xref: /linux/fs/proc/base.c (revision a1e58bbdc969c3fe60addca7f2729779d22a83c1)
1 /*
2  *  linux/fs/proc/base.c
3  *
4  *  Copyright (C) 1991, 1992 Linus Torvalds
5  *
6  *  proc base directory handling functions
7  *
8  *  1999, Al Viro. Rewritten. Now it covers the whole per-process part.
9  *  Instead of using magical inumbers to determine the kind of object
10  *  we allocate and fill in-core inodes upon lookup. They don't even
11  *  go into icache. We cache the reference to task_struct upon lookup too.
12  *  Eventually it should become a filesystem in its own. We don't use the
13  *  rest of procfs anymore.
14  *
15  *
16  *  Changelog:
17  *  17-Jan-2005
18  *  Allan Bezerra
19  *  Bruna Moreira <bruna.moreira@indt.org.br>
20  *  Edjard Mota <edjard.mota@indt.org.br>
21  *  Ilias Biris <ilias.biris@indt.org.br>
22  *  Mauricio Lin <mauricio.lin@indt.org.br>
23  *
24  *  Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT
25  *
26  *  A new process specific entry (smaps) included in /proc. It shows the
27  *  size of rss for each memory area. The maps entry lacks information
28  *  about physical memory size (rss) for each mapped file, i.e.,
29  *  rss information for executables and library files.
30  *  This additional information is useful for any tools that need to know
31  *  about physical memory consumption for a process specific library.
32  *
33  *  Changelog:
34  *  21-Feb-2005
35  *  Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT
36  *  Pud inclusion in the page table walking.
37  *
38  *  ChangeLog:
39  *  10-Mar-2005
40  *  10LE Instituto Nokia de Tecnologia - INdT:
41  *  A better way to walks through the page table as suggested by Hugh Dickins.
42  *
43  *  Simo Piiroinen <simo.piiroinen@nokia.com>:
44  *  Smaps information related to shared, private, clean and dirty pages.
45  *
46  *  Paul Mundt <paul.mundt@nokia.com>:
47  *  Overall revision about smaps.
48  */
49 
50 #include <asm/uaccess.h>
51 
52 #include <linux/errno.h>
53 #include <linux/time.h>
54 #include <linux/proc_fs.h>
55 #include <linux/stat.h>
56 #include <linux/init.h>
57 #include <linux/capability.h>
58 #include <linux/file.h>
59 #include <linux/string.h>
60 #include <linux/seq_file.h>
61 #include <linux/namei.h>
62 #include <linux/mnt_namespace.h>
63 #include <linux/mm.h>
64 #include <linux/rcupdate.h>
65 #include <linux/kallsyms.h>
66 #include <linux/resource.h>
67 #include <linux/module.h>
68 #include <linux/mount.h>
69 #include <linux/security.h>
70 #include <linux/ptrace.h>
71 #include <linux/cgroup.h>
72 #include <linux/cpuset.h>
73 #include <linux/audit.h>
74 #include <linux/poll.h>
75 #include <linux/nsproxy.h>
76 #include <linux/oom.h>
77 #include <linux/elf.h>
78 #include <linux/pid_namespace.h>
79 #include "internal.h"
80 
81 /* NOTE:
82  *	Implementing inode permission operations in /proc is almost
83  *	certainly an error.  Permission checks need to happen during
84  *	each system call not at open time.  The reason is that most of
85  *	what we wish to check for permissions in /proc varies at runtime.
86  *
87  *	The classic example of a problem is opening file descriptors
88  *	in /proc for a task before it execs a suid executable.
89  */
90 
91 struct pid_entry {
92 	char *name;
93 	int len;
94 	mode_t mode;
95 	const struct inode_operations *iop;
96 	const struct file_operations *fop;
97 	union proc_op op;
98 };
99 
100 #define NOD(NAME, MODE, IOP, FOP, OP) {			\
101 	.name = (NAME),					\
102 	.len  = sizeof(NAME) - 1,			\
103 	.mode = MODE,					\
104 	.iop  = IOP,					\
105 	.fop  = FOP,					\
106 	.op   = OP,					\
107 }
108 
109 #define DIR(NAME, MODE, OTYPE)							\
110 	NOD(NAME, (S_IFDIR|(MODE)),						\
111 		&proc_##OTYPE##_inode_operations, &proc_##OTYPE##_operations,	\
112 		{} )
113 #define LNK(NAME, OTYPE)					\
114 	NOD(NAME, (S_IFLNK|S_IRWXUGO),				\
115 		&proc_pid_link_inode_operations, NULL,		\
116 		{ .proc_get_link = &proc_##OTYPE##_link } )
117 #define REG(NAME, MODE, OTYPE)				\
118 	NOD(NAME, (S_IFREG|(MODE)), NULL,		\
119 		&proc_##OTYPE##_operations, {})
120 #define INF(NAME, MODE, OTYPE)				\
121 	NOD(NAME, (S_IFREG|(MODE)), 			\
122 		NULL, &proc_info_file_operations,	\
123 		{ .proc_read = &proc_##OTYPE } )
124 #define ONE(NAME, MODE, OTYPE)				\
125 	NOD(NAME, (S_IFREG|(MODE)), 			\
126 		NULL, &proc_single_file_operations,	\
127 		{ .proc_show = &proc_##OTYPE } )
128 
129 int maps_protect;
130 EXPORT_SYMBOL(maps_protect);
131 
132 static struct fs_struct *get_fs_struct(struct task_struct *task)
133 {
134 	struct fs_struct *fs;
135 	task_lock(task);
136 	fs = task->fs;
137 	if(fs)
138 		atomic_inc(&fs->count);
139 	task_unlock(task);
140 	return fs;
141 }
142 
143 static int get_nr_threads(struct task_struct *tsk)
144 {
145 	/* Must be called with the rcu_read_lock held */
146 	unsigned long flags;
147 	int count = 0;
148 
149 	if (lock_task_sighand(tsk, &flags)) {
150 		count = atomic_read(&tsk->signal->count);
151 		unlock_task_sighand(tsk, &flags);
152 	}
153 	return count;
154 }
155 
156 static int proc_cwd_link(struct inode *inode, struct path *path)
157 {
158 	struct task_struct *task = get_proc_task(inode);
159 	struct fs_struct *fs = NULL;
160 	int result = -ENOENT;
161 
162 	if (task) {
163 		fs = get_fs_struct(task);
164 		put_task_struct(task);
165 	}
166 	if (fs) {
167 		read_lock(&fs->lock);
168 		*path = fs->pwd;
169 		path_get(&fs->pwd);
170 		read_unlock(&fs->lock);
171 		result = 0;
172 		put_fs_struct(fs);
173 	}
174 	return result;
175 }
176 
177 static int proc_root_link(struct inode *inode, struct path *path)
178 {
179 	struct task_struct *task = get_proc_task(inode);
180 	struct fs_struct *fs = NULL;
181 	int result = -ENOENT;
182 
183 	if (task) {
184 		fs = get_fs_struct(task);
185 		put_task_struct(task);
186 	}
187 	if (fs) {
188 		read_lock(&fs->lock);
189 		*path = fs->root;
190 		path_get(&fs->root);
191 		read_unlock(&fs->lock);
192 		result = 0;
193 		put_fs_struct(fs);
194 	}
195 	return result;
196 }
197 
198 #define MAY_PTRACE(task) \
199 	(task == current || \
200 	(task->parent == current && \
201 	(task->ptrace & PT_PTRACED) && \
202 	 (task_is_stopped_or_traced(task)) && \
203 	 security_ptrace(current,task) == 0))
204 
205 struct mm_struct *mm_for_maps(struct task_struct *task)
206 {
207 	struct mm_struct *mm = get_task_mm(task);
208 	if (!mm)
209 		return NULL;
210 	down_read(&mm->mmap_sem);
211 	task_lock(task);
212 	if (task->mm != mm)
213 		goto out;
214 	if (task->mm != current->mm && __ptrace_may_attach(task) < 0)
215 		goto out;
216 	task_unlock(task);
217 	return mm;
218 out:
219 	task_unlock(task);
220 	up_read(&mm->mmap_sem);
221 	mmput(mm);
222 	return NULL;
223 }
224 
225 static int proc_pid_cmdline(struct task_struct *task, char * buffer)
226 {
227 	int res = 0;
228 	unsigned int len;
229 	struct mm_struct *mm = get_task_mm(task);
230 	if (!mm)
231 		goto out;
232 	if (!mm->arg_end)
233 		goto out_mm;	/* Shh! No looking before we're done */
234 
235  	len = mm->arg_end - mm->arg_start;
236 
237 	if (len > PAGE_SIZE)
238 		len = PAGE_SIZE;
239 
240 	res = access_process_vm(task, mm->arg_start, buffer, len, 0);
241 
242 	// If the nul at the end of args has been overwritten, then
243 	// assume application is using setproctitle(3).
244 	if (res > 0 && buffer[res-1] != '\0' && len < PAGE_SIZE) {
245 		len = strnlen(buffer, res);
246 		if (len < res) {
247 		    res = len;
248 		} else {
249 			len = mm->env_end - mm->env_start;
250 			if (len > PAGE_SIZE - res)
251 				len = PAGE_SIZE - res;
252 			res += access_process_vm(task, mm->env_start, buffer+res, len, 0);
253 			res = strnlen(buffer, res);
254 		}
255 	}
256 out_mm:
257 	mmput(mm);
258 out:
259 	return res;
260 }
261 
262 static int proc_pid_auxv(struct task_struct *task, char *buffer)
263 {
264 	int res = 0;
265 	struct mm_struct *mm = get_task_mm(task);
266 	if (mm) {
267 		unsigned int nwords = 0;
268 		do
269 			nwords += 2;
270 		while (mm->saved_auxv[nwords - 2] != 0); /* AT_NULL */
271 		res = nwords * sizeof(mm->saved_auxv[0]);
272 		if (res > PAGE_SIZE)
273 			res = PAGE_SIZE;
274 		memcpy(buffer, mm->saved_auxv, res);
275 		mmput(mm);
276 	}
277 	return res;
278 }
279 
280 
281 #ifdef CONFIG_KALLSYMS
282 /*
283  * Provides a wchan file via kallsyms in a proper one-value-per-file format.
284  * Returns the resolved symbol.  If that fails, simply return the address.
