xref: /linux/fs/proc/base.c (revision 9cfc5c90ad38c8fc11bfd39de42a107da00871ba)
1 /*
2  *  linux/fs/proc/base.c
3  *
4  *  Copyright (C) 1991, 1992 Linus Torvalds
5  *
6  *  proc base directory handling functions
7  *
8  *  1999, Al Viro. Rewritten. Now it covers the whole per-process part.
9  *  Instead of using magical inumbers to determine the kind of object
10  *  we allocate and fill in-core inodes upon lookup. They don't even
11  *  go into icache. We cache the reference to task_struct upon lookup too.
12  *  Eventually it should become a filesystem in its own. We don't use the
13  *  rest of procfs anymore.
14  *
15  *
16  *  Changelog:
17  *  17-Jan-2005
18  *  Allan Bezerra
19  *  Bruna Moreira <bruna.moreira@indt.org.br>
20  *  Edjard Mota <edjard.mota@indt.org.br>
21  *  Ilias Biris <ilias.biris@indt.org.br>
22  *  Mauricio Lin <mauricio.lin@indt.org.br>
23  *
24  *  Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT
25  *
26  *  A new process specific entry (smaps) included in /proc. It shows the
27  *  size of rss for each memory area. The maps entry lacks information
28  *  about physical memory size (rss) for each mapped file, i.e.,
29  *  rss information for executables and library files.
30  *  This additional information is useful for any tools that need to know
31  *  about physical memory consumption for a process specific library.
32  *
33  *  Changelog:
34  *  21-Feb-2005
35  *  Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT
36  *  Pud inclusion in the page table walking.
37  *
38  *  ChangeLog:
39  *  10-Mar-2005
40  *  10LE Instituto Nokia de Tecnologia - INdT:
41  *  A better way to walks through the page table as suggested by Hugh Dickins.
42  *
43  *  Simo Piiroinen <simo.piiroinen@nokia.com>:
44  *  Smaps information related to shared, private, clean and dirty pages.
45  *
46  *  Paul Mundt <paul.mundt@nokia.com>:
47  *  Overall revision about smaps.
48  */
49 
50 #include <asm/uaccess.h>
51 
52 #include <linux/errno.h>
53 #include <linux/time.h>
54 #include <linux/proc_fs.h>
55 #include <linux/stat.h>
56 #include <linux/task_io_accounting_ops.h>
57 #include <linux/init.h>
58 #include <linux/capability.h>
59 #include <linux/file.h>
60 #include <linux/fdtable.h>
61 #include <linux/string.h>
62 #include <linux/seq_file.h>
63 #include <linux/namei.h>
64 #include <linux/mnt_namespace.h>
65 #include <linux/mm.h>
66 #include <linux/swap.h>
67 #include <linux/rcupdate.h>
68 #include <linux/kallsyms.h>
69 #include <linux/stacktrace.h>
70 #include <linux/resource.h>
71 #include <linux/module.h>
72 #include <linux/mount.h>
73 #include <linux/security.h>
74 #include <linux/ptrace.h>
75 #include <linux/tracehook.h>
76 #include <linux/printk.h>
77 #include <linux/cgroup.h>
78 #include <linux/cpuset.h>
79 #include <linux/audit.h>
80 #include <linux/poll.h>
81 #include <linux/nsproxy.h>
82 #include <linux/oom.h>
83 #include <linux/elf.h>
84 #include <linux/pid_namespace.h>
85 #include <linux/user_namespace.h>
86 #include <linux/fs_struct.h>
87 #include <linux/slab.h>
88 #include <linux/flex_array.h>
89 #include <linux/posix-timers.h>
90 #ifdef CONFIG_HARDWALL
91 #include <asm/hardwall.h>
92 #endif
93 #include <trace/events/oom.h>
94 #include "internal.h"
95 #include "fd.h"
96 
97 /* NOTE:
98  *	Implementing inode permission operations in /proc is almost
99  *	certainly an error.  Permission checks need to happen during
100  *	each system call not at open time.  The reason is that most of
101  *	what we wish to check for permissions in /proc varies at runtime.
102  *
103  *	The classic example of a problem is opening file descriptors
104  *	in /proc for a task before it execs a suid executable.
105  */
106 
107 struct pid_entry {
108 	const char *name;
109 	int len;
110 	umode_t mode;
111 	const struct inode_operations *iop;
112 	const struct file_operations *fop;
113 	union proc_op op;
114 };
115 
116 #define NOD(NAME, MODE, IOP, FOP, OP) {			\
117 	.name = (NAME),					\
118 	.len  = sizeof(NAME) - 1,			\
119 	.mode = MODE,					\
120 	.iop  = IOP,					\
121 	.fop  = FOP,					\
122 	.op   = OP,					\
123 }
124 
125 #define DIR(NAME, MODE, iops, fops)	\
126 	NOD(NAME, (S_IFDIR|(MODE)), &iops, &fops, {} )
127 #define LNK(NAME, get_link)					\
128 	NOD(NAME, (S_IFLNK|S_IRWXUGO),				\
129 		&proc_pid_link_inode_operations, NULL,		\
130 		{ .proc_get_link = get_link } )
131 #define REG(NAME, MODE, fops)				\
132 	NOD(NAME, (S_IFREG|(MODE)), NULL, &fops, {})
133 #define ONE(NAME, MODE, show)				\
134 	NOD(NAME, (S_IFREG|(MODE)), 			\
135 		NULL, &proc_single_file_operations,	\
136 		{ .proc_show = show } )
137 
138 /*
139  * Count the number of hardlinks for the pid_entry table, excluding the .
140  * and .. links.
141  */
142 static unsigned int pid_entry_count_dirs(const struct pid_entry *entries,
143 	unsigned int n)
144 {
145 	unsigned int i;
146 	unsigned int count;
147 
148 	count = 0;
149 	for (i = 0; i < n; ++i) {
150 		if (S_ISDIR(entries[i].mode))
151 			++count;
152 	}
153 
154 	return count;
155 }
156 
157 static int get_task_root(struct task_struct *task, struct path *root)
158 {
159 	int result = -ENOENT;
160 
161 	task_lock(task);
162 	if (task->fs) {
163 		get_fs_root(task->fs, root);
164 		result = 0;
165 	}
166 	task_unlock(task);
167 	return result;
168 }
169 
170 static int proc_cwd_link(struct dentry *dentry, struct path *path)
171 {
172 	struct task_struct *task = get_proc_task(d_inode(dentry));
173 	int result = -ENOENT;
174 
175 	if (task) {
176 		task_lock(task);
177 		if (task->fs) {
178 			get_fs_pwd(task->fs, path);
179 			result = 0;
180 		}
181 		task_unlock(task);
182 		put_task_struct(task);
183 	}
184 	return result;
185 }
186 
187 static int proc_root_link(struct dentry *dentry, struct path *path)
188 {
189 	struct task_struct *task = get_proc_task(d_inode(dentry));
190 	int result = -ENOENT;
191 
192 	if (task) {
193 		result = get_task_root(task, path);
194 		put_task_struct(task);
195 	}
196 	return result;
197 }
198 
199 static ssize_t proc_pid_cmdline_read(struct file *file, char __user *buf,
200 				     size_t _count, loff_t *pos)
201 {
202 	struct task_struct *tsk;
203 	struct mm_struct *mm;
204 	char *page;
205 	unsigned long count = _count;
206 	unsigned long arg_start, arg_end, env_start, env_end;
207 	unsigned long len1, len2, len;
208 	unsigned long p;
209 	char c;
210 	ssize_t rv;
211 
212 	BUG_ON(*pos < 0);
213 
214 	tsk = get_proc_task(file_inode(file));
215 	if (!tsk)
216 		return -ESRCH;
217 	mm = get_task_mm(tsk);
218 	put_task_struct(tsk);
219 	if (!mm)
220 		return 0;
221 	/* Check if process spawned far enough to have cmdline. */
222 	if (!mm->env_end) {
223 		rv = 0;
224 		goto out_mmput;
225 	}
226 
227 	page = (char *)__get_free_page(GFP_TEMPORARY);
228 	if (!page) {
229 		rv = -ENOMEM;
230 		goto out_mmput;
231 	}
232 
233 	down_read(&mm->mmap_sem);
234 	arg_start = mm->arg_start;
235 	arg_end = mm->arg_end;
236 	env_start = mm->env_start;
237 	env_end = mm->env_end;
238 	up_read(&mm->mmap_sem);
239 
240 	BUG_ON(arg_start > arg_end);
241 	BUG_ON(env_start > env_end);
242 
243 	len1 = arg_end - arg_start;
244 	len2 = env_end - env_start;
245 
246 	/* Empty ARGV. */
247 	if (len1 == 0) {
248 		rv = 0;
249 		goto out_free_page;
250 	}
251 	/*
252 	 * Inherently racy -- command line shares address space
253 	 * with code and data.
254 	 */
255 	rv = access_remote_vm(mm, arg_end - 1, &c, 1, 0);
256 	if (rv <= 0)
257 		goto out_free_page;
258 
259 	rv = 0;
260 
261 	if (c == '\0') {
262 		/* Command line (set of strings) occupies whole ARGV. */
263 		if (len1 <= *pos)
264 			goto out_free_page;
265 
266 		p = arg_start + *pos;
267 		len = len1 - *pos;
268 		while (count > 0 && len > 0) {
269 			unsigned int _count;
270 			int nr_read;
271 
272 			_count = min3(count, len, PAGE_SIZE);
273 			nr_read = access_remote_vm(mm, p, page, _count, 0);
274 			if (nr_read < 0)
275 				rv = nr_read;
276 			if (nr_read <= 0)
277 				goto out_free_page;
278 
279 			if (copy_to_user(buf, page, nr_read)) {
280 				rv = -EFAULT;
281 				goto out_free_page;
282 			}
283 
284 			p	+= nr_read;
285 			len	-= nr_read;
286 			buf	+= nr_read;
287 			count	-= nr_read;
288 			rv	+= nr_read;
289 		}
290 	} else {
291 		/*
292 		 * Command line (1 string) occupies ARGV and maybe
293 		 * extends into ENVP.
294 		 */
295 		if (len1 + len2 <= *pos)
296 			goto skip_argv_envp;
297 		if (len1 <= *pos)
298 			goto skip_argv;
299 
300 		p = arg_start + *pos;
301 		len = len1 - *pos;
302 		while (count > 0 && len > 0) {
303 			unsigned int _count, l;
304 			int nr_read;
305 			bool final;
306 
307 			_count = min3(count, len, PAGE_SIZE);
308 			nr_read = access_remote_vm(mm, p, page, _count, 0);
309 			if (nr_read < 0)
310 				rv = nr_read;
311 			if (nr_read <= 0)
312 				goto out_free_page;
313 
314 			/*
315 			 * Command line can be shorter than whole ARGV
316 			 * even if last "marker" byte says it is not.
317 			 */
318 			final = false;
319 			l = strnlen(page, nr_read);
320 			if (l < nr_read) {
321 				nr_read = l;
322 				final = true;
323 			}
324 
325 			if (copy_to_user(buf, page, nr_read)) {
326 				rv = -EFAULT;
327 				goto out_free_page;
328 			}
329 
330 			p	+= nr_read;
331 			len	-= nr_read;
332 			buf	+= nr_read;
333 			count	-= nr_read;
334 			rv	+= nr_read;
335 
336 			if (final)
337 				goto out_free_page;
338 		}
339 skip_argv:
340 		/*
341 		 * Command line (1 string) occupies ARGV and
342 		 * extends into ENVP.
343 		 */
344 		if (len1 <= *pos) {
345 			p = env_start + *pos - len1;
346 			len = len1 + len2 - *pos;
347 		} else {
348 			p = env_start;
349 			len = len2;
350 		}
351 		while (count > 0 && len > 0) {
352 			unsigned int _count, l;
353 			int nr_read;
354 			bool final;
355 
356 			_count = min3(count, len, PAGE_SIZE);
357 			nr_read = access_remote_vm(mm, p, page, _count, 0);
358 			if (nr_read < 0)
359 				rv = nr_read;
360 			if (nr_read <= 0)
361 				goto out_free_page;
362 
363 			/* Find EOS. */
364 			final = false;
365 			l = strnlen(page, nr_read);
366 			if (l < nr_read) {
367 				nr_read = l;
368 				final = true;
369 			}
370 
371 			if (copy_to_user(buf, page, nr_read)) {
372 				rv = -EFAULT;
373 				goto out_free_page;
374 			}
375 
376 			p	+= nr_read;
377 			len	-= nr_read;
378 			buf	+= nr_read;
379 			count	-= nr_read;
380 			rv	+= nr_read;
381 
382 			if (final)
383 				goto out_free_page;
384 		}
385 skip_argv_envp:
386 		;
387 	}
388 
389 out_free_page:
390 	free_page((unsigned long)page);
391 out_mmput:
392 	mmput(mm);
393 	if (rv > 0)
394 		*pos += rv;
395 	return rv;
396 }
397 
398 static const struct file_operations proc_pid_cmdline_ops = {
399 	.read	= proc_pid_cmdline_read,
400 	.llseek	= generic_file_llseek,
401 };
402 
403 static int proc_pid_auxv(struct seq_file *m, struct pid_namespace *ns,
404 			 struct pid *pid, struct task_struct *task)
405 {
406 	struct mm_struct *mm = mm_access(task, PTRACE_MODE_READ);
407 	if (mm && !IS_ERR(mm)) {
408 		unsigned int nwords = 0;
409 		do {
410 			nwords += 2;
411 		} while (mm->saved_auxv[nwords - 2] != 0); /* AT_NULL */
412 		seq_write(m, mm->saved_auxv, nwords * sizeof(mm->saved_auxv[0]));
413 		mmput(mm);
414 		return 0;
415 	} else
416 		return PTR_ERR(mm);
417 }
418 
419 
420 #ifdef CONFIG_KALLSYMS
421 /*
422  * Provides a wchan file via kallsyms in a proper one-value-per-file format.
423  * Returns the resolved symbol.  If that fails, simply return the address.
