xref: /linux/fs/proc/base.c (revision 9d14070f656addddce3d63fd483de46930b51850)
1 /*
2  *  linux/fs/proc/base.c
3  *
4  *  Copyright (C) 1991, 1992 Linus Torvalds
5  *
6  *  proc base directory handling functions
7  *
8  *  1999, Al Viro. Rewritten. Now it covers the whole per-process part.
9  *  Instead of using magical inumbers to determine the kind of object
10  *  we allocate and fill in-core inodes upon lookup. They don't even
11  *  go into icache. We cache the reference to task_struct upon lookup too.
12  *  Eventually it should become a filesystem in its own. We don't use the
13  *  rest of procfs anymore.
14  *
15  *
16  *  Changelog:
17  *  17-Jan-2005
18  *  Allan Bezerra
19  *  Bruna Moreira <bruna.moreira@indt.org.br>
20  *  Edjard Mota <edjard.mota@indt.org.br>
21  *  Ilias Biris <ilias.biris@indt.org.br>
22  *  Mauricio Lin <mauricio.lin@indt.org.br>
23  *
24  *  Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT
25  *
26  *  A new process specific entry (smaps) included in /proc. It shows the
27  *  size of rss for each memory area. The maps entry lacks information
28  *  about physical memory size (rss) for each mapped file, i.e.,
29  *  rss information for executables and library files.
30  *  This additional information is useful for any tools that need to know
31  *  about physical memory consumption for a process specific library.
32  *
33  *  Changelog:
34  *  21-Feb-2005
35  *  Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT
36  *  Pud inclusion in the page table walking.
37  *
38  *  ChangeLog:
39  *  10-Mar-2005
40  *  10LE Instituto Nokia de Tecnologia - INdT:
41  *  A better way to walks through the page table as suggested by Hugh Dickins.
42  *
43  *  Simo Piiroinen <simo.piiroinen@nokia.com>:
44  *  Smaps information related to shared, private, clean and dirty pages.
45  *
46  *  Paul Mundt <paul.mundt@nokia.com>:
47  *  Overall revision about smaps.
48  */
49 
50 #include <asm/uaccess.h>
51 
52 #include <linux/errno.h>
53 #include <linux/time.h>
54 #include <linux/proc_fs.h>
55 #include <linux/stat.h>
56 #include <linux/task_io_accounting_ops.h>
57 #include <linux/init.h>
58 #include <linux/capability.h>
59 #include <linux/file.h>
60 #include <linux/fdtable.h>
61 #include <linux/string.h>
62 #include <linux/seq_file.h>
63 #include <linux/namei.h>
64 #include <linux/mnt_namespace.h>
65 #include <linux/mm.h>
66 #include <linux/swap.h>
67 #include <linux/rcupdate.h>
68 #include <linux/kallsyms.h>
69 #include <linux/stacktrace.h>
70 #include <linux/resource.h>
71 #include <linux/module.h>
72 #include <linux/mount.h>
73 #include <linux/security.h>
74 #include <linux/ptrace.h>
75 #include <linux/tracehook.h>
76 #include <linux/cgroup.h>
77 #include <linux/cpuset.h>
78 #include <linux/audit.h>
79 #include <linux/poll.h>
80 #include <linux/nsproxy.h>
81 #include <linux/oom.h>
82 #include <linux/elf.h>
83 #include <linux/pid_namespace.h>
84 #include <linux/fs_struct.h>
85 #include <linux/slab.h>
86 #ifdef CONFIG_HARDWALL
87 #include <asm/hardwall.h>
88 #endif
89 #include "internal.h"
90 
91 /* NOTE:
92  *	Implementing inode permission operations in /proc is almost
93  *	certainly an error.  Permission checks need to happen during
94  *	each system call not at open time.  The reason is that most of
95  *	what we wish to check for permissions in /proc varies at runtime.
96  *
97  *	The classic example of a problem is opening file descriptors
98  *	in /proc for a task before it execs a suid executable.
99  */
100 
101 struct pid_entry {
102 	char *name;
103 	int len;
104 	umode_t mode;
105 	const struct inode_operations *iop;
106 	const struct file_operations *fop;
107 	union proc_op op;
108 };
109 
110 #define NOD(NAME, MODE, IOP, FOP, OP) {			\
111 	.name = (NAME),					\
112 	.len  = sizeof(NAME) - 1,			\
113 	.mode = MODE,					\
114 	.iop  = IOP,					\
115 	.fop  = FOP,					\
116 	.op   = OP,					\
117 }
118 
119 #define DIR(NAME, MODE, iops, fops)	\
120 	NOD(NAME, (S_IFDIR|(MODE)), &iops, &fops, {} )
121 #define LNK(NAME, get_link)					\
122 	NOD(NAME, (S_IFLNK|S_IRWXUGO),				\
123 		&proc_pid_link_inode_operations, NULL,		\
124 		{ .proc_get_link = get_link } )
125 #define REG(NAME, MODE, fops)				\
126 	NOD(NAME, (S_IFREG|(MODE)), NULL, &fops, {})
127 #define INF(NAME, MODE, read)				\
128 	NOD(NAME, (S_IFREG|(MODE)), 			\
129 		NULL, &proc_info_file_operations,	\
130 		{ .proc_read = read } )
131 #define ONE(NAME, MODE, show)				\
132 	NOD(NAME, (S_IFREG|(MODE)), 			\
133 		NULL, &proc_single_file_operations,	\
134 		{ .proc_show = show } )
135 
136 /*
137  * Count the number of hardlinks for the pid_entry table, excluding the .
138  * and .. links.
139  */
140 static unsigned int pid_entry_count_dirs(const struct pid_entry *entries,
141 	unsigned int n)
142 {
143 	unsigned int i;
144 	unsigned int count;
145 
146 	count = 0;
147 	for (i = 0; i < n; ++i) {
148 		if (S_ISDIR(entries[i].mode))
149 			++count;
150 	}
151 
152 	return count;
153 }
154 
155 static int get_task_root(struct task_struct *task, struct path *root)
156 {
157 	int result = -ENOENT;
158 
159 	task_lock(task);
160 	if (task->fs) {
161 		get_fs_root(task->fs, root);
162 		result = 0;
163 	}
164 	task_unlock(task);
165 	return result;
166 }
167 
168 static int proc_cwd_link(struct inode *inode, struct path *path)
169 {
170 	struct task_struct *task = get_proc_task(inode);
171 	int result = -ENOENT;
172 
173 	if (task) {
174 		task_lock(task);
175 		if (task->fs) {
176 			get_fs_pwd(task->fs, path);
177 			result = 0;
178 		}
179 		task_unlock(task);
180 		put_task_struct(task);
181 	}
182 	return result;
183 }
184 
185 static int proc_root_link(struct inode *inode, struct path *path)
186 {
187 	struct task_struct *task = get_proc_task(inode);
188 	int result = -ENOENT;
189 
190 	if (task) {
191 		result = get_task_root(task, path);
192 		put_task_struct(task);
193 	}
194 	return result;
195 }
196 
197 static struct mm_struct *__check_mem_permission(struct task_struct *task)
198 {
199 	struct mm_struct *mm;
200 
201 	mm = get_task_mm(task);
202 	if (!mm)
203 		return ERR_PTR(-EINVAL);
204 
205 	/*
206 	 * A task can always look at itself, in case it chooses
207 	 * to use system calls instead of load instructions.
208 	 */
209 	if (task == current)
210 		return mm;
211 
212 	/*
213 	 * If current is actively ptrace'ing, and would also be
214 	 * permitted to freshly attach with ptrace now, permit it.
215 	 */
216 	if (task_is_stopped_or_traced(task)) {
217 		int match;
218 		rcu_read_lock();
219 		match = (ptrace_parent(task) == current);
220 		rcu_read_unlock();
221 		if (match && ptrace_may_access(task, PTRACE_MODE_ATTACH))
222 			return mm;
223 	}
224 
225 	/*
226 	 * No one else is allowed.
227 	 */
228 	mmput(mm);
229 	return ERR_PTR(-EPERM);
230 }
231 
232 /*
233  * If current may access user memory in @task return a reference to the
234  * corresponding mm, otherwise ERR_PTR.
235  */
236 static struct mm_struct *check_mem_permission(struct task_struct *task)
237 {
238 	struct mm_struct *mm;
239 	int err;
240 
241 	/*
242 	 * Avoid racing if task exec's as we might get a new mm but validate
243 	 * against old credentials.
244 	 */
245 	err = mutex_lock_killable(&task->signal->cred_guard_mutex);
246 	if (err)
247 		return ERR_PTR(err);
248 
249 	mm = __check_mem_permission(task);
250 	mutex_unlock(&task->signal->cred_guard_mutex);
251 
252 	return mm;
253 }
254 
255 struct mm_struct *mm_for_maps(struct task_struct *task)
256 {
257 	struct mm_struct *mm;
258 	int err;
259 
260 	err =  mutex_lock_killable(&task->signal->cred_guard_mutex);
261 	if (err)
262 		return ERR_PTR(err);
263 
264 	mm = get_task_mm(task);
265 	if (mm && mm != current->mm &&
266 			!ptrace_may_access(task, PTRACE_MODE_READ)) {
267 		mmput(mm);
268 		mm = ERR_PTR(-EACCES);
269 	}
270 	mutex_unlock(&task->signal->cred_guard_mutex);
271 
272 	return mm;
273 }
274 
275 static int proc_pid_cmdline(struct task_struct *task, char * buffer)
276 {
277 	int res = 0;
278 	unsigned int len;
279 	struct mm_struct *mm = get_task_mm(task);
280 	if (!mm)
281 		goto out;
282 	if (!mm->arg_end)
283 		goto out_mm;	/* Shh! No looking before we're done */
284 
285  	len = mm->arg_end - mm->arg_start;
286 
287 	if (len > PAGE_SIZE)
288 		len = PAGE_SIZE;
289 
290 	res = access_process_vm(task, mm->arg_start, buffer, len, 0);
291 
292 	// If the nul at the end of args has been overwritten, then
293 	// assume application is using setproctitle(3).
294 	if (res > 0 && buffer[res-1] != '\0' && len < PAGE_SIZE) {
295 		len = strnlen(buffer, res);
296 		if (len < res) {
297 		    res = len;
298 		} else {
299 			len = mm->env_end - mm->env_start;
300 			if (len > PAGE_SIZE - res)
301 				len = PAGE_SIZE - res;
302 			res += access_process_vm(task, mm->env_start, buffer+res, len, 0);
303 			res = strnlen(buffer, res);
304 		}
305 	}
306 out_mm:
307 	mmput(mm);
308 out:
309 	return res;
310 }
311 
312 static int proc_pid_auxv(struct task_struct *task, char *buffer)
313 {
314 	struct mm_struct *mm = mm_for_maps(task);
315 	int res = PTR_ERR(mm);
316 	if (mm && !IS_ERR(mm)) {
317 		unsigned int nwords = 0;
318 		do {
319 			nwords += 2;
320 		} while (mm->saved_auxv[nwords - 2] != 0); /* AT_NULL */
321 		res = nwords * sizeof(mm->saved_auxv[0]);
322 		if (res > PAGE_SIZE)
323 			res = PAGE_SIZE;
324 		memcpy(buffer, mm->saved_auxv, res);
325 		mmput(mm);
326 	}
327 	return res;
328 }
329 
330 
331 #ifdef CONFIG_KALLSYMS
332 /*
333  * Provides a wchan file via kallsyms in a proper one-value-per-file format.
334  * Returns the resolved symbol.  If that fails, simply return the address.