285  */
286 static int proc_pid_wchan(struct task_struct *task, char *buffer)
287 {
288 	unsigned long wchan;
289 	char symname[KSYM_NAME_LEN];
290 
291 	wchan = get_wchan(task);
292 
293 	if (lookup_symbol_name(wchan, symname) < 0)
294 		return sprintf(buffer, "%lu", wchan);
295 	else
296 		return sprintf(buffer, "%s", symname);
297 }
298 #endif /* CONFIG_KALLSYMS */
299 
300 #ifdef CONFIG_SCHEDSTATS
301 /*
302  * Provides /proc/PID/schedstat
303  */
304 static int proc_pid_schedstat(struct task_struct *task, char *buffer)
305 {
306 	return sprintf(buffer, "%llu %llu %lu\n",
307 			task->sched_info.cpu_time,
308 			task->sched_info.run_delay,
309 			task->sched_info.pcount);
310 }
311 #endif
312 
313 #ifdef CONFIG_LATENCYTOP
314 static int lstats_show_proc(struct seq_file *m, void *v)
315 {
316 	int i;
317 	struct inode *inode = m->private;
318 	struct task_struct *task = get_proc_task(inode);
319 
320 	if (!task)
321 		return -ESRCH;
322 	seq_puts(m, "Latency Top version : v0.1\n");
323 	for (i = 0; i < 32; i++) {
324 		if (task->latency_record[i].backtrace[0]) {
325 			int q;
326 			seq_printf(m, "%i %li %li ",
327 				task->latency_record[i].count,
328 				task->latency_record[i].time,
329 				task->latency_record[i].max);
330 			for (q = 0; q < LT_BACKTRACEDEPTH; q++) {
331 				char sym[KSYM_NAME_LEN];
332 				char *c;
333 				if (!task->latency_record[i].backtrace[q])
334 					break;
335 				if (task->latency_record[i].backtrace[q] == ULONG_MAX)
336 					break;
337 				sprint_symbol(sym, task->latency_record[i].backtrace[q]);
338 				c = strchr(sym, '+');
339 				if (c)
340 					*c = 0;
341 				seq_printf(m, "%s ", sym);
342 			}
343 			seq_printf(m, "\n");
344 		}
345 
346 	}
347 	put_task_struct(task);
348 	return 0;
349 }
350 
351 static int lstats_open(struct inode *inode, struct file *file)
352 {
353 	return single_open(file, lstats_show_proc, inode);
354 }
355 
356 static ssize_t lstats_write(struct file *file, const char __user *buf,
357 			    size_t count, loff_t *offs)
358 {
359 	struct task_struct *task = get_proc_task(file->f_dentry->d_inode);
360 
361 	if (!task)
362 		return -ESRCH;
363 	clear_all_latency_tracing(task);
364 	put_task_struct(task);
365 
366 	return count;
367 }
368 
369 static const struct file_operations proc_lstats_operations = {
370 	.open		= lstats_open,
371 	.read		= seq_read,
372 	.write		= lstats_write,
373 	.llseek		= seq_lseek,
374 	.release	= single_release,
375 };
376 
377 #endif
378 
379 /* The badness from the OOM killer */
380 unsigned long badness(struct task_struct *p, unsigned long uptime);
381 static int proc_oom_score(struct task_struct *task, char *buffer)
382 {
383 	unsigned long points;
384 	struct timespec uptime;
385 
386 	do_posix_clock_monotonic_gettime(&uptime);
387 	read_lock(&tasklist_lock);
388 	points = badness(task, uptime.tv_sec);
389 	read_unlock(&tasklist_lock);
390 	return sprintf(buffer, "%lu\n", points);
391 }
392 
393 struct limit_names {
394 	char *name;
395 	char *unit;
396 };
397 
398 static const struct limit_names lnames[RLIM_NLIMITS] = {
399 	[RLIMIT_CPU] = {"Max cpu time", "ms"},
400 	[RLIMIT_FSIZE] = {"Max file size", "bytes"},
401 	[RLIMIT_DATA] = {"Max data size", "bytes"},
402 	[RLIMIT_STACK] = {"Max stack size", "bytes"},
403 	[RLIMIT_CORE] = {"Max core file size", "bytes"},
404 	[RLIMIT_RSS] = {"Max resident set", "bytes"},
405 	[RLIMIT_NPROC] = {"Max processes", "processes"},
406 	[RLIMIT_NOFILE] = {"Max open files", "files"},
407 	[RLIMIT_MEMLOCK] = {"Max locked memory", "bytes"},
408 	[RLIMIT_AS] = {"Max address space", "bytes"},
409 	[RLIMIT_LOCKS] = {"Max file locks", "locks"},
410 	[RLIMIT_SIGPENDING] = {"Max pending signals", "signals"},
411 	[RLIMIT_MSGQUEUE] = {"Max msgqueue size", "bytes"},
412 	[RLIMIT_NICE] = {"Max nice priority", NULL},
413 	[RLIMIT_RTPRIO] = {"Max realtime priority", NULL},
414 	[RLIMIT_RTTIME] = {"Max realtime timeout", "us"},
415 };
416 
417 /* Display limits for a process */
418 static int proc_pid_limits(struct task_struct *task, char *buffer)
419 {
420 	unsigned int i;
421 	int count = 0;
422 	unsigned long flags;
423 	char *bufptr = buffer;
424 
425 	struct rlimit rlim[RLIM_NLIMITS];
426 
427 	rcu_read_lock();
428 	if (!lock_task_sighand(task,&flags)) {
429 		rcu_read_unlock();
430 		return 0;
431 	}
432 	memcpy(rlim, task->signal->rlim, sizeof(struct rlimit) * RLIM_NLIMITS);
433 	unlock_task_sighand(task, &flags);
434 	rcu_read_unlock();
435 
436 	/*
437 	 * print the file header
438 	 */
439 	count += sprintf(&bufptr[count], "%-25s %-20s %-20s %-10s\n",
440 			"Limit", "Soft Limit", "Hard Limit", "Units");
441 
442 	for (i = 0; i < RLIM_NLIMITS; i++) {
443 		if (rlim[i].rlim_cur == RLIM_INFINITY)
444 			count += sprintf(&bufptr[count], "%-25s %-20s ",
445 					 lnames[i].name, "unlimited");
446 		else
447 			count += sprintf(&bufptr[count], "%-25s %-20lu ",
448 					 lnames[i].name, rlim[i].rlim_cur);
449 
450 		if (rlim[i].rlim_max == RLIM_INFINITY)
451 			count += sprintf(&bufptr[count], "%-20s ", "unlimited");
452 		else
453 			count += sprintf(&bufptr[count], "%-20lu ",
454 					 rlim[i].rlim_max);
455 
456 		if (lnames[i].unit)
457 			count += sprintf(&bufptr[count], "%-10s\n",
458 					 lnames[i].unit);
459 		else
460 			count += sprintf(&bufptr[count], "\n");
461 	}
462 
463 	return count;
464 }
465 
466 /************************************************************************/
467 /*                       Here the fs part begins                        */
468 /************************************************************************/
469 
470 /* permission checks */
471 static int proc_fd_access_allowed(struct inode *inode)
472 {
473 	struct task_struct *task;
474 	int allowed = 0;
475 	/* Allow access to a task's file descriptors if it is us or we
476 	 * may use ptrace attach to the process and find out that
477 	 * information.
478 	 */
479 	task = get_proc_task(inode);
480 	if (task) {
481 		allowed = ptrace_may_attach(task);
482 		put_task_struct(task);
483 	}
484 	return allowed;
485 }
486 
487 static int proc_setattr(struct dentry *dentry, struct iattr *attr)
488 {
489 	int error;
490 	struct inode *inode = dentry->d_inode;
491 
492 	if (attr->ia_valid & ATTR_MODE)
493 		return -EPERM;
494 
495 	error = inode_change_ok(inode, attr);
496 	if (!error)
497 		error = inode_setattr(inode, attr);
498 	return error;
499 }
500 
501 static const struct inode_operations proc_def_inode_operations = {
502 	.setattr	= proc_setattr,
503 };
504 
505 extern const struct seq_operations mounts_op;
506 struct proc_mounts {
507 	struct seq_file m;
508 	int event;
509 };
510 
511 static int mounts_open(struct inode *inode, struct file *file)
512 {
513 	struct task_struct *task = get_proc_task(inode);
514 	struct nsproxy *nsp;
515 	struct mnt_namespace *ns = NULL;
516 	struct proc_mounts *p;
517 	int ret = -EINVAL;
518 
519 	if (task) {
520 		rcu_read_lock();
521 		nsp = task_nsproxy(task);
522 		if (nsp) {
523 			ns = nsp->mnt_ns;
524 			if (ns)
525 				get_mnt_ns(ns);
526 		}
527 		rcu_read_unlock();
528 
529 		put_task_struct(task);
530 	}
531 
532 	if (ns) {
533 		ret = -ENOMEM;
534 		p = kmalloc(sizeof(struct proc_mounts), GFP_KERNEL);
535 		if (p) {
536 			file->private_data = &p->m;
537 			ret = seq_open(file, &mounts_op);
538 			if (!ret) {
539 				p->m.private = ns;
540 				p->event = ns->event;
541 				return 0;
542 			}
543 			kfree(p);
544 		}
545 		put_mnt_ns(ns);
546 	}
547 	return ret;
548 }
549 
550 static int mounts_release(struct inode *inode, struct file *file)
551 {
552 	struct seq_file *m = file->private_data;
553 	struct mnt_namespace *ns = m->private;
554 	put_mnt_ns(ns);
555 	return seq_release(inode, file);
556 }
557 
558 static unsigned mounts_poll(struct file *file, poll_table *wait)
559 {
560 	struct proc_mounts *p = file->private_data;
561 	struct mnt_namespace *ns = p->m.private;
562 	unsigned res = 0;
563 
564 	poll_wait(file, &ns->poll, wait);
565 
566 	spin_lock(&vfsmount_lock);
567 	if (p->event != ns->event) {
568 		p->event = ns->event;
569 		res = POLLERR;
570 	}
571 	spin_unlock(&vfsmount_lock);
572 
573 	return res;
574 }
575 
576 static const struct file_operations proc_mounts_operations = {
577 	.open		= mounts_open,
578 	.read		= seq_read,
579 	.llseek		= seq_lseek,
580 	.release	= mounts_release,
581 	.poll		= mounts_poll,
582 };
583 
584 extern const struct seq_operations mountstats_op;
585 static int mountstats_open(struct inode *inode, struct file *file)
586 {
587 	int ret = seq_open(file, &mountstats_op);
588 
589 	if (!ret) {
590 		struct seq_file *m = file->private_data;
591 		struct nsproxy *nsp;
592 		struct mnt_namespace *mnt_ns = NULL;
593 		struct task_struct *task = get_proc_task(inode);
594 
595 		if (task) {
596 			rcu_read_lock();
597 			nsp = task_nsproxy(task);
598 			if (nsp) {
599 				mnt_ns = nsp->mnt_ns;
600 				if (mnt_ns)
601 					get_mnt_ns(mnt_ns);
602 			}
603 			rcu_read_unlock();
604 
605 			put_task_struct(task);
606 		}
607 
608 		if (mnt_ns)
609 			m->private = mnt_ns;
610 		else {
611 			seq_release(inode, file);
612 			ret = -EINVAL;
613 		}
614 	}
615 	return ret;
616 }
617 
618 static const struct file_operations proc_mountstats_operations = {
619 	.open		= mountstats_open,
620 	.read		= seq_read,
621 	.llseek		= seq_lseek,
622 	.release	= mounts_release,
623 };
624 
625 #define PROC_BLOCK_SIZE	(3*1024)		/* 4K page size but our output routines use some slack for overruns */
626 
627 static ssize_t proc_info_read(struct file * file, char __user * buf,
628 			  size_t count, loff_t *ppos)
629 {
630 	struct inode * inode = file->f_path.dentry->d_inode;
631 	unsigned long page;
632 	ssize_t length;
633 	struct task_struct *task = get_proc_task(inode);
634 
635 	length = -ESRCH;
636 	if (!task)
637 		goto out_no_task;
638 
639 	if (count > PROC_BLOCK_SIZE)
640 		count = PROC_BLOCK_SIZE;
641 
642 	length = -ENOMEM;
643 	if (!(page = __get_free_page(GFP_TEMPORARY)))
644 		goto out;
645 
646 	length = PROC_I(inode)->op.proc_read(task, (char*)page);
647 
648 	if (length >= 0)
649 		length = simple_read_from_buffer(buf, count, ppos, (char *)page, length);
650 	free_page(page);
651 out:
652 	put_task_struct(task);
653 out_no_task:
654 	return length;
655 }
656 
657 static const struct file_operations proc_info_file_operations = {
658 	.read		= proc_info_read,
659 };
660 
661 static int proc_single_show(struct seq_file *m, void *v)
662 {
663 	struct inode *inode = m->private;
664 	struct pid_namespace *ns;
665 	struct pid *pid;
666 	struct task_struct *task;
667 	int ret;
668 
669 	ns = inode->i_sb->s_fs_info;
670 	pid = proc_pid(inode);
671 	task = get_pid_task(pid, PIDTYPE_PID);
672 	if (!task)
673 		return -ESRCH;
674 
675 	ret = PROC_I(inode)->op.proc_show(m, ns, pid, task);
676 
677 	put_task_struct(task);
678 	return ret;
679 }
680 
681 static int proc_single_open(struct inode *inode, struct file *filp)
682 {
683 	int ret;
684 	ret = single_open(filp, proc_single_show, NULL);
685 	if (!ret) {
686 		struct seq_file *m = filp->private_data;
687 
688 		m->private = inode;
689 	}
690 	return ret;
691 }
692 
693 static const struct file_operations proc_single_file_operations = {
694 	.open		= proc_single_open,
695 	.read		= seq_read,
696 	.llseek		= seq_lseek,
697 	.release	= single_release,
698 };
699 
700 static int mem_open(struct inode* inode, struct file* file)
701 {
702 	file->private_data = (void*)((long)current->self_exec_id);
703 	return 0;
704 }
705 
706 static ssize_t mem_read(struct file * file, char __user * buf,
707 			size_t count, loff_t *ppos)
708 {
709 	struct task_struct *task = get_proc_task(file->f_path.dentry->d_inode);
710 	char *page;
711 	unsigned long src = *ppos;
712 	int ret = -ESRCH;
713 	struct mm_struct *mm;
714 
715 	if (!task)
716 		goto out_no_task;
717 
718 	if (!MAY_PTRACE(task) || !ptrace_may_attach(task))
719 		goto out;
720 
721 	ret = -ENOMEM;
722 	page = (char *)__get_free_page(GFP_TEMPORARY);
723 	if (!page)
724 		goto out;
725 
726 	ret = 0;
727 
728 	mm = get_task_mm(task);
729 	if (!mm)
730 		goto out_free;
731 
732 	ret = -EIO;
733 
734 	if (file->private_data != (void*)((long)current->self_exec_id))
735 		goto out_put;
736 
737 	ret = 0;
738 
739 	while (count > 0) {
740 		int this_len, retval;
741 
742 		this_len = (count > PAGE_SIZE) ? PAGE_SIZE : count;
743 		retval = access_process_vm(task, src, page, this_len, 0);
744 		if (!retval || !MAY_PTRACE(task) || !ptrace_may_attach(task)) {
745 			if (!ret)
746 				ret = -EIO;
747 			break;
748 		}
749 
750 		if (copy_to_user(buf, page, retval)) {
751 			ret = -EFAULT;
752 			break;
753 		}
754 
755 		ret += retval;
756 		src += retval;
757 		buf += retval;
758 		count -= retval;
759 	}
760 	*ppos = src;
761 
762 out_put:
763 	mmput(mm);
764 out_free:
765 	free_page((unsigned long) page);
766 out:
767 	put_task_struct(task);
768 out_no_task:
769 	return ret;
770 }
771 
772 #define mem_write NULL
773 
774 #ifndef mem_write
775 /* This is a security hazard */
776 static ssize_t mem_write(struct file * file, const char __user *buf,