424  */
425 static int proc_pid_wchan(struct seq_file *m, struct pid_namespace *ns,
426 			  struct pid *pid, struct task_struct *task)
427 {
428 	unsigned long wchan;
429 	char symname[KSYM_NAME_LEN];
430 
431 	wchan = get_wchan(task);
432 
433 	if (wchan && ptrace_may_access(task, PTRACE_MODE_READ) && !lookup_symbol_name(wchan, symname))
434 		seq_printf(m, "%s", symname);
435 	else
436 		seq_putc(m, '0');
437 
438 	return 0;
439 }
440 #endif /* CONFIG_KALLSYMS */
441 
442 static int lock_trace(struct task_struct *task)
443 {
444 	int err = mutex_lock_killable(&task->signal->cred_guard_mutex);
445 	if (err)
446 		return err;
447 	if (!ptrace_may_access(task, PTRACE_MODE_ATTACH)) {
448 		mutex_unlock(&task->signal->cred_guard_mutex);
449 		return -EPERM;
450 	}
451 	return 0;
452 }
453 
454 static void unlock_trace(struct task_struct *task)
455 {
456 	mutex_unlock(&task->signal->cred_guard_mutex);
457 }
458 
459 #ifdef CONFIG_STACKTRACE
460 
461 #define MAX_STACK_TRACE_DEPTH	64
462 
463 static int proc_pid_stack(struct seq_file *m, struct pid_namespace *ns,
464 			  struct pid *pid, struct task_struct *task)
465 {
466 	struct stack_trace trace;
467 	unsigned long *entries;
468 	int err;
469 	int i;
470 
471 	entries = kmalloc(MAX_STACK_TRACE_DEPTH * sizeof(*entries), GFP_KERNEL);
472 	if (!entries)
473 		return -ENOMEM;
474 
475 	trace.nr_entries	= 0;
476 	trace.max_entries	= MAX_STACK_TRACE_DEPTH;
477 	trace.entries		= entries;
478 	trace.skip		= 0;
479 
480 	err = lock_trace(task);
481 	if (!err) {
482 		save_stack_trace_tsk(task, &trace);
483 
484 		for (i = 0; i < trace.nr_entries; i++) {
485 			seq_printf(m, "[<%pK>] %pS\n",
486 				   (void *)entries[i], (void *)entries[i]);
487 		}
488 		unlock_trace(task);
489 	}
490 	kfree(entries);
491 
492 	return err;
493 }
494 #endif
495 
496 #ifdef CONFIG_SCHED_INFO
497 /*
498  * Provides /proc/PID/schedstat
499  */
500 static int proc_pid_schedstat(struct seq_file *m, struct pid_namespace *ns,
501 			      struct pid *pid, struct task_struct *task)
502 {
503 	if (unlikely(!sched_info_on()))
504 		seq_printf(m, "0 0 0\n");
505 	else
506 		seq_printf(m, "%llu %llu %lu\n",
507 		   (unsigned long long)task->se.sum_exec_runtime,
508 		   (unsigned long long)task->sched_info.run_delay,
509 		   task->sched_info.pcount);
510 
511 	return 0;
512 }
513 #endif
514 
515 #ifdef CONFIG_LATENCYTOP
516 static int lstats_show_proc(struct seq_file *m, void *v)
517 {
518 	int i;
519 	struct inode *inode = m->private;
520 	struct task_struct *task = get_proc_task(inode);
521 
522 	if (!task)
523 		return -ESRCH;
524 	seq_puts(m, "Latency Top version : v0.1\n");
525 	for (i = 0; i < 32; i++) {
526 		struct latency_record *lr = &task->latency_record[i];
527 		if (lr->backtrace[0]) {
528 			int q;
529 			seq_printf(m, "%i %li %li",
530 				   lr->count, lr->time, lr->max);
531 			for (q = 0; q < LT_BACKTRACEDEPTH; q++) {
532 				unsigned long bt = lr->backtrace[q];
533 				if (!bt)
534 					break;
535 				if (bt == ULONG_MAX)
536 					break;
537 				seq_printf(m, " %ps", (void *)bt);
538 			}
539 			seq_putc(m, '\n');
540 		}
541 
542 	}
543 	put_task_struct(task);
544 	return 0;
545 }
546 
547 static int lstats_open(struct inode *inode, struct file *file)
548 {
549 	return single_open(file, lstats_show_proc, inode);
550 }
551 
552 static ssize_t lstats_write(struct file *file, const char __user *buf,
553 			    size_t count, loff_t *offs)
554 {
555 	struct task_struct *task = get_proc_task(file_inode(file));
556 
557 	if (!task)
558 		return -ESRCH;
559 	clear_all_latency_tracing(task);
560 	put_task_struct(task);
561 
562 	return count;
563 }
564 
565 static const struct file_operations proc_lstats_operations = {
566 	.open		= lstats_open,
567 	.read		= seq_read,
568 	.write		= lstats_write,
569 	.llseek		= seq_lseek,
570 	.release	= single_release,
571 };
572 
573 #endif
574 
575 static int proc_oom_score(struct seq_file *m, struct pid_namespace *ns,
576 			  struct pid *pid, struct task_struct *task)
577 {
578 	unsigned long totalpages = totalram_pages + total_swap_pages;
579 	unsigned long points = 0;
580 
581 	read_lock(&tasklist_lock);
582 	if (pid_alive(task))
583 		points = oom_badness(task, NULL, NULL, totalpages) *
584 						1000 / totalpages;
585 	read_unlock(&tasklist_lock);
586 	seq_printf(m, "%lu\n", points);
587 
588 	return 0;
589 }
590 
591 struct limit_names {
592 	const char *name;
593 	const char *unit;
594 };
595 
596 static const struct limit_names lnames[RLIM_NLIMITS] = {
597 	[RLIMIT_CPU] = {"Max cpu time", "seconds"},
598 	[RLIMIT_FSIZE] = {"Max file size", "bytes"},
599 	[RLIMIT_DATA] = {"Max data size", "bytes"},
600 	[RLIMIT_STACK] = {"Max stack size", "bytes"},
601 	[RLIMIT_CORE] = {"Max core file size", "bytes"},
602 	[RLIMIT_RSS] = {"Max resident set", "bytes"},
603 	[RLIMIT_NPROC] = {"Max processes", "processes"},
604 	[RLIMIT_NOFILE] = {"Max open files", "files"},
605 	[RLIMIT_MEMLOCK] = {"Max locked memory", "bytes"},
606 	[RLIMIT_AS] = {"Max address space", "bytes"},
607 	[RLIMIT_LOCKS] = {"Max file locks", "locks"},
608 	[RLIMIT_SIGPENDING] = {"Max pending signals", "signals"},
609 	[RLIMIT_MSGQUEUE] = {"Max msgqueue size", "bytes"},
610 	[RLIMIT_NICE] = {"Max nice priority", NULL},
611 	[RLIMIT_RTPRIO] = {"Max realtime priority", NULL},
612 	[RLIMIT_RTTIME] = {"Max realtime timeout", "us"},
613 };
614 
615 /* Display limits for a process */
616 static int proc_pid_limits(struct seq_file *m, struct pid_namespace *ns,
617 			   struct pid *pid, struct task_struct *task)
618 {
619 	unsigned int i;
620 	unsigned long flags;
621 
622 	struct rlimit rlim[RLIM_NLIMITS];
623 
624 	if (!lock_task_sighand(task, &flags))
625 		return 0;
626 	memcpy(rlim, task->signal->rlim, sizeof(struct rlimit) * RLIM_NLIMITS);
627 	unlock_task_sighand(task, &flags);
628 
629 	/*
630 	 * print the file header
631 	 */
632        seq_printf(m, "%-25s %-20s %-20s %-10s\n",
633 		  "Limit", "Soft Limit", "Hard Limit", "Units");
634 
635 	for (i = 0; i < RLIM_NLIMITS; i++) {
636 		if (rlim[i].rlim_cur == RLIM_INFINITY)
637 			seq_printf(m, "%-25s %-20s ",
638 				   lnames[i].name, "unlimited");
639 		else
640 			seq_printf(m, "%-25s %-20lu ",
641 				   lnames[i].name, rlim[i].rlim_cur);
642 
643 		if (rlim[i].rlim_max == RLIM_INFINITY)
644 			seq_printf(m, "%-20s ", "unlimited");
645 		else
646 			seq_printf(m, "%-20lu ", rlim[i].rlim_max);
647 
648 		if (lnames[i].unit)
649 			seq_printf(m, "%-10s\n", lnames[i].unit);
650 		else
651 			seq_putc(m, '\n');
652 	}
653 
654 	return 0;
655 }
656 
657 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK
658 static int proc_pid_syscall(struct seq_file *m, struct pid_namespace *ns,
659 			    struct pid *pid, struct task_struct *task)
660 {
661 	long nr;
662 	unsigned long args[6], sp, pc;
663 	int res;
664 
665 	res = lock_trace(task);
666 	if (res)
667 		return res;
668 
669 	if (task_current_syscall(task, &nr, args, 6, &sp, &pc))
670 		seq_puts(m, "running\n");
671 	else if (nr < 0)
672 		seq_printf(m, "%ld 0x%lx 0x%lx\n", nr, sp, pc);
673 	else
674 		seq_printf(m,
675 		       "%ld 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx\n",
676 		       nr,
677 		       args[0], args[1], args[2], args[3], args[4], args[5],
678 		       sp, pc);
679 	unlock_trace(task);
680 
681 	return 0;
682 }
683 #endif /* CONFIG_HAVE_ARCH_TRACEHOOK */
684 
685 /************************************************************************/
686 /*                       Here the fs part begins                        */
687 /************************************************************************/
688 
689 /* permission checks */
690 static int proc_fd_access_allowed(struct inode *inode)
691 {
692 	struct task_struct *task;
693 	int allowed = 0;
694 	/* Allow access to a task's file descriptors if it is us or we
695 	 * may use ptrace attach to the process and find out that
696 	 * information.
697 	 */
698 	task = get_proc_task(inode);
699 	if (task) {
700 		allowed = ptrace_may_access(task, PTRACE_MODE_READ);
701 		put_task_struct(task);
702 	}
703 	return allowed;
704 }
705 
706 int proc_setattr(struct dentry *dentry, struct iattr *attr)
707 {
708 	int error;
709 	struct inode *inode = d_inode(dentry);
710 
711 	if (attr->ia_valid & ATTR_MODE)
712 		return -EPERM;
713 
714 	error = inode_change_ok(inode, attr);
715 	if (error)
716 		return error;
717 
718 	setattr_copy(inode, attr);
719 	mark_inode_dirty(inode);
720 	return 0;
721 }
722 
723 /*
724  * May current process learn task's sched/cmdline info (for hide_pid_min=1)
725  * or euid/egid (for hide_pid_min=2)?
726  */
727 static bool has_pid_permissions(struct pid_namespace *pid,
728 				 struct task_struct *task,
729 				 int hide_pid_min)
730 {
731 	if (pid->hide_pid < hide_pid_min)
732 		return true;
733 	if (in_group_p(pid->pid_gid))
734 		return true;
735 	return ptrace_may_access(task, PTRACE_MODE_READ);
736 }
737 
738 
739 static int proc_pid_permission(struct inode *inode, int mask)
740 {
741 	struct pid_namespace *pid = inode->i_sb->s_fs_info;
742 	struct task_struct *task;
743 	bool has_perms;
744 
745 	task = get_proc_task(inode);
746 	if (!task)
747 		return -ESRCH;
748 	has_perms = has_pid_permissions(pid, task, 1);
749 	put_task_struct(task);
750 
751 	if (!has_perms) {
752 		if (pid->hide_pid == 2) {
753 			/*
754 			 * Let's make getdents(), stat(), and open()
755 			 * consistent with each other.  If a process
756 			 * may not stat() a file, it shouldn't be seen
757 			 * in procfs at all.
758 			 */
759 			return -ENOENT;
760 		}
761 
762 		return -EPERM;
763 	}
764 	return generic_permission(inode, mask);
765 }
766 
767 
768 
769 static const struct inode_operations proc_def_inode_operations = {
770 	.setattr	= proc_setattr,
771 };
772 
773 static int proc_single_show(struct seq_file *m, void *v)
774 {
775 	struct inode *inode = m->private;
776 	struct pid_namespace *ns;
777 	struct pid *pid;
778 	struct task_struct *task;
779 	int ret;
780 
781 	ns = inode->i_sb->s_fs_info;
782 	pid = proc_pid(inode);
783 	task = get_pid_task(pid, PIDTYPE_PID);
784 	if (!task)
785 		return -ESRCH;
786 
787 	ret = PROC_I(inode)->op.proc_show(m, ns, pid, task);
788 
789 	put_task_struct(task);
790 	return ret;
791 }
792 
793 static int proc_single_open(struct inode *inode, struct file *filp)
794 {
795 	return single_open(filp, proc_single_show, inode);
796 }
797 
798 static const struct file_operations proc_single_file_operations = {
799 	.open		= proc_single_open,
800 	.read		= seq_read,
801 	.llseek		= seq_lseek,
802 	.release	= single_release,
803 };
804 
805 
806 struct mm_struct *proc_mem_open(struct inode *inode, unsigned int mode)
807 {
808 	struct task_struct *task = get_proc_task(inode);
809 	struct mm_struct *mm = ERR_PTR(-ESRCH);
810 
811 	if (task) {
812 		mm = mm_access(task, mode);
813 		put_task_struct(task);
814 
815 		if (!IS_ERR_OR_NULL(mm)) {
816 			/* ensure this mm_struct can't be freed */
817 			atomic_inc(&mm->mm_count);
818 			/* but do not pin its memory */
819 			mmput(mm);
820 		}
821 	}
822 
823 	return mm;
824 }
825 
826 static int __mem_open(struct inode *inode, struct file *file, unsigned int mode)
827 {
828 	struct mm_struct *mm = proc_mem_open(inode, mode);
829 
830 	if (IS_ERR(mm))
831 		return PTR_ERR(mm);
832 
833 	file->private_data = mm;
834 	return 0;
835 }
836 
837 static int mem_open(struct inode *inode, struct file *file)
838 {
839 	int ret = __mem_open(inode, file, PTRACE_MODE_ATTACH);
840 
841 	/* OK to pass negative loff_t, we can catch out-of-range */
842 	file->f_mode |= FMODE_UNSIGNED_OFFSET;
843 
844 	return ret;
845 }
846 
847 static ssize_t mem_rw(struct file *file, char __user *buf,
848 			size_t count, loff_t *ppos, int write)
849 {
850 	struct mm_struct *mm = file->private_data;
851 	unsigned long addr = *ppos;
852 	ssize_t copied;
853 	char *page;
854 
855 	if (!mm)
856 		return 0;
857 
858 	page = (char *)__get_free_page(GFP_TEMPORARY);
859 	if (!page)
860 		return -ENOMEM;
861 
862 	copied = 0;
863 	if (!atomic_inc_not_zero(&mm->mm_users))
864 		goto free;
865 
866 	while (count > 0) {
867 		int this_len = min_t(int, count, PAGE_SIZE);
868 
869 		if (write && copy_from_user(page, buf, this_len)) {
870 			copied = -EFAULT;
871 			break;
872 		}
873 
874 		this_len = access_remote_vm(mm, addr, page, this_len, write);
875 		if (!this_len) {
876 			if (!copied)
877 				copied = -EIO;
878 			break;
879 		}
880 
881 		if (!write && copy_to_user(buf, page, this_len)) {
882 			copied = -EFAULT;
883 			break;
884 		}
885 
886 		buf += this_len;
887 		addr += this_len;
888 		copied += this_len;
889 		count -= this_len;
890 	}
891 	*ppos = addr;
892 
893 	mmput(mm);
894 free:
895 	free_page((unsigned long) page);
896 	return copied;
897 }
898 
899 static ssize_t mem_read(struct file *file, char __user *buf,
900 			size_t count, loff_t *ppos)
901 {
902 	return mem_rw(file, buf, count, ppos, 0);
903 }
904 
905 static ssize_t mem_write(struct file *file, const char __user *buf,
906 			 size_t count, loff_t *ppos)
907 {
908 	return mem_rw(file, (char __user*)buf, count, ppos, 1);
909 }
910 
911 loff_t mem_lseek(struct file *file, loff_t offset, int orig)
912 {
913 	switch (orig) {
914 	case 0:
915 		file->f_pos = offset;
916 		break;
917 	case 1:
918 		file->f_pos += offset;
919 		break;
920 	default:
921 		return -EINVAL;
922 	}
923 	force_successful_syscall_return();
924 	return file->f_pos;
925 }
926 
927 static int mem_release(struct inode *inode, struct file *file)
928 {
929 	struct mm_struct *mm = file->private_data;
930 	if (mm)
931 		mmdrop(mm);
932 	return 0;
933 }
934 
935 static const struct file_operations proc_mem_operations = {
936 	.llseek		= mem_lseek,
937 	.read		= mem_read,
938 	.write		= mem_write,
939 	.open		= mem_open,
940 	.release	= mem_release,
941 };
942 
943 static int environ_open(struct inode *inode, struct file *file)
944 {
945 	return __mem_open(inode, file, PTRACE_MODE_READ);
946 }
947 
948 static ssize_t environ_read(struct file *file, char __user *buf,
949 			size_t count, loff_t *ppos)
950 {
951 	char *page;
952 	unsigned long src = *ppos;
953 	int ret = 0;
954 	struct mm_struct *mm = file->private_data;
955 
956 	if (!mm)
957 		return 0;
958 
959 	page = (char *)__get_free_page(GFP_TEMPORARY);
960 	if (!page)
961 		return -ENOMEM;
962 
963 	ret = 0;
964 	if (!atomic_inc_not_zero(&mm->mm_users))
965 		goto free;
966 	while (count > 0) {
967 		size_t this_len, max_len;
968 		int retval;
969 
970 		if (src >= (mm->env_end - mm->env_start))
971 			break;
972 
973 		this_len = mm->env_end - (mm->env_start + src);
974 
975 		max_len = min_t(size_t, PAGE_SIZE, count);
976 		this_len = min(max_len, this_len);
977 
978 		retval = access_remote_vm(mm, (mm->env_start + src),
979 			page, this_len, 0);
980 
981 		if (retval <= 0) {
982 			ret = retval;
983 			break;
984 		}
985 
986 		if (copy_to_user(buf, page, retval)) {
987 			ret = -EFAULT;
988 			break;
989 		}
990 
991 		ret += retval;
992 		src += retval;
993 		buf += retval;
994 		count -= retval;
995 	}
996 	*ppos = src;
997 	mmput(mm);
998 
999 free:
1000 	free_page((unsigned long) page);
1001 	return ret;
1002 }
1003 
1004 static const struct file_operations proc_environ_operations = {
1005 	.open		= environ_open,
1006 	.read		= environ_read,
1007 	.llseek		= generic_file_llseek,
1008 	.release	= mem_release,
1009 };
1010 
1011 static ssize_t oom_adj_read(struct file *file, char __user *buf, size_t count,
1012 			    loff_t *ppos)
1013 {
1014 	struct task_struct *task = get_proc_task(file_inode(file));
1015 	char buffer[PROC_NUMBUF];
1016 	int oom_adj = OOM_ADJUST_MIN;
1017 	size_t len;
1018 	unsigned long flags;
1019 
1020 	if (!task)
1021 		return -ESRCH;
1022 	if (lock_task_sighand(task, &flags)) {
1023 		if (task->signal->oom_score_adj == OOM_SCORE_ADJ_MAX)
1024 			oom_adj = OOM_ADJUST_MAX;
1025 		else
1026 			oom_adj = (task->signal->oom_score_adj * -OOM_DISABLE) /
1027 				  OOM_SCORE_ADJ_MAX;
1028 		unlock_task_sighand(task, &flags);
1029 	}
1030 	put_task_struct(task);
1031 	len = snprintf(buffer, sizeof(buffer), "%d\n", oom_adj);
1032 	return simple_read_from_buffer(buf, count, ppos, buffer, len);
1033 }
1034 
1035 /*
1036  * /proc/pid/oom_adj exists solely for backwards compatibility with previous
1037  * kernels.  The effective policy is defined by oom_score_adj, which has a
1038  * different scale: oom_adj grew exponentially and oom_score_adj grows linearly.