335  */
336 static int proc_pid_wchan(struct task_struct *task, char *buffer)
337 {
338 	unsigned long wchan;
339 	char symname[KSYM_NAME_LEN];
340 
341 	wchan = get_wchan(task);
342 
343 	if (lookup_symbol_name(wchan, symname) < 0)
344 		if (!ptrace_may_access(task, PTRACE_MODE_READ))
345 			return 0;
346 		else
347 			return sprintf(buffer, "%lu", wchan);
348 	else
349 		return sprintf(buffer, "%s", symname);
350 }
351 #endif /* CONFIG_KALLSYMS */
352 
353 static int lock_trace(struct task_struct *task)
354 {
355 	int err = mutex_lock_killable(&task->signal->cred_guard_mutex);
356 	if (err)
357 		return err;
358 	if (!ptrace_may_access(task, PTRACE_MODE_ATTACH)) {
359 		mutex_unlock(&task->signal->cred_guard_mutex);
360 		return -EPERM;
361 	}
362 	return 0;
363 }
364 
365 static void unlock_trace(struct task_struct *task)
366 {
367 	mutex_unlock(&task->signal->cred_guard_mutex);
368 }
369 
370 #ifdef CONFIG_STACKTRACE
371 
372 #define MAX_STACK_TRACE_DEPTH	64
373 
374 static int proc_pid_stack(struct seq_file *m, struct pid_namespace *ns,
375 			  struct pid *pid, struct task_struct *task)
376 {
377 	struct stack_trace trace;
378 	unsigned long *entries;
379 	int err;
380 	int i;
381 
382 	entries = kmalloc(MAX_STACK_TRACE_DEPTH * sizeof(*entries), GFP_KERNEL);
383 	if (!entries)
384 		return -ENOMEM;
385 
386 	trace.nr_entries	= 0;
387 	trace.max_entries	= MAX_STACK_TRACE_DEPTH;
388 	trace.entries		= entries;
389 	trace.skip		= 0;
390 
391 	err = lock_trace(task);
392 	if (!err) {
393 		save_stack_trace_tsk(task, &trace);
394 
395 		for (i = 0; i < trace.nr_entries; i++) {
396 			seq_printf(m, "[<%pK>] %pS\n",
397 				   (void *)entries[i], (void *)entries[i]);
398 		}
399 		unlock_trace(task);
400 	}
401 	kfree(entries);
402 
403 	return err;
404 }
405 #endif
406 
407 #ifdef CONFIG_SCHEDSTATS
408 /*
409  * Provides /proc/PID/schedstat
410  */
411 static int proc_pid_schedstat(struct task_struct *task, char *buffer)
412 {
413 	return sprintf(buffer, "%llu %llu %lu\n",
414 			(unsigned long long)task->se.sum_exec_runtime,
415 			(unsigned long long)task->sched_info.run_delay,
416 			task->sched_info.pcount);
417 }
418 #endif
419 
420 #ifdef CONFIG_LATENCYTOP
421 static int lstats_show_proc(struct seq_file *m, void *v)
422 {
423 	int i;
424 	struct inode *inode = m->private;
425 	struct task_struct *task = get_proc_task(inode);
426 
427 	if (!task)
428 		return -ESRCH;
429 	seq_puts(m, "Latency Top version : v0.1\n");
430 	for (i = 0; i < 32; i++) {
431 		struct latency_record *lr = &task->latency_record[i];
432 		if (lr->backtrace[0]) {
433 			int q;
434 			seq_printf(m, "%i %li %li",
435 				   lr->count, lr->time, lr->max);
436 			for (q = 0; q < LT_BACKTRACEDEPTH; q++) {
437 				unsigned long bt = lr->backtrace[q];
438 				if (!bt)
439 					break;
440 				if (bt == ULONG_MAX)
441 					break;
442 				seq_printf(m, " %ps", (void *)bt);
443 			}
444 			seq_putc(m, '\n');
445 		}
446 
447 	}
448 	put_task_struct(task);
449 	return 0;
450 }
451 
452 static int lstats_open(struct inode *inode, struct file *file)
453 {
454 	return single_open(file, lstats_show_proc, inode);
455 }
456 
457 static ssize_t lstats_write(struct file *file, const char __user *buf,
458 			    size_t count, loff_t *offs)
459 {
460 	struct task_struct *task = get_proc_task(file->f_dentry->d_inode);
461 
462 	if (!task)
463 		return -ESRCH;
464 	clear_all_latency_tracing(task);
465 	put_task_struct(task);
466 
467 	return count;
468 }
469 
470 static const struct file_operations proc_lstats_operations = {
471 	.open		= lstats_open,
472 	.read		= seq_read,
473 	.write		= lstats_write,
474 	.llseek		= seq_lseek,
475 	.release	= single_release,
476 };
477 
478 #endif
479 
480 static int proc_oom_score(struct task_struct *task, char *buffer)
481 {
482 	unsigned long points = 0;
483 
484 	read_lock(&tasklist_lock);
485 	if (pid_alive(task))
486 		points = oom_badness(task, NULL, NULL,
487 					totalram_pages + total_swap_pages);
488 	read_unlock(&tasklist_lock);
489 	return sprintf(buffer, "%lu\n", points);
490 }
491 
492 struct limit_names {
493 	char *name;
494 	char *unit;
495 };
496 
497 static const struct limit_names lnames[RLIM_NLIMITS] = {
498 	[RLIMIT_CPU] = {"Max cpu time", "seconds"},
499 	[RLIMIT_FSIZE] = {"Max file size", "bytes"},
500 	[RLIMIT_DATA] = {"Max data size", "bytes"},
501 	[RLIMIT_STACK] = {"Max stack size", "bytes"},
502 	[RLIMIT_CORE] = {"Max core file size", "bytes"},
503 	[RLIMIT_RSS] = {"Max resident set", "bytes"},
504 	[RLIMIT_NPROC] = {"Max processes", "processes"},
505 	[RLIMIT_NOFILE] = {"Max open files", "files"},
506 	[RLIMIT_MEMLOCK] = {"Max locked memory", "bytes"},
507 	[RLIMIT_AS] = {"Max address space", "bytes"},
508 	[RLIMIT_LOCKS] = {"Max file locks", "locks"},
509 	[RLIMIT_SIGPENDING] = {"Max pending signals", "signals"},
510 	[RLIMIT_MSGQUEUE] = {"Max msgqueue size", "bytes"},
511 	[RLIMIT_NICE] = {"Max nice priority", NULL},
512 	[RLIMIT_RTPRIO] = {"Max realtime priority", NULL},
513 	[RLIMIT_RTTIME] = {"Max realtime timeout", "us"},
514 };
515 
516 /* Display limits for a process */
517 static int proc_pid_limits(struct task_struct *task, char *buffer)
518 {
519 	unsigned int i;
520 	int count = 0;
521 	unsigned long flags;
522 	char *bufptr = buffer;
523 
524 	struct rlimit rlim[RLIM_NLIMITS];
525 
526 	if (!lock_task_sighand(task, &flags))
527 		return 0;
528 	memcpy(rlim, task->signal->rlim, sizeof(struct rlimit) * RLIM_NLIMITS);
529 	unlock_task_sighand(task, &flags);
530 
531 	/*
532 	 * print the file header
533 	 */
534 	count += sprintf(&bufptr[count], "%-25s %-20s %-20s %-10s\n",
535 			"Limit", "Soft Limit", "Hard Limit", "Units");
536 
537 	for (i = 0; i < RLIM_NLIMITS; i++) {
538 		if (rlim[i].rlim_cur == RLIM_INFINITY)
539 			count += sprintf(&bufptr[count], "%-25s %-20s ",
540 					 lnames[i].name, "unlimited");
541 		else
542 			count += sprintf(&bufptr[count], "%-25s %-20lu ",
543 					 lnames[i].name, rlim[i].rlim_cur);
544 
545 		if (rlim[i].rlim_max == RLIM_INFINITY)
546 			count += sprintf(&bufptr[count], "%-20s ", "unlimited");
547 		else
548 			count += sprintf(&bufptr[count], "%-20lu ",
549 					 rlim[i].rlim_max);
550 
551 		if (lnames[i].unit)
552 			count += sprintf(&bufptr[count], "%-10s\n",
553 					 lnames[i].unit);
554 		else
555 			count += sprintf(&bufptr[count], "\n");
556 	}
557 
558 	return count;
559 }
560 
561 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK
562 static int proc_pid_syscall(struct task_struct *task, char *buffer)
563 {
564 	long nr;
565 	unsigned long args[6], sp, pc;
566 	int res = lock_trace(task);
567 	if (res)
568 		return res;
569 
570 	if (task_current_syscall(task, &nr, args, 6, &sp, &pc))
571 		res = sprintf(buffer, "running\n");
572 	else if (nr < 0)
573 		res = sprintf(buffer, "%ld 0x%lx 0x%lx\n", nr, sp, pc);
574 	else
575 		res = sprintf(buffer,
576 		       "%ld 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx\n",
577 		       nr,
578 		       args[0], args[1], args[2], args[3], args[4], args[5],
579 		       sp, pc);
580 	unlock_trace(task);
581 	return res;
582 }
583 #endif /* CONFIG_HAVE_ARCH_TRACEHOOK */
584 
585 /************************************************************************/
586 /*                       Here the fs part begins                        */
587 /************************************************************************/
588 
589 /* permission checks */
590 static int proc_fd_access_allowed(struct inode *inode)
591 {
592 	struct task_struct *task;
593 	int allowed = 0;
594 	/* Allow access to a task's file descriptors if it is us or we
595 	 * may use ptrace attach to the process and find out that
596 	 * information.
597 	 */
598 	task = get_proc_task(inode);
599 	if (task) {
600 		allowed = ptrace_may_access(task, PTRACE_MODE_READ);
601 		put_task_struct(task);
602 	}
603 	return allowed;
604 }
605 
606 int proc_setattr(struct dentry *dentry, struct iattr *attr)
607 {
608 	int error;
609 	struct inode *inode = dentry->d_inode;
610 
611 	if (attr->ia_valid & ATTR_MODE)
612 		return -EPERM;
613 
614 	error = inode_change_ok(inode, attr);
615 	if (error)
616 		return error;
617 
618 	if ((attr->ia_valid & ATTR_SIZE) &&
619 	    attr->ia_size != i_size_read(inode)) {
620 		error = vmtruncate(inode, attr->ia_size);
621 		if (error)
622 			return error;
623 	}
624 
625 	setattr_copy(inode, attr);
626 	mark_inode_dirty(inode);
627 	return 0;
628 }
629 
630 static const struct inode_operations proc_def_inode_operations = {
631 	.setattr	= proc_setattr,
632 };
633 
634 #define PROC_BLOCK_SIZE	(3*1024)		/* 4K page size but our output routines use some slack for overruns */
635 
636 static ssize_t proc_info_read(struct file * file, char __user * buf,
637 			  size_t count, loff_t *ppos)
638 {
639 	struct inode * inode = file->f_path.dentry->d_inode;
640 	unsigned long page;
641 	ssize_t length;
642 	struct task_struct *task = get_proc_task(inode);
643 
644 	length = -ESRCH;
645 	if (!task)
646 		goto out_no_task;
647 
648 	if (count > PROC_BLOCK_SIZE)
649 		count = PROC_BLOCK_SIZE;
650 
651 	length = -ENOMEM;
652 	if (!(page = __get_free_page(GFP_TEMPORARY)))
653 		goto out;
654 
655 	length = PROC_I(inode)->op.proc_read(task, (char*)page);
656 
657 	if (length >= 0)
658 		length = simple_read_from_buffer(buf, count, ppos, (char *)page, length);
659 	free_page(page);
660 out:
661 	put_task_struct(task);
662 out_no_task:
663 	return length;
664 }
665 
666 static const struct file_operations proc_info_file_operations = {
667 	.read		= proc_info_read,
668 	.llseek		= generic_file_llseek,
669 };
670 
671 static int proc_single_show(struct seq_file *m, void *v)
672 {
673 	struct inode *inode = m->private;
674 	struct pid_namespace *ns;
675 	struct pid *pid;
676 	struct task_struct *task;
677 	int ret;
678 
679 	ns = inode->i_sb->s_fs_info;
680 	pid = proc_pid(inode);
681 	task = get_pid_task(pid, PIDTYPE_PID);
682 	if (!task)
683 		return -ESRCH;
684 
685 	ret = PROC_I(inode)->op.proc_show(m, ns, pid, task);
686 
687 	put_task_struct(task);
688 	return ret;
689 }
690 
691 static int proc_single_open(struct inode *inode, struct file *filp)
692 {
693 	return single_open(filp, proc_single_show, inode);
694 }
695 
696 static const struct file_operations proc_single_file_operations = {
697 	.open		= proc_single_open,
698 	.read		= seq_read,
699 	.llseek		= seq_lseek,
700 	.release	= single_release,
701 };
702 
703 static int mem_open(struct inode* inode, struct file* file)
704 {
705 	file->private_data = (void*)((long)current->self_exec_id);
706 	/* OK to pass negative loff_t, we can catch out-of-range */
707 	file->f_mode |= FMODE_UNSIGNED_OFFSET;
708 	return 0;
709 }
710 
711 static ssize_t mem_read(struct file * file, char __user * buf,
712 			size_t count, loff_t *ppos)
713 {
714 	struct task_struct *task = get_proc_task(file->f_path.dentry->d_inode);
715 	char *page;
716 	unsigned long src = *ppos;
717 	int ret = -ESRCH;
718 	struct mm_struct *mm;
719 
720 	if (!task)
721 		goto out_no_task;
722 
723 	ret = -ENOMEM;
724 	page = (char *)__get_free_page(GFP_TEMPORARY);
725 	if (!page)
726 		goto out;
727 
728 	mm = check_mem_permission(task);
729 	ret = PTR_ERR(mm);
730 	if (IS_ERR(mm))
731 		goto out_free;
732 
733 	ret = -EIO;
734 
735 	if (file->private_data != (void*)((long)current->self_exec_id))
736 		goto out_put;
737 
738 	ret = 0;
739 
740 	while (count > 0) {
741 		int this_len, retval;
742 
743 		this_len = (count > PAGE_SIZE) ? PAGE_SIZE : count;
744 		retval = access_remote_vm(mm, src, page, this_len, 0);
745 		if (!retval) {
746 			if (!ret)
747 				ret = -EIO;
748 			break;
749 		}
750 
751 		if (copy_to_user(buf, page, retval)) {
752 			ret = -EFAULT;
753 			break;
754 		}
755 
756 		ret += retval;
757 		src += retval;
758 		buf += retval;
759 		count -= retval;
760 	}
761 	*ppos = src;
762 
763 out_put:
764 	mmput(mm);
765 out_free:
766 	free_page((unsigned long) page);
767 out:
768 	put_task_struct(task);
769 out_no_task:
770 	return ret;
771 }
772 
773 static ssize_t mem_write(struct file * file, const char __user *buf,
774 			 size_t count, loff_t *ppos)
775 {
776 	int copied;
777 	char *page;
778 	struct task_struct *task = get_proc_task(file->f_path.dentry->d_inode);
779 	unsigned long dst = *ppos;
780 	struct mm_struct *mm;
781 
782 	copied = -ESRCH;
783 	if (!task)
784 		goto out_no_task;
785 
786 	copied = -ENOMEM;
787 	page = (char *)__get_free_page(GFP_TEMPORARY);
788 	if (!page)
789 		goto out_task;
790 
791 	mm = check_mem_permission(task);
792 	copied = PTR_ERR(mm);
793 	if (IS_ERR(mm))
794 		goto out_free;
795 
796 	copied = -EIO;
797 	if (file->private_data != (void *)((long)current->self_exec_id))
798 		goto out_mm;
799 
800 	copied = 0;
801 	while (count > 0) {
802 		int this_len, retval;
803 
804 		this_len = (count > PAGE_SIZE) ? PAGE_SIZE : count;
805 		if (copy_from_user(page, buf, this_len)) {
806 			copied = -EFAULT;
807 			break;
808 		}
809 		retval = access_remote_vm(mm, dst, page, this_len, 1);
810 		if (!retval) {
811 			if (!copied)
812 				copied = -EIO;
813 			break;
814 		}
815 		copied += retval;
816 		buf += retval;
817 		dst += retval;
818 		count -= retval;
819 	}
820 	*ppos = dst;
821 
822 out_mm:
823 	mmput(mm);
824 out_free:
825 	free_page((unsigned long) page);
826 out_task:
827 	put_task_struct(task);
828 out_no_task:
829 	return copied;
830 }
831 
832 loff_t mem_lseek(struct file *file, loff_t offset, int orig)
833 {
834 	switch (orig) {
835 	case 0:
836 		file->f_pos = offset;
837 		break;
838 	case 1:
839 		file->f_pos += offset;
840 		break;
841 	default:
842 		return -EINVAL;
843 	}
844 	force_successful_syscall_return();
845 	return file->f_pos;
846 }
847 
848 static const struct file_operations proc_mem_operations = {
849 	.llseek		= mem_lseek,
850 	.read		= mem_read,
851 	.write		= mem_write,
852 	.open		= mem_open,
853 };
854 
855 static ssize_t environ_read(struct file *file, char __user *buf,
856 			size_t count, loff_t *ppos)
857 {
858 	struct task_struct *task = get_proc_task(file->f_dentry->d_inode);
859 	char *page;
860 	unsigned long src = *ppos;
861 	int ret = -ESRCH;
862 	struct mm_struct *mm;
863 
864 	if (!task)
865 		goto out_no_task;
866 
867 	ret = -ENOMEM;
868 	page = (char *)__get_free_page(GFP_TEMPORARY);
869 	if (!page)
870 		goto out;
871 
872 
873 	mm = mm_for_maps(task);
874 	ret = PTR_ERR(mm);
875 	if (!mm || IS_ERR(mm))
876 		goto out_free;
877 
878 	ret = 0;
879 	while (count > 0) {
880 		int this_len, retval, max_len;
881 
882 		this_len = mm->env_end - (mm->env_start + src);
883 
884 		if (this_len <= 0)
885 			break;
886 
887 		max_len = (count > PAGE_SIZE) ? PAGE_SIZE : count;
888 		this_len = (this_len > max_len) ? max_len : this_len;
889 
890 		retval = access_process_vm(task, (mm->env_start + src),
891 			page, this_len, 0);
892 
893 		if (retval <= 0) {
894 			ret = retval;
895 			break;
896 		}
897 
898 		if (copy_to_user(buf, page, retval)) {
899 			ret = -EFAULT;
900 			break;
901 		}
902 
903 		ret += retval;
904 		src += retval;
905 		buf += retval;
906 		count -= retval;
907 	}
908 	*ppos = src;
909 
910 	mmput(mm);
911 out_free:
912 	free_page((unsigned long) page);
913 out:
914 	put_task_struct(task);
915 out_no_task:
916 	return ret;
917 }
918 
919 static const struct file_operations proc_environ_operations = {
920 	.read		= environ_read,
921 	.llseek		= generic_file_llseek,
922 };
923 
924 static ssize_t oom_adjust_read(struct file *file, char __user *buf,
925 				size_t count, loff_t *ppos)
926 {
927 	struct task_struct *task = get_proc_task(file->f_path.dentry->d_inode);
928 	char buffer[PROC_NUMBUF];
929 	size_t len;
930 	int oom_adjust = OOM_DISABLE;
931 	unsigned long flags;
932 
933 	if (!task)
934 		return -ESRCH;
935 
936 	if (lock_task_sighand(task, &flags)) {
937 		oom_adjust = task->signal->oom_adj;
938 		unlock_task_sighand(task, &flags);
939 	}
940 
941 	put_task_struct(task);
942 
943 	len = snprintf(buffer, sizeof(buffer), "%i\n", oom_adjust);
944 
945 	return simple_read_from_buffer(buf, count, ppos, buffer, len);
946 }
947 
948 static ssize_t oom_adjust_write(struct file *file, const char __user *buf,
949 				size_t count, loff_t *ppos)
950 {
951 	struct task_struct *task;
952 	char buffer[PROC_NUMBUF];
953 	int oom_adjust;
954 	unsigned long flags;
955 	int err;
956 
957 	memset(buffer, 0, sizeof(buffer));
958 	if (count > sizeof(buffer) - 1)
959 		count = sizeof(buffer) - 1;
960 	if (copy_from_user(buffer, buf, count)) {
961 		err = -EFAULT;
962 		goto out;
963 	}
964 
965 	err = kstrtoint(strstrip(buffer), 0, &oom_adjust);
966 	if (err)
967 		goto out;
968 	if ((oom_adjust < OOM_ADJUST_MIN || oom_adjust > OOM_ADJUST_MAX) &&
969 	     oom_adjust != OOM_DISABLE) {
970 		err = -EINVAL;
971 		goto out;
972 	}
973 
974 	task = get_proc_task(file->f_path.dentry->d_inode);
975 	if (!task) {
976 		err = -ESRCH;
977 		goto out;
978 	}
979 
980 	task_lock(task);
981 	if (!task->mm) {
982 		err = -EINVAL;
983 		goto err_task_lock;
984 	}
985 
986 	if (!lock_task_sighand(task, &flags)) {
987 		err = -ESRCH;
988 		goto err_task_lock;
989 	}
990 
991 	if (oom_adjust < task->signal->oom_adj && !capable(CAP_SYS_RESOURCE)) {
992 		err = -EACCES;
993 		goto err_sighand;
994 	}
995 
996 	/*
997 	 * Warn that /proc/pid/oom_adj is deprecated, see
998 	 * Documentation/feature-removal-schedule.txt.