777 			 size_t count, loff_t *ppos)
778 {
779 	int copied;
780 	char *page;
781 	struct task_struct *task = get_proc_task(file->f_path.dentry->d_inode);
782 	unsigned long dst = *ppos;
783 
784 	copied = -ESRCH;
785 	if (!task)
786 		goto out_no_task;
787 
788 	if (!MAY_PTRACE(task) || !ptrace_may_attach(task))
789 		goto out;
790 
791 	copied = -ENOMEM;
792 	page = (char *)__get_free_page(GFP_TEMPORARY);
793 	if (!page)
794 		goto out;
795 
796 	copied = 0;
797 	while (count > 0) {
798 		int this_len, retval;
799 
800 		this_len = (count > PAGE_SIZE) ? PAGE_SIZE : count;
801 		if (copy_from_user(page, buf, this_len)) {
802 			copied = -EFAULT;
803 			break;
804 		}
805 		retval = access_process_vm(task, dst, page, this_len, 1);
806 		if (!retval) {
807 			if (!copied)
808 				copied = -EIO;
809 			break;
810 		}
811 		copied += retval;
812 		buf += retval;
813 		dst += retval;
814 		count -= retval;
815 	}
816 	*ppos = dst;
817 	free_page((unsigned long) page);
818 out:
819 	put_task_struct(task);
820 out_no_task:
821 	return copied;
822 }
823 #endif
824 
825 loff_t mem_lseek(struct file *file, loff_t offset, int orig)
826 {
827 	switch (orig) {
828 	case 0:
829 		file->f_pos = offset;
830 		break;
831 	case 1:
832 		file->f_pos += offset;
833 		break;
834 	default:
835 		return -EINVAL;
836 	}
837 	force_successful_syscall_return();
838 	return file->f_pos;
839 }
840 
841 static const struct file_operations proc_mem_operations = {
842 	.llseek		= mem_lseek,
843 	.read		= mem_read,
844 	.write		= mem_write,
845 	.open		= mem_open,
846 };
847 
848 static ssize_t environ_read(struct file *file, char __user *buf,
849 			size_t count, loff_t *ppos)
850 {
851 	struct task_struct *task = get_proc_task(file->f_dentry->d_inode);
852 	char *page;
853 	unsigned long src = *ppos;
854 	int ret = -ESRCH;
855 	struct mm_struct *mm;
856 
857 	if (!task)
858 		goto out_no_task;
859 
860 	if (!ptrace_may_attach(task))
861 		goto out;
862 
863 	ret = -ENOMEM;
864 	page = (char *)__get_free_page(GFP_TEMPORARY);
865 	if (!page)
866 		goto out;
867 
868 	ret = 0;
869 
870 	mm = get_task_mm(task);
871 	if (!mm)
872 		goto out_free;
873 
874 	while (count > 0) {
875 		int this_len, retval, max_len;
876 
877 		this_len = mm->env_end - (mm->env_start + src);
878 
879 		if (this_len <= 0)
880 			break;
881 
882 		max_len = (count > PAGE_SIZE) ? PAGE_SIZE : count;
883 		this_len = (this_len > max_len) ? max_len : this_len;
884 
885 		retval = access_process_vm(task, (mm->env_start + src),
886 			page, this_len, 0);
887 
888 		if (retval <= 0) {
889 			ret = retval;
890 			break;
891 		}
892 
893 		if (copy_to_user(buf, page, retval)) {
894 			ret = -EFAULT;
895 			break;
896 		}
897 
898 		ret += retval;
899 		src += retval;
900 		buf += retval;
901 		count -= retval;
902 	}
903 	*ppos = src;
904 
905 	mmput(mm);
906 out_free:
907 	free_page((unsigned long) page);
908 out:
909 	put_task_struct(task);
910 out_no_task:
911 	return ret;
912 }
913 
914 static const struct file_operations proc_environ_operations = {
915 	.read		= environ_read,
916 };
917 
918 static ssize_t oom_adjust_read(struct file *file, char __user *buf,
919 				size_t count, loff_t *ppos)
920 {
921 	struct task_struct *task = get_proc_task(file->f_path.dentry->d_inode);
922 	char buffer[PROC_NUMBUF];
923 	size_t len;
924 	int oom_adjust;
925 
926 	if (!task)
927 		return -ESRCH;
928 	oom_adjust = task->oomkilladj;
929 	put_task_struct(task);
930 
931 	len = snprintf(buffer, sizeof(buffer), "%i\n", oom_adjust);
932 
933 	return simple_read_from_buffer(buf, count, ppos, buffer, len);
934 }
935 
936 static ssize_t oom_adjust_write(struct file *file, const char __user *buf,
937 				size_t count, loff_t *ppos)
938 {
939 	struct task_struct *task;
940 	char buffer[PROC_NUMBUF], *end;
941 	int oom_adjust;
942 
943 	memset(buffer, 0, sizeof(buffer));
944 	if (count > sizeof(buffer) - 1)
945 		count = sizeof(buffer) - 1;
946 	if (copy_from_user(buffer, buf, count))
947 		return -EFAULT;
948 	oom_adjust = simple_strtol(buffer, &end, 0);
949 	if ((oom_adjust < OOM_ADJUST_MIN || oom_adjust > OOM_ADJUST_MAX) &&
950 	     oom_adjust != OOM_DISABLE)
951 		return -EINVAL;
952 	if (*end == '\n')
953 		end++;
954 	task = get_proc_task(file->f_path.dentry->d_inode);
955 	if (!task)
956 		return -ESRCH;
957 	if (oom_adjust < task->oomkilladj && !capable(CAP_SYS_RESOURCE)) {
958 		put_task_struct(task);
959 		return -EACCES;
960 	}
961 	task->oomkilladj = oom_adjust;
962 	put_task_struct(task);
963 	if (end - buffer == 0)
964 		return -EIO;
965 	return end - buffer;
966 }
967 
968 static const struct file_operations proc_oom_adjust_operations = {
969 	.read		= oom_adjust_read,
970 	.write		= oom_adjust_write,
971 };
972 
973 #ifdef CONFIG_AUDITSYSCALL
974 #define TMPBUFLEN 21
975 static ssize_t proc_loginuid_read(struct file * file, char __user * buf,
976 				  size_t count, loff_t *ppos)
977 {
978 	struct inode * inode = file->f_path.dentry->d_inode;
979 	struct task_struct *task = get_proc_task(inode);
980 	ssize_t length;
981 	char tmpbuf[TMPBUFLEN];
982 
983 	if (!task)
984 		return -ESRCH;
985 	length = scnprintf(tmpbuf, TMPBUFLEN, "%u",
986 				audit_get_loginuid(task));
987 	put_task_struct(task);
988 	return simple_read_from_buffer(buf, count, ppos, tmpbuf, length);
989 }
990 
991 static ssize_t proc_loginuid_write(struct file * file, const char __user * buf,
992 				   size_t count, loff_t *ppos)
993 {
994 	struct inode * inode = file->f_path.dentry->d_inode;
995 	char *page, *tmp;
996 	ssize_t length;
997 	uid_t loginuid;
998 
999 	if (!capable(CAP_AUDIT_CONTROL))
1000 		return -EPERM;
1001 
1002 	if (current != pid_task(proc_pid(inode), PIDTYPE_PID))
1003 		return -EPERM;
1004 
1005 	if (count >= PAGE_SIZE)
1006 		count = PAGE_SIZE - 1;
1007 
1008 	if (*ppos != 0) {
1009 		/* No partial writes. */
1010 		return -EINVAL;
1011 	}
1012 	page = (char*)__get_free_page(GFP_TEMPORARY);
1013 	if (!page)
1014 		return -ENOMEM;
1015 	length = -EFAULT;
1016 	if (copy_from_user(page, buf, count))
1017 		goto out_free_page;
1018 
1019 	page[count] = '\0';
1020 	loginuid = simple_strtoul(page, &tmp, 10);
1021 	if (tmp == page) {
1022 		length = -EINVAL;
1023 		goto out_free_page;
1024 
1025 	}
1026 	length = audit_set_loginuid(current, loginuid);
1027 	if (likely(length == 0))
1028 		length = count;
1029 
1030 out_free_page:
1031 	free_page((unsigned long) page);
1032 	return length;
1033 }
1034 
1035 static const struct file_operations proc_loginuid_operations = {
1036 	.read		= proc_loginuid_read,
1037 	.write		= proc_loginuid_write,
1038 };
1039 
1040 static ssize_t proc_sessionid_read(struct file * file, char __user * buf,
1041 				  size_t count, loff_t *ppos)
1042 {
1043 	struct inode * inode = file->f_path.dentry->d_inode;
1044 	struct task_struct *task = get_proc_task(inode);
1045 	ssize_t length;
1046 	char tmpbuf[TMPBUFLEN];
1047 
1048 	if (!task)
1049 		return -ESRCH;
1050 	length = scnprintf(tmpbuf, TMPBUFLEN, "%u",
1051 				audit_get_sessionid(task));
1052 	put_task_struct(task);
1053 	return simple_read_from_buffer(buf, count, ppos, tmpbuf, length);
1054 }
1055 
1056 static const struct file_operations proc_sessionid_operations = {
1057 	.read		= proc_sessionid_read,
1058 };
1059 #endif
1060 
1061 #ifdef CONFIG_FAULT_INJECTION
1062 static ssize_t proc_fault_inject_read(struct file * file, char __user * buf,
1063 				      size_t count, loff_t *ppos)
1064 {
1065 	struct task_struct *task = get_proc_task(file->f_dentry->d_inode);
1066 	char buffer[PROC_NUMBUF];
1067 	size_t len;
1068 	int make_it_fail;
1069 
1070 	if (!task)
1071 		return -ESRCH;
1072 	make_it_fail = task->make_it_fail;
1073 	put_task_struct(task);
1074 
1075 	len = snprintf(buffer, sizeof(buffer), "%i\n", make_it_fail);
1076 
1077 	return simple_read_from_buffer(buf, count, ppos, buffer, len);
1078 }
1079 
1080 static ssize_t proc_fault_inject_write(struct file * file,
1081 			const char __user * buf, size_t count, loff_t *ppos)
1082 {
1083 	struct task_struct *task;
1084 	char buffer[PROC_NUMBUF], *end;
1085 	int make_it_fail;
1086 
1087 	if (!capable(CAP_SYS_RESOURCE))
1088 		return -EPERM;
1089 	memset(buffer, 0, sizeof(buffer));
1090 	if (count > sizeof(buffer) - 1)
1091 		count = sizeof(buffer) - 1;
1092 	if (copy_from_user(buffer, buf, count))
1093 		return -EFAULT;
1094 	make_it_fail = simple_strtol(buffer, &end, 0);
1095 	if (*end == '\n')
1096 		end++;
1097 	task = get_proc_task(file->f_dentry->d_inode);
1098 	if (!task)
1099 		return -ESRCH;
1100 	task->make_it_fail = make_it_fail;
1101 	put_task_struct(task);
1102 	if (end - buffer == 0)
1103 		return -EIO;
1104 	return end - buffer;
1105 }
1106 
1107 static const struct file_operations proc_fault_inject_operations = {
1108 	.read		= proc_fault_inject_read,
1109 	.write		= proc_fault_inject_write,
1110 };
1111 #endif
1112 
1113 
1114 #ifdef CONFIG_SCHED_DEBUG
1115 /*
1116  * Print out various scheduling related per-task fields:
1117  */
1118 static int sched_show(struct seq_file *m, void *v)
1119 {
1120 	struct inode *inode = m->private;
1121 	struct task_struct *p;
1122 
1123 	WARN_ON(!inode);
1124 
1125 	p = get_proc_task(inode);
1126 	if (!p)
1127 		return -ESRCH;
1128 	proc_sched_show_task(p, m);
1129 
1130 	put_task_struct(p);
1131 
1132 	return 0;
1133 }
1134 
1135 static ssize_t
1136 sched_write(struct file *file, const char __user *buf,
1137 	    size_t count, loff_t *offset)
1138 {
1139 	struct inode *inode = file->f_path.dentry->d_inode;
1140 	struct task_struct *p;
1141 
1142 	WARN_ON(!inode);
1143 
1144 	p = get_proc_task(inode);
1145 	if (!p)
1146 		return -ESRCH;
1147 	proc_sched_set_task(p);
1148 
1149 	put_task_struct(p);
1150 
1151 	return count;
1152 }
1153 
1154 static int sched_open(struct inode *inode, struct file *filp)
1155 {
1156 	int ret;
1157 
1158 	ret = single_open(filp, sched_show, NULL);
1159 	if (!ret) {
1160 		struct seq_file *m = filp->private_data;
1161 
1162 		m->private = inode;
1163 	}
1164 	return ret;
1165 }
1166 
1167 static const struct file_operations proc_pid_sched_operations = {
1168 	.open		= sched_open,
1169 	.read		= seq_read,
1170 	.write		= sched_write,
1171 	.llseek		= seq_lseek,
1172 	.release	= single_release,
1173 };
1174 
1175 #endif
1176 
1177 static void *proc_pid_follow_link(struct dentry *dentry, struct nameidata *nd)
1178 {
1179 	struct inode *inode = dentry->d_inode;
1180 	int error = -EACCES;
1181 
1182 	/* We don't need a base pointer in the /proc filesystem */
1183 	path_put(&nd->path);
1184 
1185 	/* Are we allowed to snoop on the tasks file descriptors? */
1186 	if (!proc_fd_access_allowed(inode))
1187 		goto out;
1188 
1189 	error = PROC_I(inode)->op.proc_get_link(inode, &nd->path);
1190 	nd->last_type = LAST_BIND;
1191 out:
1192 	return ERR_PTR(error);
1193 }
1194 
1195 static int do_proc_readlink(struct path *path, char __user *buffer, int buflen)
1196 {
1197 	char *tmp = (char*)__get_free_page(GFP_TEMPORARY);
1198 	char *pathname;
1199 	int len;
1200 
1201 	if (!tmp)
1202 		return -ENOMEM;
1203 
1204 	pathname = d_path(path, tmp, PAGE_SIZE);
1205 	len = PTR_ERR(pathname);
1206 	if (IS_ERR(pathname))
1207 		goto out;
1208 	len = tmp + PAGE_SIZE - 1 - pathname;
1209 
1210 	if (len > buflen)
1211 		len = buflen;
1212 	if (copy_to_user(buffer, pathname, len))
1213 		len = -EFAULT;
1214  out:
1215 	free_page((unsigned long)tmp);
1216 	return len;
1217 }
1218 
1219 static int proc_pid_readlink(struct dentry * dentry, char __user * buffer, int buflen)
1220 {
1221 	int error = -EACCES;
1222 	struct inode *inode = dentry->d_inode;
1223 	struct path path;
1224 
1225 	/* Are we allowed to snoop on the tasks file descriptors? */
1226 	if (!proc_fd_access_allowed(inode))
1227 		goto out;
1228 
1229 	error = PROC_I(inode)->op.proc_get_link(inode, &path);
1230 	if (error)
1231 		goto out;
1232 
1233 	error = do_proc_readlink(&path, buffer, buflen);
1234 	path_put(&path);
1235 out:
1236 	return error;
1237 }
1238 
1239 static const struct inode_operations proc_pid_link_inode_operations = {
1240 	.readlink	= proc_pid_readlink,
1241 	.follow_link	= proc_pid_follow_link,
1242 	.setattr	= proc_setattr,
1243 };
1244 
1245 
1246 /* building an inode */
1247 
1248 static int task_dumpable(struct task_struct *task)
1249 {
1250 	int dumpable = 0;
1251 	struct mm_struct *mm;
1252 
1253 	task_lock(task);
1254 	mm = task->mm;
1255 	if (mm)
1256 		dumpable = get_dumpable(mm);
1257 	task_unlock(task);
1258 	if(dumpable == 1)
1259 		return 1;
1260 	return 0;
1261 }
1262 
1263 
1264 static struct inode *proc_pid_make_inode(struct super_block * sb, struct task_struct *task)
1265 {
1266 	struct inode * inode;
1267 	struct proc_inode *ei;
1268 
1269 	/* We need a new inode */
1270 
1271 	inode = new_inode(sb);
1272 	if (!inode)
1273 		goto out;
1274 
1275 	/* Common stuff */
1276 	ei = PROC_I(inode);
1277 	inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
1278 	inode->i_op = &proc_def_inode_operations;
1279 
1280 	/*
1281 	 * grab the reference to task.