1039  * Values written to oom_adj are simply mapped linearly to oom_score_adj.
1040  * Processes that become oom disabled via oom_adj will still be oom disabled
1041  * with this implementation.
1042  *
1043  * oom_adj cannot be removed since existing userspace binaries use it.
1044  */
1045 static ssize_t oom_adj_write(struct file *file, const char __user *buf,
1046 			     size_t count, loff_t *ppos)
1047 {
1048 	struct task_struct *task;
1049 	char buffer[PROC_NUMBUF];
1050 	int oom_adj;
1051 	unsigned long flags;
1052 	int err;
1053 
1054 	memset(buffer, 0, sizeof(buffer));
1055 	if (count > sizeof(buffer) - 1)
1056 		count = sizeof(buffer) - 1;
1057 	if (copy_from_user(buffer, buf, count)) {
1058 		err = -EFAULT;
1059 		goto out;
1060 	}
1061 
1062 	err = kstrtoint(strstrip(buffer), 0, &oom_adj);
1063 	if (err)
1064 		goto out;
1065 	if ((oom_adj < OOM_ADJUST_MIN || oom_adj > OOM_ADJUST_MAX) &&
1066 	     oom_adj != OOM_DISABLE) {
1067 		err = -EINVAL;
1068 		goto out;
1069 	}
1070 
1071 	task = get_proc_task(file_inode(file));
1072 	if (!task) {
1073 		err = -ESRCH;
1074 		goto out;
1075 	}
1076 
1077 	task_lock(task);
1078 	if (!task->mm) {
1079 		err = -EINVAL;
1080 		goto err_task_lock;
1081 	}
1082 
1083 	if (!lock_task_sighand(task, &flags)) {
1084 		err = -ESRCH;
1085 		goto err_task_lock;
1086 	}
1087 
1088 	/*
1089 	 * Scale /proc/pid/oom_score_adj appropriately ensuring that a maximum
1090 	 * value is always attainable.
1091 	 */
1092 	if (oom_adj == OOM_ADJUST_MAX)
1093 		oom_adj = OOM_SCORE_ADJ_MAX;
1094 	else
1095 		oom_adj = (oom_adj * OOM_SCORE_ADJ_MAX) / -OOM_DISABLE;
1096 
1097 	if (oom_adj < task->signal->oom_score_adj &&
1098 	    !capable(CAP_SYS_RESOURCE)) {
1099 		err = -EACCES;
1100 		goto err_sighand;
1101 	}
1102 
1103 	/*
1104 	 * /proc/pid/oom_adj is provided for legacy purposes, ask users to use
1105 	 * /proc/pid/oom_score_adj instead.
1106 	 */
1107 	pr_warn_once("%s (%d): /proc/%d/oom_adj is deprecated, please use /proc/%d/oom_score_adj instead.\n",
1108 		  current->comm, task_pid_nr(current), task_pid_nr(task),
1109 		  task_pid_nr(task));
1110 
1111 	task->signal->oom_score_adj = oom_adj;
1112 	trace_oom_score_adj_update(task);
1113 err_sighand:
1114 	unlock_task_sighand(task, &flags);
1115 err_task_lock:
1116 	task_unlock(task);
1117 	put_task_struct(task);
1118 out:
1119 	return err < 0 ? err : count;
1120 }
1121 
1122 static const struct file_operations proc_oom_adj_operations = {
1123 	.read		= oom_adj_read,
1124 	.write		= oom_adj_write,
1125 	.llseek		= generic_file_llseek,
1126 };
1127 
1128 static ssize_t oom_score_adj_read(struct file *file, char __user *buf,
1129 					size_t count, loff_t *ppos)
1130 {
1131 	struct task_struct *task = get_proc_task(file_inode(file));
1132 	char buffer[PROC_NUMBUF];
1133 	short oom_score_adj = OOM_SCORE_ADJ_MIN;
1134 	unsigned long flags;
1135 	size_t len;
1136 
1137 	if (!task)
1138 		return -ESRCH;
1139 	if (lock_task_sighand(task, &flags)) {
1140 		oom_score_adj = task->signal->oom_score_adj;
1141 		unlock_task_sighand(task, &flags);
1142 	}
1143 	put_task_struct(task);
1144 	len = snprintf(buffer, sizeof(buffer), "%hd\n", oom_score_adj);
1145 	return simple_read_from_buffer(buf, count, ppos, buffer, len);
1146 }
1147 
1148 static ssize_t oom_score_adj_write(struct file *file, const char __user *buf,
1149 					size_t count, loff_t *ppos)
1150 {
1151 	struct task_struct *task;
1152 	char buffer[PROC_NUMBUF];
1153 	unsigned long flags;
1154 	int oom_score_adj;
1155 	int err;
1156 
1157 	memset(buffer, 0, sizeof(buffer));
1158 	if (count > sizeof(buffer) - 1)
1159 		count = sizeof(buffer) - 1;
1160 	if (copy_from_user(buffer, buf, count)) {
1161 		err = -EFAULT;
1162 		goto out;
1163 	}
1164 
1165 	err = kstrtoint(strstrip(buffer), 0, &oom_score_adj);
1166 	if (err)
1167 		goto out;
1168 	if (oom_score_adj < OOM_SCORE_ADJ_MIN ||
1169 			oom_score_adj > OOM_SCORE_ADJ_MAX) {
1170 		err = -EINVAL;
1171 		goto out;
1172 	}
1173 
1174 	task = get_proc_task(file_inode(file));
1175 	if (!task) {
1176 		err = -ESRCH;
1177 		goto out;
1178 	}
1179 
1180 	task_lock(task);
1181 	if (!task->mm) {
1182 		err = -EINVAL;
1183 		goto err_task_lock;
1184 	}
1185 
1186 	if (!lock_task_sighand(task, &flags)) {
1187 		err = -ESRCH;
1188 		goto err_task_lock;
1189 	}
1190 
1191 	if ((short)oom_score_adj < task->signal->oom_score_adj_min &&
1192 			!capable(CAP_SYS_RESOURCE)) {
1193 		err = -EACCES;
1194 		goto err_sighand;
1195 	}
1196 
1197 	task->signal->oom_score_adj = (short)oom_score_adj;
1198 	if (has_capability_noaudit(current, CAP_SYS_RESOURCE))
1199 		task->signal->oom_score_adj_min = (short)oom_score_adj;
1200 	trace_oom_score_adj_update(task);
1201 
1202 err_sighand:
1203 	unlock_task_sighand(task, &flags);
1204 err_task_lock:
1205 	task_unlock(task);
1206 	put_task_struct(task);
1207 out:
1208 	return err < 0 ? err : count;
1209 }
1210 
1211 static const struct file_operations proc_oom_score_adj_operations = {
1212 	.read		= oom_score_adj_read,
1213 	.write		= oom_score_adj_write,
1214 	.llseek		= default_llseek,
1215 };
1216 
1217 #ifdef CONFIG_AUDITSYSCALL
1218 #define TMPBUFLEN 21
1219 static ssize_t proc_loginuid_read(struct file * file, char __user * buf,
1220 				  size_t count, loff_t *ppos)
1221 {
1222 	struct inode * inode = file_inode(file);
1223 	struct task_struct *task = get_proc_task(inode);
1224 	ssize_t length;
1225 	char tmpbuf[TMPBUFLEN];
1226 
1227 	if (!task)
1228 		return -ESRCH;
1229 	length = scnprintf(tmpbuf, TMPBUFLEN, "%u",
1230 			   from_kuid(file->f_cred->user_ns,
1231 				     audit_get_loginuid(task)));
1232 	put_task_struct(task);
1233 	return simple_read_from_buffer(buf, count, ppos, tmpbuf, length);
1234 }
1235 
1236 static ssize_t proc_loginuid_write(struct file * file, const char __user * buf,
1237 				   size_t count, loff_t *ppos)
1238 {
1239 	struct inode * inode = file_inode(file);
1240 	uid_t loginuid;
1241 	kuid_t kloginuid;
1242 	int rv;
1243 
1244 	rcu_read_lock();
1245 	if (current != pid_task(proc_pid(inode), PIDTYPE_PID)) {
1246 		rcu_read_unlock();
1247 		return -EPERM;
1248 	}
1249 	rcu_read_unlock();
1250 
1251 	if (*ppos != 0) {
1252 		/* No partial writes. */
1253 		return -EINVAL;
1254 	}
1255 
1256 	rv = kstrtou32_from_user(buf, count, 10, &loginuid);
1257 	if (rv < 0)
1258 		return rv;
1259 
1260 	/* is userspace tring to explicitly UNSET the loginuid? */
1261 	if (loginuid == AUDIT_UID_UNSET) {
1262 		kloginuid = INVALID_UID;
1263 	} else {
1264 		kloginuid = make_kuid(file->f_cred->user_ns, loginuid);
1265 		if (!uid_valid(kloginuid))
1266 			return -EINVAL;
1267 	}
1268 
1269 	rv = audit_set_loginuid(kloginuid);
1270 	if (rv < 0)
1271 		return rv;
1272 	return count;
1273 }
1274 
1275 static const struct file_operations proc_loginuid_operations = {
1276 	.read		= proc_loginuid_read,
1277 	.write		= proc_loginuid_write,
1278 	.llseek		= generic_file_llseek,
1279 };
1280 
1281 static ssize_t proc_sessionid_read(struct file * file, char __user * buf,
1282 				  size_t count, loff_t *ppos)
1283 {
1284 	struct inode * inode = file_inode(file);
1285 	struct task_struct *task = get_proc_task(inode);
1286 	ssize_t length;
1287 	char tmpbuf[TMPBUFLEN];
1288 
1289 	if (!task)
1290 		return -ESRCH;
1291 	length = scnprintf(tmpbuf, TMPBUFLEN, "%u",
1292 				audit_get_sessionid(task));
1293 	put_task_struct(task);
1294 	return simple_read_from_buffer(buf, count, ppos, tmpbuf, length);
1295 }
1296 
1297 static const struct file_operations proc_sessionid_operations = {
1298 	.read		= proc_sessionid_read,
1299 	.llseek		= generic_file_llseek,
1300 };
1301 #endif
1302 
1303 #ifdef CONFIG_FAULT_INJECTION
1304 static ssize_t proc_fault_inject_read(struct file * file, char __user * buf,
1305 				      size_t count, loff_t *ppos)
1306 {
1307 	struct task_struct *task = get_proc_task(file_inode(file));
1308 	char buffer[PROC_NUMBUF];
1309 	size_t len;
1310 	int make_it_fail;
1311 
1312 	if (!task)
1313 		return -ESRCH;
1314 	make_it_fail = task->make_it_fail;
1315 	put_task_struct(task);
1316 
1317 	len = snprintf(buffer, sizeof(buffer), "%i\n", make_it_fail);
1318 
1319 	return simple_read_from_buffer(buf, count, ppos, buffer, len);
1320 }
1321 
1322 static ssize_t proc_fault_inject_write(struct file * file,
1323 			const char __user * buf, size_t count, loff_t *ppos)
1324 {
1325 	struct task_struct *task;
1326 	char buffer[PROC_NUMBUF];
1327 	int make_it_fail;
1328 	int rv;
1329 
1330 	if (!capable(CAP_SYS_RESOURCE))
1331 		return -EPERM;
1332 	memset(buffer, 0, sizeof(buffer));
1333 	if (count > sizeof(buffer) - 1)
1334 		count = sizeof(buffer) - 1;
1335 	if (copy_from_user(buffer, buf, count))
1336 		return -EFAULT;
1337 	rv = kstrtoint(strstrip(buffer), 0, &make_it_fail);
1338 	if (rv < 0)
1339 		return rv;
1340 	if (make_it_fail < 0 || make_it_fail > 1)
1341 		return -EINVAL;
1342 
1343 	task = get_proc_task(file_inode(file));
1344 	if (!task)
1345 		return -ESRCH;
1346 	task->make_it_fail = make_it_fail;
1347 	put_task_struct(task);
1348 
1349 	return count;
1350 }
1351 
1352 static const struct file_operations proc_fault_inject_operations = {
1353 	.read		= proc_fault_inject_read,
1354 	.write		= proc_fault_inject_write,
1355 	.llseek		= generic_file_llseek,
1356 };
1357 #endif
1358 
1359 
1360 #ifdef CONFIG_SCHED_DEBUG
1361 /*
1362  * Print out various scheduling related per-task fields:
1363  */
1364 static int sched_show(struct seq_file *m, void *v)
1365 {
1366 	struct inode *inode = m->private;
1367 	struct task_struct *p;
1368 
1369 	p = get_proc_task(inode);
1370 	if (!p)
1371 		return -ESRCH;
1372 	proc_sched_show_task(p, m);
1373 
1374 	put_task_struct(p);
1375 
1376 	return 0;
1377 }
1378 
1379 static ssize_t
1380 sched_write(struct file *file, const char __user *buf,
1381 	    size_t count, loff_t *offset)
1382 {
1383 	struct inode *inode = file_inode(file);
1384 	struct task_struct *p;
1385 
1386 	p = get_proc_task(inode);
1387 	if (!p)
1388 		return -ESRCH;
1389 	proc_sched_set_task(p);
1390 
1391 	put_task_struct(p);
1392 
1393 	return count;
1394 }
1395 
1396 static int sched_open(struct inode *inode, struct file *filp)
1397 {
1398 	return single_open(filp, sched_show, inode);
1399 }
1400 
1401 static const struct file_operations proc_pid_sched_operations = {
1402 	.open		= sched_open,
1403 	.read		= seq_read,
1404 	.write		= sched_write,
1405 	.llseek		= seq_lseek,
1406 	.release	= single_release,
1407 };
1408 
1409 #endif
1410 
1411 #ifdef CONFIG_SCHED_AUTOGROUP
1412 /*
1413  * Print out autogroup related information:
1414  */
1415 static int sched_autogroup_show(struct seq_file *m, void *v)
1416 {
1417 	struct inode *inode = m->private;
1418 	struct task_struct *p;
1419 
1420 	p = get_proc_task(inode);
1421 	if (!p)
1422 		return -ESRCH;
1423 	proc_sched_autogroup_show_task(p, m);
1424 
1425 	put_task_struct(p);
1426 
1427 	return 0;
1428 }
1429 
1430 static ssize_t
1431 sched_autogroup_write(struct file *file, const char __user *buf,