999 	 */
1000 	printk_once(KERN_WARNING "%s (%d): /proc/%d/oom_adj is deprecated, please use /proc/%d/oom_score_adj instead.\n",
1001 		  current->comm, task_pid_nr(current), task_pid_nr(task),
1002 		  task_pid_nr(task));
1003 	task->signal->oom_adj = oom_adjust;
1004 	/*
1005 	 * Scale /proc/pid/oom_score_adj appropriately ensuring that a maximum
1006 	 * value is always attainable.
1007 	 */
1008 	if (task->signal->oom_adj == OOM_ADJUST_MAX)
1009 		task->signal->oom_score_adj = OOM_SCORE_ADJ_MAX;
1010 	else
1011 		task->signal->oom_score_adj = (oom_adjust * OOM_SCORE_ADJ_MAX) /
1012 								-OOM_DISABLE;
1013 err_sighand:
1014 	unlock_task_sighand(task, &flags);
1015 err_task_lock:
1016 	task_unlock(task);
1017 	put_task_struct(task);
1018 out:
1019 	return err < 0 ? err : count;
1020 }
1021 
1022 static const struct file_operations proc_oom_adjust_operations = {
1023 	.read		= oom_adjust_read,
1024 	.write		= oom_adjust_write,
1025 	.llseek		= generic_file_llseek,
1026 };
1027 
1028 static ssize_t oom_score_adj_read(struct file *file, char __user *buf,
1029 					size_t count, loff_t *ppos)
1030 {
1031 	struct task_struct *task = get_proc_task(file->f_path.dentry->d_inode);
1032 	char buffer[PROC_NUMBUF];
1033 	int oom_score_adj = OOM_SCORE_ADJ_MIN;
1034 	unsigned long flags;
1035 	size_t len;
1036 
1037 	if (!task)
1038 		return -ESRCH;
1039 	if (lock_task_sighand(task, &flags)) {
1040 		oom_score_adj = task->signal->oom_score_adj;
1041 		unlock_task_sighand(task, &flags);
1042 	}
1043 	put_task_struct(task);
1044 	len = snprintf(buffer, sizeof(buffer), "%d\n", oom_score_adj);
1045 	return simple_read_from_buffer(buf, count, ppos, buffer, len);
1046 }
1047 
1048 static ssize_t oom_score_adj_write(struct file *file, const char __user *buf,
1049 					size_t count, loff_t *ppos)
1050 {
1051 	struct task_struct *task;
1052 	char buffer[PROC_NUMBUF];
1053 	unsigned long flags;
1054 	int oom_score_adj;
1055 	int err;
1056 
1057 	memset(buffer, 0, sizeof(buffer));
1058 	if (count > sizeof(buffer) - 1)
1059 		count = sizeof(buffer) - 1;
1060 	if (copy_from_user(buffer, buf, count)) {
1061 		err = -EFAULT;
1062 		goto out;
1063 	}
1064 
1065 	err = kstrtoint(strstrip(buffer), 0, &oom_score_adj);
1066 	if (err)
1067 		goto out;
1068 	if (oom_score_adj < OOM_SCORE_ADJ_MIN ||
1069 			oom_score_adj > OOM_SCORE_ADJ_MAX) {
1070 		err = -EINVAL;
1071 		goto out;
1072 	}
1073 
1074 	task = get_proc_task(file->f_path.dentry->d_inode);
1075 	if (!task) {
1076 		err = -ESRCH;
1077 		goto out;
1078 	}
1079 
1080 	task_lock(task);
1081 	if (!task->mm) {
1082 		err = -EINVAL;
1083 		goto err_task_lock;
1084 	}
1085 
1086 	if (!lock_task_sighand(task, &flags)) {
1087 		err = -ESRCH;
1088 		goto err_task_lock;
1089 	}
1090 
1091 	if (oom_score_adj < task->signal->oom_score_adj_min &&
1092 			!capable(CAP_SYS_RESOURCE)) {
1093 		err = -EACCES;
1094 		goto err_sighand;
1095 	}
1096 
1097 	task->signal->oom_score_adj = oom_score_adj;
1098 	if (has_capability_noaudit(current, CAP_SYS_RESOURCE))
1099 		task->signal->oom_score_adj_min = oom_score_adj;
1100 	/*
1101 	 * Scale /proc/pid/oom_adj appropriately ensuring that OOM_DISABLE is
1102 	 * always attainable.
1103 	 */
1104 	if (task->signal->oom_score_adj == OOM_SCORE_ADJ_MIN)
1105 		task->signal->oom_adj = OOM_DISABLE;
1106 	else
1107 		task->signal->oom_adj = (oom_score_adj * OOM_ADJUST_MAX) /
1108 							OOM_SCORE_ADJ_MAX;
1109 err_sighand:
1110 	unlock_task_sighand(task, &flags);
1111 err_task_lock:
1112 	task_unlock(task);
1113 	put_task_struct(task);
1114 out:
1115 	return err < 0 ? err : count;
1116 }
1117 
1118 static const struct file_operations proc_oom_score_adj_operations = {
1119 	.read		= oom_score_adj_read,
1120 	.write		= oom_score_adj_write,
1121 	.llseek		= default_llseek,
1122 };
1123 
1124 #ifdef CONFIG_AUDITSYSCALL
1125 #define TMPBUFLEN 21
1126 static ssize_t proc_loginuid_read(struct file * file, char __user * buf,
1127 				  size_t count, loff_t *ppos)
1128 {
1129 	struct inode * inode = file->f_path.dentry->d_inode;
1130 	struct task_struct *task = get_proc_task(inode);
1131 	ssize_t length;
1132 	char tmpbuf[TMPBUFLEN];
1133 
1134 	if (!task)
1135 		return -ESRCH;
1136 	length = scnprintf(tmpbuf, TMPBUFLEN, "%u",
1137 				audit_get_loginuid(task));
1138 	put_task_struct(task);
1139 	return simple_read_from_buffer(buf, count, ppos, tmpbuf, length);
1140 }
1141 
1142 static ssize_t proc_loginuid_write(struct file * file, const char __user * buf,
1143 				   size_t count, loff_t *ppos)
1144 {
1145 	struct inode * inode = file->f_path.dentry->d_inode;
1146 	char *page, *tmp;
1147 	ssize_t length;
1148 	uid_t loginuid;
1149 
1150 	if (!capable(CAP_AUDIT_CONTROL))
1151 		return -EPERM;
1152 
1153 	rcu_read_lock();
1154 	if (current != pid_task(proc_pid(inode), PIDTYPE_PID)) {
1155 		rcu_read_unlock();
1156 		return -EPERM;
1157 	}
1158 	rcu_read_unlock();
1159 
1160 	if (count >= PAGE_SIZE)
1161 		count = PAGE_SIZE - 1;
1162 
1163 	if (*ppos != 0) {
1164 		/* No partial writes. */
1165 		return -EINVAL;
1166 	}
1167 	page = (char*)__get_free_page(GFP_TEMPORARY);
1168 	if (!page)
1169 		return -ENOMEM;
1170 	length = -EFAULT;
1171 	if (copy_from_user(page, buf, count))
1172 		goto out_free_page;
1173 
1174 	page[count] = '\0';
1175 	loginuid = simple_strtoul(page, &tmp, 10);
1176 	if (tmp == page) {
1177 		length = -EINVAL;
1178 		goto out_free_page;
1179 
1180 	}
1181 	length = audit_set_loginuid(current, loginuid);
1182 	if (likely(length == 0))
1183 		length = count;
1184 
1185 out_free_page:
1186 	free_page((unsigned long) page);
1187 	return length;
1188 }
1189 
1190 static const struct file_operations proc_loginuid_operations = {
1191 	.read		= proc_loginuid_read,
1192 	.write		= proc_loginuid_write,
1193 	.llseek		= generic_file_llseek,
1194 };
1195 
1196 static ssize_t proc_sessionid_read(struct file * file, char __user * buf,
1197 				  size_t count, loff_t *ppos)
1198 {
1199 	struct inode * inode = file->f_path.dentry->d_inode;
1200 	struct task_struct *task = get_proc_task(inode);
1201 	ssize_t length;
1202 	char tmpbuf[TMPBUFLEN];
1203 
1204 	if (!task)
1205 		return -ESRCH;
1206 	length = scnprintf(tmpbuf, TMPBUFLEN, "%u",
1207 				audit_get_sessionid(task));
1208 	put_task_struct(task);
1209 	return simple_read_from_buffer(buf, count, ppos, tmpbuf, length);
1210 }
1211 
1212 static const struct file_operations proc_sessionid_operations = {
1213 	.read		= proc_sessionid_read,
1214 	.llseek		= generic_file_llseek,
1215 };
1216 #endif
1217 
1218 #ifdef CONFIG_FAULT_INJECTION
1219 static ssize_t proc_fault_inject_read(struct file * file, char __user * buf,
1220 				      size_t count, loff_t *ppos)
1221 {
1222 	struct task_struct *task = get_proc_task(file->f_dentry->d_inode);
1223 	char buffer[PROC_NUMBUF];
1224 	size_t len;
1225 	int make_it_fail;
1226 
1227 	if (!task)
1228 		return -ESRCH;
1229 	make_it_fail = task->make_it_fail;
1230 	put_task_struct(task);
1231 
1232 	len = snprintf(buffer, sizeof(buffer), "%i\n", make_it_fail);
1233 
1234 	return simple_read_from_buffer(buf, count, ppos, buffer, len);
1235 }
1236 
1237 static ssize_t proc_fault_inject_write(struct file * file,
1238 			const char __user * buf, size_t count, loff_t *ppos)
1239 {
1240 	struct task_struct *task;
1241 	char buffer[PROC_NUMBUF], *end;
1242 	int make_it_fail;
1243 
1244 	if (!capable(CAP_SYS_RESOURCE))
1245 		return -EPERM;
1246 	memset(buffer, 0, sizeof(buffer));
1247 	if (count > sizeof(buffer) - 1)
1248 		count = sizeof(buffer) - 1;
1249 	if (copy_from_user(buffer, buf, count))
1250 		return -EFAULT;
1251 	make_it_fail = simple_strtol(strstrip(buffer), &end, 0);
1252 	if (*end)
1253 		return -EINVAL;
1254 	task = get_proc_task(file->f_dentry->d_inode);
1255 	if (!task)
1256 		return -ESRCH;
1257 	task->make_it_fail = make_it_fail;
1258 	put_task_struct(task);
1259 
1260 	return count;
1261 }
1262 
1263 static const struct file_operations proc_fault_inject_operations = {
1264 	.read		= proc_fault_inject_read,
1265 	.write		= proc_fault_inject_write,
1266 	.llseek		= generic_file_llseek,
1267 };
1268 #endif
1269 
1270 
1271 #ifdef CONFIG_SCHED_DEBUG
1272 /*
1273  * Print out various scheduling related per-task fields:
1274  */
1275 static int sched_show(struct seq_file *m, void *v)
1276 {
1277 	struct inode *inode = m->private;
1278 	struct task_struct *p;
1279 
1280 	p = get_proc_task(inode);
1281 	if (!p)
1282 		return -ESRCH;
1283 	proc_sched_show_task(p, m);
1284 
1285 	put_task_struct(p);
1286 
1287 	return 0;
1288 }
1289 
1290 static ssize_t
1291 sched_write(struct file *file, const char __user *buf,
1292 	    size_t count, loff_t *offset)
1293 {
1294 	struct inode *inode = file->f_path.dentry->d_inode;
1295 	struct task_struct *p;
1296 
1297 	p = get_proc_task(inode);
1298 	if (!p)
1299 		return -ESRCH;
1300 	proc_sched_set_task(p);
1301 
1302 	put_task_struct(p);
1303 
1304 	return count;
1305 }
1306 
1307 static int sched_open(struct inode *inode, struct file *filp)
1308 {
1309 	return single_open(filp, sched_show, inode);
1310 }
1311 
1312 static const struct file_operations proc_pid_sched_operations = {
1313 	.open		= sched_open,
1314 	.read		= seq_read,
1315 	.write		= sched_write,
1316 	.llseek		= seq_lseek,
1317 	.release	= single_release,
1318 };
1319 
1320 #endif
1321 
1322 #ifdef CONFIG_SCHED_AUTOGROUP
1323 /*
1324  * Print out autogroup related information:
1325  */
1326 static int sched_autogroup_show(struct seq_file *m, void *v)
1327 {
1328 	struct inode *inode = m->private;
1329 	struct task_struct *p;
1330 
1331 	p = get_proc_task(inode);
1332 	if (!p)
1333 		return -ESRCH;
1334 	proc_sched_autogroup_show_task(p, m);
1335 
1336 	put_task_struct(p);
1337 
1338 	return 0;
1339 }
1340 
1341 static ssize_t
1342 sched_autogroup_write(struct file *file, const char __user *buf,
1343 	    size_t count, loff_t *offset)
1344 {
1345 	struct inode *inode = file->f_path.dentry->d_inode;
1346 	struct task_struct *p;
1347 	char buffer[PROC_NUMBUF];
1348 	int nice;
1349 	int err;
1350 
1351 	memset(buffer, 0, sizeof(buffer));
1352 	if (count > sizeof(buffer) - 1)
1353 		count = sizeof(buffer) - 1;
1354 	if (copy_from_user(buffer, buf, count))
1355 		return -EFAULT;
1356 
1357 	err = kstrtoint(strstrip(buffer), 0, &nice);
1358 	if (err < 0)
1359 		return err;
1360 
1361 	p = get_proc_task(inode);
1362 	if (!p)
1363 		return -ESRCH;
1364 
1365 	err = nice;
1366 	err = proc_sched_autogroup_set_nice(p, &err);
1367 	if (err)
1368 		count = err;
1369 
1370 	put_task_struct(p);
1371 
1372 	return count;
1373 }
1374 
1375 static int sched_autogroup_open(struct inode *inode, struct file *filp)
1376 {
1377 	int ret;
1378 
1379 	ret = single_open(filp, sched_autogroup_show, NULL);
1380 	if (!ret) {
1381 		struct seq_file *m = filp->private_data;
1382 
1383 		m->private = inode;
1384 	}
1385 	return ret;
1386 }
1387 