1282 	 */
1283 	ei->pid = get_task_pid(task, PIDTYPE_PID);
1284 	if (!ei->pid)
1285 		goto out_unlock;
1286 
1287 	inode->i_uid = 0;
1288 	inode->i_gid = 0;
1289 	if (task_dumpable(task)) {
1290 		inode->i_uid = task->euid;
1291 		inode->i_gid = task->egid;
1292 	}
1293 	security_task_to_inode(task, inode);
1294 
1295 out:
1296 	return inode;
1297 
1298 out_unlock:
1299 	iput(inode);
1300 	return NULL;
1301 }
1302 
1303 static int pid_getattr(struct vfsmount *mnt, struct dentry *dentry, struct kstat *stat)
1304 {
1305 	struct inode *inode = dentry->d_inode;
1306 	struct task_struct *task;
1307 	generic_fillattr(inode, stat);
1308 
1309 	rcu_read_lock();
1310 	stat->uid = 0;
1311 	stat->gid = 0;
1312 	task = pid_task(proc_pid(inode), PIDTYPE_PID);
1313 	if (task) {
1314 		if ((inode->i_mode == (S_IFDIR|S_IRUGO|S_IXUGO)) ||
1315 		    task_dumpable(task)) {
1316 			stat->uid = task->euid;
1317 			stat->gid = task->egid;
1318 		}
1319 	}
1320 	rcu_read_unlock();
1321 	return 0;
1322 }
1323 
1324 /* dentry stuff */
1325 
1326 /*
1327  *	Exceptional case: normally we are not allowed to unhash a busy
1328  * directory. In this case, however, we can do it - no aliasing problems
1329  * due to the way we treat inodes.
1330  *
1331  * Rewrite the inode's ownerships here because the owning task may have
1332  * performed a setuid(), etc.
1333  *
1334  * Before the /proc/pid/status file was created the only way to read
1335  * the effective uid of a /process was to stat /proc/pid.  Reading
1336  * /proc/pid/status is slow enough that procps and other packages
1337  * kept stating /proc/pid.  To keep the rules in /proc simple I have
1338  * made this apply to all per process world readable and executable
1339  * directories.
1340  */
1341 static int pid_revalidate(struct dentry *dentry, struct nameidata *nd)
1342 {
1343 	struct inode *inode = dentry->d_inode;
1344 	struct task_struct *task = get_proc_task(inode);
1345 	if (task) {
1346 		if ((inode->i_mode == (S_IFDIR|S_IRUGO|S_IXUGO)) ||
1347 		    task_dumpable(task)) {
1348 			inode->i_uid = task->euid;
1349 			inode->i_gid = task->egid;
1350 		} else {
1351 			inode->i_uid = 0;
1352 			inode->i_gid = 0;
1353 		}
1354 		inode->i_mode &= ~(S_ISUID | S_ISGID);
1355 		security_task_to_inode(task, inode);
1356 		put_task_struct(task);
1357 		return 1;
1358 	}
1359 	d_drop(dentry);
1360 	return 0;
1361 }
1362 
1363 static int pid_delete_dentry(struct dentry * dentry)
1364 {
1365 	/* Is the task we represent dead?
1366 	 * If so, then don't put the dentry on the lru list,
1367 	 * kill it immediately.
1368 	 */
1369 	return !proc_pid(dentry->d_inode)->tasks[PIDTYPE_PID].first;
1370 }
1371 
1372 static struct dentry_operations pid_dentry_operations =
1373 {
1374 	.d_revalidate	= pid_revalidate,
1375 	.d_delete	= pid_delete_dentry,
1376 };
1377 
1378 /* Lookups */
1379 
1380 typedef struct dentry *instantiate_t(struct inode *, struct dentry *,
1381 				struct task_struct *, const void *);
1382 
1383 /*
1384  * Fill a directory entry.
1385  *
1386  * If possible create the dcache entry and derive our inode number and
1387  * file type from dcache entry.
1388  *
1389  * Since all of the proc inode numbers are dynamically generated, the inode
1390  * numbers do not exist until the inode is cache.  This means creating the
1391  * the dcache entry in readdir is necessary to keep the inode numbers
1392  * reported by readdir in sync with the inode numbers reported
1393  * by stat.
1394  */
1395 static int proc_fill_cache(struct file *filp, void *dirent, filldir_t filldir,
1396 	char *name, int len,
1397 	instantiate_t instantiate, struct task_struct *task, const void *ptr)
1398 {
1399 	struct dentry *child, *dir = filp->f_path.dentry;
1400 	struct inode *inode;
1401 	struct qstr qname;
1402 	ino_t ino = 0;
1403 	unsigned type = DT_UNKNOWN;
1404 
1405 	qname.name = name;
1406 	qname.len  = len;
1407 	qname.hash = full_name_hash(name, len);
1408 
1409 	child = d_lookup(dir, &qname);
1410 	if (!child) {
1411 		struct dentry *new;
1412 		new = d_alloc(dir, &qname);
1413 		if (new) {
1414 			child = instantiate(dir->d_inode, new, task, ptr);
1415 			if (child)
1416 				dput(new);
1417 			else
1418 				child = new;
1419 		}
1420 	}
1421 	if (!child || IS_ERR(child) || !child->d_inode)
1422 		goto end_instantiate;
1423 	inode = child->d_inode;
1424 	if (inode) {
1425 		ino = inode->i_ino;
1426 		type = inode->i_mode >> 12;
1427 	}
1428 	dput(child);
1429 end_instantiate:
1430 	if (!ino)
1431 		ino = find_inode_number(dir, &qname);
1432 	if (!ino)
1433 		ino = 1;
1434 	return filldir(dirent, name, len, filp->f_pos, ino, type);
1435 }
1436 
1437 static unsigned name_to_int(struct dentry *dentry)
1438 {
1439 	const char *name = dentry->d_name.name;
1440 	int len = dentry->d_name.len;
1441 	unsigned n = 0;
1442 
1443 	if (len > 1 && *name == '0')
1444 		goto out;
1445 	while (len-- > 0) {
1446 		unsigned c = *name++ - '0';
1447 		if (c > 9)
1448 			goto out;
1449 		if (n >= (~0U-9)/10)
1450 			goto out;
1451 		n *= 10;
1452 		n += c;
1453 	}
1454 	return n;
1455 out:
1456 	return ~0U;
1457 }
1458 
1459 #define PROC_FDINFO_MAX 64
1460 
1461 static int proc_fd_info(struct inode *inode, struct path *path, char *info)
1462 {
1463 	struct task_struct *task = get_proc_task(inode);
1464 	struct files_struct *files = NULL;
1465 	struct file *file;
1466 	int fd = proc_fd(inode);
1467 
1468 	if (task) {
1469 		files = get_files_struct(task);
1470 		put_task_struct(task);
1471 	}
1472 	if (files) {
1473 		/*
1474 		 * We are not taking a ref to the file structure, so we must
1475 		 * hold ->file_lock.
1476 		 */
1477 		spin_lock(&files->file_lock);
1478 		file = fcheck_files(files, fd);
1479 		if (file) {
1480 			if (path) {
1481 				*path = file->f_path;
1482 				path_get(&file->f_path);
1483 			}
1484 			if (info)
1485 				snprintf(info, PROC_FDINFO_MAX,
1486 					 "pos:\t%lli\n"
1487 					 "flags:\t0%o\n",
1488 					 (long long) file->f_pos,
1489 					 file->f_flags);
1490 			spin_unlock(&files->file_lock);
1491 			put_files_struct(files);
1492 			return 0;
1493 		}
1494 		spin_unlock(&files->file_lock);
1495 		put_files_struct(files);
1496 	}
1497 	return -ENOENT;
1498 }
1499 
1500 static int proc_fd_link(struct inode *inode, struct path *path)
1501 {
1502 	return proc_fd_info(inode, path, NULL);
1503 }
1504 
1505 static int tid_fd_revalidate(struct dentry *dentry, struct nameidata *nd)
1506 {
1507 	struct inode *inode = dentry->d_inode;
1508 	struct task_struct *task = get_proc_task(inode);
1509 	int fd = proc_fd(inode);
1510 	struct files_struct *files;
1511 
1512 	if (task) {
1513 		files = get_files_struct(task);
1514 		if (files) {
1515 			rcu_read_lock();
1516 			if (fcheck_files(files, fd)) {
1517 				rcu_read_unlock();
1518 				put_files_struct(files);
1519 				if (task_dumpable(task)) {
1520 					inode->i_uid = task->euid;
1521 					inode->i_gid = task->egid;
1522 				} else {
1523 					inode->i_uid = 0;
1524 					inode->i_gid = 0;
1525 				}
1526 				inode->i_mode &= ~(S_ISUID | S_ISGID);
1527 				security_task_to_inode(task, inode);
1528 				put_task_struct(task);
1529 				return 1;
1530 			}
1531 			rcu_read_unlock();
1532 			put_files_struct(files);
1533 		}
1534 		put_task_struct(task);
1535 	}
1536 	d_drop(dentry);
1537 	return 0;
1538 }
1539 
1540 static struct dentry_operations tid_fd_dentry_operations =
1541 {
1542 	.d_revalidate	= tid_fd_revalidate,
1543 	.d_delete	= pid_delete_dentry,
1544 };
1545 
1546 static struct dentry *proc_fd_instantiate(struct inode *dir,
1547 	struct dentry *dentry, struct task_struct *task, const void *ptr)
1548 {
1549 	unsigned fd = *(const unsigned *)ptr;
1550 	struct file *file;
1551 	struct files_struct *files;
1552  	struct inode *inode;
1553  	struct proc_inode *ei;
1554 	struct dentry *error = ERR_PTR(-ENOENT);
1555 
1556 	inode = proc_pid_make_inode(dir->i_sb, task);
1557 	if (!inode)
1558 		goto out;
1559 	ei = PROC_I(inode);
1560 	ei->fd = fd;
1561 	files = get_files_struct(task);
1562 	if (!files)
1563 		goto out_iput;
1564 	inode->i_mode = S_IFLNK;
1565 
1566 	/*
1567 	 * We are not taking a ref to the file structure, so we must
1568 	 * hold ->file_lock.