1432 	    size_t count, loff_t *offset)
1433 {
1434 	struct inode *inode = file_inode(file);
1435 	struct task_struct *p;
1436 	char buffer[PROC_NUMBUF];
1437 	int nice;
1438 	int err;
1439 
1440 	memset(buffer, 0, sizeof(buffer));
1441 	if (count > sizeof(buffer) - 1)
1442 		count = sizeof(buffer) - 1;
1443 	if (copy_from_user(buffer, buf, count))
1444 		return -EFAULT;
1445 
1446 	err = kstrtoint(strstrip(buffer), 0, &nice);
1447 	if (err < 0)
1448 		return err;
1449 
1450 	p = get_proc_task(inode);
1451 	if (!p)
1452 		return -ESRCH;
1453 
1454 	err = proc_sched_autogroup_set_nice(p, nice);
1455 	if (err)
1456 		count = err;
1457 
1458 	put_task_struct(p);
1459 
1460 	return count;
1461 }
1462 
1463 static int sched_autogroup_open(struct inode *inode, struct file *filp)
1464 {
1465 	int ret;
1466 
1467 	ret = single_open(filp, sched_autogroup_show, NULL);
1468 	if (!ret) {
1469 		struct seq_file *m = filp->private_data;
1470 
1471 		m->private = inode;
1472 	}
1473 	return ret;
1474 }
1475 
1476 static const struct file_operations proc_pid_sched_autogroup_operations = {
1477 	.open		= sched_autogroup_open,
1478 	.read		= seq_read,
1479 	.write		= sched_autogroup_write,
1480 	.llseek		= seq_lseek,
1481 	.release	= single_release,
1482 };
1483 
1484 #endif /* CONFIG_SCHED_AUTOGROUP */
1485 
1486 static ssize_t comm_write(struct file *file, const char __user *buf,
1487 				size_t count, loff_t *offset)
1488 {
1489 	struct inode *inode = file_inode(file);
1490 	struct task_struct *p;
1491 	char buffer[TASK_COMM_LEN];
1492 	const size_t maxlen = sizeof(buffer) - 1;
1493 
1494 	memset(buffer, 0, sizeof(buffer));
1495 	if (copy_from_user(buffer, buf, count > maxlen ? maxlen : count))
1496 		return -EFAULT;
1497 
1498 	p = get_proc_task(inode);
1499 	if (!p)
1500 		return -ESRCH;
1501 
1502 	if (same_thread_group(current, p))
1503 		set_task_comm(p, buffer);
1504 	else
1505 		count = -EINVAL;
1506 
1507 	put_task_struct(p);
1508 
1509 	return count;
1510 }
1511 
1512 static int comm_show(struct seq_file *m, void *v)
1513 {
1514 	struct inode *inode = m->private;
1515 	struct task_struct *p;
1516 
1517 	p = get_proc_task(inode);
1518 	if (!p)
1519 		return -ESRCH;
1520 
1521 	task_lock(p);
1522 	seq_printf(m, "%s\n", p->comm);
1523 	task_unlock(p);
1524 
1525 	put_task_struct(p);
1526 
1527 	return 0;
1528 }
1529 
1530 static int comm_open(struct inode *inode, struct file *filp)
1531 {
1532 	return single_open(filp, comm_show, inode);
1533 }
1534 
1535 static const struct file_operations proc_pid_set_comm_operations = {
1536 	.open		= comm_open,
1537 	.read		= seq_read,
1538 	.write		= comm_write,
1539 	.llseek		= seq_lseek,
1540 	.release	= single_release,
1541 };
1542 
1543 static int proc_exe_link(struct dentry *dentry, struct path *exe_path)
1544 {
1545 	struct task_struct *task;
1546 	struct mm_struct *mm;
1547 	struct file *exe_file;
1548 
1549 	task = get_proc_task(d_inode(dentry));
1550 	if (!task)
1551 		return -ENOENT;
1552 	mm = get_task_mm(task);
1553 	put_task_struct(task);
1554 	if (!mm)
1555 		return -ENOENT;
1556 	exe_file = get_mm_exe_file(mm);
1557 	mmput(mm);
1558 	if (exe_file) {
1559 		*exe_path = exe_file->f_path;
1560 		path_get(&exe_file->f_path);
1561 		fput(exe_file);
1562 		return 0;
1563 	} else
1564 		return -ENOENT;
1565 }
1566 
1567 static const char *proc_pid_follow_link(struct dentry *dentry, void **cookie)
1568 {
1569 	struct inode *inode = d_inode(dentry);
1570 	struct path path;
1571 	int error = -EACCES;
1572 
1573 	/* Are we allowed to snoop on the tasks file descriptors? */
1574 	if (!proc_fd_access_allowed(inode))
1575 		goto out;
1576 
1577 	error = PROC_I(inode)->op.proc_get_link(dentry, &path);
1578 	if (error)
1579 		goto out;
1580 
1581 	nd_jump_link(&path);
1582 	return NULL;
1583 out:
1584 	return ERR_PTR(error);
1585 }
1586 
1587 static int do_proc_readlink(struct path *path, char __user *buffer, int buflen)
1588 {
1589 	char *tmp = (char*)__get_free_page(GFP_TEMPORARY);
1590 	char *pathname;
1591 	int len;
1592 
1593 	if (!tmp)
1594 		return -ENOMEM;
1595 
1596 	pathname = d_path(path, tmp, PAGE_SIZE);
1597 	len = PTR_ERR(pathname);
1598 	if (IS_ERR(pathname))
1599 		goto out;
1600 	len = tmp + PAGE_SIZE - 1 - pathname;
1601 
1602 	if (len > buflen)
1603 		len = buflen;
1604 	if (copy_to_user(buffer, pathname, len))
1605 		len = -EFAULT;
1606  out:
1607 	free_page((unsigned long)tmp);
1608 	return len;
1609 }
1610 
1611 static int proc_pid_readlink(struct dentry * dentry, char __user * buffer, int buflen)
1612 {
1613 	int error = -EACCES;
1614 	struct inode *inode = d_inode(dentry);
1615 	struct path path;
1616 
1617 	/* Are we allowed to snoop on the tasks file descriptors? */
1618 	if (!proc_fd_access_allowed(inode))
1619 		goto out;
1620 
1621 	error = PROC_I(inode)->op.proc_get_link(dentry, &path);
1622 	if (error)
1623 		goto out;
1624 
1625 	error = do_proc_readlink(&path, buffer, buflen);
1626 	path_put(&path);
1627 out:
1628 	return error;
1629 }
1630 
1631 const struct inode_operations proc_pid_link_inode_operations = {
1632 	.readlink	= proc_pid_readlink,
1633 	.follow_link	= proc_pid_follow_link,
1634 	.setattr	= proc_setattr,
1635 };
1636 
1637 
1638 /* building an inode */
1639 
1640 struct inode *proc_pid_make_inode(struct super_block * sb, struct task_struct *task)
1641 {
1642 	struct inode * inode;
1643 	struct proc_inode *ei;
1644 	const struct cred *cred;
1645 
1646 	/* We need a new inode */
1647 
1648 	inode = new_inode(sb);
1649 	if (!inode)
1650 		goto out;
1651 
1652 	/* Common stuff */
1653 	ei = PROC_I(inode);
1654 	inode->i_ino = get_next_ino();
1655 	inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
1656 	inode->i_op = &proc_def_inode_operations;
1657 
1658 	/*
1659 	 * grab the reference to task.
1660 	 */
1661 	ei->pid = get_task_pid(task, PIDTYPE_PID);
1662 	if (!ei->pid)
1663 		goto out_unlock;
1664 
1665 	if (task_dumpable(task)) {
1666 		rcu_read_lock();
1667 		cred = __task_cred(task);
1668 		inode->i_uid = cred->euid;
1669 		inode->i_gid = cred->egid;
1670 		rcu_read_unlock();
1671 	}
1672 	security_task_to_inode(task, inode);
1673 
1674 out:
1675 	return inode;
1676 
1677 out_unlock:
1678 	iput(inode);
1679 	return NULL;
1680 }
1681 
1682 int pid_getattr(struct vfsmount *mnt, struct dentry *dentry, struct kstat *stat)
1683 {
1684 	struct inode *inode = d_inode(dentry);
1685 	struct task_struct *task;
1686 	const struct cred *cred;
1687 	struct pid_namespace *pid = dentry->d_sb->s_fs_info;
1688 
1689 	generic_fillattr(inode, stat);
1690 
1691 	rcu_read_lock();
1692 	stat->uid = GLOBAL_ROOT_UID;
1693 	stat->gid = GLOBAL_ROOT_GID;
1694 	task = pid_task(proc_pid(inode), PIDTYPE_PID);
1695 	if (task) {
1696 		if (!has_pid_permissions(pid, task, 2)) {
1697 			rcu_read_unlock();
1698 			/*
1699 			 * This doesn't prevent learning whether PID exists,
1700 			 * it only makes getattr() consistent with readdir().
1701 			 */
1702 			return -ENOENT;
1703 		}
1704 		if ((inode->i_mode == (S_IFDIR|S_IRUGO|S_IXUGO)) ||
1705 		    task_dumpable(task)) {
1706 			cred = __task_cred(task);
1707 			stat->uid = cred->euid;
1708 			stat->gid = cred->egid;
1709 		}
1710 	}
1711 	rcu_read_unlock();
1712 	return 0;
1713 }
1714 
1715 /* dentry stuff */
1716 
1717 /*
1718  *	Exceptional case: normally we are not allowed to unhash a busy
1719  * directory. In this case, however, we can do it - no aliasing problems
1720  * due to the way we treat inodes.
1721  *
1722  * Rewrite the inode's ownerships here because the owning task may have
1723  * performed a setuid(), etc.
1724  *
1725  * Before the /proc/pid/status file was created the only way to read
1726  * the effective uid of a /process was to stat /proc/pid.  Reading
1727  * /proc/pid/status is slow enough that procps and other packages
1728  * kept stating /proc/pid.  To keep the rules in /proc simple I have
1729  * made this apply to all per process world readable and executable
1730  * directories.
1731  */
1732 int pid_revalidate(struct dentry *dentry, unsigned int flags)
1733 {
1734 	struct inode *inode;
1735 	struct task_struct *task;
1736 	const struct cred *cred;
1737 
1738 	if (flags & LOOKUP_RCU)
1739 		return -ECHILD;
1740 
1741 	inode = d_inode(dentry);
1742 	task = get_proc_task(inode);
1743 
1744 	if (task) {
1745 		if ((inode->i_mode == (S_IFDIR|S_IRUGO|S_IXUGO)) ||
1746 		    task_dumpable(task)) {
1747 			rcu_read_lock();
1748 			cred = __task_cred(task);
1749 			inode->i_uid = cred->euid;
1750 			inode->i_gid = cred->egid;
1751 			rcu_read_unlock();
1752 		} else {
1753 			inode->i_uid = GLOBAL_ROOT_UID;
1754 			inode->i_gid = GLOBAL_ROOT_GID;
1755 		}
1756 		inode->i_mode &= ~(S_ISUID | S_ISGID);
1757 		security_task_to_inode(task, inode);
1758 		put_task_struct(task);
1759 		return 1;
1760 	}
1761 	return 0;
1762 }
1763 
1764 static inline bool proc_inode_is_dead(struct inode *inode)
1765 {
1766 	return !proc_pid(inode)->tasks[PIDTYPE_PID].first;
1767 }
1768 
1769 int pid_delete_dentry(const struct dentry *dentry)
1770 {
1771 	/* Is the task we represent dead?
1772 	 * If so, then don't put the dentry on the lru list,
1773 	 * kill it immediately.
1774 	 */
1775 	return proc_inode_is_dead(d_inode(dentry));
1776 }
1777 
1778 const struct dentry_operations pid_dentry_operations =
1779 {
1780 	.d_revalidate	= pid_revalidate,
1781 	.d_delete	= pid_delete_dentry,
1782 };
1783 
1784 /* Lookups */
1785 
1786 /*
1787  * Fill a directory entry.
1788  *
1789  * If possible create the dcache entry and derive our inode number and
1790  * file type from dcache entry.
1791  *
1792  * Since all of the proc inode numbers are dynamically generated, the inode
1793  * numbers do not exist until the inode is cache.  This means creating the
1794  * the dcache entry in readdir is necessary to keep the inode numbers
1795  * reported by readdir in sync with the inode numbers reported
1796  * by stat.
1797  */
1798 bool proc_fill_cache(struct file *file, struct dir_context *ctx,
1799 	const char *name, int len,
1800 	instantiate_t instantiate, struct task_struct *task, const void *ptr)
1801 {
1802 	struct dentry *child, *dir = file->f_path.dentry;
1803 	struct qstr qname = QSTR_INIT(name, len);
1804 	struct inode *inode;
1805 	unsigned type;
1806 	ino_t ino;
1807 
1808 	child = d_hash_and_lookup(dir, &qname);
1809 	if (!child) {
1810 		child = d_alloc(dir, &qname);
1811 		if (!child)
1812 			goto end_instantiate;
1813 		if (instantiate(d_inode(dir), child, task, ptr) < 0) {
1814 			dput(child);
1815 			goto end_instantiate;
1816 		}
1817 	}
1818 	inode = d_inode(child);
1819 	ino = inode->i_ino;
1820 	type = inode->i_mode >> 12;
1821 	dput(child);
1822 	return dir_emit(ctx, name, len, ino, type);
1823 
1824 end_instantiate:
1825 	return dir_emit(ctx, name, len, 1, DT_UNKNOWN);
1826 }
1827 
1828 /*
1829  * dname_to_vma_addr - maps a dentry name into two unsigned longs
1830  * which represent vma start and end addresses.