1388 static const struct file_operations proc_pid_sched_autogroup_operations = {
1389 	.open		= sched_autogroup_open,
1390 	.read		= seq_read,
1391 	.write		= sched_autogroup_write,
1392 	.llseek		= seq_lseek,
1393 	.release	= single_release,
1394 };
1395 
1396 #endif /* CONFIG_SCHED_AUTOGROUP */
1397 
1398 static ssize_t comm_write(struct file *file, const char __user *buf,
1399 				size_t count, loff_t *offset)
1400 {
1401 	struct inode *inode = file->f_path.dentry->d_inode;
1402 	struct task_struct *p;
1403 	char buffer[TASK_COMM_LEN];
1404 
1405 	memset(buffer, 0, sizeof(buffer));
1406 	if (count > sizeof(buffer) - 1)
1407 		count = sizeof(buffer) - 1;
1408 	if (copy_from_user(buffer, buf, count))
1409 		return -EFAULT;
1410 
1411 	p = get_proc_task(inode);
1412 	if (!p)
1413 		return -ESRCH;
1414 
1415 	if (same_thread_group(current, p))
1416 		set_task_comm(p, buffer);
1417 	else
1418 		count = -EINVAL;
1419 
1420 	put_task_struct(p);
1421 
1422 	return count;
1423 }
1424 
1425 static int comm_show(struct seq_file *m, void *v)
1426 {
1427 	struct inode *inode = m->private;
1428 	struct task_struct *p;
1429 
1430 	p = get_proc_task(inode);
1431 	if (!p)
1432 		return -ESRCH;
1433 
1434 	task_lock(p);
1435 	seq_printf(m, "%s\n", p->comm);
1436 	task_unlock(p);
1437 
1438 	put_task_struct(p);
1439 
1440 	return 0;
1441 }
1442 
1443 static int comm_open(struct inode *inode, struct file *filp)
1444 {
1445 	return single_open(filp, comm_show, inode);
1446 }
1447 
1448 static const struct file_operations proc_pid_set_comm_operations = {
1449 	.open		= comm_open,
1450 	.read		= seq_read,
1451 	.write		= comm_write,
1452 	.llseek		= seq_lseek,
1453 	.release	= single_release,
1454 };
1455 
1456 static int proc_exe_link(struct inode *inode, struct path *exe_path)
1457 {
1458 	struct task_struct *task;
1459 	struct mm_struct *mm;
1460 	struct file *exe_file;
1461 
1462 	task = get_proc_task(inode);
1463 	if (!task)
1464 		return -ENOENT;
1465 	mm = get_task_mm(task);
1466 	put_task_struct(task);
1467 	if (!mm)
1468 		return -ENOENT;
1469 	exe_file = get_mm_exe_file(mm);
1470 	mmput(mm);
1471 	if (exe_file) {
1472 		*exe_path = exe_file->f_path;
1473 		path_get(&exe_file->f_path);
1474 		fput(exe_file);
1475 		return 0;
1476 	} else
1477 		return -ENOENT;
1478 }
1479 
1480 static void *proc_pid_follow_link(struct dentry *dentry, struct nameidata *nd)
1481 {
1482 	struct inode *inode = dentry->d_inode;
1483 	int error = -EACCES;
1484 
1485 	/* We don't need a base pointer in the /proc filesystem */
1486 	path_put(&nd->path);
1487 
1488 	/* Are we allowed to snoop on the tasks file descriptors? */
1489 	if (!proc_fd_access_allowed(inode))
1490 		goto out;
1491 
1492 	error = PROC_I(inode)->op.proc_get_link(inode, &nd->path);
1493 out:
1494 	return ERR_PTR(error);
1495 }
1496 
1497 static int do_proc_readlink(struct path *path, char __user *buffer, int buflen)
1498 {
1499 	char *tmp = (char*)__get_free_page(GFP_TEMPORARY);
1500 	char *pathname;
1501 	int len;
1502 
1503 	if (!tmp)
1504 		return -ENOMEM;
1505 
1506 	pathname = d_path(path, tmp, PAGE_SIZE);
1507 	len = PTR_ERR(pathname);
1508 	if (IS_ERR(pathname))
1509 		goto out;
1510 	len = tmp + PAGE_SIZE - 1 - pathname;
1511 
1512 	if (len > buflen)
1513 		len = buflen;
1514 	if (copy_to_user(buffer, pathname, len))
1515 		len = -EFAULT;
1516  out:
1517 	free_page((unsigned long)tmp);
1518 	return len;
1519 }
1520 
1521 static int proc_pid_readlink(struct dentry * dentry, char __user * buffer, int buflen)
1522 {
1523 	int error = -EACCES;
1524 	struct inode *inode = dentry->d_inode;
1525 	struct path path;
1526 
1527 	/* Are we allowed to snoop on the tasks file descriptors? */
1528 	if (!proc_fd_access_allowed(inode))
1529 		goto out;
1530 
1531 	error = PROC_I(inode)->op.proc_get_link(inode, &path);
1532 	if (error)
1533 		goto out;
1534 
1535 	error = do_proc_readlink(&path, buffer, buflen);
1536 	path_put(&path);
1537 out:
1538 	return error;
1539 }
1540 
1541 static const struct inode_operations proc_pid_link_inode_operations = {
1542 	.readlink	= proc_pid_readlink,
1543 	.follow_link	= proc_pid_follow_link,
1544 	.setattr	= proc_setattr,
1545 };
1546 
1547 
1548 /* building an inode */
1549 
1550 static int task_dumpable(struct task_struct *task)
1551 {
1552 	int dumpable = 0;
1553 	struct mm_struct *mm;
1554 
1555 	task_lock(task);
1556 	mm = task->mm;
1557 	if (mm)
1558 		dumpable = get_dumpable(mm);
1559 	task_unlock(task);
1560 	if(dumpable == 1)
1561 		return 1;
1562 	return 0;
1563 }
1564 
1565 struct inode *proc_pid_make_inode(struct super_block * sb, struct task_struct *task)
1566 {
1567 	struct inode * inode;
1568 	struct proc_inode *ei;
1569 	const struct cred *cred;
1570 
1571 	/* We need a new inode */
1572 
1573 	inode = new_inode(sb);
1574 	if (!inode)
1575 		goto out;
1576 
1577 	/* Common stuff */
1578 	ei = PROC_I(inode);
1579 	inode->i_ino = get_next_ino();
1580 	inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
1581 	inode->i_op = &proc_def_inode_operations;
1582 
1583 	/*
1584 	 * grab the reference to task.
1585 	 */
1586 	ei->pid = get_task_pid(task, PIDTYPE_PID);
1587 	if (!ei->pid)
1588 		goto out_unlock;
1589 
1590 	if (task_dumpable(task)) {
1591 		rcu_read_lock();
1592 		cred = __task_cred(task);
1593 		inode->i_uid = cred->euid;
1594 		inode->i_gid = cred->egid;
1595 		rcu_read_unlock();
1596 	}
1597 	security_task_to_inode(task, inode);
1598 
1599 out:
1600 	return inode;
1601 
1602 out_unlock:
1603 	iput(inode);
1604 	return NULL;
1605 }
1606 
1607 int pid_getattr(struct vfsmount *mnt, struct dentry *dentry, struct kstat *stat)
1608 {
1609 	struct inode *inode = dentry->d_inode;
1610 	struct task_struct *task;
1611 	const struct cred *cred;
1612 
1613 	generic_fillattr(inode, stat);
1614 
1615 	rcu_read_lock();
1616 	stat->uid = 0;
1617 	stat->gid = 0;
1618 	task = pid_task(proc_pid(inode), PIDTYPE_PID);
1619 	if (task) {
1620 		if ((inode->i_mode == (S_IFDIR|S_IRUGO|S_IXUGO)) ||
1621 		    task_dumpable(task)) {
1622 			cred = __task_cred(task);
1623 			stat->uid = cred->euid;
1624 			stat->gid = cred->egid;
1625 		}
1626 	}
1627 	rcu_read_unlock();
1628 	return 0;
1629 }
1630 
1631 /* dentry stuff */
1632 
1633 /*
1634  *	Exceptional case: normally we are not allowed to unhash a busy
1635  * directory. In this case, however, we can do it - no aliasing problems
1636  * due to the way we treat inodes.
1637  *
1638  * Rewrite the inode's ownerships here because the owning task may have
1639  * performed a setuid(), etc.
1640  *
1641  * Before the /proc/pid/status file was created the only way to read
1642  * the effective uid of a /process was to stat /proc/pid.  Reading
1643  * /proc/pid/status is slow enough that procps and other packages
1644  * kept stating /proc/pid.  To keep the rules in /proc simple I have
1645  * made this apply to all per process world readable and executable
1646  * directories.
1647  */
1648 int pid_revalidate(struct dentry *dentry, struct nameidata *nd)
1649 {
1650 	struct inode *inode;
1651 	struct task_struct *task;
1652 	const struct cred *cred;
1653 
1654 	if (nd && nd->flags & LOOKUP_RCU)
1655 		return -ECHILD;
1656 
1657 	inode = dentry->d_inode;
1658 	task = get_proc_task(inode);
1659 
1660 	if (task) {
1661 		if ((inode->i_mode == (S_IFDIR|S_IRUGO|S_IXUGO)) ||
1662 		    task_dumpable(task)) {
1663 			rcu_read_lock();
1664 			cred = __task_cred(task);
1665 			inode->i_uid = cred->euid;
1666 			inode->i_gid = cred->egid;
1667 			rcu_read_unlock();
1668 		} else {
1669 			inode->i_uid = 0;
1670 			inode->i_gid = 0;
1671 		}
1672 		inode->i_mode &= ~(S_ISUID | S_ISGID);
1673 		security_task_to_inode(task, inode);
1674 		put_task_struct(task);
1675 		return 1;
1676 	}
1677 	d_drop(dentry);
1678 	return 0;
1679 }
1680 
1681 static int pid_delete_dentry(const struct dentry * dentry)
1682 {
1683 	/* Is the task we represent dead?
1684 	 * If so, then don't put the dentry on the lru list,
1685 	 * kill it immediately.
1686 	 */
1687 	return !proc_pid(dentry->d_inode)->tasks[PIDTYPE_PID].first;
1688 }
1689 
1690 const struct dentry_operations pid_dentry_operations =
1691 {
1692 	.d_revalidate	= pid_revalidate,
1693 	.d_delete	= pid_delete_dentry,
1694 };
1695 
1696 /* Lookups */
1697 
1698 /*
1699  * Fill a directory entry.
1700  *
1701  * If possible create the dcache entry and derive our inode number and
1702  * file type from dcache entry.
1703  *
1704  * Since all of the proc inode numbers are dynamically generated, the inode
1705  * numbers do not exist until the inode is cache.  This means creating the
1706  * the dcache entry in readdir is necessary to keep the inode numbers
1707  * reported by readdir in sync with the inode numbers reported
1708  * by stat.
1709  */
1710 int proc_fill_cache(struct file *filp, void *dirent, filldir_t filldir,
1711 	const char *name, int len,
1712 	instantiate_t instantiate, struct task_struct *task, const void *ptr)
1713 {
1714 	struct dentry *child, *dir = filp->f_path.dentry;
1715 	struct inode *inode;
1716 	struct qstr qname;
1717 	ino_t ino = 0;
1718 	unsigned type = DT_UNKNOWN;
1719 
1720 	qname.name = name;
1721 	qname.len  = len;
1722 	qname.hash = full_name_hash(name, len);
1723 
1724 	child = d_lookup(dir, &qname);
1725 	if (!child) {
1726 		struct dentry *new;
1727 		new = d_alloc(dir, &qname);
1728 		if (new) {
1729 			child = instantiate(dir->d_inode, new, task, ptr);
1730 			if (child)
1731 				dput(new);
1732 			else
1733 				child = new;
1734 		}
1735 	}
1736 	if (!child || IS_ERR(child) || !child->d_inode)
1737 		goto end_instantiate;
1738 	inode = child->d_inode;
1739 	if (inode) {
1740 		ino = inode->i_ino;
1741 		type = inode->i_mode >> 12;
1742 	}
1743 	dput(child);
1744 end_instantiate:
1745 	if (!ino)
1746 		ino = find_inode_number(dir, &qname);
1747 	if (!ino)
1748 		ino = 1;
1749 	return filldir(dirent, name, len, filp->f_pos, ino, type);
1750 }
1751 
1752 static unsigned name_to_int(struct dentry *dentry)
1753 {
1754 	const char *name = dentry->d_name.name;
1755 	int len = dentry->d_name.len;
1756 	unsigned n = 0;
1757 
1758 	if (len > 1 && *name == '0')
1759 		goto out;
1760 	while (len-- > 0) {
1761 		unsigned c = *name++ - '0';
1762 		if (c > 9)
1763 			goto out;
1764 		if (n >= (~0U-9)/10)
1765 			goto out;
1766 		n *= 10;
1767 		n += c;
1768 	}
1769 	return n;
1770 out:
1771 	return ~0U;
1772 }
1773 
1774 #define PROC_FDINFO_MAX 64
1775 
1776 static int proc_fd_info(struct inode *inode, struct path *path, char *info)
1777 {
1778 	struct task_struct *task = get_proc_task(inode);
1779 	struct files_struct *files = NULL;
1780 	struct file *file;
1781 	int fd = proc_fd(inode);
1782 
1783 	if (task) {
1784 		files = get_files_struct(task);
1785 		put_task_struct(task);
1786 	}
1787 	if (files) {
1788 		/*
1789 		 * We are not taking a ref to the file structure, so we must
1790 		 * hold ->file_lock.
