1 /* 2 * linux/fs/proc/base.c 3 * 4 * Copyright (C) 1991, 1992 Linus Torvalds 5 * 6 * proc base directory handling functions 7 * 8 * 1999, Al Viro. Rewritten. Now it covers the whole per-process part. 9 * Instead of using magical inumbers to determine the kind of object 10 * we allocate and fill in-core inodes upon lookup. They don't even 11 * go into icache. We cache the reference to task_struct upon lookup too. 12 * Eventually it should become a filesystem in its own. We don't use the 13 * rest of procfs anymore. 14 * 15 * 16 * Changelog: 17 * 17-Jan-2005 18 * Allan Bezerra 19 * Bruna Moreira <bruna.moreira@indt.org.br> 20 * Edjard Mota <edjard.mota@indt.org.br> 21 * Ilias Biris <ilias.biris@indt.org.br> 22 * Mauricio Lin <mauricio.lin@indt.org.br> 23 * 24 * Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT 25 * 26 * A new process specific entry (smaps) included in /proc. It shows the 27 * size of rss for each memory area. The maps entry lacks information 28 * about physical memory size (rss) for each mapped file, i.e., 29 * rss information for executables and library files. 30 * This additional information is useful for any tools that need to know 31 * about physical memory consumption for a process specific library. 32 * 33 * Changelog: 34 * 21-Feb-2005 35 * Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT 36 * Pud inclusion in the page table walking. 37 * 38 * ChangeLog: 39 * 10-Mar-2005 40 * 10LE Instituto Nokia de Tecnologia - INdT: 41 * A better way to walks through the page table as suggested by Hugh Dickins. 42 * 43 * Simo Piiroinen <simo.piiroinen@nokia.com>: 44 * Smaps information related to shared, private, clean and dirty pages. 45 * 46 * Paul Mundt <paul.mundt@nokia.com>: 47 * Overall revision about smaps. 48 */ 49 50 #include <asm/uaccess.h> 51 52 #include <linux/errno.h> 53 #include <linux/time.h> 54 #include <linux/proc_fs.h> 55 #include <linux/stat.h> 56 #include <linux/task_io_accounting_ops.h> 57 #include <linux/init.h> 58 #include <linux/capability.h> 59 #include <linux/file.h> 60 #include <linux/fdtable.h> 61 #include <linux/string.h> 62 #include <linux/seq_file.h> 63 #include <linux/namei.h> 64 #include <linux/mnt_namespace.h> 65 #include <linux/mm.h> 66 #include <linux/swap.h> 67 #include <linux/rcupdate.h> 68 #include <linux/kallsyms.h> 69 #include <linux/stacktrace.h> 70 #include <linux/resource.h> 71 #include <linux/module.h> 72 #include <linux/mount.h> 73 #include <linux/security.h> 74 #include <linux/ptrace.h> 75 #include <linux/tracehook.h> 76 #include <linux/cgroup.h> 77 #include <linux/cpuset.h> 78 #include <linux/audit.h> 79 #include <linux/poll.h> 80 #include <linux/nsproxy.h> 81 #include <linux/oom.h> 82 #include <linux/elf.h> 83 #include <linux/pid_namespace.h> 84 #include <linux/fs_struct.h> 85 #include <linux/slab.h> 86 #ifdef CONFIG_HARDWALL 87 #include <asm/hardwall.h> 88 #endif 89 #include "internal.h" 90 91 /* NOTE: 92 * Implementing inode permission operations in /proc is almost 93 * certainly an error. Permission checks need to happen during 94 * each system call not at open time. The reason is that most of 95 * what we wish to check for permissions in /proc varies at runtime. 96 * 97 * The classic example of a problem is opening file descriptors 98 * in /proc for a task before it execs a suid executable. 99 */ 100 101 struct pid_entry { 102 char *name; 103 int len; 104 umode_t mode; 105 const struct inode_operations *iop; 106 const struct file_operations *fop; 107 union proc_op op; 108 }; 109 110 #define NOD(NAME, MODE, IOP, FOP, OP) { \ 111 .name = (NAME), \ 112 .len = sizeof(NAME) - 1, \ 113 .mode = MODE, \ 114 .iop = IOP, \ 115 .fop = FOP, \ 116 .op = OP, \ 117 } 118 119 #define DIR(NAME, MODE, iops, fops) \ 120 NOD(NAME, (S_IFDIR|(MODE)), &iops, &fops, {} ) 121 #define LNK(NAME, get_link) \ 122 NOD(NAME, (S_IFLNK|S_IRWXUGO), \ 123 &proc_pid_link_inode_operations, NULL, \ 124 { .proc_get_link = get_link } ) 125 #define REG(NAME, MODE, fops) \ 126 NOD(NAME, (S_IFREG|(MODE)), NULL, &fops, {}) 127 #define INF(NAME, MODE, read) \ 128 NOD(NAME, (S_IFREG|(MODE)), \ 129 NULL, &proc_info_file_operations, \ 130 { .proc_read = read } ) 131 #define ONE(NAME, MODE, show) \ 132 NOD(NAME, (S_IFREG|(MODE)), \ 133 NULL, &proc_single_file_operations, \ 134 { .proc_show = show } ) 135 136 /* 137 * Count the number of hardlinks for the pid_entry table, excluding the . 138 * and .. links. 139 */ 140 static unsigned int pid_entry_count_dirs(const struct pid_entry *entries, 141 unsigned int n) 142 { 143 unsigned int i; 144 unsigned int count; 145 146 count = 0; 147 for (i = 0; i < n; ++i) { 148 if (S_ISDIR(entries[i].mode)) 149 ++count; 150 } 151 152 return count; 153 } 154 155 static int get_task_root(struct task_struct *task, struct path *root) 156 { 157 int result = -ENOENT; 158 159 task_lock(task); 160 if (task->fs) { 161 get_fs_root(task->fs, root); 162 result = 0; 163 } 164 task_unlock(task); 165 return result; 166 } 167 168 static int proc_cwd_link(struct inode *inode, struct path *path) 169 { 170 struct task_struct *task = get_proc_task(inode); 171 int result = -ENOENT; 172 173 if (task) { 174 task_lock(task); 175 if (task->fs) { 176 get_fs_pwd(task->fs, path); 177 result = 0; 178 } 179 task_unlock(task); 180 put_task_struct(task); 181 } 182 return result; 183 } 184 185 static int proc_root_link(struct inode *inode, struct path *path) 186 { 187 struct task_struct *task = get_proc_task(inode); 188 int result = -ENOENT; 189 190 if (task) { 191 result = get_task_root(task, path); 192 put_task_struct(task); 193 } 194 return result; 195 } 196 197 static struct mm_struct *__check_mem_permission(struct task_struct *task) 198 { 199 struct mm_struct *mm; 200 201 mm = get_task_mm(task); 202 if (!mm) 203 return ERR_PTR(-EINVAL); 204 205 /* 206 * A task can always look at itself, in case it chooses 207 * to use system calls instead of load instructions. 208 */ 209 if (task == current) 210 return mm; 211 212 /* 213 * If current is actively ptrace'ing, and would also be 214 * permitted to freshly attach with ptrace now, permit it. 215 */ 216 if (task_is_stopped_or_traced(task)) { 217 int match; 218 rcu_read_lock(); 219 match = (ptrace_parent(task) == current); 220 rcu_read_unlock(); 221 if (match && ptrace_may_access(task, PTRACE_MODE_ATTACH)) 222 return mm; 223 } 224 225 /* 226 * No one else is allowed. 227 */ 228 mmput(mm); 229 return ERR_PTR(-EPERM); 230 } 231 232 /* 233 * If current may access user memory in @task return a reference to the 234 * corresponding mm, otherwise ERR_PTR. 235 */ 236 static struct mm_struct *check_mem_permission(struct task_struct *task) 237 { 238 struct mm_struct *mm; 239 int err; 240 241 /* 242 * Avoid racing if task exec's as we might get a new mm but validate 243 * against old credentials. 244 */ 245 err = mutex_lock_killable(&task->signal->cred_guard_mutex); 246 if (err) 247 return ERR_PTR(err); 248 249 mm = __check_mem_permission(task); 250 mutex_unlock(&task->signal->cred_guard_mutex); 251 252 return mm; 253 } 254 255 struct mm_struct *mm_for_maps(struct task_struct *task) 256 { 257 struct mm_struct *mm; 258 int err; 259 260 err = mutex_lock_killable(&task->signal->cred_guard_mutex); 261 if (err) 262 return ERR_PTR(err); 263 264 mm = get_task_mm(task); 265 if (mm && mm != current->mm && 266 !ptrace_may_access(task, PTRACE_MODE_READ)) { 267 mmput(mm); 268 mm = ERR_PTR(-EACCES); 269 } 270 mutex_unlock(&task->signal->cred_guard_mutex); 271 272 return mm; 273 } 274 275 static int proc_pid_cmdline(struct task_struct *task, char * buffer) 276 { 277 int res = 0; 278 unsigned int len; 279 struct mm_struct *mm = get_task_mm(task); 280 if (!mm) 281 goto out; 282 if (!mm->arg_end) 283 goto out_mm; /* Shh! No looking before we're done */ 284 285 len = mm->arg_end - mm->arg_start; 286 287 if (len > PAGE_SIZE) 288 len = PAGE_SIZE; 289 290 res = access_process_vm(task, mm->arg_start, buffer, len, 0); 291 292 // If the nul at the end of args has been overwritten, then 293 // assume application is using setproctitle(3). 294 if (res > 0 && buffer[res-1] != '\0' && len < PAGE_SIZE) { 295 len = strnlen(buffer, res); 296 if (len < res) { 297 res = len; 298 } else { 299 len = mm->env_end - mm->env_start; 300 if (len > PAGE_SIZE - res) 301 len = PAGE_SIZE - res; 302 res += access_process_vm(task, mm->env_start, buffer+res, len, 0); 303 res = strnlen(buffer, res); 304 } 305 } 306 out_mm: 307 mmput(mm); 308 out: 309 return res; 310 } 311 312 static int proc_pid_auxv(struct task_struct *task, char *buffer) 313 { 314 struct mm_struct *mm = mm_for_maps(task); 315 int res = PTR_ERR(mm); 316 if (mm && !IS_ERR(mm)) { 317 unsigned int nwords = 0; 318 do { 319 nwords += 2; 320 } while (mm->saved_auxv[nwords - 2] != 0); /* AT_NULL */ 321 res = nwords * sizeof(mm->saved_auxv[0]); 322 if (res > PAGE_SIZE) 323 res = PAGE_SIZE; 324 memcpy(buffer, mm->saved_auxv, res); 325 mmput(mm); 326 } 327 return res; 328 } 329 330 331 #ifdef CONFIG_KALLSYMS 332 /* 333 * Provides a wchan file via kallsyms in a proper one-value-per-file format. 334 * Returns the resolved symbol. If that fails, simply return the address. 335 */ 336 static int proc_pid_wchan(struct task_struct *task, char *buffer) 337 { 338 unsigned long wchan; 339 char symname[KSYM_NAME_LEN]; 340 341 wchan = get_wchan(task); 342 343 if (lookup_symbol_name(wchan, symname) < 0) 344 if (!ptrace_may_access(task, PTRACE_MODE_READ)) 345 return 0; 346 else 347 return sprintf(buffer, "%lu", wchan); 348 else 349 return sprintf(buffer, "%s", symname); 350 } 351 #endif /* CONFIG_KALLSYMS */ 352 353 static int lock_trace(struct task_struct *task) 354 { 355 int err = mutex_lock_killable(&task->signal->cred_guard_mutex); 356 if (err) 357 return err; 358 if (!ptrace_may_access(task, PTRACE_MODE_ATTACH)) { 359 mutex_unlock(&task->signal->cred_guard_mutex); 360 return -EPERM; 361 } 362 return 0; 363 } 364 365 static void unlock_trace(struct task_struct *task) 366 { 367 mutex_unlock(&task->signal->cred_guard_mutex); 368 } 369 370 #ifdef CONFIG_STACKTRACE 371 372 #define MAX_STACK_TRACE_DEPTH 64 373 374 static int proc_pid_stack(struct seq_file *m, struct pid_namespace *ns, 375 struct pid *pid, struct task_struct *task) 376 { 377 struct stack_trace trace; 378 unsigned long *entries; 379 int err; 380 int i; 381 382 entries = kmalloc(MAX_STACK_TRACE_DEPTH * sizeof(*entries), GFP_KERNEL); 383 if (!entries) 384 return -ENOMEM; 385 386 trace.nr_entries = 0; 387 trace.max_entries = MAX_STACK_TRACE_DEPTH; 388 trace.entries = entries; 389 trace.skip = 0; 390 391 err = lock_trace(task); 392 if (!err) { 393 save_stack_trace_tsk(task, &trace); 394 395 for (i = 0; i < trace.nr_entries; i++) { 396 seq_printf(m, "[<%pK>] %pS\n", 397 (void *)entries[i], (void *)entries[i]); 398 } 399 unlock_trace(task); 400 } 401 kfree(entries); 402 403 return err; 404 } 405 #endif 406 407 #ifdef CONFIG_SCHEDSTATS 408 /* 409 * Provides /proc/PID/schedstat 410 */ 411 static int proc_pid_schedstat(struct task_struct *task, char *buffer) 412 { 413 return sprintf(buffer, "%llu %llu %lu\n", 414 (unsigned long long)task->se.sum_exec_runtime, 415 (unsigned long long)task->sched_info.run_delay, 416 task->sched_info.pcount); 417 } 418 #endif 419 420 #ifdef CONFIG_LATENCYTOP 421 static int lstats_show_proc(struct seq_file *m, void *v) 422 { 423 int i; 424 struct inode *inode = m->private; 425 struct task_struct *task = get_proc_task(inode); 426 427 if (!task) 428 return -ESRCH; 429 seq_puts(m, "Latency Top