xref: /linux/fs/proc/base.c (revision 9d8a2b033db179bef9b6b5bad492f611a0fe89b7)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/fs/proc/base.c
4  *
5  *  Copyright (C) 1991, 1992 Linus Torvalds
6  *
7  *  proc base directory handling functions
8  *
9  *  1999, Al Viro. Rewritten. Now it covers the whole per-process part.
10  *  Instead of using magical inumbers to determine the kind of object
11  *  we allocate and fill in-core inodes upon lookup. They don't even
12  *  go into icache. We cache the reference to task_struct upon lookup too.
13  *  Eventually it should become a filesystem in its own. We don't use the
14  *  rest of procfs anymore.
15  *
16  *
17  *  Changelog:
18  *  17-Jan-2005
19  *  Allan Bezerra
20  *  Bruna Moreira <bruna.moreira@indt.org.br>
21  *  Edjard Mota <edjard.mota@indt.org.br>
22  *  Ilias Biris <ilias.biris@indt.org.br>
23  *  Mauricio Lin <mauricio.lin@indt.org.br>
24  *
25  *  Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT
26  *
27  *  A new process specific entry (smaps) included in /proc. It shows the
28  *  size of rss for each memory area. The maps entry lacks information
29  *  about physical memory size (rss) for each mapped file, i.e.,
30  *  rss information for executables and library files.
31  *  This additional information is useful for any tools that need to know
32  *  about physical memory consumption for a process specific library.
33  *
34  *  Changelog:
35  *  21-Feb-2005
36  *  Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT
37  *  Pud inclusion in the page table walking.
38  *
39  *  ChangeLog:
40  *  10-Mar-2005
41  *  10LE Instituto Nokia de Tecnologia - INdT:
42  *  A better way to walks through the page table as suggested by Hugh Dickins.
43  *
44  *  Simo Piiroinen <simo.piiroinen@nokia.com>:
45  *  Smaps information related to shared, private, clean and dirty pages.
46  *
47  *  Paul Mundt <paul.mundt@nokia.com>:
48  *  Overall revision about smaps.
49  */
50 
51 #include <linux/uaccess.h>
52 
53 #include <linux/errno.h>
54 #include <linux/time.h>
55 #include <linux/proc_fs.h>
56 #include <linux/stat.h>
57 #include <linux/task_io_accounting_ops.h>
58 #include <linux/init.h>
59 #include <linux/capability.h>
60 #include <linux/file.h>
61 #include <linux/generic-radix-tree.h>
62 #include <linux/string.h>
63 #include <linux/seq_file.h>
64 #include <linux/namei.h>
65 #include <linux/mnt_namespace.h>
66 #include <linux/mm.h>
67 #include <linux/swap.h>
68 #include <linux/rcupdate.h>
69 #include <linux/kallsyms.h>
70 #include <linux/stacktrace.h>
71 #include <linux/resource.h>
72 #include <linux/module.h>
73 #include <linux/mount.h>
74 #include <linux/security.h>
75 #include <linux/ptrace.h>
76 #include <linux/printk.h>
77 #include <linux/cache.h>
78 #include <linux/cgroup.h>
79 #include <linux/cpuset.h>
80 #include <linux/audit.h>
81 #include <linux/poll.h>
82 #include <linux/nsproxy.h>
83 #include <linux/oom.h>
84 #include <linux/elf.h>
85 #include <linux/pid_namespace.h>
86 #include <linux/user_namespace.h>
87 #include <linux/fs_parser.h>
88 #include <linux/fs_struct.h>
89 #include <linux/slab.h>
90 #include <linux/sched/autogroup.h>
91 #include <linux/sched/mm.h>
92 #include <linux/sched/coredump.h>
93 #include <linux/sched/debug.h>
94 #include <linux/sched/stat.h>
95 #include <linux/posix-timers.h>
96 #include <linux/time_namespace.h>
97 #include <linux/resctrl.h>
98 #include <linux/cn_proc.h>
99 #include <linux/ksm.h>
100 #include <uapi/linux/lsm.h>
101 #include <trace/events/oom.h>
102 #include "internal.h"
103 #include "fd.h"
104 
105 #include "../../lib/kstrtox.h"
106 
107 /* NOTE:
108  *	Implementing inode permission operations in /proc is almost
109  *	certainly an error.  Permission checks need to happen during
110  *	each system call not at open time.  The reason is that most of
111  *	what we wish to check for permissions in /proc varies at runtime.
112  *
113  *	The classic example of a problem is opening file descriptors
114  *	in /proc for a task before it execs a suid executable.
115  */
116 
117 static u8 nlink_tid __ro_after_init;
118 static u8 nlink_tgid __ro_after_init;
119 
120 enum proc_mem_force {
121 	PROC_MEM_FORCE_ALWAYS,
122 	PROC_MEM_FORCE_PTRACE,
123 	PROC_MEM_FORCE_NEVER
124 };
125 
126 static enum proc_mem_force proc_mem_force_override __ro_after_init =
127 	IS_ENABLED(CONFIG_PROC_MEM_NO_FORCE) ? PROC_MEM_FORCE_NEVER :
128 	IS_ENABLED(CONFIG_PROC_MEM_FORCE_PTRACE) ? PROC_MEM_FORCE_PTRACE :
129 	PROC_MEM_FORCE_ALWAYS;
130 
131 static const struct constant_table proc_mem_force_table[] __initconst = {
132 	{ "always", PROC_MEM_FORCE_ALWAYS },
133 	{ "ptrace", PROC_MEM_FORCE_PTRACE },
134 	{ "never", PROC_MEM_FORCE_NEVER },
135 	{ }
136 };
137 
138 static int __init early_proc_mem_force_override(char *buf)
139 {
140 	if (!buf)
141 		return -EINVAL;
142 
143 	/*
144 	 * lookup_constant() defaults to proc_mem_force_override to preseve
145 	 * the initial Kconfig choice in case an invalid param gets passed.
146 	 */
147 	proc_mem_force_override = lookup_constant(proc_mem_force_table,
148 						  buf, proc_mem_force_override);
149 
150 	return 0;
151 }
152 early_param("proc_mem.force_override", early_proc_mem_force_override);
153 
154 struct pid_entry {
155 	const char *name;
156 	unsigned int len;
157 	umode_t mode;
158 	const struct inode_operations *iop;
159 	const struct file_operations *fop;
160 	union proc_op op;
161 };
162 
163 #define NOD(NAME, MODE, IOP, FOP, OP) {			\
164 	.name = (NAME),					\
165 	.len  = sizeof(NAME) - 1,			\
166 	.mode = MODE,					\
167 	.iop  = IOP,					\
168 	.fop  = FOP,					\
169 	.op   = OP,					\
170 }
171 
172 #define DIR(NAME, MODE, iops, fops)	\
173 	NOD(NAME, (S_IFDIR|(MODE)), &iops, &fops, {} )
174 #define LNK(NAME, get_link)					\
175 	NOD(NAME, (S_IFLNK|S_IRWXUGO),				\
176 		&proc_pid_link_inode_operations, NULL,		\
177 		{ .proc_get_link = get_link } )
178 #define REG(NAME, MODE, fops)				\
179 	NOD(NAME, (S_IFREG|(MODE)), NULL, &fops, {})
180 #define ONE(NAME, MODE, show)				\
181 	NOD(NAME, (S_IFREG|(MODE)),			\
182 		NULL, &proc_single_file_operations,	\
183 		{ .proc_show = show } )
184 #define ATTR(LSMID, NAME, MODE)				\
185 	NOD(NAME, (S_IFREG|(MODE)),			\
186 		NULL, &proc_pid_attr_operations,	\
187 		{ .lsmid = LSMID })
188 
189 /*
190  * Count the number of hardlinks for the pid_entry table, excluding the .
191  * and .. links.
192  */
193 static unsigned int __init pid_entry_nlink(const struct pid_entry *entries,
194 	unsigned int n)
195 {
196 	unsigned int i;
197 	unsigned int count;
198 
199 	count = 2;
200 	for (i = 0; i < n; ++i) {
201 		if (S_ISDIR(entries[i].mode))
202 			++count;
203 	}
204 
205 	return count;
206 }
207 
208 static int get_task_root(struct task_struct *task, struct path *root)
209 {
210 	int result = -ENOENT;
211 
212 	task_lock(task);
213 	if (task->fs) {
214 		get_fs_root(task->fs, root);
215 		result = 0;
216 	}
217 	task_unlock(task);
218 	return result;
219 }
220 
221 static int proc_cwd_link(struct dentry *dentry, struct path *path)
222 {
223 	struct task_struct *task = get_proc_task(d_inode(dentry));
224 	int result = -ENOENT;
225 
226 	if (task) {
227 		task_lock(task);
228 		if (task->fs) {
229 			get_fs_pwd(task->fs, path);
230 			result = 0;
231 		}
232 		task_unlock(task);
233 		put_task_struct(task);
234 	}
235 	return result;
236 }
237 
238 static int proc_root_link(struct dentry *dentry, struct path *path)
239 {
240 	struct task_struct *task = get_proc_task(d_inode(dentry));
241 	int result = -ENOENT;
242 
243 	if (task) {
244 		result = get_task_root(task, path);
245 		put_task_struct(task);
246 	}
247 	return result;
248 }
249 
250 /*
251  * If the user used setproctitle(), we just get the string from
252  * user space at arg_start, and limit it to a maximum of one page.
253  */
254 static ssize_t get_mm_proctitle(struct mm_struct *mm, char __user *buf,
255 				size_t count, unsigned long pos,
256 				unsigned long arg_start)
257 {
258 	char *page;
259 	int ret, got;
260 
261 	if (pos >= PAGE_SIZE)
262 		return 0;
263 
264 	page = (char *)__get_free_page(GFP_KERNEL);
265 	if (!page)
266 		return -ENOMEM;
267 
268 	ret = 0;
269 	got = access_remote_vm(mm, arg_start, page, PAGE_SIZE, FOLL_ANON);
270 	if (got > 0) {
271 		int len = strnlen(page, got);
272 
273 		/* Include the NUL character if it was found */
274 		if (len < got)
275 			len++;
276 
277 		if (len > pos) {
278 			len -= pos;
279 			if (len > count)
280 				len = count;
281 			len -= copy_to_user(buf, page+pos, len);
282 			if (!len)
283 				len = -EFAULT;
284 			ret = len;
285 		}
286 	}
287 	free_page((unsigned long)page);
288 	return ret;
289 }
290 
291 static ssize_t get_mm_cmdline(struct mm_struct *mm, char __user *buf,
292 			      size_t count, loff_t *ppos)
293 {
294 	unsigned long arg_start, arg_end, env_start, env_end;
295 	unsigned long pos, len;
296 	char *page, c;
297 
298 	/* Check if process spawned far enough to have cmdline. */
299 	if (!mm->env_end)
300 		return 0;
301 
302 	spin_lock(&mm->arg_lock);
303 	arg_start = mm->arg_start;
304 	arg_end = mm->arg_end;
305 	env_start = mm->env_start;
306 	env_end = mm->env_end;
307 	spin_unlock(&mm->arg_lock);
308 
309 	if (arg_start >= arg_end)
310 		return 0;
311 
312 	/*
313 	 * We allow setproctitle() to overwrite the argument
314 	 * strings, and overflow past the original end. But
315 	 * only when it overflows into the environment area.
316 	 */
317 	if (env_start != arg_end || env_end < env_start)
318 		env_start = env_end = arg_end;
319 	len = env_end - arg_start;
320 
321 	/* We're not going to care if "*ppos" has high bits set */
322 	pos = *ppos;
323 	if (pos >= len)
324 		return 0;
325 	if (count > len - pos)
326 		count = len - pos;
327 	if (!count)
328 		return 0;
329 
330 	/*
331 	 * Magical special case: if the argv[] end byte is not
332 	 * zero, the user has overwritten it with setproctitle(3).
333 	 *
334 	 * Possible future enhancement: do this only once when
335 	 * pos is 0, and set a flag in the 'struct file'.
336 	 */
337 	if (access_remote_vm(mm, arg_end-1, &c, 1, FOLL_ANON) == 1 && c)
338 		return get_mm_proctitle(mm, buf, count, pos, arg_start);
339 
340 	/*
341 	 * For the non-setproctitle() case we limit things strictly
342 	 * to the [arg_start, arg_end[ range.
343 	 */
344 	pos += arg_start;
345 	if (pos < arg_start || pos >= arg_end)
346 		return 0;
347 	if (count > arg_end - pos)
348 		count = arg_end - pos;
349 
350 	page = (char *)__get_free_page(GFP_KERNEL);
351 	if (!page)
352 		return -ENOMEM;
353 
354 	len = 0;
355 	while (count) {
356 		int got;
357 		size_t size = min_t(size_t, PAGE_SIZE, count);
358 
359 		got = access_remote_vm(mm, pos, page, size, FOLL_ANON);
360 		if (got <= 0)
361 			break;
362 		got -= copy_to_user(buf, page, got);
363 		if (unlikely(!got)) {
364 			if (!len)
365 				len = -EFAULT;
366 			break;
367 		}
368 		pos += got;
369 		buf += got;
370 		len += got;
371 		count -= got;
372 	}
373 
374 	free_page((unsigned long)page);
375 	return len;
376 }
377 
378 static ssize_t get_task_cmdline(struct task_struct *tsk, char __user *buf,
379 				size_t count, loff_t *pos)
380 {
381 	struct mm_struct *mm;
382 	ssize_t ret;
383 
384 	mm = get_task_mm(tsk);
385 	if (!mm)
386 		return 0;
387 
388 	ret = get_mm_cmdline(mm, buf, count, pos);
389 	mmput(mm);
390 	return ret;
391 }
392 
393 static ssize_t proc_pid_cmdline_read(struct file *file, char __user *buf,
394 				     size_t count, loff_t *pos)
395 {
396 	struct task_struct *tsk;
397 	ssize_t ret;
398 
399 	BUG_ON(*pos < 0);
400 
401 	tsk = get_proc_task(file_inode(file));
402 	if (!tsk)
403 		return -ESRCH;
404 	ret = get_task_cmdline(tsk, buf, count, pos);
405 	put_task_struct(tsk);
406 	if (ret > 0)
407 		*pos += ret;
408 	return ret;
409 }
410 
411 static const struct file_operations proc_pid_cmdline_ops = {
412 	.read	= proc_pid_cmdline_read,
413 	.llseek	= generic_file_llseek,
414 };
415 
416 #ifdef CONFIG_KALLSYMS
417 /*
418  * Provides a wchan file via kallsyms in a proper one-value-per-file format.
419  * Returns the resolved symbol.  If that fails, simply return the address.
420  */
421 static int proc_pid_wchan(struct seq_file *m, struct pid_namespace *ns,
422 			  struct pid *pid, struct task_struct *task)
423 {
424 	unsigned long wchan;
425 	char symname[KSYM_NAME_LEN];
426 
427 	if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS))
428 		goto print0;
429 
430 	wchan = get_wchan(task);
431 	if (wchan && !lookup_symbol_name(wchan, symname)) {
432 		seq_puts(m, symname);
433 		return 0;
434 	}
435 
436 print0:
437 	seq_putc(m, '0');
438 	return 0;
439 }
440 #endif /* CONFIG_KALLSYMS */
441 
442 static int lock_trace(struct task_struct *task)
443 {
444 	int err = down_read_killable(&task->signal->exec_update_lock);
445 	if (err)
446 		return err;
447 	if (!ptrace_may_access(task, PTRACE_MODE_ATTACH_FSCREDS)) {
448 		up_read(&task->signal->exec_update_lock);
449 		return -EPERM;
450 	}
451 	return 0;
452 }
453 
454 static void unlock_trace(struct task_struct *task)
455 {
456 	up_read(&task->signal->exec_update_lock);
457 }
458 
459 #ifdef CONFIG_STACKTRACE
460 
461 #define MAX_STACK_TRACE_DEPTH	64
462 
463 static int proc_pid_stack(struct seq_file *m, struct pid_namespace *ns,
464 			  struct pid *pid, struct task_struct *task)
465 {
466 	unsigned long *entries;
467 	int err;
468 
469 	/*
470 	 * The ability to racily run the kernel stack unwinder on a running task
471 	 * and then observe the unwinder output is scary; while it is useful for
472 	 * debugging kernel issues, it can also allow an attacker to leak kernel
473 	 * stack contents.
474 	 * Doing this in a manner that is at least safe from races would require
475 	 * some work to ensure that the remote task can not be scheduled; and
476 	 * even then, this would still expose the unwinder as local attack
477 	 * surface.
478 	 * Therefore, this interface is restricted to root.
479 	 */
480 	if (!file_ns_capable(m->file, &init_user_ns, CAP_SYS_ADMIN))
481 		return -EACCES;
482 
483 	entries = kmalloc_array(MAX_STACK_TRACE_DEPTH, sizeof(*entries),
484 				GFP_KERNEL);
485 	if (!entries)
486 		return -ENOMEM;
487 
488 	err = lock_trace(task);
489 	if (!err) {
490 		unsigned int i, nr_entries;
491 
492 		nr_entries = stack_trace_save_tsk(task, entries,
493 						  MAX_STACK_TRACE_DEPTH, 0);
494 
495 		for (i = 0; i < nr_entries; i++) {
496 			seq_printf(m, "[<0>] %pB\n", (void *)entries[i]);
497 		}
498 
499 		unlock_trace(task);
500 	}
501 	kfree(entries);
502 
503 	return err;
504 }
505 #endif
506 
507 #ifdef CONFIG_SCHED_INFO
508 /*
509  * Provides /proc/PID/schedstat
510  */
511 static int proc_pid_schedstat(struct seq_file *m, struct pid_namespace *ns,
512 			      struct pid *pid, struct task_struct *task)
513 {
514 	if (unlikely(!sched_info_on()))
515 		seq_puts(m, "0 0 0\n");
516 	else
517 		seq_printf(m, "%llu %llu %lu\n",
518 		   (unsigned long long)task->se.sum_exec_runtime,
519 		   (unsigned long long)task->sched_info.run_delay,
520 		   task->sched_info.pcount);
521 
522 	return 0;
523 }
524 #endif
525 
526 #ifdef CONFIG_LATENCYTOP
527 static int lstats_show_proc(struct seq_file *m, void *v)
528 {
529 	int i;
530 	struct inode *inode = m->private;
531 	struct task_struct *task = get_proc_task(inode);
532 
533 	if (!task)
534 		return -ESRCH;
535 	seq_puts(m, "Latency Top version : v0.1\n");
536 	for (i = 0; i < LT_SAVECOUNT; i++) {
537 		struct latency_record *lr = &task->latency_record[i];
538 		if (lr->backtrace[0]) {
539 			int q;
540 			seq_printf(m, "%i %li %li",
541 				   lr->count, lr->time, lr->max);
542 			for (q = 0; q < LT_BACKTRACEDEPTH; q++) {
543 				unsigned long bt = lr->backtrace[q];
544 
545 				if (!bt)
546 					break;
547 				seq_printf(m, " %ps", (void *)bt);
548 			}
549 			seq_putc(m, '\n');
550 		}
551 
552 	}
553 	put_task_struct(task);
554 	return 0;
555 }
556 
557 static int lstats_open(struct inode *inode, struct file *file)
558 {
559 	return single_open(file, lstats_show_proc, inode);
560 }
561 
562 static ssize_t lstats_write(struct file *file, const char __user *buf,
563 			    size_t count, loff_t *offs)
564 {
565 	struct task_struct *task = get_proc_task(file_inode(file));
566 
567 	if (!task)
568 		return -ESRCH;
569 	clear_tsk_latency_tracing(task);
570 	put_task_struct(task);
571 
572 	return count;
573 }
574 
575 static const struct file_operations proc_lstats_operations = {
576 	.open		= lstats_open,
577 	.read		= seq_read,
578 	.write		= lstats_write,
579 	.llseek		= seq_lseek,
580 	.release	= single_release,
581 };
582 
583 #endif
584 
585 static int proc_oom_score(struct seq_file *m, struct pid_namespace *ns,
586 			  struct pid *pid, struct task_struct *task)
587 {
588 	unsigned long totalpages = totalram_pages() + total_swap_pages;
589 	unsigned long points = 0;
590 	long badness;
591 
592 	badness = oom_badness(task, totalpages);
593 	/*
594 	 * Special case OOM_SCORE_ADJ_MIN for all others scale the
595 	 * badness value into [0, 2000] range which we have been
596 	 * exporting for a long time so userspace might depend on it.