1791 		 */
1792 		spin_lock(&files->file_lock);
1793 		file = fcheck_files(files, fd);
1794 		if (file) {
1795 			unsigned int f_flags;
1796 			struct fdtable *fdt;
1797 
1798 			fdt = files_fdtable(files);
1799 			f_flags = file->f_flags & ~O_CLOEXEC;
1800 			if (FD_ISSET(fd, fdt->close_on_exec))
1801 				f_flags |= O_CLOEXEC;
1802 
1803 			if (path) {
1804 				*path = file->f_path;
1805 				path_get(&file->f_path);
1806 			}
1807 			if (info)
1808 				snprintf(info, PROC_FDINFO_MAX,
1809 					 "pos:\t%lli\n"
1810 					 "flags:\t0%o\n",
1811 					 (long long) file->f_pos,
1812 					 f_flags);
1813 			spin_unlock(&files->file_lock);
1814 			put_files_struct(files);
1815 			return 0;
1816 		}
1817 		spin_unlock(&files->file_lock);
1818 		put_files_struct(files);
1819 	}
1820 	return -ENOENT;
1821 }
1822 
1823 static int proc_fd_link(struct inode *inode, struct path *path)
1824 {
1825 	return proc_fd_info(inode, path, NULL);
1826 }
1827 
1828 static int tid_fd_revalidate(struct dentry *dentry, struct nameidata *nd)
1829 {
1830 	struct inode *inode;
1831 	struct task_struct *task;
1832 	int fd;
1833 	struct files_struct *files;
1834 	const struct cred *cred;
1835 
1836 	if (nd && nd->flags & LOOKUP_RCU)
1837 		return -ECHILD;
1838 
1839 	inode = dentry->d_inode;
1840 	task = get_proc_task(inode);
1841 	fd = proc_fd(inode);
1842 
1843 	if (task) {
1844 		files = get_files_struct(task);
1845 		if (files) {
1846 			rcu_read_lock();
1847 			if (fcheck_files(files, fd)) {
1848 				rcu_read_unlock();
1849 				put_files_struct(files);
1850 				if (task_dumpable(task)) {
1851 					rcu_read_lock();
1852 					cred = __task_cred(task);
1853 					inode->i_uid = cred->euid;
1854 					inode->i_gid = cred->egid;
1855 					rcu_read_unlock();
1856 				} else {
1857 					inode->i_uid = 0;
1858 					inode->i_gid = 0;
1859 				}
1860 				inode->i_mode &= ~(S_ISUID | S_ISGID);
1861 				security_task_to_inode(task, inode);
1862 				put_task_struct(task);
1863 				return 1;
1864 			}
1865 			rcu_read_unlock();
1866 			put_files_struct(files);
1867 		}
1868 		put_task_struct(task);
1869 	}
1870 	d_drop(dentry);
1871 	return 0;
1872 }
1873 
1874 static const struct dentry_operations tid_fd_dentry_operations =
1875 {
1876 	.d_revalidate	= tid_fd_revalidate,
1877 	.d_delete	= pid_delete_dentry,
1878 };
1879 
1880 static struct dentry *proc_fd_instantiate(struct inode *dir,
1881 	struct dentry *dentry, struct task_struct *task, const void *ptr)
1882 {
1883 	unsigned fd = *(const unsigned *)ptr;
1884 	struct file *file;
1885 	struct files_struct *files;
1886  	struct inode *inode;
1887  	struct proc_inode *ei;
1888 	struct dentry *error = ERR_PTR(-ENOENT);
1889 
1890 	inode = proc_pid_make_inode(dir->i_sb, task);
1891 	if (!inode)
1892 		goto out;
1893 	ei = PROC_I(inode);
1894 	ei->fd = fd;
1895 	files = get_files_struct(task);
1896 	if (!files)
1897 		goto out_iput;
1898 	inode->i_mode = S_IFLNK;
1899 
1900 	/*
1901 	 * We are not taking a ref to the file structure, so we must
1902 	 * hold ->file_lock.
1903 	 */
1904 	spin_lock(&files->file_lock);
1905 	file = fcheck_files(files, fd);
1906 	if (!file)
1907 		goto out_unlock;
1908 	if (file->f_mode & FMODE_READ)
1909 		inode->i_mode |= S_IRUSR | S_IXUSR;
1910 	if (file->f_mode & FMODE_WRITE)
1911 		inode->i_mode |= S_IWUSR | S_IXUSR;
1912 	spin_unlock(&files->file_lock);
1913 	put_files_struct(files);
1914 
1915 	inode->i_op = &proc_pid_link_inode_operations;
1916 	inode->i_size = 64;
1917 	ei->op.proc_get_link = proc_fd_link;
1918 	d_set_d_op(dentry, &tid_fd_dentry_operations);
1919 	d_add(dentry, inode);
1920 	/* Close the race of the process dying before we return the dentry */
1921 	if (tid_fd_revalidate(dentry, NULL))
1922 		error = NULL;
1923 
1924  out:
1925 	return error;
1926 out_unlock:
1927 	spin_unlock(&files->file_lock);
1928 	put_files_struct(files);
1929 out_iput:
1930 	iput(inode);
1931 	goto out;
1932 }
1933 
1934 static struct dentry *proc_lookupfd_common(struct inode *dir,
1935 					   struct dentry *dentry,
1936 					   instantiate_t instantiate)
1937 {
1938 	struct task_struct *task = get_proc_task(dir);
1939 	unsigned fd = name_to_int(dentry);
1940 	struct dentry *result = ERR_PTR(-ENOENT);
1941 
1942 	if (!task)
1943 		goto out_no_task;
1944 	if (fd == ~0U)
1945 		goto out;
1946 
1947 	result = instantiate(dir, dentry, task, &fd);
1948 out:
1949 	put_task_struct(task);
1950 out_no_task:
1951 	return result;
1952 }
1953 
1954 static int proc_readfd_common(struct file * filp, void * dirent,
1955 			      filldir_t filldir, instantiate_t instantiate)
1956 {
1957 	struct dentry *dentry = filp->f_path.dentry;
1958 	struct inode *inode = dentry->d_inode;
1959 	struct task_struct *p = get_proc_task(inode);
1960 	unsigned int fd, ino;
1961 	int retval;
1962 	struct files_struct * files;
1963 
1964 	retval = -ENOENT;
1965 	if (!p)
1966 		goto out_no_task;
1967 	retval = 0;
1968 
1969 	fd = filp->f_pos;
1970 	switch (fd) {
1971 		case 0:
1972 			if (filldir(dirent, ".", 1, 0, inode->i_ino, DT_DIR) < 0)
1973 				goto out;
1974 			filp->f_pos++;
1975 		case 1:
1976 			ino = parent_ino(dentry);
1977 			if (filldir(dirent, "..", 2, 1, ino, DT_DIR) < 0)
1978 				goto out;
1979 			filp->f_pos++;
1980 		default:
1981 			files = get_files_struct(p);
1982 			if (!files)
1983 				goto out;
1984 			rcu_read_lock();
1985 			for (fd = filp->f_pos-2;
1986 			     fd < files_fdtable(files)->max_fds;
1987 			     fd++, filp->f_pos++) {
1988 				char name[PROC_NUMBUF];
1989 				int len;
1990 
1991 				if (!fcheck_files(files, fd))
1992 					continue;
1993 				rcu_read_unlock();
1994 
1995 				len = snprintf(name, sizeof(name), "%d", fd);
1996 				if (proc_fill_cache(filp, dirent, filldir,
1997 						    name, len, instantiate,
1998 						    p, &fd) < 0) {
1999 					rcu_read_lock();
2000 					break;
2001 				}
2002 				rcu_read_lock();
2003 			}
2004 			rcu_read_unlock();
2005 			put_files_struct(files);
2006 	}
2007 out:
2008 	put_task_struct(p);
2009 out_no_task:
2010 	return retval;
2011 }
2012 
2013 static struct dentry *proc_lookupfd(struct inode *dir, struct dentry *dentry,
2014 				    struct nameidata *nd)
2015 {
2016 	return proc_lookupfd_common(dir, dentry, proc_fd_instantiate);
2017 }
2018 
2019 static int proc_readfd(struct file *filp, void *dirent, filldir_t filldir)
2020 {
2021 	return proc_readfd_common(filp, dirent, filldir, proc_fd_instantiate);
2022 }
2023 
2024 static ssize_t proc_fdinfo_read(struct file *file, char __user *buf,
2025 				      size_t len, loff_t *ppos)
2026 {
2027 	char tmp[PROC_FDINFO_MAX];
2028 	int err = proc_fd_info(file->f_path.dentry->d_inode, NULL, tmp);
2029 	if (!err)
2030 		err = simple_read_from_buffer(buf, len, ppos, tmp, strlen(tmp));
2031 	return err;
2032 }
2033 
2034 static const struct file_operations proc_fdinfo_file_operations = {
2035 	.open           = nonseekable_open,
2036 	.read		= proc_fdinfo_read,
2037 	.llseek		= no_llseek,
2038 };
2039 
2040 static const struct file_operations proc_fd_operations = {
2041 	.read		= generic_read_dir,
2042 	.readdir	= proc_readfd,
2043 	.llseek		= default_llseek,
2044 };
2045 
2046 /*
2047  * /proc/pid/fd needs a special permission handler so that a process can still
2048  * access /proc/self/fd after it has executed a setuid().
2049  */
2050 static int proc_fd_permission(struct inode *inode, int mask)
2051 {
2052 	int rv = generic_permission(inode, mask);
2053 	if (rv == 0)
2054 		return 0;
2055 	if (task_pid(current) == proc_pid(inode))
2056 		rv = 0;
2057 	return rv;
2058 }
2059 
2060 /*
2061  * proc directories can do almost nothing..
2062  */
2063 static const struct inode_operations proc_fd_inode_operations = {
2064 	.lookup		= proc_lookupfd,
2065 	.permission	= proc_fd_permission,
2066 	.setattr	= proc_setattr,
2067 };
2068 
2069 static struct dentry *proc_fdinfo_instantiate(struct inode *dir,
2070 	struct dentry *dentry, struct task_struct *task, const void *ptr)
2071 {
2072 	unsigned fd = *(unsigned *)ptr;
2073  	struct inode *inode;
2074  	struct proc_inode *ei;
2075 	struct dentry *error = ERR_PTR(-ENOENT);
2076 
2077 	inode = proc_pid_make_inode(dir->i_sb, task);
2078 	if (!inode)
2079 		goto out;
2080 	ei = PROC_I(inode);
2081 	ei->fd = fd;
2082 	inode->i_mode = S_IFREG | S_IRUSR;
2083 	inode->i_fop = &proc_fdinfo_file_operations;
2084 	d_set_d_op(dentry, &tid_fd_dentry_operations);
2085 	d_add(dentry, inode);
2086 	/* Close the race of the process dying before we return the dentry */
2087 	if (tid_fd_revalidate(dentry, NULL))
2088 		error = NULL;
2089 
2090  out:
2091 	return error;
2092 }
2093 
2094 static struct dentry *proc_lookupfdinfo(struct inode *dir,
2095 					struct dentry *dentry,
2096 					struct nameidata *nd)
2097 {
2098 	return proc_lookupfd_common(dir, dentry, proc_fdinfo_instantiate);
2099 }
2100 
2101 static int proc_readfdinfo(struct file *filp, void *dirent, filldir_t filldir)
2102 {
2103 	return proc_readfd_common(filp, dirent, filldir,
2104 				  proc_fdinfo_instantiate);
2105 }
2106 
2107 static const struct file_operations proc_fdinfo_operations = {
2108 	.read		= generic_read_dir,
2109 	.readdir	= proc_readfdinfo,
2110 	.llseek		= default_llseek,
2111 };
2112 
2113 /*
2114  * proc directories can do almost nothing..
2115  */
2116 static const struct inode_operations proc_fdinfo_inode_operations = {
2117 	.lookup		= proc_lookupfdinfo,
2118 	.setattr	= proc_setattr,
2119 };
2120 
2121 
2122 static struct dentry *proc_pident_instantiate(struct inode *dir,
2123 	struct dentry *dentry, struct task_struct *task, const void *ptr)
2124 {
2125 	const struct pid_entry *p = ptr;
2126 	struct inode *inode;
2127 	struct proc_inode *ei;
2128 	struct dentry *error = ERR_PTR(-ENOENT);
2129 
2130 	inode = proc_pid_make_inode(dir->i_sb, task);
2131 	if (!inode)
2132 		goto out;
2133 
2134 	ei = PROC_I(inode);
2135 	inode->i_mode = p->mode;
2136 	if (S_ISDIR(inode->i_mode))
2137 		set_nlink(inode, 2);	/* Use getattr to fix if necessary */
2138 	if (p->iop)
2139 		inode->i_op = p->iop;
2140 	if (p->fop)
2141 		inode->i_fop = p->fop;
2142 	ei->op = p->op;
2143 	d_set_d_op(dentry, &pid_dentry_operations);
2144 	d_add(dentry, inode);
2145 	/* Close the race of the process dying before we return the dentry */
2146 	if (pid_revalidate(dentry, NULL))
2147 		error = NULL;
2148 out:
2149 	return error;
2150 }
2151 
2152 static struct dentry *proc_pident_lookup(struct inode *dir,
2153 					 struct dentry *dentry,
2154 					 const struct pid_entry *ents,
2155 					 unsigned int nents)
2156 {
2157 	struct dentry *error;
2158 	struct task_struct *task = get_proc_task(dir);
2159 	const struct pid_entry *p, *last;
2160 
2161 	error = ERR_PTR(-ENOENT);
2162 
2163 	if (!task)
2164 		goto out_no_task;
2165 
2166 	/*
2167 	 * Yes, it does not scale. And it should not. Don't add
2168 	 * new entries into /proc/<tgid>/ without very good reasons.
