlock(task); 1610 if(dumpable == 1) 1611 return 1; 1612 return 0; 1613 } 1614 1615 struct inode *proc_pid_make_inode(struct super_block * sb, struct task_struct *task) 1616 { 1617 struct inode * inode; 1618 struct proc_inode *ei; 1619 const struct cred *cred; 1620 1621 /* We need a new inode */ 1622 1623 inode = new_inode(sb); 1624 if (!inode) 1625 goto out; 1626 1627 /* Common stuff */ 1628 ei = PROC_I(inode); 1629 inode->i_ino = get_next_ino(); 1630 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME; 1631 inode->i_op = &proc_def_inode_operations; 1632 1633 /* 1634 * grab the reference to task. 1635 */ 1636 ei->pid = get_task_pid(task, PIDTYPE_PID); 1637 if (!ei->pid) 1638 goto out_unlock; 1639 1640 if (task_dumpable(task)) { 1641 rcu_read_lock(); 1642 cred = __task_cred(task); 1643 inode->i_uid = cred->euid; 1644 inode->i_gid = cred->egid; 1645 rcu_read_unlock(); 1646 } 1647 security_task_to_inode(task, inode); 1648 1649 out: 1650 return inode; 1651 1652 out_unlock: 1653 iput(inode); 1654 return NULL; 1655 } 1656 1657 int pid_getattr(struct vfsmount *mnt, struct dentry *dentry, struct kstat *stat) 1658 { 1659 struct inode *inode = dentry->d_inode; 1660 struct task_struct *task; 1661 const struct cred *cred; 1662 struct pid_namespace *pid = dentry->d_sb->s_fs_info; 1663 1664 generic_fillattr(inode, stat); 1665 1666 rcu_read_lock(); 1667 stat->uid = 0; 1668 stat->gid = 0; 1669 task = pid_task(proc_pid(inode), PIDTYPE_PID); 1670 if (task) { 1671 if (!has_pid_permissions(pid, task, 2)) { 1672 rcu_read_unlock(); 1673 /* 1674 * This doesn't prevent learning whether PID exists, 1675 * it only makes getattr() consistent with readdir(). 1676 */ 1677 return -ENOENT; 1678 } 1679 if ((inode->i_mode == (S_IFDIR|S_IRUGO|S_IXUGO)) || 1680 task_dumpable(task)) { 1681 cred = __task_cred(task); 1682 stat->uid = cred->euid; 1683 stat->gid = cred->egid; 1684 } 1685 } 1686 rcu_read_unlock(); 1687 return 0; 1688 } 1689 1690 /* dentry stuff */ 1691 1692 /* 1693 * Exceptional case: normally we are not allowed to unhash a busy 1694 * directory. In this case, however, we can do it - no aliasing problems 1695 * due to the way we treat inodes. 1696 * 1697 * Rewrite the inode's ownerships here because the owning task may have 1698 * performed a setuid(), etc. 1699 * 1700 * Before the /proc/pid/status file was created the only way to read 1701 * the effective uid of a /process was to stat /proc/pid. Reading 1702 * /proc/pid/status is slow enough that procps and other packages 1703 * kept stating /proc/pid. To keep the rules in /proc simple I have 1704 * made this apply to all per process world readable and executable 1705 * directories. 1706 */ 1707 int pid_revalidate(struct dentry *dentry, struct nameidata *nd) 1708 { 1709 struct inode *inode; 1710 struct task_struct *task; 1711 const struct cred *cred; 1712 1713 if (nd && nd->flags & LOOKUP_RCU) 1714 return -ECHILD; 1715 1716 inode = dentry->d_inode; 1717 task = get_proc_task(inode); 1718 1719 if (task) { 1720 if ((inode->i_mode == (S_IFDIR|S_IRUGO|S_IXUGO)) || 1721 task_dumpable(task)) { 1722 rcu_read_lock(); 1723 cred = __task_cred(task); 1724 inode->i_uid = cred->euid; 1725 inode->i_gid = cred->egid; 1726 rcu_read_unlock(); 1727 } else { 1728 inode->i_uid = 0; 1729 inode->i_gid = 0; 1730 } 1731 inode->i_mode &= ~(S_ISUID | S_ISGID); 1732 security_task_to_inode(task, inode); 1733 put_task_struct(task); 1734 return 1; 1735 } 1736 d_drop(dentry); 1737 return 0; 1738 } 1739 1740 static int pid_delete_dentry(const struct dentry * dentry) 1741 { 1742 /* Is the task we represent dead? 1743 * If so, then don't put the dentry on the lru list, 1744 * kill it immediately. 1745 */ 1746 return !proc_pid(dentry->d_inode)->tasks[PIDTYPE_PID].first; 1747 } 1748 1749 const struct dentry_operations pid_dentry_operations = 1750 { 1751 .d_revalidate = pid_revalidate, 1752 .d_delete = pid_delete_dentry, 1753 }; 1754 1755 /* Lookups */ 1756 1757 /* 1758 * Fill a directory entry. 1759 * 1760 * If possible create the dcache entry and derive our inode number and 1761 * file type from dcache entry. 1762 * 1763 * Since all of the proc inode numbers are dynamically generated, the inode 1764 * numbers do not exist until the inode is cache. This means creating the 1765 * the dcache entry in readdir is necessary to keep the inode numbers 1766 * reported by readdir in sync with the inode numbers reported 1767 * by stat. 1768 */ 1769 int proc_fill_cache(struct file *filp, void *dirent, filldir_t filldir, 1770 const char *name, int len, 1771 instantiate_t instantiate, struct task_struct *task, const void *ptr) 1772 { 1773 struct dentry *child, *dir = filp->f_path.dentry; 1774 struct inode *inode; 1775 struct qstr qname; 1776 ino_t ino = 0; 1777 unsigned type = DT_UNKNOWN; 1778 1779 qname.name = name; 1780 qname.len = len; 1781 qname.hash = full_name_hash(name, len); 1782 1783 child = d_lookup(dir, &qname); 1784 if (!child) { 1785 struct dentry *new; 1786 new = d_alloc(dir, &qname); 1787 if (new) { 1788 child = instantiate(dir->d_inode, new, task, ptr); 1789 if (child) 1790 dput(new); 1791 else 1792 child = new; 1793 } 1794 } 1795 if (!child || IS_ERR(child) || !child->d_inode) 1796 goto end_instantiate; 1797 inode = child->d_inode; 1798 if (inode) { 1799 ino = inode->i_ino; 1800 type = inode->i_mode >> 12; 1801 } 1802 dput(child); 1803 end_instantiate: 1804 if (!ino) 1805 ino = find_inode_number(dir, &qname); 1806 if (!ino) 1807 ino = 1; 1808 return filldir(dirent, name, len, filp->f_pos, ino, type); 1809 } 1810 1811 static unsigned name_to_int(struct dentry *dentry) 1812 { 1813 const char *name = dentry->d_name.name; 1814 int len = dentry->d_name.len; 1815 unsigned n = 0; 1816 1817 if (len > 1 && *name == '0') 1818 goto out; 1819 while (len-- > 0) { 1820 unsigned c = *name++ - '0'; 1821 if (c > 9) 1822 goto out; 1823 if (n >= (~0U-9)/10) 1824 goto out; 1825 n *= 10; 1826 n += c; 1827 } 1828 return n; 1829 out: 1830 return ~0U; 1831 } 1832 1833 #define PROC_FDINFO_MAX 64 1834 1835 static int proc_fd_info(struct inode *inode, struct path *path, char *info) 1836 { 1837 struct task_struct *task = get_proc_task(inode); 1838 struct files_struct *files = NULL; 1839 struct file *file; 1840 int fd = proc_fd(inode); 1841 1842 if (task) { 1843 files = get_files_struct(task); 1844 put_task_struct(task); 1845 } 1846 if (files) { 1847 /* 1848 * We are not taking a ref to the file structure, so we must 1849 * hold ->file_lock. 1850 */ 1851 spin_lock(&files->file_lock); 1852 file = fcheck_files(files, fd); 1853 if (file) { 1854 unsigned int f_flags; 1855 struct fdtable *fdt; 1856 1857 fdt = files_fdtable(files); 1858 f_flags = file->f_flags & ~O_CLOEXEC; 1859 if (FD_ISSET(fd, fdt->close_on_exec)) 1860 f_flags |= O_CLOEXEC; 1861 1862 if (path) { 1863 *path = file->f_path; 1864 path_get(&file->f_path); 1865 } 1866 if (info) 1867 snprintf(info, PROC_FDINFO_MAX, 1868 "pos:\t%lli\n" 1869 "flags:\t0%o\n", 1870 (long long) file->f_pos, 1871 f_flags); 1872 spin_unlock(&files->file_lock); 1873 put_files_struct(files); 1874 return 0; 1875 } 1876 spin_unlock(&files->file_lock); 1877 put_files_struct(files); 1878 } 1879 return -ENOENT; 1880 } 1881 1882 static int proc_fd_link(struct dentry *dentry, struct path *path) 1883 { 1884 return proc_fd_info(dentry->d_inode, path, NULL); 1885 } 1886 1887 static int tid_fd_revalidate(struct dentry *dentry, struct nameidata *nd) 1888 { 1889 struct inode *inode; 1890 struct task_struct *task; 1891 int fd; 1892 struct files_struct *files; 1893 const struct cred *cred; 1894 1895 if (nd && nd->flags & LOOKUP_RCU) 1896 return -ECHILD; 1897 1898 inode = dentry->d_inode; 1899 task = get_proc_task(inode); 1900 fd = proc_fd(inode); 1901 1902 if (task) { 1903 files = get_files_struct(task); 1904 if (files) { 1905 rcu_read_lock(); 1906 if (fcheck_files(files, fd)) { 1907 rcu_read_unlock(); 1908 put_files_struct(files); 1909 if (task_dumpable(task)) { 1910 rcu_read_lock(); 1911 cred = __task_cred(task); 1912 inode->i_uid = cred->euid; 1913 inode->i_gid = cred->egid; 1914 rcu_read_unlock(); 1915 } else { 1916 inode->i_uid = 0; 1917 inode->i_gid = 0; 1918 } 1919 inode->i_mode &= ~(S_ISUID | S_ISGID); 1920 security_task_to_inode(task, inode); 1921 put_task_struct(task); 1922 return 1; 1923 } 1924 rcu_read_unlock(); 1925 put_files_struct(files); 1926 } 1927 put_task_struct(task); 1928 } 1929 d_drop(dentry); 1930 return 0; 1931 } 1932 1933 static const struct dentry_operations tid_fd_dentry_operations = 1934 { 1935 .d_revalidate = tid_fd_revalidate, 1936 .d_delete = pid_delete_dentry, 1937 }; 1938 1939 static struct dentry *proc_fd_instantiate(struct inode *dir, 1940 struct dentry *dentry, struct task_struct *task, const void *ptr) 1941 { 1942 unsigned fd = *(const unsigned *)ptr; 1943 struct file *file; 1944 struct files_struct *files; 1945 struct inode *inode; 1946 struct proc_inode *ei; 1947 struct dentry *error = ERR_PTR(-ENOENT); 1948 1949 inode = proc_pid_make_inode(dir->i_sb, task); 1950 if (!inode) 1951 goto out; 1952 ei = PROC_I(inode); 1953 ei->fd = fd; 1954 files = get_files_struct(task); 1955 if (!files) 1956 goto out_iput; 1957 inode->i_mode = S_IFLNK; 1958 1959 /* 1960 * We are not taking a ref to the file structure, so we must 1961 * hold ->file_lock. 1962 */ 1963 spin_lock(&files->file_lock); 1964 file = fcheck_files(files, fd); 1965 if (!file) 1966 goto out_unlock; 1967 if (file->f_mode & FMODE_READ) 1968 inode->i_mode |= S_IRUSR | S_IXUSR; 1969 if (file->f_mode & FMODE_WRITE) 1970 inode->i_mode |= S_IWUSR | S_IXUSR; 1971 spin_unlock(&files->file_lock); 1972 put_files_struct(files); 1973 1974 inode->i_op = &proc_pid_link_inode_operations; 1975 inode->i_size = 64; 1976 ei->op.proc_get_link = proc_fd_link; 1977 d_set_d_op(dentry, &tid_fd_dentry_operations); 1978 d_add(dentry, inode); 1979 /* Close the race of the process dying before we return the dentry */ 1980 if (tid_fd_revalidate(dentry, NULL)) 1981 error = NULL; 1982 1983 out: 1984 return error; 1985 out_unlock: 1986 spin_unlock(&files->file_lock); 1987 put_files_struct(files); 1988 out_iput: 1989 iput(inode); 1990 goto out; 1991 } 1992 1993 static struct dentry *proc_lookupfd_common(struct inode *dir, 1994 struct dentry *dentry, 1995 instantiate_t instantiate) 1996 { 1997 struct task_struct *task = get_proc_task(dir); 1998 unsigned fd = name_to_int(dentry); 1999 struct dentry *result = ERR_PTR(-ENOENT); 2000 2001 if (!task) 2002 goto out_no_task; 2003 if (fd == ~0U) 2004 goto out; 2005 2006 result = instantiate(dir, dentry, task, &fd); 2007 out: 2008 put_task_struct(task); 2009 out_no_task: 2010 return result; 2011 } 2012 2013 static int proc_readfd_common(struct file * filp, void * dirent, 2014 filldir_t filldir, instantiate_t instantiate) 2015 { 2016 struct dentry *dentry = filp->f_path.dentry; 2017 struct inode *inode = dentry->d_inode; 2018 struct task_struct *p = get_proc_task(inode); 2019 unsigned int fd, ino; 2020 int retval; 2021 struct files_struct * files; 2022 2023 retval = -ENOENT; 2024 if (!p) 2025 goto out_no_task; 2026 retval = 0; 2027 2028 fd = filp->f_pos; 2029 switch (fd) { 2030 case 0: 2031 if (filldir(dirent, ".", 1, 0, inode->i_ino, DT_DIR) < 0) 2032 goto out; 2033 filp->f_pos++; 2034 case 1: 2035 ino = parent_ino(dentry); 2036 if (filldir(dirent, "..", 2, 1, ino, DT_DIR) < 0) 2037 goto out; 2038 filp->f_pos++; 2039 default: 2040 files = get_files_struct(p); 2041 if (!files) 2042 goto out; 2043 rcu_read_lock(); 2044 for (fd = filp->f_pos-2; 2045 fd < files_fdtable(files)->max_fds; 2046 fd++, filp->f_pos++) { 2047 char name[PROC_NUMBUF]; 2048 int len; 2049 2050 if (!fcheck_files(files, fd)) 2051 continue; 2052 rcu_read_unlock(); 2053 2054 len = snprintf(name, sizeof(name), "%d", fd); 2055 if (proc_fill_cache(filp, dirent, filldir, 2056 name, len, instantiate, 2057 p, &fd) < 0) { 2058 rcu_read_lock(); 2059 break; 2060 } 2061 rcu_read_lock(); 2062 } 2063 rcu_read_unlock(); 2064 put_files_struct(files); 2065 } 2066 out: 2067 put_task_struct(p); 2068 out_no_task: 2069 return retval; 2070 } 2071 2072 static struct dentry *proc_lookupfd(struct inode *dir, struct dentry *dentry, 2073 struct nameidata *nd) 2074 { 2075 return proc_lookupfd_common(dir, dentry, proc_fd_instantiate); 2076 } 2077 2078 static int proc_readfd(struct file *filp, void *dirent, filldir_t filldir) 2079 { 2080 return proc_readfd_common(filp, dirent, filldir, proc_fd_instantiate); 2081 } 2082 2083 static ssize_t proc_fdinfo_read(struct file *file, char __user *buf, 2084 size_t len, loff_t *ppos) 2085 { 2086 char tmp[PROC_FDINFO_MAX]; 2087 int err = proc_fd_info(file->f_path.dentry->d_inode, NULL, tmp); 2088 if (!err) 2089 err = simple_read_from_buffer(buf, len, ppos, tmp, strlen(tmp)); 2090 return err; 2091 } 2092 2093 static const struct file_operations proc_fdinfo_file_operations = { 2094 .open = nonseekable_open, 2095 .read = proc_fdinfo_read, 2096 .llseek = no_llseek, 2097 }; 2098 2099 static const struct file_operations proc_fd_operations = { 2100 .read = generic_read_dir, 2101 .readdir = proc_readfd, 2102 .llseek = default_llseek, 2103 }; 2104 2105 #ifdef CONFIG_CHECKPOINT_RESTORE 2106 2107 /* 2108 * dname_to_vma_addr - maps a dentry name into two unsigned longs 2109 * which represent vma start and end addresses. 2110 */ 2111 static int dname_to_vma_addr(struct dentry *dentry, 2112 unsigned long *start, unsigned long *end) 2113 { 2114 if (sscanf(dentry->d_name.name, "%lx-%lx", start, end) != 2) 2115 return -EINVAL; 2116 2117 return 0; 2118 } 2119 2120 static int map_files_d_revalidate(struct dentry *dentry, struct nameidata *nd) 2121 { 2122 unsigned long vm_start, vm_end; 2123 bool exact_vma_exists = false; 2124 struct mm_struct *mm = NULL; 2125 struct task_struct *task; 2126 const struct cred *cred; 2127 struct inode *inode; 2128 int status = 0; 2129 2130 if (nd && nd->flags & LOOKUP_RCU) 2131 return -ECHILD; 2132 2133 if (!capable(CAP_SYS_ADMIN)) { 2134 status = -EACCES; 2135 goto out_notask; 2136 } 2137 2138 inode = dentry->d_inode; 2139 task = get_proc_task(inode); 2140 if (!task) 2141 goto out_notask; 2142 2143 if (!ptrace_may_access(task, PTRACE_MODE_READ)) 2144 goto out; 2145 2146 mm = get_task_mm(task); 2147 if (!mm) 2148 goto out; 2149 2150 if (!dname_to_vma_addr(dentry, &vm_start, &vm_end)) { 2151 down_read(&mm->mmap_sem); 2152 exact_vma_exists = !!find_exact_vma(mm, vm_start, vm_end); 2153 up_read(&mm->mmap_sem); 2154 } 2155 2156 mmput(mm); 2157 2158 if (exact_vma_exists) { 2159 if (task_dumpable(task)) { 2160 rcu_read_lock(); 2161 cred = __task_cred(task); 2162 inode->i_uid = cred->euid; 2163 inode->i_gid = cred->egid; 2164 rcu_read_unlock(); 2165 } else { 2166 inode->i_uid = 0; 2167 inode->i_gid = 0; 2168 } 2169 security_task_to_inode(task, inode); 2170 status = 1; 2171 } 2172 2173 out: 2174 put_task_struct(task); 2175 2176 out_notask: 2177 if (status <= 0) 2178 d_drop(dentry); 2179 2180 return status; 2181 } 2182 2183 static const struct dentry_operations tid_map_files_dentry_operations = { 2184 .d_revalidate = map_files_d_revalidate, 2185 .d_delete = pid_delete_dentry, 2186 }; 2187 2188 static int proc_map_files_get_link(struct dentry *dentry, struct path *path) 2189 { 2190 unsigned