597 	 */
598 	if (badness != LONG_MIN)
599 		points = (1000 + badness * 1000 / (long)totalpages) * 2 / 3;
600 
601 	seq_printf(m, "%lu\n", points);
602 
603 	return 0;
604 }
605 
606 struct limit_names {
607 	const char *name;
608 	const char *unit;
609 };
610 
611 static const struct limit_names lnames[RLIM_NLIMITS] = {
612 	[RLIMIT_CPU] = {"Max cpu time", "seconds"},
613 	[RLIMIT_FSIZE] = {"Max file size", "bytes"},
614 	[RLIMIT_DATA] = {"Max data size", "bytes"},
615 	[RLIMIT_STACK] = {"Max stack size", "bytes"},
616 	[RLIMIT_CORE] = {"Max core file size", "bytes"},
617 	[RLIMIT_RSS] = {"Max resident set", "bytes"},
618 	[RLIMIT_NPROC] = {"Max processes", "processes"},
619 	[RLIMIT_NOFILE] = {"Max open files", "files"},
620 	[RLIMIT_MEMLOCK] = {"Max locked memory", "bytes"},
621 	[RLIMIT_AS] = {"Max address space", "bytes"},
622 	[RLIMIT_LOCKS] = {"Max file locks", "locks"},
623 	[RLIMIT_SIGPENDING] = {"Max pending signals", "signals"},
624 	[RLIMIT_MSGQUEUE] = {"Max msgqueue size", "bytes"},
625 	[RLIMIT_NICE] = {"Max nice priority", NULL},
626 	[RLIMIT_RTPRIO] = {"Max realtime priority", NULL},
627 	[RLIMIT_RTTIME] = {"Max realtime timeout", "us"},
628 };
629 
630 /* Display limits for a process */
631 static int proc_pid_limits(struct seq_file *m, struct pid_namespace *ns,
632 			   struct pid *pid, struct task_struct *task)
633 {
634 	unsigned int i;
635 	unsigned long flags;
636 
637 	struct rlimit rlim[RLIM_NLIMITS];
638 
639 	if (!lock_task_sighand(task, &flags))
640 		return 0;
641 	memcpy(rlim, task->signal->rlim, sizeof(struct rlimit) * RLIM_NLIMITS);
642 	unlock_task_sighand(task, &flags);
643 
644 	/*
645 	 * print the file header
646 	 */
647 	seq_puts(m, "Limit                     "
648 		"Soft Limit           "
649 		"Hard Limit           "
650 		"Units     \n");
651 
652 	for (i = 0; i < RLIM_NLIMITS; i++) {
653 		if (rlim[i].rlim_cur == RLIM_INFINITY)
654 			seq_printf(m, "%-25s %-20s ",
655 				   lnames[i].name, "unlimited");
656 		else
657 			seq_printf(m, "%-25s %-20lu ",
658 				   lnames[i].name, rlim[i].rlim_cur);
659 
660 		if (rlim[i].rlim_max == RLIM_INFINITY)
661 			seq_printf(m, "%-20s ", "unlimited");
662 		else
663 			seq_printf(m, "%-20lu ", rlim[i].rlim_max);
664 
665 		if (lnames[i].unit)
666 			seq_printf(m, "%-10s\n", lnames[i].unit);
667 		else
668 			seq_putc(m, '\n');
669 	}
670 
671 	return 0;
672 }
673 
674 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK
675 static int proc_pid_syscall(struct seq_file *m, struct pid_namespace *ns,
676 			    struct pid *pid, struct task_struct *task)
677 {
678 	struct syscall_info info;
679 	u64 *args = &info.data.args[0];
680 	int res;
681 
682 	res = lock_trace(task);
683 	if (res)
684 		return res;
685 
686 	if (task_current_syscall(task, &info))
687 		seq_puts(m, "running\n");
688 	else if (info.data.nr < 0)
689 		seq_printf(m, "%d 0x%llx 0x%llx\n",
690 			   info.data.nr, info.sp, info.data.instruction_pointer);
691 	else
692 		seq_printf(m,
693 		       "%d 0x%llx 0x%llx 0x%llx 0x%llx 0x%llx 0x%llx 0x%llx 0x%llx\n",
694 		       info.data.nr,
695 		       args[0], args[1], args[2], args[3], args[4], args[5],
696 		       info.sp, info.data.instruction_pointer);
697 	unlock_trace(task);
698 
699 	return 0;
700 }
701 #endif /* CONFIG_HAVE_ARCH_TRACEHOOK */
702 
703 /************************************************************************/
704 /*                       Here the fs part begins                        */
705 /************************************************************************/
706 
707 /* permission checks */
708 static bool proc_fd_access_allowed(struct inode *inode)
709 {
710 	struct task_struct *task;
711 	bool allowed = false;
712 	/* Allow access to a task's file descriptors if it is us or we
713 	 * may use ptrace attach to the process and find out that
714 	 * information.
715 	 */
716 	task = get_proc_task(inode);
717 	if (task) {
718 		allowed = ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS);
719 		put_task_struct(task);
720 	}
721 	return allowed;
722 }
723 
724 int proc_setattr(struct mnt_idmap *idmap, struct dentry *dentry,
725 		 struct iattr *attr)
726 {
727 	int error;
728 	struct inode *inode = d_inode(dentry);
729 
730 	if (attr->ia_valid & ATTR_MODE)
731 		return -EPERM;
732 
733 	error = setattr_prepare(&nop_mnt_idmap, dentry, attr);
734 	if (error)
735 		return error;
736 
737 	setattr_copy(&nop_mnt_idmap, inode, attr);
738 	return 0;
739 }
740 
741 /*
742  * May current process learn task's sched/cmdline info (for hide_pid_min=1)
743  * or euid/egid (for hide_pid_min=2)?
744  */
745 static bool has_pid_permissions(struct proc_fs_info *fs_info,
746 				 struct task_struct *task,
747 				 enum proc_hidepid hide_pid_min)
748 {
749 	/*
750 	 * If 'hidpid' mount option is set force a ptrace check,
751 	 * we indicate that we are using a filesystem syscall
752 	 * by passing PTRACE_MODE_READ_FSCREDS
753 	 */
754 	if (fs_info->hide_pid == HIDEPID_NOT_PTRACEABLE)
755 		return ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS);
756 
757 	if (fs_info->hide_pid < hide_pid_min)
758 		return true;
759 	if (in_group_p(fs_info->pid_gid))
760 		return true;
761 	return ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS);
762 }
763 
764 
765 static int proc_pid_permission(struct mnt_idmap *idmap,
766 			       struct inode *inode, int mask)
767 {
768 	struct proc_fs_info *fs_info = proc_sb_info(inode->i_sb);
769 	struct task_struct *task;
770 	bool has_perms;
771 
772 	task = get_proc_task(inode);
773 	if (!task)
774 		return -ESRCH;
775 	has_perms = has_pid_permissions(fs_info, task, HIDEPID_NO_ACCESS);
776 	put_task_struct(task);
777 
778 	if (!has_perms) {
779 		if (fs_info->hide_pid == HIDEPID_INVISIBLE) {
780 			/*
781 			 * Let's make getdents(), stat(), and open()
782 			 * consistent with each other.  If a process
783 			 * may not stat() a file, it shouldn't be seen
784 			 * in procfs at all.
785 			 */
786 			return -ENOENT;
787 		}
788 
789 		return -EPERM;
790 	}
791 	return generic_permission(&nop_mnt_idmap, inode, mask);
792 }
793 
794 
795 
796 static const struct inode_operations proc_def_inode_operations = {
797 	.setattr	= proc_setattr,
798 };
799 
800 static int proc_single_show(struct seq_file *m, void *v)
801 {
802 	struct inode *inode = m->private;
803 	struct pid_namespace *ns = proc_pid_ns(inode->i_sb);
804 	struct pid *pid = proc_pid(inode);
805 	struct task_struct *task;
806 	int ret;
807 
808 	task = get_pid_task(pid, PIDTYPE_PID);
809 	if (!task)
810 		return -ESRCH;
811 
812 	ret = PROC_I(inode)->op.proc_show(m, ns, pid, task);
813 
814 	put_task_struct(task);
815 	return ret;
816 }
817 
818 static int proc_single_open(struct inode *inode, struct file *filp)
819 {
820 	return single_open(filp, proc_single_show, inode);
821 }
822 
823 static const struct file_operations proc_single_file_operations = {
824 	.open		= proc_single_open,
825 	.read		= seq_read,
826 	.llseek		= seq_lseek,
827 	.release	= single_release,
828 };
829 
830 
831 struct mm_struct *proc_mem_open(struct inode *inode, unsigned int mode)
832 {
833 	struct task_struct *task = get_proc_task(inode);
834 	struct mm_struct *mm = ERR_PTR(-ESRCH);
835 
836 	if (task) {
837 		mm = mm_access(task, mode | PTRACE_MODE_FSCREDS);
838 		put_task_struct(task);
839 
840 		if (!IS_ERR_OR_NULL(mm)) {
841 			/* ensure this mm_struct can't be freed */
842 			mmgrab(mm);
843 			/* but do not pin its memory */
844 			mmput(mm);
845 		}
846 	}
847 
848 	return mm;
849 }
850 
851 static int __mem_open(struct inode *inode, struct file *file, unsigned int mode)
852 {
853 	struct mm_struct *mm = proc_mem_open(inode, mode);
854 
855 	if (IS_ERR(mm))
856 		return PTR_ERR(mm);
857 
858 	file->private_data = mm;
859 	return 0;
860 }
861 
862 static int mem_open(struct inode *inode, struct file *file)
863 {
864 	if (WARN_ON_ONCE(!(file->f_op->fop_flags & FOP_UNSIGNED_OFFSET)))
865 		return -EINVAL;
866 	return __mem_open(inode, file, PTRACE_MODE_ATTACH);
867 }
868 
869 static bool proc_mem_foll_force(struct file *file, struct mm_struct *mm)
870 {
871 	struct task_struct *task;
872 	bool ptrace_active = false;
873 
874 	switch (proc_mem_force_override) {
875 	case PROC_MEM_FORCE_NEVER:
876 		return false;
877 	case PROC_MEM_FORCE_PTRACE:
878 		task = get_proc_task(file_inode(file));
879 		if (task) {
880 			ptrace_active =	READ_ONCE(task->ptrace) &&
881 					READ_ONCE(task->mm) == mm &&
882 					READ_ONCE(task->parent) == current;
883 			put_task_struct(task);
884 		}
885 		return ptrace_active;
886 	default:
887 		return true;
888 	}
889 }
890 
891 static ssize_t mem_rw(struct file *file, char __user *buf,
892 			size_t count, loff_t *ppos, int write)
893 {
894 	struct mm_struct *mm = file->private_data;
895 	unsigned long addr = *ppos;
896 	ssize_t copied;
897 	char *page;
898 	unsigned int flags;
899 
900 	if (!mm)
901 		return 0;
902 
903 	page = (char *)__get_free_page(GFP_KERNEL);
904 	if (!page)
905 		return -ENOMEM;
906 
907 	copied = 0;
908 	if (!mmget_not_zero(mm))
909 		goto free;
910 
911 	flags = write ? FOLL_WRITE : 0;
912 	if (proc_mem_foll_force(file, mm))
913 		flags |= FOLL_FORCE;
914 
915 	while (count > 0) {
916 		size_t this_len = min_t(size_t, count, PAGE_SIZE);
917 
918 		if (write && copy_from_user(page, buf, this_len)) {
919 			copied = -EFAULT;
920 			break;
921 		}
922 
923 		this_len = access_remote_vm(mm, addr, page, this_len, flags);
924 		if (!this_len) {
925 			if (!copied)
926 				copied = -EIO;
927 			break;
928 		}
929 
930 		if (!write && copy_to_user(buf, page, this_len)) {
931 			copied = -EFAULT;
932 			break;
933 		}
934 
935 		buf += this_len;
936 		addr += this_len;
937 		copied += this_len;
938 		count -= this_len;
939 	}
940 	*ppos = addr;
941 
942 	mmput(mm);
943 free:
944 	free_page((unsigned long) page);
945 	return copied;
946 }
947 
948 static ssize_t mem_read(struct file *file, char __user *buf,
949 			size_t count, loff_t *ppos)
950 {
951 	return mem_rw(file, buf, count, ppos, 0);
952 }
953 
954 static ssize_t mem_write(struct file *file, const char __user *buf,
955 			 size_t count, loff_t *ppos)
956 {
957 	return mem_rw(file, (char __user*)buf, count, ppos, 1);
958 }
959 
960 loff_t mem_lseek(struct file *file, loff_t offset, int orig)
961 {
962 	switch (orig) {
963 	case 0:
964 		file->f_pos = offset;
965 		break;
966 	case 1:
967 		file->f_pos += offset;
968 		break;
969 	default:
970 		return -EINVAL;
971 	}
972 	force_successful_syscall_return();
973 	return file->f_pos;
974 }
975 
976 static int mem_release(struct inode *inode, struct file *file)
977 {
978 	struct mm_struct *mm = file->private_data;
979 	if (mm)
980 		mmdrop(mm);
981 	return 0;
982 }
983 
984 static const struct file_operations proc_mem_operations = {
985 	.llseek		= mem_lseek,
986 	.read		= mem_read,
987 	.write		= mem_write,
988 	.open		= mem_open,
989 	.release	= mem_release,
990 	.fop_flags	= FOP_UNSIGNED_OFFSET,
991 };
992 
993 static int environ_open(struct inode *inode, struct file *file)
994 {
995 	return __mem_open(inode, file, PTRACE_MODE_READ);
996 }
997 
998 static ssize_t environ_read(struct file *file, char __user *buf,
999 			size_t count, loff_t *ppos)
1000 {
1001 	char *page;
1002 	unsigned long src = *ppos;
1003 	int ret = 0;
1004 	struct mm_struct *mm = file->private_data;
1005 	unsigned long env_start, env_end;
1006 
1007 	/* Ensure the process spawned far enough to have an environment. */
1008 	if (!mm || !mm->env_end)
1009 		return 0;
1010 
1011 	page = (char *)__get_free_page(GFP_KERNEL);
1012 	if (!page)
1013 		return -ENOMEM;
1014 
1015 	ret = 0;
1016 	if (!mmget_not_zero(mm))
1017 		goto free;
1018 
1019 	spin_lock(&mm->arg_lock);
1020 	env_start = mm->env_start;
1021 	env_end = mm->env_end;
1022 	spin_unlock(&mm->arg_lock);
1023 
1024 	while (count > 0) {
1025 		size_t this_len, max_len;
1026 		int retval;
1027 
1028 		if (src >= (env_end - env_start))
1029 			break;
1030 
1031 		this_len = env_end - (env_start + src);
1032 
1033 		max_len = min_t(size_t, PAGE_SIZE, count);
1034 		this_len = min(max_len, this_len);
1035 
1036 		retval = access_remote_vm(mm, (env_start + src), page, this_len, FOLL_ANON);
1037 
1038 		if (retval <= 0) {
1039 			ret = retval;
1040 			break;
1041 		}
1042 
1043 		if (copy_to_user(buf, page, retval)) {
1044 			ret = -EFAULT;
1045 			break;
1046 		}
1047 
1048 		ret += retval;
1049 		src += retval;
1050 		buf += retval;
1051 		count -= retval;
1052 	}
1053 	*ppos = src;
1054 	mmput(mm);
1055 
1056 free:
1057 	free_page((unsigned long) page);
1058 	return ret;
1059 }
1060 
1061 static const struct file_operations proc_environ_operations = {
1062 	.open		= environ_open,
1063 	.read		= environ_read,
1064 	.llseek		= generic_file_llseek,
1065 	.release	= mem_release,
1066 };
1067 
1068 static int auxv_open(struct inode *inode, struct file *file)
1069 {
1070 	return __mem_open(inode, file, PTRACE_MODE_READ_FSCREDS);
1071 }
1072 
1073 static ssize_t auxv_read(struct file *file, char __user *buf,
1074 			size_t count, loff_t *ppos)
1075 {
1076 	struct mm_struct *mm = file->private_data;
1077 	unsigned int nwords = 0;
1078 
1079 	if (!mm)
1080 		return 0;
1081 	do {
1082 		nwords += 2;
1083 	} while (mm->saved_auxv[nwords - 2] != 0); /* AT_NULL */
1084 	return simple_read_from_buffer(buf, count, ppos, mm->saved_auxv,
1085 				       nwords * sizeof(mm->saved_auxv[0]));
1086 }
1087 
1088 static const struct file_operations proc_auxv_operations = {
1089 	.open		= auxv_open,
1090 	.read		= auxv_read,
1091 	.llseek		= generic_file_llseek,
1092 	.release	= mem_release,
1093 };
1094 
1095 static ssize_t oom_adj_read(struct file *file, char __user *buf, size_t count,
1096 			    loff_t *ppos)
1097 {
1098 	struct task_struct *task = get_proc_task(file_inode(file));
1099 	char buffer[PROC_NUMBUF];
1100 	int oom_adj = OOM_ADJUST_MIN;
1101 	size_t len;
1102 
1103 	if (!task)
1104 		return -ESRCH;
1105 	if (task->signal->oom_score_adj == OOM_SCORE_ADJ_MAX)
1106 		oom_adj = OOM_ADJUST_MAX;
1107 	else
1108 		oom_adj = (task->signal->oom_score_adj * -OOM_DISABLE) /
1109 			  OOM_SCORE_ADJ_MAX;
1110 	put_task_struct(task);
1111 	if (oom_adj > OOM_ADJUST_MAX)
1112 		oom_adj = OOM_ADJUST_MAX;
1113 	len = snprintf(buffer, sizeof(buffer), "%d\n", oom_adj);
1114 	return simple_read_from_buffer(buf, count, ppos, buffer, len);
1115 }
1116 
1117 static int __set_oom_adj(struct file *file, int oom_adj, bool legacy)
1118 {
1119 	struct mm_struct *mm = NULL;
1120 	struct task_struct *task;
1121 	int err = 0;
1122 
1123 	task = get_proc_task(file_inode(file));
1124 	if (!task)
1125 		return -ESRCH;
1126 
1127 	mutex_lock(&oom_adj_mutex);
1128 	if (legacy) {
1129 		if (oom_adj < task->signal->oom_score_adj &&
1130 				!capable(CAP_SYS_RESOURCE)) {
1131 			err = -EACCES;
1132 			goto err_unlock;
1133 		}
1134 		/*
1135 		 * /proc/pid/oom_adj is provided for legacy purposes, ask users to use
1136 		 * /proc/pid/oom_score_adj instead.