version : v0.1\n"); 430 for (i = 0; i < 32; i++) { 431 struct latency_record *lr = &task->latency_record[i]; 432 if (lr->backtrace[0]) { 433 int q; 434 seq_printf(m, "%i %li %li", 435 lr->count, lr->time, lr->max); 436 for (q = 0; q < LT_BACKTRACEDEPTH; q++) { 437 unsigned long bt = lr->backtrace[q]; 438 if (!bt) 439 break; 440 if (bt == ULONG_MAX) 441 break; 442 seq_printf(m, " %ps", (void *)bt); 443 } 444 seq_putc(m, '\n'); 445 } 446 447 } 448 put_task_struct(task); 449 return 0; 450 } 451 452 static int lstats_open(struct inode *inode, struct file *file) 453 { 454 return single_open(file, lstats_show_proc, inode); 455 } 456 457 static ssize_t lstats_write(struct file *file, const char __user *buf, 458 size_t count, loff_t *offs) 459 { 460 struct task_struct *task = get_proc_task(file->f_dentry->d_inode); 461 462 if (!task) 463 return -ESRCH; 464 clear_all_latency_tracing(task); 465 put_task_struct(task); 466 467 return count; 468 } 469 470 static const struct file_operations proc_lstats_operations = { 471 .open = lstats_open, 472 .read = seq_read, 473 .write = lstats_write, 474 .llseek = seq_lseek, 475 .release = single_release, 476 }; 477 478 #endif 479 480 static int proc_oom_score(struct task_struct *task, char *buffer) 481 { 482 unsigned long points = 0; 483 484 read_lock(&tasklist_lock); 485 if (pid_alive(task)) 486 points = oom_badness(task, NULL, NULL, 487 totalram_pages + total_swap_pages); 488 read_unlock(&tasklist_lock); 489 return sprintf(buffer, "%lu\n", points); 490 } 491 492 struct limit_names { 493 char *name; 494 char *unit; 495 }; 496 497 static const struct limit_names lnames[RLIM_NLIMITS] = { 498 [RLIMIT_CPU] = {"Max cpu time", "seconds"}, 499 [RLIMIT_FSIZE] = {"Max file size", "bytes"}, 500 [RLIMIT_DATA] = {"Max data size", "bytes"}, 501 [RLIMIT_STACK] = {"Max stack size", "bytes"}, 502 [RLIMIT_CORE] = {"Max core file size", "bytes"}, 503 [RLIMIT_RSS] = {"Max resident set", "bytes"}, 504 [RLIMIT_NPROC] = {"Max processes", "processes"}, 505 [RLIMIT_NOFILE] = {"Max open files", "files"}, 506 [RLIMIT_MEMLOCK] = {"Max locked memory", "bytes"}, 507 [RLIMIT_AS] = {"Max address space", "bytes"}, 508 [RLIMIT_LOCKS] = {"Max file locks", "locks"}, 509 [RLIMIT_SIGPENDING] = {"Max pending signals", "signals"}, 510 [RLIMIT_MSGQUEUE] = {"Max msgqueue size", "bytes"}, 511 [RLIMIT_NICE] = {"Max nice priority", NULL}, 512 [RLIMIT_RTPRIO] = {"Max realtime priority", NULL}, 513 [RLIMIT_RTTIME] = {"Max realtime timeout", "us"}, 514 }; 515 516 /* Display limits for a process */ 517 static int proc_pid_limits(struct task_struct *task, char *buffer) 518 { 519 unsigned int i; 520 int count = 0; 521 unsigned long flags; 522 char *bufptr = buffer; 523 524 struct rlimit rlim[RLIM_NLIMITS]; 525 526 if (!lock_task_sighand(task, &flags)) 527 return 0; 528 memcpy(rlim, task->signal->rlim, sizeof(struct rlimit) * RLIM_NLIMITS); 529 unlock_task_sighand(task, &flags); 530 531 /* 532 * print the file header 533 */ 534 count += sprintf(&bufptr[count], "%-25s %-20s %-20s %-10s\n", 535 "Limit", "Soft Limit", "Hard Limit", "Units"); 536 537 for (i = 0; i < RLIM_NLIMITS; i++) { 538 if (rlim[i].rlim_cur == RLIM_INFINITY) 539 count += sprintf(&bufptr[count], "%-25s %-20s ", 540 lnames[i].name, "unlimited"); 541 else 542 count += sprintf(&bufptr[count], "%-25s %-20lu ", 543 lnames[i].name, rlim[i].rlim_cur); 544 545 if (rlim[i].rlim_max == RLIM_INFINITY) 546 count += sprintf(&bufptr[count], "%-20s ", "unlimited"); 547 else 548 count += sprintf(&bufptr[count], "%-20lu ", 549 rlim[i].rlim_max); 550 551 if (lnames[i].unit) 552 count += sprintf(&bufptr[count], "%-10s\n", 553 lnames[i].unit); 554 else 555 count += sprintf(&bufptr[count], "\n"); 556 } 557 558 return count; 559 } 560 561 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK 562 static int proc_pid_syscall(struct task_struct *task, char *buffer) 563 { 564 long nr; 565 unsigned long args[6], sp, pc; 566 int res = lock_trace(task); 567 if (res) 568 return res; 569 570 if (task_current_syscall(task, &nr, args, 6, &sp, &pc)) 571 res = sprintf(buffer, "running\n"); 572 else if (nr < 0) 573 res = sprintf(buffer, "%ld 0x%lx 0x%lx\n", nr, sp, pc); 574 else 575 res = sprintf(buffer, 576 "%ld 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx\n", 577 nr, 578 args[0], args[1], args[2], args[3], args[4], args[5], 579 sp, pc); 580 unlock_trace(task); 581 return res; 582 } 583 #endif /* CONFIG_HAVE_ARCH_TRACEHOOK */ 584 585 /************************************************************************/ 586 /* Here the fs part begins */ 587 /************************************************************************/ 588 589 /* permission checks */ 590 static int proc_fd_access_allowed(struct inode *inode) 591 { 592 struct task_struct *task; 593 int allowed = 0; 594 /* Allow access to a task's file descriptors if it is us or we 595 * may use ptrace attach to the process and find out that 596 * information. 597 */ 598 task = get_proc_task(inode); 599 if (task) { 600 allowed = ptrace_may_access(task, PTRACE_MODE_READ); 601 put_task_struct(task); 602 } 603 return allowed; 604 } 605 606 int proc_setattr(struct dentry *dentry, struct iattr *attr) 607 { 608 int error; 609 struct inode *inode = dentry->d_inode; 610 611 if (attr->ia_valid & ATTR_MODE) 612 return -EPERM; 613 614 error = inode_change_ok(inode, attr); 615 if (error) 616 return error; 617 618 if ((attr->ia_valid & ATTR_SIZE) && 619 attr->ia_size != i_size_read(inode)) { 620 error = vmtruncate(inode, attr->ia_size); 621 if (error) 622 return error; 623 } 624 625 setattr_copy(inode, attr); 626 mark_inode_dirty(inode); 627 return 0; 628 } 629 630 static const struct inode_operations proc_def_inode_operations = { 631 .setattr = proc_setattr, 632 }; 633 634 #define PROC_BLOCK_SIZE (3*1024) /* 4K page size but our output routines use some slack for overruns */ 635 636 static ssize_t proc_info_read(struct file * file, char __user * buf, 637 size_t count, loff_t *ppos) 638 { 639 struct inode * inode = file->f_path.dentry->d_inode; 640 unsigned long page; 641 ssize_t length; 642 struct task_struct *task = get_proc_task(inode); 643 644 length = -ESRCH; 645 if (!task) 646 goto out_no_task; 647 648 if (count > PROC_BLOCK_SIZE) 649 count = PROC_BLOCK_SIZE; 650 651 length = -ENOMEM; 652 if (!(page = __get_free_page(GFP_TEMPORARY))) 653 goto out; 654 655 length = PROC_I(inode)->op.proc_read(task, (char*)page); 656 657 if (length >= 0) 658 length = simple_read_from_buffer(buf, count, ppos, (char *)page, length); 659 free_page(page); 660 out: 661 put_task_struct(task); 662 out_no_task: 663 return length; 664 } 665 666 static const struct file_operations proc_info_file_operations = { 667 .read = proc_info_read, 668 .llseek = generic_file_llseek, 669 }; 670 671 static int proc_single_show(struct seq_file *m, void *v) 672 { 673 struct inode *inode = m->private; 674 struct pid_namespace *ns; 675 struct pid *pid; 676 struct task_struct *task; 677 int ret; 678 679 ns = inode->i_sb->s_fs_info; 680 pid = proc_pid(inode); 681 task = get_pid_task(pid, PIDTYPE_PID); 682 if (!task) 683 return -ESRCH; 684 685 ret = PROC_I(inode)->op.proc_show(m, ns, pid, task); 686 687 put_task_struct(task); 688 return ret; 689 } 690 691 static int proc_single_open(struct inode *inode, struct file *filp) 692 { 693 return single_open(filp, proc_single_show, inode); 694 } 695 696 static const struct file_operations proc_single_file_operations = { 697 .open = proc_single_open, 698 .read = seq_read, 699 .llseek = seq_lseek, 700 .release = single_release, 701 }; 702 703 static int mem_open(struct inode* inode, struct file* file) 704 { 705 file->private_data = (void*)((long)current->self_exec_id); 706 /* OK to pass negative loff_t, we can catch out-of-range */ 707 file->f_mode |= FMODE_UNSIGNED_OFFSET; 708 return 0; 709 } 710 711 static ssize_t mem_read(struct file * file, char __user * buf, 712 size_t count, loff_t *ppos) 713 { 714 struct task_struct *task = get_proc_task(file->f_path.dentry->d_inode); 715 char *page; 716 unsigned long src = *ppos; 717 int ret = -ESRCH; 718 struct mm_struct *mm; 719 720 if (!task) 721 goto out_no_task; 722 723 ret = -ENOMEM; 724 page = (char *)__get_free_page(GFP_TEMPORARY); 725 if (!page) 726 goto out; 727 728 mm = check_mem_permission(task); 729 ret = PTR_ERR(mm); 730 if (IS_ERR(mm)) 731 goto out_free; 732 733 ret = -EIO; 734 735 if (file->private_data != (void*)((long)current->self_exec_id)) 736 goto out_put; 737 738 ret = 0; 739 740 while (count > 0) { 741 int this_len, retval; 742 743 this_len = (count > PAGE_SIZE) ? PAGE_SIZE : count; 744 retval = access_remote_vm(mm, src, page, this_len, 0); 745 if (!retval) { 746 if (!ret) 747 ret = -EIO; 748 break; 749 } 750 751 if (copy_to_user(buf, page, retval)) { 752 ret = -EFAULT; 753 break; 754 } 755 756 ret += retval; 757 src += retval; 758 buf += retval; 759 count -= retval; 760 } 761 *ppos = src; 762 763 out_put: 764 mmput(mm); 765 out_free: 766 free_page((unsigned long) page); 767 out: 768 put_task_struct(task); 769 out_no_task: 770 return ret; 771 } 772 773 static ssize_t mem_write(struct file * file, const char __user *buf, 774 size_t count, loff_t *ppos) 775 { 776 int copied; 777 char *page; 778 struct task_struct *task = get_proc_task(file->f_path.dentry->d_inode); 779 unsigned long dst = *ppos; 780 struct mm_struct *mm; 781 782 copied = -ESRCH; 783 if (!task) 784 goto out_no_task; 785 786 copied = -ENOMEM; 787 page = (char *)__get_free_page(GFP_TEMPORARY); 788 if (!page) 789 goto out_task; 790 791 mm = check_mem_permission(task); 792 copied = PTR_ERR(mm); 793 if (IS_ERR(mm)) 794 goto out_free; 795 796 copied = -EIO; 797 if (file->private_data != (void *)((long)current->self_exec_id)) 798 goto out_mm; 799 800 copied = 0; 801 while (count > 0) { 802 int this_len, retval; 803 804 this_len = (count > PAGE_SIZE) ? PAGE_SIZE : count; 805 if (copy_from_user(page, buf, this_len)) { 806 copied = -EFAULT; 807 break; 808 } 809 retval = access_remote_vm(mm, dst, page, this_len, 1); 810 if (!retval) { 811 if (!copied) 812 copied = -EIO; 813 break; 814 } 815 copied += retval; 816 buf += retval; 817 dst += retval; 818 count -= retval; 819 } 820 *ppos = dst; 821 822 out_mm: 823 mmput(mm); 824 out_free: 825 free_page((unsigned long) page); 826 out_task: 827 put_task_struct(task); 828 out_no_task: 829 return copied; 830 } 831 832 loff_t mem_lseek(struct file *file, loff_t offset, int orig) 833 { 834 switch (orig) { 835 case 0: 836 file->f_pos = offset; 837 break; 838 case 1: 839 file->f_pos += offset; 840 break; 841 default: 842 return -EINVAL; 843 } 844 force_successful_syscall_return(); 845 return file->f_pos; 846 } 847 848 static const struct file_operations proc_mem_operations = { 849 .llseek = mem_lseek, 850 .read = mem_read, 851 .write = mem_write, 852 .open = mem_open, 853 }; 854 855 static ssize_t environ_read(struct file *file, char __user *buf, 856 size_t count, loff_t *ppos) 857 { 858 struct task_struct *task = get_proc_task(file->f_dentry->d_inode); 859 char *page; 860 unsigned long src = *ppos; 861 int ret = -ESRCH; 862 struct mm_struct *mm; 863 864 if (!task) 865 goto out_no_task; 866 867 ret = -ENOMEM; 868 page = (char *)__get_free_page(GFP_TEMPORARY); 869 if (!page) 870 goto out; 871 872 873 mm = mm_for_maps(task); 874 ret = PTR_ERR(mm); 875 if (!mm || IS_ERR(mm)) 876 goto out_free; 877 878 ret = 0; 879 while (count > 0) { 880 int this_len, retval, max_len; 881 882 this_len = mm->env_end - (mm->env_start + src); 