long vm_start, vm_end; 2191 struct vm_area_struct *vma; 2192 struct task_struct *task; 2193 struct mm_struct *mm; 2194 int rc; 2195 2196 rc = -ENOENT; 2197 task = get_proc_task(dentry->d_inode); 2198 if (!task) 2199 goto out; 2200 2201 mm = get_task_mm(task); 2202 put_task_struct(task); 2203 if (!mm) 2204 goto out; 2205 2206 rc = dname_to_vma_addr(dentry, &vm_start, &vm_end); 2207 if (rc) 2208 goto out_mmput; 2209 2210 down_read(&mm->mmap_sem); 2211 vma = find_exact_vma(mm, vm_start, vm_end); 2212 if (vma && vma->vm_file) { 2213 *path = vma->vm_file->f_path; 2214 path_get(path); 2215 rc = 0; 2216 } 2217 up_read(&mm->mmap_sem); 2218 2219 out_mmput: 2220 mmput(mm); 2221 out: 2222 return rc; 2223 } 2224 2225 struct map_files_info { 2226 struct file *file; 2227 unsigned long len; 2228 unsigned char name[4*sizeof(long)+2]; /* max: %lx-%lx\0 */ 2229 }; 2230 2231 static struct dentry * 2232 proc_map_files_instantiate(struct inode *dir, struct dentry *dentry, 2233 struct task_struct *task, const void *ptr) 2234 { 2235 const struct file *file = ptr; 2236 struct proc_inode *ei; 2237 struct inode *inode; 2238 2239 if (!file) 2240 return ERR_PTR(-ENOENT); 2241 2242 inode = proc_pid_make_inode(dir->i_sb, task); 2243 if (!inode) 2244 return ERR_PTR(-ENOENT); 2245 2246 ei = PROC_I(inode); 2247 ei->op.proc_get_link = proc_map_files_get_link; 2248 2249 inode->i_op = &proc_pid_link_inode_operations; 2250 inode->i_size = 64; 2251 inode->i_mode = S_IFLNK; 2252 2253 if (file->f_mode & FMODE_READ) 2254 inode->i_mode |= S_IRUSR; 2255 if (file->f_mode & FMODE_WRITE) 2256 inode->i_mode |= S_IWUSR; 2257 2258 d_set_d_op(dentry, &tid_map_files_dentry_operations); 2259 d_add(dentry, inode); 2260 2261 return NULL; 2262 } 2263 2264 static struct dentry *proc_map_files_lookup(struct inode *dir, 2265 struct dentry *dentry, struct nameidata *nd) 2266 { 2267 unsigned long vm_start, vm_end; 2268 struct vm_area_struct *vma; 2269 struct task_struct *task; 2270 struct dentry *result; 2271 struct mm_struct *mm; 2272 2273 result = ERR_PTR(-EACCES); 2274 if (!capable(CAP_SYS_ADMIN)) 2275 goto out; 2276 2277 result = ERR_PTR(-ENOENT); 2278 task = get_proc_task(dir); 2279 if (!task) 2280 goto out; 2281 2282 result = ERR_PTR(-EACCES); 2283 if (lock_trace(task)) 2284 goto out_put_task; 2285 2286 result = ERR_PTR(-ENOENT); 2287 if (dname_to_vma_addr(dentry, &vm_start, &vm_end)) 2288 goto out_unlock; 2289 2290 mm = get_task_mm(task); 2291 if (!mm) 2292 goto out_unlock; 2293 2294 down_read(&mm->mmap_sem); 2295 vma = find_exact_vma(mm, vm_start, vm_end); 2296 if (!vma) 2297 goto out_no_vma; 2298 2299 result = proc_map_files_instantiate(dir, dentry, task, vma->vm_file); 2300 2301 out_no_vma: 2302 up_read(&mm->mmap_sem); 2303 mmput(mm); 2304 out_unlock: 2305 unlock_trace(task); 2306 out_put_task: 2307 put_task_struct(task); 2308 out: 2309 return result; 2310 } 2311 2312 static const struct inode_operations proc_map_files_inode_operations = { 2313 .lookup = proc_map_files_lookup, 2314 .permission = proc_fd_permission, 2315 .setattr = proc_setattr, 2316 }; 2317 2318 static int 2319 proc_map_files_readdir(struct file *filp, void *dirent, filldir_t filldir) 2320 { 2321 struct dentry *dentry = filp->f_path.dentry; 2322 struct inode *inode = dentry->d_inode; 2323 struct vm_area_struct *vma; 2324 struct task_struct *task; 2325 struct mm_struct *mm; 2326 ino_t ino; 2327 int ret; 2328 2329 ret = -EACCES; 2330 if (!capable(CAP_SYS_ADMIN)) 2331 goto out; 2332 2333 ret = -ENOENT; 2334 task = get_proc_task(inode); 2335 if (!task) 2336 goto out; 2337 2338 ret = -EACCES; 2339 if (lock_trace(task)) 2340 goto out_put_task; 2341 2342 ret = 0; 2343 switch (filp->f_pos) { 2344 case 0: 2345 ino = inode->i_ino; 2346 if (filldir(dirent, ".", 1, 0, ino, DT_DIR) < 0) 2347 goto out_unlock; 2348 filp->f_pos++; 2349 case 1: 2350 ino = parent_ino(dentry); 2351 if (filldir(dirent, "..", 2, 1, ino, DT_DIR) < 0) 2352 goto out_unlock; 2353 filp->f_pos++; 2354 default: 2355 { 2356 unsigned long nr_files, pos, i; 2357 struct flex_array *fa = NULL; 2358 struct map_files_info info; 2359 struct map_files_info *p; 2360 2361 mm = get_task_mm(task); 2362 if (!mm) 2363 goto out_unlock; 2364 down_read(&mm->mmap_sem); 2365 2366 nr_files = 0; 2367 2368 /* 2369 * We need two passes here: 2370 * 2371 * 1) Collect vmas of mapped files with mmap_sem taken 2372 * 2) Release mmap_sem and instantiate entries 2373 * 2374 * otherwise we get lockdep complained, since filldir() 2375 * routine might require mmap_sem taken in might_fault(). 2376 */ 2377 2378 for (vma = mm->mmap, pos = 2; vma; vma = vma->vm_next) { 2379 if (vma->vm_file && ++pos > filp->f_pos) 2380 nr_files++; 2381 } 2382 2383 if (nr_files) { 2384 fa = flex_array_alloc(sizeof(info), nr_files, 2385 GFP_KERNEL); 2386 if (!fa || flex_array_prealloc(fa, 0, nr_files, 2387 GFP_KERNEL)) { 2388 ret = -ENOMEM; 2389 if (fa) 2390 flex_array_free(fa); 2391 up_read(&mm->mmap_sem); 2392 mmput(mm); 2393 goto out_unlock; 2394 } 2395 for (i = 0, vma = mm->mmap, pos = 2; vma; 2396 vma = vma->vm_next) { 2397 if (!vma->vm_file) 2398 continue; 2399 if (++pos <= filp->f_pos) 2400 continue; 2401 2402 get_file(vma->vm_file); 2403 info.file = vma->vm_file; 2404 info.len = snprintf(info.name, 2405 sizeof(info.name), "%lx-%lx", 2406 vma->vm_start, vma->vm_end); 2407 if (flex_array_put(fa, i++, &info, GFP_KERNEL)) 2408 BUG(); 2409 } 2410 } 2411 up_read(&mm->mmap_sem); 2412 2413 for (i = 0; i < nr_files; i++) { 2414 p = flex_array_get(fa, i); 2415 ret = proc_fill_cache(filp, dirent, filldir, 2416 p->name, p->len, 2417 proc_map_files_instantiate, 2418 task, p->file); 2419 if (ret) 2420 break; 2421 filp->f_pos++; 2422 fput(p->file); 2423 } 2424 for (; i < nr_files; i++) { 2425 /* 2426 * In case of error don't forget 2427 * to put rest of file refs. 2428 */ 2429 p = flex_array_get(fa, i); 2430 fput(p->file); 2431 } 2432 if (fa) 2433 flex_array_free(fa); 2434 mmput(mm); 2435 } 2436 } 2437 2438 out_unlock: 2439 unlock_trace(task); 2440 out_put_task: 2441 put_task_struct(task); 2442 out: 2443 return ret; 2444 } 2445 2446 static const struct file_operations proc_map_files_operations = { 2447 .read = generic_read_dir, 2448 .readdir = proc_map_files_readdir, 2449 .llseek = default_llseek, 2450 }; 2451 2452 #endif /* CONFIG_CHECKPOINT_RESTORE */ 2453 2454 /* 2455 * /proc/pid/fd needs a special permission handler so that a process can still 2456 * access /proc/self/fd after it has executed a setuid(). 2457 */ 2458 static int proc_fd_permission(struct inode *inode, int mask) 2459 { 2460 int rv = generic_permission(inode, mask); 2461 if (rv == 0) 2462 return 0; 2463 if (task_pid(current) == proc_pid(inode)) 2464 rv = 0; 2465 return rv; 2466 } 2467 2468 /* 2469 * proc directories can do almost nothing.. 2470 */ 2471 static const struct inode_operations proc_fd_inode_operations = { 2472 .lookup = proc_lookupfd, 2473 .permission = proc_fd_permission, 2474 .setattr = proc_setattr, 2475 }; 2476 2477 static struct dentry *proc_fdinfo_instantiate(struct inode *dir, 2478 struct dentry *dentry, struct task_struct *task, const void *ptr) 2479 { 2480 unsigned fd = *(unsigned *)ptr; 2481 struct inode *inode; 2482 struct proc_inode *ei; 2483 struct dentry *error = ERR_PTR(-ENOENT); 2484 2485 inode = proc_pid_make_inode(dir->i_sb, task); 2486 if (!inode) 2487 goto out; 2488 ei = PROC_I(inode); 2489 ei->fd = fd; 2490 inode->i_mode = S_IFREG | S_IRUSR; 2491 inode->i_fop = &proc_fdinfo_file_operations; 2492 d_set_d_op(dentry, &tid_fd_dentry_operations); 2493 d_add(dentry, inode); 2494 /* Close the race of the process dying before we return the dentry */ 2495 if (tid_fd_revalidate(dentry, NULL)) 2496 error = NULL; 2497 2498 out: 2499 return error; 2500 } 2501 2502 static struct dentry *proc_lookupfdinfo(struct inode *dir, 2503 struct dentry *dentry, 2504 struct nameidata *nd) 2505 { 2506 return proc_lookupfd_common(dir, dentry, proc_fdinfo_instantiate); 2507 } 2508 2509 static int proc_readfdinfo(struct file *filp, void *dirent, filldir_t filldir) 2510 { 2511 return proc_readfd_common(filp, dirent, filldir, 2512 proc_fdinfo_instantiate); 2513 } 2514 2515 static const struct file_operations proc_fdinfo_operations = { 2516 .read = generic_read_dir, 2517 .readdir = proc_readfdinfo, 2518 .llseek = default_llseek, 2519 }; 2520 2521 /* 2522 * proc directories can do almost nothing.. 