1137 		 */
1138 		pr_warn_once("%s (%d): /proc/%d/oom_adj is deprecated, please use /proc/%d/oom_score_adj instead.\n",
1139 			  current->comm, task_pid_nr(current), task_pid_nr(task),
1140 			  task_pid_nr(task));
1141 	} else {
1142 		if ((short)oom_adj < task->signal->oom_score_adj_min &&
1143 				!capable(CAP_SYS_RESOURCE)) {
1144 			err = -EACCES;
1145 			goto err_unlock;
1146 		}
1147 	}
1148 
1149 	/*
1150 	 * Make sure we will check other processes sharing the mm if this is
1151 	 * not vfrok which wants its own oom_score_adj.
1152 	 * pin the mm so it doesn't go away and get reused after task_unlock
1153 	 */
1154 	if (!task->vfork_done) {
1155 		struct task_struct *p = find_lock_task_mm(task);
1156 
1157 		if (p) {
1158 			if (test_bit(MMF_MULTIPROCESS, &p->mm->flags)) {
1159 				mm = p->mm;
1160 				mmgrab(mm);
1161 			}
1162 			task_unlock(p);
1163 		}
1164 	}
1165 
1166 	task->signal->oom_score_adj = oom_adj;
1167 	if (!legacy && has_capability_noaudit(current, CAP_SYS_RESOURCE))
1168 		task->signal->oom_score_adj_min = (short)oom_adj;
1169 	trace_oom_score_adj_update(task);
1170 
1171 	if (mm) {
1172 		struct task_struct *p;
1173 
1174 		rcu_read_lock();
1175 		for_each_process(p) {
1176 			if (same_thread_group(task, p))
1177 				continue;
1178 
1179 			/* do not touch kernel threads or the global init */
1180 			if (p->flags & PF_KTHREAD || is_global_init(p))
1181 				continue;
1182 
1183 			task_lock(p);
1184 			if (!p->vfork_done && process_shares_mm(p, mm)) {
1185 				p->signal->oom_score_adj = oom_adj;
1186 				if (!legacy && has_capability_noaudit(current, CAP_SYS_RESOURCE))
1187 					p->signal->oom_score_adj_min = (short)oom_adj;
1188 			}
1189 			task_unlock(p);
1190 		}
1191 		rcu_read_unlock();
1192 		mmdrop(mm);
1193 	}
1194 err_unlock:
1195 	mutex_unlock(&oom_adj_mutex);
1196 	put_task_struct(task);
1197 	return err;
1198 }
1199 
1200 /*
1201  * /proc/pid/oom_adj exists solely for backwards compatibility with previous
1202  * kernels.  The effective policy is defined by oom_score_adj, which has a
1203  * different scale: oom_adj grew exponentially and oom_score_adj grows linearly.
1204  * Values written to oom_adj are simply mapped linearly to oom_score_adj.
1205  * Processes that become oom disabled via oom_adj will still be oom disabled
1206  * with this implementation.
1207  *
1208  * oom_adj cannot be removed since existing userspace binaries use it.
1209  */
1210 static ssize_t oom_adj_write(struct file *file, const char __user *buf,
1211 			     size_t count, loff_t *ppos)
1212 {
1213 	char buffer[PROC_NUMBUF] = {};
1214 	int oom_adj;
1215 	int err;
1216 
1217 	if (count > sizeof(buffer) - 1)
1218 		count = sizeof(buffer) - 1;
1219 	if (copy_from_user(buffer, buf, count)) {
1220 		err = -EFAULT;
1221 		goto out;
1222 	}
1223 
1224 	err = kstrtoint(strstrip(buffer), 0, &oom_adj);
1225 	if (err)
1226 		goto out;
1227 	if ((oom_adj < OOM_ADJUST_MIN || oom_adj > OOM_ADJUST_MAX) &&
1228 	     oom_adj != OOM_DISABLE) {
1229 		err = -EINVAL;
1230 		goto out;
1231 	}
1232 
1233 	/*
1234 	 * Scale /proc/pid/oom_score_adj appropriately ensuring that a maximum
1235 	 * value is always attainable.
1236 	 */
1237 	if (oom_adj == OOM_ADJUST_MAX)
1238 		oom_adj = OOM_SCORE_ADJ_MAX;
1239 	else
1240 		oom_adj = (oom_adj * OOM_SCORE_ADJ_MAX) / -OOM_DISABLE;
1241 
1242 	err = __set_oom_adj(file, oom_adj, true);
1243 out:
1244 	return err < 0 ? err : count;
1245 }
1246 
1247 static const struct file_operations proc_oom_adj_operations = {
1248 	.read		= oom_adj_read,
1249 	.write		= oom_adj_write,
1250 	.llseek		= generic_file_llseek,
1251 };
1252 
1253 static ssize_t oom_score_adj_read(struct file *file, char __user *buf,
1254 					size_t count, loff_t *ppos)
1255 {
1256 	struct task_struct *task = get_proc_task(file_inode(file));
1257 	char buffer[PROC_NUMBUF];
1258 	short oom_score_adj = OOM_SCORE_ADJ_MIN;
1259 	size_t len;
1260 
1261 	if (!task)
1262 		return -ESRCH;
1263 	oom_score_adj = task->signal->oom_score_adj;
1264 	put_task_struct(task);
1265 	len = snprintf(buffer, sizeof(buffer), "%hd\n", oom_score_adj);
1266 	return simple_read_from_buffer(buf, count, ppos, buffer, len);
1267 }
1268 
1269 static ssize_t oom_score_adj_write(struct file *file, const char __user *buf,
1270 					size_t count, loff_t *ppos)
1271 {
1272 	char buffer[PROC_NUMBUF] = {};
1273 	int oom_score_adj;
1274 	int err;
1275 
1276 	if (count > sizeof(buffer) - 1)
1277 		count = sizeof(buffer) - 1;
1278 	if (copy_from_user(buffer, buf, count)) {
1279 		err = -EFAULT;
1280 		goto out;
1281 	}
1282 
1283 	err = kstrtoint(strstrip(buffer), 0, &oom_score_adj);
1284 	if (err)
1285 		goto out;
1286 	if (oom_score_adj < OOM_SCORE_ADJ_MIN ||
1287 			oom_score_adj > OOM_SCORE_ADJ_MAX) {
1288 		err = -EINVAL;
1289 		goto out;
1290 	}
1291 
1292 	err = __set_oom_adj(file, oom_score_adj, false);
1293 out:
1294 	return err < 0 ? err : count;
1295 }
1296 
1297 static const struct file_operations proc_oom_score_adj_operations = {
1298 	.read		= oom_score_adj_read,
1299 	.write		= oom_score_adj_write,
1300 	.llseek		= default_llseek,
1301 };
1302 
1303 #ifdef CONFIG_AUDIT
1304 #define TMPBUFLEN 11
1305 static ssize_t proc_loginuid_read(struct file * file, char __user * buf,
1306 				  size_t count, loff_t *ppos)
1307 {
1308 	struct inode * inode = file_inode(file);
1309 	struct task_struct *task = get_proc_task(inode);
1310 	ssize_t length;
1311 	char tmpbuf[TMPBUFLEN];
1312 
1313 	if (!task)
1314 		return -ESRCH;
1315 	length = scnprintf(tmpbuf, TMPBUFLEN, "%u",
1316 			   from_kuid(file->f_cred->user_ns,
1317 				     audit_get_loginuid(task)));
1318 	put_task_struct(task);
1319 	return simple_read_from_buffer(buf, count, ppos, tmpbuf, length);
1320 }
1321 
1322 static ssize_t proc_loginuid_write(struct file * file, const char __user * buf,
1323 				   size_t count, loff_t *ppos)
1324 {
1325 	struct inode * inode = file_inode(file);
1326 	uid_t loginuid;
1327 	kuid_t kloginuid;
1328 	int rv;
1329 
1330 	/* Don't let kthreads write their own loginuid */
1331 	if (current->flags & PF_KTHREAD)
1332 		return -EPERM;
1333 
1334 	rcu_read_lock();
1335 	if (current != pid_task(proc_pid(inode), PIDTYPE_PID)) {
1336 		rcu_read_unlock();
1337 		return -EPERM;
1338 	}
1339 	rcu_read_unlock();
1340 
1341 	if (*ppos != 0) {
1342 		/* No partial writes. */
1343 		return -EINVAL;
1344 	}
1345 
1346 	rv = kstrtou32_from_user(buf, count, 10, &loginuid);
1347 	if (rv < 0)
1348 		return rv;
1349 
1350 	/* is userspace tring to explicitly UNSET the loginuid? */
1351 	if (loginuid == AUDIT_UID_UNSET) {
1352 		kloginuid = INVALID_UID;
1353 	} else {
1354 		kloginuid = make_kuid(file->f_cred->user_ns, loginuid);
1355 		if (!uid_valid(kloginuid))
1356 			return -EINVAL;
1357 	}
1358 
1359 	rv = audit_set_loginuid(kloginuid);
1360 	if (rv < 0)
1361 		return rv;
1362 	return count;
1363 }
1364 
1365 static const struct file_operations proc_loginuid_operations = {
1366 	.read		= proc_loginuid_read,
1367 	.write		= proc_loginuid_write,
1368 	.llseek		= generic_file_llseek,
1369 };
1370 
1371 static ssize_t proc_sessionid_read(struct file * file, char __user * buf,
1372 				  size_t count, loff_t *ppos)
1373 {
1374 	struct inode * inode = file_inode(file);
1375 	struct task_struct *task = get_proc_task(inode);
1376 	ssize_t length;
1377 	char tmpbuf[TMPBUFLEN];
1378 
1379 	if (!task)
1380 		return -ESRCH;
1381 	length = scnprintf(tmpbuf, TMPBUFLEN, "%u",
1382 				audit_get_sessionid(task));
1383 	put_task_struct(task);
1384 	return simple_read_from_buffer(buf, count, ppos, tmpbuf, length);
1385 }
1386 
1387 static const struct file_operations proc_sessionid_operations = {
1388 	.read		= proc_sessionid_read,
1389 	.llseek		= generic_file_llseek,
1390 };
1391 #endif
1392 
1393 #ifdef CONFIG_FAULT_INJECTION
1394 static ssize_t proc_fault_inject_read(struct file * file, char __user * buf,
1395 				      size_t count, loff_t *ppos)
1396 {
1397 	struct task_struct *task = get_proc_task(file_inode(file));
1398 	char buffer[PROC_NUMBUF];
1399 	size_t len;
1400 	int make_it_fail;
1401 
1402 	if (!task)
1403 		return -ESRCH;
1404 	make_it_fail = task->make_it_fail;
1405 	put_task_struct(task);
1406 
1407 	len = snprintf(buffer, sizeof(buffer), "%i\n", make_it_fail);
1408 
1409 	return simple_read_from_buffer(buf, count, ppos, buffer, len);
1410 }
1411 
1412 static ssize_t proc_fault_inject_write(struct file * file,
1413 			const char __user * buf, size_t count, loff_t *ppos)
1414 {
1415 	struct task_struct *task;
1416 	char buffer[PROC_NUMBUF] = {};
1417 	int make_it_fail;
1418 	int rv;
1419 
1420 	if (!capable(CAP_SYS_RESOURCE))
1421 		return -EPERM;
1422 
1423 	if (count > sizeof(buffer) - 1)
1424 		count = sizeof(buffer) - 1;
1425 	if (copy_from_user(buffer, buf, count))
1426 		return -EFAULT;
1427 	rv = kstrtoint(strstrip(buffer), 0, &make_it_fail);
1428 	if (rv < 0)
1429 		return rv;
1430 	if (make_it_fail < 0 || make_it_fail > 1)
1431 		return -EINVAL;
1432 
1433 	task = get_proc_task(file_inode(file));
1434 	if (!task)
1435 		return -ESRCH;
1436 	task->make_it_fail = make_it_fail;
1437 	put_task_struct(task);
1438 
1439 	return count;
1440 }
1441 
1442 static const struct file_operations proc_fault_inject_operations = {
1443 	.read		= proc_fault_inject_read,
1444 	.write		= proc_fault_inject_write,
1445 	.llseek		= generic_file_llseek,
1446 };
1447 
1448 static ssize_t proc_fail_nth_write(struct file *file, const char __user *buf,
1449 				   size_t count, loff_t *ppos)
1450 {
1451 	struct task_struct *task;
1452 	int err;
1453 	unsigned int n;
1454 
1455 	err = kstrtouint_from_user(buf, count, 0, &n);
1456 	if (err)
1457 		return err;
1458 
1459 	task = get_proc_task(file_inode(file));
1460 	if (!task)
1461 		return -ESRCH;
1462 	task->fail_nth = n;
1463 	put_task_struct(task);
1464 
1465 	return count;
1466 }
1467 
1468 static ssize_t proc_fail_nth_read(struct file *file, char __user *buf,
1469 				  size_t count, loff_t *ppos)
1470 {
1471 	struct task_struct *task;
1472 	char numbuf[PROC_NUMBUF];
1473 	ssize_t len;
1474 
1475 	task = get_proc_task(file_inode(file));
1476 	if (!task)
1477 		return -ESRCH;
1478 	len = snprintf(numbuf, sizeof(numbuf), "%u\n", task->fail_nth);
1479 	put_task_struct(task);
1480 	return simple_read_from_buffer(buf, count, ppos, numbuf, len);
1481 }
1482 
1483 static const struct file_operations proc_fail_nth_operations = {
1484 	.read		= proc_fail_nth_read,
1485 	.write		= proc_fail_nth_write,
1486 };
1487 #endif
1488 
1489 
1490 #ifdef CONFIG_SCHED_DEBUG
1491 /*
1492  * Print out various scheduling related per-task fields:
1493  */
1494 static int sched_show(struct seq_file *m, void *v)
1495 {
1496 	struct inode *inode = m->private;
1497 	struct pid_namespace *ns = proc_pid_ns(inode->i_sb);
1498 	struct task_struct *p;
1499 
1500 	p = get_proc_task(inode);
1501 	if (!p)
1502 		return -ESRCH;
1503 	proc_sched_show_task(p, ns, m);
1504 
1505 	put_task_struct(p);
1506 
1507 	return 0;
1508 }
1509 
1510 static ssize_t
1511 sched_write(struct file *file, const char __user *buf,
1512 	    size_t count, loff_t *offset)
1513 {
1514 	struct inode *inode = file_inode(file);
1515 	struct task_struct *p;
1516 
1517 	p = get_proc_task(inode);
1518 	if (!p)
1519 		return -ESRCH;
1520 	proc_sched_set_task(p);
1521 
1522 	put_task_struct(p);
1523 
1524 	return count;
1525 }
1526 
1527 static int sched_open(struct inode *inode, struct file *filp)
1528 {
1529 	return single_open(filp, sched_show, inode);
1530 }
1531 
1532 static const struct file_operations proc_pid_sched_operations = {
1533 	.open		= sched_open,
1534 	.read		= seq_read,
1535 	.write		= sched_write,
1536 	.llseek		= seq_lseek,
1537 	.release	= single_release,
1538 };
1539 
1540 #endif
1541 
1542 #ifdef CONFIG_SCHED_AUTOGROUP
1543 /*
1544  * Print out autogroup related information:
1545  */
1546 static int sched_autogroup_show(struct seq_file *m, void *v)
1547 {
1548 	struct inode *inode = m->private;
1549 	struct task_struct *p;
1550 
1551 	p = get_proc_task(inode);
1552 	if (!p)
1553 		return -ESRCH;
1554 	proc_sched_autogroup_show_task(p, m);
1555 
1556 	put_task_struct(p);
1557 
1558 	return 0;
1559 }
1560 
1561 static ssize_t
1562 sched_autogroup_write(struct file *file, const char __user *buf,
1563 	    size_t count, loff_t *offset)
1564 {
1565 	struct inode *inode = file_inode(file);
1566 	struct task_struct *p;
1567 	char buffer[PROC_NUMBUF] = {};
1568 	int nice;
1569 	int err;
1570 
1571 	if (count > sizeof(buffer) - 1)
1572 		count = sizeof(buffer) - 1;
1573 	if (copy_from_user(buffer, buf, count))
1574 		return -EFAULT;
1575 
1576 	err = kstrtoint(strstrip(buffer), 0, &nice);
1577 	if (err < 0)
1578 		return err;
1579 
1580 	p = get_proc_task(inode);
1581 	if (!p)
1582 		return -ESRCH;
1583 
1584 	err = proc_sched_autogroup_set_nice(p, nice);
1585 	if (err)
1586 		count = err;
1587 
1588 	put_task_struct(p);
1589 
1590 	return count;
1591 }
1592 
1593 static int sched_autogroup_open(struct inode *inode, struct file *filp)
1594 {
1595 	int ret;
1596 
1597 	ret = single_open(filp, sched_autogroup_show, NULL);
1598 	if (!ret) {
1599 		struct seq_file *m = filp->private_data;
1600 
1601 		m->private = inode;
1602 	}
1603 	return ret;
1604 }
1605 
1606 static const struct file_operations proc_pid_sched_autogroup_operations = {
1607 	.open		= sched_autogroup_open,
1608 	.read		= seq_read,
1609 	.write		= sched_autogroup_write,
1610 	.llseek		= seq_lseek,
1611 	.release	= single_release,
1612 };
1613 
1614 #endif /* CONFIG_SCHED_AUTOGROUP */
1615 
1616 #ifdef CONFIG_TIME_NS
1617 static int timens_offsets_show(struct seq_file *m, void *v)
1618 {
1619 	struct task_struct *p;
1620 
1621 	p = get_proc_task(file_inode(m->file));
1622 	if (!p)
1623 		return -ESRCH;
1624 	proc_timens_show_offsets(p, m);
1625 
1626 	put_task_struct(p);
1627 
1628 	return 0;
1629 }
1630 
1631 static ssize_t timens_offsets_write(struct file *file, const char __user *buf,
1632 				    size_t count, loff_t *ppos)
1633 {
1634 	struct inode *inode = file_inode(file);
1635 	struct proc_timens_offset offsets[2];
1636 	char *kbuf = NULL, *pos, *next_line;
1637 	struct task_struct *p;
1638 	int ret, noffsets;
1639 
1640 	/* Only allow < page size writes at the beginning of the file */
1641 	if ((*ppos != 0) || (count >= PAGE_SIZE))
1642 		return -EINVAL;
1643 
