1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * linux/fs/proc/base.c 4 * 5 * Copyright (C) 1991, 1992 Linus Torvalds 6 * 7 * proc base directory handling functions 8 * 9 * 1999, Al Viro. Rewritten. Now it covers the whole per-process part. 10 * Instead of using magical inumbers to determine the kind of object 11 * we allocate and fill in-core inodes upon lookup. They don't even 12 * go into icache. We cache the reference to task_struct upon lookup too. 13 * Eventually it should become a filesystem in its own. We don't use the 14 * rest of procfs anymore. 15 * 16 * 17 * Changelog: 18 * 17-Jan-2005 19 * Allan Bezerra 20 * Bruna Moreira <bruna.moreira@indt.org.br> 21 * Edjard Mota <edjard.mota@indt.org.br> 22 * Ilias Biris <ilias.biris@indt.org.br> 23 * Mauricio Lin <mauricio.lin@indt.org.br> 24 * 25 * Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT 26 * 27 * A new process specific entry (smaps) included in /proc. It shows the 28 * size of rss for each memory area. The maps entry lacks information 29 * about physical memory size (rss) for each mapped file, i.e., 30 * rss information for executables and library files. 31 * This additional information is useful for any tools that need to know 32 * about physical memory consumption for a process specific library. 33 * 34 * Changelog: 35 * 21-Feb-2005 36 * Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT 37 * Pud inclusion in the page table walking. 38 * 39 * ChangeLog: 40 * 10-Mar-2005 41 * 10LE Instituto Nokia de Tecnologia - INdT: 42 * A better way to walks through the page table as suggested by Hugh Dickins. 43 * 44 * Simo Piiroinen <simo.piiroinen@nokia.com>: 45 * Smaps information related to shared, private, clean and dirty pages. 46 * 47 * Paul Mundt <paul.mundt@nokia.com>: 48 * Overall revision about smaps. 49 */ 50 51 #include <linux/uaccess.h> 52 53 #include <linux/errno.h> 54 #include <linux/time.h> 55 #include <linux/proc_fs.h> 56 #include <linux/stat.h> 57 #include <linux/task_io_accounting_ops.h> 58 #include <linux/init.h> 59 #include <linux/capability.h> 60 #include <linux/file.h> 61 #include <linux/fdtable.h> 62 #include <linux/generic-radix-tree.h> 63 #include <linux/string.h> 64 #include <linux/seq_file.h> 65 #include <linux/namei.h> 66 #include <linux/mnt_namespace.h> 67 #include <linux/mm.h> 68 #include <linux/swap.h> 69 #include <linux/rcupdate.h> 70 #include <linux/kallsyms.h> 71 #include <linux/stacktrace.h> 72 #include <linux/resource.h> 73 #include <linux/module.h> 74 #include <linux/mount.h> 75 #include <linux/security.h> 76 #include <linux/ptrace.h> 77 #include <linux/tracehook.h> 78 #include <linux/printk.h> 79 #include <linux/cache.h> 80 #include <linux/cgroup.h> 81 #include <linux/cpuset.h> 82 #include <linux/audit.h> 83 #include <linux/poll.h> 84 #include <linux/nsproxy.h> 85 #include <linux/oom.h> 86 #include <linux/elf.h> 87 #include <linux/pid_namespace.h> 88 #include <linux/user_namespace.h> 89 #include <linux/fs_struct.h> 90 #include <linux/slab.h> 91 #include <linux/sched/autogroup.h> 92 #include <linux/sched/mm.h> 93 #include <linux/sched/coredump.h> 94 #include <linux/sched/debug.h> 95 #include <linux/sched/stat.h> 96 #include <linux/posix-timers.h> 97 #include <linux/time_namespace.h> 98 #include <linux/resctrl.h> 99 #include <trace/events/oom.h> 100 #include "internal.h" 101 #include "fd.h" 102 103 #include "../../lib/kstrtox.h" 104 105 /* NOTE: 106 * Implementing inode permission operations in /proc is almost 107 * certainly an error. Permission checks need to happen during 108 * each system call not at open time. The reason is that most of 109 * what we wish to check for permissions in /proc varies at runtime. 