2523 */ 2524 static const struct inode_operations proc_fdinfo_inode_operations = { 2525 .lookup = proc_lookupfdinfo, 2526 .setattr = proc_setattr, 2527 }; 2528 2529 2530 static struct dentry *proc_pident_instantiate(struct inode *dir, 2531 struct dentry *dentry, struct task_struct *task, const void *ptr) 2532 { 2533 const struct pid_entry *p = ptr; 2534 struct inode *inode; 2535 struct proc_inode *ei; 2536 struct dentry *error = ERR_PTR(-ENOENT); 2537 2538 inode = proc_pid_make_inode(dir->i_sb, task); 2539 if (!inode) 2540 goto out; 2541 2542 ei = PROC_I(inode); 2543 inode->i_mode = p->mode; 2544 if (S_ISDIR(inode->i_mode)) 2545 set_nlink(inode, 2); /* Use getattr to fix if necessary */ 2546 if (p->iop) 2547 inode->i_op = p->iop; 2548 if (p->fop) 2549 inode->i_fop = p->fop; 2550 ei->op = p->op; 2551 d_set_d_op(dentry, &pid_dentry_operations); 2552 d_add(dentry, inode); 2553 /* Close the race of the process dying before we return the dentry */ 2554 if (pid_revalidate(dentry, NULL)) 2555 error = NULL; 2556 out: 2557 return error; 2558 } 2559 2560 static struct dentry *proc_pident_lookup(struct inode *dir, 2561 struct dentry *dentry, 2562 const struct pid_entry *ents, 2563 unsigned int nents) 2564 { 2565 struct dentry *error; 2566 struct task_struct *task = get_proc_task(dir); 2567 const struct pid_entry *p, *last; 2568 2569 error = ERR_PTR(-ENOENT); 2570 2571 if (!task) 2572 goto out_no_task; 2573 2574 /* 2575 * Yes, it does not scale. And it should not. Don't add 2576 * new entries into /proc/<tgid>/ without very good reasons. 2577 */ 2578 last = &ents[nents - 1]; 2579 for (p = ents; p <= last; p++) { 2580 if (p->len != dentry->d_name.len) 2581 continue; 2582 if (!memcmp(dentry->d_name.name, p->name, p->len)) 2583 break; 2584 } 2585 if (p > last) 2586 goto out; 2587 2588 error = proc_pident_instantiate(dir, dentry, task, p); 2589 out: 2590 put_task_struct(task); 2591 out_no_task: 2592 return error; 2593 } 2594 2595 static int proc_pident_fill_cache(struct file *filp, void *dirent, 2596 filldir_t filldir, struct task_struct *task, const struct pid_entry *p) 2597 { 2598 return proc_fill_cache(filp, dirent, filldir, p->name, p->len, 2599 proc_pident_instantiate, task, p); 2600 } 2601 2602 static int proc_pident_readdir(struct file *filp, 2603 void *dirent, filldir_t filldir, 2604 const struct pid_entry *ents, unsigned int nents) 2605 { 2606 int i; 2607 struct dentry *dentry = filp->f_path.dentry; 2608 struct inode *inode = dentry->d_inode; 2609 struct task_struct *task = get_proc_task(inode); 2610 const struct pid_entry *p, *last; 2611 ino_t ino; 2612 int ret; 2613 2614 ret = -ENOENT; 2615 if (!task) 2616 goto out_no_task; 2617 2618 ret = 0; 2619 i = filp->f_pos; 2620 switch (i) { 2621 case 0: 2622 ino = inode->i_ino; 2623 if (filldir(dirent, ".", 1, i, ino, DT_DIR) < 0) 2624 goto out; 2625 i++; 2626 filp->f_pos++; 2627 /* fall through */ 2628 case 1: 2629 ino = parent_ino(dentry); 2630 if (filldir(dirent, "..", 2, i, ino, DT_DIR) < 0) 2631 goto out; 2632 i++; 2633 filp->f_pos++; 2634 /* fall through */ 2635 default: 2636 i -= 2; 2637 if (i >= nents) { 2638 ret = 1; 2639 goto out; 2640 } 2641 p = ents + i; 2642 last = &ents[nents - 1]; 2643 while (p <= last) { 2644 if (proc_pident_fill_cache(filp, dirent, filldir, task, p) < 0) 2645 goto out; 2646 filp->f_pos++; 2647 p++; 2648 } 2649 } 2650 2651 ret = 1; 2652 out: 2653 put_task_struct(task); 2654 out_no_task: 2655 return ret; 2656 } 2657 2658 #ifdef CONFIG_SECURITY 2659 static ssize_t proc_pid_attr_read(struct file * file, char __user * buf, 2660 size_t count, loff_t *ppos) 2661 { 2662 struct inode * inode = file->f_path.dentry->d_inode; 2663 char *p = NULL; 2664 ssize_t length; 2665 struct task_struct *task = get_proc_task(inode); 2666 2667 if (!task) 2668 return -ESRCH; 2669 2670 length = security_getprocattr(task, 2671 (char*)file->f_path.dentry->d_name.name, 2672 &p); 2673 put_task_struct(task); 2674 if (length > 0) 2675 length = simple_read_from_buffer(buf, count, ppos, p, length); 2676 kfree(p); 2677 return length; 2678 } 2679 2680 static ssize_t proc_pid_attr_write(struct file * file, const char __user * buf, 2681 size_t count, loff_t *ppos) 2682 { 2683 struct inode * inode = file->f_path.dentry->d_inode; 2684 char *page; 2685 ssize_t length; 2686 struct task_struct *task = get_proc_task(inode); 2687 2688 length = -ESRCH; 2689 if (!task) 2690 goto out_no_task; 2691 if (count > PAGE_SIZE) 2692 count = PAGE_SIZE; 2693 2694 /* No partial writes. */ 2695 length = -EINVAL; 2696 if (*ppos != 0) 2697 goto out; 2698 2699 length = -ENOMEM; 2700 page = (char*)__get_free_page(GFP_TEMPORARY); 2701 if (!page) 2702 goto out; 2703 2704 length = -EFAULT; 2705 if (copy_from_user(page, buf, count)) 2706 goto out_free; 2707 2708 /* Guard against adverse ptrace interaction */ 2709 length = mutex_lock_interruptible(&task->signal->cred_guard_mutex); 2710 if (length < 0) 2711 goto out_free; 2712 2713 length = security_setprocattr(task, 2714 (char*)file->f_path.dentry->d_name.name, 2715 (void*)page, count); 2716 mutex_unlock(&task->signal->cred_guard_mutex); 2717 out_free: 2718 free_page((unsigned long) page); 2719 out: 2720 put_task_struct(task); 2721 out_no_task: 2722 return length; 2723 } 2724 2725 static const struct file_operations proc_pid_attr_operations = { 2726 .read = proc_pid_attr_read, 2727 .write = proc_pid_attr_write, 2728 .llseek = generic_file_llseek, 2729 }; 2730 2731 static const struct pid_entry attr_dir_stuff[] = { 2732 REG("current", S_IRUGO|S_IWUGO, proc_pid_attr_operations), 2733 REG("prev", S_IRUGO, proc_pid_attr_operations), 2734 REG("exec", S_IRUGO|S_IWUGO, proc_pid_attr_operations), 2735 REG("fscreate", S_IRUGO|S_IWUGO, proc_pid_attr_operations), 2736 REG("keycreate", S_IRUGO|S_IWUGO, proc_pid_attr_operations), 2737 REG("sockcreate", S_IRUGO|S_IWUGO, proc_pid_attr_operations), 2738 }; 2739 2740 static int proc_attr_dir_readdir(struct file * filp, 2741 void * dirent, filldir_t filldir) 2742 { 2743 return proc_pident_readdir(filp,dirent,filldir, 2744 attr_dir_stuff,ARRAY_SIZE(attr_dir_stuff)); 2745 } 2746 2747 static const struct file_operations proc_attr_dir_operations = { 2748 .read = generic_read_dir, 2749 .readdir = proc_attr_dir_readdir, 2750 .llseek = default_llseek, 2751 }; 2752 2753 static struct dentry *proc_attr_dir_lookup(struct inode *dir, 2754 struct dentry *dentry, struct nameidata *nd) 2755 { 2756 return proc_pident_lookup(dir, dentry, 2757 attr_dir_stuff, ARRAY_SIZE(attr_dir_stuff)); 2758 } 2759 2760 static const struct inode_operations proc_attr_dir_inode_operations = { 2761 .lookup = proc_attr_dir_lookup, 2762 .getattr = pid_getattr, 2763 .setattr = proc_setattr, 2764 }; 2765 2766 #endif 2767 2768 #ifdef CONFIG_ELF_CORE 2769 static ssize_t proc_coredump_filter_read(struct file *file, char __user *buf, 2770 size_t