1644 	/* Slurp in the user data */
1645 	kbuf = memdup_user_nul(buf, count);
1646 	if (IS_ERR(kbuf))
1647 		return PTR_ERR(kbuf);
1648 
1649 	/* Parse the user data */
1650 	ret = -EINVAL;
1651 	noffsets = 0;
1652 	for (pos = kbuf; pos; pos = next_line) {
1653 		struct proc_timens_offset *off = &offsets[noffsets];
1654 		char clock[10];
1655 		int err;
1656 
1657 		/* Find the end of line and ensure we don't look past it */
1658 		next_line = strchr(pos, '\n');
1659 		if (next_line) {
1660 			*next_line = '\0';
1661 			next_line++;
1662 			if (*next_line == '\0')
1663 				next_line = NULL;
1664 		}
1665 
1666 		err = sscanf(pos, "%9s %lld %lu", clock,
1667 				&off->val.tv_sec, &off->val.tv_nsec);
1668 		if (err != 3 || off->val.tv_nsec >= NSEC_PER_SEC)
1669 			goto out;
1670 
1671 		clock[sizeof(clock) - 1] = 0;
1672 		if (strcmp(clock, "monotonic") == 0 ||
1673 		    strcmp(clock, __stringify(CLOCK_MONOTONIC)) == 0)
1674 			off->clockid = CLOCK_MONOTONIC;
1675 		else if (strcmp(clock, "boottime") == 0 ||
1676 			 strcmp(clock, __stringify(CLOCK_BOOTTIME)) == 0)
1677 			off->clockid = CLOCK_BOOTTIME;
1678 		else
1679 			goto out;
1680 
1681 		noffsets++;
1682 		if (noffsets == ARRAY_SIZE(offsets)) {
1683 			if (next_line)
1684 				count = next_line - kbuf;
1685 			break;
1686 		}
1687 	}
1688 
1689 	ret = -ESRCH;
1690 	p = get_proc_task(inode);
1691 	if (!p)
1692 		goto out;
1693 	ret = proc_timens_set_offset(file, p, offsets, noffsets);
1694 	put_task_struct(p);
1695 	if (ret)
1696 		goto out;
1697 
1698 	ret = count;
1699 out:
1700 	kfree(kbuf);
1701 	return ret;
1702 }
1703 
1704 static int timens_offsets_open(struct inode *inode, struct file *filp)
1705 {
1706 	return single_open(filp, timens_offsets_show, inode);
1707 }
1708 
1709 static const struct file_operations proc_timens_offsets_operations = {
1710 	.open		= timens_offsets_open,
1711 	.read		= seq_read,
1712 	.write		= timens_offsets_write,
1713 	.llseek		= seq_lseek,
1714 	.release	= single_release,
1715 };
1716 #endif /* CONFIG_TIME_NS */
1717 
1718 static ssize_t comm_write(struct file *file, const char __user *buf,
1719 				size_t count, loff_t *offset)
1720 {
1721 	struct inode *inode = file_inode(file);
1722 	struct task_struct *p;
1723 	char buffer[TASK_COMM_LEN] = {};
1724 	const size_t maxlen = sizeof(buffer) - 1;
1725 
1726 	if (copy_from_user(buffer, buf, count > maxlen ? maxlen : count))
1727 		return -EFAULT;
1728 
1729 	p = get_proc_task(inode);
1730 	if (!p)
1731 		return -ESRCH;
1732 
1733 	if (same_thread_group(current, p)) {
1734 		set_task_comm(p, buffer);
1735 		proc_comm_connector(p);
1736 	}
1737 	else
1738 		count = -EINVAL;
1739 
1740 	put_task_struct(p);
1741 
1742 	return count;
1743 }
1744 
1745 static int comm_show(struct seq_file *m, void *v)
1746 {
1747 	struct inode *inode = m->private;
1748 	struct task_struct *p;
1749 
1750 	p = get_proc_task(inode);
1751 	if (!p)
1752 		return -ESRCH;
1753 
1754 	proc_task_name(m, p, false);
1755 	seq_putc(m, '\n');
1756 
1757 	put_task_struct(p);
1758 
1759 	return 0;
1760 }
1761 
1762 static int comm_open(struct inode *inode, struct file *filp)
1763 {
1764 	return single_open(filp, comm_show, inode);
1765 }
1766 
1767 static const struct file_operations proc_pid_set_comm_operations = {
1768 	.open		= comm_open,
1769 	.read		= seq_read,
1770 	.write		= comm_write,
1771 	.llseek		= seq_lseek,
1772 	.release	= single_release,
1773 };
1774 
1775 static int proc_exe_link(struct dentry *dentry, struct path *exe_path)
1776 {
1777 	struct task_struct *task;
1778 	struct file *exe_file;
1779 
1780 	task = get_proc_task(d_inode(dentry));
1781 	if (!task)
1782 		return -ENOENT;
1783 	exe_file = get_task_exe_file(task);
1784 	put_task_struct(task);
1785 	if (exe_file) {
1786 		*exe_path = exe_file->f_path;
1787 		path_get(&exe_file->f_path);
1788 		fput(exe_file);
1789 		return 0;
1790 	} else
1791 		return -ENOENT;
1792 }
1793 
1794 static const char *proc_pid_get_link(struct dentry *dentry,
1795 				     struct inode *inode,
1796 				     struct delayed_call *done)
1797 {
1798 	struct path path;
1799 	int error = -EACCES;
1800 
1801 	if (!dentry)
1802 		return ERR_PTR(-ECHILD);
1803 
1804 	/* Are we allowed to snoop on the tasks file descriptors? */
1805 	if (!proc_fd_access_allowed(inode))
1806 		goto out;
1807 
1808 	error = PROC_I(inode)->op.proc_get_link(dentry, &path);
1809 	if (error)
1810 		goto out;
1811 
1812 	error = nd_jump_link(&path);
1813 out:
1814 	return ERR_PTR(error);
1815 }
1816 
1817 static int do_proc_readlink(const struct path *path, char __user *buffer, int buflen)
1818 {
1819 	char *tmp = kmalloc(PATH_MAX, GFP_KERNEL);
1820 	char *pathname;
1821 	int len;
1822 
1823 	if (!tmp)
1824 		return -ENOMEM;
1825 
1826 	pathname = d_path(path, tmp, PATH_MAX);
1827 	len = PTR_ERR(pathname);
1828 	if (IS_ERR(pathname))
1829 		goto out;
1830 	len = tmp + PATH_MAX - 1 - pathname;
1831 
1832 	if (len > buflen)
1833 		len = buflen;
1834 	if (copy_to_user(buffer, pathname, len))
1835 		len = -EFAULT;
1836  out:
1837 	kfree(tmp);
1838 	return len;
1839 }
1840 
1841 static int proc_pid_readlink(struct dentry * dentry, char __user * buffer, int buflen)
1842 {
1843 	int error = -EACCES;
1844 	struct inode *inode = d_inode(dentry);
1845 	struct path path;
1846 
1847 	/* Are we allowed to snoop on the tasks file descriptors? */
1848 	if (!proc_fd_access_allowed(inode))
1849 		goto out;
1850 
1851 	error = PROC_I(inode)->op.proc_get_link(dentry, &path);
1852 	if (error)
1853 		goto out;
1854 
1855 	error = do_proc_readlink(&path, buffer, buflen);
1856 	path_put(&path);
1857 out:
1858 	return error;
1859 }
1860 
1861 const struct inode_operations proc_pid_link_inode_operations = {
1862 	.readlink	= proc_pid_readlink,
1863 	.get_link	= proc_pid_get_link,
1864 	.setattr	= proc_setattr,
1865 };
1866 
1867 
1868 /* building an inode */
1869 
1870 void task_dump_owner(struct task_struct *task, umode_t mode,
1871 		     kuid_t *ruid, kgid_t *rgid)
1872 {
1873 	/* Depending on the state of dumpable compute who should own a
1874 	 * proc file for a task.
1875 	 */
1876 	const struct cred *cred;
1877 	kuid_t uid;
1878 	kgid_t gid;
1879 
1880 	if (unlikely(task->flags & PF_KTHREAD)) {
1881 		*ruid = GLOBAL_ROOT_UID;
1882 		*rgid = GLOBAL_ROOT_GID;
1883 		return;
1884 	}
1885 
1886 	/* Default to the tasks effective ownership */
1887 	rcu_read_lock();
1888 	cred = __task_cred(task);
1889 	uid = cred->euid;
1890 	gid = cred->egid;
1891 	rcu_read_unlock();
1892 
1893 	/*
1894 	 * Before the /proc/pid/status file was created the only way to read
1895 	 * the effective uid of a /process was to stat /proc/pid.  Reading
1896 	 * /proc/pid/status is slow enough that procps and other packages
1897 	 * kept stating /proc/pid.  To keep the rules in /proc simple I have
1898 	 * made this apply to all per process world readable and executable
1899 	 * directories.
1900 	 */
1901 	if (mode != (S_IFDIR|S_IRUGO|S_IXUGO)) {
1902 		struct mm_struct *mm;
1903 		task_lock(task);
1904 		mm = task->mm;
1905 		/* Make non-dumpable tasks owned by some root */
1906 		if (mm) {
1907 			if (get_dumpable(mm) != SUID_DUMP_USER) {
1908 				struct user_namespace *user_ns = mm->user_ns;
1909 
1910 				uid = make_kuid(user_ns, 0);
1911 				if (!uid_valid(uid))
1912 					uid = GLOBAL_ROOT_UID;
1913 
1914 				gid = make_kgid(user_ns, 0);
1915 				if (!gid_valid(gid))
1916 					gid = GLOBAL_ROOT_GID;
1917 			}
1918 		} else {
1919 			uid = GLOBAL_ROOT_UID;
1920 			gid = GLOBAL_ROOT_GID;
1921 		}
1922 		task_unlock(task);
1923 	}
1924 	*ruid = uid;
1925 	*rgid = gid;
1926 }
1927 
1928 void proc_pid_evict_inode(struct proc_inode *ei)
1929 {
1930 	struct pid *pid = ei->pid;
1931 
1932 	if (S_ISDIR(ei->vfs_inode.i_mode)) {
1933 		spin_lock(&pid->lock);
1934 		hlist_del_init_rcu(&ei->sibling_inodes);
1935 		spin_unlock(&pid->lock);
1936 	}
1937 }
1938 
1939 struct inode *proc_pid_make_inode(struct super_block *sb,
1940 				  struct task_struct *task, umode_t mode)
1941 {
1942 	struct inode * inode;
1943 	struct proc_inode *ei;
1944 	struct pid *pid;
1945 
1946 	/* We need a new inode */
1947 
1948 	inode = new_inode(sb);
1949 	if (!inode)
1950 		goto out;
1951 
1952 	/* Common stuff */
1953 	ei = PROC_I(inode);
1954 	inode->i_mode = mode;
1955 	inode->i_ino = get_next_ino();
1956 	simple_inode_init_ts(inode);
1957 	inode->i_op = &proc_def_inode_operations;
1958 
1959 	/*
1960 	 * grab the reference to task.
1961 	 */
1962 	pid = get_task_pid(task, PIDTYPE_PID);
1963 	if (!pid)
1964 		goto out_unlock;
1965 
1966 	/* Let the pid remember us for quick removal */
1967 	ei->pid = pid;
1968 
1969 	task_dump_owner(task, 0, &inode->i_uid, &inode->i_gid);
1970 	security_task_to_inode(task, inode);
1971 
1972 out:
1973 	return inode;
1974 
1975 out_unlock:
1976 	iput(inode);
1977 	return NULL;
1978 }
1979 
1980 /*
1981  * Generating an inode and adding it into @pid->inodes, so that task will
1982  * invalidate inode's dentry before being released.
1983  *
1984  * This helper is used for creating dir-type entries under '/proc' and
1985  * '/proc/<tgid>/task'. Other entries(eg. fd, stat) under '/proc/<tgid>'
1986  * can be released by invalidating '/proc/<tgid>' dentry.
1987  * In theory, dentries under '/proc/<tgid>/task' can also be released by
1988  * invalidating '/proc/<tgid>' dentry, we reserve it to handle single
1989  * thread exiting situation: Any one of threads should invalidate its
1990  * '/proc/<tgid>/task/<pid>' dentry before released.
1991  */
1992 static struct inode *proc_pid_make_base_inode(struct super_block *sb,
1993 				struct task_struct *task, umode_t mode)
1994 {
1995 	struct inode *inode;
1996 	struct proc_inode *ei;
1997 	struct pid *pid;
1998 
1999 	inode = proc_pid_make_inode(sb, task, mode);
2000 	if (!inode)
2001 		return NULL;
2002 
2003 	/* Let proc_flush_pid find this directory inode */
2004 	ei = PROC_I(inode);
2005 	pid = ei->pid;
2006 	spin_lock(&pid->lock);
2007 	hlist_add_head_rcu(&ei->sibling_inodes, &pid->inodes);
2008 	spin_unlock(&pid->lock);
2009 
2010 	return inode;
2011 }
2012 
2013 int pid_getattr(struct mnt_idmap *idmap, const struct path *path,
2014 		struct kstat *stat, u32 request_mask, unsigned int query_flags)
2015 {
2016 	struct inode *inode = d_inode(path->dentry);
2017 	struct proc_fs_info *fs_info = proc_sb_info(inode->i_sb);
2018 	struct task_struct *task;
2019 
2020 	generic_fillattr(&nop_mnt_idmap, request_mask, inode, stat);
2021 
2022 	stat->uid = GLOBAL_ROOT_UID;
2023 	stat->gid = GLOBAL_ROOT_GID;
2024 	rcu_read_lock();
2025 	task = pid_task(proc_pid(inode), PIDTYPE_PID);
2026 	if (task) {
2027 		if (!has_pid_permissions(fs_info, task, HIDEPID_INVISIBLE)) {
2028 			rcu_read_unlock();
2029 			/*
2030 			 * This doesn't prevent learning whether PID exists,
2031 			 * it only makes getattr() consistent with readdir().
2032 			 */
2033 			return -ENOENT;
2034 		}
2035 		task_dump_owner(task, inode->i_mode, &stat->uid, &stat->gid);
2036 	}
2037 	rcu_read_unlock();
2038 	return 0;
2039 }
2040 
2041 /* dentry stuff */
2042 
2043 /*
2044  * Set <pid>/... inode ownership (can change due to setuid(), etc.)
2045  */
2046 void pid_update_inode(struct task_struct *task, struct inode *inode)
2047 {
2048 	task_dump_owner(task, inode->i_mode, &inode->i_uid, &inode->i_gid);
2049 
2050 	inode->i_mode &= ~(S_ISUID | S_ISGID);
2051 	security_task_to_inode(task, inode);
2052 }
2053 
2054 /*
2055  * Rewrite the inode's ownerships here because the owning task may have
2056  * performed a setuid(), etc.
2057  *
2058  */
2059 static int pid_revalidate(struct dentry *dentry, unsigned int flags)
2060 {
2061 	struct inode *inode;
2062 	struct task_struct *task;
2063 	int ret = 0;
2064 
2065 	rcu_read_lock();
2066 	inode = d_inode_rcu(dentry);
2067 	if (!inode)
2068 		goto out;
2069 	task = pid_task(proc_pid(inode), PIDTYPE_PID);
2070 
2071 	if (task) {
2072 		pid_update_inode(task, inode);
2073 		ret = 1;
2074 	}
2075 out:
2076 	rcu_read_unlock();
2077 	return ret;
2078 }
2079 
2080 static inline bool proc_inode_is_dead(struct inode *inode)
2081 {
2082 	return !proc_pid(inode)->tasks[PIDTYPE_PID].first;
2083 }
2084 
2085 int pid_delete_dentry(const struct dentry *dentry)
2086 {
2087 	/* Is the task we represent dead?
2088 	 * If so, then don't put the dentry on the lru list,
2089 	 * kill it immediately.
2090 	 */
2091 	return proc_inode_is_dead(d_inode(dentry));
2092 }
2093 
2094 const struct dentry_operations pid_dentry_operations =
2095 {
2096 	.d_revalidate	= pid_revalidate,
2097 	.d_delete	= pid_delete_dentry,
2098 };
2099 
2100 /* Lookups */
2101 
2102 /*
2103  * Fill a directory entry.
2104  *
2105  * If possible create the dcache entry and derive our inode number and
2106  * file type from dcache entry.
2107  *
2108  * Since all of the proc inode numbers are dynamically generated, the inode
2109  * numbers do not exist until the inode is cache.  This means creating
2110  * the dcache entry in readdir is necessary to keep the inode numbers
2111  * reported by readdir in sync with the inode numbers reported
2112  * by stat.
2113  */
2114 bool proc_fill_cache(struct file *file, struct dir_context *ctx,
2115 	const char *name, unsigned int len,
2116 	instantiate_t instantiate, struct task_struct *task, const void *ptr)
2117 {
2118 	struct dentry *child, *dir = file->f_path.dentry;
2119 	struct qstr qname = QSTR_INIT(name, len);
2120 	struct inode *inode;
2121 	unsigned type = DT_UNKNOWN;
2122 	ino_t ino = 1;
2123 
2124 	child = d_hash_and_lookup(dir, &qname);
2125 	if (!child) {
2126 		DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
2127 		child = d_alloc_parallel(dir, &qname, &wq);
2128 		if (IS_ERR(child))
2129 			goto end_instantiate;
2130 		if (d_in_lookup(child)) {
2131 			struct dentry *res;
2132 			res = instantiate(child, task, ptr);
2133 			d_lookup_done(child);
2134 			if (unlikely(res)) {
2135 				dput(child);
2136 				child = res;
2137 				if (IS_ERR(child))
2138 					goto end_instantiate;
2139 			}
2140 		}
2141 	}
2142 	inode = d_inode(child);
2143 	ino = inode->i_ino;
2144 	type = inode->i_mode >> 12;
2145 	dput(child);
2146 end_instantiate:
2147 	return dir_emit(ctx, name, len, ino, type);
2148 }
2149 
2150 /*
2151  * dname_to_vma_addr - maps a dentry name into two unsigned longs
2152  * which represent vma start and end addresses.