883 884 if (this_len <= 0) 885 break; 886 887 max_len = (count > PAGE_SIZE) ? PAGE_SIZE : count; 888 this_len = (this_len > max_len) ? max_len : this_len; 889 890 retval = access_process_vm(task, (mm->env_start + src), 891 page, this_len, 0); 892 893 if (retval <= 0) { 894 ret = retval; 895 break; 896 } 897 898 if (copy_to_user(buf, page, retval)) { 899 ret = -EFAULT; 900 break; 901 } 902 903 ret += retval; 904 src += retval; 905 buf += retval; 906 count -= retval; 907 } 908 *ppos = src; 909 910 mmput(mm); 911 out_free: 912 free_page((unsigned long) page); 913 out: 914 put_task_struct(task); 915 out_no_task: 916 return ret; 917 } 918 919 static const struct file_operations proc_environ_operations = { 920 .read = environ_read, 921 .llseek = generic_file_llseek, 922 }; 923 924 static ssize_t oom_adjust_read(struct file *file, char __user *buf, 925 size_t count, loff_t *ppos) 926 { 927 struct task_struct *task = get_proc_task(file->f_path.dentry->d_inode); 928 char buffer[PROC_NUMBUF]; 929 size_t len; 930 int oom_adjust = OOM_DISABLE; 931 unsigned long flags; 932 933 if (!task) 934 return -ESRCH; 935 936 if (lock_task_sighand(task, &flags)) { 937 oom_adjust = task->signal->oom_adj; 938 unlock_task_sighand(task, &flags); 939 } 940 941 put_task_struct(task); 942 943 len = snprintf(buffer, sizeof(buffer), "%i\n", oom_adjust); 944 945 return simple_read_from_buffer(buf, count, ppos, buffer, len); 946 } 947 948 static ssize_t oom_adjust_write(struct file *file, const char __user *buf, 949 size_t count, loff_t *ppos) 950 { 951 struct task_struct *task; 952 char buffer[PROC_NUMBUF]; 953 int oom_adjust; 954 unsigned long flags; 955 int err; 956 957 memset(buffer, 0, sizeof(buffer)); 958 if (count > sizeof(buffer) - 1) 959 count = sizeof(buffer) - 1; 960 if (copy_from_user(buffer, buf, count)) { 961 err = -EFAULT; 962 goto out; 963 } 964 965 err = kstrtoint(strstrip(buffer), 0, &oom_adjust); 966 if (err) 967 goto out; 968 if ((oom_adjust < OOM_ADJUST_MIN || oom_adjust > OOM_ADJUST_MAX) && 969 oom_adjust != OOM_DISABLE) { 970 err = -EINVAL; 971 goto out; 972 } 973 974 task = get_proc_task(file->f_path.dentry->d_inode); 975 if (!task) { 976 err = -ESRCH; 977 goto out; 978 } 979 980 task_lock(task); 981 if (!task->mm) { 982 err = -EINVAL; 983 goto err_task_lock; 984 } 985 986 if (!lock_task_sighand(task, &flags)) { 987 err = -ESRCH; 988 goto err_task_lock; 989 } 990 991 if (oom_adjust < task->signal->oom_adj && !capable(CAP_SYS_RESOURCE)) { 992 err = -EACCES; 993 goto err_sighand; 994 } 995 996 /* 997 * Warn that /proc/pid/oom_adj is deprecated, see 998 * Documentation/feature-removal-schedule.txt. 999 */ 1000 printk_once(KERN_WARNING "%s (%d): /proc/%d/oom_adj is deprecated, please use /proc/%d/oom_score_adj instead.\n", 1001 current->comm, task_pid_nr(current), task_pid_nr(task), 1002 task_pid_nr(task)); 1003 task->signal->oom_adj = oom_adjust; 1004 /* 1005 * Scale /proc/pid/oom_score_adj appropriately ensuring that a maximum 1006 * value is always attainable. 1007 */ 1008 if (task->signal->oom_adj == OOM_ADJUST_MAX) 1009 task->signal->oom_score_adj = OOM_SCORE_ADJ_MAX; 1010 else 1011 task->signal->oom_score_adj = (oom_adjust * OOM_SCORE_ADJ_MAX) / 1012 -OOM_DISABLE; 1013 err_sighand: 1014 unlock_task_sighand(task, &flags); 1015 err_task_lock: 1016 task_unlock(task); 1017 put_task_struct(task); 1018 out: 1019 return err < 0 ? err : count; 1020 } 1021 1022 static const struct file_operations proc_oom_adjust_operations = { 1023 .read = oom_adjust_read, 1024 .write = oom_adjust_write, 1025 .llseek = generic_file_llseek, 1026 }; 1027 1028 static ssize_t oom_score_adj_read(struct file *file, char __user *buf, 1029 size_t count, loff_t *ppos) 1030 { 1031 struct task_struct *task = get_proc_task(file->f_path.dentry->d_inode); 1032 char buffer[PROC_NUMBUF]; 1033 int oom_score_adj = OOM_SCORE_ADJ_MIN; 1034 unsigned long flags; 1035 size_t len; 1036 1037 if (!task) 1038 return -ESRCH; 1039 if (lock_task_sighand(task, &flags)) { 1040 oom_score_adj = task->signal->oom_score_adj; 1041 unlock_task_sighand(task, &flags); 1042 } 1043 put_task_struct(task); 1044 len = snprintf(buffer, sizeof(buffer), "%d\n", oom_score_adj); 1045 return simple_read_from_buffer(buf, count, ppos, buffer, len); 1046 } 1047 1048 static ssize_t oom_score_adj_write(struct file *file, const char __user *buf, 1049 size_t count, loff_t *ppos) 1050 { 1051 struct task_struct *task; 1052 char buffer[PROC_NUMBUF]; 1053 unsigned long flags; 1054 int oom_score_adj; 1055 int err; 1056 1057 memset(buffer, 0, sizeof(buffer)); 1058 if (count > sizeof(buffer) - 1) 1059 count = sizeof(buffer) - 1; 1060 if (copy_from_user(buffer, buf, count)) { 1061 err = -EFAULT; 1062 goto out; 1063 } 1064 1065 err = kstrtoint(strstrip(buffer), 0, &oom_score_adj); 1066 if (err) 1067 goto out; 1068 if (oom_score_adj < OOM_SCORE_ADJ_MIN || 1069 oom_score_adj > OOM_SCORE_ADJ_MAX) { 1070 err = -EINVAL; 1071 goto out; 1072 } 1073 1074 task = get_proc_task(file->f_path.dentry->d_inode); 1075 if (!task) { 1076 err = -ESRCH; 1077 goto out; 1078 } 1079 1080 task_lock(task); 1081 if (!task->mm) { 1082 err = -EINVAL; 1083 goto err_task_lock; 1084 } 1085 1086 if (!lock_task_sighand(task, &flags)) { 1087 err = -ESRCH; 1088 goto err_task_lock; 1089 } 1090 1091 if (oom_score_adj < task->signal->oom_score_adj_min && 1092 !capable(CAP_SYS_RESOURCE)) { 1093 err = -EACCES; 1094 goto err_sighand; 1095 } 1096 1097 task->signal->oom_score_adj = oom_score_adj; 1098 if (has_capability_noaudit(current, CAP_SYS_RESOURCE)) 1099 task->signal->oom_score_adj_min = oom_score_adj; 1100 /* 1101 * Scale /proc/pid/oom_adj appropriately ensuring that OOM_DISABLE is 1102 * always attainable. 1103 */ 1104 if (task->signal->oom_score_adj == OOM_SCORE_ADJ_MIN) 1105 task->signal->oom_adj = OOM_DISABLE; 1106 else 1107 task->signal->oom_adj = (oom_score_adj * OOM_ADJUST_MAX) / 1108 OOM_SCORE_ADJ_MAX; 1109 err_sighand: 1110 unlock_task_sighand(task, &flags); 1111 err_task_lock: 1112 task_unlock(task); 1113 put_task_struct(task); 1114 out: 1115 return err < 0 ? err : count; 1116 } 1117 1118 static const struct file_operations proc_oom_score_adj_operations = { 1119 .read = oom_score_adj_read, 1120 .write = oom_score_adj_write, 1121 .llseek = default_llseek, 1122 }; 1123 1124 #ifdef CONFIG_AUDITSYSCALL 1125 #define TMPBUFLEN 21 1126 static ssize_t proc_loginuid_read(struct file * file, char __user * buf, 1127 size_t count, loff_t *ppos) 1128 { 1129 struct inode * inode = file->f_path.dentry->d_inode; 1130 struct task_struct *task = get_proc_task(inode); 1131 ssize_t length; 1132 char tmpbuf[TMPBUFLEN]; 1133 1134 if (!task) 1135 return -ESRCH; 1136 length = scnprintf(tmpbuf, TMPBUFLEN, "%u", 1137 audit_get_loginuid(task)); 1138 put_task_struct(task); 1139 return simple_read_from_buffer(buf, count, ppos, tmpbuf, length); 1140 } 1141 1142 static ssize_t proc_loginuid_write(struct file * file, const char __user * buf, 1143 size_t count, loff_t *ppos) 1144 { 1145 struct inode * inode = file->f_path.dentry->d_inode; 1146 char *page, *tmp; 1147 ssize_t length; 1148 uid_t loginuid; 1149 1150 if (!capable(CAP_AUDIT_CONTROL)) 1151 return -EPERM; 1152 1153 rcu_read_lock(); 1154 if (current != pid_task(proc_pid(inode), PIDTYPE_PID)) { 1155 rcu_read_unlock(); 1156 return -EPERM; 1157 } 1158 rcu_read_unlock(); 1159 1160 if (count >= PAGE_SIZE) 1161 count = PAGE_SIZE - 1; 1162 1163 if (*ppos != 0) { 1164 /* No partial writes. */ 1165 return -EINVAL; 1166 } 1167 page = (char*)__get_free_page(GFP_TEMPORARY); 1168 if (!page) 1169 return -ENOMEM; 1170 length = -EFAULT; 1171 if (copy_from_user(page, buf, count)) 1172 goto out_free_page; 1173 1174 page[count] = '\0'; 1175 loginuid = simple_strtoul(page, &tmp, 10); 1176 if (tmp == page) { 1177 length = -EINVAL; 1178 goto out_free_page; 1179 1180 } 1181 length = audit_set_loginuid(current, loginuid); 1182 if (likely(length == 0)) 1183 length = count; 1184 1185 out_free_page: 1186 free_page((unsigned long) page); 1187 return length; 1188 } 1189 1190 static const struct file_operations proc_loginuid_operations = { 1191 .read = proc_loginuid_read, 1192 .write = proc_loginuid_write, 1193 .llseek = generic_file_llseek, 1194 }; 1195 1196 static ssize_t proc_sessionid_read(struct file * file, char __user * buf, 1197 size_t count, loff_t *ppos) 1198 { 1199 struct inode * inode = file->f_path.dentry->d_inode; 1200 struct task_struct *task = get_proc_task(inode); 1201 ssize_t length; 1202 char tmpbuf[TMPBUFLEN]; 1203 1204 if (!task) 1205 return -ESRCH; 1206 length = scnprintf(tmpbuf, TMPBUFLEN, "%u", 1207 audit_get_sessionid(task)); 1208 put_task_struct(task); 1209 return simple_read_from_buffer(buf, count, ppos, tmpbuf, length); 1210 } 1211 1212 static const struct file_operations proc_sessionid_operations = { 1213 .read = proc_sessionid_read, 1214 .llseek = generic_file_llseek, 1215 }; 1216 #endif 1217 1218 #ifdef CONFIG_FAULT_INJECTION 1219 static ssize_t proc_fault_inject_read(struct file * file, char __user * buf, 1220 size_t count, loff_t *ppos) 1221 { 1222 struct task_struct *task = get_proc_task(file->f_dentry->d_inode); 1223 char buffer[PROC_NUMBUF]; 1224 size_t len; 1225 int make_it_fail; 1226 1227 if (!task) 1228 return -ESRCH; 1229 make_it_fail = task->make_it_fail; 1230 put_task_struct(task); 1231 1232 len = snprintf(buffer, sizeof(buffer), "%i\n", make_it_fail); 1233 1234 return simple_read_from_buffer(buf, count, ppos, buffer, len); 1235 } 1236 1237 static ssize_t proc_fault_inject_write(struct file * file, 1238 const char __user * buf, size_t count, loff_t *ppos) 1239 { 1240 struct task_struct *task; 1241 char buffer[PROC_NUMBUF], *end; 1242 int make_it_fail; 1243 1244 if (!capable(CAP_SYS_RESOURCE)) 1245 return -EPERM; 1246 memset(buffer, 0, sizeof(buffer)); 1247 if (count > sizeof(buffer) - 1) 1248 count = sizeof(buffer) - 1; 1249 if (copy_from_user(buffer, buf, count)) 1250 return -EFAULT; 1251 make_it_fail = simple_strtol(strstrip(buffer), &end, 0); 1252 if (*end) 1253 return -EINVAL; 1254 task = get_proc_task(file->f_dentry->d_inode); 1255 if (!task) 1256 return -ESRCH; 1257 task->make_it_fail = make_it_fail; 1258 put_task_struct(task); 1259 1260 return count; 1261 } 1262 1263 static const struct file_operations proc_fault_inject_operations = { 1264 .read = proc_fault_inject_read, 1265 .write = proc_fault_inject_write, 1266 .llseek = generic_file_llseek, 1267 }; 1268 #endif 1269 1270 1271 #ifdef CONFIG_SCHED_DEBUG 1272 /* 1273 * Print out various scheduling related per-task fields: 1274 */ 1275 static int sched_show(struct seq_file *m, void *v) 1276 { 1277 struct inode *inode = m->private; 1278 struct task_struct *p; 1279 1280 p = get_proc_task(inode); 1281 if (!p) 1282 return -ESRCH; 1283 proc_sched_show_task(p, m); 1284 1285 put_task_struct(p); 1286 1287 return 0; 1288 } 1289 1290 static ssize_t 1291 sched_write(struct file *file, const char __user *buf, 1292 size_t count, loff_t *offset) 1293 { 1294 struct inode *inode = file->f_path.dentry->d_inode; 1295 struct task_struct *p; 1296 1297 p = get_proc_task(inode); 1298 if (!p) 1299 return -ESRCH; 1300 proc_sched_set_task(p); 1301 1302 put_task_struct(p); 1303 1304 return count; 1305 } 1306 1307 static int sched_open(struct inode *inode, struct file *filp) 1308 { 1309 return single_open(filp, sched_show, inode); 1310 } 1311 1312 static const struct file_operations proc_pid_sched_operations = { 1313 .open = sched_open, 1314 .read = seq_read, 1315 .write = sched_write, 