1569 	 */
1570 	spin_lock(&files->file_lock);
1571 	file = fcheck_files(files, fd);
1572 	if (!file)
1573 		goto out_unlock;
1574 	if (file->f_mode & 1)
1575 		inode->i_mode |= S_IRUSR | S_IXUSR;
1576 	if (file->f_mode & 2)
1577 		inode->i_mode |= S_IWUSR | S_IXUSR;
1578 	spin_unlock(&files->file_lock);
1579 	put_files_struct(files);
1580 
1581 	inode->i_op = &proc_pid_link_inode_operations;
1582 	inode->i_size = 64;
1583 	ei->op.proc_get_link = proc_fd_link;
1584 	dentry->d_op = &tid_fd_dentry_operations;
1585 	d_add(dentry, inode);
1586 	/* Close the race of the process dying before we return the dentry */
1587 	if (tid_fd_revalidate(dentry, NULL))
1588 		error = NULL;
1589 
1590  out:
1591 	return error;
1592 out_unlock:
1593 	spin_unlock(&files->file_lock);
1594 	put_files_struct(files);
1595 out_iput:
1596 	iput(inode);
1597 	goto out;
1598 }
1599 
1600 static struct dentry *proc_lookupfd_common(struct inode *dir,
1601 					   struct dentry *dentry,
1602 					   instantiate_t instantiate)
1603 {
1604 	struct task_struct *task = get_proc_task(dir);
1605 	unsigned fd = name_to_int(dentry);
1606 	struct dentry *result = ERR_PTR(-ENOENT);
1607 
1608 	if (!task)
1609 		goto out_no_task;
1610 	if (fd == ~0U)
1611 		goto out;
1612 
1613 	result = instantiate(dir, dentry, task, &fd);
1614 out:
1615 	put_task_struct(task);
1616 out_no_task:
1617 	return result;
1618 }
1619 
1620 static int proc_readfd_common(struct file * filp, void * dirent,
1621 			      filldir_t filldir, instantiate_t instantiate)
1622 {
1623 	struct dentry *dentry = filp->f_path.dentry;
1624 	struct inode *inode = dentry->d_inode;
1625 	struct task_struct *p = get_proc_task(inode);
1626 	unsigned int fd, ino;
1627 	int retval;
1628 	struct files_struct * files;
1629 	struct fdtable *fdt;
1630 
1631 	retval = -ENOENT;
1632 	if (!p)
1633 		goto out_no_task;
1634 	retval = 0;
1635 
1636 	fd = filp->f_pos;
1637 	switch (fd) {
1638 		case 0:
1639 			if (filldir(dirent, ".", 1, 0, inode->i_ino, DT_DIR) < 0)
1640 				goto out;
1641 			filp->f_pos++;
1642 		case 1:
1643 			ino = parent_ino(dentry);
1644 			if (filldir(dirent, "..", 2, 1, ino, DT_DIR) < 0)
1645 				goto out;
1646 			filp->f_pos++;
1647 		default:
1648 			files = get_files_struct(p);
1649 			if (!files)
1650 				goto out;
1651 			rcu_read_lock();
1652 			fdt = files_fdtable(files);
1653 			for (fd = filp->f_pos-2;
1654 			     fd < fdt->max_fds;
1655 			     fd++, filp->f_pos++) {
1656 				char name[PROC_NUMBUF];
1657 				int len;
1658 
1659 				if (!fcheck_files(files, fd))
1660 					continue;
1661 				rcu_read_unlock();
1662 
1663 				len = snprintf(name, sizeof(name), "%d", fd);
1664 				if (proc_fill_cache(filp, dirent, filldir,
1665 						    name, len, instantiate,
1666 						    p, &fd) < 0) {
1667 					rcu_read_lock();
1668 					break;
1669 				}
1670 				rcu_read_lock();
1671 			}
1672 			rcu_read_unlock();
1673 			put_files_struct(files);
1674 	}
1675 out:
1676 	put_task_struct(p);
1677 out_no_task:
1678 	return retval;
1679 }
1680 
1681 static struct dentry *proc_lookupfd(struct inode *dir, struct dentry *dentry,
1682 				    struct nameidata *nd)
1683 {
1684 	return proc_lookupfd_common(dir, dentry, proc_fd_instantiate);
1685 }
1686 
1687 static int proc_readfd(struct file *filp, void *dirent, filldir_t filldir)
1688 {
1689 	return proc_readfd_common(filp, dirent, filldir, proc_fd_instantiate);
1690 }
1691 
1692 static ssize_t proc_fdinfo_read(struct file *file, char __user *buf,
1693 				      size_t len, loff_t *ppos)
1694 {
1695 	char tmp[PROC_FDINFO_MAX];
1696 	int err = proc_fd_info(file->f_path.dentry->d_inode, NULL, tmp);
1697 	if (!err)
1698 		err = simple_read_from_buffer(buf, len, ppos, tmp, strlen(tmp));
1699 	return err;
1700 }
1701 
1702 static const struct file_operations proc_fdinfo_file_operations = {
1703 	.open		= nonseekable_open,
1704 	.read		= proc_fdinfo_read,
1705 };
1706 
1707 static const struct file_operations proc_fd_operations = {
1708 	.read		= generic_read_dir,
1709 	.readdir	= proc_readfd,
1710 };
1711 
1712 /*
1713  * /proc/pid/fd needs a special permission handler so that a process can still
1714  * access /proc/self/fd after it has executed a setuid().
1715  */
1716 static int proc_fd_permission(struct inode *inode, int mask,
1717 				struct nameidata *nd)
1718 {
1719 	int rv;
1720 
1721 	rv = generic_permission(inode, mask, NULL);
1722 	if (rv == 0)
1723 		return 0;
1724 	if (task_pid(current) == proc_pid(inode))
1725 		rv = 0;
1726 	return rv;
1727 }
1728 
1729 /*
1730  * proc directories can do almost nothing..
1731  */
1732 static const struct inode_operations proc_fd_inode_operations = {
1733 	.lookup		= proc_lookupfd,
1734 	.permission	= proc_fd_permission,
1735 	.setattr	= proc_setattr,
1736 };
1737 
1738 static struct dentry *proc_fdinfo_instantiate(struct inode *dir,
1739 	struct dentry *dentry, struct task_struct *task, const void *ptr)
1740 {
1741 	unsigned fd = *(unsigned *)ptr;
1742  	struct inode *inode;
1743  	struct proc_inode *ei;
1744 	struct dentry *error = ERR_PTR(-ENOENT);
1745 
1746 	inode = proc_pid_make_inode(dir->i_sb, task);
1747 	if (!inode)
1748 		goto out;
1749 	ei = PROC_I(inode);
1750 	ei->fd = fd;
1751 	inode->i_mode = S_IFREG | S_IRUSR;
1752 	inode->i_fop = &proc_fdinfo_file_operations;
1753 	dentry->d_op = &tid_fd_dentry_operations;
1754 	d_add(dentry, inode);
1755 	/* Close the race of the process dying before we return the dentry */
1756 	if (tid_fd_revalidate(dentry, NULL))
1757 		error = NULL;
1758 
1759  out:
1760 	return error;
1761 }
1762 
1763 static struct dentry *proc_lookupfdinfo(struct inode *dir,
1764 					struct dentry *dentry,
1765 					struct nameidata *nd)
1766 {
1767 	return proc_lookupfd_common(dir, dentry, proc_fdinfo_instantiate);
1768 }
1769 
1770 static int proc_readfdinfo(struct file *filp, void *dirent, filldir_t filldir)
1771 {
1772 	return proc_readfd_common(filp, dirent, filldir,
1773 				  proc_fdinfo_instantiate);
1774 }
1775 
1776 static const struct file_operations proc_fdinfo_operations = {
1777 	.read		= generic_read_dir,
1778 	.readdir	= proc_readfdinfo,
1779 };
1780 
1781 /*
1782  * proc directories can do almost nothing..
1783  */
1784 static const struct inode_operations proc_fdinfo_inode_operations = {
1785 	.lookup		= proc_lookupfdinfo,
1786 	.setattr	= proc_setattr,
1787 };
1788 
1789 
1790 static struct dentry *proc_pident_instantiate(struct inode *dir,
1791 	struct dentry *dentry, struct task_struct *task, const void *ptr)
1792 {
1793 	const struct pid_entry *p = ptr;
1794 	struct inode *inode;
1795 	struct proc_inode *ei;
1796 	struct dentry *error = ERR_PTR(-EINVAL);
1797 
1798 	inode = proc_pid_make_inode(dir->i_sb, task);
1799 	if (!inode)
1800 		goto out;
1801 
1802 	ei = PROC_I(inode);
1803 	inode->i_mode = p->mode;
1804 	if (S_ISDIR(inode->i_mode))
1805 		inode->i_nlink = 2;	/* Use getattr to fix if necessary */
1806 	if (p->iop)
1807 		inode->i_op = p->iop;
1808 	if (p->fop)
1809 		inode->i_fop = p->fop;
1810 	ei->op = p->op;
1811 	dentry->d_op = &pid_dentry_operations;
1812 	d_add(dentry, inode);
1813 	/* Close the race of the process dying before we return the dentry */
1814 	if (pid_revalidate(dentry, NULL))
1815 		error = NULL;
1816 out:
1817 	return error;
1818 }
1819 
1820 static struct dentry *proc_pident_lookup(struct inode *dir,
1821 					 struct dentry *dentry,
1822 					 const struct pid_entry *ents,
1823 					 unsigned int nents)
1824 {
1825 	struct inode *inode;
1826 	struct dentry *error;
1827 	struct task_struct *task = get_proc_task(dir);
1828 	const struct pid_entry *p, *last;
1829 
1830 	error = ERR_PTR(-ENOENT);
1831 	inode = NULL;
1832 
1833 	if (!task)
1834 		goto out_no_task;
1835 
1836 	/*
1837 	 * Yes, it does not scale. And it should not. Don't add
1838 	 * new entries into /proc/<tgid>/ without very good reasons.