2169 	 */
2170 	last = &ents[nents - 1];
2171 	for (p = ents; p <= last; p++) {
2172 		if (p->len != dentry->d_name.len)
2173 			continue;
2174 		if (!memcmp(dentry->d_name.name, p->name, p->len))
2175 			break;
2176 	}
2177 	if (p > last)
2178 		goto out;
2179 
2180 	error = proc_pident_instantiate(dir, dentry, task, p);
2181 out:
2182 	put_task_struct(task);
2183 out_no_task:
2184 	return error;
2185 }
2186 
2187 static int proc_pident_fill_cache(struct file *filp, void *dirent,
2188 	filldir_t filldir, struct task_struct *task, const struct pid_entry *p)
2189 {
2190 	return proc_fill_cache(filp, dirent, filldir, p->name, p->len,
2191 				proc_pident_instantiate, task, p);
2192 }
2193 
2194 static int proc_pident_readdir(struct file *filp,
2195 		void *dirent, filldir_t filldir,
2196 		const struct pid_entry *ents, unsigned int nents)
2197 {
2198 	int i;
2199 	struct dentry *dentry = filp->f_path.dentry;
2200 	struct inode *inode = dentry->d_inode;
2201 	struct task_struct *task = get_proc_task(inode);
2202 	const struct pid_entry *p, *last;
2203 	ino_t ino;
2204 	int ret;
2205 
2206 	ret = -ENOENT;
2207 	if (!task)
2208 		goto out_no_task;
2209 
2210 	ret = 0;
2211 	i = filp->f_pos;
2212 	switch (i) {
2213 	case 0:
2214 		ino = inode->i_ino;
2215 		if (filldir(dirent, ".", 1, i, ino, DT_DIR) < 0)
2216 			goto out;
2217 		i++;
2218 		filp->f_pos++;
2219 		/* fall through */
2220 	case 1:
2221 		ino = parent_ino(dentry);
2222 		if (filldir(dirent, "..", 2, i, ino, DT_DIR) < 0)
2223 			goto out;
2224 		i++;
2225 		filp->f_pos++;
2226 		/* fall through */
2227 	default:
2228 		i -= 2;
2229 		if (i >= nents) {
2230 			ret = 1;
2231 			goto out;
2232 		}
2233 		p = ents + i;
2234 		last = &ents[nents - 1];
2235 		while (p <= last) {
2236 			if (proc_pident_fill_cache(filp, dirent, filldir, task, p) < 0)
2237 				goto out;
2238 			filp->f_pos++;
2239 			p++;
2240 		}
2241 	}
2242 
2243 	ret = 1;
2244 out:
2245 	put_task_struct(task);
2246 out_no_task:
2247 	return ret;
2248 }
2249 
2250 #ifdef CONFIG_SECURITY
2251 static ssize_t proc_pid_attr_read(struct file * file, char __user * buf,
2252 				  size_t count, loff_t *ppos)
2253 {
2254 	struct inode * inode = file->f_path.dentry->d_inode;
2255 	char *p = NULL;
2256 	ssize_t length;
2257 	struct task_struct *task = get_proc_task(inode);
2258 
2259 	if (!task)
2260 		return -ESRCH;
2261 
2262 	length = security_getprocattr(task,
2263 				      (char*)file->f_path.dentry->d_name.name,
2264 				      &p);
2265 	put_task_struct(task);
2266 	if (length > 0)
2267 		length = simple_read_from_buffer(buf, count, ppos, p, length);
2268 	kfree(p);
2269 	return length;
2270 }
2271 
2272 static ssize_t proc_pid_attr_write(struct file * file, const char __user * buf,
2273 				   size_t count, loff_t *ppos)
2274 {
2275 	struct inode * inode = file->f_path.dentry->d_inode;
2276 	char *page;
2277 	ssize_t length;
2278 	struct task_struct *task = get_proc_task(inode);
2279 
2280 	length = -ESRCH;
2281 	if (!task)
2282 		goto out_no_task;
2283 	if (count > PAGE_SIZE)
2284 		count = PAGE_SIZE;
2285 
2286 	/* No partial writes. */
2287 	length = -EINVAL;
2288 	if (*ppos != 0)
2289 		goto out;
2290 
2291 	length = -ENOMEM;
2292 	page = (char*)__get_free_page(GFP_TEMPORARY);
2293 	if (!page)
2294 		goto out;
2295 
2296 	length = -EFAULT;
2297 	if (copy_from_user(page, buf, count))
2298 		goto out_free;
2299 
2300 	/* Guard against adverse ptrace interaction */
2301 	length = mutex_lock_interruptible(&task->signal->cred_guard_mutex);
2302 	if (length < 0)
2303 		goto out_free;
2304 
2305 	length = security_setprocattr(task,
2306 				      (char*)file->f_path.dentry->d_name.name,
2307 				      (void*)page, count);
2308 	mutex_unlock(&task->signal->cred_guard_mutex);
2309 out_free:
2310 	free_page((unsigned long) page);
2311 out:
2312 	put_task_struct(task);
2313 out_no_task:
2314 	return length;
2315 }
2316 
2317 static const struct file_operations proc_pid_attr_operations = {
2318 	.read		= proc_pid_attr_read,
2319 	.write		= proc_pid_attr_write,
2320 	.llseek		= generic_file_llseek,
2321 };
2322 
2323 static const struct pid_entry attr_dir_stuff[] = {
2324 	REG("current",    S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2325 	REG("prev",       S_IRUGO,	   proc_pid_attr_operations),
2326 	REG("exec",       S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2327 	REG("fscreate",   S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2328 	REG("keycreate",  S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2329 	REG("sockcreate", S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2330 };
2331 
2332 static int proc_attr_dir_readdir(struct file * filp,
2333 			     void * dirent, filldir_t filldir)
2334 {
2335 	return proc_pident_readdir(filp,dirent,filldir,
2336 				   attr_dir_stuff,ARRAY_SIZE(attr_dir_stuff));
2337 }
2338 
2339 static const struct file_operations proc_attr_dir_operations = {
2340 	.read		= generic_read_dir,
2341 	.readdir	= proc_attr_dir_readdir,
2342 	.llseek		= default_llseek,
2343 };
2344 
2345 static struct dentry *proc_attr_dir_lookup(struct inode *dir,
2346 				struct dentry *dentry, struct nameidata *nd)
2347 {
2348 	return proc_pident_lookup(dir, dentry,
2349 				  attr_dir_stuff, ARRAY_SIZE(attr_dir_stuff));
2350 }
2351 
2352 static const struct inode_operations proc_attr_dir_inode_operations = {
2353 	.lookup		= proc_attr_dir_lookup,
2354 	.getattr	= pid_getattr,
2355 	.setattr	= proc_setattr,
2356 };
2357 
2358 #endif
2359 
2360 #ifdef CONFIG_ELF_CORE
2361 static ssize_t proc_coredump_filter_read(struct file *file, char __user *buf,
2362 					 size_t count, loff_t *ppos)
2363 {
2364 	struct task_struct *task = get_proc_task(file->f_dentry->d_inode);
2365 	struct mm_struct *mm;
2366 	char buffer[PROC_NUMBUF];
2367 	size_t len;
2368 	int ret;
2369 
2370 	if (!task)
2371 		return -ESRCH;
2372 
2373 	ret = 0;
2374 	mm = get_task_mm(task);
2375 	if (mm) {
2376 		len = snprintf(buffer, sizeof(buffer), "%08lx\n",
2377 			       ((mm->flags & MMF_DUMP_FILTER_MASK) >>
2378 				MMF_DUMP_FILTER_SHIFT));
2379 		mmput(mm);
2380 		ret = simple_read_from_buffer(buf, count, ppos, buffer, len);
2381 	}
2382 
2383 	put_task_struct(task);
2384 
2385 	return ret;
2386 }
2387 
2388 static ssize_t proc_coredump_filter_write(struct file *file,
2389 					  const char __user *buf,
2390 					  size_t count,
2391 					  loff_t *ppos)
2392 {
2393 	struct task_struct *task;
2394 	struct mm_struct *mm;
2395 	char buffer[PROC_NUMBUF], *end;
2396 	unsigned int val;
2397 	int ret;
2398 	int i;
2399 	unsigned long mask;
2400 
2401 	ret = -EFAULT;
2402 	memset(buffer, 0, sizeof(buffer));
2403 	if (count > sizeof(buffer) - 1)
2404 		count = sizeof(buffer) - 1;
2405 	if (copy_from_user(buffer, buf, count))
2406 		goto out_no_task;
2407 
2408 	ret = -EINVAL;
2409 	val = (unsigned int)simple_strtoul(buffer, &end, 0);
2410 	if (*end == '\n')
2411 		end++;
2412 	if (end - buffer == 0)
2413 		goto out_no_task;
2414 
2415 	ret = -ESRCH;
2416 	task = get_proc_task(file->f_dentry->d_inode);
2417 	if (!task)
2418 		goto out_no_task;
2419 
2420 	ret = end - buffer;
2421 	mm = get_task_mm(task);
2422 	if (!mm)
2423 		goto out_no_mm;
2424 
2425 	for (i = 0, mask = 1; i < MMF_DUMP_FILTER_BITS; i++, mask <<= 1) {
2426 		if (val & mask)
2427 			set_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags);
2428 		else
2429 			clear_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags);
2430 	}
2431 
2432 	mmput(mm);
2433  out_no_mm:
2434 	put_task_struct(task);
2435  out_no_task:
2436 	return ret;
2437 }
2438 
2439 static const struct file_operations proc_coredump_filter_operations = {
2440 	.read		= proc_coredump_filter_read,
2441 	.write		= proc_coredump_filter_write,
2442 	.llseek		= generic_file_llseek,
2443 };
2444 #endif
2445 
2446 /*
2447  * /proc/self:
2448  */
2449 static int proc_self_readlink(struct dentry *dentry, char __user *buffer,
2450 			      int buflen)
2451 {
2452 	struct pid_namespace *ns = dentry->d_sb->s_fs_info;
2453 	pid_t tgid = task_tgid_nr_ns(current, ns);
2454 	char tmp[PROC_NUMBUF];
2455 	if (!tgid)
2456 		return -ENOENT;
2457 	sprintf(tmp, "%d", tgid);
2458 	return vfs_readlink(dentry,buffer,buflen,tmp);
2459 }
2460 
2461 static void *proc_self_follow_link(struct dentry *dentry, struct nameidata *nd)
2462 {
2463 	struct pid_namespace *ns = dentry->d_sb->s_fs_info;
2464 	pid_t tgid = task_tgid_nr_ns(current, ns);
2465 	char *name = ERR_PTR(-ENOENT);
2466 	if (tgid) {
2467 		name = __getname();
2468 		if (!name)
2469 			name = ERR_PTR(-ENOMEM);
2470 		else
2471 			sprintf(name, "%d", tgid);
2472 	}
2473 	nd_set_link(nd, name);
2474 	return NULL;
2475 }
2476 
2477 static void proc_self_put_link(struct dentry *dentry, struct nameidata *nd,
2478 				void *cookie)
2479 {
2480 	char *s = nd_get_link(nd);
2481 	if (!IS_ERR(s))
2482 		__putname(s);
2483 }
2484 
2485 static const struct inode_operations proc_self_inode_operations = {
2486 	.readlink	= proc_self_readlink,
2487 	.follow_link	= proc_self_follow_link,
2488 	.put_link	= proc_self_put_link,
2489 };
2490 
2491 /*
2492  * proc base
2493  *
2494  * These are the directory entries in the root directory of /proc
2495  * that properly belong to the /proc filesystem, as they describe
2496  * describe something that is process related.
2497  */
2498 static const struct pid_entry proc_base_stuff[] = {
2499 	NOD("self", S_IFLNK|S_IRWXUGO,
2500 		&proc_self_inode_operations, NULL, {}),
2501 };
2502 
2503 static struct dentry *proc_base_instantiate(struct inode *dir,
2504 	struct dentry *dentry, struct task_struct *task, const void *ptr)
2505 {
2506 	const struct pid_entry *p = ptr;
2507 	struct inode *inode;
2508 	struct proc_inode *ei;
2509 	struct dentry *error;
2510 
2511 	/* Allocate the inode */
2512 	error = ERR_PTR(-ENOMEM);
2513 	inode = new_inode(dir->i_sb);
2514 	if (!inode)
2515 		goto out;
2516 
2517 	/* Initialize the inode */
2518 	ei = PROC_I(inode);
2519 	inode->i_ino = get_next_ino();
2520 	inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
2521 
2522 	/*
2523 	 * grab the reference to the task.