2153  */
2154 static int dname_to_vma_addr(struct dentry *dentry,
2155 			     unsigned long *start, unsigned long *end)
2156 {
2157 	const char *str = dentry->d_name.name;
2158 	unsigned long long sval, eval;
2159 	unsigned int len;
2160 
2161 	if (str[0] == '0' && str[1] != '-')
2162 		return -EINVAL;
2163 	len = _parse_integer(str, 16, &sval);
2164 	if (len & KSTRTOX_OVERFLOW)
2165 		return -EINVAL;
2166 	if (sval != (unsigned long)sval)
2167 		return -EINVAL;
2168 	str += len;
2169 
2170 	if (*str != '-')
2171 		return -EINVAL;
2172 	str++;
2173 
2174 	if (str[0] == '0' && str[1])
2175 		return -EINVAL;
2176 	len = _parse_integer(str, 16, &eval);
2177 	if (len & KSTRTOX_OVERFLOW)
2178 		return -EINVAL;
2179 	if (eval != (unsigned long)eval)
2180 		return -EINVAL;
2181 	str += len;
2182 
2183 	if (*str != '\0')
2184 		return -EINVAL;
2185 
2186 	*start = sval;
2187 	*end = eval;
2188 
2189 	return 0;
2190 }
2191 
2192 static int map_files_d_revalidate(struct dentry *dentry, unsigned int flags)
2193 {
2194 	unsigned long vm_start, vm_end;
2195 	bool exact_vma_exists = false;
2196 	struct mm_struct *mm = NULL;
2197 	struct task_struct *task;
2198 	struct inode *inode;
2199 	int status = 0;
2200 
2201 	if (flags & LOOKUP_RCU)
2202 		return -ECHILD;
2203 
2204 	inode = d_inode(dentry);
2205 	task = get_proc_task(inode);
2206 	if (!task)
2207 		goto out_notask;
2208 
2209 	mm = mm_access(task, PTRACE_MODE_READ_FSCREDS);
2210 	if (IS_ERR_OR_NULL(mm))
2211 		goto out;
2212 
2213 	if (!dname_to_vma_addr(dentry, &vm_start, &vm_end)) {
2214 		status = mmap_read_lock_killable(mm);
2215 		if (!status) {
2216 			exact_vma_exists = !!find_exact_vma(mm, vm_start,
2217 							    vm_end);
2218 			mmap_read_unlock(mm);
2219 		}
2220 	}
2221 
2222 	mmput(mm);
2223 
2224 	if (exact_vma_exists) {
2225 		task_dump_owner(task, 0, &inode->i_uid, &inode->i_gid);
2226 
2227 		security_task_to_inode(task, inode);
2228 		status = 1;
2229 	}
2230 
2231 out:
2232 	put_task_struct(task);
2233 
2234 out_notask:
2235 	return status;
2236 }
2237 
2238 static const struct dentry_operations tid_map_files_dentry_operations = {
2239 	.d_revalidate	= map_files_d_revalidate,
2240 	.d_delete	= pid_delete_dentry,
2241 };
2242 
2243 static int map_files_get_link(struct dentry *dentry, struct path *path)
2244 {
2245 	unsigned long vm_start, vm_end;
2246 	struct vm_area_struct *vma;
2247 	struct task_struct *task;
2248 	struct mm_struct *mm;
2249 	int rc;
2250 
2251 	rc = -ENOENT;
2252 	task = get_proc_task(d_inode(dentry));
2253 	if (!task)
2254 		goto out;
2255 
2256 	mm = get_task_mm(task);
2257 	put_task_struct(task);
2258 	if (!mm)
2259 		goto out;
2260 
2261 	rc = dname_to_vma_addr(dentry, &vm_start, &vm_end);
2262 	if (rc)
2263 		goto out_mmput;
2264 
2265 	rc = mmap_read_lock_killable(mm);
2266 	if (rc)
2267 		goto out_mmput;
2268 
2269 	rc = -ENOENT;
2270 	vma = find_exact_vma(mm, vm_start, vm_end);
2271 	if (vma && vma->vm_file) {
2272 		*path = *file_user_path(vma->vm_file);
2273 		path_get(path);
2274 		rc = 0;
2275 	}
2276 	mmap_read_unlock(mm);
2277 
2278 out_mmput:
2279 	mmput(mm);
2280 out:
2281 	return rc;
2282 }
2283 
2284 struct map_files_info {
2285 	unsigned long	start;
2286 	unsigned long	end;
2287 	fmode_t		mode;
2288 };
2289 
2290 /*
2291  * Only allow CAP_SYS_ADMIN and CAP_CHECKPOINT_RESTORE to follow the links, due
2292  * to concerns about how the symlinks may be used to bypass permissions on
2293  * ancestor directories in the path to the file in question.
2294  */
2295 static const char *
2296 proc_map_files_get_link(struct dentry *dentry,
2297 			struct inode *inode,
2298 		        struct delayed_call *done)
2299 {
2300 	if (!checkpoint_restore_ns_capable(&init_user_ns))
2301 		return ERR_PTR(-EPERM);
2302 
2303 	return proc_pid_get_link(dentry, inode, done);
2304 }
2305 
2306 /*
2307  * Identical to proc_pid_link_inode_operations except for get_link()
2308  */
2309 static const struct inode_operations proc_map_files_link_inode_operations = {
2310 	.readlink	= proc_pid_readlink,
2311 	.get_link	= proc_map_files_get_link,
2312 	.setattr	= proc_setattr,
2313 };
2314 
2315 static struct dentry *
2316 proc_map_files_instantiate(struct dentry *dentry,
2317 			   struct task_struct *task, const void *ptr)
2318 {
2319 	fmode_t mode = (fmode_t)(unsigned long)ptr;
2320 	struct proc_inode *ei;
2321 	struct inode *inode;
2322 
2323 	inode = proc_pid_make_inode(dentry->d_sb, task, S_IFLNK |
2324 				    ((mode & FMODE_READ ) ? S_IRUSR : 0) |
2325 				    ((mode & FMODE_WRITE) ? S_IWUSR : 0));
2326 	if (!inode)
2327 		return ERR_PTR(-ENOENT);
2328 
2329 	ei = PROC_I(inode);
2330 	ei->op.proc_get_link = map_files_get_link;
2331 
2332 	inode->i_op = &proc_map_files_link_inode_operations;
2333 	inode->i_size = 64;
2334 
2335 	return proc_splice_unmountable(inode, dentry,
2336 				       &tid_map_files_dentry_operations);
2337 }
2338 
2339 static struct dentry *proc_map_files_lookup(struct inode *dir,
2340 		struct dentry *dentry, unsigned int flags)
2341 {
2342 	unsigned long vm_start, vm_end;
2343 	struct vm_area_struct *vma;
2344 	struct task_struct *task;
2345 	struct dentry *result;
2346 	struct mm_struct *mm;
2347 
2348 	result = ERR_PTR(-ENOENT);
2349 	task = get_proc_task(dir);
2350 	if (!task)
2351 		goto out;
2352 
2353 	result = ERR_PTR(-EACCES);
2354 	if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS))
2355 		goto out_put_task;
2356 
2357 	result = ERR_PTR(-ENOENT);
2358 	if (dname_to_vma_addr(dentry, &vm_start, &vm_end))
2359 		goto out_put_task;
2360 
2361 	mm = get_task_mm(task);
2362 	if (!mm)
2363 		goto out_put_task;
2364 
2365 	result = ERR_PTR(-EINTR);
2366 	if (mmap_read_lock_killable(mm))
2367 		goto out_put_mm;
2368 
2369 	result = ERR_PTR(-ENOENT);
2370 	vma = find_exact_vma(mm, vm_start, vm_end);
2371 	if (!vma)
2372 		goto out_no_vma;
2373 
2374 	if (vma->vm_file)
2375 		result = proc_map_files_instantiate(dentry, task,
2376 				(void *)(unsigned long)vma->vm_file->f_mode);
2377 
2378 out_no_vma:
2379 	mmap_read_unlock(mm);
2380 out_put_mm:
2381 	mmput(mm);
2382 out_put_task:
2383 	put_task_struct(task);
2384 out:
2385 	return result;
2386 }
2387 
2388 static const struct inode_operations proc_map_files_inode_operations = {
2389 	.lookup		= proc_map_files_lookup,
2390 	.permission	= proc_fd_permission,
2391 	.setattr	= proc_setattr,
2392 };
2393 
2394 static int
2395 proc_map_files_readdir(struct file *file, struct dir_context *ctx)
2396 {
2397 	struct vm_area_struct *vma;
2398 	struct task_struct *task;
2399 	struct mm_struct *mm;
2400 	unsigned long nr_files, pos, i;
2401 	GENRADIX(struct map_files_info) fa;
2402 	struct map_files_info *p;
2403 	int ret;
2404 	struct vma_iterator vmi;
2405 
2406 	genradix_init(&fa);
2407 
2408 	ret = -ENOENT;
2409 	task = get_proc_task(file_inode(file));
2410 	if (!task)
2411 		goto out;
2412 
2413 	ret = -EACCES;
2414 	if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS))
2415 		goto out_put_task;
2416 
2417 	ret = 0;
2418 	if (!dir_emit_dots(file, ctx))
2419 		goto out_put_task;
2420 
2421 	mm = get_task_mm(task);
2422 	if (!mm)
2423 		goto out_put_task;
2424 
2425 	ret = mmap_read_lock_killable(mm);
2426 	if (ret) {
2427 		mmput(mm);
2428 		goto out_put_task;
2429 	}
2430 
2431 	nr_files = 0;
2432 
2433 	/*
2434 	 * We need two passes here:
2435 	 *
2436 	 *  1) Collect vmas of mapped files with mmap_lock taken
2437 	 *  2) Release mmap_lock and instantiate entries
2438 	 *
2439 	 * otherwise we get lockdep complained, since filldir()
2440 	 * routine might require mmap_lock taken in might_fault().
2441 	 */
2442 
2443 	pos = 2;
2444 	vma_iter_init(&vmi, mm, 0);
2445 	for_each_vma(vmi, vma) {
2446 		if (!vma->vm_file)
2447 			continue;
2448 		if (++pos <= ctx->pos)
2449 			continue;
2450 
2451 		p = genradix_ptr_alloc(&fa, nr_files++, GFP_KERNEL);
2452 		if (!p) {
2453 			ret = -ENOMEM;
2454 			mmap_read_unlock(mm);
2455 			mmput(mm);
2456 			goto out_put_task;
2457 		}
2458 
2459 		p->start = vma->vm_start;
2460 		p->end = vma->vm_end;
2461 		p->mode = vma->vm_file->f_mode;
2462 	}
2463 	mmap_read_unlock(mm);
2464 	mmput(mm);
2465 
2466 	for (i = 0; i < nr_files; i++) {
2467 		char buf[4 * sizeof(long) + 2];	/* max: %lx-%lx\0 */
2468 		unsigned int len;
2469 
2470 		p = genradix_ptr(&fa, i);
2471 		len = snprintf(buf, sizeof(buf), "%lx-%lx", p->start, p->end);
2472 		if (!proc_fill_cache(file, ctx,
2473 				      buf, len,
2474 				      proc_map_files_instantiate,
2475 				      task,
2476 				      (void *)(unsigned long)p->mode))
2477 			break;
2478 		ctx->pos++;
2479 	}
2480 
2481 out_put_task:
2482 	put_task_struct(task);
2483 out:
2484 	genradix_free(&fa);
2485 	return ret;
2486 }
2487 
2488 static const struct file_operations proc_map_files_operations = {
2489 	.read		= generic_read_dir,
2490 	.iterate_shared	= proc_map_files_readdir,
2491 	.llseek		= generic_file_llseek,
2492 };
2493 
2494 #if defined(CONFIG_CHECKPOINT_RESTORE) && defined(CONFIG_POSIX_TIMERS)
2495 struct timers_private {
2496 	struct pid *pid;
2497 	struct task_struct *task;
2498 	struct sighand_struct *sighand;
2499 	struct pid_namespace *ns;
2500 	unsigned long flags;
2501 };
2502 
2503 static void *timers_start(struct seq_file *m, loff_t *pos)
2504 {
2505 	struct timers_private *tp = m->private;
2506 
2507 	tp->task = get_pid_task(tp->pid, PIDTYPE_PID);
2508 	if (!tp->task)
2509 		return ERR_PTR(-ESRCH);
2510 
2511 	tp->sighand = lock_task_sighand(tp->task, &tp->flags);
2512 	if (!tp->sighand)
2513 		return ERR_PTR(-ESRCH);
2514 
2515 	return seq_hlist_start(&tp->task->signal->posix_timers, *pos);
2516 }
2517 
2518 static void *timers_next(struct seq_file *m, void *v, loff_t *pos)
2519 {
2520 	struct timers_private *tp = m->private;
2521 	return seq_hlist_next(v, &tp->task->signal->posix_timers, pos);
2522 }
2523 
2524 static void timers_stop(struct seq_file *m, void *v)
2525 {
2526 	struct timers_private *tp = m->private;
2527 
2528 	if (tp->sighand) {
2529 		unlock_task_sighand(tp->task, &tp->flags);
2530 		tp->sighand = NULL;
2531 	}
2532 
2533 	if (tp->task) {
2534 		put_task_struct(tp->task);
2535 		tp->task = NULL;
2536 	}
2537 }
2538 
2539 static int show_timer(struct seq_file *m, void *v)
2540 {
2541 	struct k_itimer *timer;
2542 	struct timers_private *tp = m->private;
2543 	int notify;
2544 	static const char * const nstr[] = {
2545 		[SIGEV_SIGNAL] = "signal",
2546 		[SIGEV_NONE] = "none",
2547 		[SIGEV_THREAD] = "thread",
2548 	};
2549 
2550 	timer = hlist_entry((struct hlist_node *)v, struct k_itimer, list);
2551 	notify = timer->it_sigev_notify;
2552 
2553 	seq_printf(m, "ID: %d\n", timer->it_id);
2554 	seq_printf(m, "signal: %d/%px\n",
2555 		   timer->sigq->info.si_signo,
2556 		   timer->sigq->info.si_value.sival_ptr);
2557 	seq_printf(m, "notify: %s/%s.%d\n",
2558 		   nstr[notify & ~SIGEV_THREAD_ID],
2559 		   (notify & SIGEV_THREAD_ID) ? "tid" : "pid",
2560 		   pid_nr_ns(timer->it_pid, tp->ns));
2561 	seq_printf(m, "ClockID: %d\n", timer->it_clock);
2562 
2563 	return 0;
2564 }
2565 
2566 static const struct seq_operations proc_timers_seq_ops = {
2567 	.start	= timers_start,
2568 	.next	= timers_next,
2569 	.stop	= timers_stop,
2570 	.show	= show_timer,
2571 };
2572 
2573 static int proc_timers_open(struct inode *inode, struct file *file)
2574 {
2575 	struct timers_private *tp;
2576 
2577 	tp = __seq_open_private(file, &proc_timers_seq_ops,
2578 			sizeof(struct timers_private));
2579 	if (!tp)
2580 		return -ENOMEM;
2581 
2582 	tp->pid = proc_pid(inode);
2583 	tp->ns = proc_pid_ns(inode->i_sb);
2584 	return 0;
2585 }
2586 
2587 static const struct file_operations proc_timers_operations = {
2588 	.open		= proc_timers_open,
2589 	.read		= seq_read,
2590 	.llseek		= seq_lseek,
2591 	.release	= seq_release_private,
2592 };
2593 #endif
2594 
2595 static ssize_t timerslack_ns_write(struct file *file, const char __user *buf,
2596 					size_t count, loff_t *offset)
2597 {
2598 	struct inode *inode = file_inode(file);
2599 	struct task_struct *p;
2600 	u64 slack_ns;
2601 	int err;
2602 
2603 	err = kstrtoull_from_user(buf, count, 10, &slack_ns);
2604 	if (err < 0)
2605 		return err;
2606 
2607 	p = get_proc_task(inode);
2608 	if (!p)
2609 		return -ESRCH;
2610 
2611 	if (p != current) {
2612 		rcu_read_lock();
2613 		if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
2614 			rcu_read_unlock();
2615 			count = -EPERM;
2616 			goto out;
2617 		}
2618 		rcu_read_unlock();
2619 
2620 		err = security_task_setscheduler(p);
2621 		if (err) {
2622 			count = err;
2623 			goto out;
2624 		}
2625 	}
2626 
2627 	task_lock(p);
2628 	if (rt_or_dl_task_policy(p))
2629 		slack_ns = 0;
2630 	else if (slack_ns == 0)
2631 		slack_ns = p->default_timer_slack_ns;
2632 	p->timer_slack_ns = slack_ns;
2633 	task_unlock(p);
2634 
2635 out:
2636 	put_task_struct(p);
2637 
2638 	return count;
2639 }
2640 
2641 static int timerslack_ns_show(struct seq_file *m, void *v)
2642 {
2643 	struct inode *inode = m->private;
2644 	struct task_struct *p;
2645 	int err = 0;
2646 
2647 	p = get_proc_task(inode);
2648 	if (!p)
2649 		return -ESRCH;
2650 
2651 	if (p != current) {
2652 		rcu_read_lock();
2653 		if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
2654 			rcu_read_unlock();
2655 			err = -EPERM;
2656 			goto out;
2657 		}
2658 		rcu_read_unlock();
2659 
2660 		err = security_task_getscheduler(p);
2661 		if (err)
2662 			goto out;
2663 	}
2664 
2665 	task_lock(p);
2666 	seq_printf(m, "%llu\n", p->timer_slack_ns);
2667 	task_unlock(p);
2668 
2669 out:
2670 	put_task_struct(p);
2671 
2672 	return err;
2673 }
2674 
2675 static int timerslack_ns_open(struct inode *inode, struct file *filp)
2676 {
2677 	return single_open(filp, timerslack_ns_show, inode);
2678 }
2679 
2680 static const struct file_operations proc_pid_set_timerslack_ns_operations = {
2681 	.open		= timerslack_ns_open,
2682 	.read		= seq_read,
2683 	.write		= timerslack_ns_write,
2684 	.llseek		= seq_lseek,
2685 	.release	= single_release,
2686 };
2687 
2688 static struct dentry *proc_pident_instantiate(struct dentry *dentry,
2689 	struct task_struct *task, const void *ptr)
2690 {
2691 	const struct pid_entry *p = ptr;
2692 	struct inode *inode;
2693 	struct proc_inode *ei;
2694 
2695 	inode = proc_pid_make_inode(dentry->d_sb, task, p->mode);
2696 	if (!inode)
2697 		return ERR_PTR(-ENOENT);
2698 
2699 	ei = PROC_I(inode);
2700 	if (S_ISDIR(inode->i_mode))
2701 		set_nlink(inode, 2);	/* Use getattr to fix if necessary */
2702 	if (p->iop)
2703 		inode->i_op = p->iop;
2704 	if (p->fop)
2705 		inode->i_fop = p->fop;
2706 	ei->op = p->op;
2707 	pid_update_inode(task, inode);
2708 	d_set_d_op(dentry, &pid_dentry_operations);
2709 	return d_splice_alias(inode, dentry);
2710 }
2711 
2712 static struct dentry *proc_pident_lookup(struct inode *dir,
2713 					 struct dentry *dentry,
2714 					 const struct pid_entry *p,
2715 					 const struct pid_entry *end)
2716 {
2717 	struct task_struct *task = get_proc_task(dir);
2718 	struct dentry *res = ERR_PTR(-ENOENT);
2719 
2720 	if (!task)
2721 		goto out_no_task;
2722 
2723 	/*
2724 	 * Yes, it does not scale. And it should not. Don't add
2725 	 * new entries into /proc/<tgid>/ without very good reasons.