count, loff_t *ppos) 2771 { 2772 struct task_struct *task = get_proc_task(file->f_dentry->d_inode); 2773 struct mm_struct *mm; 2774 char buffer[PROC_NUMBUF]; 2775 size_t len; 2776 int ret; 2777 2778 if (!task) 2779 return -ESRCH; 2780 2781 ret = 0; 2782 mm = get_task_mm(task); 2783 if (mm) { 2784 len = snprintf(buffer, sizeof(buffer), "%08lx\n", 2785 ((mm->flags & MMF_DUMP_FILTER_MASK) >> 2786 MMF_DUMP_FILTER_SHIFT)); 2787 mmput(mm); 2788 ret = simple_read_from_buffer(buf, count, ppos, buffer, len); 2789 } 2790 2791 put_task_struct(task); 2792 2793 return ret; 2794 } 2795 2796 static ssize_t proc_coredump_filter_write(struct file *file, 2797 const char __user *buf, 2798 size_t count, 2799 loff_t *ppos) 2800 { 2801 struct task_struct *task; 2802 struct mm_struct *mm; 2803 char buffer[PROC_NUMBUF], *end; 2804 unsigned int val; 2805 int ret; 2806 int i; 2807 unsigned long mask; 2808 2809 ret = -EFAULT; 2810 memset(buffer, 0, sizeof(buffer)); 2811 if (count > sizeof(buffer) - 1) 2812 count = sizeof(buffer) - 1; 2813 if (copy_from_user(buffer, buf, count)) 2814 goto out_no_task; 2815 2816 ret = -EINVAL; 2817 val = (unsigned int)simple_strtoul(buffer, &end, 0); 2818 if (*end == '\n') 2819 end++; 2820 if (end - buffer == 0) 2821 goto out_no_task; 2822 2823 ret = -ESRCH; 2824 task = get_proc_task(file->f_dentry->d_inode); 2825 if (!task) 2826 goto out_no_task; 2827 2828 ret = end - buffer; 2829 mm = get_task_mm(task); 2830 if (!mm) 2831 goto out_no_mm; 2832 2833 for (i = 0, mask = 1; i < MMF_DUMP_FILTER_BITS; i++, mask <<= 1) { 2834 if (val & mask) 2835 set_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags); 2836 else 2837 clear_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags); 2838 } 2839 2840 mmput(mm); 2841 out_no_mm: 2842 put_task_struct(task); 2843 out_no_task: 2844 return ret; 2845 } 2846 2847 static const struct file_operations proc_coredump_filter_operations = { 2848 .read = proc_coredump_filter_read, 2849 .write = proc_coredump_filter_write, 2850 .llseek = generic_file_llseek, 2851 }; 2852 #endif 2853 2854 /* 2855 * /proc/self: 2856 */ 2857 static int proc_self_readlink(struct dentry *dentry, char __user *buffer, 2858 int buflen) 2859 { 2860 struct pid_namespace *ns = dentry->d_sb->s_fs_info; 2861 pid_t tgid = task_tgid_nr_ns(current, ns); 2862 char tmp[PROC_NUMBUF]; 2863 if (!tgid) 2864 return -ENOENT; 2865 sprintf(tmp, "%d", tgid); 2866 return vfs_readlink(dentry,buffer,buflen,tmp); 2867 } 2868 2869 static void *proc_self_follow_link(struct dentry *dentry, struct nameidata *nd) 2870 { 2871 struct pid_namespace *ns = dentry->d_sb->s_fs_info; 2872 pid_t tgid = task_tgid_nr_ns(current, ns); 2873 char *name = ERR_PTR(-ENOENT); 2874 if (tgid) { 2875 name = __getname(); 2876 if (!name) 2877 name = ERR_PTR(-ENOMEM); 2878 else 2879 sprintf(name, "%d", tgid); 2880 } 2881 nd_set_link(nd, name); 2882 return NULL; 2883 } 2884 2885 static void proc_self_put_link(struct dentry *dentry, struct nameidata *nd, 2886 void *cookie) 2887 { 2888 char *s = nd_get_link(nd); 2889 if (!IS_ERR(s)) 2890 __putname(s); 2891 } 2892 2893 static const struct inode_operations proc_self_inode_operations = { 2894 .readlink = proc_self_readlink, 2895 .follow_link = proc_self_follow_link, 2896 .put_link = proc_self_put_link, 2897 }; 2898 2899 /* 2900 * proc base 2901 * 2902 * These are the directory entries in the root directory of /proc 2903 * that properly belong to the /proc filesystem, as they describe 2904 * describe something that is process related. 2905 */ 2906 static const struct pid_entry proc_base_stuff[] = { 2907 NOD("self", S_IFLNK|S_IRWXUGO, 2908 &proc_self_inode_operations, NULL, {}), 2909 }; 2910 2911 static struct dentry *proc_base_instantiate(struct inode *dir, 2912 struct dentry *dentry, struct task_struct *task, const void *ptr) 2913 { 2914 const struct pid_entry *p = ptr; 2915 struct inode *inode; 2916 struct proc_inode *ei; 2917 struct dentry *error; 2918 2919 /* Allocate the inode */ 2920 error = ERR_PTR(-ENOMEM); 2921 inode = new_inode(dir->i_sb); 2922 if (!inode) 2923 goto out; 2924 2925 /* Initialize the inode */ 2926 ei = PROC_I(inode); 2927 inode->i_ino = get_next_ino(); 2928 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME; 2929 2930 /* 2931 * grab the reference to the task. 2932 */ 2933 ei->pid = get_task_pid(task, PIDTYPE_PID); 2934 if (!ei->pid) 2935 goto out_iput; 2936 2937 inode->i_mode = p->mode; 2938 if (S_ISDIR(inode->i_mode)) 2939 set_nlink(inode, 2); 2940 if (S_ISLNK(inode->i_mode)) 2941 inode->i_size = 64; 2942 if (p->iop) 2943 inode->i_op = p->iop; 2944 if (p->fop) 2945 inode->i_fop = p->fop; 2946 ei->op = p->op; 2947 d_add(dentry, inode); 2948 error = NULL; 2949 out: 2950 return error; 2951 out_iput: 2952 iput(inode); 2953 goto out; 2954 } 2955 2956 static struct dentry *proc_base_lookup(struct inode *dir, struct dentry *dentry) 2957 { 2958 struct dentry *error; 2959 struct task_struct *task = get_proc_task(dir); 2960 const struct pid_entry *p, *last; 2961 2962 error = ERR_PTR(-ENOENT); 2963 2964 if (!task) 2965 goto out_no_task; 2966 2967 /* Lookup the directory entry */ 2968 last = &proc_base_stuff[ARRAY_SIZE(proc_base_stuff) - 1]; 2969 for (p = proc_base_stuff; p <= last; p++) { 2970 if (p->len != dentry->d_name.len) 2971 continue; 2972 if (!memcmp(dentry->d_name.name, p->name, p->len)) 2973 break; 2974 } 2975 if (p > last) 2976 goto out; 2977 2978 error = proc_base_instantiate(dir, dentry, task, p); 2979 2980 out: 2981 put_task_struct(task); 2982 out_no_task: 2983 return error; 2984 } 2985 2986 static int proc_base_fill_cache(struct file *filp, void *dirent, 2987 filldir_t filldir, struct task_struct *task, const struct pid_entry *p) 2988 { 2989 return proc_fill_cache(filp, dirent, filldir, p->name, p->len, 2990 proc_base_instantiate, task, p); 2991 } 2992 2993 #ifdef CONFIG_TASK_IO_ACCOUNTING 2994 static int do_io_accounting(struct task_struct *task, char *buffer, int whole) 2995 { 2996 struct task_io_accounting acct = task->ioac; 2997 unsigned long flags; 2998 int result; 2999 3000 result = mutex_lock_killable(&task->signal->cred_guard_mutex); 3001 if (result) 3002 return result; 3003 3004 if (!ptrace_may_access(task, PTRACE_MODE_READ)) { 3005 result = -EACCES; 3006 goto out_unlock; 3007 } 3008 3009 if (whole && lock_task_sighand(task, &flags)) { 3010 struct task_struct *t = task; 3011 3012 task_io_accounting_add(&acct, &task->signal->ioac); 3013 while_each_thread(task, t) 3014 task_io_accounting_add(&acct, &t->ioac); 3015 3016 unlock_task_sighand(task, &flags); 3017 } 3018 result = sprintf(buffer, 3019 "rchar: %llu\n" 3020 "wchar: %llu\n" 3021 "syscr: %llu\n" 3022 "syscw: %llu\n" 3023 "read_bytes: %llu\n" 3024 "write_bytes: %llu\n" 3025 "cancelled_write_bytes: %llu\n", 3026 (unsigned long long)acct.rchar, 3027 (unsigned long long)acct.wchar, 3028 (unsigned long long)acct.syscr, 3029 (unsigned long long)acct.syscw, 3030 (unsigned long long)acct.read_bytes, 3031 (unsigned long long)acct.write_bytes, 3032 (unsigned long long)acct.cancelled_write_bytes); 3033 out_unlock: 3034 mutex_unlock(&task->signal->cred_guard_mutex); 3035 return result; 3036 } 3037 3038 static int proc_tid_io_accounting(struct task_struct *task, char *buffer) 3039 { 3040 return do_io_accounting(task, buffer, 0); 3041 } 3042 3043 static int proc_tgid_io_accounting(struct task_struct *task, char *buffer) 3044 { 3045 return do_io_accounting(task, buffer, 1); 3046 } 3047 #endif /* CONFIG_TASK_IO_ACCOUNTING */ 3048 3049 static int proc_pid_personality(struct seq_file *m, struct pid_namespace *ns, 3050 struct pid *pid, struct