1316 .llseek = seq_lseek, 1317 .release = single_release, 1318 }; 1319 1320 #endif 1321 1322 #ifdef CONFIG_SCHED_AUTOGROUP 1323 /* 1324 * Print out autogroup related information: 1325 */ 1326 static int sched_autogroup_show(struct seq_file *m, void *v) 1327 { 1328 struct inode *inode = m->private; 1329 struct task_struct *p; 1330 1331 p = get_proc_task(inode); 1332 if (!p) 1333 return -ESRCH; 1334 proc_sched_autogroup_show_task(p, m); 1335 1336 put_task_struct(p); 1337 1338 return 0; 1339 } 1340 1341 static ssize_t 1342 sched_autogroup_write(struct file *file, const char __user *buf, 1343 size_t count, loff_t *offset) 1344 { 1345 struct inode *inode = file->f_path.dentry->d_inode; 1346 struct task_struct *p; 1347 char buffer[PROC_NUMBUF]; 1348 int nice; 1349 int err; 1350 1351 memset(buffer, 0, sizeof(buffer)); 1352 if (count > sizeof(buffer) - 1) 1353 count = sizeof(buffer) - 1; 1354 if (copy_from_user(buffer, buf, count)) 1355 return -EFAULT; 1356 1357 err = kstrtoint(strstrip(buffer), 0, &nice); 1358 if (err < 0) 1359 return err; 1360 1361 p = get_proc_task(inode); 1362 if (!p) 1363 return -ESRCH; 1364 1365 err = nice; 1366 err = proc_sched_autogroup_set_nice(p, &err); 1367 if (err) 1368 count = err; 1369 1370 put_task_struct(p); 1371 1372 return count; 1373 } 1374 1375 static int sched_autogroup_open(struct inode *inode, struct file *filp) 1376 { 1377 int ret; 1378 1379 ret = single_open(filp, sched_autogroup_show, NULL); 1380 if (!ret) { 1381 struct seq_file *m = filp->private_data; 1382 1383 m->private = inode; 1384 } 1385 return ret; 1386 } 1387 1388 static const struct file_operations proc_pid_sched_autogroup_operations = { 1389 .open = sched_autogroup_open, 1390 .read = seq_read, 1391 .write = sched_autogroup_write, 1392 .llseek = seq_lseek, 1393 .release = single_release, 1394 }; 1395 1396 #endif /* CONFIG_SCHED_AUTOGROUP */ 1397 1398 static ssize_t comm_write(struct file *file, const char __user *buf, 1399 size_t count, loff_t *offset) 1400 { 1401 struct inode *inode = file->f_path.dentry->d_inode; 1402 struct task_struct *p; 1403 char buffer[TASK_COMM_LEN]; 1404 1405 memset(buffer, 0, sizeof(buffer)); 1406 if (count > sizeof(buffer) - 1) 1407 count = sizeof(buffer) - 1; 1408 if (copy_from_user(buffer, buf, count)) 1409 return -EFAULT; 1410 1411 p = get_proc_task(inode); 1412 if (!p) 1413 return -ESRCH; 1414 1415 if (same_thread_group(current, p)) 1416 set_task_comm(p, buffer); 1417 else 1418 count = -EINVAL; 1419 1420 put_task_struct(p); 1421 1422 return count; 1423 } 1424 1425 static int comm_show(struct seq_file *m, void *v) 1426 { 1427 struct inode *inode = m->private; 1428 struct task_struct *p; 1429 1430 p = get_proc_task(inode); 1431 if (!p) 1432 return -ESRCH; 1433 1434 task_lock(p); 1435 seq_printf(m, "%s\n", p->comm); 1436 task_unlock(p); 1437 1438 put_task_struct(p); 1439 1440 return 0; 1441 } 1442 1443 static int comm_open(struct inode *inode, struct file *filp) 1444 { 1445 return single_open(filp, comm_show, inode); 1446 } 1447 1448 static const struct file_operations proc_pid_set_comm_operations = { 1449 .open = comm_open, 1450 .read = seq_read, 1451 .write = comm_write, 1452 .llseek = seq_lseek, 1453 .release = single_release, 1454 }; 1455 1456 static int proc_exe_link(struct inode *inode, struct path *exe_path) 1457 { 1458 struct task_struct *task; 1459 struct mm_struct *mm; 1460 struct file *exe_file; 1461 1462 task = get_proc_task(inode); 1463 if (!task) 1464 return -ENOENT; 1465 mm = get_task_mm(task); 1466 put_task_struct(task); 1467 if (!mm) 1468 return -ENOENT; 1469 exe_file = get_mm_exe_file(mm); 1470 mmput(mm); 1471 if (exe_file) { 1472 *exe_path = exe_file->f_path; 1473 path_get(&exe_file->f_path); 1474 fput(exe_file); 1475 return 0; 1476 } else 1477 return -ENOENT; 1478 } 1479 1480 static void *proc_pid_follow_link(struct dentry *dentry, struct nameidata *nd) 1481 { 1482 struct inode *inode = dentry->d_inode; 1483 int error = -EACCES; 1484 1485 /* We don't need a base pointer in the /proc filesystem */ 1486 path_put(&nd->path); 1487 1488 /* Are we allowed to snoop on the tasks file descriptors? */ 1489 if (!proc_fd_access_allowed(inode)) 1490 goto out; 1491 1492 error = PROC_I(inode)->op.proc_get_link(inode, &nd->path); 1493 out: 1494 return ERR_PTR(error); 1495 } 1496 1497 static int do_proc_readlink(struct path *path, char __user *buffer, int buflen) 1498 { 1499 char *tmp = (char*)__get_free_page(GFP_TEMPORARY); 1500 char *pathname; 1501 int len; 1502 1503 if (!tmp) 1504 return -ENOMEM; 1505 1506 pathname = d_path(path, tmp, PAGE_SIZE); 1507 len = PTR_ERR(pathname); 1508 if (IS_ERR(pathname)) 1509 goto out; 1510 len = tmp + PAGE_SIZE - 1 - pathname; 1511 1512 if (len > buflen) 1513 len = buflen; 1514 if (copy_to_user(buffer, pathname, len)) 1515 len = -EFAULT; 1516 out: 1517 free_page((unsigned long)tmp); 1518 return len; 1519 } 1520 1521 static int proc_pid_readlink(struct dentry * dentry, char __user * buffer, int buflen) 1522 { 1523 int error = -EACCES; 1524 struct inode *inode = dentry->d_inode; 1525 struct path path; 1526 1527 /* Are we allowed to snoop on the tasks file descriptors? */ 1528 if (!proc_fd_access_allowed(inode)) 1529 goto out; 1530 1531 error = PROC_I(inode)->op.proc_get_link(inode, &path); 1532 if (error) 1533 goto out; 1534 1535 error = do_proc_readlink(&path, buffer, buflen); 1536 path_put(&path); 1537 out: 1538 return error; 1539 } 1540 1541 static const struct inode_operations proc_pid_link_inode_operations = { 1542 .readlink = proc_pid_readlink, 1543 .follow_link = proc_pid_follow_link, 1544 .setattr = proc_setattr, 1545 }; 1546 1547 1548 /* building an inode */ 1549 1550 static int task_dumpable(struct task_struct *task) 1551 { 1552 int dumpable = 0; 1553 struct mm_struct *mm; 1554 1555 task_lock(task); 1556 mm = task->mm; 1557 if (mm) 1558 dumpable = get_dumpable(mm); 1559 task_unlock(task); 1560 if(dumpable == 1) 1561 return 1; 1562 return 0; 1563 } 1564 1565 struct inode *proc_pid_make_inode(struct super_block * sb, struct task_struct *task) 1566 { 1567 struct inode * inode; 1568 struct proc_inode *ei; 1569 const struct cred *cred; 1570 1571 /* We need a new inode */ 1572 1573 inode = new_inode(sb); 1574 if (!inode) 1575 goto out; 1576 1577 /* Common stuff */ 1578 ei = PROC_I(inode); 1579 inode->i_ino = get_next_ino(); 1580 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME; 1581 inode->i_op = &proc_def_inode_operations; 1582 1583 /* 1584 * grab the reference to task. 1585 */ 1586 ei->pid = get_task_pid(task, PIDTYPE_PID); 1587 if (!ei->pid) 1588 goto out_unlock; 1589 1590 if (task_dumpable(task)) { 1591 rcu_read_lock(); 1592 cred = __task_cred(task); 1593 inode->i_uid = cred->euid; 1594 inode->i_gid = cred->egid; 1595 rcu_read_unlock(); 1596 } 1597 security_task_to_inode(task, inode); 1598 1599 out: 1600 return inode; 1601 1602 out_unlock: 1603 iput(inode); 1604 return NULL; 1605 } 1606 1607 int pid_getattr(struct vfsmount *mnt, struct dentry *dentry, struct kstat *stat) 1608 { 1609 struct inode *inode = dentry->d_inode; 1610 struct task_struct *task; 1611 const struct cred *cred; 1612 1613 generic_fillattr(inode, stat); 1614 1615 rcu_read_lock(); 1616 stat->uid = 0; 1617 stat->gid = 0; 1618 task = pid_task(proc_pid(inode), PIDTYPE_PID); 1619 if (task) { 1620 if ((inode->i_mode == (S_IFDIR|S_IRUGO|S_IXUGO)) || 1621 task_dumpable(task)) { 1622 cred = __task_cred(task); 1623 stat->uid = cred->euid; 1624 stat->gid = cred->egid; 1625 } 1626 } 1627 rcu_read_unlock(); 1628 return 0; 1629 } 1630 1631 /* dentry stuff */ 1632 1633 /* 1634 * Exceptional case: normally we are not allowed to unhash a busy 1635 * directory. In this case, however, we can do it - no aliasing problems 1636 * due to the way we treat inodes. 1637 * 1638 * Rewrite the inode's ownerships here because the owning task may have 1639 * performed a setuid(), etc. 1640 * 1641 * Before the /proc/pid/status file was created the only way to read 1642 * the effective uid of a /process was to stat /proc/pid. Reading 1643 * /proc/pid/status is slow enough that procps and other packages 1644 * kept stating /proc/pid. To keep the rules in /proc simple I have 1645 * made this apply to all per process world readable and executable 1646 * directories. 1647 */ 1648 int pid_revalidate(struct dentry *dentry, struct nameidata *nd) 1649 { 1650 struct inode *inode; 1651 struct task_struct *task; 1652 const struct cred *cred; 1653 1654 if (nd && nd->flags & LOOKUP_RCU) 1655 return -ECHILD; 1656 1657 inode = dentry->d_inode; 1658 task = get_proc_task(inode); 1659 1660 if (task) { 1661 if ((inode->i_mode == (S_IFDIR|S_IRUGO|S_IXUGO)) || 1662 task_dumpable(task)) { 1663 rcu_read_lock(); 1664 cred = __task_cred(task); 1665 inode->i_uid = cred->euid; 1666 inode->i_gid = cred->egid; 1667 rcu_read_unlock(); 1668 } else { 1669 inode->i_uid = 0; 1670 inode->i_gid = 0; 1671 } 1672 inode->i_mode &= ~(S_ISUID | S_ISGID); 1673 security_task_to_inode(task, inode); 1674 put_task_struct(task); 1675 return 1; 1676 } 1677 d_drop(dentry); 1678 return 0; 1679 } 1680 1681 static int pid_delete_dentry(const struct dentry * dentry) 1682 { 1683 /* Is the task we represent dead? 1684 * If so, then don't put the dentry on the lru list, 1685 * kill it immediately. 1686 */ 1687 return !proc_pid(dentry->d_inode)->tasks[PIDTYPE_PID].first; 1688 } 1689 1690 const struct dentry_operations pid_dentry_operations = 1691 { 1692 .d_revalidate = pid_revalidate, 1693 .d_delete = pid_delete_dentry, 1694 }; 1695 1696 /* Lookups */ 1697 1698 /* 1699 * Fill a directory entry. 1700 * 1701 * If possible create the dcache entry and derive our inode number and 1702 * file type from dcache entry. 1703 * 1704 * Since all of the proc inode numbers are dynamically generated, the inode 1705 * numbers do not exist until the inode is cache. This means creating the 1706 * the dcache entry in readdir is necessary to keep the inode numbers 1707 * reported by readdir in sync with the inode numbers reported 1708 * by stat. 1709 */ 1710 int proc_fill_cache(struct file *filp, void *dirent, filldir_t filldir, 1711 const char *name, int len, 1712 instantiate_t instantiate, struct task_struct *task, const void *ptr) 1713 { 1714 struct dentry *child, *dir = filp->f_path.dentry; 1715 struct inode *inode; 1716 struct qstr qname; 1717 ino_t ino = 0; 1718 unsigned type = DT_UNKNOWN; 1719 1720 qname.name = name; 1721 qname.len = len; 1722 qname.hash = full_name_hash(name, len); 1723 1724 child = d_lookup(dir, &qname); 1725 if (!child) { 1726 struct dentry *new; 1727 new = d_alloc(dir, &qname); 1728 if (new) { 1729 child = instantiate(dir->d_inode, new, task, ptr); 1730 if (child) 1731 dput(new); 1732 else 1733 child = new; 1734 } 1735 } 1736 if (!child || IS_ERR(child) || !child->d_inode) 1737 goto end_instantiate; 1738 inode = child->d_inode; 1739 if (inode) { 1740 ino = inode->i_ino; 1741 type = inode->i_mode >> 12; 1742 } 1743 dput(child); 1744 end_instantiate: 1745 if (!ino) 1746 ino = find_inode_number(dir, &qname); 1747 if (!ino) 1748 ino = 1; 1749 return filldir(dirent, name, len, filp->f_pos, ino, type); 1750 } 1751 1752 static unsigned name_to_int(struct dentry *dentry) 1753 { 1754 const char *name = dentry->d_name.name; 1755 int len = dentry->d_name.len; 1756 unsigned n = 0; 1757 1758 if (len > 1 && *name == '0') 1759 goto out; 1760 while (len-- > 0) { 1761 unsigned c = *name++ - '0'; 1762 if (c > 9) 1763 goto out; 1764 if (n >= (~0U-9)/10) 1765 goto out; 1766 n *= 