1839 	 */
1840 	last = &ents[nents - 1];
1841 	for (p = ents; p <= last; p++) {
1842 		if (p->len != dentry->d_name.len)
1843 			continue;
1844 		if (!memcmp(dentry->d_name.name, p->name, p->len))
1845 			break;
1846 	}
1847 	if (p > last)
1848 		goto out;
1849 
1850 	error = proc_pident_instantiate(dir, dentry, task, p);
1851 out:
1852 	put_task_struct(task);
1853 out_no_task:
1854 	return error;
1855 }
1856 
1857 static int proc_pident_fill_cache(struct file *filp, void *dirent,
1858 	filldir_t filldir, struct task_struct *task, const struct pid_entry *p)
1859 {
1860 	return proc_fill_cache(filp, dirent, filldir, p->name, p->len,
1861 				proc_pident_instantiate, task, p);
1862 }
1863 
1864 static int proc_pident_readdir(struct file *filp,
1865 		void *dirent, filldir_t filldir,
1866 		const struct pid_entry *ents, unsigned int nents)
1867 {
1868 	int i;
1869 	struct dentry *dentry = filp->f_path.dentry;
1870 	struct inode *inode = dentry->d_inode;
1871 	struct task_struct *task = get_proc_task(inode);
1872 	const struct pid_entry *p, *last;
1873 	ino_t ino;
1874 	int ret;
1875 
1876 	ret = -ENOENT;
1877 	if (!task)
1878 		goto out_no_task;
1879 
1880 	ret = 0;
1881 	i = filp->f_pos;
1882 	switch (i) {
1883 	case 0:
1884 		ino = inode->i_ino;
1885 		if (filldir(dirent, ".", 1, i, ino, DT_DIR) < 0)
1886 			goto out;
1887 		i++;
1888 		filp->f_pos++;
1889 		/* fall through */
1890 	case 1:
1891 		ino = parent_ino(dentry);
1892 		if (filldir(dirent, "..", 2, i, ino, DT_DIR) < 0)
1893 			goto out;
1894 		i++;
1895 		filp->f_pos++;
1896 		/* fall through */
1897 	default:
1898 		i -= 2;
1899 		if (i >= nents) {
1900 			ret = 1;
1901 			goto out;
1902 		}
1903 		p = ents + i;
1904 		last = &ents[nents - 1];
1905 		while (p <= last) {
1906 			if (proc_pident_fill_cache(filp, dirent, filldir, task, p) < 0)
1907 				goto out;
1908 			filp->f_pos++;
1909 			p++;
1910 		}
1911 	}
1912 
1913 	ret = 1;
1914 out:
1915 	put_task_struct(task);
1916 out_no_task:
1917 	return ret;
1918 }
1919 
1920 #ifdef CONFIG_SECURITY
1921 static ssize_t proc_pid_attr_read(struct file * file, char __user * buf,
1922 				  size_t count, loff_t *ppos)
1923 {
1924 	struct inode * inode = file->f_path.dentry->d_inode;
1925 	char *p = NULL;
1926 	ssize_t length;
1927 	struct task_struct *task = get_proc_task(inode);
1928 
1929 	if (!task)
1930 		return -ESRCH;
1931 
1932 	length = security_getprocattr(task,
1933 				      (char*)file->f_path.dentry->d_name.name,
1934 				      &p);
1935 	put_task_struct(task);
1936 	if (length > 0)
1937 		length = simple_read_from_buffer(buf, count, ppos, p, length);
1938 	kfree(p);
1939 	return length;
1940 }
1941 
1942 static ssize_t proc_pid_attr_write(struct file * file, const char __user * buf,
1943 				   size_t count, loff_t *ppos)
1944 {
1945 	struct inode * inode = file->f_path.dentry->d_inode;
1946 	char *page;
1947 	ssize_t length;
1948 	struct task_struct *task = get_proc_task(inode);
1949 
1950 	length = -ESRCH;
1951 	if (!task)
1952 		goto out_no_task;
1953 	if (count > PAGE_SIZE)
1954 		count = PAGE_SIZE;
1955 
1956 	/* No partial writes. */
1957 	length = -EINVAL;
1958 	if (*ppos != 0)
1959 		goto out;
1960 
1961 	length = -ENOMEM;
1962 	page = (char*)__get_free_page(GFP_TEMPORARY);
1963 	if (!page)
1964 		goto out;
1965 
1966 	length = -EFAULT;
1967 	if (copy_from_user(page, buf, count))
1968 		goto out_free;
1969 
1970 	length = security_setprocattr(task,
1971 				      (char*)file->f_path.dentry->d_name.name,
1972 				      (void*)page, count);
1973 out_free:
1974 	free_page((unsigned long) page);
1975 out:
1976 	put_task_struct(task);
1977 out_no_task:
1978 	return length;
1979 }
1980 
1981 static const struct file_operations proc_pid_attr_operations = {
1982 	.read		= proc_pid_attr_read,
1983 	.write		= proc_pid_attr_write,
1984 };
1985 
1986 static const struct pid_entry attr_dir_stuff[] = {
1987 	REG("current",    S_IRUGO|S_IWUGO, pid_attr),
1988 	REG("prev",       S_IRUGO,	   pid_attr),
1989 	REG("exec",       S_IRUGO|S_IWUGO, pid_attr),
1990 	REG("fscreate",   S_IRUGO|S_IWUGO, pid_attr),
1991 	REG("keycreate",  S_IRUGO|S_IWUGO, pid_attr),
1992 	REG("sockcreate", S_IRUGO|S_IWUGO, pid_attr),
1993 };
1994 
1995 static int proc_attr_dir_readdir(struct file * filp,
1996 			     void * dirent, filldir_t filldir)
1997 {
1998 	return proc_pident_readdir(filp,dirent,filldir,
1999 				   attr_dir_stuff,ARRAY_SIZE(attr_dir_stuff));
2000 }
2001 
2002 static const struct file_operations proc_attr_dir_operations = {
2003 	.read		= generic_read_dir,
2004 	.readdir	= proc_attr_dir_readdir,
2005 };
2006 
2007 static struct dentry *proc_attr_dir_lookup(struct inode *dir,
2008 				struct dentry *dentry, struct nameidata *nd)
2009 {
2010 	return proc_pident_lookup(dir, dentry,
2011 				  attr_dir_stuff, ARRAY_SIZE(attr_dir_stuff));
2012 }
2013 
2014 static const struct inode_operations proc_attr_dir_inode_operations = {
2015 	.lookup		= proc_attr_dir_lookup,
2016 	.getattr	= pid_getattr,
2017 	.setattr	= proc_setattr,
2018 };
2019 
2020 #endif
2021 
2022 #if defined(USE_ELF_CORE_DUMP) && defined(CONFIG_ELF_CORE)
2023 static ssize_t proc_coredump_filter_read(struct file *file, char __user *buf,
2024 					 size_t count, loff_t *ppos)
2025 {
2026 	struct task_struct *task = get_proc_task(file->f_dentry->d_inode);
2027 	struct mm_struct *mm;
2028 	char buffer[PROC_NUMBUF];
2029 	size_t len;
2030 	int ret;
2031 
2032 	if (!task)
2033 		return -ESRCH;
2034 
2035 	ret = 0;
2036 	mm = get_task_mm(task);
2037 	if (mm) {
2038 		len = snprintf(buffer, sizeof(buffer), "%08lx\n",
2039 			       ((mm->flags & MMF_DUMP_FILTER_MASK) >>
2040 				MMF_DUMP_FILTER_SHIFT));
2041 		mmput(mm);
2042 		ret = simple_read_from_buffer(buf, count, ppos, buffer, len);
2043 	}
2044 
2045 	put_task_struct(task);
2046 
2047 	return ret;
2048 }
2049 
2050 static ssize_t proc_coredump_filter_write(struct file *file,
2051 					  const char __user *buf,
2052 					  size_t count,
2053 					  loff_t *ppos)
2054 {
2055 	struct task_struct *task;
2056 	struct mm_struct *mm;
2057 	char buffer[PROC_NUMBUF], *end;
2058 	unsigned int val;
2059 	int ret;
2060 	int i;
2061 	unsigned long mask;
2062 
2063 	ret = -EFAULT;
2064 	memset(buffer, 0, sizeof(buffer));
2065 	if (count > sizeof(buffer) - 1)
2066 		count = sizeof(buffer) - 1;
2067 	if (copy_from_user(buffer, buf, count))
2068 		goto out_no_task;
2069 
2070 	ret = -EINVAL;
2071 	val = (unsigned int)simple_strtoul(buffer, &end, 0);
2072 	if (*end == '\n')
2073 		end++;
2074 	if (end - buffer == 0)
2075 		goto out_no_task;
2076 
2077 	ret = -ESRCH;
2078 	task = get_proc_task(file->f_dentry->d_inode);
2079 	if (!task)
2080 		goto out_no_task;
2081 
2082 	ret = end - buffer;
2083 	mm = get_task_mm(task);
2084 	if (!mm)
2085 		goto out_no_mm;
2086 
2087 	for (i = 0, mask = 1; i < MMF_DUMP_FILTER_BITS; i++, mask <<= 1) {
2088 		if (val & mask)
2089 			set_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags);
2090 		else
2091 			clear_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags);
2092 	}
2093 
2094 	mmput(mm);
2095  out_no_mm:
2096 	put_task_struct(task);
2097  out_no_task:
2098 	return ret;
2099 }
2100 
2101 static const struct file_operations proc_coredump_filter_operations = {
2102 	.read		= proc_coredump_filter_read,
2103 	.write		= proc_coredump_filter_write,
2104 };
2105 #endif
2106 
2107 /*
2108  * /proc/self:
2109  */
2110 static int proc_self_readlink(struct dentry *dentry, char __user *buffer,
2111 			      int buflen)
2112 {
2113 	struct pid_namespace *ns = dentry->d_sb->s_fs_info;
2114 	pid_t tgid = task_tgid_nr_ns(current, ns);
2115 	char tmp[PROC_NUMBUF];
2116 	if (!tgid)
2117 		return -ENOENT;
2118 	sprintf(tmp, "%d", tgid);
2119 	return vfs_readlink(dentry,buffer,buflen,tmp);
2120 }
2121 
2122 static void *proc_self_follow_link(struct dentry *dentry, struct nameidata *nd)
2123 {
2124 	struct pid_namespace *ns = dentry->d_sb->s_fs_info;
2125 	pid_t tgid = task_tgid_nr_ns(current, ns);
2126 	char tmp[PROC_NUMBUF];
2127 	if (!tgid)
2128 		return ERR_PTR(-ENOENT);
2129 	sprintf(tmp, "%d", task_tgid_nr_ns(current, ns));
2130 	return ERR_PTR(vfs_follow_link(nd,tmp));
2131 }
2132 
2133 static const struct inode_operations proc_self_inode_operations = {
2134 	.readlink	= proc_self_readlink,
2135 	.follow_link	= proc_self_follow_link,
2136 };
2137 
2138 /*
2139  * proc base
2140  *
2141  * These are the directory entries in the root directory of /proc
2142  * that properly belong to the /proc filesystem, as they describe
2143  * describe something that is process related.
2144  */
2145 static const struct pid_entry proc_base_stuff[] = {
2146 	NOD("self", S_IFLNK|S_IRWXUGO,
2147 		&proc_self_inode_operations, NULL, {}),
2148 };
2149 
2150 /*
2151  *	Exceptional case: normally we are not allowed to unhash a busy
2152  * directory. In this case, however, we can do it - no aliasing problems
2153  * due to the way we treat inodes.
2154  */
2155 static int proc_base_revalidate(struct dentry *dentry, struct nameidata *nd)
2156 {
2157 	struct inode *inode = dentry->d_inode;
2158 	struct task_struct *task = get_proc_task(inode);
2159 	if (task) {
2160 		put_task_struct(task);
2161 		return 1;
2162 	}
2163 	d_drop(dentry);
2164 	return 0;
2165 }
2166 
2167 static struct dentry_operations proc_base_dentry_operations =
2168 {
2169 	.d_revalidate	= proc_base_revalidate,
2170 	.d_delete	= pid_delete_dentry,
2171 };
2172 
2173 static struct dentry *proc_base_instantiate(struct inode *dir,
2174 	struct dentry *dentry, struct task_struct *task, const void *ptr)
2175 {
2176 	const struct pid_entry *p = ptr;
2177 	struct inode *inode;
2178 	struct proc_inode *ei;
2179 	struct dentry *error = ERR_PTR(-EINVAL);
2180 
2181 	/* Allocate the inode */
2182 	error = ERR_PTR(-ENOMEM);
2183 	inode = new_inode(dir->i_sb);
2184 	if (!inode)
2185 		goto out;
2186 
2187 	/* Initialize the inode */
2188 	ei = PROC_I(inode);
2189 	inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
2190 
2191 	/*
2192 	 * grab the reference to the task.