task_struct *task) 3051 { 3052 int err = lock_trace(task); 3053 if (!err) { 3054 seq_printf(m, "%08x\n", task->personality); 3055 unlock_trace(task); 3056 } 3057 return err; 3058 } 3059 3060 /* 3061 * Thread groups 3062 */ 3063 static const struct file_operations proc_task_operations; 3064 static const struct inode_operations proc_task_inode_operations; 3065 3066 static const struct pid_entry tgid_base_stuff[] = { 3067 DIR("task", S_IRUGO|S_IXUGO, proc_task_inode_operations, proc_task_operations), 3068 DIR("fd", S_IRUSR|S_IXUSR, proc_fd_inode_operations, proc_fd_operations), 3069 #ifdef CONFIG_CHECKPOINT_RESTORE 3070 DIR("map_files", S_IRUSR|S_IXUSR, proc_map_files_inode_operations, proc_map_files_operations), 3071 #endif 3072 DIR("fdinfo", S_IRUSR|S_IXUSR, proc_fdinfo_inode_operations, proc_fdinfo_operations), 3073 DIR("ns", S_IRUSR|S_IXUGO, proc_ns_dir_inode_operations, proc_ns_dir_operations), 3074 #ifdef CONFIG_NET 3075 DIR("net", S_IRUGO|S_IXUGO, proc_net_inode_operations, proc_net_operations), 3076 #endif 3077 REG("environ", S_IRUSR, proc_environ_operations), 3078 INF("auxv", S_IRUSR, proc_pid_auxv), 3079 ONE("status", S_IRUGO, proc_pid_status), 3080 ONE("personality", S_IRUGO, proc_pid_personality), 3081 INF("limits", S_IRUGO, proc_pid_limits), 3082 #ifdef CONFIG_SCHED_DEBUG 3083 REG("sched", S_IRUGO|S_IWUSR, proc_pid_sched_operations), 3084 #endif 3085 #ifdef CONFIG_SCHED_AUTOGROUP 3086 REG("autogroup", S_IRUGO|S_IWUSR, proc_pid_sched_autogroup_operations), 3087 #endif 3088 REG("comm", S_IRUGO|S_IWUSR, proc_pid_set_comm_operations), 3089 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK 3090 INF("syscall", S_IRUGO, proc_pid_syscall), 3091 #endif 3092 INF("cmdline", S_IRUGO, proc_pid_cmdline), 3093 ONE("stat", S_IRUGO, proc_tgid_stat), 3094 ONE("statm", S_IRUGO, proc_pid_statm), 3095 REG("maps", S_IRUGO, proc_maps_operations), 3096 #ifdef CONFIG_NUMA 3097 REG("numa_maps", S_IRUGO, proc_numa_maps_operations), 3098 #endif 3099 REG("mem", S_IRUSR|S_IWUSR, proc_mem_operations), 3100 LNK("cwd", proc_cwd_link), 3101 LNK("root", proc_root_link), 3102 LNK("exe", proc_exe_link), 3103 REG("mounts", S_IRUGO, proc_mounts_operations), 3104 REG("mountinfo", S_IRUGO, proc_mountinfo_operations), 3105 REG("mountstats", S_IRUSR, proc_mountstats_operations), 3106 #ifdef CONFIG_PROC_PAGE_MONITOR 3107 REG("clear_refs", S_IWUSR, proc_clear_refs_operations), 3108 REG("smaps", S_IRUGO, proc_smaps_operations), 3109 REG("pagemap", S_IRUGO, proc_pagemap_operations), 3110 #endif 3111 #ifdef CONFIG_SECURITY 3112 DIR("attr", S_IRUGO|S_IXUGO, proc_attr_dir_inode_operations, proc_attr_dir_operations), 3113 #endif 3114 #ifdef CONFIG_KALLSYMS 3115 INF("wchan", S_IRUGO, proc_pid_wchan), 3116 #endif 3117 #ifdef CONFIG_STACKTRACE 3118 ONE("stack", S_IRUGO, proc_pid_stack), 3119 #endif 3120 #ifdef CONFIG_SCHEDSTATS 3121 INF("schedstat", S_IRUGO, proc_pid_schedstat), 3122 #endif 3123 #ifdef CONFIG_LATENCYTOP 3124 REG("latency", S_IRUGO, proc_lstats_operations), 3125 #endif 3126 #ifdef CONFIG_PROC_PID_CPUSET 3127 REG("cpuset", S_IRUGO, proc_cpuset_operations), 3128 #endif 3129 #ifdef CONFIG_CGROUPS 3130 REG("cgroup", S_IRUGO, proc_cgroup_operations), 3131 #endif 3132 INF("oom_score", S_IRUGO, proc_oom_score), 3133 REG("oom_adj", S_IRUGO|S_IWUSR, proc_oom_adjust_operations), 3134 REG("oom_score_adj", S_IRUGO|S_IWUSR, proc_oom_score_adj_operations), 3135 #ifdef CONFIG_AUDITSYSCALL 3136 REG("loginuid", S_IWUSR|S_IRUGO, proc_loginuid_operations), 3137 REG("sessionid", S_IRUGO, proc_sessionid_operations), 3138 #endif 3139 #ifdef CONFIG_FAULT_INJECTION 3140 REG("make-it-fail", S_IRUGO|S_IWUSR, proc_fault_inject_operations), 3141 #endif 3142 #ifdef CONFIG_ELF_CORE 3143 REG("coredump_filter", S_IRUGO|S_IWUSR, proc_coredump_filter_operations), 3144 #endif 3145 #ifdef CONFIG_TASK_IO_ACCOUNTING 3146 INF("io", S_IRUSR, proc_tgid_io_accounting), 3147 #endif 3148 #ifdef CONFIG_HARDWALL 3149 INF("hardwall", S_IRUGO, proc_pid_hardwall), 3150 #endif 3151 }; 3152 3153 static int proc_tgid_base_readdir(struct file * filp, 3154 void * dirent, filldir_t filldir) 3155 { 3156 return proc_pident_readdir(filp,dirent,filldir, 3157 tgid_base_stuff,ARRAY_SIZE(tgid_base_stuff)); 3158 } 3159 3160 static const struct file_operations proc_tgid_base_operations = { 3161 .read = generic_read_dir, 3162 .readdir = proc_tgid_base_readdir, 3163 .llseek = default_llseek, 3164 }; 3165 3166 static struct dentry *proc_tgid_base_lookup(struct inode *dir, struct dentry *dentry, struct nameidata *nd){ 3167 return proc_pident_lookup(dir, dentry, 3168 tgid_base_stuff, ARRAY_SIZE(tgid_base_stuff)); 3169 } 3170 3171 static const struct inode_operations proc_tgid_base_inode_operations = { 3172 .lookup = proc_tgid_base_lookup, 3173 .getattr = pid_getattr, 3174 .setattr = proc_setattr, 3175 .permission = proc_pid_permission, 3176 }; 3177 3178 static void proc_flush_task_mnt(struct vfsmount *mnt, pid_t pid, pid_t tgid) 3179 { 3180 struct dentry *dentry, *leader, *dir; 3181 char buf[PROC_NUMBUF]; 3182 struct qstr name; 3183 3184 name.name = buf; 3185 name.len = snprintf(buf, sizeof(buf), "%d", pid); 3186 dentry = d_hash_and_lookup(mnt->mnt_root, &name); 3187 if (dentry) { 3188 shrink_dcache_parent(dentry); 3189 d_drop(dentry); 3190 dput(dentry); 3191 } 3192 3193 name.name = buf; 3194 name.len = snprintf(buf, sizeof(buf), "%d", tgid); 3195 leader = d_hash_and_lookup(mnt->mnt_root, &name); 3196 if (!leader) 3197 goto out; 3198 3199 name.name = "task"; 3200 name.len = strlen(name.name); 3201 dir = d_hash_and_lookup(leader, &name); 3202 if (!dir) 3203 goto out_put_leader; 3204 3205 name.name = buf; 3206 name.len = snprintf(buf, sizeof(buf), "%d", pid); 3207 dentry = d_hash_and_lookup(dir, &name); 3208 if (dentry) { 3209 shrink_dcache_parent(dentry); 3210 d_drop(dentry); 3211 dput(dentry); 3212 } 3213 3214 dput(dir); 3215 out_put_leader: 3216 dput(leader); 3217 out: 3218 return; 3219 } 3220 3221 /** 3222 * proc_flush_task - Remove dcache entries for @task from the /proc dcache. 3223 * @task: task that should be flushed. 3224 * 3225 * When flushing dentries from proc, one needs to flush them from global 3226 * proc (proc_mnt) and from all the namespaces' procs this task was seen 3227 * in. This call is supposed to do all of this job. 3228 * 3229 * Looks in the dcache for 3230 * /proc/@pid 3231 * /proc/@tgid/task/@pid 3232 * if either directory is present flushes it and all of it'ts children 3233 * from the dcache. 3234 * 3235 * It is safe and reasonable to cache /proc entries for a task until 3236 * that task exits. After that they just clog up the dcache with 3237 * useless entries, possibly causing useful dcache entries to be 3238 * flushed instead. This routine is proved to flush those useless 3239 * dcache entries at process exit time. 3240 * 3241 * NOTE: This routine is just an optimization so it does not guarantee 3242 * that no dcache entries will exist at process exit time it 3243 * just makes it very unlikely that any will persist. 