10; 1767 n += c; 1768 } 1769 return n; 1770 out: 1771 return ~0U; 1772 } 1773 1774 #define PROC_FDINFO_MAX 64 1775 1776 static int proc_fd_info(struct inode *inode, struct path *path, char *info) 1777 { 1778 struct task_struct *task = get_proc_task(inode); 1779 struct files_struct *files = NULL; 1780 struct file *file; 1781 int fd = proc_fd(inode); 1782 1783 if (task) { 1784 files = get_files_struct(task); 1785 put_task_struct(task); 1786 } 1787 if (files) { 1788 /* 1789 * We are not taking a ref to the file structure, so we must 1790 * hold ->file_lock. 1791 */ 1792 spin_lock(&files->file_lock); 1793 file = fcheck_files(files, fd); 1794 if (file) { 1795 unsigned int f_flags; 1796 struct fdtable *fdt; 1797 1798 fdt = files_fdtable(files); 1799 f_flags = file->f_flags & ~O_CLOEXEC; 1800 if (FD_ISSET(fd, fdt->close_on_exec)) 1801 f_flags |= O_CLOEXEC; 1802 1803 if (path) { 1804 *path = file->f_path; 1805 path_get(&file->f_path); 1806 } 1807 if (info) 1808 snprintf(info, PROC_FDINFO_MAX, 1809 "pos:\t%lli\n" 1810 "flags:\t0%o\n", 1811 (long long) file->f_pos, 1812 f_flags); 1813 spin_unlock(&files->file_lock); 1814 put_files_struct(files); 1815 return 0; 1816 } 1817 spin_unlock(&files->file_lock); 1818 put_files_struct(files); 1819 } 1820 return -ENOENT; 1821 } 1822 1823 static int proc_fd_link(struct inode *inode, struct path *path) 1824 { 1825 return proc_fd_info(inode, path, NULL); 1826 } 1827 1828 static int tid_fd_revalidate(struct dentry *dentry, struct nameidata *nd) 1829 { 1830 struct inode *inode; 1831 struct task_struct *task; 1832 int fd; 1833 struct files_struct *files; 1834 const struct cred *cred; 1835 1836 if (nd && nd->flags & LOOKUP_RCU) 1837 return -ECHILD; 1838 1839 inode = dentry->d_inode; 1840 task = get_proc_task(inode); 1841 fd = proc_fd(inode); 1842 1843 if (task) { 1844 files = get_files_struct(task); 1845 if (files) { 1846 rcu_read_lock(); 1847 if (fcheck_files(files, fd)) { 1848 rcu_read_unlock(); 1849 put_files_struct(files); 1850 if (task_dumpable(task)) { 1851 rcu_read_lock(); 1852 cred = __task_cred(task); 1853 inode->i_uid = cred->euid; 1854 inode->i_gid = cred->egid; 1855 rcu_read_unlock(); 1856 } else { 1857 inode->i_uid = 0; 1858 inode->i_gid = 0; 1859 } 1860 inode->i_mode &= ~(S_ISUID | S_ISGID); 1861 security_task_to_inode(task, inode); 1862 put_task_struct(task); 1863 return 1; 1864 } 1865 rcu_read_unlock(); 1866 put_files_struct(files); 1867 } 1868 put_task_struct(task); 1869 } 1870 d_drop(dentry); 1871 return 0; 1872 } 1873 1874 static const struct dentry_operations tid_fd_dentry_operations = 1875 { 1876 .d_revalidate = tid_fd_revalidate, 1877 .d_delete = pid_delete_dentry, 1878 }; 1879 1880 static struct dentry *proc_fd_instantiate(struct inode *dir, 1881 struct dentry *dentry, struct task_struct *task, const void *ptr) 1882 { 1883 unsigned fd = *(const unsigned *)ptr; 1884 struct file *file; 1885 struct files_struct *files; 1886 struct inode *inode; 1887 struct proc_inode *ei; 1888 struct dentry *error = ERR_PTR(-ENOENT); 1889 1890 inode = proc_pid_make_inode(dir->i_sb, task); 1891 if (!inode) 1892 goto out; 1893 ei = PROC_I(inode); 1894 ei->fd = fd; 1895 files = get_files_struct(task); 1896 if (!files) 1897 goto out_iput; 1898 inode->i_mode = S_IFLNK; 1899 1900 /* 1901 * We are not taking a ref to the file structure, so we must 1902 * hold ->file_lock. 1903 */ 1904 spin_lock(&files->file_lock); 1905 file = fcheck_files(files, fd); 1906 if (!file) 1907 goto out_unlock; 1908 if (file->f_mode & FMODE_READ) 1909 inode->i_mode |= S_IRUSR | S_IXUSR; 1910 if (file->f_mode & FMODE_WRITE) 1911 inode->i_mode |= S_IWUSR | S_IXUSR; 1912 spin_unlock(&files->file_lock); 1913 put_files_struct(files); 1914 1915 inode->i_op = &proc_pid_link_inode_operations; 1916 inode->i_size = 64; 1917 ei->op.proc_get_link = proc_fd_link; 1918 d_set_d_op(dentry, &tid_fd_dentry_operations); 1919 d_add(dentry, inode); 1920 /* Close the race of the process dying before we return the dentry */ 1921 if (tid_fd_revalidate(dentry, NULL)) 1922 error = NULL; 1923 1924 out: 1925 return error; 1926 out_unlock: 1927 spin_unlock(&files->file_lock); 1928 put_files_struct(files); 1929 out_iput: 1930 iput(inode); 1931 goto out; 1932 } 1933 1934 static struct dentry *proc_lookupfd_common(struct inode *dir, 1935 struct dentry *dentry, 1936 instantiate_t instantiate) 1937 { 1938 struct task_struct *task = get_proc_task(dir); 1939 unsigned fd = name_to_int(dentry); 1940 struct dentry *result = ERR_PTR(-ENOENT); 1941 1942 if (!task) 1943 goto out_no_task; 1944 if (fd == ~0U) 1945 goto out; 1946 1947 result = instantiate(dir, dentry, task, &fd); 1948 out: 1949 put_task_struct(task); 1950 out_no_task: 1951 return result; 1952 } 1953 1954 static int proc_readfd_common(struct file * filp, void * dirent, 1955 filldir_t filldir, instantiate_t instantiate) 1956 { 1957 struct dentry *dentry = filp->f_path.dentry; 1958 struct inode *inode = dentry->d_inode; 1959 struct task_struct *p = get_proc_task(inode); 1960 unsigned int fd, ino; 1961 int retval; 1962 struct files_struct * files; 1963 1964 retval = -ENOENT; 1965 if (!p) 1966 goto out_no_task; 1967 retval = 0; 1968 1969 fd = filp->f_pos; 1970 switch (fd) { 1971 case 0: 1972 if (filldir(dirent, ".", 1, 0, inode->i_ino, DT_DIR) < 0) 1973 goto out; 1974 filp->f_pos++; 1975 case 1: 1976 ino = parent_ino(dentry); 1977 if (filldir(dirent, "..", 2, 1, ino, DT_DIR) < 0) 1978 goto out; 1979 filp->f_pos++; 1980 default: 1981 files = get_files_struct(p); 1982 if (!files) 1983 goto out; 1984 rcu_read_lock(); 1985 for (fd = filp->f_pos-2; 1986 fd < files_fdtable(files)->max_fds; 1987 fd++, filp->f_pos++) { 1988 char name[PROC_NUMBUF]; 1989 int len; 1990 1991 if (!fcheck_files(files, fd)) 1992 continue; 1993 rcu_read_unlock(); 1994 1995 len = snprintf(name, sizeof(name), "%d", fd); 1996 if (proc_fill_cache(filp, dirent, filldir, 1997 name, len, instantiate, 1998 p, &fd) < 0) { 1999 rcu_read_lock(); 2000 break; 2001 } 2002 rcu_read_lock(); 2003 } 2004 rcu_read_unlock(); 2005 put_files_struct(files); 2006 } 2007 out: 2008 put_task_struct(p); 2009 out_no_task: 2010 return retval; 2011 } 2012 2013 static struct dentry *proc_lookupfd(struct inode *dir, struct dentry *dentry, 2014 struct nameidata *nd) 2015 { 2016 return proc_lookupfd_common(dir, dentry, proc_fd_instantiate); 2017 } 2018 2019 static int proc_readfd(struct file *filp, void *dirent, filldir_t filldir) 2020 { 2021 return proc_readfd_common(filp, dirent, filldir, proc_fd_instantiate); 2022 } 2023 2024 static ssize_t proc_fdinfo_read(struct file *file, char __user *buf, 2025 size_t len, loff_t *ppos) 2026 { 2027 char tmp[PROC_FDINFO_MAX]; 2028 int err = proc_fd_info(file->f_path.dentry->d_inode, NULL, tmp); 2029 if (!err) 2030 err = simple_read_from_buffer(buf, len, ppos, tmp, strlen(tmp)); 2031 return err; 2032 } 2033 2034 static const struct file_operations proc_fdinfo_file_operations = { 2035 .open = nonseekable_open, 2036 .read = proc_fdinfo_read, 2037 .llseek = no_llseek, 2038 }; 2039 2040 static const struct file_operations proc_fd_operations = { 2041 .read = generic_read_dir, 2042 .readdir = proc_readfd, 2043 .llseek = default_llseek, 2044 }; 2045 2046 /* 2047 * /proc/pid/fd needs a special permission handler so that a process can still 2048 * access /proc/self/fd after it has executed a setuid(). 2049 */ 2050 static int proc_fd_permission(struct inode *inode, int mask) 2051 { 2052 int rv = generic_permission(inode, mask); 2053 if (rv == 0) 2054 return 0; 2055 if (task_pid(current) == proc_pid(inode)) 2056 rv = 0; 2057 return rv; 2058 } 2059 2060 /* 2061 * proc directories can do almost nothing.. 2062 */ 2063 static const struct inode_operations proc_fd_inode_operations = { 2064 .lookup = proc_lookupfd, 2065 .permission = proc_fd_permission, 2066 .setattr = proc_setattr, 2067 }; 2068 2069 static struct dentry *proc_fdinfo_instantiate(struct inode *dir, 2070 struct dentry *dentry, struct task_struct *task, const void *ptr) 2071 { 2072 unsigned fd = *(unsigned *)ptr; 2073 struct inode *inode; 2074 struct proc_inode *ei; 2075 struct dentry *error = ERR_PTR(-ENOENT); 2076 2077 inode = proc_pid_make_inode(dir->i_sb, task); 2078 if (!inode) 2079 goto out; 2080 ei = PROC_I(inode); 2081 ei->fd = fd; 2082 inode->i_mode = S_IFREG | S_IRUSR; 2083 inode->i_fop = &proc_fdinfo_file_operations; 2084 d_set_d_op(dentry, &tid_fd_dentry_operations); 2085 d_add(dentry, inode); 2086 /* Close the race of the process dying before we return the dentry */ 2087 if (tid_fd_revalidate(dentry, NULL)) 2088 error = NULL; 2089 2090 out: 2091 return error; 2092 } 2093 2094 static struct dentry *proc_lookupfdinfo(struct inode *dir, 2095 struct dentry *dentry, 2096 struct nameidata *nd) 2097 { 2098 return proc_lookupfd_common(dir, dentry, proc_fdinfo_instantiate); 2099 } 2100 2101 static int proc_readfdinfo(struct file *filp, void *dirent, filldir_t filldir) 2102 { 2103 return proc_readfd_common(filp, dirent, filldir, 2104 proc_fdinfo_instantiate); 2105 } 2106 2107 static const struct file_operations proc_fdinfo_operations = { 2108 .read = generic_read_dir, 2109 .readdir = proc_readfdinfo, 2110 .llseek = default_llseek, 2111 }; 2112 2113 /* 2114 * proc directories can do almost nothing.. 2115 */ 2116 static const struct inode_operations proc_fdinfo_inode_operations = { 2117 .lookup = proc_lookupfdinfo, 2118 .setattr = proc_setattr, 2119 }; 2120 2121 2122 static struct dentry *proc_pident_instantiate(struct inode *dir, 2123 struct dentry *dentry, struct task_struct *task, const void *ptr) 2124 { 2125 const struct pid_entry *p = ptr; 2126 struct inode *inode; 2127 struct proc_inode *ei; 2128 struct dentry *error = ERR_PTR(-ENOENT); 2129 2130 inode = proc_pid_make_inode(dir->i_sb, task); 2131 if (!inode) 2132 goto out; 2133 2134 ei = PROC_I(inode); 2135 inode->i_mode = p->mode; 2136 if (S_ISDIR(inode->i_mode)) 2137 set_nlink(inode, 2); /* Use getattr to fix if necessary */ 2138 if (p->iop) 2139 inode->i_op = p->iop; 2140 if (p->fop) 2141 inode->i_fop = p->fop; 2142 ei->op = p->op; 2143 d_set_d_op(dentry, &pid_dentry_operations); 2144 d_add(dentry, inode); 2145 /* Close the race of the process dying before we return the dentry */ 2146 if (pid_revalidate(dentry, NULL)) 2147 error = NULL; 2148 out: 2149 return error; 2150 } 2151 2152 static struct dentry *proc_pident_lookup(struct inode *dir, 2153 struct dentry *dentry, 2154 const struct pid_entry *ents, 2155 unsigned int nents) 2156 { 2157 struct dentry *error; 2158 struct task_struct *task = get_proc_task(dir); 2159 const struct pid_entry *p, *last; 2160 2161 error = ERR_PTR(-ENOENT); 2162 2163 if (!task) 2164 goto out_no_task; 2165 2166 /* 2167 * Yes, it does not scale. And it should not. Don't add 2168 * new entries into /proc/<tgid>/ without very good reasons. 