2524 	 */
2525 	ei->pid = get_task_pid(task, PIDTYPE_PID);
2526 	if (!ei->pid)
2527 		goto out_iput;
2528 
2529 	inode->i_mode = p->mode;
2530 	if (S_ISDIR(inode->i_mode))
2531 		set_nlink(inode, 2);
2532 	if (S_ISLNK(inode->i_mode))
2533 		inode->i_size = 64;
2534 	if (p->iop)
2535 		inode->i_op = p->iop;
2536 	if (p->fop)
2537 		inode->i_fop = p->fop;
2538 	ei->op = p->op;
2539 	d_add(dentry, inode);
2540 	error = NULL;
2541 out:
2542 	return error;
2543 out_iput:
2544 	iput(inode);
2545 	goto out;
2546 }
2547 
2548 static struct dentry *proc_base_lookup(struct inode *dir, struct dentry *dentry)
2549 {
2550 	struct dentry *error;
2551 	struct task_struct *task = get_proc_task(dir);
2552 	const struct pid_entry *p, *last;
2553 
2554 	error = ERR_PTR(-ENOENT);
2555 
2556 	if (!task)
2557 		goto out_no_task;
2558 
2559 	/* Lookup the directory entry */
2560 	last = &proc_base_stuff[ARRAY_SIZE(proc_base_stuff) - 1];
2561 	for (p = proc_base_stuff; p <= last; p++) {
2562 		if (p->len != dentry->d_name.len)
2563 			continue;
2564 		if (!memcmp(dentry->d_name.name, p->name, p->len))
2565 			break;
2566 	}
2567 	if (p > last)
2568 		goto out;
2569 
2570 	error = proc_base_instantiate(dir, dentry, task, p);
2571 
2572 out:
2573 	put_task_struct(task);
2574 out_no_task:
2575 	return error;
2576 }
2577 
2578 static int proc_base_fill_cache(struct file *filp, void *dirent,
2579 	filldir_t filldir, struct task_struct *task, const struct pid_entry *p)
2580 {
2581 	return proc_fill_cache(filp, dirent, filldir, p->name, p->len,
2582 				proc_base_instantiate, task, p);
2583 }
2584 
2585 #ifdef CONFIG_TASK_IO_ACCOUNTING
2586 static int do_io_accounting(struct task_struct *task, char *buffer, int whole)
2587 {
2588 	struct task_io_accounting acct = task->ioac;
2589 	unsigned long flags;
2590 	int result;
2591 
2592 	result = mutex_lock_killable(&task->signal->cred_guard_mutex);
2593 	if (result)
2594 		return result;
2595 
2596 	if (!ptrace_may_access(task, PTRACE_MODE_READ)) {
2597 		result = -EACCES;
2598 		goto out_unlock;
2599 	}
2600 
2601 	if (whole && lock_task_sighand(task, &flags)) {
2602 		struct task_struct *t = task;
2603 
2604 		task_io_accounting_add(&acct, &task->signal->ioac);
2605 		while_each_thread(task, t)
2606 			task_io_accounting_add(&acct, &t->ioac);
2607 
2608 		unlock_task_sighand(task, &flags);
2609 	}
2610 	result = sprintf(buffer,
2611 			"rchar: %llu\n"
2612 			"wchar: %llu\n"
2613 			"syscr: %llu\n"
2614 			"syscw: %llu\n"
2615 			"read_bytes: %llu\n"
2616 			"write_bytes: %llu\n"
2617 			"cancelled_write_bytes: %llu\n",
2618 			(unsigned long long)acct.rchar,
2619 			(unsigned long long)acct.wchar,
2620 			(unsigned long long)acct.syscr,
2621 			(unsigned long long)acct.syscw,
2622 			(unsigned long long)acct.read_bytes,
2623 			(unsigned long long)acct.write_bytes,
2624 			(unsigned long long)acct.cancelled_write_bytes);
2625 out_unlock:
2626 	mutex_unlock(&task->signal->cred_guard_mutex);
2627 	return result;
2628 }
2629 
2630 static int proc_tid_io_accounting(struct task_struct *task, char *buffer)
2631 {
2632 	return do_io_accounting(task, buffer, 0);
2633 }
2634 
2635 static int proc_tgid_io_accounting(struct task_struct *task, char *buffer)
2636 {
2637 	return do_io_accounting(task, buffer, 1);
2638 }
2639 #endif /* CONFIG_TASK_IO_ACCOUNTING */
2640 
2641 static int proc_pid_personality(struct seq_file *m, struct pid_namespace *ns,
2642 				struct pid *pid, struct task_struct *task)
2643 {
2644 	int err = lock_trace(task);
2645 	if (!err) {
2646 		seq_printf(m, "%08x\n", task->personality);
2647 		unlock_trace(task);
2648 	}
2649 	return err;
2650 }
2651 
2652 /*
2653  * Thread groups
2654  */
2655 static const struct file_operations proc_task_operations;
2656 static const struct inode_operations proc_task_inode_operations;
2657 
2658 static const struct pid_entry tgid_base_stuff[] = {
2659 	DIR("task",       S_IRUGO|S_IXUGO, proc_task_inode_operations, proc_task_operations),
2660 	DIR("fd",         S_IRUSR|S_IXUSR, proc_fd_inode_operations, proc_fd_operations),
2661 	DIR("fdinfo",     S_IRUSR|S_IXUSR, proc_fdinfo_inode_operations, proc_fdinfo_operations),
2662 	DIR("ns",	  S_IRUSR|S_IXUGO, proc_ns_dir_inode_operations, proc_ns_dir_operations),
2663 #ifdef CONFIG_NET
2664 	DIR("net",        S_IRUGO|S_IXUGO, proc_net_inode_operations, proc_net_operations),
2665 #endif
2666 	REG("environ",    S_IRUSR, proc_environ_operations),
2667 	INF("auxv",       S_IRUSR, proc_pid_auxv),
2668 	ONE("status",     S_IRUGO, proc_pid_status),
2669 	ONE("personality", S_IRUGO, proc_pid_personality),
2670 	INF("limits",	  S_IRUGO, proc_pid_limits),
2671 #ifdef CONFIG_SCHED_DEBUG
2672 	REG("sched",      S_IRUGO|S_IWUSR, proc_pid_sched_operations),
2673 #endif
2674 #ifdef CONFIG_SCHED_AUTOGROUP
2675 	REG("autogroup",  S_IRUGO|S_IWUSR, proc_pid_sched_autogroup_operations),
2676 #endif
2677 	REG("comm",      S_IRUGO|S_IWUSR, proc_pid_set_comm_operations),
2678 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK
2679 	INF("syscall",    S_IRUGO, proc_pid_syscall),
2680 #endif
2681 	INF("cmdline",    S_IRUGO, proc_pid_cmdline),
2682 	ONE("stat",       S_IRUGO, proc_tgid_stat),
2683 	ONE("statm",      S_IRUGO, proc_pid_statm),
2684 	REG("maps",       S_IRUGO, proc_maps_operations),
2685 #ifdef CONFIG_NUMA
2686 	REG("numa_maps",  S_IRUGO, proc_numa_maps_operations),
2687 #endif
2688 	REG("mem",        S_IRUSR|S_IWUSR, proc_mem_operations),
2689 	LNK("cwd",        proc_cwd_link),
2690 	LNK("root",       proc_root_link),
2691 	LNK("exe",        proc_exe_link),
2692 	REG("mounts",     S_IRUGO, proc_mounts_operations),
2693 	REG("mountinfo",  S_IRUGO, proc_mountinfo_operations),
2694 	REG("mountstats", S_IRUSR, proc_mountstats_operations),
2695 #ifdef CONFIG_PROC_PAGE_MONITOR
2696 	REG("clear_refs", S_IWUSR, proc_clear_refs_operations),
2697 	REG("smaps",      S_IRUGO, proc_smaps_operations),
2698 	REG("pagemap",    S_IRUGO, proc_pagemap_operations),
2699 #endif
2700 #ifdef CONFIG_SECURITY
2701 	DIR("attr",       S_IRUGO|S_IXUGO, proc_attr_dir_inode_operations, proc_attr_dir_operations),
2702 #endif
2703 #ifdef CONFIG_KALLSYMS
2704 	INF("wchan",      S_IRUGO, proc_pid_wchan),
2705 #endif
2706 #ifdef CONFIG_STACKTRACE
2707 	ONE("stack",      S_IRUGO, proc_pid_stack),
2708 #endif
2709 #ifdef CONFIG_SCHEDSTATS
2710 	INF("schedstat",  S_IRUGO, proc_pid_schedstat),
2711 #endif
2712 #ifdef CONFIG_LATENCYTOP
2713 	REG("latency",  S_IRUGO, proc_lstats_operations),
2714 #endif
2715 #ifdef CONFIG_PROC_PID_CPUSET
2716 	REG("cpuset",     S_IRUGO, proc_cpuset_operations),
2717 #endif
2718 #ifdef CONFIG_CGROUPS
2719 	REG("cgroup",  S_IRUGO, proc_cgroup_operations),
2720 #endif
2721 	INF("oom_score",  S_IRUGO, proc_oom_score),
2722 	REG("oom_adj",    S_IRUGO|S_IWUSR, proc_oom_adjust_operations),
2723 	REG("oom_score_adj", S_IRUGO|S_IWUSR, proc_oom_score_adj_operations),
2724 #ifdef CONFIG_AUDITSYSCALL
2725 	REG("loginuid",   S_IWUSR|S_IRUGO, proc_loginuid_operations),
2726 	REG("sessionid",  S_IRUGO, proc_sessionid_operations),
2727 #endif
2728 #ifdef CONFIG_FAULT_INJECTION
2729 	REG("make-it-fail", S_IRUGO|S_IWUSR, proc_fault_inject_operations),
2730 #endif
2731 #ifdef CONFIG_ELF_CORE
2732 	REG("coredump_filter", S_IRUGO|S_IWUSR, proc_coredump_filter_operations),
2733 #endif
2734 #ifdef CONFIG_TASK_IO_ACCOUNTING
2735 	INF("io",	S_IRUSR, proc_tgid_io_accounting),
2736 #endif
2737 #ifdef CONFIG_HARDWALL
2738 	INF("hardwall",   S_IRUGO, proc_pid_hardwall),
2739 #endif
2740 };
2741 
2742 static int proc_tgid_base_readdir(struct file * filp,
2743 			     void * dirent, filldir_t filldir)
2744 {
2745 	return proc_pident_readdir(filp,dirent,filldir,
2746 				   tgid_base_stuff,ARRAY_SIZE(tgid_base_stuff));
2747 }
2748 
2749 static const struct file_operations proc_tgid_base_operations = {
2750 	.read		= generic_read_dir,
2751 	.readdir	= proc_tgid_base_readdir,
2752 	.llseek		= default_llseek,
2753 };
2754 
2755 static struct dentry *proc_tgid_base_lookup(struct inode *dir, struct dentry *dentry, struct nameidata *nd){
2756 	return proc_pident_lookup(dir, dentry,
2757 				  tgid_base_stuff, ARRAY_SIZE(tgid_base_stuff));
2758 }
2759 
2760 static const struct inode_operations proc_tgid_base_inode_operations = {
2761 	.lookup		= proc_tgid_base_lookup,
2762 	.getattr	= pid_getattr,
2763 	.setattr	= proc_setattr,
2764 };
2765 
2766 static void proc_flush_task_mnt(struct vfsmount *mnt, pid_t pid, pid_t tgid)
2767 {
2768 	struct dentry *dentry, *leader, *dir;
2769 	char buf[PROC_NUMBUF];
2770 	struct qstr name;
2771 
2772 	name.name = buf;
2773 	name.len = snprintf(buf, sizeof(buf), "%d", pid);
2774 	dentry = d_hash_and_lookup(mnt->mnt_root, &name);
2775 	if (dentry) {
2776 		shrink_dcache_parent(dentry);
2777 		d_drop(dentry);
2778 		dput(dentry);
2779 	}
2780 
2781 	name.name = buf;
2782 	name.len = snprintf(buf, sizeof(buf), "%d", tgid);
2783 	leader = d_hash_and_lookup(mnt->mnt_root, &name);
2784 	if (!leader)
2785 		goto out;
2786 
2787 	name.name = "task";
2788 	name.len = strlen(name.name);
2789 	dir = d_hash_and_lookup(leader, &name);
2790 	if (!dir)
2791 		goto out_put_leader;
2792 
2793 	name.name = buf;
2794 	name.len = snprintf(buf, sizeof(buf), "%d", pid);
2795 	dentry = d_hash_and_lookup(dir, &name);
2796 	if (dentry) {
2797 		shrink_dcache_parent(dentry);
2798 		d_drop(dentry);
2799 		dput(dentry);
2800 	}
2801 
2802 	dput(dir);
2803 out_put_leader:
2804 	dput(leader);
2805 out:
2806 	return;
2807 }
2808 
2809 /**
2810  * proc_flush_task -  Remove dcache entries for @task from the /proc dcache.
2811  * @task: task that should be flushed.
2812  *
2813  * When flushing dentries from proc, one needs to flush them from global
2814  * proc (proc_mnt) and from all the namespaces' procs this task was seen
2815  * in. This call is supposed to do all of this job.
2816  *
2817  * Looks in the dcache for
2818  * /proc/@pid
2819  * /proc/@tgid/task/@pid
2820  * if either directory is present flushes it and all of it'ts children
2821  * from the dcache.
2822  *
2823  * It is safe and reasonable to cache /proc entries for a task until
2824  * that task exits.  After that they just clog up the dcache with
2825  * useless entries, possibly causing useful dcache entries to be
2826  * flushed instead.  This routine is proved to flush those useless
2827  * dcache entries at process exit time.
2828  *
2829  * NOTE: This routine is just an optimization so it does not guarantee
2830  *       that no dcache entries will exist at process exit time it
2831  *       just makes it very unlikely that any will persist.
2832  */
2833 
2834 void proc_flush_task(struct task_struct *task)
2835 {
2836 	int i;
2837 	struct pid *pid, *tgid;
2838 	struct upid *upid;
2839 
2840 	pid = task_pid(task);
2841 	tgid = task_tgid(task);
2842 
2843 	for (i = 0; i <= pid->level; i++) {
2844 		upid = &pid->numbers[i];
2845 		proc_flush_task_mnt(upid->ns->proc_mnt, upid->nr,
2846 					tgid->numbers[i].nr);
2847 	}
2848 
2849 	upid = &pid->numbers[pid->level];
2850 	if (upid->nr == 1)
2851 		pid_ns_release_proc(upid->ns);
2852 }
2853 
2854 static struct dentry *proc_pid_instantiate(struct inode *dir,
2855 					   struct dentry * dentry,
2856 					   struct task_struct *task, const void *ptr)
2857 {
2858 	struct dentry *error = ERR_PTR(-ENOENT);
2859 	struct inode *inode;
2860 
2861 	inode = proc_pid_make_inode(dir->i_sb, task);
2862 	if (!inode)
2863 		goto out;
2864 
2865 	inode->i_mode = S_IFDIR|S_IRUGO|S_IXUGO;
2866 	inode->i_op = &proc_tgid_base_inode_operations;
2867 	inode->i_fop = &proc_tgid_base_operations;
2868 	inode->i_flags|=S_IMMUTABLE;
2869 
2870 	set_nlink(inode, 2 + pid_entry_count_dirs(tgid_base_stuff,
2871 						  ARRAY_SIZE(tgid_base_stuff)));
2872 
2873 	d_set_d_op(dentry, &pid_dentry_operations);
2874 
2875 	d_add(dentry, inode);
2876 	/* Close the race of the process dying before we return the dentry */
2877 	if (pid_revalidate(dentry, NULL))
2878 		error = NULL;
2879 out:
2880 	return error;
2881 }
2882 
2883 struct dentry *proc_pid_lookup(struct inode *dir, struct dentry * dentry, struct nameidata *nd)
2884 {
2885 	struct dentry *result;
2886 	struct task_struct *task;
2887 	unsigned tgid;
2888 	struct pid_namespace *ns;
2889 
2890 	result = proc_base_lookup(dir, dentry);
2891 	if (!IS_ERR(result) || PTR_ERR(result) != -ENOENT)
2892 		goto out;
2893 
2894 	tgid = name_to_int(dentry);
2895 	if (tgid == ~0U)
2896 		goto out;
2897 
2898 	ns = dentry->d_sb->s_fs_info;
2899 	rcu_read_lock();
2900 	task = find_task_by_pid_ns(tgid, ns);
2901 	if (task)
2902 		get_task_struct(task);
2903 	rcu_read_unlock();
2904 	if (!task)
2905 		goto out;
2906 
2907 	result = proc_pid_instantiate(dir, dentry, task, NULL);
2908 	put_task_struct(task);
2909 out:
2910 	return result;
2911 }
2912 
2913 /*
2914  * Find the first task with tgid >= tgid
2915  *
2916  */
2917 struct tgid_iter {
2918 	unsigned int tgid;
2919 	struct task_struct *task;
2920 };
2921 static struct tgid_iter next_tgid(struct pid_namespace *ns, struct tgid_iter iter)
2922 {
2923 	struct pid *pid;
2924 
2925 	if (iter.task)
2926 		put_task_struct(iter.task);
2927 	rcu_read_lock();
2928 retry:
2929 	iter.task = NULL;
2930 	pid = find_ge_pid(iter.tgid, ns);
2931 	if (pid) {
2932 		iter.tgid = pid_nr_ns(pid, ns);
2933 		iter.task = pid_task(pid, PIDTYPE_PID);
2934 		/* What we to know is if the pid we have find is the
2935 		 * pid of a thread_group_leader.  Testing for task
2936 		 * being a thread_group_leader is the obvious thing
2937 		 * todo but there is a window when it fails, due to
2938 		 * the pid transfer logic in de_thread.
2939 		 *
2940 		 * So we perform the straight forward test of seeing
2941 		 * if the pid we have found is the pid of a thread
2942 		 * group leader, and don't worry if the task we have
2943 		 * found doesn't happen to be a thread group leader.
2944 		 * As we don't care in the case of readdir.