3244 */ 3245 3246 void proc_flush_task(struct task_struct *task) 3247 { 3248 int i; 3249 struct pid *pid, *tgid; 3250 struct upid *upid; 3251 3252 pid = task_pid(task); 3253 tgid = task_tgid(task); 3254 3255 for (i = 0; i <= pid->level; i++) { 3256 upid = &pid->numbers[i]; 3257 proc_flush_task_mnt(upid->ns->proc_mnt, upid->nr, 3258 tgid->numbers[i].nr); 3259 } 3260 3261 upid = &pid->numbers[pid->level]; 3262 if (upid->nr == 1) 3263 pid_ns_release_proc(upid->ns); 3264 } 3265 3266 static struct dentry *proc_pid_instantiate(struct inode *dir, 3267 struct dentry * dentry, 3268 struct task_struct *task, const void *ptr) 3269 { 3270 struct dentry *error = ERR_PTR(-ENOENT); 3271 struct inode *inode; 3272 3273 inode = proc_pid_make_inode(dir->i_sb, task); 3274 if (!inode) 3275 goto out; 3276 3277 inode->i_mode = S_IFDIR|S_IRUGO|S_IXUGO; 3278 inode->i_op = &proc_tgid_base_inode_operations; 3279 inode->i_fop = &proc_tgid_base_operations; 3280 inode->i_flags|=S_IMMUTABLE; 3281 3282 set_nlink(inode, 2 + pid_entry_count_dirs(tgid_base_stuff, 3283 ARRAY_SIZE(tgid_base_stuff))); 3284 3285 d_set_d_op(dentry, &pid_dentry_operations); 3286 3287 d_add(dentry, inode); 3288 /* Close the race of the process dying before we return the dentry */ 3289 if (pid_revalidate(dentry, NULL)) 3290 error = NULL; 3291 out: 3292 return error; 3293 } 3294 3295 struct dentry *proc_pid_lookup(struct inode *dir, struct dentry * dentry, struct nameidata *nd) 3296 { 3297 struct dentry *result; 3298 struct task_struct *task; 3299 unsigned tgid; 3300 struct pid_namespace *ns; 3301 3302 result = proc_base_lookup(dir, dentry); 3303 if (!IS_ERR(result) || PTR_ERR(result) != -ENOENT) 3304 goto out; 3305 3306 tgid = name_to_int(dentry); 3307 if (tgid == ~0U) 3308 goto out; 3309 3310 ns = dentry->d_sb->s_fs_info; 3311 rcu_read_lock(); 3312 task = find_task_by_pid_ns(tgid, ns); 3313 if (task) 3314 get_task_struct(task); 3315 rcu_read_unlock(); 3316 if (!task) 3317 goto out; 3318 3319 result = proc_pid_instantiate(dir, dentry, task, NULL); 3320 put_task_struct(task); 3321 out: 3322 return result; 3323 } 3324 3325 /* 3326 * Find the first task with tgid >= tgid 3327 * 3328 */ 3329 struct tgid_iter { 3330 unsigned int tgid; 3331 struct task_struct *task; 3332 }; 3333 static struct tgid_iter next_tgid(struct pid_namespace *ns, struct tgid_iter iter) 3334 { 3335 struct pid *pid; 3336 3337 if (iter.task) 3338 put_task_struct(iter.task); 3339 rcu_read_lock(); 3340 retry: 3341 iter.task = NULL; 3342 pid = find_ge_pid(iter.tgid, ns); 3343 if (pid) { 3344 iter.tgid = pid_nr_ns(pid, ns); 3345 iter.task = pid_task(pid, PIDTYPE_PID); 3346 /* What we to know is if the pid we have find is the 3347 * pid of a thread_group_leader. Testing for task 3348 * being a thread_group_leader is the obvious thing 3349 * todo but there is a window when it fails, due to 3350 * the pid transfer logic in de_thread. 3351 * 3352 * So we perform the straight forward test of seeing 3353 * if the pid we have found is the pid of a thread 3354 * group leader, and don't worry if the task we have 3355 * found doesn't happen to be a thread group leader. 3356 * As we don't care in the case of readdir. 3357 */ 3358 if (!iter.task || !has_group_leader_pid(iter.task)) { 3359 iter.tgid += 1; 3360 goto retry; 3361 } 3362 get_task_struct(iter.task); 3363 } 3364 rcu_read_unlock(); 3365 return iter; 3366 } 3367 3368 #define TGID_OFFSET (FIRST_PROCESS_ENTRY + ARRAY_SIZE(proc_base_stuff)) 3369 3370 static int proc_pid_fill_cache(struct file *filp, void *dirent, filldir_t filldir, 3371 struct tgid_iter iter) 3372 { 3373 char name[PROC_NUMBUF]; 3374 int len = snprintf(name, sizeof(name), "%d", iter.tgid); 3375 return proc_fill_cache(filp, dirent, filldir, name, len, 3376 proc_pid_instantiate, iter.task, NULL); 3377 } 3378 3379 static int fake_filldir(void *buf, const char *name, int namelen, 3380 loff_t offset, u64 ino, unsigned d_type) 3381 { 3382 return 0; 3383 } 3384 3385 /* for the /proc/ directory itself, after non-process stuff has been done */ 3386 int proc_pid_readdir(struct file * filp, void * dirent, filldir_t filldir) 3387 { 3388 unsigned int nr; 3389 struct task_struct *reaper; 3390 struct tgid_iter iter; 3391 struct pid_namespace *ns; 3392 filldir_t __filldir; 3393 3394 if (filp->f_pos >= PID_MAX_LIMIT + TGID_OFFSET) 3395 goto out_no_task; 3396 nr = filp->f_pos - FIRST_PROCESS_ENTRY; 3397 3398 reaper = get_proc_task(filp->f_path.dentry->d_inode); 3399 if (!reaper) 3400 goto out_no_task; 3401 3402 for (; nr < ARRAY_SIZE(proc_base_stuff); filp->f_pos++, nr++) { 3403 const struct pid_entry *p = &proc_base_stuff[nr]; 3404 if (proc_base_fill_cache(filp, dirent, filldir, reaper, p) < 0) 3405 goto out; 3406 } 3407 3408 ns = filp->f_dentry->d_sb->s_fs_info; 3409 iter.task = NULL; 3410 iter.tgid = filp->f_pos - TGID_OFFSET; 3411 for (iter = next_tgid(ns, iter); 3412 iter.task; 3413 iter.tgid += 1, iter = next_tgid(ns, iter)) { 3414 if (has_pid_permissions(ns, iter.task, 2)) 3415 __filldir = filldir; 3416 else 3417 __filldir = fake_filldir; 3418 3419 filp->f_pos = iter.tgid + TGID_OFFSET; 3420 if (proc_pid_fill_cache(filp, dirent, __filldir, iter) < 0) { 3421 put_task_struct(iter.task); 3422 goto out; 3423 } 3424 } 3425 filp->f_pos = PID_MAX_LIMIT + TGID_OFFSET; 3426 out: 3427 put_task_struct(reaper); 3428 out_no_task: 3429 return 0; 3430 } 3431 3432 /* 3433 * Tasks 3434 */ 3435 static const struct pid_entry tid_base_stuff[] = { 3436 DIR("fd", S_IRUSR|S_IXUSR, proc_fd_inode_operations, proc_fd_operations), 3437 DIR("fdinfo", S_IRUSR|S_IXUSR, proc_fdinfo_inode_operations, proc_fdinfo_operations), 3438 DIR("ns", S_IRUSR|S_IXUGO, proc_ns_dir_inode_operations, proc_ns_dir_operations), 3439 REG("environ", S_IRUSR, proc_environ_operations), 3440 INF("auxv", S_IRUSR, proc_pid_auxv), 3441 ONE("status", S_IRUGO, proc_pid_status), 3442 ONE("personality", S_IRUGO, proc_pid_personality), 3443 INF("limits", S_IRUGO, proc_pid_limits), 3444 #ifdef CONFIG_SCHED_DEBUG 3445 REG("sched", S_IRUGO|S_IWUSR, proc_pid_sched_operations), 3446 #endif 3447 REG("comm", S_IRUGO|S_IWUSR, proc_pid_set_comm_operations), 3448 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK 3449 INF("syscall", S_IRUGO, proc_pid_syscall), 3450 #endif 3451 INF("cmdline", S_IRUGO, proc_pid_cmdline), 3452 ONE("stat", S_IRUGO, proc_tid_stat), 3453 ONE("statm", S_IRUGO, proc_pid_statm), 3454 REG("maps", S_IRUGO, proc_maps_operations), 3455 #ifdef CONFIG_NUMA 3456 REG("numa_maps", S_IRUGO, proc_numa_maps_operations), 3457 #endif 3458 REG("mem", S_IRUSR|S_IWUSR, proc_mem_operations), 3459 LNK("cwd", proc_cwd_link), 3460 LNK("root", proc_root_link), 3461 LNK("exe", proc_exe_link), 3462 REG("mounts", S_IRUGO, proc_mounts_operations), 3463 REG("mountinfo", S_IRUGO, proc_mountinfo_operations), 3464 #ifdef CONFIG_PROC_PAGE_MONITOR 3465 REG("clear_refs", S_IWUSR, proc_clear_refs_operations), 3466 REG("smaps", S_IRUGO, proc_smaps_operations), 3467 REG("pagemap", S_IRUGO, proc_pagemap_operations), 3468 #endif 3469 #ifdef CONFIG_SECURITY 3470 DIR("attr", S_IRUGO|S_IXUGO, proc_attr_dir_inode_operations, proc_attr_dir_operations), 3471 #endif 3472 #ifdef CONFIG_KALLSYMS 3473 INF("wchan", S_IRUGO, proc_pid_wchan), 3474 #endif 3475 #ifdef CONFIG_STACKTRACE 3476 ONE("stack", S_IRUGO, proc_pid_stack), 3477 #endif 3478 #ifdef CONFIG_SCHEDSTATS 3479 INF("schedstat", S_IRUGO, proc_pid_schedstat), 3480 #endif 3481 #ifdef CONFIG_LATENCYTOP 3482 REG("latency", S_IRUGO, proc_lstats_operations), 3483 #endif 3484 #ifdef CONFIG_PROC_PID_CPUSET 3485 REG("cpuset", S_IRUGO, proc_cpuset_operations), 3486 #endif 3487 #ifdef CONFIG_CGROUPS 3488 REG("cgroup", S_IRUGO, proc_cgroup_operations), 3489 #endif 3490 INF("oom_score", S_IRUGO, proc_oom_score), 3491 REG("oom_adj", S_IRUGO|S_IWUSR, proc_oom_adjust_operations), 3492 REG("oom_score_adj", S_IRUGO|S_IWUSR, proc_oom_score_adj_operations), 3493 #ifdef CONFIG_AUDITSYSCALL 3494 REG("loginuid", S_IWUSR|S_IRUGO, proc_loginuid_operations), 3495 REG("sessionid", S_IRUGO, proc_sessionid_operations), 3496 #endif 3497 #ifdef CONFIG_FAULT_INJECTION 3498 REG("make-it-fail", S_IRUGO|S_IWUSR, proc_fault_inject_operations), 3499 #endif 3500 #ifdef