2169 */ 2170 last = &ents[nents - 1]; 2171 for (p = ents; p <= last; p++) { 2172 if (p->len != dentry->d_name.len) 2173 continue; 2174 if (!memcmp(dentry->d_name.name, p->name, p->len)) 2175 break; 2176 } 2177 if (p > last) 2178 goto out; 2179 2180 error = proc_pident_instantiate(dir, dentry, task, p); 2181 out: 2182 put_task_struct(task); 2183 out_no_task: 2184 return error; 2185 } 2186 2187 static int proc_pident_fill_cache(struct file *filp, void *dirent, 2188 filldir_t filldir, struct task_struct *task, const struct pid_entry *p) 2189 { 2190 return proc_fill_cache(filp, dirent, filldir, p->name, p->len, 2191 proc_pident_instantiate, task, p); 2192 } 2193 2194 static int proc_pident_readdir(struct file *filp, 2195 void *dirent, filldir_t filldir, 2196 const struct pid_entry *ents, unsigned int nents) 2197 { 2198 int i; 2199 struct dentry *dentry = filp->f_path.dentry; 2200 struct inode *inode = dentry->d_inode; 2201 struct task_struct *task = get_proc_task(inode); 2202 const struct pid_entry *p, *last; 2203 ino_t ino; 2204 int ret; 2205 2206 ret = -ENOENT; 2207 if (!task) 2208 goto out_no_task; 2209 2210 ret = 0; 2211 i = filp->f_pos; 2212 switch (i) { 2213 case 0: 2214 ino = inode->i_ino; 2215 if (filldir(dirent, ".", 1, i, ino, DT_DIR) < 0) 2216 goto out; 2217 i++; 2218 filp->f_pos++; 2219 /* fall through */ 2220 case 1: 2221 ino = parent_ino(dentry); 2222 if (filldir(dirent, "..", 2, i, ino, DT_DIR) < 0) 2223 goto out; 2224 i++; 2225 filp->f_pos++; 2226 /* fall through */ 2227 default: 2228 i -= 2; 2229 if (i >= nents) { 2230 ret = 1; 2231 goto out; 2232 } 2233 p = ents + i; 2234 last = &ents[nents - 1]; 2235 while (p <= last) { 2236 if (proc_pident_fill_cache(filp, dirent, filldir, task, p) < 0) 2237 goto out; 2238 filp->f_pos++; 2239 p++; 2240 } 2241 } 2242 2243 ret = 1; 2244 out: 2245 put_task_struct(task); 2246 out_no_task: 2247 return ret; 2248 } 2249 2250 #ifdef CONFIG_SECURITY 2251 static ssize_t proc_pid_attr_read(struct file * file, char __user * buf, 2252 size_t count, loff_t *ppos) 2253 { 2254 struct inode * inode = file->f_path.dentry->d_inode; 2255 char *p = NULL; 2256 ssize_t length; 2257 struct task_struct *task = get_proc_task(inode); 2258 2259 if (!task) 2260 return -ESRCH; 2261 2262 length = security_getprocattr(task, 2263 (char*)file->f_path.dentry->d_name.name, 2264 &p); 2265 put_task_struct(task); 2266 if (length > 0) 2267 length = simple_read_from_buffer(buf, count, ppos, p, length); 2268 kfree(p); 2269 return length; 2270 } 2271 2272 static ssize_t proc_pid_attr_write(struct file * file, const char __user * buf, 2273 size_t count, loff_t *ppos) 2274 { 2275 struct inode * inode = file->f_path.dentry->d_inode; 2276 char *page; 2277 ssize_t length; 2278 struct task_struct *task = get_proc_task(inode); 2279 2280 length = -ESRCH; 2281 if (!task) 2282 goto out_no_task; 2283 if (count > PAGE_SIZE) 2284 count = PAGE_SIZE; 2285 2286 /* No partial writes. */ 2287 length = -EINVAL; 2288 if (*ppos != 0) 2289 goto out; 2290 2291 length = -ENOMEM; 2292 page = (char*)__get_free_page(GFP_TEMPORARY); 2293 if (!page) 2294 goto out; 2295 2296 length = -EFAULT; 2297 if (copy_from_user(page, buf, count)) 2298 goto out_free; 2299 2300 /* Guard against adverse ptrace interaction */ 2301 length = mutex_lock_interruptible(&task->signal->cred_guard_mutex); 2302 if (length < 0) 2303 goto out_free; 2304 2305 length = security_setprocattr(task, 2306 (char*)file->f_path.dentry->d_name.name, 2307 (void*)page, count); 2308 mutex_unlock(&task->signal->cred_guard_mutex); 2309 out_free: 2310 free_page((unsigned long) page); 2311 out: 2312 put_task_struct(task); 2313 out_no_task: 2314 return length; 2315 } 2316 2317 static const struct file_operations proc_pid_attr_operations = { 2318 .read = proc_pid_attr_read, 2319 .write = proc_pid_attr_write, 2320 .llseek = generic_file_llseek, 2321 }; 2322 2323 static const struct pid_entry attr_dir_stuff[] = { 2324 REG("current", S_IRUGO|S_IWUGO, proc_pid_attr_operations), 2325 REG("prev", S_IRUGO, proc_pid_attr_operations), 2326 REG("exec", S_IRUGO|S_IWUGO, proc_pid_attr_operations), 2327 REG("fscreate", S_IRUGO|S_IWUGO, proc_pid_attr_operations), 2328 REG("keycreate", S_IRUGO|S_IWUGO, proc_pid_attr_operations), 2329 REG("sockcreate", S_IRUGO|S_IWUGO, proc_pid_attr_operations), 2330 }; 2331 2332 static int proc_attr_dir_readdir(struct file * filp, 2333 void * dirent, filldir_t filldir) 2334 { 2335 return proc_pident_readdir(filp,dirent,filldir, 2336 attr_dir_stuff,ARRAY_SIZE(attr_dir_stuff)); 2337 } 2338 2339 static const struct file_operations proc_attr_dir_operations = { 2340 .read = generic_read_dir, 2341 .readdir = proc_attr_dir_readdir, 2342 .llseek = default_llseek, 2343 }; 2344 2345 static struct dentry *proc_attr_dir_lookup(struct inode *dir, 2346 struct dentry *dentry, struct nameidata *nd) 2347 { 2348 return proc_pident_lookup(dir, dentry, 2349 attr_dir_stuff, ARRAY_SIZE(attr_dir_stuff)); 2350 } 2351 2352 static const struct inode_operations proc_attr_dir_inode_operations = { 2353 .lookup = proc_attr_dir_lookup, 2354 .getattr = pid_getattr, 2355 .setattr = proc_setattr, 2356 }; 2357 2358 #endif 2359 2360 #ifdef CONFIG_ELF_CORE 2361 static ssize_t proc_coredump_filter_read(struct file *file, char __user *buf, 2362 size_t count, loff_t *ppos) 2363 { 2364 struct task_struct *task = get_proc_task(file->f_dentry->d_inode); 2365 struct mm_struct *mm; 2366 char buffer[PROC_NUMBUF]; 2367 size_t len; 2368 int ret; 2369 2370 if (!task) 2371 return -ESRCH; 2372 2373 ret = 0; 2374 mm = get_task_mm(task); 2375 if (mm) { 2376 len = snprintf(buffer, sizeof(buffer), "%08lx\n", 2377 ((mm->flags & MMF_DUMP_FILTER_MASK) >> 2378 MMF_DUMP_FILTER_SHIFT)); 2379 mmput(mm); 2380 ret = simple_read_from_buffer(buf, count, ppos, buffer, len); 2381 } 2382 2383 put_task_struct(task); 2384 2385 return ret; 2386 } 2387 2388 static ssize_t proc_coredump_filter_write(struct file *file, 2389 const char __user *buf, 2390 size_t count, 2391 loff_t *ppos) 2392 { 2393 struct task_struct *task; 2394 struct mm_struct *mm; 2395 char buffer[PROC_NUMBUF], *end; 2396 unsigned int val; 2397 int ret; 2398 int i; 2399 unsigned long mask; 2400 2401 ret = -EFAULT; 2402 memset(buffer, 0, sizeof(buffer)); 2403 if (count > sizeof(buffer) - 1) 2404 count = sizeof(buffer) - 1; 2405 if (copy_from_user(buffer, buf, count)) 2406 goto out_no_task; 2407 2408 ret = -EINVAL; 2409 val = (unsigned int)simple_strtoul(buffer, &end, 0); 2410 if (*end == '\n') 2411 end++; 2412 if (end - buffer == 0) 2413 goto out_no_task; 2414 2415 ret = -ESRCH; 2416 task = get_proc_task(file->f_dentry->d_inode); 2417 if (!task) 2418 goto out_no_task; 2419 2420 ret = end - buffer; 2421 mm = get_task_mm(task); 2422 if (!mm) 2423 goto out_no_mm; 2424 2425 for (i = 0, mask = 1; i < MMF_DUMP_FILTER_BITS; i++, mask <<= 1) { 2426 if (val & mask) 2427 set_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags); 2428 else 2429 clear_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags); 2430 } 2431 2432 mmput(mm); 2433 out_no_mm: 2434 put_task_struct(task); 2435 out_no_task: 2436 return ret; 2437 } 2438 2439 static const struct file_operations proc_coredump_filter_operations = { 2440 .read = proc_coredump_filter_read, 2441 .write = proc_coredump_filter_write, 2442 .llseek = generic_file_llseek, 2443 }; 2444 #endif 2445 2446 /* 2447 * /proc/self: 2448 */ 2449 static int proc_self_readlink(struct dentry *dentry, char __user *buffer, 2450 int buflen) 2451 { 2452 struct pid_namespace *ns = dentry->d_sb->s_fs_info; 2453 pid_t tgid = task_tgid_nr_ns(current, ns); 2454 char tmp[PROC_NUMBUF]; 2455 if (!tgid) 2456 return -ENOENT; 2457 sprintf(tmp, "%d", tgid); 2458 return vfs_readlink(dentry,buffer,buflen,tmp); 2459 } 2460 2461 static void *proc_self_follow_link(struct dentry *dentry, struct nameidata *nd) 2462 { 2463 struct pid_namespace *ns = dentry->d_sb->s_fs_info; 2464 pid_t tgid = task_tgid_nr_ns(current, ns); 2465 char *name = ERR_PTR(-ENOENT); 2466 if (tgid) { 2467 name = __getname(); 2468 if (!name) 2469 name = ERR_PTR(-ENOMEM); 2470 else 2471 sprintf(name, "%d", tgid); 2472 } 2473 nd_set_link(nd, name); 2474 return NULL; 2475 } 2476 2477 static void proc_self_put_link(struct dentry *dentry, struct nameidata *nd, 2478 void *cookie) 2479 { 2480 char *s = nd_get_link(nd); 2481 if (!IS_ERR(s)) 2482 __putname(s); 2483 } 2484 2485 static const struct inode_operations proc_self_inode_operations = { 2486 .readlink = proc_self_readlink, 2487 .follow_link = proc_self_follow_link, 2488 .put_link = proc_self_put_link, 2489 }; 2490 2491 /* 2492 * proc base 2493 * 2494 * These are the directory entries in the root directory of /proc 2495 * that properly belong to the /proc filesystem, as they describe 2496 * describe something that is process related. 2497 */ 2498 static const struct pid_entry proc_base_stuff[] = { 2499 NOD("self", S_IFLNK|S_IRWXUGO, 2500 &proc_self_inode_operations, NULL, {}), 2501 }; 2502 2503 static struct dentry *proc_base_instantiate(struct inode *dir, 2504 struct dentry *dentry, struct task_struct *task, const void *ptr) 2505 { 2506 const struct pid_entry *p = ptr; 2507 struct inode *inode; 2508 struct proc_inode *ei; 2509 struct dentry *error; 2510 2511 /* Allocate the inode */ 2512 error = ERR_PTR(-ENOMEM); 2513 inode = new_inode(dir->i_sb); 2514 if (!inode) 2515 goto out; 2516 2517 /* Initialize the inode */ 2518 ei = PROC_I(inode); 2519 inode->i_ino = get_next_ino(); 2520 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME; 2521 2522 /* 2523 * grab the reference to the task. 2524 */ 2525 ei->pid = get_task_pid(task, PIDTYPE_PID); 2526 if (!ei->pid) 2527 goto out_iput; 2528 2529 inode->i_mode = p->mode; 2530 if (S_ISDIR(inode->i_mode)) 2531 set_nlink(inode, 2); 2532 if (S_ISLNK(inode->i_mode)) 2533 inode->i_size = 64; 2534 if (p->iop) 2535 inode->i_op = p->iop; 2536 if (p->fop) 2537 inode->i_fop = p->fop; 2538 ei->op = p->op; 2539 d_add(dentry, inode); 2540 error = NULL; 2541 out: 2542 return error; 2543 out_iput: 2544 iput(inode); 2545 goto out; 2546 } 2547 2548 static struct dentry *proc_base_lookup(struct inode *dir, struct dentry *dentry) 2549 { 2550 struct dentry *error; 2551 struct task_struct *task = get_proc_task(dir); 2552 const struct pid_entry *p, *last; 2553 2554 error = ERR_PTR(-ENOENT); 2555 2556 if (!task) 2557 goto out_no_task; 2558 2559 /* Lookup the directory entry */ 2560 last = &proc_base_stuff[ARRAY_SIZE(proc_base_stuff) - 1]; 2561 for (p = proc_base_stuff; p <= last; p++) { 2562 if (p->len != dentry->d_name.len) 2563 continue; 2564 if (!memcmp(dentry->d_name.name, p->name, p->len)) 2565 break; 2566 } 2567 if (p > last) 2568 goto out; 2569 2570 error = proc_base_instantiate(dir, dentry, task, p); 2571 2572 out: 2573 put_task_struct(task); 2574 out_no_task: 2575 return error; 2576 } 2577 2578 static int proc_base_fill_cache(struct file *filp, void *dirent, 2579 filldir_t filldir, struct task_struct *task, const struct pid_entry *p) 2580 { 2581 return proc_fill_cache(filp, dirent, filldir, p->name, p->len, 2582 proc_base_instantiate, task, p); 2583 } 2584 2585 #ifdef CONFIG_TASK_IO_ACCOUNTING 2586 static int do_io_accounting(struct task_struct *task, char *buffer, int whole) 2587 { 2588 struct task_io_accounting acct = task->ioac; 2589 unsigned long flags; 2590 int result; 2591 2592 result = mutex_lock_killable(&task->signal->cred_guard_mutex); 2593 if (result) 2594 return result; 2595 2596 if (!ptrace_may_access(task, PTRACE_MODE_READ)) { 2597 result = -EACCES; 2598 goto out_unlock; 2599 } 2600 2601 if (whole && lock_task_sighand(task, &flags)) { 2602 struct task_struct *t = task; 2603 2604 task_io_accounting_add(&acct, &task->signal->ioac); 2605 while_each_thread(task, t) 2606 task_io_accounting_add(&acct, &t->ioac); 2607 2608 unlock_task_sighand(task, &flags); 2609 } 2610 result = sprintf(buffer, 2611 "rchar: %llu\n" 2612 "wchar: %llu\n" 2613 "syscr: %llu\n" 2614 "syscw: %llu\n" 2615 "read_bytes: %llu\n" 2616 "write_bytes: %llu\n" 2617 "cancelled_write_bytes: %llu\n", 2618 (unsigned long long)acct.rchar, 2619 (unsigned long long)acct.wchar, 2620 (unsigned long long)acct.syscr, 2621 (unsigned long