110 * 111 * The classic example of a problem is opening file descriptors 112 * in /proc for a task before it execs a suid executable. 113 */ 114 115 static u8 nlink_tid __ro_after_init; 116 static u8 nlink_tgid __ro_after_init; 117 118 struct pid_entry { 119 const char *name; 120 unsigned int len; 121 umode_t mode; 122 const struct inode_operations *iop; 123 const struct file_operations *fop; 124 union proc_op op; 125 }; 126 127 #define NOD(NAME, MODE, IOP, FOP, OP) { \ 128 .name = (NAME), \ 129 .len = sizeof(NAME) - 1, \ 130 .mode = MODE, \ 131 .iop = IOP, \ 132 .fop = FOP, \ 133 .op = OP, \ 134 } 135 136 #define DIR(NAME, MODE, iops, fops) \ 137 NOD(NAME, (S_IFDIR|(MODE)), &iops, &fops, {} ) 138 #define LNK(NAME, get_link) \ 139 NOD(NAME, (S_IFLNK|S_IRWXUGO), \ 140 &proc_pid_link_inode_operations, NULL, \ 141 { .proc_get_link = get_link } ) 142 #define REG(NAME, MODE, fops) \ 143 NOD(NAME, (S_IFREG|(MODE)), NULL, &fops, {}) 144 #define ONE(NAME, MODE, show) \ 145 NOD(NAME, (S_IFREG|(MODE)), \ 146 NULL, &proc_single_file_operations, \ 147 { .proc_show = show } ) 148 #define ATTR(LSM, NAME, MODE) \ 149 NOD(NAME, (S_IFREG|(MODE)), \ 150 NULL, &proc_pid_attr_operations, \ 151 { .lsm = LSM }) 152 153 /* 154 * Count the number of hardlinks for the pid_entry table, excluding the . 155 * and .. links. 156 */ 157 static unsigned int __init pid_entry_nlink(const struct pid_entry *entries, 158 unsigned int n) 159 { 160 unsigned int i; 161 unsigned int count; 162 163 count = 2; 164 for (i = 0; i < n; ++i) { 165 if (S_ISDIR(entries[i].mode)) 166 ++count; 167 } 168 169 return count; 170 } 171 172 static int get_task_root(struct task_struct *task, struct path *root) 173 { 174 int result = -ENOENT; 175 176 task_lock(task); 177 if (task->fs) { 178 get_fs_root(task->fs, root); 179 result = 0; 180 } 181 task_unlock(task); 182 return result; 183 } 184 185 static int proc_cwd_link(struct dentry *dentry, struct path *path) 186 { 187 struct task_struct *task = get_proc_task(d_inode(dentry)); 188 int result = -ENOENT; 189 190 if (task) { 191 task_lock(task); 192 if (task->fs) { 193 get_fs_pwd(task->fs, path); 194 result = 0; 195 } 196 task_unlock(task); 197 put_task_struct(task); 198 } 199 return result; 200 } 201 202 static int proc_root_link(struct dentry *dentry, struct path *path) 203 { 204 struct task_struct *task = get_proc_task(d_inode(dentry)); 205 int result = -ENOENT; 206 207 if (task) { 208 result = get_task_root(task, path); 209 put_task_struct(task); 210 } 211 return result; 212 } 213 214 /* 215 * If the user used setproctitle(), we just get the string from 216 * user space at arg_start, and limit it to a maximum of one page. 217 */ 218 static ssize_t get_mm_proctitle(struct mm_struct *mm, char __user *buf, 219 size_t count, unsigned long pos, 220 unsigned long arg_start) 221 { 222 char *page; 223 int ret, got; 224 225 if (pos >= PAGE_SIZE) 226 return 0; 227 228 page = (char *)__get_free_page(GFP_KERNEL); 229 if (!page) 230 return -ENOMEM; 231 232 ret = 0; 233 got = access_remote_vm(mm, arg_start, page, PAGE_SIZE, FOLL_ANON); 234 if (got > 0) { 235 int len = strnlen(page, got); 236 237 /* Include the NUL character if it was found */ 238 if (len < got) 239 len++; 240 241 if (len > pos) { 242 len -= pos; 243 if (len > count) 244 len = count; 245 len -= copy_to_user(buf, page+pos, len); 246 if (!len) 247 len = -EFAULT; 248 ret = len; 249 } 250 } 251 free_page((unsigned long)page); 252 return ret; 253 } 254 255 static ssize_t get_mm_cmdline(struct mm_struct *mm, char __user *buf, 256 size_t count, loff_t *ppos) 257 { 258 unsigned long arg_start, arg_end, env_start, env_end; 259 unsigned long pos, len; 260 char *page, c; 261 262 /* Check if process spawned far enough to have cmdline. */ 263 if (!mm->env_end) 264 return 0; 265 266 spin_lock(&mm->arg_lock); 267 arg_start = mm->arg_start; 268 arg_end = mm->arg_end; 269 env_start = mm->env_start; 270 env_end = mm->env_end; 271 spin_unlock(&mm->arg_lock); 272 273 if (arg_start >= arg_end) 274 return 0; 275 276 /* 277 * We allow setproctitle() to overwrite the argument 278 * strings, and overflow past the original end. But 279 * only when it overflows into the environment area. 280 */ 281 if (env_start != arg_end || env_end < env_start) 282 env_start = env_end = arg_end; 283 len = env_end - arg_start; 284 285 /* We're not going to care if "*ppos" has high bits set */ 286 pos = *ppos; 287 if (pos >= len) 288 return 0; 289 if (count > len - pos) 290 count = len - pos; 291 if (!count) 292 return 0; 293 294 /* 295 * Magical special case: if the argv[] end byte is not 296 * zero, the user has overwritten it with setproctitle(3). 297 * 298 * Possible future enhancement: do this only once when 299 * pos is 0, and set a flag in the 'struct file'. 300 */ 301 if (access_remote_vm(mm, arg_end-1, &c, 1, FOLL_ANON) == 1 && c) 302 return get_mm_proctitle(mm, buf, count, pos, arg_start); 303 304 /* 305 * For the non-setproctitle() case we limit things strictly 306 * to the [arg_start, arg_end[ range. 307 */ 308 pos += arg_start; 309 if (pos < arg_start || pos >= arg_end) 310 return 0; 311 if (count > arg_end - pos) 312 count = arg_end - pos; 313 314 page = (char *)__get_free_page(GFP_KERNEL); 315 if (!page) 316 return -ENOMEM; 317 318 len = 0; 319 while (count) { 320 int got; 321 size_t size = min_t(size_t, PAGE_SIZE, count); 322 323 got = access_remote_vm(mm, pos, page, size, FOLL_ANON); 324 if (got <= 0) 325 break; 326 got -= copy_to_user(buf, page, got); 327 if (unlikely(!got)) { 328 if (!len) 329 len = -EFAULT; 330 break; 331 } 332 pos += got; 333 buf += got; 334 len += got; 335 count -= got; 336 } 337 338 free_page((unsigned long)page); 339 return len; 340 } 341 342 static ssize_t get_task_cmdline(struct task_struct *tsk, char __user *buf, 343 size_t count, loff_t *pos) 344 { 345 struct mm_struct *mm; 346 ssize_t ret; 347 348 mm = get_task_mm(tsk); 349 if (!mm) 350 return 0; 351 352 ret = get_mm_cmdline(mm, buf, count, pos); 353 mmput(mm); 354 return ret; 355 } 356 357 static ssize_t proc_pid_cmdline_read(struct file *file, char __user *buf, 358 size_t count, loff_t *pos) 359 { 360 struct task_struct *tsk; 361 ssize_t ret; 362 363 BUG_ON(*pos < 0); 364 365 tsk = get_proc_task(file_inode(file)); 366 if (!tsk) 367 return -ESRCH; 368 ret = get_task_cmdline(tsk, buf, count, pos); 369 put_task_struct(tsk); 370 if (ret > 0) 371 *pos += ret; 372 return ret; 373 } 374 375 static const struct file_operations proc_pid_cmdline_ops = { 376 .read = proc_pid_cmdline_read, 377 .llseek = generic_file_llseek, 378 }; 379 380 #ifdef CONFIG_KALLSYMS 381 /* 382 * Provides a wchan file via kallsyms in a proper one-value-per-file format. 