1831  */
1832 static int dname_to_vma_addr(struct dentry *dentry,
1833 			     unsigned long *start, unsigned long *end)
1834 {
1835 	if (sscanf(dentry->d_name.name, "%lx-%lx", start, end) != 2)
1836 		return -EINVAL;
1837 
1838 	return 0;
1839 }
1840 
1841 static int map_files_d_revalidate(struct dentry *dentry, unsigned int flags)
1842 {
1843 	unsigned long vm_start, vm_end;
1844 	bool exact_vma_exists = false;
1845 	struct mm_struct *mm = NULL;
1846 	struct task_struct *task;
1847 	const struct cred *cred;
1848 	struct inode *inode;
1849 	int status = 0;
1850 
1851 	if (flags & LOOKUP_RCU)
1852 		return -ECHILD;
1853 
1854 	inode = d_inode(dentry);
1855 	task = get_proc_task(inode);
1856 	if (!task)
1857 		goto out_notask;
1858 
1859 	mm = mm_access(task, PTRACE_MODE_READ);
1860 	if (IS_ERR_OR_NULL(mm))
1861 		goto out;
1862 
1863 	if (!dname_to_vma_addr(dentry, &vm_start, &vm_end)) {
1864 		down_read(&mm->mmap_sem);
1865 		exact_vma_exists = !!find_exact_vma(mm, vm_start, vm_end);
1866 		up_read(&mm->mmap_sem);
1867 	}
1868 
1869 	mmput(mm);
1870 
1871 	if (exact_vma_exists) {
1872 		if (task_dumpable(task)) {
1873 			rcu_read_lock();
1874 			cred = __task_cred(task);
1875 			inode->i_uid = cred->euid;
1876 			inode->i_gid = cred->egid;
1877 			rcu_read_unlock();
1878 		} else {
1879 			inode->i_uid = GLOBAL_ROOT_UID;
1880 			inode->i_gid = GLOBAL_ROOT_GID;
1881 		}
1882 		security_task_to_inode(task, inode);
1883 		status = 1;
1884 	}
1885 
1886 out:
1887 	put_task_struct(task);
1888 
1889 out_notask:
1890 	return status;
1891 }
1892 
1893 static const struct dentry_operations tid_map_files_dentry_operations = {
1894 	.d_revalidate	= map_files_d_revalidate,
1895 	.d_delete	= pid_delete_dentry,
1896 };
1897 
1898 static int proc_map_files_get_link(struct dentry *dentry, struct path *path)
1899 {
1900 	unsigned long vm_start, vm_end;
1901 	struct vm_area_struct *vma;
1902 	struct task_struct *task;
1903 	struct mm_struct *mm;
1904 	int rc;
1905 
1906 	rc = -ENOENT;
1907 	task = get_proc_task(d_inode(dentry));
1908 	if (!task)
1909 		goto out;
1910 
1911 	mm = get_task_mm(task);
1912 	put_task_struct(task);
1913 	if (!mm)
1914 		goto out;
1915 
1916 	rc = dname_to_vma_addr(dentry, &vm_start, &vm_end);
1917 	if (rc)
1918 		goto out_mmput;
1919 
1920 	rc = -ENOENT;
1921 	down_read(&mm->mmap_sem);
1922 	vma = find_exact_vma(mm, vm_start, vm_end);
1923 	if (vma && vma->vm_file) {
1924 		*path = vma->vm_file->f_path;
1925 		path_get(path);
1926 		rc = 0;
1927 	}
1928 	up_read(&mm->mmap_sem);
1929 
1930 out_mmput:
1931 	mmput(mm);
1932 out:
1933 	return rc;
1934 }
1935 
1936 struct map_files_info {
1937 	fmode_t		mode;
1938 	unsigned long	len;
1939 	unsigned char	name[4*sizeof(long)+2]; /* max: %lx-%lx\0 */
1940 };
1941 
1942 /*
1943  * Only allow CAP_SYS_ADMIN to follow the links, due to concerns about how the
1944  * symlinks may be used to bypass permissions on ancestor directories in the
1945  * path to the file in question.
1946  */
1947 static const char *
1948 proc_map_files_follow_link(struct dentry *dentry, void **cookie)
1949 {
1950 	if (!capable(CAP_SYS_ADMIN))
1951 		return ERR_PTR(-EPERM);
1952 
1953 	return proc_pid_follow_link(dentry, NULL);
1954 }
1955 
1956 /*
1957  * Identical to proc_pid_link_inode_operations except for follow_link()
1958  */
1959 static const struct inode_operations proc_map_files_link_inode_operations = {
1960 	.readlink	= proc_pid_readlink,
1961 	.follow_link	= proc_map_files_follow_link,
1962 	.setattr	= proc_setattr,
1963 };
1964 
1965 static int
1966 proc_map_files_instantiate(struct inode *dir, struct dentry *dentry,
1967 			   struct task_struct *task, const void *ptr)
1968 {
1969 	fmode_t mode = (fmode_t)(unsigned long)ptr;
1970 	struct proc_inode *ei;
1971 	struct inode *inode;
1972 
1973 	inode = proc_pid_make_inode(dir->i_sb, task);
1974 	if (!inode)
1975 		return -ENOENT;
1976 
1977 	ei = PROC_I(inode);
1978 	ei->op.proc_get_link = proc_map_files_get_link;
1979 
1980 	inode->i_op = &proc_map_files_link_inode_operations;
1981 	inode->i_size = 64;
1982 	inode->i_mode = S_IFLNK;
1983 
1984 	if (mode & FMODE_READ)
1985 		inode->i_mode |= S_IRUSR;
1986 	if (mode & FMODE_WRITE)
1987 		inode->i_mode |= S_IWUSR;
1988 
1989 	d_set_d_op(dentry, &tid_map_files_dentry_operations);
1990 	d_add(dentry, inode);
1991 
1992 	return 0;
1993 }
1994 
1995 static struct dentry *proc_map_files_lookup(struct inode *dir,
1996 		struct dentry *dentry, unsigned int flags)
1997 {
1998 	unsigned long vm_start, vm_end;
1999 	struct vm_area_struct *vma;
2000 	struct task_struct *task;
2001 	int result;
2002 	struct mm_struct *mm;
2003 
2004 	result = -ENOENT;
2005 	task = get_proc_task(dir);
2006 	if (!task)
2007 		goto out;
2008 
2009 	result = -EACCES;
2010 	if (!ptrace_may_access(task, PTRACE_MODE_READ))
2011 		goto out_put_task;
2012 
2013 	result = -ENOENT;
2014 	if (dname_to_vma_addr(dentry, &vm_start, &vm_end))
2015 		goto out_put_task;
2016 
2017 	mm = get_task_mm(task);
2018 	if (!mm)
2019 		goto out_put_task;
2020 
2021 	down_read(&mm->mmap_sem);
2022 	vma = find_exact_vma(mm, vm_start, vm_end);
2023 	if (!vma)
2024 		goto out_no_vma;
2025 
2026 	if (vma->vm_file)
2027 		result = proc_map_files_instantiate(dir, dentry, task,
2028 				(void *)(unsigned long)vma->vm_file->f_mode);
2029 
2030 out_no_vma:
2031 	up_read(&mm->mmap_sem);
2032 	mmput(mm);
2033 out_put_task:
2034 	put_task_struct(task);
2035 out:
2036 	return ERR_PTR(result);
2037 }
2038 
2039 static const struct inode_operations proc_map_files_inode_operations = {
2040 	.lookup		= proc_map_files_lookup,
2041 	.permission	= proc_fd_permission,
2042 	.setattr	= proc_setattr,
2043 };
2044 
2045 static int
2046 proc_map_files_readdir(struct file *file, struct dir_context *ctx)
2047 {
2048 	struct vm_area_struct *vma;
2049 	struct task_struct *task;
2050 	struct mm_struct *mm;
2051 	unsigned long nr_files, pos, i;
2052 	struct flex_array *fa = NULL;
2053 	struct map_files_info info;
2054 	struct map_files_info *p;
2055 	int ret;
2056 
2057 	ret = -ENOENT;
2058 	task = get_proc_task(file_inode(file));
2059 	if (!task)
2060 		goto out;
2061 
2062 	ret = -EACCES;
2063 	if (!ptrace_may_access(task, PTRACE_MODE_READ))
2064 		goto out_put_task;
2065 
2066 	ret = 0;
2067 	if (!dir_emit_dots(file, ctx))
2068 		goto out_put_task;
2069 
2070 	mm = get_task_mm(task);
2071 	if (!mm)
2072 		goto out_put_task;
2073 	down_read(&mm->mmap_sem);
2074 
2075 	nr_files = 0;
2076 
2077 	/*
2078 	 * We need two passes here:
2079 	 *
2080 	 *  1) Collect vmas of mapped files with mmap_sem taken
2081 	 *  2) Release mmap_sem and instantiate entries
2082 	 *
2083 	 * otherwise we get lockdep complained, since filldir()
2084 	 * routine might require mmap_sem taken in might_fault().
2085 	 */
2086 
2087 	for (vma = mm->mmap, pos = 2; vma; vma = vma->vm_next) {
2088 		if (vma->vm_file && ++pos > ctx->pos)
2089 			nr_files++;
2090 	}
2091 
2092 	if (nr_files) {
2093 		fa = flex_array_alloc(sizeof(info), nr_files,
2094 					GFP_KERNEL);
2095 		if (!fa || flex_array_prealloc(fa, 0, nr_files,
2096 						GFP_KERNEL)) {
2097 			ret = -ENOMEM;
2098 			if (fa)
2099 				flex_array_free(fa);
2100 			up_read(&mm->mmap_sem);
2101 			mmput(mm);
2102 			goto out_put_task;
2103 		}
2104 		for (i = 0, vma = mm->mmap, pos = 2; vma;
2105 				vma = vma->vm_next) {
2106 			if (!vma->vm_file)
2107 				continue;
2108 			if (++pos <= ctx->pos)
2109 				continue;
2110 
2111 			info.mode = vma->vm_file->f_mode;
2112 			info.len = snprintf(info.name,
2113 					sizeof(info.name), "%lx-%lx",
2114 					vma->vm_start, vma->vm_end);
2115 			if (flex_array_put(fa, i++, &info, GFP_KERNEL))
2116 				BUG();
2117 		}
2118 	}
2119 	up_read(&mm->mmap_sem);
2120 
2121 	for (i = 0; i < nr_files; i++) {
2122 		p = flex_array_get(fa, i);
2123 		if (!proc_fill_cache(file, ctx,
2124 				      p->name, p->len,
2125 				      proc_map_files_instantiate,
2126 				      task,
2127 				      (void *)(unsigned long)p->mode))
2128 			break;
2129 		ctx->pos++;
2130 	}
2131 	if (fa)
2132 		flex_array_free(fa);
2133 	mmput(mm);
2134 
2135 out_put_task:
2136 	put_task_struct(task);
2137 out:
2138 	return ret;
2139 }
2140 
2141 static const struct file_operations proc_map_files_operations = {
2142 	.read		= generic_read_dir,
2143 	.iterate	= proc_map_files_readdir,
2144 	.llseek		= default_llseek,
2145 };
2146 
2147 struct timers_private {
2148 	struct pid *pid;
2149 	struct task_struct *task;
2150 	struct sighand_struct *sighand;
2151 	struct pid_namespace *ns;
2152 	unsigned long flags;
2153 };
2154 
2155 static void *timers_start(struct seq_file *m, loff_t *pos)
2156 {
2157 	struct timers_private *tp = m->private;
2158 
2159 	tp->task = get_pid_task(tp->pid, PIDTYPE_PID);
2160 	if (!tp->task)
2161 		return ERR_PTR(-ESRCH);
2162 
2163 	tp->sighand = lock_task_sighand(tp->task, &tp->flags);
2164 	if (!tp->sighand)
2165 		return ERR_PTR(-ESRCH);
2166 
2167 	return seq_list_start(&tp->task->signal->posix_timers, *pos);
2168 }
2169 
2170 static void *timers_next(struct seq_file *m, void *v, loff_t *pos)
2171 {
2172 	struct timers_private *tp = m->private;
2173 	return seq_list_next(v, &tp->task->signal->posix_timers, pos);
2174 }
2175 
2176 static void timers_stop(struct seq_file *m, void *v)
2177 {
2178 	struct timers_private *tp = m->private;
2179 
2180 	if (tp->sighand) {
2181 		unlock_task_sighand(tp->task, &tp->flags);
2182 		tp->sighand = NULL;
2183 	}
2184 
2185 	if (tp->task) {
2186 		put_task_struct(tp->task);
2187 		tp->task = NULL;
2188 	}
2189 }
2190 
2191 static int show_timer(struct seq_file *m, void *v)
2192 {
2193 	struct k_itimer *timer;
2194 	struct timers_private *tp = m->private;
2195 	int notify;
2196 	static const char * const nstr[] = {
2197 		[SIGEV_SIGNAL] = "signal",
2198 		[SIGEV_NONE] = "none",
2199 		[SIGEV_THREAD] = "thread",
2200 	};
2201 
2202 	timer = list_entry((struct list_head *)v, struct k_itimer, list);
2203 	notify = timer->it_sigev_notify;
2204 
2205 	seq_printf(m, "ID: %d\n", timer->it_id);
2206 	seq_printf(m, "signal: %d/%p\n",
2207 		   timer->sigq->info.si_signo,
2208 		   timer->sigq->info.si_value.sival_ptr);
2209 	seq_printf(m, "notify: %s/%s.%d\n",
2210 		   nstr[notify & ~SIGEV_THREAD_ID],
2211 		   (notify & SIGEV_THREAD_ID) ? "tid" : "pid",
2212 		   pid_nr_ns(timer->it_pid, tp->ns));
2213 	seq_printf(m, "ClockID: %d\n", timer->it_clock);
2214 
2215 	return 0;
2216 }
2217 
2218 static const struct seq_operations proc_timers_seq_ops = {
2219 	.start	= timers_start,
2220 	.next	= timers_next,
2221 	.stop	= timers_stop,
2222 	.show	= show_timer,
2223 };
2224 
2225 static int proc_timers_open(struct inode *inode, struct file *file)
2226 {
2227 	struct timers_private *tp;
2228 
2229 	tp = __seq_open_private(file, &proc_timers_seq_ops,
2230 			sizeof(struct timers_private));
2231 	if (!tp)
2232 		return -ENOMEM;
2233 
2234 	tp->pid = proc_pid(inode);
2235 	tp->ns = inode->i_sb->s_fs_info;
2236 	return 0;
2237 }
2238 
2239 static const struct file_operations proc_timers_operations = {
2240 	.open		= proc_timers_open,
2241 	.read		= seq_read,
2242 	.llseek		= seq_lseek,
2243 	.release	= seq_release_private,
2244 };
2245 
2246 static int proc_pident_instantiate(struct inode *dir,
2247 	struct dentry *dentry, struct task_struct *task, const void *ptr)
2248 {
2249 	const struct pid_entry *p = ptr;
2250 	struct inode *inode;
2251 	struct proc_inode *ei;
2252 
2253 	inode = proc_pid_make_inode(dir->i_sb, task);
2254 	if (!inode)
2255 		goto out;
2256 
2257 	ei = PROC_I(inode);
2258 	inode->i_mode = p->mode;
2259 	if (S_ISDIR(inode->i_mode))
2260 		set_nlink(inode, 2);	/* Use getattr to fix if necessary */
2261 	if (p->iop)
2262 		inode->i_op = p->iop;
2263 	if (p->fop)
2264 		inode->i_fop = p->fop;
2265 	ei->op = p->op;
2266 	d_set_d_op(dentry, &pid_dentry_operations);
2267 	d_add(dentry, inode);
2268 	/* Close the race of the process dying before we return the dentry */
2269 	if (pid_revalidate(dentry, 0))
2270 		return 0;
2271 out:
2272 	return -ENOENT;
2273 }
2274 
2275 static struct dentry *proc_pident_lookup(struct inode *dir,
2276 					 struct dentry *dentry,
2277 					 const struct pid_entry *ents,
2278 					 unsigned int nents)
2279 {
2280 	int error;
2281 	struct task_struct *task = get_proc_task(dir);
2282 	const struct pid_entry *p, *last;
2283 
2284 	error = -ENOENT;
2285 
2286 	if (!task)
2287 		goto out_no_task;
2288 
2289 	/*
2290 	 * Yes, it does not scale. And it should not. Don't add
2291 	 * new entries into /proc/<tgid>/ without very good reasons.