2945 		 */
2946 		if (!iter.task || !has_group_leader_pid(iter.task)) {
2947 			iter.tgid += 1;
2948 			goto retry;
2949 		}
2950 		get_task_struct(iter.task);
2951 	}
2952 	rcu_read_unlock();
2953 	return iter;
2954 }
2955 
2956 #define TGID_OFFSET (FIRST_PROCESS_ENTRY + ARRAY_SIZE(proc_base_stuff))
2957 
2958 static int proc_pid_fill_cache(struct file *filp, void *dirent, filldir_t filldir,
2959 	struct tgid_iter iter)
2960 {
2961 	char name[PROC_NUMBUF];
2962 	int len = snprintf(name, sizeof(name), "%d", iter.tgid);
2963 	return proc_fill_cache(filp, dirent, filldir, name, len,
2964 				proc_pid_instantiate, iter.task, NULL);
2965 }
2966 
2967 /* for the /proc/ directory itself, after non-process stuff has been done */
2968 int proc_pid_readdir(struct file * filp, void * dirent, filldir_t filldir)
2969 {
2970 	unsigned int nr;
2971 	struct task_struct *reaper;
2972 	struct tgid_iter iter;
2973 	struct pid_namespace *ns;
2974 
2975 	if (filp->f_pos >= PID_MAX_LIMIT + TGID_OFFSET)
2976 		goto out_no_task;
2977 	nr = filp->f_pos - FIRST_PROCESS_ENTRY;
2978 
2979 	reaper = get_proc_task(filp->f_path.dentry->d_inode);
2980 	if (!reaper)
2981 		goto out_no_task;
2982 
2983 	for (; nr < ARRAY_SIZE(proc_base_stuff); filp->f_pos++, nr++) {
2984 		const struct pid_entry *p = &proc_base_stuff[nr];
2985 		if (proc_base_fill_cache(filp, dirent, filldir, reaper, p) < 0)
2986 			goto out;
2987 	}
2988 
2989 	ns = filp->f_dentry->d_sb->s_fs_info;
2990 	iter.task = NULL;
2991 	iter.tgid = filp->f_pos - TGID_OFFSET;
2992 	for (iter = next_tgid(ns, iter);
2993 	     iter.task;
2994 	     iter.tgid += 1, iter = next_tgid(ns, iter)) {
2995 		filp->f_pos = iter.tgid + TGID_OFFSET;
2996 		if (proc_pid_fill_cache(filp, dirent, filldir, iter) < 0) {
2997 			put_task_struct(iter.task);
2998 			goto out;
2999 		}
3000 	}
3001 	filp->f_pos = PID_MAX_LIMIT + TGID_OFFSET;
3002 out:
3003 	put_task_struct(reaper);
3004 out_no_task:
3005 	return 0;
3006 }
3007 
3008 /*
3009  * Tasks
3010  */
3011 static const struct pid_entry tid_base_stuff[] = {
3012 	DIR("fd",        S_IRUSR|S_IXUSR, proc_fd_inode_operations, proc_fd_operations),
3013 	DIR("fdinfo",    S_IRUSR|S_IXUSR, proc_fdinfo_inode_operations, proc_fdinfo_operations),
3014 	DIR("ns",	 S_IRUSR|S_IXUGO, proc_ns_dir_inode_operations, proc_ns_dir_operations),
3015 	REG("environ",   S_IRUSR, proc_environ_operations),
3016 	INF("auxv",      S_IRUSR, proc_pid_auxv),
3017 	ONE("status",    S_IRUGO, proc_pid_status),
3018 	ONE("personality", S_IRUGO, proc_pid_personality),
3019 	INF("limits",	 S_IRUGO, proc_pid_limits),
3020 #ifdef CONFIG_SCHED_DEBUG
3021 	REG("sched",     S_IRUGO|S_IWUSR, proc_pid_sched_operations),
3022 #endif
3023 	REG("comm",      S_IRUGO|S_IWUSR, proc_pid_set_comm_operations),
3024 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK
3025 	INF("syscall",   S_IRUGO, proc_pid_syscall),
3026 #endif
3027 	INF("cmdline",   S_IRUGO, proc_pid_cmdline),
3028 	ONE("stat",      S_IRUGO, proc_tid_stat),
3029 	ONE("statm",     S_IRUGO, proc_pid_statm),
3030 	REG("maps",      S_IRUGO, proc_maps_operations),
3031 #ifdef CONFIG_NUMA
3032 	REG("numa_maps", S_IRUGO, proc_numa_maps_operations),
3033 #endif
3034 	REG("mem",       S_IRUSR|S_IWUSR, proc_mem_operations),
3035 	LNK("cwd",       proc_cwd_link),
3036 	LNK("root",      proc_root_link),
3037 	LNK("exe",       proc_exe_link),
3038 	REG("mounts",    S_IRUGO, proc_mounts_operations),
3039 	REG("mountinfo",  S_IRUGO, proc_mountinfo_operations),
3040 #ifdef CONFIG_PROC_PAGE_MONITOR
3041 	REG("clear_refs", S_IWUSR, proc_clear_refs_operations),
3042 	REG("smaps",     S_IRUGO, proc_smaps_operations),
3043 	REG("pagemap",    S_IRUGO, proc_pagemap_operations),
3044 #endif
3045 #ifdef CONFIG_SECURITY
3046 	DIR("attr",      S_IRUGO|S_IXUGO, proc_attr_dir_inode_operations, proc_attr_dir_operations),
3047 #endif
3048 #ifdef CONFIG_KALLSYMS
3049 	INF("wchan",     S_IRUGO, proc_pid_wchan),
3050 #endif
3051 #ifdef CONFIG_STACKTRACE
3052 	ONE("stack",      S_IRUGO, proc_pid_stack),
3053 #endif
3054 #ifdef CONFIG_SCHEDSTATS
3055 	INF("schedstat", S_IRUGO, proc_pid_schedstat),
3056 #endif
3057 #ifdef CONFIG_LATENCYTOP
3058 	REG("latency",  S_IRUGO, proc_lstats_operations),
3059 #endif
3060 #ifdef CONFIG_PROC_PID_CPUSET
3061 	REG("cpuset",    S_IRUGO, proc_cpuset_operations),
3062 #endif
3063 #ifdef CONFIG_CGROUPS
3064 	REG("cgroup",  S_IRUGO, proc_cgroup_operations),
3065 #endif
3066 	INF("oom_score", S_IRUGO, proc_oom_score),
3067 	REG("oom_adj",   S_IRUGO|S_IWUSR, proc_oom_adjust_operations),
3068 	REG("oom_score_adj", S_IRUGO|S_IWUSR, proc_oom_score_adj_operations),
3069 #ifdef CONFIG_AUDITSYSCALL
3070 	REG("loginuid",  S_IWUSR|S_IRUGO, proc_loginuid_operations),
3071 	REG("sessionid",  S_IRUGO, proc_sessionid_operations),
3072 #endif
3073 #ifdef CONFIG_FAULT_INJECTION
3074 	REG("make-it-fail", S_IRUGO|S_IWUSR, proc_fault_inject_operations),
3075 #endif
3076 #ifdef CONFIG_TASK_IO_ACCOUNTING
3077 	INF("io",	S_IRUSR, proc_tid_io_accounting),
3078 #endif
3079 #ifdef CONFIG_HARDWALL
3080 	INF("hardwall",   S_IRUGO, proc_pid_hardwall),
3081 #endif
3082 };
3083 
3084 static int proc_tid_base_readdir(struct file * filp,
3085 			     void * dirent, filldir_t filldir)
3086 {
3087 	return proc_pident_readdir(filp,dirent,filldir,
3088 				   tid_base_stuff,ARRAY_SIZE(tid_base_stuff));
3089 }
3090 
3091 static struct dentry *proc_tid_base_lookup(struct inode *dir, struct dentry *dentry, struct nameidata *nd){
3092 	return proc_pident_lookup(dir, dentry,
3093 				  tid_base_stuff, ARRAY_SIZE(tid_base_stuff));
3094 }
3095 
3096 static const struct file_operations proc_tid_base_operations = {
3097 	.read		= generic_read_dir,
3098 	.readdir	= proc_tid_base_readdir,
3099 	.llseek		= default_llseek,
3100 };
3101 
3102 static const struct inode_operations proc_tid_base_inode_operations = {
3103 	.lookup		= proc_tid_base_lookup,
3104 	.getattr	= pid_getattr,
3105 	.setattr	= proc_setattr,
3106 };
3107 
3108 static struct dentry *proc_task_instantiate(struct inode *dir,
3109 	struct dentry *dentry, struct task_struct *task, const void *ptr)
3110 {
3111 	struct dentry *error = ERR_PTR(-ENOENT);
3112 	struct inode *inode;
3113 	inode = proc_pid_make_inode(dir->i_sb, task);
3114 
3115 	if (!inode)
3116 		goto out;
3117 	inode->i_mode = S_IFDIR|S_IRUGO|S_IXUGO;
3118 	inode->i_op = &proc_tid_base_inode_operations;
3119 	inode->i_fop = &proc_tid_base_operations;
3120 	inode->i_flags|=S_IMMUTABLE;
3121 
3122 	set_nlink(inode, 2 + pid_entry_count_dirs(tid_base_stuff,
3123 						  ARRAY_SIZE(tid_base_stuff)));
3124 
3125 	d_set_d_op(dentry, &pid_dentry_operations);
3126 
3127 	d_add(dentry, inode);
3128 	/* Close the race of the process dying before we return the dentry */
3129 	if (pid_revalidate(dentry, NULL))
3130 		error = NULL;
3131 out:
3132 	return error;
3133 }
3134 
3135 static struct dentry *proc_task_lookup(struct inode *dir, struct dentry * dentry, struct nameidata *nd)
3136 {
3137 	struct dentry *result = ERR_PTR(-ENOENT);
3138 	struct task_struct *task;
3139 	struct task_struct *leader = get_proc_task(dir);
3140 	unsigned tid;
3141 	struct pid_namespace *ns;
3142 
3143 	if (!leader)
3144 		goto out_no_task;
3145 
3146 	tid = name_to_int(dentry);
3147 	if (tid == ~0U)
3148 		goto out;
3149 
3150 	ns = dentry->d_sb->s_fs_info;
3151 	rcu_read_lock();
3152 	task = find_task_by_pid_ns(tid, ns);
3153 	if (task)
3154 		get_task_struct(task);
3155 	rcu_read_unlock();
3156 	if (!task)
3157 		goto out;
3158 	if (!same_thread_group(leader, task))
3159 		goto out_drop_task;
3160 
3161 	result = proc_task_instantiate(dir, dentry, task, NULL);
3162 out_drop_task:
3163 	put_task_struct(task);
3164 out:
3165 	put_task_struct(leader);
3166 out_no_task:
3167 	return result;
3168 }
3169 
3170 /*
3171  * Find the first tid of a thread group to return to user space.
3172  *
3173  * Usually this is just the thread group leader, but if the users
3174  * buffer was too small or there was a seek into the middle of the
3175  * directory we have more work todo.
3176  *
3177  * In the case of a short read we start with find_task_by_pid.
3178  *
3179  * In the case of a seek we start with the leader and walk nr
3180  * threads past it.
3181  */
3182 static struct task_struct *first_tid(struct task_struct *leader,
3183 		int tid, int nr, struct pid_namespace *ns)
3184 {
3185 	struct task_struct *pos;
3186 
3187 	rcu_read_lock();
3188 	/* Attempt to start with the pid of a thread */
3189 	if (tid && (nr > 0)) {
3190 		pos = find_task_by_pid_ns(tid, ns);
3191 		if (pos && (pos->group_leader == leader))
3192 			goto found;
3193 	}
3194 
3195 	/* If nr exceeds the number of threads there is nothing todo */
3196 	pos = NULL;
3197 	if (nr && nr >= get_nr_threads(leader))
3198 		goto out;
3199 
3200 	/* If we haven't found our starting place yet start
3201 	 * with the leader and walk nr threads forward.
3202 	 */
3203 	for (pos = leader; nr > 0; --nr) {
3204 		pos = next_thread(pos);
3205 		if (pos == leader) {
3206 			pos = NULL;
3207 			goto out;
3208 		}
3209 	}
3210 found:
3211 	get_task_struct(pos);
3212 out:
3213 	rcu_read_unlock();
3214 	return pos;
3215 }
3216 
3217 /*
3218  * Find the next thread in the thread list.
3219  * Return NULL if there is an error or no next thread.
3220  *
3221  * The reference to the input task_struct is released.
3222  */
3223 static struct task_struct *next_tid(struct task_struct *start)
3224 {
3225 	struct task_struct *pos = NULL;
3226 	rcu_read_lock();
3227 	if (pid_alive(start)) {
3228 		pos = next_thread(start);
3229 		if (thread_group_leader(pos))
3230 			pos = NULL;
3231 		else
3232 			get_task_struct(pos);
3233 	}
3234 	rcu_read_unlock();
3235 	put_task_struct(start);
3236 	return pos;
3237 }
3238 
3239 static int proc_task_fill_cache(struct file *filp, void *dirent, filldir_t filldir,
3240 	struct task_struct *task, int tid)
3241 {
3242 	char name[PROC_NUMBUF];
3243 	int len = snprintf(name, sizeof(name), "%d", tid);
3244 	return proc_fill_cache(filp, dirent, filldir, name, len,
3245 				proc_task_instantiate, task, NULL);
3246 }
3247 
3248 /* for the /proc/TGID/task/ directories */
3249 static int proc_task_readdir(struct file * filp, void * dirent, filldir_t filldir)
3250 {
3251 	struct dentry *dentry = filp->f_path.dentry;
3252 	struct inode *inode = dentry->d_inode;
3253 	struct task_struct *leader = NULL;
3254 	struct task_struct *task;
3255 	int retval = -ENOENT;
3256 	ino_t ino;
3257 	int tid;
3258 	struct pid_namespace *ns;
3259 
3260 	task = get_proc_task(inode);
3261 	if (!task)
3262 		goto out_no_task;
3263 	rcu_read_lock();
3264 	if (pid_alive(task)) {
3265 		leader = task->group_leader;
3266 		get_task_struct(leader);
3267 	}
3268 	rcu_read_unlock();
3269 	put_task_struct(task);
3270 	if (!leader)
3271 		goto out_no_task;
3272 	retval = 0;
3273 
3274 	switch ((unsigned long)filp->f_pos) {
3275 	case 0:
3276 		ino = inode->i_ino;
3277 		if (filldir(dirent, ".", 1, filp->f_pos, ino, DT_DIR) < 0)
3278 			goto out;
3279 		filp->f_pos++;
3280 		/* fall through */
3281 	case 1:
3282 		ino = parent_ino(dentry);
3283 		if (filldir(dirent, "..", 2, filp->f_pos, ino, DT_DIR) < 0)
3284 			goto out;
3285 		filp->f_pos++;
3286 		/* fall through */
3287 	}
3288 
3289 	/* f_version caches the tgid value that the last readdir call couldn't
3290 	 * return. lseek aka telldir automagically resets f_version to 0.
3291 	 */
3292 	ns = filp->f_dentry->d_sb->s_fs_info;
3293 	tid = (int)filp->f_version;
3294 	filp->f_version = 0;
3295 	for (task = first_tid(leader, tid, filp->f_pos - 2, ns);
3296 	     task;
3297 	     task = next_tid(task), filp->f_pos++) {
3298 		tid = task_pid_nr_ns(task, ns);
3299 		if (proc_task_fill_cache(filp, dirent, filldir, task, tid) < 0) {
3300 			/* returning this tgid failed, save it as the first
3301 			 * pid for the next readir call */
3302 			filp->f_version = (u64)tid;
3303 			put_task_struct(task);
3304 			break;
3305 		}
3306 	}
3307 out:
3308 	put_task_struct(leader);
3309 out_no_task:
3310 	return retval;
3311 }
3312 
3313 static int proc_task_getattr(struct vfsmount *mnt, struct dentry *dentry, struct kstat *stat)
3314 {
3315 	struct inode *inode = dentry->d_inode;
3316 	struct task_struct *p = get_proc_task(inode);
3317 	generic_fillattr(inode, stat);
3318 
3319 	if (p) {
3320 		stat->nlink += get_nr_threads(p);
3321 		put_task_struct(p);
3322 	}
3323 
3324 	return 0;
3325 }
3326 
3327 static const struct inode_operations proc_task_inode_operations = {
3328 	.lookup		= proc_task_lookup,
3329 	.getattr	= proc_task_getattr,
3330 	.setattr	= proc_setattr,
3331 };
3332 
3333 static const struct file_operations proc_task_operations = {
3334 	.read		= generic_read_dir,
3335 	.readdir	= proc_task_readdir,
3336 	.llseek		= default_llseek,
3337 };
3338