383 * Returns the resolved symbol. If that fails, simply return the address. 384 */ 385 static int proc_pid_wchan(struct seq_file *m, struct pid_namespace *ns, 386 struct pid *pid, struct task_struct *task) 387 { 388 unsigned long wchan; 389 char symname[KSYM_NAME_LEN]; 390 391 if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS)) 392 goto print0; 393 394 wchan = get_wchan(task); 395 if (wchan && !lookup_symbol_name(wchan, symname)) { 396 seq_puts(m, symname); 397 return 0; 398 } 399 400 print0: 401 seq_putc(m, '0'); 402 return 0; 403 } 404 #endif /* CONFIG_KALLSYMS */ 405 406 static int lock_trace(struct task_struct *task) 407 { 408 int err = mutex_lock_killable(&task->signal->exec_update_mutex); 409 if (err) 410 return err; 411 if (!ptrace_may_access(task, PTRACE_MODE_ATTACH_FSCREDS)) { 412 mutex_unlock(&task->signal->exec_update_mutex); 413 return -EPERM; 414 } 415 return 0; 416 } 417 418 static void unlock_trace(struct task_struct *task) 419 { 420 mutex_unlock(&task->signal->exec_update_mutex); 421 } 422 423 #ifdef CONFIG_STACKTRACE 424 425 #define MAX_STACK_TRACE_DEPTH 64 426 427 static int proc_pid_stack(struct seq_file *m, struct pid_namespace *ns, 428 struct pid *pid, struct task_struct *task) 429 { 430 unsigned long *entries; 431 int err; 432 433 /* 434 * The ability to racily run the kernel stack unwinder on a running task 435 * and then observe the unwinder output is scary; while it is useful for 436 * debugging kernel issues, it can also allow an attacker to leak kernel 437 * stack contents. 438 * Doing this in a manner that is at least safe from races would require 439 * some work to ensure that the remote task can not be scheduled; and 440 * even then, this would still expose the unwinder as local attack 441 * surface. 442 * Therefore, this interface is restricted to root. 443 */ 444 if (!file_ns_capable(m->file, &init_user_ns, CAP_SYS_ADMIN)) 445 return -EACCES; 446 447 entries = kmalloc_array(MAX_STACK_TRACE_DEPTH, sizeof(*entries), 448 GFP_KERNEL); 449 if (!entries) 450 return -ENOMEM; 451 452 err = lock_trace(task); 453 if (!err) { 454 unsigned int i, nr_entries; 455 456 nr_entries = stack_trace_save_tsk(task, entries, 457 MAX_STACK_TRACE_DEPTH, 0); 458 459 for (i = 0; i < nr_entries; i++) { 460 seq_printf(m, "[<0>] %pB\n", (void *)entries[i]); 461 } 462 463 unlock_trace(task); 464 } 465 kfree(entries); 466 467 return err; 468 } 469 #endif 470 471 #ifdef CONFIG_SCHED_INFO 472 /* 473 * Provides /proc/PID/schedstat 474 */ 475 static int proc_pid_schedstat(struct seq_file *m, struct pid_namespace *ns, 476 struct pid *pid, struct task_struct *task) 477 { 478 if (unlikely(!sched_info_on())) 479 seq_puts(m, "0 0 0\n"); 480 else 481 seq_printf(m, "%llu %llu %lu\n", 482 (unsigned long long)task->se.sum_exec_runtime, 483 (unsigned long long)task->sched_info.run_delay, 484 task->sched_info.pcount); 485 486 return 0; 487 } 488 #endif 489 490 #ifdef CONFIG_LATENCYTOP 491 static int lstats_show_proc(struct seq_file *m, void *v) 492 { 493 int i; 494 struct inode *inode = m->private; 495 struct task_struct *task = get_proc_task(inode); 496 497 if (!task) 498 return -ESRCH; 499 seq_puts(m, "Latency Top version : v0.1\n"); 500 for (i = 0; i < LT_SAVECOUNT; i++) { 501 struct latency_record *lr = &task->latency_record[i]; 502 if (lr->backtrace[0]) { 503 int q; 504 seq_printf(m, "%i %li %li", 505 lr->count, lr->time, lr->max); 506 for (q = 0; q < LT_BACKTRACEDEPTH; q++) { 507 unsigned long bt = lr->backtrace[q]; 508 509 if (!bt) 510 break; 511 seq_printf(m, " %ps", (void *)bt); 512 } 513 seq_putc(m, '\n'); 514 } 515 516 } 517 put_task_struct(task); 518 return 0; 519 } 520 521 static int lstats_open(struct inode *inode, struct file *file) 522 { 523 return single_open(file, lstats_show_proc, inode); 524 } 525 526 static ssize_t lstats_write(struct file *file, const char __user *buf, 527 size_t count, loff_t *offs) 528 { 529 struct task_struct *task = get_proc_task(file_inode(file)); 530 531 if (!task) 532 return -ESRCH; 533 clear_tsk_latency_tracing(task); 534 put_task_struct(task); 535 536 return count; 537 } 538 539 static const struct file_operations proc_lstats_operations = { 540 .open = lstats_open, 541 .read = seq_read, 542 .write = lstats_write, 543 .llseek = seq_lseek, 544 .release = single_release, 545 }; 546 547 #endif 548 549 static int proc_oom_score(struct seq_file *m, struct pid_namespace *ns, 550 struct pid *pid, struct task_struct *task) 551 { 552 unsigned long totalpages = totalram_pages() + total_swap_pages; 553 unsigned long points = 0; 554 long badness; 555 556 badness = oom_badness(task, totalpages); 557 /* 558 * Special case OOM_SCORE_ADJ_MIN for all others scale the 559 * badness value into [0, 2000] range which we have been 560 * exporting for a long time so userspace might depend on it. 561 */ 562 if (badness != LONG_MIN) 563 points = (1000 + badness * 1000 / (long)totalpages) * 2 / 3; 564 565 seq_printf(m, "%lu\n", points); 566 567 return 0; 568 } 569 570 struct limit_names { 571 const char *name; 572 const char *unit; 573 }; 574 575 static const struct limit_names lnames[RLIM_NLIMITS] = { 576 [RLIMIT_CPU] = {"Max cpu time", "seconds"}, 577 [RLIMIT_FSIZE] = {"Max file size", "bytes"}, 578 [RLIMIT_DATA] = {"Max data size", "bytes"}, 579 [RLIMIT_STACK] = {"Max stack size", "bytes"}, 580 [RLIMIT_CORE] = {"Max core file size", "bytes"}, 581 [RLIMIT_RSS] = {"Max resident set", "bytes"}, 582 [RLIMIT_NPROC] = {"Max processes", "processes"}, 583 [RLIMIT_NOFILE] = {"Max open files", "files"}, 584 [RLIMIT_MEMLOCK] = {"Max locked memory", "bytes"}, 585 [RLIMIT_AS] = {"Max address space", "bytes"}, 586 [RLIMIT_LOCKS] = {"Max file locks", "locks"}, 587 [RLIMIT_SIGPENDING] = {"Max pending signals", "signals"}, 588 [RLIMIT_MSGQUEUE] = {"Max msgqueue size", "bytes"}, 589 [RLIMIT_NICE] = {"Max nice priority", NULL}, 590 [RLIMIT_RTPRIO] = {"Max realtime priority", NULL}, 591 [RLIMIT_RTTIME] = {"Max realtime timeout", "us"}, 592 }; 593 594 /* Display limits for a process */ 595 static int proc_pid_limits(struct seq_file *m, struct pid_namespace *ns, 596 struct pid *pid, struct task_struct *task) 597 { 598 unsigned int i; 599 unsigned long flags; 600 601 struct rlimit rlim[RLIM_NLIMITS]; 602 603 if (!lock_task_sighand(task, &flags)) 604 return 0; 605 memcpy(rlim, task->signal->rlim, sizeof(struct rlimit) * RLIM_NLIMITS); 606 unlock_task_sighand(task, &flags); 607 608 /* 609 * print the file header 610 */ 