2193 	 */
2194 	ei->pid = get_task_pid(task, PIDTYPE_PID);
2195 	if (!ei->pid)
2196 		goto out_iput;
2197 
2198 	inode->i_uid = 0;
2199 	inode->i_gid = 0;
2200 	inode->i_mode = p->mode;
2201 	if (S_ISDIR(inode->i_mode))
2202 		inode->i_nlink = 2;
2203 	if (S_ISLNK(inode->i_mode))
2204 		inode->i_size = 64;
2205 	if (p->iop)
2206 		inode->i_op = p->iop;
2207 	if (p->fop)
2208 		inode->i_fop = p->fop;
2209 	ei->op = p->op;
2210 	dentry->d_op = &proc_base_dentry_operations;
2211 	d_add(dentry, inode);
2212 	error = NULL;
2213 out:
2214 	return error;
2215 out_iput:
2216 	iput(inode);
2217 	goto out;
2218 }
2219 
2220 static struct dentry *proc_base_lookup(struct inode *dir, struct dentry *dentry)
2221 {
2222 	struct dentry *error;
2223 	struct task_struct *task = get_proc_task(dir);
2224 	const struct pid_entry *p, *last;
2225 
2226 	error = ERR_PTR(-ENOENT);
2227 
2228 	if (!task)
2229 		goto out_no_task;
2230 
2231 	/* Lookup the directory entry */
2232 	last = &proc_base_stuff[ARRAY_SIZE(proc_base_stuff) - 1];
2233 	for (p = proc_base_stuff; p <= last; p++) {
2234 		if (p->len != dentry->d_name.len)
2235 			continue;
2236 		if (!memcmp(dentry->d_name.name, p->name, p->len))
2237 			break;
2238 	}
2239 	if (p > last)
2240 		goto out;
2241 
2242 	error = proc_base_instantiate(dir, dentry, task, p);
2243 
2244 out:
2245 	put_task_struct(task);
2246 out_no_task:
2247 	return error;
2248 }
2249 
2250 static int proc_base_fill_cache(struct file *filp, void *dirent,
2251 	filldir_t filldir, struct task_struct *task, const struct pid_entry *p)
2252 {
2253 	return proc_fill_cache(filp, dirent, filldir, p->name, p->len,
2254 				proc_base_instantiate, task, p);
2255 }
2256 
2257 #ifdef CONFIG_TASK_IO_ACCOUNTING
2258 static int proc_pid_io_accounting(struct task_struct *task, char *buffer)
2259 {
2260 	return sprintf(buffer,
2261 #ifdef CONFIG_TASK_XACCT
2262 			"rchar: %llu\n"
2263 			"wchar: %llu\n"
2264 			"syscr: %llu\n"
2265 			"syscw: %llu\n"
2266 #endif
2267 			"read_bytes: %llu\n"
2268 			"write_bytes: %llu\n"
2269 			"cancelled_write_bytes: %llu\n",
2270 #ifdef CONFIG_TASK_XACCT
2271 			(unsigned long long)task->rchar,
2272 			(unsigned long long)task->wchar,
2273 			(unsigned long long)task->syscr,
2274 			(unsigned long long)task->syscw,
2275 #endif
2276 			(unsigned long long)task->ioac.read_bytes,
2277 			(unsigned long long)task->ioac.write_bytes,
2278 			(unsigned long long)task->ioac.cancelled_write_bytes);
2279 }
2280 #endif
2281 
2282 /*
2283  * Thread groups
2284  */
2285 static const struct file_operations proc_task_operations;
2286 static const struct inode_operations proc_task_inode_operations;
2287 
2288 static const struct pid_entry tgid_base_stuff[] = {
2289 	DIR("task",       S_IRUGO|S_IXUGO, task),
2290 	DIR("fd",         S_IRUSR|S_IXUSR, fd),
2291 	DIR("fdinfo",     S_IRUSR|S_IXUSR, fdinfo),
2292 #ifdef CONFIG_NET
2293 	DIR("net",        S_IRUGO|S_IXUGO, net),
2294 #endif
2295 	REG("environ",    S_IRUSR, environ),
2296 	INF("auxv",       S_IRUSR, pid_auxv),
2297 	ONE("status",     S_IRUGO, pid_status),
2298 	INF("limits",	  S_IRUSR, pid_limits),
2299 #ifdef CONFIG_SCHED_DEBUG
2300 	REG("sched",      S_IRUGO|S_IWUSR, pid_sched),
2301 #endif
2302 	INF("cmdline",    S_IRUGO, pid_cmdline),
2303 	ONE("stat",       S_IRUGO, tgid_stat),
2304 	ONE("statm",      S_IRUGO, pid_statm),
2305 	REG("maps",       S_IRUGO, maps),
2306 #ifdef CONFIG_NUMA
2307 	REG("numa_maps",  S_IRUGO, numa_maps),
2308 #endif
2309 	REG("mem",        S_IRUSR|S_IWUSR, mem),
2310 	LNK("cwd",        cwd),
2311 	LNK("root",       root),
2312 	LNK("exe",        exe),
2313 	REG("mounts",     S_IRUGO, mounts),
2314 	REG("mountstats", S_IRUSR, mountstats),
2315 #ifdef CONFIG_PROC_PAGE_MONITOR
2316 	REG("clear_refs", S_IWUSR, clear_refs),
2317 	REG("smaps",      S_IRUGO, smaps),
2318 	REG("pagemap",    S_IRUSR, pagemap),
2319 #endif
2320 #ifdef CONFIG_SECURITY
2321 	DIR("attr",       S_IRUGO|S_IXUGO, attr_dir),
2322 #endif
2323 #ifdef CONFIG_KALLSYMS
2324 	INF("wchan",      S_IRUGO, pid_wchan),
2325 #endif
2326 #ifdef CONFIG_SCHEDSTATS
2327 	INF("schedstat",  S_IRUGO, pid_schedstat),
2328 #endif
2329 #ifdef CONFIG_LATENCYTOP
2330 	REG("latency",  S_IRUGO, lstats),
2331 #endif
2332 #ifdef CONFIG_PROC_PID_CPUSET
2333 	REG("cpuset",     S_IRUGO, cpuset),
2334 #endif
2335 #ifdef CONFIG_CGROUPS
2336 	REG("cgroup",  S_IRUGO, cgroup),
2337 #endif
2338 	INF("oom_score",  S_IRUGO, oom_score),
2339 	REG("oom_adj",    S_IRUGO|S_IWUSR, oom_adjust),
2340 #ifdef CONFIG_AUDITSYSCALL
2341 	REG("loginuid",   S_IWUSR|S_IRUGO, loginuid),
2342 	REG("sessionid",  S_IRUSR, sessionid),
2343 #endif
2344 #ifdef CONFIG_FAULT_INJECTION
2345 	REG("make-it-fail", S_IRUGO|S_IWUSR, fault_inject),
2346 #endif
2347 #if defined(USE_ELF_CORE_DUMP) && defined(CONFIG_ELF_CORE)
2348 	REG("coredump_filter", S_IRUGO|S_IWUSR, coredump_filter),
2349 #endif
2350 #ifdef CONFIG_TASK_IO_ACCOUNTING
2351 	INF("io",	S_IRUGO, pid_io_accounting),
2352 #endif
2353 };
2354 
2355 static int proc_tgid_base_readdir(struct file * filp,
2356 			     void * dirent, filldir_t filldir)
2357 {
2358 	return proc_pident_readdir(filp,dirent,filldir,
2359 				   tgid_base_stuff,ARRAY_SIZE(tgid_base_stuff));
2360 }
2361 
2362 static const struct file_operations proc_tgid_base_operations = {
2363 	.read		= generic_read_dir,
2364 	.readdir	= proc_tgid_base_readdir,
2365 };
2366 
2367 static struct dentry *proc_tgid_base_lookup(struct inode *dir, struct dentry *dentry, struct nameidata *nd){
2368 	return proc_pident_lookup(dir, dentry,
2369 				  tgid_base_stuff, ARRAY_SIZE(tgid_base_stuff));
2370 }
2371 
2372 static const struct inode_operations proc_tgid_base_inode_operations = {
2373 	.lookup		= proc_tgid_base_lookup,
2374 	.getattr	= pid_getattr,
2375 	.setattr	= proc_setattr,
2376 };
2377 
2378 static void proc_flush_task_mnt(struct vfsmount *mnt, pid_t pid, pid_t tgid)
2379 {
2380 	struct dentry *dentry, *leader, *dir;
2381 	char buf[PROC_NUMBUF];
2382 	struct qstr name;
2383 
2384 	name.name = buf;
2385 	name.len = snprintf(buf, sizeof(buf), "%d", pid);
2386 	dentry = d_hash_and_lookup(mnt->mnt_root, &name);
2387 	if (dentry) {
2388 		if (!(current->flags & PF_EXITING))
2389 			shrink_dcache_parent(dentry);
2390 		d_drop(dentry);
2391 		dput(dentry);
2392 	}
2393 
2394 	if (tgid == 0)
2395 		goto out;
2396 
2397 	name.name = buf;
2398 	name.len = snprintf(buf, sizeof(buf), "%d", tgid);
2399 	leader = d_hash_and_lookup(mnt->mnt_root, &name);
2400 	if (!leader)
2401 		goto out;
2402 
2403 	name.name = "task";
2404 	name.len = strlen(name.name);
2405 	dir = d_hash_and_lookup(leader, &name);
2406 	if (!dir)
2407 		goto out_put_leader;
2408 
2409 	name.name = buf;
2410 	name.len = snprintf(buf, sizeof(buf), "%d", pid);
2411 	dentry = d_hash_and_lookup(dir, &name);
2412 	if (dentry) {
2413 		shrink_dcache_parent(dentry);
2414 		d_drop(dentry);
2415 		dput(dentry);
2416 	}
2417 
2418 	dput(dir);
2419 out_put_leader:
2420 	dput(leader);
2421 out:
2422 	return;
2423 }
2424 
2425 /**
2426  * proc_flush_task -  Remove dcache entries for @task from the /proc dcache.
2427  * @task: task that should be flushed.
2428  *
2429  * When flushing dentries from proc, one needs to flush them from global
2430  * proc (proc_mnt) and from all the namespaces' procs this task was seen
2431  * in. This call is supposed to do all of this job.
2432  *
2433  * Looks in the dcache for
2434  * /proc/@pid
2435  * /proc/@tgid/task/@pid
2436  * if either directory is present flushes it and all of it'ts children
2437  * from the dcache.
2438  *
2439  * It is safe and reasonable to cache /proc entries for a task until
2440  * that task exits.  After that they just clog up the dcache with
2441  * useless entries, possibly causing useful dcache entries to be
2442  * flushed instead.  This routine is proved to flush those useless
2443  * dcache entries at process exit time.
2444  *
2445  * NOTE: This routine is just an optimization so it does not guarantee
2446  *       that no dcache entries will exist at process exit time it
2447  *       just makes it very unlikely that any will persist.
2448  */
2449 
2450 void proc_flush_task(struct task_struct *task)
2451 {
2452 	int i;
2453 	struct pid *pid, *tgid = NULL;
2454 	struct upid *upid;
2455 
2456 	pid = task_pid(task);
2457 	if (thread_group_leader(task))
2458 		tgid = task_tgid(task);
2459 
2460 	for (i = 0; i <= pid->level; i++) {
2461 		upid = &pid->numbers[i];
2462 		proc_flush_task_mnt(upid->ns->proc_mnt, upid->nr,
2463 			tgid ? tgid->numbers[i].nr : 0);
2464 	}
2465 
2466 	upid = &pid->numbers[pid->level];
2467 	if (upid->nr == 1)
2468 		pid_ns_release_proc(upid->ns);
2469 }
2470 
2471 static struct dentry *proc_pid_instantiate(struct inode *dir,
2472 					   struct dentry * dentry,
2473 					   struct task_struct *task, const void *ptr)
2474 {
2475 	struct dentry *error = ERR_PTR(-ENOENT);
2476 	struct inode *inode;
2477 
2478 	inode = proc_pid_make_inode(dir->i_sb, task);
2479 	if (!inode)
2480 		goto out;
2481 
2482 	inode->i_mode = S_IFDIR|S_IRUGO|S_IXUGO;
2483 	inode->i_op = &proc_tgid_base_inode_operations;
2484 	inode->i_fop = &proc_tgid_base_operations;
2485 	inode->i_flags|=S_IMMUTABLE;
2486 	inode->i_nlink = 5;
2487 #ifdef CONFIG_SECURITY
2488 	inode->i_nlink += 1;
2489 #endif
2490 
2491 	dentry->d_op = &pid_dentry_operations;
2492 
2493 	d_add(dentry, inode);
2494 	/* Close the race of the process dying before we return the dentry */
2495 	if (pid_revalidate(dentry, NULL))
2496 		error = NULL;
2497 out:
2498 	return error;
2499 }
2500 
2501 struct dentry *proc_pid_lookup(struct inode *dir, struct dentry * dentry, struct nameidata *nd)
2502 {
2503 	struct dentry *result = ERR_PTR(-ENOENT);
2504 	struct task_struct *task;
2505 	unsigned tgid;
2506 	struct pid_namespace *ns;
2507 
2508 	result = proc_base_lookup(dir, dentry);
2509 	if (!IS_ERR(result) || PTR_ERR(result) != -ENOENT)
2510 		goto out;
2511 
2512 	tgid = name_to_int(dentry);
2513 	if (tgid == ~0U)
2514 		goto out;
2515 
2516 	ns = dentry->d_sb->s_fs_info;
2517 	rcu_read_lock();
2518 	task = find_task_by_pid_ns(tgid, ns);
2519 	if (task)
2520 		get_task_struct(task);
2521 	rcu_read_unlock();
2522 	if (!task)
2523 		goto out;
2524 
2525 	result = proc_pid_instantiate(dir, dentry, task, NULL);
2526 	put_task_struct(task);
2527 out:
2528 	return result;
2529 }
2530 
2531 /*
2532  * Find the first task with tgid >= tgid
2533  *
2534  */
2535 struct tgid_iter {
2536 	unsigned int tgid;
2537 	struct task_struct *task;
2538 };
2539 static struct tgid_iter next_tgid(struct pid_namespace *ns, struct tgid_iter iter)
2540 {
2541 	struct pid *pid;
2542 
2543 	if (iter.task)
2544 		put_task_struct(iter.task);
2545 	rcu_read_lock();
2546 retry:
2547 	iter.task = NULL;
2548 	pid = find_ge_pid(iter.tgid, ns);
2549 	if (pid) {
2550 		iter.tgid = pid_nr_ns(pid, ns);
2551 		iter.task = pid_task(pid, PIDTYPE_PID);
2552 		/* What we to know is if the pid we have find is the
2553 		 * pid of a thread_group_leader.  Testing for task
2554 		 * being a thread_group_leader is the obvious thing
2555 		 * todo but there is a window when it fails, due to
2556 		 * the pid transfer logic in de_thread.
2557 		 *
2558 		 * So we perform the straight forward test of seeing
2559 		 * if the pid we have found is the pid of a thread
2560 		 * group leader, and don't worry if the task we have
2561 		 * found doesn't happen to be a thread group leader.
2562 		 * As we don't care in the case of readdir.