2292 	 */
2293 	last = &ents[nents - 1];
2294 	for (p = ents; p <= last; p++) {
2295 		if (p->len != dentry->d_name.len)
2296 			continue;
2297 		if (!memcmp(dentry->d_name.name, p->name, p->len))
2298 			break;
2299 	}
2300 	if (p > last)
2301 		goto out;
2302 
2303 	error = proc_pident_instantiate(dir, dentry, task, p);
2304 out:
2305 	put_task_struct(task);
2306 out_no_task:
2307 	return ERR_PTR(error);
2308 }
2309 
2310 static int proc_pident_readdir(struct file *file, struct dir_context *ctx,
2311 		const struct pid_entry *ents, unsigned int nents)
2312 {
2313 	struct task_struct *task = get_proc_task(file_inode(file));
2314 	const struct pid_entry *p;
2315 
2316 	if (!task)
2317 		return -ENOENT;
2318 
2319 	if (!dir_emit_dots(file, ctx))
2320 		goto out;
2321 
2322 	if (ctx->pos >= nents + 2)
2323 		goto out;
2324 
2325 	for (p = ents + (ctx->pos - 2); p <= ents + nents - 1; p++) {
2326 		if (!proc_fill_cache(file, ctx, p->name, p->len,
2327 				proc_pident_instantiate, task, p))
2328 			break;
2329 		ctx->pos++;
2330 	}
2331 out:
2332 	put_task_struct(task);
2333 	return 0;
2334 }
2335 
2336 #ifdef CONFIG_SECURITY
2337 static ssize_t proc_pid_attr_read(struct file * file, char __user * buf,
2338 				  size_t count, loff_t *ppos)
2339 {
2340 	struct inode * inode = file_inode(file);
2341 	char *p = NULL;
2342 	ssize_t length;
2343 	struct task_struct *task = get_proc_task(inode);
2344 
2345 	if (!task)
2346 		return -ESRCH;
2347 
2348 	length = security_getprocattr(task,
2349 				      (char*)file->f_path.dentry->d_name.name,
2350 				      &p);
2351 	put_task_struct(task);
2352 	if (length > 0)
2353 		length = simple_read_from_buffer(buf, count, ppos, p, length);
2354 	kfree(p);
2355 	return length;
2356 }
2357 
2358 static ssize_t proc_pid_attr_write(struct file * file, const char __user * buf,
2359 				   size_t count, loff_t *ppos)
2360 {
2361 	struct inode * inode = file_inode(file);
2362 	char *page;
2363 	ssize_t length;
2364 	struct task_struct *task = get_proc_task(inode);
2365 
2366 	length = -ESRCH;
2367 	if (!task)
2368 		goto out_no_task;
2369 	if (count > PAGE_SIZE)
2370 		count = PAGE_SIZE;
2371 
2372 	/* No partial writes. */
2373 	length = -EINVAL;
2374 	if (*ppos != 0)
2375 		goto out;
2376 
2377 	length = -ENOMEM;
2378 	page = (char*)__get_free_page(GFP_TEMPORARY);
2379 	if (!page)
2380 		goto out;
2381 
2382 	length = -EFAULT;
2383 	if (copy_from_user(page, buf, count))
2384 		goto out_free;
2385 
2386 	/* Guard against adverse ptrace interaction */
2387 	length = mutex_lock_interruptible(&task->signal->cred_guard_mutex);
2388 	if (length < 0)
2389 		goto out_free;
2390 
2391 	length = security_setprocattr(task,
2392 				      (char*)file->f_path.dentry->d_name.name,
2393 				      (void*)page, count);
2394 	mutex_unlock(&task->signal->cred_guard_mutex);
2395 out_free:
2396 	free_page((unsigned long) page);
2397 out:
2398 	put_task_struct(task);
2399 out_no_task:
2400 	return length;
2401 }
2402 
2403 static const struct file_operations proc_pid_attr_operations = {
2404 	.read		= proc_pid_attr_read,
2405 	.write		= proc_pid_attr_write,
2406 	.llseek		= generic_file_llseek,
2407 };
2408 
2409 static const struct pid_entry attr_dir_stuff[] = {
2410 	REG("current",    S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2411 	REG("prev",       S_IRUGO,	   proc_pid_attr_operations),
2412 	REG("exec",       S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2413 	REG("fscreate",   S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2414 	REG("keycreate",  S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2415 	REG("sockcreate", S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2416 };
2417 
2418 static int proc_attr_dir_readdir(struct file *file, struct dir_context *ctx)
2419 {
2420 	return proc_pident_readdir(file, ctx,
2421 				   attr_dir_stuff, ARRAY_SIZE(attr_dir_stuff));
2422 }
2423 
2424 static const struct file_operations proc_attr_dir_operations = {
2425 	.read		= generic_read_dir,
2426 	.iterate	= proc_attr_dir_readdir,
2427 	.llseek		= default_llseek,
2428 };
2429 
2430 static struct dentry *proc_attr_dir_lookup(struct inode *dir,
2431 				struct dentry *dentry, unsigned int flags)
2432 {
2433 	return proc_pident_lookup(dir, dentry,
2434 				  attr_dir_stuff, ARRAY_SIZE(attr_dir_stuff));
2435 }
2436 
2437 static const struct inode_operations proc_attr_dir_inode_operations = {
2438 	.lookup		= proc_attr_dir_lookup,
2439 	.getattr	= pid_getattr,
2440 	.setattr	= proc_setattr,
2441 };
2442 
2443 #endif
2444 
2445 #ifdef CONFIG_ELF_CORE
2446 static ssize_t proc_coredump_filter_read(struct file *file, char __user *buf,
2447 					 size_t count, loff_t *ppos)
2448 {
2449 	struct task_struct *task = get_proc_task(file_inode(file));
2450 	struct mm_struct *mm;
2451 	char buffer[PROC_NUMBUF];
2452 	size_t len;
2453 	int ret;
2454 
2455 	if (!task)
2456 		return -ESRCH;
2457 
2458 	ret = 0;
2459 	mm = get_task_mm(task);
2460 	if (mm) {
2461 		len = snprintf(buffer, sizeof(buffer), "%08lx\n",
2462 			       ((mm->flags & MMF_DUMP_FILTER_MASK) >>
2463 				MMF_DUMP_FILTER_SHIFT));
2464 		mmput(mm);
2465 		ret = simple_read_from_buffer(buf, count, ppos, buffer, len);
2466 	}
2467 
2468 	put_task_struct(task);
2469 
2470 	return ret;
2471 }
2472 
2473 static ssize_t proc_coredump_filter_write(struct file *file,
2474 					  const char __user *buf,
2475 					  size_t count,
2476 					  loff_t *ppos)
2477 {
2478 	struct task_struct *task;
2479 	struct mm_struct *mm;
2480 	unsigned int val;
2481 	int ret;
2482 	int i;
2483 	unsigned long mask;
2484 
2485 	ret = kstrtouint_from_user(buf, count, 0, &val);
2486 	if (ret < 0)
2487 		return ret;
2488 
2489 	ret = -ESRCH;
2490 	task = get_proc_task(file_inode(file));
2491 	if (!task)
2492 		goto out_no_task;
2493 
2494 	mm = get_task_mm(task);
2495 	if (!mm)
2496 		goto out_no_mm;
2497 
2498 	for (i = 0, mask = 1; i < MMF_DUMP_FILTER_BITS; i++, mask <<= 1) {
2499 		if (val & mask)
2500 			set_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags);
2501 		else
2502 			clear_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags);
2503 	}
2504 
2505 	mmput(mm);
2506  out_no_mm:
2507 	put_task_struct(task);
2508  out_no_task:
2509 	if (ret < 0)
2510 		return ret;
2511 	return count;
2512 }
2513 
2514 static const struct file_operations proc_coredump_filter_operations = {
2515 	.read		= proc_coredump_filter_read,
2516 	.write		= proc_coredump_filter_write,
2517 	.llseek		= generic_file_llseek,
2518 };
2519 #endif
2520 
2521 #ifdef CONFIG_TASK_IO_ACCOUNTING
2522 static int do_io_accounting(struct task_struct *task, struct seq_file *m, int whole)
2523 {
2524 	struct task_io_accounting acct = task->ioac;
2525 	unsigned long flags;
2526 	int result;
2527 
2528 	result = mutex_lock_killable(&task->signal->cred_guard_mutex);
2529 	if (result)
2530 		return result;
2531 
2532 	if (!ptrace_may_access(task, PTRACE_MODE_READ)) {
2533 		result = -EACCES;
2534 		goto out_unlock;
2535 	}
2536 
2537 	if (whole && lock_task_sighand(task, &flags)) {
2538 		struct task_struct *t = task;
2539 
2540 		task_io_accounting_add(&acct, &task->signal->ioac);
2541 		while_each_thread(task, t)
2542 			task_io_accounting_add(&acct, &t->ioac);
2543 
2544 		unlock_task_sighand(task, &flags);
2545 	}
2546 	seq_printf(m,
2547 		   "rchar: %llu\n"
2548 		   "wchar: %llu\n"
2549 		   "syscr: %llu\n"
2550 		   "syscw: %llu\n"
2551 		   "read_bytes: %llu\n"
2552 		   "write_bytes: %llu\n"
2553 		   "cancelled_write_bytes: %llu\n",
2554 		   (unsigned long long)acct.rchar,
2555 		   (unsigned long long)acct.wchar,
2556 		   (unsigned long long)acct.syscr,
2557 		   (unsigned long long)acct.syscw,
2558 		   (unsigned long long)acct.read_bytes,
2559 		   (unsigned long long)acct.write_bytes,
2560 		   (unsigned long long)acct.cancelled_write_bytes);
2561 	result = 0;
2562 
2563 out_unlock:
2564 	mutex_unlock(&task->signal->cred_guard_mutex);
2565 	return result;
2566 }
2567 
2568 static int proc_tid_io_accounting(struct seq_file *m, struct pid_namespace *ns,
2569 				  struct pid *pid, struct task_struct *task)
2570 {
2571 	return do_io_accounting(task, m, 0);
2572 }
2573 
2574 static int proc_tgid_io_accounting(struct seq_file *m, struct pid_namespace *ns,
2575 				   struct pid *pid, struct task_struct *task)
2576 {
2577 	return do_io_accounting(task, m, 1);
2578 }
2579 #endif /* CONFIG_TASK_IO_ACCOUNTING */
2580 
2581 #ifdef CONFIG_USER_NS
2582 static int proc_id_map_open(struct inode *inode, struct file *file,
2583 	const struct seq_operations *seq_ops)
2584 {
2585 	struct user_namespace *ns = NULL;
2586 	struct task_struct *task;
2587 	struct seq_file *seq;
2588 	int ret = -EINVAL;
2589 
2590 	task = get_proc_task(inode);
2591 	if (task) {
2592 		rcu_read_lock();
2593 		ns = get_user_ns(task_cred_xxx(task, user_ns));
2594 		rcu_read_unlock();
2595 		put_task_struct(task);
2596 	}
2597 	if (!ns)
2598 		goto err;
2599 
2600 	ret = seq_open(file, seq_ops);
2601 	if (ret)
2602 		goto err_put_ns;
2603 
2604 	seq = file->private_data;
2605 	seq->private = ns;
2606 
2607 	return 0;
2608 err_put_ns:
2609 	put_user_ns(ns);
2610 err:
2611 	return ret;
2612 }
2613 
2614 static int proc_id_map_release(struct inode *inode, struct file *file)
2615 {
2616 	struct seq_file *seq = file->private_data;
2617 	struct user_namespace *ns = seq->private;
2618 	put_user_ns(ns);
2619 	return seq_release(inode, file);
2620 }
2621 
2622 static int proc_uid_map_open(struct inode *inode, struct file *file)
2623 {
2624 	return proc_id_map_open(inode, file, &proc_uid_seq_operations);
2625 }
2626 
2627 static int proc_gid_map_open(struct inode *inode, struct file *file)
2628 {
2629 	return proc_id_map_open(inode, file, &proc_gid_seq_operations);
2630 }
2631 
2632 static int proc_projid_map_open(struct inode *inode, struct file *file)
2633 {
2634 	return proc_id_map_open(inode, file, &proc_projid_seq_operations);
2635 }
2636 
2637 static const struct file_operations proc_uid_map_operations = {
2638 	.open		= proc_uid_map_open,
2639 	.write		= proc_uid_map_write,
2640 	.read		= seq_read,
2641 	.llseek		= seq_lseek,
2642 	.release	= proc_id_map_release,
2643 };
2644 
2645 static const struct file_operations proc_gid_map_operations = {
2646 	.open		= proc_gid_map_open,
2647 	.write		= proc_gid_map_write,
2648 	.read		= seq_read,
2649 	.llseek		= seq_lseek,
2650 	.release	= proc_id_map_release,
2651 };
2652 
2653 static const struct file_operations proc_projid_map_operations = {
2654 	.open		= proc_projid_map_open,
2655 	.write		= proc_projid_map_write,
2656 	.read		= seq_read,
2657 	.llseek		= seq_lseek,
2658 	.release	= proc_id_map_release,
2659 };
2660 
2661 static int proc_setgroups_open(struct inode *inode, struct file *file)
2662 {
2663 	struct user_namespace *ns = NULL;
2664 	struct task_struct *task;
2665 	int ret;
2666 
2667 	ret = -ESRCH;
2668 	task = get_proc_task(inode);
2669 	if (task) {
2670 		rcu_read_lock();
2671 		ns = get_user_ns(task_cred_xxx(task, user_ns));
2672 		rcu_read_unlock();
2673 		put_task_struct(task);
2674 	}
2675 	if (!ns)
2676 		goto err;
2677 
2678 	if (file->f_mode & FMODE_WRITE) {
2679 		ret = -EACCES;
2680 		if (!ns_capable(ns, CAP_SYS_ADMIN))
2681 			goto err_put_ns;
2682 	}
2683 
2684 	ret = single_open(file, &proc_setgroups_show, ns);
2685 	if (ret)
2686 		goto err_put_ns;
2687 
2688 	return 0;
2689 err_put_ns:
2690 	put_user_ns(ns);
2691 err:
2692 	return ret;
2693 }
2694 
2695 static int proc_setgroups_release(struct inode *inode, struct file *file)
2696 {
2697 	struct seq_file *seq = file->private_data;
2698 	struct user_namespace *ns = seq->private;
2699 	int ret = single_release(inode, file);
2700 	put_user_ns(ns);
2701 	return ret;
2702 }
2703 
2704 static const struct file_operations proc_setgroups_operations = {
2705 	.open		= proc_setgroups_open,
2706 	.write		= proc_setgroups_write,
2707 	.read		= seq_read,
2708 	.llseek		= seq_lseek,
2709 	.release	= proc_setgroups_release,
2710 };
2711 #endif /* CONFIG_USER_NS */
2712 
2713 static int proc_pid_personality(struct seq_file *m, struct pid_namespace *ns,
2714 				struct pid *pid, struct task_struct *task)
2715 {
2716 	int err = lock_trace(task);
2717 	if (!err) {
2718 		seq_printf(m, "%08x\n", task->personality);
2719 		unlock_trace(task);
2720 	}
2721 	return err;
2722 }
2723 
2724 /*
2725  * Thread groups
2726  */
2727 static const struct file_operations proc_task_operations;
2728 static const struct inode_operations proc_task_inode_operations;
2729 
2730 static const struct pid_entry tgid_base_stuff[] = {
2731 	DIR("task",       S_IRUGO|S_IXUGO, proc_task_inode_operations, proc_task_operations),
2732 	DIR("fd",         S_IRUSR|S_IXUSR, proc_fd_inode_operations, proc_fd_operations),
2733 	DIR("map_files",  S_IRUSR|S_IXUSR, proc_map_files_inode_operations, proc_map_files_operations),
2734 	DIR("fdinfo",     S_IRUSR|S_IXUSR, proc_fdinfo_inode_operations, proc_fdinfo_operations),
2735 	DIR("ns",	  S_IRUSR|S_IXUGO, proc_ns_dir_inode_operations, proc_ns_dir_operations),
2736 #ifdef CONFIG_NET
2737 	DIR("net",        S_IRUGO|S_IXUGO, proc_net_inode_operations, proc_net_operations),
2738 #endif
2739 	REG("environ",    S_IRUSR, proc_environ_operations),
2740 	ONE("auxv",       S_IRUSR, proc_pid_auxv),
2741 	ONE("status",     S_IRUGO, proc_pid_status),
2742 	ONE("personality", S_IRUSR, proc_pid_personality),
2743 	ONE("limits",	  S_IRUGO, proc_pid_limits),
2744 #ifdef CONFIG_SCHED_DEBUG
2745 	REG("sched",      S_IRUGO|S_IWUSR, proc_pid_sched_operations),
2746 #endif
2747 #ifdef CONFIG_SCHED_AUTOGROUP
2748 	REG("autogroup",  S_IRUGO|S_IWUSR, proc_pid_sched_autogroup_operations),
2749 #endif
2750 	REG("comm",      S_IRUGO|S_IWUSR, proc_pid_set_comm_operations),
2751 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK
2752 	ONE("syscall",    S_IRUSR, proc_pid_syscall),
2753 #endif
2754 	REG("cmdline",    S_IRUGO, proc_pid_cmdline_ops),
2755 	ONE("stat",       S_IRUGO, proc_tgid_stat),
2756 	ONE("statm",      S_IRUGO, proc_pid_statm),
2757 	REG("maps",       S_IRUGO, proc_pid_maps_operations),
2758 #ifdef CONFIG_NUMA
2759 	REG("numa_maps",  S_IRUGO, proc_pid_numa_maps_operations),
2760 #endif
2761 	REG("mem",        S_IRUSR|S_IWUSR, proc_mem_operations),
2762 	LNK("cwd",        proc_cwd_link),
2763 	LNK("root",       proc_root_link),
2764 	LNK("exe",        proc_exe_link),
2765 	REG("mounts",     S_IRUGO, proc_mounts_operations),
2766 	REG("mountinfo",  S_IRUGO, proc_mountinfo_operations),
2767 	REG("mountstats", S_IRUSR, proc_mountstats_operations),
2768 #ifdef CONFIG_PROC_PAGE_MONITOR
2769 	REG("clear_refs", S_IWUSR, proc_clear_refs_operations),
2770 	REG("smaps",      S_IRUGO, proc_pid_smaps_operations),
2771 	REG("pagemap",    S_IRUSR, proc_pagemap_operations),
2772 #endif
2773 #ifdef CONFIG_SECURITY
2774 	DIR("attr",       S_IRUGO|S_IXUGO, proc_attr_dir_inode_operations, proc_attr_dir_operations),
2775 #endif
2776 #ifdef CONFIG_KALLSYMS
2777 	ONE("wchan",      S_IRUGO, proc_pid_wchan),
2778 #endif
2779 #ifdef CONFIG_STACKTRACE
2780 	ONE("stack",      S_IRUSR, proc_pid_stack),
2781 #endif
2782 #ifdef CONFIG_SCHED_INFO
2783 	ONE("schedstat",  S_IRUGO, proc_pid_schedstat),
2784 #endif
2785 #ifdef CONFIG_LATENCYTOP
2786 	REG("latency",  S_IRUGO, proc_lstats_operations),
2787 #endif
2788 #ifdef CONFIG_PROC_PID_CPUSET
2789 	ONE("cpuset",     S_IRUGO, proc_cpuset_show),
2790 #endif
2791 #ifdef CONFIG_CGROUPS
2792 	ONE("cgroup",  S_IRUGO, proc_cgroup_show),
2793 #endif
2794 	ONE("oom_score",  S_IRUGO, proc_oom_score),
2795 	REG("oom_adj",    S_IRUGO|S_IWUSR, proc_oom_adj_operations),
2796 	REG("oom_score_adj", S_IRUGO|S_IWUSR, proc_oom_score_adj_operations),
2797 #ifdef CONFIG_AUDITSYSCALL
2798 	REG("loginuid",   S_IWUSR|S_IRUGO, proc_loginuid_operations),
2799 	REG("sessionid",  S_IRUGO, proc_sessionid_operations),
2800 #endif
2801 #ifdef CONFIG_FAULT_INJECTION
2802 	REG("make-it-fail", S_IRUGO|S_IWUSR, proc_fault_inject_operations),
2803 #endif
2804 #ifdef CONFIG_ELF_CORE
2805 	REG("coredump_filter", S_IRUGO|S_IWUSR, proc_coredump_filter_operations),
2806 #endif
2807 #ifdef CONFIG_TASK_IO_ACCOUNTING
2808 	ONE("io",	S_IRUSR, proc_tgid_io_accounting),
2809 #endif
2810 #ifdef CONFIG_HARDWALL
2811 	ONE("hardwall",   S_IRUGO, proc_pid_hardwall),
2812 #endif
2813 #ifdef CONFIG_USER_NS
2814 	REG("uid_map",    S_IRUGO|S_IWUSR, proc_uid_map_operations),
2815 	REG("gid_map",    S_IRUGO|S_IWUSR, proc_gid_map_operations),
2816 	REG("projid_map", S_IRUGO|S_IWUSR, proc_projid_map_operations),
2817 	REG("setgroups",  S_IRUGO|S_IWUSR, proc_setgroups_operations),
2818 #endif
2819 #ifdef CONFIG_CHECKPOINT_RESTORE
2820 	REG("timers",	  S_IRUGO, proc_timers_operations),
2821 #endif
2822 };
2823 
2824 static int proc_tgid_base_readdir(struct file *file, struct dir_context *ctx)
2825 {
2826 	return proc_pident_readdir(file, ctx,
2827 				   tgid_base_stuff, ARRAY_SIZE(tgid_base_stuff));
2828 }
2829 
2830 static const struct file_operations proc_tgid_base_operations = {
2831 	.read		= generic_read_dir,
2832 	.iterate	= proc_tgid_base_readdir,
2833 	.llseek		= default_llseek,
2834 };
2835 
2836 static struct dentry *proc_tgid_base_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
2837 {
2838 	return proc_pident_lookup(dir, dentry,
2839 				  tgid_base_stuff, ARRAY_SIZE(tgid_base_stuff));
2840 }
2841 
2842 static const struct inode_operations proc_tgid_base_inode_operations = {
2843 	.lookup		= proc_tgid_base_lookup,
2844 	.getattr	= pid_getattr,
2845 	.setattr	= proc_setattr,
2846 	.permission	= proc_pid_permission,
2847 };
2848 
2849 static void proc_flush_task_mnt(struct vfsmount *mnt, pid_t pid, pid_t tgid)
2850 {
2851 	struct dentry *dentry, *leader, *dir;
2852 	char buf[PROC_NUMBUF];
2853 	struct qstr name;
2854 
2855 	name.name = buf;
2856 	name.len = snprintf(buf, sizeof(buf), "%d", pid);
2857 	/* no ->d_hash() rejects on procfs */
2858 	dentry = d_hash_and_lookup(mnt->mnt_root, &name);
2859 	if (dentry) {
2860 		d_invalidate(dentry);
2861 		dput(dentry);
2862 	}
2863 
2864 	if (pid == tgid)
2865 		return;
2866 
2867 	name.name = buf;
2868 	name.len = snprintf(buf, sizeof(buf), "%d", tgid);
2869 	leader = d_hash_and_lookup(mnt->mnt_root, &name);
2870 	if (!leader)
2871 		goto out;
2872 
2873 	name.name = "task";
2874 	name.len = strlen(name.name);
2875 	dir = d_hash_and_lookup(leader, &name);
2876 	if (!dir)
2877 		goto out_put_leader;
2878 
2879 	name.name = buf;
2880 	name.len = snprintf(buf, sizeof(buf), "%d", pid);
2881 	dentry = d_hash_and_lookup(dir, &name);
2882 	if (dentry) {
2883 		d_invalidate(dentry);
2884 		dput(dentry);
2885 	}
2886 
2887 	dput(dir);
2888 out_put_leader:
2889 	dput(leader);
2890 out:
2891 	return;
2892 }
2893 
2894 /**
2895  * proc_flush_task -  Remove dcache entries for @task from the /proc dcache.
2896  * @task: task that should be flushed.
2897  *
2898  * When flushing dentries from proc, one needs to flush them from global
2899  * proc (proc_mnt) and from all the namespaces' procs this task was seen
2900  * in. This call is supposed to do all of this job.
2901  *
2902  * Looks in the dcache for
2903  * /proc/@pid
2904  * /proc/@tgid/task/@pid
2905  * if either directory is present flushes it and all of it'ts children
2906  * from the dcache.
2907  *
2908  * It is safe and reasonable to cache /proc entries for a task until
2909  * that task exits.  After that they just clog up the dcache with
2910  * useless entries, possibly causing useful dcache entries to be
2911  * flushed instead.  This routine is proved to flush those useless
2912  * dcache entries at process exit time.
2913  *
2914  * NOTE: This routine is just an optimization so it does not guarantee
2915  *       that no dcache entries will exist at process exit time it
2916  *       just makes it very unlikely that any will persist.
2917  */
2918 
2919 void proc_flush_task(struct task_struct *task)
2920 {
2921 	int i;
2922 	struct pid *pid, *tgid;
2923 	struct upid *upid;
2924 
2925 	pid = task_pid(task);
2926 	tgid = task_tgid(task);
2927 
2928 	for (i = 0; i <= pid->level; i++) {
2929 		upid = &pid->numbers[i];
2930 		proc_flush_task_mnt(upid->ns->proc_mnt, upid->nr,
2931 					tgid->numbers[i].nr);
2932 	}
2933 }
2934 
2935 static int proc_pid_instantiate(struct inode *dir,
2936 				   struct dentry * dentry,
2937 				   struct task_struct *task, const void *ptr)
2938 {
2939 	struct inode *inode;
2940 
2941 	inode = proc_pid_make_inode(dir->i_sb, task);
2942 	if (!inode)
2943 		goto out;
2944 
2945 	inode->i_mode = S_IFDIR|S_IRUGO|S_IXUGO;
2946 	inode->i_op = &proc_tgid_base_inode_operations;
2947 	inode->i_fop = &proc_tgid_base_operations;
2948 	inode->i_flags|=S_IMMUTABLE;
2949 
2950 	set_nlink(inode, 2 + pid_entry_count_dirs(tgid_base_stuff,
2951 						  ARRAY_SIZE(tgid_base_stuff)));
2952 
2953 	d_set_d_op(dentry, &pid_dentry_operations);
2954 
2955 	d_add(dentry, inode);
2956 	/* Close the race of the process dying before we return the dentry */
2957 	if (pid_revalidate(dentry, 0))
2958 		return 0;
2959 out:
2960 	return -ENOENT;
2961 }
2962 
2963 struct dentry *proc_pid_lookup(struct inode *dir, struct dentry * dentry, unsigned int flags)
2964 {
2965 	int result = -ENOENT;
2966 	struct task_struct *task;
2967 	unsigned tgid;
2968 	struct pid_namespace *ns;
2969 
2970 	tgid = name_to_int(&dentry->d_name);
2971 	if (tgid == ~0U)
2972 		goto out;
2973 
2974 	ns = dentry->d_sb->s_fs_info;
2975 	rcu_read_lock();
2976 	task = find_task_by_pid_ns(tgid, ns);
2977 	if (task)
2978 		get_task_struct(task);
2979 	rcu_read_unlock();
2980 	if (!task)
2981 		goto out;
2982 
2983 	result = proc_pid_instantiate(dir, dentry, task, NULL);
2984 	put_task_struct(task);
2985 out:
2986 	return ERR_PTR(result);
2987 }
2988 
2989 /*
2990  * Find the first task with tgid >= tgid
2991  *
2992  */
2993 struct tgid_iter {
2994 	unsigned int tgid;
2995 	struct task_struct *task;
2996 };
2997 static struct tgid_iter next_tgid(struct pid_namespace *ns, struct tgid_iter iter)
2998 {
2999 	struct pid *pid;
3000 
3001 	if (iter.task)
3002 		put_task_struct(iter.task);
3003 	rcu_read_lock();
3004 retry:
3005 	iter.task = NULL;
3006 	pid = find_ge_pid(iter.tgid, ns);
3007 	if (pid) {
3008 		iter.tgid = pid_nr_ns(pid, ns);
3009 		iter.task = pid_task(pid, PIDTYPE_PID);
3010 		/* What we to know is if the pid we have find is the
3011 		 * pid of a thread_group_leader.  Testing for task
3012 		 * being a thread_group_leader is the obvious thing
3013 		 * todo but there is a window when it fails, due to
3014 		 * the pid transfer logic in de_thread.
3015 		 *
3016 		 * So we perform the straight forward test of seeing
3017 		 * if the pid we have found is the pid of a thread
3018 		 * group leader, and don't worry if the task we have
3019 		 * found doesn't happen to be a thread group leader.
3020 		 * As we don't care in the case of readdir.