2726 	 */
2727 	for (; p < end; p++) {
2728 		if (p->len != dentry->d_name.len)
2729 			continue;
2730 		if (!memcmp(dentry->d_name.name, p->name, p->len)) {
2731 			res = proc_pident_instantiate(dentry, task, p);
2732 			break;
2733 		}
2734 	}
2735 	put_task_struct(task);
2736 out_no_task:
2737 	return res;
2738 }
2739 
2740 static int proc_pident_readdir(struct file *file, struct dir_context *ctx,
2741 		const struct pid_entry *ents, unsigned int nents)
2742 {
2743 	struct task_struct *task = get_proc_task(file_inode(file));
2744 	const struct pid_entry *p;
2745 
2746 	if (!task)
2747 		return -ENOENT;
2748 
2749 	if (!dir_emit_dots(file, ctx))
2750 		goto out;
2751 
2752 	if (ctx->pos >= nents + 2)
2753 		goto out;
2754 
2755 	for (p = ents + (ctx->pos - 2); p < ents + nents; p++) {
2756 		if (!proc_fill_cache(file, ctx, p->name, p->len,
2757 				proc_pident_instantiate, task, p))
2758 			break;
2759 		ctx->pos++;
2760 	}
2761 out:
2762 	put_task_struct(task);
2763 	return 0;
2764 }
2765 
2766 #ifdef CONFIG_SECURITY
2767 static int proc_pid_attr_open(struct inode *inode, struct file *file)
2768 {
2769 	file->private_data = NULL;
2770 	__mem_open(inode, file, PTRACE_MODE_READ_FSCREDS);
2771 	return 0;
2772 }
2773 
2774 static ssize_t proc_pid_attr_read(struct file * file, char __user * buf,
2775 				  size_t count, loff_t *ppos)
2776 {
2777 	struct inode * inode = file_inode(file);
2778 	char *p = NULL;
2779 	ssize_t length;
2780 	struct task_struct *task = get_proc_task(inode);
2781 
2782 	if (!task)
2783 		return -ESRCH;
2784 
2785 	length = security_getprocattr(task, PROC_I(inode)->op.lsmid,
2786 				      file->f_path.dentry->d_name.name,
2787 				      &p);
2788 	put_task_struct(task);
2789 	if (length > 0)
2790 		length = simple_read_from_buffer(buf, count, ppos, p, length);
2791 	kfree(p);
2792 	return length;
2793 }
2794 
2795 static ssize_t proc_pid_attr_write(struct file * file, const char __user * buf,
2796 				   size_t count, loff_t *ppos)
2797 {
2798 	struct inode * inode = file_inode(file);
2799 	struct task_struct *task;
2800 	void *page;
2801 	int rv;
2802 
2803 	/* A task may only write when it was the opener. */
2804 	if (file->private_data != current->mm)
2805 		return -EPERM;
2806 
2807 	rcu_read_lock();
2808 	task = pid_task(proc_pid(inode), PIDTYPE_PID);
2809 	if (!task) {
2810 		rcu_read_unlock();
2811 		return -ESRCH;
2812 	}
2813 	/* A task may only write its own attributes. */
2814 	if (current != task) {
2815 		rcu_read_unlock();
2816 		return -EACCES;
2817 	}
2818 	/* Prevent changes to overridden credentials. */
2819 	if (current_cred() != current_real_cred()) {
2820 		rcu_read_unlock();
2821 		return -EBUSY;
2822 	}
2823 	rcu_read_unlock();
2824 
2825 	if (count > PAGE_SIZE)
2826 		count = PAGE_SIZE;
2827 
2828 	/* No partial writes. */
2829 	if (*ppos != 0)
2830 		return -EINVAL;
2831 
2832 	page = memdup_user(buf, count);
2833 	if (IS_ERR(page)) {
2834 		rv = PTR_ERR(page);
2835 		goto out;
2836 	}
2837 
2838 	/* Guard against adverse ptrace interaction */
2839 	rv = mutex_lock_interruptible(&current->signal->cred_guard_mutex);
2840 	if (rv < 0)
2841 		goto out_free;
2842 
2843 	rv = security_setprocattr(PROC_I(inode)->op.lsmid,
2844 				  file->f_path.dentry->d_name.name, page,
2845 				  count);
2846 	mutex_unlock(&current->signal->cred_guard_mutex);
2847 out_free:
2848 	kfree(page);
2849 out:
2850 	return rv;
2851 }
2852 
2853 static const struct file_operations proc_pid_attr_operations = {
2854 	.open		= proc_pid_attr_open,
2855 	.read		= proc_pid_attr_read,
2856 	.write		= proc_pid_attr_write,
2857 	.llseek		= generic_file_llseek,
2858 	.release	= mem_release,
2859 };
2860 
2861 #define LSM_DIR_OPS(LSM) \
2862 static int proc_##LSM##_attr_dir_iterate(struct file *filp, \
2863 			     struct dir_context *ctx) \
2864 { \
2865 	return proc_pident_readdir(filp, ctx, \
2866 				   LSM##_attr_dir_stuff, \
2867 				   ARRAY_SIZE(LSM##_attr_dir_stuff)); \
2868 } \
2869 \
2870 static const struct file_operations proc_##LSM##_attr_dir_ops = { \
2871 	.read		= generic_read_dir, \
2872 	.iterate_shared	= proc_##LSM##_attr_dir_iterate, \
2873 	.llseek		= default_llseek, \
2874 }; \
2875 \
2876 static struct dentry *proc_##LSM##_attr_dir_lookup(struct inode *dir, \
2877 				struct dentry *dentry, unsigned int flags) \
2878 { \
2879 	return proc_pident_lookup(dir, dentry, \
2880 				  LSM##_attr_dir_stuff, \
2881 				  LSM##_attr_dir_stuff + ARRAY_SIZE(LSM##_attr_dir_stuff)); \
2882 } \
2883 \
2884 static const struct inode_operations proc_##LSM##_attr_dir_inode_ops = { \
2885 	.lookup		= proc_##LSM##_attr_dir_lookup, \
2886 	.getattr	= pid_getattr, \
2887 	.setattr	= proc_setattr, \
2888 }
2889 
2890 #ifdef CONFIG_SECURITY_SMACK
2891 static const struct pid_entry smack_attr_dir_stuff[] = {
2892 	ATTR(LSM_ID_SMACK, "current",	0666),
2893 };
2894 LSM_DIR_OPS(smack);
2895 #endif
2896 
2897 #ifdef CONFIG_SECURITY_APPARMOR
2898 static const struct pid_entry apparmor_attr_dir_stuff[] = {
2899 	ATTR(LSM_ID_APPARMOR, "current",	0666),
2900 	ATTR(LSM_ID_APPARMOR, "prev",		0444),
2901 	ATTR(LSM_ID_APPARMOR, "exec",		0666),
2902 };
2903 LSM_DIR_OPS(apparmor);
2904 #endif
2905 
2906 static const struct pid_entry attr_dir_stuff[] = {
2907 	ATTR(LSM_ID_UNDEF, "current",	0666),
2908 	ATTR(LSM_ID_UNDEF, "prev",		0444),
2909 	ATTR(LSM_ID_UNDEF, "exec",		0666),
2910 	ATTR(LSM_ID_UNDEF, "fscreate",	0666),
2911 	ATTR(LSM_ID_UNDEF, "keycreate",	0666),
2912 	ATTR(LSM_ID_UNDEF, "sockcreate",	0666),
2913 #ifdef CONFIG_SECURITY_SMACK
2914 	DIR("smack",			0555,
2915 	    proc_smack_attr_dir_inode_ops, proc_smack_attr_dir_ops),
2916 #endif
2917 #ifdef CONFIG_SECURITY_APPARMOR
2918 	DIR("apparmor",			0555,
2919 	    proc_apparmor_attr_dir_inode_ops, proc_apparmor_attr_dir_ops),
2920 #endif
2921 };
2922 
2923 static int proc_attr_dir_readdir(struct file *file, struct dir_context *ctx)
2924 {
2925 	return proc_pident_readdir(file, ctx,
2926 				   attr_dir_stuff, ARRAY_SIZE(attr_dir_stuff));
2927 }
2928 
2929 static const struct file_operations proc_attr_dir_operations = {
2930 	.read		= generic_read_dir,
2931 	.iterate_shared	= proc_attr_dir_readdir,
2932 	.llseek		= generic_file_llseek,
2933 };
2934 
2935 static struct dentry *proc_attr_dir_lookup(struct inode *dir,
2936 				struct dentry *dentry, unsigned int flags)
2937 {
2938 	return proc_pident_lookup(dir, dentry,
2939 				  attr_dir_stuff,
2940 				  attr_dir_stuff + ARRAY_SIZE(attr_dir_stuff));
2941 }
2942 
2943 static const struct inode_operations proc_attr_dir_inode_operations = {
2944 	.lookup		= proc_attr_dir_lookup,
2945 	.getattr	= pid_getattr,
2946 	.setattr	= proc_setattr,
2947 };
2948 
2949 #endif
2950 
2951 #ifdef CONFIG_ELF_CORE
2952 static ssize_t proc_coredump_filter_read(struct file *file, char __user *buf,
2953 					 size_t count, loff_t *ppos)
2954 {
2955 	struct task_struct *task = get_proc_task(file_inode(file));
2956 	struct mm_struct *mm;
2957 	char buffer[PROC_NUMBUF];
2958 	size_t len;
2959 	int ret;
2960 
2961 	if (!task)
2962 		return -ESRCH;
2963 
2964 	ret = 0;
2965 	mm = get_task_mm(task);
2966 	if (mm) {
2967 		len = snprintf(buffer, sizeof(buffer), "%08lx\n",
2968 			       ((mm->flags & MMF_DUMP_FILTER_MASK) >>
2969 				MMF_DUMP_FILTER_SHIFT));
2970 		mmput(mm);
2971 		ret = simple_read_from_buffer(buf, count, ppos, buffer, len);
2972 	}
2973 
2974 	put_task_struct(task);
2975 
2976 	return ret;
2977 }
2978 
2979 static ssize_t proc_coredump_filter_write(struct file *file,
2980 					  const char __user *buf,
2981 					  size_t count,
2982 					  loff_t *ppos)
2983 {
2984 	struct task_struct *task;
2985 	struct mm_struct *mm;
2986 	unsigned int val;
2987 	int ret;
2988 	int i;
2989 	unsigned long mask;
2990 
2991 	ret = kstrtouint_from_user(buf, count, 0, &val);
2992 	if (ret < 0)
2993 		return ret;
2994 
2995 	ret = -ESRCH;
2996 	task = get_proc_task(file_inode(file));
2997 	if (!task)
2998 		goto out_no_task;
2999 
3000 	mm = get_task_mm(task);
3001 	if (!mm)
3002 		goto out_no_mm;
3003 	ret = 0;
3004 
3005 	for (i = 0, mask = 1; i < MMF_DUMP_FILTER_BITS; i++, mask <<= 1) {
3006 		if (val & mask)
3007 			set_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags);
3008 		else
3009 			clear_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags);
3010 	}
3011 
3012 	mmput(mm);
3013  out_no_mm:
3014 	put_task_struct(task);
3015  out_no_task:
3016 	if (ret < 0)
3017 		return ret;
3018 	return count;
3019 }
3020 
3021 static const struct file_operations proc_coredump_filter_operations = {
3022 	.read		= proc_coredump_filter_read,
3023 	.write		= proc_coredump_filter_write,
3024 	.llseek		= generic_file_llseek,
3025 };
3026 #endif
3027 
3028 #ifdef CONFIG_TASK_IO_ACCOUNTING
3029 static int do_io_accounting(struct task_struct *task, struct seq_file *m, int whole)
3030 {
3031 	struct task_io_accounting acct;
3032 	int result;
3033 
3034 	result = down_read_killable(&task->signal->exec_update_lock);
3035 	if (result)
3036 		return result;
3037 
3038 	if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS)) {
3039 		result = -EACCES;
3040 		goto out_unlock;
3041 	}
3042 
3043 	if (whole) {
3044 		struct signal_struct *sig = task->signal;
3045 		struct task_struct *t;
3046 		unsigned int seq = 1;
3047 		unsigned long flags;
3048 
3049 		rcu_read_lock();
3050 		do {
3051 			seq++; /* 2 on the 1st/lockless path, otherwise odd */
3052 			flags = read_seqbegin_or_lock_irqsave(&sig->stats_lock, &seq);
3053 
3054 			acct = sig->ioac;
3055 			__for_each_thread(sig, t)
3056 				task_io_accounting_add(&acct, &t->ioac);
3057 
3058 		} while (need_seqretry(&sig->stats_lock, seq));
3059 		done_seqretry_irqrestore(&sig->stats_lock, seq, flags);
3060 		rcu_read_unlock();
3061 	} else {
3062 		acct = task->ioac;
3063 	}
3064 
3065 	seq_printf(m,
3066 		   "rchar: %llu\n"
3067 		   "wchar: %llu\n"
3068 		   "syscr: %llu\n"
3069 		   "syscw: %llu\n"
3070 		   "read_bytes: %llu\n"
3071 		   "write_bytes: %llu\n"
3072 		   "cancelled_write_bytes: %llu\n",
3073 		   (unsigned long long)acct.rchar,
3074 		   (unsigned long long)acct.wchar,
3075 		   (unsigned long long)acct.syscr,
3076 		   (unsigned long long)acct.syscw,
3077 		   (unsigned long long)acct.read_bytes,
3078 		   (unsigned long long)acct.write_bytes,
3079 		   (unsigned long long)acct.cancelled_write_bytes);
3080 	result = 0;
3081 
3082 out_unlock:
3083 	up_read(&task->signal->exec_update_lock);
3084 	return result;
3085 }
3086 
3087 static int proc_tid_io_accounting(struct seq_file *m, struct pid_namespace *ns,
3088 				  struct pid *pid, struct task_struct *task)
3089 {
3090 	return do_io_accounting(task, m, 0);
3091 }
3092 
3093 static int proc_tgid_io_accounting(struct seq_file *m, struct pid_namespace *ns,
3094 				   struct pid *pid, struct task_struct *task)
3095 {
3096 	return do_io_accounting(task, m, 1);
3097 }
3098 #endif /* CONFIG_TASK_IO_ACCOUNTING */
3099 
3100 #ifdef CONFIG_USER_NS
3101 static int proc_id_map_open(struct inode *inode, struct file *file,
3102 	const struct seq_operations *seq_ops)
3103 {
3104 	struct user_namespace *ns = NULL;
3105 	struct task_struct *task;
3106 	struct seq_file *seq;
3107 	int ret = -EINVAL;
3108 
3109 	task = get_proc_task(inode);
3110 	if (task) {
3111 		rcu_read_lock();
3112 		ns = get_user_ns(task_cred_xxx(task, user_ns));
3113 		rcu_read_unlock();
3114 		put_task_struct(task);
3115 	}
3116 	if (!ns)
3117 		goto err;
3118 
3119 	ret = seq_open(file, seq_ops);
3120 	if (ret)
3121 		goto err_put_ns;
3122 
3123 	seq = file->private_data;
3124 	seq->private = ns;
3125 
3126 	return 0;
3127 err_put_ns:
3128 	put_user_ns(ns);
3129 err:
3130 	return ret;
3131 }
3132 
3133 static int proc_id_map_release(struct inode *inode, struct file *file)
3134 {
3135 	struct seq_file *seq = file->private_data;
3136 	struct user_namespace *ns = seq->private;
3137 	put_user_ns(ns);
3138 	return seq_release(inode, file);
3139 }
3140 
3141 static int proc_uid_map_open(struct inode *inode, struct file *file)
3142 {
3143 	return proc_id_map_open(inode, file, &proc_uid_seq_operations);
3144 }
3145 
3146 static int proc_gid_map_open(struct inode *inode, struct file *file)
3147 {
3148 	return proc_id_map_open(inode, file, &proc_gid_seq_operations);
3149 }
3150 
3151 static int proc_projid_map_open(struct inode *inode, struct file *file)
3152 {
3153 	return proc_id_map_open(inode, file, &proc_projid_seq_operations);
3154 }
3155 
3156 static const struct file_operations proc_uid_map_operations = {
3157 	.open		= proc_uid_map_open,
3158 	.write		= proc_uid_map_write,
3159 	.read		= seq_read,
3160 	.llseek		= seq_lseek,
3161 	.release	= proc_id_map_release,
3162 };
3163 
3164 static const struct file_operations proc_gid_map_operations = {
3165 	.open		= proc_gid_map_open,
3166 	.write		= proc_gid_map_write,
3167 	.read		= seq_read,
3168 	.llseek		= seq_lseek,
3169 	.release	= proc_id_map_release,
3170 };
3171 
3172 static const struct file_operations proc_projid_map_operations = {
3173 	.open		= proc_projid_map_open,
3174 	.write		= proc_projid_map_write,
3175 	.read		= seq_read,
3176 	.llseek		= seq_lseek,
3177 	.release	= proc_id_map_release,
3178 };
3179 
3180 static int proc_setgroups_open(struct inode *inode, struct file *file)
3181 {
3182 	struct user_namespace *ns = NULL;
3183 	struct task_struct *task;
3184 	int ret;
3185 
3186 	ret = -ESRCH;
3187 	task = get_proc_task(inode);
3188 	if (task) {
3189 		rcu_read_lock();
3190 		ns = get_user_ns(task_cred_xxx(task, user_ns));
3191 		rcu_read_unlock();
3192 		put_task_struct(task);
3193 	}
3194 	if (!ns)
3195 		goto err;
3196 
3197 	if (file->f_mode & FMODE_WRITE) {
3198 		ret = -EACCES;
3199 		if (!ns_capable(ns, CAP_SYS_ADMIN))
3200 			goto err_put_ns;
3201 	}
3202 
3203 	ret = single_open(file, &proc_setgroups_show, ns);
3204 	if (ret)
3205 		goto err_put_ns;
3206 
3207 	return 0;
3208 err_put_ns:
3209 	put_user_ns(ns);
3210 err:
3211 	return ret;
3212 }
3213 
3214 static int proc_setgroups_release(struct inode *inode, struct file *file)
3215 {
3216 	struct seq_file *seq = file->private_data;