CONFIG_TASK_IO_ACCOUNTING 3501 INF("io", S_IRUSR, proc_tid_io_accounting), 3502 #endif 3503 #ifdef CONFIG_HARDWALL 3504 INF("hardwall", S_IRUGO, proc_pid_hardwall), 3505 #endif 3506 }; 3507 3508 static int proc_tid_base_readdir(struct file * filp, 3509 void * dirent, filldir_t filldir) 3510 { 3511 return proc_pident_readdir(filp,dirent,filldir, 3512 tid_base_stuff,ARRAY_SIZE(tid_base_stuff)); 3513 } 3514 3515 static struct dentry *proc_tid_base_lookup(struct inode *dir, struct dentry *dentry, struct nameidata *nd){ 3516 return proc_pident_lookup(dir, dentry, 3517 tid_base_stuff, ARRAY_SIZE(tid_base_stuff)); 3518 } 3519 3520 static const struct file_operations proc_tid_base_operations = { 3521 .read = generic_read_dir, 3522 .readdir = proc_tid_base_readdir, 3523 .llseek = default_llseek, 3524 }; 3525 3526 static const struct inode_operations proc_tid_base_inode_operations = { 3527 .lookup = proc_tid_base_lookup, 3528 .getattr = pid_getattr, 3529 .setattr = proc_setattr, 3530 }; 3531 3532 static struct dentry *proc_task_instantiate(struct inode *dir, 3533 struct dentry *dentry, struct task_struct *task, const void *ptr) 3534 { 3535 struct dentry *error = ERR_PTR(-ENOENT); 3536 struct inode *inode; 3537 inode = proc_pid_make_inode(dir->i_sb, task); 3538 3539 if (!inode) 3540 goto out; 3541 inode->i_mode = S_IFDIR|S_IRUGO|S_IXUGO; 3542 inode->i_op = &proc_tid_base_inode_operations; 3543 inode->i_fop = &proc_tid_base_operations; 3544 inode->i_flags|=S_IMMUTABLE; 3545 3546 set_nlink(inode, 2 + pid_entry_count_dirs(tid_base_stuff, 3547 ARRAY_SIZE(tid_base_stuff))); 3548 3549 d_set_d_op(dentry, &pid_dentry_operations); 3550 3551 d_add(dentry, inode); 3552 /* Close the race of the process dying before we return the dentry */ 3553 if (pid_revalidate(dentry, NULL)) 3554 error = NULL; 3555 out: 3556 return error; 3557 } 3558 3559 static struct dentry *proc_task_lookup(struct inode *dir, struct dentry * dentry, struct nameidata *nd) 3560 { 3561 struct dentry *result = ERR_PTR(-ENOENT); 3562 struct task_struct *task; 3563 struct task_struct *leader = get_proc_task(dir); 3564 unsigned tid; 3565 struct pid_namespace *ns; 3566 3567 if (!leader) 3568 goto out_no_task; 3569 3570 tid = name_to_int(dentry); 3571 if (tid == ~0U) 3572 goto out; 3573 3574 ns = dentry->d_sb->s_fs_info; 3575 rcu_read_lock(); 3576 task = find_task_by_pid_ns(tid, ns); 3577 if (task) 3578 get_task_struct(task); 3579 rcu_read_unlock(); 3580 if (!task) 3581 goto out; 3582 if (!same_thread_group(leader, task)) 3583 goto out_drop_task; 3584 3585 result = proc_task_instantiate(dir, dentry, task, NULL); 3586 out_drop_task: 3587 put_task_struct(task); 3588 out: 3589 put_task_struct(leader); 3590 out_no_task: 3591 return result; 3592 } 3593 3594 /* 3595 * Find the first tid of a thread group to return to user space. 3596 * 3597 * Usually this is just the thread group leader, but if the users 3598 * buffer was too small or there was a seek into the middle of the 3599 * directory we have more work todo. 3600 * 3601 * In the case of a short read we start with find_task_by_pid. 3602 * 3603 * In the case of a seek we start with the leader and walk nr 3604 * threads past it. 3605 */ 3606 static struct task_struct *first_tid(struct task_struct *leader, 3607 int tid, int nr, struct pid_namespace *ns) 3608 { 3609 struct task_struct *pos; 3610 3611 rcu_read_lock(); 3612 /* Attempt to start with the pid of a thread */ 3613 if (tid && (nr > 0)) { 3614 pos = find_task_by_pid_ns(tid, ns); 3615 if (pos && (pos->group_leader == leader)) 3616 goto found; 3617 } 3618 3619 /* If nr exceeds the number of threads there is nothing todo */ 3620 pos = NULL; 3621 if (nr && nr >= get_nr_threads(leader)) 3622 goto out; 3623 3624 /* If we haven't found our starting place yet start 3625 * with the leader and walk nr threads forward. 3626 */ 3627 for (pos = leader; nr > 0; --nr) { 3628 pos = next_thread(pos); 3629 if (pos == leader) { 3630 pos = NULL; 3631 goto out; 3632 } 3633 } 3634 found: 3635 get_task_struct(pos); 3636 out: 3637 rcu_read_unlock(); 3638 return pos; 3639 } 3640 3641 /* 3642 * Find the next thread in the thread list. 3643 * Return NULL if there is an error or no next thread. 3644 * 3645 * The reference to the input task_struct is released. 3646 */ 3647 static struct task_struct *next_tid(struct task_struct *start) 3648 { 3649 struct task_struct *pos = NULL; 3650 rcu_read_lock(); 3651 if (pid_alive(start)) { 3652 pos = next_thread(start); 3653 if (thread_group_leader(pos)) 3654 pos = NULL; 3655 else 3656 get_task_struct(pos); 3657 } 3658 rcu_read_unlock(); 3659 put_task_struct(start); 3660 return pos; 3661 } 3662 3663 static int proc_task_fill_cache(struct file *filp, void *dirent, filldir_t filldir, 3664 struct task_struct *task, int tid) 3665 { 3666 char name[PROC_NUMBUF]; 3667 int len = snprintf(name, sizeof(name), "%d", tid); 3668 return proc_fill_cache(filp, dirent, filldir, name, len, 3669 proc_task_instantiate, task, NULL); 3670 } 3671 3672 /* for the /proc/TGID/task/ directories */ 3673 static int proc_task_readdir(struct file * filp, void * dirent, filldir_t filldir) 3674 { 3675 struct dentry *dentry = filp->f_path.dentry; 3676 struct inode *inode = dentry->d_inode; 3677 struct task_struct *leader = NULL; 3678 struct task_struct *task; 3679 int retval = -ENOENT; 3680 ino_t ino; 3681 int tid; 3682 struct pid_namespace *ns; 3683 3684 task = get_proc_task(inode); 3685 if (!task) 3686 goto out_no_task; 3687 rcu_read_lock(); 3688 if (pid_alive(task)) { 3689 leader = task->group_leader; 3690 get_task_struct(leader); 3691 } 3692 rcu_read_unlock(); 3693 put_task_struct(task); 3694 if (!leader) 3695 goto out_no_task; 3696 retval = 0; 3697 3698 switch ((unsigned long)filp->f_pos) { 3699 case 0: 3700 ino = inode->i_ino; 3701 if (filldir(dirent, ".", 1, filp->f_pos, ino, DT_DIR) < 0) 3702 goto out; 3703 filp->f_pos++; 3704 /* fall through */ 3705 case 1: 3706 ino = parent_ino(dentry); 3707 if (filldir(dirent, "..", 2, filp->f_pos, ino, DT_DIR) < 0) 3708 goto out; 3709 filp->f_pos++; 3710 /* fall through */ 3711 } 3712 3713 /* f_version caches the tgid value that the last readdir call couldn't 3714 * return. lseek aka telldir automagically resets f_version to 0. 3715 */ 3716 ns = filp->f_dentry->d_sb->s_fs_info; 3717 tid = (int)filp->f_version; 3718 filp->f_version = 0; 3719 for (task = first_tid(leader, tid, filp->f_pos - 2, ns); 3720 task; 3721 task = next_tid(task), filp->f_pos++) { 3722 tid = task_pid_nr_ns(task, ns); 3723 if (proc_task_fill_cache(filp, dirent, filldir, task, tid) < 0) { 3724 /* returning this tgid failed, save it as the first 3725 * pid for the next readir call */ 3726 filp->f_version = (u64)tid; 3727 put_task_struct(task); 3728 break; 3729 } 3730 } 3731 out: 3732 put_task_struct(leader); 3733 out_no_task: 3734 return retval; 3735 } 3736 3737 static int proc_task_getattr(struct vfsmount *mnt, struct dentry *dentry, struct kstat *stat) 3738 { 3739 struct inode *inode = dentry->d_inode; 3740 struct task_struct *p = get_proc_task(inode); 3741 generic_fillattr(inode, stat); 3742 3743 if (p) { 3744 stat->nlink += get_nr_threads(p); 3745 put_task_struct(p); 3746 } 3747 3748 return 0; 3749 } 3750 3751 static const struct inode_operations proc_task_inode_operations = { 3752 .lookup = proc_task_lookup, 3753 .getattr = proc_task_getattr, 3754 .setattr = proc_setattr, 3755 .permission = proc_pid_permission, 3756 }; 3757 3758 static const struct file_operations proc_task_operations = { 3759 .read = generic_read_dir, 3760 .readdir = proc_task_readdir, 3761 .llseek = default_llseek, 3762 }; 3763