3021 		 */
3022 		if (!iter.task || !has_group_leader_pid(iter.task)) {
3023 			iter.tgid += 1;
3024 			goto retry;
3025 		}
3026 		get_task_struct(iter.task);
3027 	}
3028 	rcu_read_unlock();
3029 	return iter;
3030 }
3031 
3032 #define TGID_OFFSET (FIRST_PROCESS_ENTRY + 2)
3033 
3034 /* for the /proc/ directory itself, after non-process stuff has been done */
3035 int proc_pid_readdir(struct file *file, struct dir_context *ctx)
3036 {
3037 	struct tgid_iter iter;
3038 	struct pid_namespace *ns = file_inode(file)->i_sb->s_fs_info;
3039 	loff_t pos = ctx->pos;
3040 
3041 	if (pos >= PID_MAX_LIMIT + TGID_OFFSET)
3042 		return 0;
3043 
3044 	if (pos == TGID_OFFSET - 2) {
3045 		struct inode *inode = d_inode(ns->proc_self);
3046 		if (!dir_emit(ctx, "self", 4, inode->i_ino, DT_LNK))
3047 			return 0;
3048 		ctx->pos = pos = pos + 1;
3049 	}
3050 	if (pos == TGID_OFFSET - 1) {
3051 		struct inode *inode = d_inode(ns->proc_thread_self);
3052 		if (!dir_emit(ctx, "thread-self", 11, inode->i_ino, DT_LNK))
3053 			return 0;
3054 		ctx->pos = pos = pos + 1;
3055 	}
3056 	iter.tgid = pos - TGID_OFFSET;
3057 	iter.task = NULL;
3058 	for (iter = next_tgid(ns, iter);
3059 	     iter.task;
3060 	     iter.tgid += 1, iter = next_tgid(ns, iter)) {
3061 		char name[PROC_NUMBUF];
3062 		int len;
3063 		if (!has_pid_permissions(ns, iter.task, 2))
3064 			continue;
3065 
3066 		len = snprintf(name, sizeof(name), "%d", iter.tgid);
3067 		ctx->pos = iter.tgid + TGID_OFFSET;
3068 		if (!proc_fill_cache(file, ctx, name, len,
3069 				     proc_pid_instantiate, iter.task, NULL)) {
3070 			put_task_struct(iter.task);
3071 			return 0;
3072 		}
3073 	}
3074 	ctx->pos = PID_MAX_LIMIT + TGID_OFFSET;
3075 	return 0;
3076 }
3077 
3078 /*
3079  * Tasks
3080  */
3081 static const struct pid_entry tid_base_stuff[] = {
3082 	DIR("fd",        S_IRUSR|S_IXUSR, proc_fd_inode_operations, proc_fd_operations),
3083 	DIR("fdinfo",    S_IRUSR|S_IXUSR, proc_fdinfo_inode_operations, proc_fdinfo_operations),
3084 	DIR("ns",	 S_IRUSR|S_IXUGO, proc_ns_dir_inode_operations, proc_ns_dir_operations),
3085 #ifdef CONFIG_NET
3086 	DIR("net",        S_IRUGO|S_IXUGO, proc_net_inode_operations, proc_net_operations),
3087 #endif
3088 	REG("environ",   S_IRUSR, proc_environ_operations),
3089 	ONE("auxv",      S_IRUSR, proc_pid_auxv),
3090 	ONE("status",    S_IRUGO, proc_pid_status),
3091 	ONE("personality", S_IRUSR, proc_pid_personality),
3092 	ONE("limits",	 S_IRUGO, proc_pid_limits),
3093 #ifdef CONFIG_SCHED_DEBUG
3094 	REG("sched",     S_IRUGO|S_IWUSR, proc_pid_sched_operations),
3095 #endif
3096 	REG("comm",      S_IRUGO|S_IWUSR, proc_pid_set_comm_operations),
3097 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK
3098 	ONE("syscall",   S_IRUSR, proc_pid_syscall),
3099 #endif
3100 	REG("cmdline",   S_IRUGO, proc_pid_cmdline_ops),
3101 	ONE("stat",      S_IRUGO, proc_tid_stat),
3102 	ONE("statm",     S_IRUGO, proc_pid_statm),
3103 	REG("maps",      S_IRUGO, proc_tid_maps_operations),
3104 #ifdef CONFIG_PROC_CHILDREN
3105 	REG("children",  S_IRUGO, proc_tid_children_operations),
3106 #endif
3107 #ifdef CONFIG_NUMA
3108 	REG("numa_maps", S_IRUGO, proc_tid_numa_maps_operations),
3109 #endif
3110 	REG("mem",       S_IRUSR|S_IWUSR, proc_mem_operations),
3111 	LNK("cwd",       proc_cwd_link),
3112 	LNK("root",      proc_root_link),
3113 	LNK("exe",       proc_exe_link),
3114 	REG("mounts",    S_IRUGO, proc_mounts_operations),
3115 	REG("mountinfo",  S_IRUGO, proc_mountinfo_operations),
3116 #ifdef CONFIG_PROC_PAGE_MONITOR
3117 	REG("clear_refs", S_IWUSR, proc_clear_refs_operations),
3118 	REG("smaps",     S_IRUGO, proc_tid_smaps_operations),
3119 	REG("pagemap",    S_IRUSR, proc_pagemap_operations),
3120 #endif
3121 #ifdef CONFIG_SECURITY
3122 	DIR("attr",      S_IRUGO|S_IXUGO, proc_attr_dir_inode_operations, proc_attr_dir_operations),
3123 #endif
3124 #ifdef CONFIG_KALLSYMS
3125 	ONE("wchan",     S_IRUGO, proc_pid_wchan),
3126 #endif
3127 #ifdef CONFIG_STACKTRACE
3128 	ONE("stack",      S_IRUSR, proc_pid_stack),
3129 #endif
3130 #ifdef CONFIG_SCHED_INFO
3131 	ONE("schedstat", S_IRUGO, proc_pid_schedstat),
3132 #endif
3133 #ifdef CONFIG_LATENCYTOP
3134 	REG("latency",  S_IRUGO, proc_lstats_operations),
3135 #endif
3136 #ifdef CONFIG_PROC_PID_CPUSET
3137 	ONE("cpuset",    S_IRUGO, proc_cpuset_show),
3138 #endif
3139 #ifdef CONFIG_CGROUPS
3140 	ONE("cgroup",  S_IRUGO, proc_cgroup_show),
3141 #endif
3142 	ONE("oom_score", S_IRUGO, proc_oom_score),
3143 	REG("oom_adj",   S_IRUGO|S_IWUSR, proc_oom_adj_operations),
3144 	REG("oom_score_adj", S_IRUGO|S_IWUSR, proc_oom_score_adj_operations),
3145 #ifdef CONFIG_AUDITSYSCALL
3146 	REG("loginuid",  S_IWUSR|S_IRUGO, proc_loginuid_operations),
3147 	REG("sessionid",  S_IRUGO, proc_sessionid_operations),
3148 #endif
3149 #ifdef CONFIG_FAULT_INJECTION
3150 	REG("make-it-fail", S_IRUGO|S_IWUSR, proc_fault_inject_operations),
3151 #endif
3152 #ifdef CONFIG_TASK_IO_ACCOUNTING
3153 	ONE("io",	S_IRUSR, proc_tid_io_accounting),
3154 #endif
3155 #ifdef CONFIG_HARDWALL
3156 	ONE("hardwall",   S_IRUGO, proc_pid_hardwall),
3157 #endif
3158 #ifdef CONFIG_USER_NS
3159 	REG("uid_map",    S_IRUGO|S_IWUSR, proc_uid_map_operations),
3160 	REG("gid_map",    S_IRUGO|S_IWUSR, proc_gid_map_operations),
3161 	REG("projid_map", S_IRUGO|S_IWUSR, proc_projid_map_operations),
3162 	REG("setgroups",  S_IRUGO|S_IWUSR, proc_setgroups_operations),
3163 #endif
3164 };
3165 
3166 static int proc_tid_base_readdir(struct file *file, struct dir_context *ctx)
3167 {
3168 	return proc_pident_readdir(file, ctx,
3169 				   tid_base_stuff, ARRAY_SIZE(tid_base_stuff));
3170 }
3171 
3172 static struct dentry *proc_tid_base_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
3173 {
3174 	return proc_pident_lookup(dir, dentry,
3175 				  tid_base_stuff, ARRAY_SIZE(tid_base_stuff));
3176 }
3177 
3178 static const struct file_operations proc_tid_base_operations = {
3179 	.read		= generic_read_dir,
3180 	.iterate	= proc_tid_base_readdir,
3181 	.llseek		= default_llseek,
3182 };
3183 
3184 static const struct inode_operations proc_tid_base_inode_operations = {
3185 	.lookup		= proc_tid_base_lookup,
3186 	.getattr	= pid_getattr,
3187 	.setattr	= proc_setattr,
3188 };
3189 
3190 static int proc_task_instantiate(struct inode *dir,
3191 	struct dentry *dentry, struct task_struct *task, const void *ptr)
3192 {
3193 	struct inode *inode;
3194 	inode = proc_pid_make_inode(dir->i_sb, task);
3195 
3196 	if (!inode)
3197 		goto out;
3198 	inode->i_mode = S_IFDIR|S_IRUGO|S_IXUGO;
3199 	inode->i_op = &proc_tid_base_inode_operations;
3200 	inode->i_fop = &proc_tid_base_operations;
3201 	inode->i_flags|=S_IMMUTABLE;
3202 
3203 	set_nlink(inode, 2 + pid_entry_count_dirs(tid_base_stuff,
3204 						  ARRAY_SIZE(tid_base_stuff)));
3205 
3206 	d_set_d_op(dentry, &pid_dentry_operations);
3207 
3208 	d_add(dentry, inode);
3209 	/* Close the race of the process dying before we return the dentry */
3210 	if (pid_revalidate(dentry, 0))
3211 		return 0;
3212 out:
3213 	return -ENOENT;
3214 }
3215 
3216 static struct dentry *proc_task_lookup(struct inode *dir, struct dentry * dentry, unsigned int flags)
3217 {
3218 	int result = -ENOENT;
3219 	struct task_struct *task;
3220 	struct task_struct *leader = get_proc_task(dir);
3221 	unsigned tid;
3222 	struct pid_namespace *ns;
3223 
3224 	if (!leader)
3225 		goto out_no_task;
3226 
3227 	tid = name_to_int(&dentry->d_name);
3228 	if (tid == ~0U)
3229 		goto out;
3230 
3231 	ns = dentry->d_sb->s_fs_info;
3232 	rcu_read_lock();
3233 	task = find_task_by_pid_ns(tid, ns);
3234 	if (task)
3235 		get_task_struct(task);
3236 	rcu_read_unlock();
3237 	if (!task)
3238 		goto out;
3239 	if (!same_thread_group(leader, task))
3240 		goto out_drop_task;
3241 
3242 	result = proc_task_instantiate(dir, dentry, task, NULL);
3243 out_drop_task:
3244 	put_task_struct(task);
3245 out:
3246 	put_task_struct(leader);
3247 out_no_task:
3248 	return ERR_PTR(result);
3249 }
3250 
3251 /*
3252  * Find the first tid of a thread group to return to user space.
3253  *
3254  * Usually this is just the thread group leader, but if the users
3255  * buffer was too small or there was a seek into the middle of the
3256  * directory we have more work todo.
3257  *
3258  * In the case of a short read we start with find_task_by_pid.
3259  *
3260  * In the case of a seek we start with the leader and walk nr
3261  * threads past it.
3262  */
3263 static struct task_struct *first_tid(struct pid *pid, int tid, loff_t f_pos,
3264 					struct pid_namespace *ns)
3265 {
3266 	struct task_struct *pos, *task;
3267 	unsigned long nr = f_pos;
3268 
3269 	if (nr != f_pos)	/* 32bit overflow? */
3270 		return NULL;
3271 
3272 	rcu_read_lock();
3273 	task = pid_task(pid, PIDTYPE_PID);
3274 	if (!task)
3275 		goto fail;
3276 
3277 	/* Attempt to start with the tid of a thread */
3278 	if (tid && nr) {
3279 		pos = find_task_by_pid_ns(tid, ns);
3280 		if (pos && same_thread_group(pos, task))
3281 			goto found;
3282 	}
3283 
3284 	/* If nr exceeds the number of threads there is nothing todo */
3285 	if (nr >= get_nr_threads(task))
3286 		goto fail;
3287 
3288 	/* If we haven't found our starting place yet start
3289 	 * with the leader and walk nr threads forward.
3290 	 */
3291 	pos = task = task->group_leader;
3292 	do {
3293 		if (!nr--)
3294 			goto found;
3295 	} while_each_thread(task, pos);
3296 fail:
3297 	pos = NULL;
3298 	goto out;
3299 found:
3300 	get_task_struct(pos);
3301 out:
3302 	rcu_read_unlock();
3303 	return pos;
3304 }
3305 
3306 /*
3307  * Find the next thread in the thread list.
3308  * Return NULL if there is an error or no next thread.
3309  *
3310  * The reference to the input task_struct is released.
3311  */
3312 static struct task_struct *next_tid(struct task_struct *start)
3313 {
3314 	struct task_struct *pos = NULL;
3315 	rcu_read_lock();
3316 	if (pid_alive(start)) {
3317 		pos = next_thread(start);
3318 		if (thread_group_leader(pos))
3319 			pos = NULL;
3320 		else
3321 			get_task_struct(pos);
3322 	}
3323 	rcu_read_unlock();
3324 	put_task_struct(start);
3325 	return pos;
3326 }
3327 
3328 /* for the /proc/TGID/task/ directories */
3329 static int proc_task_readdir(struct file *file, struct dir_context *ctx)
3330 {
3331 	struct inode *inode = file_inode(file);
3332 	struct task_struct *task;
3333 	struct pid_namespace *ns;
3334 	int tid;
3335 
3336 	if (proc_inode_is_dead(inode))
3337 		return -ENOENT;
3338 
3339 	if (!dir_emit_dots(file, ctx))
3340 		return 0;
3341 
3342 	/* f_version caches the tgid value that the last readdir call couldn't
3343 	 * return. lseek aka telldir automagically resets f_version to 0.
3344 	 */
3345 	ns = inode->i_sb->s_fs_info;
3346 	tid = (int)file->f_version;
3347 	file->f_version = 0;
3348 	for (task = first_tid(proc_pid(inode), tid, ctx->pos - 2, ns);
3349 	     task;
3350 	     task = next_tid(task), ctx->pos++) {
3351 		char name[PROC_NUMBUF];
3352 		int len;
3353 		tid = task_pid_nr_ns(task, ns);
3354 		len = snprintf(name, sizeof(name), "%d", tid);
3355 		if (!proc_fill_cache(file, ctx, name, len,
3356 				proc_task_instantiate, task, NULL)) {
3357 			/* returning this tgid failed, save it as the first
3358 			 * pid for the next readir call */
3359 			file->f_version = (u64)tid;
3360 			put_task_struct(task);
3361 			break;
3362 		}
3363 	}
3364 
3365 	return 0;
3366 }
3367 
3368 static int proc_task_getattr(struct vfsmount *mnt, struct dentry *dentry, struct kstat *stat)
3369 {
3370 	struct inode *inode = d_inode(dentry);
3371 	struct task_struct *p = get_proc_task(inode);
3372 	generic_fillattr(inode, stat);
3373 
3374 	if (p) {
3375 		stat->nlink += get_nr_threads(p);
3376 		put_task_struct(p);
3377 	}
3378 
3379 	return 0;
3380 }
3381 
3382 static const struct inode_operations proc_task_inode_operations = {
3383 	.lookup		= proc_task_lookup,
3384 	.getattr	= proc_task_getattr,
3385 	.setattr	= proc_setattr,
3386 	.permission	= proc_pid_permission,
3387 };
3388 
3389 static const struct file_operations proc_task_operations = {
3390 	.read		= generic_read_dir,
3391 	.iterate	= proc_task_readdir,
3392 	.llseek		= default_llseek,
3393 };
3394