3217 	struct user_namespace *ns = seq->private;
3218 	int ret = single_release(inode, file);
3219 	put_user_ns(ns);
3220 	return ret;
3221 }
3222 
3223 static const struct file_operations proc_setgroups_operations = {
3224 	.open		= proc_setgroups_open,
3225 	.write		= proc_setgroups_write,
3226 	.read		= seq_read,
3227 	.llseek		= seq_lseek,
3228 	.release	= proc_setgroups_release,
3229 };
3230 #endif /* CONFIG_USER_NS */
3231 
3232 static int proc_pid_personality(struct seq_file *m, struct pid_namespace *ns,
3233 				struct pid *pid, struct task_struct *task)
3234 {
3235 	int err = lock_trace(task);
3236 	if (!err) {
3237 		seq_printf(m, "%08x\n", task->personality);
3238 		unlock_trace(task);
3239 	}
3240 	return err;
3241 }
3242 
3243 #ifdef CONFIG_LIVEPATCH
3244 static int proc_pid_patch_state(struct seq_file *m, struct pid_namespace *ns,
3245 				struct pid *pid, struct task_struct *task)
3246 {
3247 	seq_printf(m, "%d\n", task->patch_state);
3248 	return 0;
3249 }
3250 #endif /* CONFIG_LIVEPATCH */
3251 
3252 #ifdef CONFIG_KSM
3253 static int proc_pid_ksm_merging_pages(struct seq_file *m, struct pid_namespace *ns,
3254 				struct pid *pid, struct task_struct *task)
3255 {
3256 	struct mm_struct *mm;
3257 
3258 	mm = get_task_mm(task);
3259 	if (mm) {
3260 		seq_printf(m, "%lu\n", mm->ksm_merging_pages);
3261 		mmput(mm);
3262 	}
3263 
3264 	return 0;
3265 }
3266 static int proc_pid_ksm_stat(struct seq_file *m, struct pid_namespace *ns,
3267 				struct pid *pid, struct task_struct *task)
3268 {
3269 	struct mm_struct *mm;
3270 
3271 	mm = get_task_mm(task);
3272 	if (mm) {
3273 		seq_printf(m, "ksm_rmap_items %lu\n", mm->ksm_rmap_items);
3274 		seq_printf(m, "ksm_zero_pages %ld\n", mm_ksm_zero_pages(mm));
3275 		seq_printf(m, "ksm_merging_pages %lu\n", mm->ksm_merging_pages);
3276 		seq_printf(m, "ksm_process_profit %ld\n", ksm_process_profit(mm));
3277 		mmput(mm);
3278 	}
3279 
3280 	return 0;
3281 }
3282 #endif /* CONFIG_KSM */
3283 
3284 #ifdef CONFIG_STACKLEAK_METRICS
3285 static int proc_stack_depth(struct seq_file *m, struct pid_namespace *ns,
3286 				struct pid *pid, struct task_struct *task)
3287 {
3288 	unsigned long prev_depth = THREAD_SIZE -
3289 				(task->prev_lowest_stack & (THREAD_SIZE - 1));
3290 	unsigned long depth = THREAD_SIZE -
3291 				(task->lowest_stack & (THREAD_SIZE - 1));
3292 
3293 	seq_printf(m, "previous stack depth: %lu\nstack depth: %lu\n",
3294 							prev_depth, depth);
3295 	return 0;
3296 }
3297 #endif /* CONFIG_STACKLEAK_METRICS */
3298 
3299 /*
3300  * Thread groups
3301  */
3302 static const struct file_operations proc_task_operations;
3303 static const struct inode_operations proc_task_inode_operations;
3304 
3305 static const struct pid_entry tgid_base_stuff[] = {
3306 	DIR("task",       S_IRUGO|S_IXUGO, proc_task_inode_operations, proc_task_operations),
3307 	DIR("fd",         S_IRUSR|S_IXUSR, proc_fd_inode_operations, proc_fd_operations),
3308 	DIR("map_files",  S_IRUSR|S_IXUSR, proc_map_files_inode_operations, proc_map_files_operations),
3309 	DIR("fdinfo",     S_IRUGO|S_IXUGO, proc_fdinfo_inode_operations, proc_fdinfo_operations),
3310 	DIR("ns",	  S_IRUSR|S_IXUGO, proc_ns_dir_inode_operations, proc_ns_dir_operations),
3311 #ifdef CONFIG_NET
3312 	DIR("net",        S_IRUGO|S_IXUGO, proc_net_inode_operations, proc_net_operations),
3313 #endif
3314 	REG("environ",    S_IRUSR, proc_environ_operations),
3315 	REG("auxv",       S_IRUSR, proc_auxv_operations),
3316 	ONE("status",     S_IRUGO, proc_pid_status),
3317 	ONE("personality", S_IRUSR, proc_pid_personality),
3318 	ONE("limits",	  S_IRUGO, proc_pid_limits),
3319 #ifdef CONFIG_SCHED_DEBUG
3320 	REG("sched",      S_IRUGO|S_IWUSR, proc_pid_sched_operations),
3321 #endif
3322 #ifdef CONFIG_SCHED_AUTOGROUP
3323 	REG("autogroup",  S_IRUGO|S_IWUSR, proc_pid_sched_autogroup_operations),
3324 #endif
3325 #ifdef CONFIG_TIME_NS
3326 	REG("timens_offsets",  S_IRUGO|S_IWUSR, proc_timens_offsets_operations),
3327 #endif
3328 	REG("comm",      S_IRUGO|S_IWUSR, proc_pid_set_comm_operations),
3329 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK
3330 	ONE("syscall",    S_IRUSR, proc_pid_syscall),
3331 #endif
3332 	REG("cmdline",    S_IRUGO, proc_pid_cmdline_ops),
3333 	ONE("stat",       S_IRUGO, proc_tgid_stat),
3334 	ONE("statm",      S_IRUGO, proc_pid_statm),
3335 	REG("maps",       S_IRUGO, proc_pid_maps_operations),
3336 #ifdef CONFIG_NUMA
3337 	REG("numa_maps",  S_IRUGO, proc_pid_numa_maps_operations),
3338 #endif
3339 	REG("mem",        S_IRUSR|S_IWUSR, proc_mem_operations),
3340 	LNK("cwd",        proc_cwd_link),
3341 	LNK("root",       proc_root_link),
3342 	LNK("exe",        proc_exe_link),
3343 	REG("mounts",     S_IRUGO, proc_mounts_operations),
3344 	REG("mountinfo",  S_IRUGO, proc_mountinfo_operations),
3345 	REG("mountstats", S_IRUSR, proc_mountstats_operations),
3346 #ifdef CONFIG_PROC_PAGE_MONITOR
3347 	REG("clear_refs", S_IWUSR, proc_clear_refs_operations),
3348 	REG("smaps",      S_IRUGO, proc_pid_smaps_operations),
3349 	REG("smaps_rollup", S_IRUGO, proc_pid_smaps_rollup_operations),
3350 	REG("pagemap",    S_IRUSR, proc_pagemap_operations),
3351 #endif
3352 #ifdef CONFIG_SECURITY
3353 	DIR("attr",       S_IRUGO|S_IXUGO, proc_attr_dir_inode_operations, proc_attr_dir_operations),
3354 #endif
3355 #ifdef CONFIG_KALLSYMS
3356 	ONE("wchan",      S_IRUGO, proc_pid_wchan),
3357 #endif
3358 #ifdef CONFIG_STACKTRACE
3359 	ONE("stack",      S_IRUSR, proc_pid_stack),
3360 #endif
3361 #ifdef CONFIG_SCHED_INFO
3362 	ONE("schedstat",  S_IRUGO, proc_pid_schedstat),
3363 #endif
3364 #ifdef CONFIG_LATENCYTOP
3365 	REG("latency",  S_IRUGO, proc_lstats_operations),
3366 #endif
3367 #ifdef CONFIG_PROC_PID_CPUSET
3368 	ONE("cpuset",     S_IRUGO, proc_cpuset_show),
3369 #endif
3370 #ifdef CONFIG_CGROUPS
3371 	ONE("cgroup",  S_IRUGO, proc_cgroup_show),
3372 #endif
3373 #ifdef CONFIG_PROC_CPU_RESCTRL
3374 	ONE("cpu_resctrl_groups", S_IRUGO, proc_resctrl_show),
3375 #endif
3376 	ONE("oom_score",  S_IRUGO, proc_oom_score),
3377 	REG("oom_adj",    S_IRUGO|S_IWUSR, proc_oom_adj_operations),
3378 	REG("oom_score_adj", S_IRUGO|S_IWUSR, proc_oom_score_adj_operations),
3379 #ifdef CONFIG_AUDIT
3380 	REG("loginuid",   S_IWUSR|S_IRUGO, proc_loginuid_operations),
3381 	REG("sessionid",  S_IRUGO, proc_sessionid_operations),
3382 #endif
3383 #ifdef CONFIG_FAULT_INJECTION
3384 	REG("make-it-fail", S_IRUGO|S_IWUSR, proc_fault_inject_operations),
3385 	REG("fail-nth", 0644, proc_fail_nth_operations),
3386 #endif
3387 #ifdef CONFIG_ELF_CORE
3388 	REG("coredump_filter", S_IRUGO|S_IWUSR, proc_coredump_filter_operations),
3389 #endif
3390 #ifdef CONFIG_TASK_IO_ACCOUNTING
3391 	ONE("io",	S_IRUSR, proc_tgid_io_accounting),
3392 #endif
3393 #ifdef CONFIG_USER_NS
3394 	REG("uid_map",    S_IRUGO|S_IWUSR, proc_uid_map_operations),
3395 	REG("gid_map",    S_IRUGO|S_IWUSR, proc_gid_map_operations),
3396 	REG("projid_map", S_IRUGO|S_IWUSR, proc_projid_map_operations),
3397 	REG("setgroups",  S_IRUGO|S_IWUSR, proc_setgroups_operations),
3398 #endif
3399 #if defined(CONFIG_CHECKPOINT_RESTORE) && defined(CONFIG_POSIX_TIMERS)
3400 	REG("timers",	  S_IRUGO, proc_timers_operations),
3401 #endif
3402 	REG("timerslack_ns", S_IRUGO|S_IWUGO, proc_pid_set_timerslack_ns_operations),
3403 #ifdef CONFIG_LIVEPATCH
3404 	ONE("patch_state",  S_IRUSR, proc_pid_patch_state),
3405 #endif
3406 #ifdef CONFIG_STACKLEAK_METRICS
3407 	ONE("stack_depth", S_IRUGO, proc_stack_depth),
3408 #endif
3409 #ifdef CONFIG_PROC_PID_ARCH_STATUS
3410 	ONE("arch_status", S_IRUGO, proc_pid_arch_status),
3411 #endif
3412 #ifdef CONFIG_SECCOMP_CACHE_DEBUG
3413 	ONE("seccomp_cache", S_IRUSR, proc_pid_seccomp_cache),
3414 #endif
3415 #ifdef CONFIG_KSM
3416 	ONE("ksm_merging_pages",  S_IRUSR, proc_pid_ksm_merging_pages),
3417 	ONE("ksm_stat",  S_IRUSR, proc_pid_ksm_stat),
3418 #endif
3419 };
3420 
3421 static int proc_tgid_base_readdir(struct file *file, struct dir_context *ctx)
3422 {
3423 	return proc_pident_readdir(file, ctx,
3424 				   tgid_base_stuff, ARRAY_SIZE(tgid_base_stuff));
3425 }
3426 
3427 static const struct file_operations proc_tgid_base_operations = {
3428 	.read		= generic_read_dir,
3429 	.iterate_shared	= proc_tgid_base_readdir,
3430 	.llseek		= generic_file_llseek,
3431 };
3432 
3433 struct pid *tgid_pidfd_to_pid(const struct file *file)
3434 {
3435 	if (file->f_op != &proc_tgid_base_operations)
3436 		return ERR_PTR(-EBADF);
3437 
3438 	return proc_pid(file_inode(file));
3439 }
3440 
3441 static struct dentry *proc_tgid_base_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
3442 {
3443 	return proc_pident_lookup(dir, dentry,
3444 				  tgid_base_stuff,
3445 				  tgid_base_stuff + ARRAY_SIZE(tgid_base_stuff));
3446 }
3447 
3448 static const struct inode_operations proc_tgid_base_inode_operations = {
3449 	.lookup		= proc_tgid_base_lookup,
3450 	.getattr	= pid_getattr,
3451 	.setattr	= proc_setattr,
3452 	.permission	= proc_pid_permission,
3453 };
3454 
3455 /**
3456  * proc_flush_pid -  Remove dcache entries for @pid from the /proc dcache.
3457  * @pid: pid that should be flushed.
3458  *
3459  * This function walks a list of inodes (that belong to any proc
3460  * filesystem) that are attached to the pid and flushes them from
3461  * the dentry cache.
3462  *
3463  * It is safe and reasonable to cache /proc entries for a task until
3464  * that task exits.  After that they just clog up the dcache with
3465  * useless entries, possibly causing useful dcache entries to be
3466  * flushed instead.  This routine is provided to flush those useless
3467  * dcache entries when a process is reaped.
3468  *
3469  * NOTE: This routine is just an optimization so it does not guarantee
3470  *       that no dcache entries will exist after a process is reaped
3471  *       it just makes it very unlikely that any will persist.
3472  */
3473 
3474 void proc_flush_pid(struct pid *pid)
3475 {
3476 	proc_invalidate_siblings_dcache(&pid->inodes, &pid->lock);
3477 }
3478 
3479 static struct dentry *proc_pid_instantiate(struct dentry * dentry,
3480 				   struct task_struct *task, const void *ptr)
3481 {
3482 	struct inode *inode;
3483 
3484 	inode = proc_pid_make_base_inode(dentry->d_sb, task,
3485 					 S_IFDIR | S_IRUGO | S_IXUGO);
3486 	if (!inode)
3487 		return ERR_PTR(-ENOENT);
3488 
3489 	inode->i_op = &proc_tgid_base_inode_operations;
3490 	inode->i_fop = &proc_tgid_base_operations;
3491 	inode->i_flags|=S_IMMUTABLE;
3492 
3493 	set_nlink(inode, nlink_tgid);
3494 	pid_update_inode(task, inode);
3495 
3496 	d_set_d_op(dentry, &pid_dentry_operations);
3497 	return d_splice_alias(inode, dentry);
3498 }
3499 
3500 struct dentry *proc_pid_lookup(struct dentry *dentry, unsigned int flags)
3501 {
3502 	struct task_struct *task;
3503 	unsigned tgid;
3504 	struct proc_fs_info *fs_info;
3505 	struct pid_namespace *ns;
3506 	struct dentry *result = ERR_PTR(-ENOENT);
3507 
3508 	tgid = name_to_int(&dentry->d_name);
3509 	if (tgid == ~0U)
3510 		goto out;
3511 
3512 	fs_info = proc_sb_info(dentry->d_sb);
3513 	ns = fs_info->pid_ns;
3514 	rcu_read_lock();
3515 	task = find_task_by_pid_ns(tgid, ns);
3516 	if (task)
3517 		get_task_struct(task);
3518 	rcu_read_unlock();
3519 	if (!task)
3520 		goto out;
3521 
3522 	/* Limit procfs to only ptraceable tasks */
3523 	if (fs_info->hide_pid == HIDEPID_NOT_PTRACEABLE) {
3524 		if (!has_pid_permissions(fs_info, task, HIDEPID_NO_ACCESS))
3525 			goto out_put_task;
3526 	}
3527 
3528 	result = proc_pid_instantiate(dentry, task, NULL);
3529 out_put_task:
3530 	put_task_struct(task);
3531 out:
3532 	return result;
3533 }
3534 
3535 /*
3536  * Find the first task with tgid >= tgid
3537  *
3538  */
3539 struct tgid_iter {
3540 	unsigned int tgid;
3541 	struct task_struct *task;
3542 };
3543 static struct tgid_iter next_tgid(struct pid_namespace *ns, struct tgid_iter iter)
3544 {
3545 	struct pid *pid;
3546 
3547 	if (iter.task)
3548 		put_task_struct(iter.task);
3549 	rcu_read_lock();
3550 retry:
3551 	iter.task = NULL;
3552 	pid = find_ge_pid(iter.tgid, ns);
3553 	if (pid) {
3554 		iter.tgid = pid_nr_ns(pid, ns);
3555 		iter.task = pid_task(pid, PIDTYPE_TGID);
3556 		if (!iter.task) {
3557 			iter.tgid += 1;
3558 			goto retry;
3559 		}
3560 		get_task_struct(iter.task);
3561 	}
3562 	rcu_read_unlock();
3563 	return iter;
3564 }
3565 
3566 #define TGID_OFFSET (FIRST_PROCESS_ENTRY + 2)
3567 
3568 /* for the /proc/ directory itself, after non-process stuff has been done */
3569 int proc_pid_readdir(struct file *file, struct dir_context *ctx)
3570 {
3571 	struct tgid_iter iter;
3572 	struct proc_fs_info *fs_info = proc_sb_info(file_inode(file)->i_sb);
3573 	struct pid_namespace *ns = proc_pid_ns(file_inode(file)->i_sb);
3574 	loff_t pos = ctx->pos;
3575 
3576 	if (pos >= PID_MAX_LIMIT + TGID_OFFSET)
3577 		return 0;
3578 
3579 	if (pos == TGID_OFFSET - 2) {
3580 		struct inode *inode = d_inode(fs_info->proc_self);
3581 		if (!dir_emit(ctx, "self", 4, inode->i_ino, DT_LNK))
3582 			return 0;
3583 		ctx->pos = pos = pos + 1;
3584 	}
3585 	if (pos == TGID_OFFSET - 1) {
3586 		struct inode *inode = d_inode(fs_info->proc_thread_self);
3587 		if (!dir_emit(ctx, "thread-self", 11, inode->i_ino, DT_LNK))
3588 			return 0;
3589 		ctx->pos = pos = pos + 1;
3590 	}
3591 	iter.tgid = pos - TGID_OFFSET;
3592 	iter.task = NULL;
3593 	for (iter = next_tgid(ns, iter);
3594 	     iter.task;
3595 	     iter.tgid += 1, iter = next_tgid(ns, iter)) {
3596 		char name[10 + 1];
3597 		unsigned int len;
3598 
3599 		cond_resched();
3600 		if (!has_pid_permissions(fs_info, iter.task, HIDEPID_INVISIBLE))
3601 			continue;
3602 
3603 		len = snprintf(name, sizeof(name), "%u", iter.tgid);
3604 		ctx->pos = iter.tgid + TGID_OFFSET;
3605 		if (!proc_fill_cache(file, ctx, name, len,
3606 				     proc_pid_instantiate, iter.task, NULL)) {
3607 			put_task_struct(iter.task);
3608 			return 0;
3609 		}
3610 	}
3611 	ctx->pos = PID_MAX_LIMIT + TGID_OFFSET;
3612 	return 0;
3613 }
3614 
3615 /*
3616  * proc_tid_comm_permission is a special permission function exclusively
3617  * used for the node /proc/<pid>/task/<tid>/comm.