2563 		 */
2564 		if (!iter.task || !has_group_leader_pid(iter.task)) {
2565 			iter.tgid += 1;
2566 			goto retry;
2567 		}
2568 		get_task_struct(iter.task);
2569 	}
2570 	rcu_read_unlock();
2571 	return iter;
2572 }
2573 
2574 #define TGID_OFFSET (FIRST_PROCESS_ENTRY + ARRAY_SIZE(proc_base_stuff))
2575 
2576 static int proc_pid_fill_cache(struct file *filp, void *dirent, filldir_t filldir,
2577 	struct tgid_iter iter)
2578 {
2579 	char name[PROC_NUMBUF];
2580 	int len = snprintf(name, sizeof(name), "%d", iter.tgid);
2581 	return proc_fill_cache(filp, dirent, filldir, name, len,
2582 				proc_pid_instantiate, iter.task, NULL);
2583 }
2584 
2585 /* for the /proc/ directory itself, after non-process stuff has been done */
2586 int proc_pid_readdir(struct file * filp, void * dirent, filldir_t filldir)
2587 {
2588 	unsigned int nr = filp->f_pos - FIRST_PROCESS_ENTRY;
2589 	struct task_struct *reaper = get_proc_task(filp->f_path.dentry->d_inode);
2590 	struct tgid_iter iter;
2591 	struct pid_namespace *ns;
2592 
2593 	if (!reaper)
2594 		goto out_no_task;
2595 
2596 	for (; nr < ARRAY_SIZE(proc_base_stuff); filp->f_pos++, nr++) {
2597 		const struct pid_entry *p = &proc_base_stuff[nr];
2598 		if (proc_base_fill_cache(filp, dirent, filldir, reaper, p) < 0)
2599 			goto out;
2600 	}
2601 
2602 	ns = filp->f_dentry->d_sb->s_fs_info;
2603 	iter.task = NULL;
2604 	iter.tgid = filp->f_pos - TGID_OFFSET;
2605 	for (iter = next_tgid(ns, iter);
2606 	     iter.task;
2607 	     iter.tgid += 1, iter = next_tgid(ns, iter)) {
2608 		filp->f_pos = iter.tgid + TGID_OFFSET;
2609 		if (proc_pid_fill_cache(filp, dirent, filldir, iter) < 0) {
2610 			put_task_struct(iter.task);
2611 			goto out;
2612 		}
2613 	}
2614 	filp->f_pos = PID_MAX_LIMIT + TGID_OFFSET;
2615 out:
2616 	put_task_struct(reaper);
2617 out_no_task:
2618 	return 0;
2619 }
2620 
2621 /*
2622  * Tasks
2623  */
2624 static const struct pid_entry tid_base_stuff[] = {
2625 	DIR("fd",        S_IRUSR|S_IXUSR, fd),
2626 	DIR("fdinfo",    S_IRUSR|S_IXUSR, fdinfo),
2627 	REG("environ",   S_IRUSR, environ),
2628 	INF("auxv",      S_IRUSR, pid_auxv),
2629 	ONE("status",    S_IRUGO, pid_status),
2630 	INF("limits",	 S_IRUSR, pid_limits),
2631 #ifdef CONFIG_SCHED_DEBUG
2632 	REG("sched",     S_IRUGO|S_IWUSR, pid_sched),
2633 #endif
2634 	INF("cmdline",   S_IRUGO, pid_cmdline),
2635 	ONE("stat",      S_IRUGO, tid_stat),
2636 	ONE("statm",     S_IRUGO, pid_statm),
2637 	REG("maps",      S_IRUGO, maps),
2638 #ifdef CONFIG_NUMA
2639 	REG("numa_maps", S_IRUGO, numa_maps),
2640 #endif
2641 	REG("mem",       S_IRUSR|S_IWUSR, mem),
2642 	LNK("cwd",       cwd),
2643 	LNK("root",      root),
2644 	LNK("exe",       exe),
2645 	REG("mounts",    S_IRUGO, mounts),
2646 #ifdef CONFIG_PROC_PAGE_MONITOR
2647 	REG("clear_refs", S_IWUSR, clear_refs),
2648 	REG("smaps",     S_IRUGO, smaps),
2649 	REG("pagemap",    S_IRUSR, pagemap),
2650 #endif
2651 #ifdef CONFIG_SECURITY
2652 	DIR("attr",      S_IRUGO|S_IXUGO, attr_dir),
2653 #endif
2654 #ifdef CONFIG_KALLSYMS
2655 	INF("wchan",     S_IRUGO, pid_wchan),
2656 #endif
2657 #ifdef CONFIG_SCHEDSTATS
2658 	INF("schedstat", S_IRUGO, pid_schedstat),
2659 #endif
2660 #ifdef CONFIG_LATENCYTOP
2661 	REG("latency",  S_IRUGO, lstats),
2662 #endif
2663 #ifdef CONFIG_PROC_PID_CPUSET
2664 	REG("cpuset",    S_IRUGO, cpuset),
2665 #endif
2666 #ifdef CONFIG_CGROUPS
2667 	REG("cgroup",  S_IRUGO, cgroup),
2668 #endif
2669 	INF("oom_score", S_IRUGO, oom_score),
2670 	REG("oom_adj",   S_IRUGO|S_IWUSR, oom_adjust),
2671 #ifdef CONFIG_AUDITSYSCALL
2672 	REG("loginuid",  S_IWUSR|S_IRUGO, loginuid),
2673 	REG("sessionid",  S_IRUSR, sessionid),
2674 #endif
2675 #ifdef CONFIG_FAULT_INJECTION
2676 	REG("make-it-fail", S_IRUGO|S_IWUSR, fault_inject),
2677 #endif
2678 };
2679 
2680 static int proc_tid_base_readdir(struct file * filp,
2681 			     void * dirent, filldir_t filldir)
2682 {
2683 	return proc_pident_readdir(filp,dirent,filldir,
2684 				   tid_base_stuff,ARRAY_SIZE(tid_base_stuff));
2685 }
2686 
2687 static struct dentry *proc_tid_base_lookup(struct inode *dir, struct dentry *dentry, struct nameidata *nd){
2688 	return proc_pident_lookup(dir, dentry,
2689 				  tid_base_stuff, ARRAY_SIZE(tid_base_stuff));
2690 }
2691 
2692 static const struct file_operations proc_tid_base_operations = {
2693 	.read		= generic_read_dir,
2694 	.readdir	= proc_tid_base_readdir,
2695 };
2696 
2697 static const struct inode_operations proc_tid_base_inode_operations = {
2698 	.lookup		= proc_tid_base_lookup,
2699 	.getattr	= pid_getattr,
2700 	.setattr	= proc_setattr,
2701 };
2702 
2703 static struct dentry *proc_task_instantiate(struct inode *dir,
2704 	struct dentry *dentry, struct task_struct *task, const void *ptr)
2705 {
2706 	struct dentry *error = ERR_PTR(-ENOENT);
2707 	struct inode *inode;
2708 	inode = proc_pid_make_inode(dir->i_sb, task);
2709 
2710 	if (!inode)
2711 		goto out;
2712 	inode->i_mode = S_IFDIR|S_IRUGO|S_IXUGO;
2713 	inode->i_op = &proc_tid_base_inode_operations;
2714 	inode->i_fop = &proc_tid_base_operations;
2715 	inode->i_flags|=S_IMMUTABLE;
2716 	inode->i_nlink = 4;
2717 #ifdef CONFIG_SECURITY
2718 	inode->i_nlink += 1;
2719 #endif
2720 
2721 	dentry->d_op = &pid_dentry_operations;
2722 
2723 	d_add(dentry, inode);
2724 	/* Close the race of the process dying before we return the dentry */
2725 	if (pid_revalidate(dentry, NULL))
2726 		error = NULL;
2727 out:
2728 	return error;
2729 }
2730 
2731 static struct dentry *proc_task_lookup(struct inode *dir, struct dentry * dentry, struct nameidata *nd)
2732 {
2733 	struct dentry *result = ERR_PTR(-ENOENT);
2734 	struct task_struct *task;
2735 	struct task_struct *leader = get_proc_task(dir);
2736 	unsigned tid;
2737 	struct pid_namespace *ns;
2738 
2739 	if (!leader)
2740 		goto out_no_task;
2741 
2742 	tid = name_to_int(dentry);
2743 	if (tid == ~0U)
2744 		goto out;
2745 
2746 	ns = dentry->d_sb->s_fs_info;
2747 	rcu_read_lock();
2748 	task = find_task_by_pid_ns(tid, ns);
2749 	if (task)
2750 		get_task_struct(task);
2751 	rcu_read_unlock();
2752 	if (!task)
2753 		goto out;
2754 	if (!same_thread_group(leader, task))
2755 		goto out_drop_task;
2756 
2757 	result = proc_task_instantiate(dir, dentry, task, NULL);
2758 out_drop_task:
2759 	put_task_struct(task);
2760 out:
2761 	put_task_struct(leader);
2762 out_no_task:
2763 	return result;
2764 }
2765 
2766 /*
2767  * Find the first tid of a thread group to return to user space.
2768  *
2769  * Usually this is just the thread group leader, but if the users
2770  * buffer was too small or there was a seek into the middle of the
2771  * directory we have more work todo.
2772  *
2773  * In the case of a short read we start with find_task_by_pid.
2774  *
2775  * In the case of a seek we start with the leader and walk nr
2776  * threads past it.
2777  */
2778 static struct task_struct *first_tid(struct task_struct *leader,
2779 		int tid, int nr, struct pid_namespace *ns)
2780 {
2781 	struct task_struct *pos;
2782 
2783 	rcu_read_lock();
2784 	/* Attempt to start with the pid of a thread */
2785 	if (tid && (nr > 0)) {
2786 		pos = find_task_by_pid_ns(tid, ns);
2787 		if (pos && (pos->group_leader == leader))
2788 			goto found;
2789 	}
2790 
2791 	/* If nr exceeds the number of threads there is nothing todo */
2792 	pos = NULL;
2793 	if (nr && nr >= get_nr_threads(leader))
2794 		goto out;
2795 
2796 	/* If we haven't found our starting place yet start
2797 	 * with the leader and walk nr threads forward.
2798 	 */
2799 	for (pos = leader; nr > 0; --nr) {
2800 		pos = next_thread(pos);
2801 		if (pos == leader) {
2802 			pos = NULL;
2803 			goto out;
2804 		}
2805 	}
2806 found:
2807 	get_task_struct(pos);
2808 out:
2809 	rcu_read_unlock();
2810 	return pos;
2811 }
2812 
2813 /*
2814  * Find the next thread in the thread list.
2815  * Return NULL if there is an error or no next thread.
2816  *
2817  * The reference to the input task_struct is released.
2818  */
2819 static struct task_struct *next_tid(struct task_struct *start)
2820 {
2821 	struct task_struct *pos = NULL;
2822 	rcu_read_lock();
2823 	if (pid_alive(start)) {
2824 		pos = next_thread(start);
2825 		if (thread_group_leader(pos))
2826 			pos = NULL;
2827 		else
2828 			get_task_struct(pos);
2829 	}
2830 	rcu_read_unlock();
2831 	put_task_struct(start);
2832 	return pos;
2833 }
2834 
2835 static int proc_task_fill_cache(struct file *filp, void *dirent, filldir_t filldir,
2836 	struct task_struct *task, int tid)
2837 {
2838 	char name[PROC_NUMBUF];
2839 	int len = snprintf(name, sizeof(name), "%d", tid);
2840 	return proc_fill_cache(filp, dirent, filldir, name, len,
2841 				proc_task_instantiate, task, NULL);
2842 }
2843 
2844 /* for the /proc/TGID/task/ directories */
2845 static int proc_task_readdir(struct file * filp, void * dirent, filldir_t filldir)
2846 {
2847 	struct dentry *dentry = filp->f_path.dentry;
2848 	struct inode *inode = dentry->d_inode;
2849 	struct task_struct *leader = NULL;
2850 	struct task_struct *task;
2851 	int retval = -ENOENT;
2852 	ino_t ino;
2853 	int tid;
2854 	unsigned long pos = filp->f_pos;  /* avoiding "long long" filp->f_pos */
2855 	struct pid_namespace *ns;
2856 
2857 	task = get_proc_task(inode);
2858 	if (!task)
2859 		goto out_no_task;
2860 	rcu_read_lock();
2861 	if (pid_alive(task)) {
2862 		leader = task->group_leader;
2863 		get_task_struct(leader);
2864 	}
2865 	rcu_read_unlock();
2866 	put_task_struct(task);
2867 	if (!leader)
2868 		goto out_no_task;
2869 	retval = 0;
2870 
2871 	switch (pos) {
2872 	case 0:
2873 		ino = inode->i_ino;
2874 		if (filldir(dirent, ".", 1, pos, ino, DT_DIR) < 0)
2875 			goto out;
2876 		pos++;
2877 		/* fall through */
2878 	case 1:
2879 		ino = parent_ino(dentry);
2880 		if (filldir(dirent, "..", 2, pos, ino, DT_DIR) < 0)
2881 			goto out;
2882 		pos++;
2883 		/* fall through */
2884 	}
2885 
2886 	/* f_version caches the tgid value that the last readdir call couldn't
2887 	 * return. lseek aka telldir automagically resets f_version to 0.
2888 	 */
2889 	ns = filp->f_dentry->d_sb->s_fs_info;
2890 	tid = (int)filp->f_version;
2891 	filp->f_version = 0;
2892 	for (task = first_tid(leader, tid, pos - 2, ns);
2893 	     task;
2894 	     task = next_tid(task), pos++) {
2895 		tid = task_pid_nr_ns(task, ns);
2896 		if (proc_task_fill_cache(filp, dirent, filldir, task, tid) < 0) {
2897 			/* returning this tgid failed, save it as the first
2898 			 * pid for the next readir call */
2899 			filp->f_version = (u64)tid;
2900 			put_task_struct(task);
2901 			break;
2902 		}
2903 	}
2904 out:
2905 	filp->f_pos = pos;
2906 	put_task_struct(leader);
2907 out_no_task:
2908 	return retval;
2909 }
2910 
2911 static int proc_task_getattr(struct vfsmount *mnt, struct dentry *dentry, struct kstat *stat)
2912 {
2913 	struct inode *inode = dentry->d_inode;
2914 	struct task_struct *p = get_proc_task(inode);
2915 	generic_fillattr(inode, stat);
2916 
2917 	if (p) {
2918 		rcu_read_lock();
2919 		stat->nlink += get_nr_threads(p);
2920 		rcu_read_unlock();
2921 		put_task_struct(p);
2922 	}
2923 
2924 	return 0;
2925 }
2926 
2927 static const struct inode_operations proc_task_inode_operations = {
2928 	.lookup		= proc_task_lookup,
2929 	.getattr	= proc_task_getattr,
2930 	.setattr	= proc_setattr,
2931 };
2932 
2933 static const struct file_operations proc_task_operations = {
2934 	.read		= generic_read_dir,
2935 	.readdir	= proc_task_readdir,
2936 };
2937