long)acct.syscw, 2622 (unsigned long long)acct.read_bytes, 2623 (unsigned long long)acct.write_bytes, 2624 (unsigned long long)acct.cancelled_write_bytes); 2625 out_unlock: 2626 mutex_unlock(&task->signal->cred_guard_mutex); 2627 return result; 2628 } 2629 2630 static int proc_tid_io_accounting(struct task_struct *task, char *buffer) 2631 { 2632 return do_io_accounting(task, buffer, 0); 2633 } 2634 2635 static int proc_tgid_io_accounting(struct task_struct *task, char *buffer) 2636 { 2637 return do_io_accounting(task, buffer, 1); 2638 } 2639 #endif /* CONFIG_TASK_IO_ACCOUNTING */ 2640 2641 static int proc_pid_personality(struct seq_file *m, struct pid_namespace *ns, 2642 struct pid *pid, struct task_struct *task) 2643 { 2644 int err = lock_trace(task); 2645 if (!err) { 2646 seq_printf(m, "%08x\n", task->personality); 2647 unlock_trace(task); 2648 } 2649 return err; 2650 } 2651 2652 /* 2653 * Thread groups 2654 */ 2655 static const struct file_operations proc_task_operations; 2656 static const struct inode_operations proc_task_inode_operations; 2657 2658 static const struct pid_entry tgid_base_stuff[] = { 2659 DIR("task", S_IRUGO|S_IXUGO, proc_task_inode_operations, proc_task_operations), 2660 DIR("fd", S_IRUSR|S_IXUSR, proc_fd_inode_operations, proc_fd_operations), 2661 DIR("fdinfo", S_IRUSR|S_IXUSR, proc_fdinfo_inode_operations, proc_fdinfo_operations), 2662 DIR("ns", S_IRUSR|S_IXUGO, proc_ns_dir_inode_operations, proc_ns_dir_operations), 2663 #ifdef CONFIG_NET 2664 DIR("net", S_IRUGO|S_IXUGO, proc_net_inode_operations, proc_net_operations), 2665 #endif 2666 REG("environ", S_IRUSR, proc_environ_operations), 2667 INF("auxv", S_IRUSR, proc_pid_auxv), 2668 ONE("status", S_IRUGO, proc_pid_status), 2669 ONE("personality", S_IRUGO, proc_pid_personality), 2670 INF("limits", S_IRUGO, proc_pid_limits), 2671 #ifdef CONFIG_SCHED_DEBUG 2672 REG("sched", S_IRUGO|S_IWUSR, proc_pid_sched_operations), 2673 #endif 2674 #ifdef CONFIG_SCHED_AUTOGROUP 2675 REG("autogroup", S_IRUGO|S_IWUSR, proc_pid_sched_autogroup_operations), 2676 #endif 2677 REG("comm", S_IRUGO|S_IWUSR, proc_pid_set_comm_operations), 2678 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK 2679 INF("syscall", S_IRUGO, proc_pid_syscall), 2680 #endif 2681 INF("cmdline", S_IRUGO, proc_pid_cmdline), 2682 ONE("stat", S_IRUGO, proc_tgid_stat), 2683 ONE("statm", S_IRUGO, proc_pid_statm), 2684 REG("maps", S_IRUGO, proc_maps_operations), 2685 #ifdef CONFIG_NUMA 2686 REG("numa_maps", S_IRUGO, proc_numa_maps_operations), 2687 #endif 2688 REG("mem", S_IRUSR|S_IWUSR, proc_mem_operations), 2689 LNK("cwd", proc_cwd_link), 2690 LNK("root", proc_root_link), 2691 LNK("exe", proc_exe_link), 2692 REG("mounts", S_IRUGO, proc_mounts_operations), 2693 REG("mountinfo", S_IRUGO, proc_mountinfo_operations), 2694 REG("mountstats", S_IRUSR, proc_mountstats_operations), 2695 #ifdef CONFIG_PROC_PAGE_MONITOR 2696 REG("clear_refs", S_IWUSR, proc_clear_refs_operations), 2697 REG("smaps", S_IRUGO, proc_smaps_operations), 2698 REG("pagemap", S_IRUGO, proc_pagemap_operations), 2699 #endif 2700 #ifdef CONFIG_SECURITY 2701 DIR("attr", S_IRUGO|S_IXUGO, proc_attr_dir_inode_operations, proc_attr_dir_operations), 2702 #endif 2703 #ifdef CONFIG_KALLSYMS 2704 INF("wchan", S_IRUGO, proc_pid_wchan), 2705 #endif 2706 #ifdef CONFIG_STACKTRACE 2707 ONE("stack", S_IRUGO, proc_pid_stack), 2708 #endif 2709 #ifdef CONFIG_SCHEDSTATS 2710 INF("schedstat", S_IRUGO, proc_pid_schedstat), 2711 #endif 2712 #ifdef CONFIG_LATENCYTOP 2713 REG("latency", S_IRUGO, proc_lstats_operations), 2714 #endif 2715 #ifdef CONFIG_PROC_PID_CPUSET 2716 REG("cpuset", S_IRUGO, proc_cpuset_operations), 2717 #endif 2718 #ifdef CONFIG_CGROUPS 2719 REG("cgroup", S_IRUGO, proc_cgroup_operations), 2720 #endif 2721 INF("oom_score", S_IRUGO, proc_oom_score), 2722 REG("oom_adj", S_IRUGO|S_IWUSR, proc_oom_adjust_operations), 2723 REG("oom_score_adj", S_IRUGO|S_IWUSR, proc_oom_score_adj_operations), 2724 #ifdef CONFIG_AUDITSYSCALL 2725 REG("loginuid", S_IWUSR|S_IRUGO, proc_loginuid_operations), 2726 REG("sessionid", S_IRUGO, proc_sessionid_operations), 2727 #endif 2728 #ifdef CONFIG_FAULT_INJECTION 2729 REG("make-it-fail", S_IRUGO|S_IWUSR, proc_fault_inject_operations), 2730 #endif 2731 #ifdef CONFIG_ELF_CORE 2732 REG("coredump_filter", S_IRUGO|S_IWUSR, proc_coredump_filter_operations), 2733 #endif 2734 #ifdef CONFIG_TASK_IO_ACCOUNTING 2735 INF("io", S_IRUSR, proc_tgid_io_accounting), 2736 #endif 2737 #ifdef CONFIG_HARDWALL 2738 INF("hardwall", S_IRUGO, proc_pid_hardwall), 2739 #endif 2740 }; 2741 2742 static int proc_tgid_base_readdir(struct file * filp, 2743 void * dirent, filldir_t filldir) 2744 { 2745 return proc_pident_readdir(filp,dirent,filldir, 2746 tgid_base_stuff,ARRAY_SIZE(tgid_base_stuff)); 2747 } 2748 2749 static const struct file_operations proc_tgid_base_operations = { 2750 .read = generic_read_dir, 2751 .readdir = proc_tgid_base_readdir, 2752 .llseek = default_llseek, 2753 }; 2754 2755 static struct dentry *proc_tgid_base_lookup(struct inode *dir, struct dentry *dentry, struct nameidata *nd){ 2756 return proc_pident_lookup(dir, dentry, 2757 tgid_base_stuff, ARRAY_SIZE(tgid_base_stuff)); 2758 } 2759 2760 static const struct inode_operations proc_tgid_base_inode_operations = { 2761 .lookup = proc_tgid_base_lookup, 2762 .getattr = pid_getattr, 2763 .setattr = proc_setattr, 2764 }; 2765 2766 static void proc_flush_task_mnt(struct vfsmount *mnt, pid_t pid, pid_t tgid) 2767 { 2768 struct dentry *dentry, *leader, *dir; 2769 char buf[PROC_NUMBUF]; 2770 struct qstr name; 2771 2772 name.name = buf; 2773 name.len = snprintf(buf, sizeof(buf), "%d", pid); 2774 dentry = d_hash_and_lookup(mnt->mnt_root, &name); 2775 if (dentry) { 2776 shrink_dcache_parent(dentry); 2777 d_drop(dentry); 2778 dput(dentry); 2779 } 2780 2781 name.name = buf; 2782 name.len = snprintf(buf, sizeof(buf), "%d", tgid); 2783 leader = d_hash_and_lookup(mnt->mnt_root, &name); 2784 if (!leader) 2785 goto out; 2786 2787 name.name = "task"; 2788 name.len = strlen(name.name); 2789 dir = d_hash_and_lookup(leader, &name); 2790 if (!dir) 2791 goto out_put_leader; 2792 2793 name.name = buf; 2794 name.len = snprintf(buf, sizeof(buf), "%d", pid); 2795 dentry = d_hash_and_lookup(dir, &name); 2796 if (dentry) { 2797 shrink_dcache_parent(dentry); 2798 d_drop(dentry); 2799 dput(dentry); 2800 } 2801 2802 dput(dir); 2803 out_put_leader: 2804 dput(leader); 2805 out: 2806 return; 2807 } 2808 2809 /** 2810 * proc_flush_task - Remove dcache entries for @task from the /proc dcache. 2811 * @task: task that should be flushed. 2812 * 2813 * When flushing dentries from proc, one needs to flush them from global 2814 * proc (proc_mnt) and from all the namespaces' procs this task was seen 2815 * in. This call is supposed to do all of this job. 2816 * 2817 * Looks in the dcache for 2818 * /proc/@pid 2819 * /proc/@tgid/task/@pid 2820 * if either directory is present flushes it and all of it'ts children 2821 * from the dcache. 2822 * 2823 * It is safe and reasonable to cache /proc entries for a task until 2824 * that task exits. After that they just clog up the dcache with 2825 * useless entries, possibly causing useful dcache entries to be 2826 * flushed instead. This routine is proved to flush those useless 2827 * dcache entries at process exit time. 2828 * 2829 * NOTE: This routine is just an optimization so it does not guarantee 2830 * that no dcache entries will exist at process exit time it 2831 * just makes it very unlikely that any will persist. 2832 */ 2833 2834 void proc_flush_task(struct task_struct *task) 2835 { 2836 int i; 2837 struct pid *pid, *tgid; 2838 struct upid *upid; 2839 2840 pid = task_pid(task); 2841 tgid = task_tgid(task); 2842 2843 for (i = 0; i <= pid->level; i++) { 2844 upid = &pid->numbers[i]; 2845 proc_flush_task_mnt(upid->ns->proc_mnt, upid->nr, 2846 tgid->numbers[i].nr); 2847 } 2848 2849 upid = &pid->numbers[pid->level]; 2850 if (upid->nr == 1) 2851 pid_ns_release_proc(upid->ns); 2852 } 2853 2854 static struct dentry *proc_pid_instantiate(struct inode *dir, 2855 struct dentry * dentry, 2856 struct task_struct *task, const void *ptr) 2857 { 2858 struct dentry *error = ERR_PTR(-ENOENT); 2859 struct inode *inode; 2860 2861 inode = proc_pid_make_inode(dir->i_sb, task); 2862 if (!inode) 2863 goto out; 2864 2865 inode->i_mode = S_IFDIR|S_IRUGO|S_IXUGO; 2866 inode->i_op = &proc_tgid_base_inode_operations; 2867 inode->i_fop = &proc_tgid_base_operations; 2868 inode->i_flags|=S_IMMUTABLE; 2869 2870 set_nlink(inode, 2 + pid_entry_count_dirs(tgid_base_stuff, 2871 ARRAY_SIZE(tgid_base_stuff))); 2872 2873 d_set_d_op(dentry, &pid_dentry_operations); 2874 2875 d_add(dentry, inode); 2876 /* Close the race of the process dying before we return the dentry */ 2877 if (pid_revalidate(dentry, NULL)) 2878 error = NULL; 2879 out: 2880 return error; 2881 } 2882 2883 struct dentry *proc_pid_lookup(struct inode *dir, struct dentry * dentry, struct nameidata *nd) 2884 { 2885 struct dentry *result; 2886 struct task_struct *task; 2887 unsigned tgid; 2888 struct pid_namespace *ns; 2889 2890 result = proc_base_lookup(dir, dentry); 2891 if (!IS_ERR(result) || PTR_ERR(result) != -ENOENT) 2892 goto out; 2893 2894 tgid = name_to_int(dentry); 2895 if (tgid == ~0U) 2896 goto out; 2897 2898 ns = dentry->d_sb->s_fs_info; 2899 rcu_read_lock(); 2900 task = find_task_by_pid_ns(tgid, ns); 2901 if (task) 2902 get_task_struct(task); 2903 rcu_read_unlock(); 2904 if (!task) 2905 goto out; 2906 2907 result = proc_pid_instantiate(dir, dentry, task, NULL); 2908 put_task_struct(task); 2909 out: 2910 return result; 2911 } 2912 2913 /* 2914 * Find the first task with tgid >= tgid 2915 * 2916 */ 2917 struct tgid_iter { 2918 unsigned int tgid; 2919 struct task_struct *task; 2920 }; 2921 static struct tgid_iter next_tgid(struct pid_namespace *ns, struct tgid_iter iter) 2922 { 2923 struct pid *pid; 2924 2925 if (iter.task) 2926 put_task_struct(iter.task); 2927 rcu_read_lock(); 2928 retry: 2929 iter.task = NULL; 2930 pid = find_ge_pid(iter.tgid, ns); 2931 if (pid) { 2932 iter.tgid = pid_nr_ns(pid, ns); 2933 iter.task = pid_task(pid, PIDTYPE_PID); 2934 /* What we to know is if the pid we have find is the 2935 * pid of a thread_group_leader. Testing for task 2936 * being a thread_group_leader is the obvious thing 2937 * todo but there is a window when it fails, due to 2938 * the pid transfer logic in de_thread. 2939 * 2940 * So we perform the straight forward test of seeing 2941 * if the pid we have found is the pid of a thread 2942 * group leader, and don't worry if the task we have 2943 * found doesn't happen to be a thread group leader. 2944 * As we don't care in the case of readdir. 