3618  * It bypasses generic permission checks in the case where a task of the same
3619  * task group attempts to access the node.
3620  * The rationale behind this is that glibc and bionic access this node for
3621  * cross thread naming (pthread_set/getname_np(!self)). However, if
3622  * PR_SET_DUMPABLE gets set to 0 this node among others becomes uid=0 gid=0,
3623  * which locks out the cross thread naming implementation.
3624  * This function makes sure that the node is always accessible for members of
3625  * same thread group.
3626  */
3627 static int proc_tid_comm_permission(struct mnt_idmap *idmap,
3628 				    struct inode *inode, int mask)
3629 {
3630 	bool is_same_tgroup;
3631 	struct task_struct *task;
3632 
3633 	task = get_proc_task(inode);
3634 	if (!task)
3635 		return -ESRCH;
3636 	is_same_tgroup = same_thread_group(current, task);
3637 	put_task_struct(task);
3638 
3639 	if (likely(is_same_tgroup && !(mask & MAY_EXEC))) {
3640 		/* This file (/proc/<pid>/task/<tid>/comm) can always be
3641 		 * read or written by the members of the corresponding
3642 		 * thread group.
3643 		 */
3644 		return 0;
3645 	}
3646 
3647 	return generic_permission(&nop_mnt_idmap, inode, mask);
3648 }
3649 
3650 static const struct inode_operations proc_tid_comm_inode_operations = {
3651 		.setattr	= proc_setattr,
3652 		.permission	= proc_tid_comm_permission,
3653 };
3654 
3655 /*
3656  * Tasks
3657  */
3658 static const struct pid_entry tid_base_stuff[] = {
3659 	DIR("fd",        S_IRUSR|S_IXUSR, proc_fd_inode_operations, proc_fd_operations),
3660 	DIR("fdinfo",    S_IRUGO|S_IXUGO, proc_fdinfo_inode_operations, proc_fdinfo_operations),
3661 	DIR("ns",	 S_IRUSR|S_IXUGO, proc_ns_dir_inode_operations, proc_ns_dir_operations),
3662 #ifdef CONFIG_NET
3663 	DIR("net",        S_IRUGO|S_IXUGO, proc_net_inode_operations, proc_net_operations),
3664 #endif
3665 	REG("environ",   S_IRUSR, proc_environ_operations),
3666 	REG("auxv",      S_IRUSR, proc_auxv_operations),
3667 	ONE("status",    S_IRUGO, proc_pid_status),
3668 	ONE("personality", S_IRUSR, proc_pid_personality),
3669 	ONE("limits",	 S_IRUGO, proc_pid_limits),
3670 #ifdef CONFIG_SCHED_DEBUG
3671 	REG("sched",     S_IRUGO|S_IWUSR, proc_pid_sched_operations),
3672 #endif
3673 	NOD("comm",      S_IFREG|S_IRUGO|S_IWUSR,
3674 			 &proc_tid_comm_inode_operations,
3675 			 &proc_pid_set_comm_operations, {}),
3676 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK
3677 	ONE("syscall",   S_IRUSR, proc_pid_syscall),
3678 #endif
3679 	REG("cmdline",   S_IRUGO, proc_pid_cmdline_ops),
3680 	ONE("stat",      S_IRUGO, proc_tid_stat),
3681 	ONE("statm",     S_IRUGO, proc_pid_statm),
3682 	REG("maps",      S_IRUGO, proc_pid_maps_operations),
3683 #ifdef CONFIG_PROC_CHILDREN
3684 	REG("children",  S_IRUGO, proc_tid_children_operations),
3685 #endif
3686 #ifdef CONFIG_NUMA
3687 	REG("numa_maps", S_IRUGO, proc_pid_numa_maps_operations),
3688 #endif
3689 	REG("mem",       S_IRUSR|S_IWUSR, proc_mem_operations),
3690 	LNK("cwd",       proc_cwd_link),
3691 	LNK("root",      proc_root_link),
3692 	LNK("exe",       proc_exe_link),
3693 	REG("mounts",    S_IRUGO, proc_mounts_operations),
3694 	REG("mountinfo",  S_IRUGO, proc_mountinfo_operations),
3695 #ifdef CONFIG_PROC_PAGE_MONITOR
3696 	REG("clear_refs", S_IWUSR, proc_clear_refs_operations),
3697 	REG("smaps",     S_IRUGO, proc_pid_smaps_operations),
3698 	REG("smaps_rollup", S_IRUGO, proc_pid_smaps_rollup_operations),
3699 	REG("pagemap",    S_IRUSR, proc_pagemap_operations),
3700 #endif
3701 #ifdef CONFIG_SECURITY
3702 	DIR("attr",      S_IRUGO|S_IXUGO, proc_attr_dir_inode_operations, proc_attr_dir_operations),
3703 #endif
3704 #ifdef CONFIG_KALLSYMS
3705 	ONE("wchan",     S_IRUGO, proc_pid_wchan),
3706 #endif
3707 #ifdef CONFIG_STACKTRACE
3708 	ONE("stack",      S_IRUSR, proc_pid_stack),
3709 #endif
3710 #ifdef CONFIG_SCHED_INFO
3711 	ONE("schedstat", S_IRUGO, proc_pid_schedstat),
3712 #endif
3713 #ifdef CONFIG_LATENCYTOP
3714 	REG("latency",  S_IRUGO, proc_lstats_operations),
3715 #endif
3716 #ifdef CONFIG_PROC_PID_CPUSET
3717 	ONE("cpuset",    S_IRUGO, proc_cpuset_show),
3718 #endif
3719 #ifdef CONFIG_CGROUPS
3720 	ONE("cgroup",  S_IRUGO, proc_cgroup_show),
3721 #endif
3722 #ifdef CONFIG_PROC_CPU_RESCTRL
3723 	ONE("cpu_resctrl_groups", S_IRUGO, proc_resctrl_show),
3724 #endif
3725 	ONE("oom_score", S_IRUGO, proc_oom_score),
3726 	REG("oom_adj",   S_IRUGO|S_IWUSR, proc_oom_adj_operations),
3727 	REG("oom_score_adj", S_IRUGO|S_IWUSR, proc_oom_score_adj_operations),
3728 #ifdef CONFIG_AUDIT
3729 	REG("loginuid",  S_IWUSR|S_IRUGO, proc_loginuid_operations),
3730 	REG("sessionid",  S_IRUGO, proc_sessionid_operations),
3731 #endif
3732 #ifdef CONFIG_FAULT_INJECTION
3733 	REG("make-it-fail", S_IRUGO|S_IWUSR, proc_fault_inject_operations),
3734 	REG("fail-nth", 0644, proc_fail_nth_operations),
3735 #endif
3736 #ifdef CONFIG_TASK_IO_ACCOUNTING
3737 	ONE("io",	S_IRUSR, proc_tid_io_accounting),
3738 #endif
3739 #ifdef CONFIG_USER_NS
3740 	REG("uid_map",    S_IRUGO|S_IWUSR, proc_uid_map_operations),
3741 	REG("gid_map",    S_IRUGO|S_IWUSR, proc_gid_map_operations),
3742 	REG("projid_map", S_IRUGO|S_IWUSR, proc_projid_map_operations),
3743 	REG("setgroups",  S_IRUGO|S_IWUSR, proc_setgroups_operations),
3744 #endif
3745 #ifdef CONFIG_LIVEPATCH
3746 	ONE("patch_state",  S_IRUSR, proc_pid_patch_state),
3747 #endif
3748 #ifdef CONFIG_PROC_PID_ARCH_STATUS
3749 	ONE("arch_status", S_IRUGO, proc_pid_arch_status),
3750 #endif
3751 #ifdef CONFIG_SECCOMP_CACHE_DEBUG
3752 	ONE("seccomp_cache", S_IRUSR, proc_pid_seccomp_cache),
3753 #endif
3754 #ifdef CONFIG_KSM
3755 	ONE("ksm_merging_pages",  S_IRUSR, proc_pid_ksm_merging_pages),
3756 	ONE("ksm_stat",  S_IRUSR, proc_pid_ksm_stat),
3757 #endif
3758 };
3759 
3760 static int proc_tid_base_readdir(struct file *file, struct dir_context *ctx)
3761 {
3762 	return proc_pident_readdir(file, ctx,
3763 				   tid_base_stuff, ARRAY_SIZE(tid_base_stuff));
3764 }
3765 
3766 static struct dentry *proc_tid_base_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
3767 {
3768 	return proc_pident_lookup(dir, dentry,
3769 				  tid_base_stuff,
3770 				  tid_base_stuff + ARRAY_SIZE(tid_base_stuff));
3771 }
3772 
3773 static const struct file_operations proc_tid_base_operations = {
3774 	.read		= generic_read_dir,
3775 	.iterate_shared	= proc_tid_base_readdir,
3776 	.llseek		= generic_file_llseek,
3777 };
3778 
3779 static const struct inode_operations proc_tid_base_inode_operations = {
3780 	.lookup		= proc_tid_base_lookup,
3781 	.getattr	= pid_getattr,
3782 	.setattr	= proc_setattr,
3783 };
3784 
3785 static struct dentry *proc_task_instantiate(struct dentry *dentry,
3786 	struct task_struct *task, const void *ptr)
3787 {
3788 	struct inode *inode;
3789 	inode = proc_pid_make_base_inode(dentry->d_sb, task,
3790 					 S_IFDIR | S_IRUGO | S_IXUGO);
3791 	if (!inode)
3792 		return ERR_PTR(-ENOENT);
3793 
3794 	inode->i_op = &proc_tid_base_inode_operations;
3795 	inode->i_fop = &proc_tid_base_operations;
3796 	inode->i_flags |= S_IMMUTABLE;
3797 
3798 	set_nlink(inode, nlink_tid);
3799 	pid_update_inode(task, inode);
3800 
3801 	d_set_d_op(dentry, &pid_dentry_operations);
3802 	return d_splice_alias(inode, dentry);
3803 }
3804 
3805 static struct dentry *proc_task_lookup(struct inode *dir, struct dentry * dentry, unsigned int flags)
3806 {
3807 	struct task_struct *task;
3808 	struct task_struct *leader = get_proc_task(dir);
3809 	unsigned tid;
3810 	struct proc_fs_info *fs_info;
3811 	struct pid_namespace *ns;
3812 	struct dentry *result = ERR_PTR(-ENOENT);
3813 
3814 	if (!leader)
3815 		goto out_no_task;
3816 
3817 	tid = name_to_int(&dentry->d_name);
3818 	if (tid == ~0U)
3819 		goto out;
3820 
3821 	fs_info = proc_sb_info(dentry->d_sb);
3822 	ns = fs_info->pid_ns;
3823 	rcu_read_lock();
3824 	task = find_task_by_pid_ns(tid, ns);
3825 	if (task)
3826 		get_task_struct(task);
3827 	rcu_read_unlock();
3828 	if (!task)
3829 		goto out;
3830 	if (!same_thread_group(leader, task))
3831 		goto out_drop_task;
3832 
3833 	result = proc_task_instantiate(dentry, task, NULL);
3834 out_drop_task:
3835 	put_task_struct(task);
3836 out:
3837 	put_task_struct(leader);
3838 out_no_task:
3839 	return result;
3840 }
3841 
3842 /*
3843  * Find the first tid of a thread group to return to user space.
3844  *
3845  * Usually this is just the thread group leader, but if the users
3846  * buffer was too small or there was a seek into the middle of the
3847  * directory we have more work todo.
3848  *
3849  * In the case of a short read we start with find_task_by_pid.
3850  *
3851  * In the case of a seek we start with the leader and walk nr
3852  * threads past it.
3853  */
3854 static struct task_struct *first_tid(struct pid *pid, int tid, loff_t f_pos,
3855 					struct pid_namespace *ns)
3856 {
3857 	struct task_struct *pos, *task;
3858 	unsigned long nr = f_pos;
3859 
3860 	if (nr != f_pos)	/* 32bit overflow? */
3861 		return NULL;
3862 
3863 	rcu_read_lock();
3864 	task = pid_task(pid, PIDTYPE_PID);
3865 	if (!task)
3866 		goto fail;
3867 
3868 	/* Attempt to start with the tid of a thread */
3869 	if (tid && nr) {
3870 		pos = find_task_by_pid_ns(tid, ns);
3871 		if (pos && same_thread_group(pos, task))
3872 			goto found;
3873 	}
3874 
3875 	/* If nr exceeds the number of threads there is nothing todo */
3876 	if (nr >= get_nr_threads(task))
3877 		goto fail;
3878 
3879 	/* If we haven't found our starting place yet start
3880 	 * with the leader and walk nr threads forward.
3881 	 */
3882 	for_each_thread(task, pos) {
3883 		if (!nr--)
3884 			goto found;
3885 	}
3886 fail:
3887 	pos = NULL;
3888 	goto out;
3889 found:
3890 	get_task_struct(pos);
3891 out:
3892 	rcu_read_unlock();
3893 	return pos;
3894 }
3895 
3896 /*
3897  * Find the next thread in the thread list.
3898  * Return NULL if there is an error or no next thread.
3899  *
3900  * The reference to the input task_struct is released.
3901  */
3902 static struct task_struct *next_tid(struct task_struct *start)
3903 {
3904 	struct task_struct *pos = NULL;
3905 	rcu_read_lock();
3906 	if (pid_alive(start)) {
3907 		pos = __next_thread(start);
3908 		if (pos)
3909 			get_task_struct(pos);
3910 	}
3911 	rcu_read_unlock();
3912 	put_task_struct(start);
3913 	return pos;
3914 }
3915 
3916 /* for the /proc/TGID/task/ directories */
3917 static int proc_task_readdir(struct file *file, struct dir_context *ctx)
3918 {
3919 	struct inode *inode = file_inode(file);
3920 	struct task_struct *task;
3921 	struct pid_namespace *ns;
3922 	int tid;
3923 
3924 	if (proc_inode_is_dead(inode))
3925 		return -ENOENT;
3926 
3927 	if (!dir_emit_dots(file, ctx))
3928 		return 0;
3929 
3930 	/* We cache the tgid value that the last readdir call couldn't
3931 	 * return and lseek resets it to 0.
3932 	 */
3933 	ns = proc_pid_ns(inode->i_sb);
3934 	tid = (int)(intptr_t)file->private_data;
3935 	file->private_data = NULL;
3936 	for (task = first_tid(proc_pid(inode), tid, ctx->pos - 2, ns);
3937 	     task;
3938 	     task = next_tid(task), ctx->pos++) {
3939 		char name[10 + 1];
3940 		unsigned int len;
3941 
3942 		tid = task_pid_nr_ns(task, ns);
3943 		if (!tid)
3944 			continue;	/* The task has just exited. */
3945 		len = snprintf(name, sizeof(name), "%u", tid);
3946 		if (!proc_fill_cache(file, ctx, name, len,
3947 				proc_task_instantiate, task, NULL)) {
3948 			/* returning this tgid failed, save it as the first
3949 			 * pid for the next readir call */
3950 			file->private_data = (void *)(intptr_t)tid;
3951 			put_task_struct(task);
3952 			break;
3953 		}
3954 	}
3955 
3956 	return 0;
3957 }
3958 
3959 static int proc_task_getattr(struct mnt_idmap *idmap,
3960 			     const struct path *path, struct kstat *stat,
3961 			     u32 request_mask, unsigned int query_flags)
3962 {
3963 	struct inode *inode = d_inode(path->dentry);
3964 	struct task_struct *p = get_proc_task(inode);
3965 	generic_fillattr(&nop_mnt_idmap, request_mask, inode, stat);
3966 
3967 	if (p) {
3968 		stat->nlink += get_nr_threads(p);
3969 		put_task_struct(p);
3970 	}
3971 
3972 	return 0;
3973 }
3974 
3975 /*
3976  * proc_task_readdir() set @file->private_data to a positive integer
3977  * value, so casting that to u64 is safe. generic_llseek_cookie() will
3978  * set @cookie to 0, so casting to an int is safe. The WARN_ON_ONCE() is
3979  * here to catch any unexpected change in behavior either in
3980  * proc_task_readdir() or generic_llseek_cookie().
3981  */
3982 static loff_t proc_dir_llseek(struct file *file, loff_t offset, int whence)
3983 {
3984 	u64 cookie = (u64)(intptr_t)file->private_data;
3985 	loff_t off;
3986 
3987 	off = generic_llseek_cookie(file, offset, whence, &cookie);
3988 	WARN_ON_ONCE(cookie > INT_MAX);
3989 	file->private_data = (void *)(intptr_t)cookie; /* serialized by f_pos_lock */
3990 	return off;
3991 }
3992 
3993 static const struct inode_operations proc_task_inode_operations = {
3994 	.lookup		= proc_task_lookup,
3995 	.getattr	= proc_task_getattr,
3996 	.setattr	= proc_setattr,
3997 	.permission	= proc_pid_permission,
3998 };
3999 
4000 static const struct file_operations proc_task_operations = {
4001 	.read		= generic_read_dir,
4002 	.iterate_shared	= proc_task_readdir,
4003 	.llseek		= proc_dir_llseek,
4004 };
4005 
4006 void __init set_proc_pid_nlink(void)
4007 {
4008 	nlink_tid = pid_entry_nlink(tid_base_stuff, ARRAY_SIZE(tid_base_stuff));
4009 	nlink_tgid = pid_entry_nlink(tgid_base_stuff, ARRAY_SIZE(tgid_base_stuff));
4010 }
4011