2945 */ 2946 if (!iter.task || !has_group_leader_pid(iter.task)) { 2947 iter.tgid += 1; 2948 goto retry; 2949 } 2950 get_task_struct(iter.task); 2951 } 2952 rcu_read_unlock(); 2953 return iter; 2954 } 2955 2956 #define TGID_OFFSET (FIRST_PROCESS_ENTRY + ARRAY_SIZE(proc_base_stuff)) 2957 2958 static int proc_pid_fill_cache(struct file *filp, void *dirent, filldir_t filldir, 2959 struct tgid_iter iter) 2960 { 2961 char name[PROC_NUMBUF]; 2962 int len = snprintf(name, sizeof(name), "%d", iter.tgid); 2963 return proc_fill_cache(filp, dirent, filldir, name, len, 2964 proc_pid_instantiate, iter.task, NULL); 2965 } 2966 2967 /* for the /proc/ directory itself, after non-process stuff has been done */ 2968 int proc_pid_readdir(struct file * filp, void * dirent, filldir_t filldir) 2969 { 2970 unsigned int nr; 2971 struct task_struct *reaper; 2972 struct tgid_iter iter; 2973 struct pid_namespace *ns; 2974 2975 if (filp->f_pos >= PID_MAX_LIMIT + TGID_OFFSET) 2976 goto out_no_task; 2977 nr = filp->f_pos - FIRST_PROCESS_ENTRY; 2978 2979 reaper = get_proc_task(filp->f_path.dentry->d_inode); 2980 if (!reaper) 2981 goto out_no_task; 2982 2983 for (; nr < ARRAY_SIZE(proc_base_stuff); filp->f_pos++, nr++) { 2984 const struct pid_entry *p = &proc_base_stuff[nr]; 2985 if (proc_base_fill_cache(filp, dirent, filldir, reaper, p) < 0) 2986 goto out; 2987 } 2988 2989 ns = filp->f_dentry->d_sb->s_fs_info; 2990 iter.task = NULL; 2991 iter.tgid = filp->f_pos - TGID_OFFSET; 2992 for (iter = next_tgid(ns, iter); 2993 iter.task; 2994 iter.tgid += 1, iter = next_tgid(ns, iter)) { 2995 filp->f_pos = iter.tgid + TGID_OFFSET; 2996 if (proc_pid_fill_cache(filp, dirent, filldir, iter) < 0) { 2997 put_task_struct(iter.task); 2998 goto out; 2999 } 3000 } 3001 filp->f_pos = PID_MAX_LIMIT + TGID_OFFSET; 3002 out: 3003 put_task_struct(reaper); 3004 out_no_task: 3005 return 0; 3006 } 3007 3008 /* 3009 * Tasks 3010 */ 3011 static const struct pid_entry tid_base_stuff[] = { 3012 DIR("fd", S_IRUSR|S_IXUSR, proc_fd_inode_operations, proc_fd_operations), 3013 DIR("fdinfo", S_IRUSR|S_IXUSR, proc_fdinfo_inode_operations, proc_fdinfo_operations), 3014 DIR("ns", S_IRUSR|S_IXUGO, proc_ns_dir_inode_operations, proc_ns_dir_operations), 3015 REG("environ", S_IRUSR, proc_environ_operations), 3016 INF("auxv", S_IRUSR, proc_pid_auxv), 3017 ONE("status", S_IRUGO, proc_pid_status), 3018 ONE("personality", S_IRUGO, proc_pid_personality), 3019 INF("limits", S_IRUGO, proc_pid_limits), 3020 #ifdef CONFIG_SCHED_DEBUG 3021 REG("sched", S_IRUGO|S_IWUSR, proc_pid_sched_operations), 3022 #endif 3023 REG("comm", S_IRUGO|S_IWUSR, proc_pid_set_comm_operations), 3024 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK 3025 INF("syscall", S_IRUGO, proc_pid_syscall), 3026 #endif 3027 INF("cmdline", S_IRUGO, proc_pid_cmdline), 3028 ONE("stat", S_IRUGO, proc_tid_stat), 3029 ONE("statm", S_IRUGO, proc_pid_statm), 3030 REG("maps", S_IRUGO, proc_maps_operations), 3031 #ifdef CONFIG_NUMA 3032 REG("numa_maps", S_IRUGO, proc_numa_maps_operations), 3033 #endif 3034 REG("mem", S_IRUSR|S_IWUSR, proc_mem_operations), 3035 LNK("cwd", proc_cwd_link), 3036 LNK("root", proc_root_link), 3037 LNK("exe", proc_exe_link), 3038 REG("mounts", S_IRUGO, proc_mounts_operations), 3039 REG("mountinfo", S_IRUGO, proc_mountinfo_operations), 3040 #ifdef CONFIG_PROC_PAGE_MONITOR 3041 REG("clear_refs", S_IWUSR, proc_clear_refs_operations), 3042 REG("smaps", S_IRUGO, proc_smaps_operations), 3043 REG("pagemap", S_IRUGO, proc_pagemap_operations), 3044 #endif 3045 #ifdef CONFIG_SECURITY 3046 DIR("attr", S_IRUGO|S_IXUGO, proc_attr_dir_inode_operations, proc_attr_dir_operations), 3047 #endif 3048 #ifdef CONFIG_KALLSYMS 3049 INF("wchan", S_IRUGO, proc_pid_wchan), 3050 #endif 3051 #ifdef CONFIG_STACKTRACE 3052 ONE("stack", S_IRUGO, proc_pid_stack), 3053 #endif 3054 #ifdef CONFIG_SCHEDSTATS 3055 INF("schedstat", S_IRUGO, proc_pid_schedstat), 3056 #endif 3057 #ifdef CONFIG_LATENCYTOP 3058 REG("latency", S_IRUGO, proc_lstats_operations), 3059 #endif 3060 #ifdef CONFIG_PROC_PID_CPUSET 3061 REG("cpuset", S_IRUGO, proc_cpuset_operations), 3062 #endif 3063 #ifdef CONFIG_CGROUPS 3064 REG("cgroup", S_IRUGO, proc_cgroup_operations), 3065 #endif 3066 INF("oom_score", S_IRUGO, proc_oom_score), 3067 REG("oom_adj", S_IRUGO|S_IWUSR, proc_oom_adjust_operations), 3068 REG("oom_score_adj", S_IRUGO|S_IWUSR, proc_oom_score_adj_operations), 3069 #ifdef CONFIG_AUDITSYSCALL 3070 REG("loginuid", S_IWUSR|S_IRUGO, proc_loginuid_operations), 3071 REG("sessionid", S_IRUGO, proc_sessionid_operations), 3072 #endif 3073 #ifdef CONFIG_FAULT_INJECTION 3074 REG("make-it-fail", S_IRUGO|S_IWUSR, proc_fault_inject_operations), 3075 #endif 3076 #ifdef CONFIG_TASK_IO_ACCOUNTING 3077 INF("io", S_IRUSR, proc_tid_io_accounting), 3078 #endif 3079 #ifdef CONFIG_HARDWALL 3080 INF("hardwall", S_IRUGO, proc_pid_hardwall), 3081 #endif 3082 }; 3083 3084 static int proc_tid_base_readdir(struct file * filp, 3085 void * dirent, filldir_t filldir) 3086 { 3087 return proc_pident_readdir(filp,dirent,filldir, 3088 tid_base_stuff,ARRAY_SIZE(tid_base_stuff)); 3089 } 3090 3091 static struct dentry *proc_tid_base_lookup(struct inode *dir, struct dentry *dentry, struct nameidata *nd){ 3092 return proc_pident_lookup(dir, dentry, 3093 tid_base_stuff, ARRAY_SIZE(tid_base_stuff)); 3094 } 3095 3096 static const struct file_operations proc_tid_base_operations = { 3097 .read = generic_read_dir, 3098 .readdir = proc_tid_base_readdir, 3099 .llseek = default_llseek, 3100 }; 3101 3102 static const struct inode_operations proc_tid_base_inode_operations = { 3103 .lookup = proc_tid_base_lookup, 3104 .getattr = pid_getattr, 3105 .setattr = proc_setattr, 3106 }; 3107 3108 static struct dentry *proc_task_instantiate(struct inode *dir, 3109 struct dentry *dentry, struct task_struct *task, const void *ptr) 3110 { 3111 struct dentry *error = ERR_PTR(-ENOENT); 3112 struct inode *inode; 3113 inode = proc_pid_make_inode(dir->i_sb, task); 3114 3115 if (!inode) 3116 goto out; 3117 inode->i_mode = S_IFDIR|S_IRUGO|S_IXUGO; 3118 inode->i_op = &proc_tid_base_inode_operations; 3119 inode->i_fop = &proc_tid_base_operations; 3120 inode->i_flags|=S_IMMUTABLE; 3121 3122 set_nlink(inode, 2 + pid_entry_count_dirs(tid_base_stuff, 3123 ARRAY_SIZE(tid_base_stuff))); 3124 3125 d_set_d_op(dentry, &pid_dentry_operations); 3126 3127 d_add(dentry, inode); 3128 /* Close the race of the process dying before we return the dentry */ 3129 if (pid_revalidate(dentry, NULL)) 3130 error = NULL; 3131 out: 3132 return error; 3133 } 3134 3135 static struct dentry *proc_task_lookup(struct inode *dir, struct dentry * dentry, struct nameidata *nd) 3136 { 3137 struct dentry *result = ERR_PTR(-ENOENT); 3138 struct task_struct *task; 3139 struct task_struct *leader = get_proc_task(dir); 3140 unsigned tid; 3141 struct pid_namespace *ns; 3142 3143 if (!leader) 3144 goto out_no_task; 3145 3146 tid = name_to_int(dentry); 3147 if (tid == ~0U) 3148 goto out; 3149 3150 ns = dentry->d_sb->s_fs_info; 3151 rcu_read_lock(); 3152 task = find_task_by_pid_ns(tid, ns); 3153 if (task) 3154 get_task_struct(task); 3155 rcu_read_unlock(); 3156 if (!task) 3157 goto out; 3158 if (!same_thread_group(leader, task)) 3159 goto out_drop_task; 3160 3161 result = proc_task_instantiate(dir, dentry, task, NULL); 3162 out_drop_task: 3163 put_task_struct(task); 3164 out: 3165 put_task_struct(leader); 3166 out_no_task: 3167 return result; 3168 } 3169 3170 /* 3171 * Find the first tid of a thread group to return to user space. 3172 * 3173 * Usually this is just the thread group leader, but if the users 3174 * buffer was too small or there was a seek into the middle of the 3175 * directory we have more work todo. 3176 * 3177 * In the case of a short read we start with find_task_by_pid. 3178 * 3179 * In the case of a seek we start with the leader and walk nr 3180 * threads past it. 3181 */ 3182 static struct task_struct *first_tid(struct task_struct *leader, 3183 int tid, int nr, struct pid_namespace *ns) 3184 { 3185 struct task_struct *pos; 3186 3187 rcu_read_lock(); 3188 /* Attempt to start with the pid of a thread */ 3189 if (tid && (nr > 0)) { 3190 pos = find_task_by_pid_ns(tid, ns); 3191 if (pos && (pos->group_leader == leader)) 3192 goto found; 3193 } 3194 3195 /* If nr exceeds the number of threads there is nothing todo */ 3196 pos = NULL; 3197 if (nr && nr >= get_nr_threads(leader)) 3198 goto out; 3199 3200 /* If we haven't found our starting place yet start 3201 * with the leader and walk nr threads forward. 3202 */ 3203 for (pos = leader; nr > 0; --nr) { 3204 pos = next_thread(pos); 3205 if (pos == leader) { 3206 pos = NULL; 3207 goto out; 3208 } 3209 } 3210 found: 3211 get_task_struct(pos); 3212 out: 3213 rcu_read_unlock(); 3214 return pos; 3215 } 3216 3217 /* 3218 * Find the next thread in the thread list. 3219 * Return NULL if there is an error or no next thread. 3220 * 3221 * The reference to the input task_struct is released. 3222 */ 3223 static struct task_struct *next_tid(struct task_struct *start) 3224 { 3225 struct task_struct *pos = NULL; 3226 rcu_read_lock(); 3227 if (pid_alive(start)) { 3228 pos = next_thread(start); 3229 if (thread_group_leader(pos)) 3230 pos = NULL; 3231 else 3232 get_task_struct(pos); 3233 } 3234 rcu_read_unlock(); 3235 put_task_struct(start); 3236 return pos; 3237 } 3238 3239 static int proc_task_fill_cache(struct file *filp, void *dirent, filldir_t filldir, 3240 struct task_struct *task, int tid) 3241 { 3242 char name[PROC_NUMBUF]; 3243 int len = snprintf(name, sizeof(name), "%d", tid); 3244 return proc_fill_cache(filp, dirent, filldir, name, len, 3245 proc_task_instantiate, task, NULL); 3246 } 3247 3248 /* for the /proc/TGID/task/ directories */ 3249 static int proc_task_readdir(struct file * filp, void * dirent, filldir_t filldir) 3250 { 3251 struct dentry *dentry = filp->f_path.dentry; 3252 struct inode *inode = dentry->d_inode; 3253 struct task_struct *leader = NULL; 3254 struct task_struct *task; 3255 int retval = -ENOENT; 3256 ino_t ino; 3257 int tid; 3258 struct pid_namespace *ns; 3259 3260 task = get_proc_task(inode); 3261 if (!task) 3262 goto out_no_task; 3263 rcu_read_lock(); 3264 if (pid_alive(task)) { 3265 leader = task->group_leader; 3266 get_task_struct(leader); 3267 } 3268 rcu_read_unlock(); 3269 put_task_struct(task); 3270 if (!leader) 3271 goto out_no_task; 3272 retval = 0; 3273 3274 switch ((unsigned long)filp->f_pos) { 3275 case 0: 3276 ino = inode->i_ino; 3277 if (filldir(dirent, ".", 1, filp->f_pos, ino, DT_DIR) < 0) 3278 goto out; 3279 filp->f_pos++; 3280 /* fall through */ 3281 case 1: 3282 ino = parent_ino(dentry); 3283 if (filldir(dirent, "..", 2, filp->f_pos, ino, DT_DIR) < 0) 3284 goto out; 3285 filp->f_pos++; 3286 /* fall through */ 3287 } 3288 3289 /* f_version caches the tgid value that the last readdir call couldn't 3290 * return. lseek aka telldir automagically resets f_version to 0. 3291 */ 3292 ns = filp->f_dentry->d_sb->s_fs_info; 3293 tid = (int)filp->f_version; 3294 filp->f_version = 0; 3295 for (task = first_tid(leader, tid, filp->f_pos - 2, ns); 3296 task; 3297 task = next_tid(task), filp->f_pos++) { 3298 tid = task_pid_nr_ns(task, ns); 3299 if (proc_task_fill_cache(filp, dirent, filldir, task, tid) < 0) { 3300 /* returning this tgid failed, save it as the first 3301 * pid for the next readir call */ 3302 filp->f_version = (u64)tid; 3303 put_task_struct(task); 3304 break; 3305 } 3306 } 3307 out: 3308 put_task_struct(leader); 3309 out_no_task: 3310 return retval; 3311 } 3312 3313 static int proc_task_getattr(struct vfsmount *mnt, struct dentry *dentry, struct kstat *stat) 3314 { 3315 struct inode *inode = dentry->d_inode; 3316 struct task_struct *p = get_proc_task(inode); 3317 generic_fillattr(inode, stat); 3318 3319 if (p) { 3320 stat->nlink += get_nr_threads(p); 3321 put_task_struct(p); 3322 } 3323 3324 return 0; 3325 } 3326 3327 static const struct inode_operations proc_task_inode_operations = { 3328 .lookup = proc_task_lookup, 3329 .getattr = proc_task_getattr, 3330 .setattr = proc_setattr, 3331 }; 3332 3333 static const struct file_operations proc_task_operations = { 3334 .read = generic_read_dir, 3335 .readdir = proc_task_readdir, 3336 .llseek = default_llseek, 3337 }; 3338