611 seq_puts(m, "Limit " 612 "Soft Limit " 613 "Hard Limit " 614 "Units \n"); 615 616 for (i = 0; i < RLIM_NLIMITS; i++) { 617 if (rlim[i].rlim_cur == RLIM_INFINITY) 618 seq_printf(m, "%-25s %-20s ", 619 lnames[i].name, "unlimited"); 620 else 621 seq_printf(m, "%-25s %-20lu ", 622 lnames[i].name, rlim[i].rlim_cur); 623 624 if (rlim[i].rlim_max == RLIM_INFINITY) 625 seq_printf(m, "%-20s ", "unlimited"); 626 else 627 seq_printf(m, "%-20lu ", rlim[i].rlim_max); 628 629 if (lnames[i].unit) 630 seq_printf(m, "%-10s\n", lnames[i].unit); 631 else 632 seq_putc(m, '\n'); 633 } 634 635 return 0; 636 } 637 638 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK 639 static int proc_pid_syscall(struct seq_file *m, struct pid_namespace *ns, 640 struct pid *pid, struct task_struct *task) 641 { 642 struct syscall_info info; 643 u64 *args = &info.data.args[0]; 644 int res; 645 646 res = lock_trace(task); 647 if (res) 648 return res; 649 650 if (task_current_syscall(task, &info)) 651 seq_puts(m, "running\n"); 652 else if (info.data.nr < 0) 653 seq_printf(m, "%d 0x%llx 0x%llx\n", 654 info.data.nr, info.sp, info.data.instruction_pointer); 655 else 656 seq_printf(m, 657 "%d 0x%llx 0x%llx 0x%llx 0x%llx 0x%llx 0x%llx 0x%llx 0x%llx\n", 658 info.data.nr, 659 args[0], args[1], args[2], args[3], args[4], args[5], 660 info.sp, info.data.instruction_pointer); 661 unlock_trace(task); 662 663 return 0; 664 } 665 #endif /* CONFIG_HAVE_ARCH_TRACEHOOK */ 666 667 /************************************************************************/ 668 /* Here the fs part begins */ 669 /************************************************************************/ 670 671 /* permission checks */ 672 static int proc_fd_access_allowed(struct inode *inode) 673 { 674 struct task_struct *task; 675 int allowed = 0; 676 /* Allow access to a task's file descriptors if it is us or we 677 * may use ptrace attach to the process and find out that 678 * information. 679 */ 680 task = get_proc_task(inode); 681 if (task) { 682 allowed = ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS); 683 put_task_struct(task); 684 } 685 return allowed; 686 } 687 688 int proc_setattr(struct dentry *dentry, struct iattr *attr) 689 { 690 int error; 691 struct inode *inode = d_inode(dentry); 692 693 if (attr->ia_valid & ATTR_MODE) 694 return -EPERM; 695 696 error = setattr_prepare(dentry, attr); 697 if (error) 698 return error; 699 700 setattr_copy(inode, attr); 701 mark_inode_dirty(inode); 702 return 0; 703 } 704 705 /* 706 * May current process learn task's sched/cmdline info (for hide_pid_min=1) 707 * or euid/egid (for hide_pid_min=2)? 708 */ 709 static bool has_pid_permissions(struct proc_fs_info *fs_info, 710 struct task_struct *task, 711 enum proc_hidepid hide_pid_min) 712 { 713 /* 714 * If 'hidpid' mount option is set force a ptrace check, 715 * we indicate that we are using a filesystem syscall 716 * by passing PTRACE_MODE_READ_FSCREDS 717 */ 718 if (fs_info->hide_pid == HIDEPID_NOT_PTRACEABLE) 719 return ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS); 720 721 if (fs_info->hide_pid < hide_pid_min) 722 return true; 723 if (in_group_p(fs_info->pid_gid)) 724 return true; 725 return ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS); 726 } 727 728 729 static int proc_pid_permission(struct inode *inode, int mask) 730 { 731 struct proc_fs_info *fs_info = proc_sb_info(inode->i_sb); 732 struct task_struct *task; 733 bool has_perms; 734 735 task = get_proc_task(inode); 736 if (!task) 737 return -ESRCH; 738 has_perms = has_pid_permissions(fs_info, task, HIDEPID_NO_ACCESS); 739 put_task_struct(task); 740 741 if (!has_perms) { 742 if (fs_info->hide_pid == HIDEPID_INVISIBLE) { 743 /* 744 * Let's make getdents(), stat(), and open() 745 * consistent with each other. If a process 746 * may not stat() a file, it shouldn't be seen 747 * in procfs at all. 748 */ 749 return -ENOENT; 750 } 751 752 return -EPERM; 753 } 754 return generic_permission(inode, mask); 755 } 756 757 758 759 static const struct inode_operations proc_def_inode_operations = { 760 .setattr = proc_setattr, 761 }; 762 763 static int proc_single_show(struct seq_file *m, void *v) 764 { 765 struct inode *inode = m->private; 766 struct pid_namespace *ns = proc_pid_ns(inode->i_sb); 767 struct pid *pid = proc_pid(inode); 768 struct task_struct *task; 769 int ret; 770 771 task = get_pid_task(pid, PIDTYPE_PID); 772 if (!task) 773 return -ESRCH; 774 775 ret = PROC_I(inode)->op.proc_show(m, ns, pid, task); 776 777 put_task_struct(task); 778 return ret; 779 } 780 781 static int proc_single_open(struct inode *inode, struct file *filp) 782 { 783 return single_open(filp, proc_single_show, inode); 784 } 785 786 static const struct file_operations proc_single_file_operations = { 787 .open = proc_single_open, 788 .read = seq_read, 789 .llseek = seq_lseek, 790 .release = single_release, 791 }; 792 793 794 struct mm_struct *proc_mem_open(struct inode *inode, unsigned int mode) 795 { 796 struct task_struct *task = get_proc_task(inode); 797 struct mm_struct *mm = ERR_PTR(-ESRCH); 798 799 if (task) { 800 mm = mm_access(task, mode | PTRACE_MODE_FSCREDS); 801 put_task_struct(task); 802 803 if (!IS_ERR_OR_NULL(mm)) { 804 /* ensure this mm_struct can't be freed */ 805 mmgrab(mm); 806 /* but do not pin its memory */ 807 mmput(mm); 808 } 809 } 810 811 return mm; 812 } 813 814 static int __mem_open(struct inode *inode, struct file *file, unsigned int mode) 815 { 816 struct mm_struct *mm = proc_mem_open(inode, mode); 817 818 if (IS_ERR(mm)) 819 return PTR_ERR(mm); 820 821 file->private_data = mm; 822 return 0; 823 } 824 825 static int mem_open(struct inode *inode, struct file *file) 826 { 827 int ret = __mem_open(inode, file, PTRACE_MODE_ATTACH); 828 829 /* OK to pass negative loff_t, we can catch out-of-range */ 830 file->f_mode |= FMODE_UNSIGNED_OFFSET; 831 832 return ret; 833 } 834 835 static ssize_t mem_rw(struct file *file, char __user *buf, 836 size_t count, loff_t *ppos, int write) 837 { 838 struct mm_struct *mm = file->private_data; 839 unsigned long addr = *ppos; 840 ssize_t copied; 841 char *page; 842 unsigned int flags; 843 844 if (!mm) 845 return 0; 846 847 page = (char *)__get_free_page(GFP_KERNEL); 848 if (!page) 849 return -ENOMEM; 850 851 copied = 0; 852 if (!mmget_not_zero(mm)) 853 goto free; 854 855 flags = FOLL_FORCE | (write ? FOLL_WRITE : 0); 856 857 while (count > 0) { 858 int this_len = min_t(int, count, PAGE_SIZE); 859 860 if (write && copy_from_user(page, buf, this_len)) { 861 copied = -EFAULT; 862 break; 863 } 864 865 this_len = access_remote_vm(mm, addr, page, this_len, flags); 866 if (!this_len) { 867 if (!copied) 868 copied = -EIO; 869 break; 870 } 871 872 if (!write && copy_to_user(buf, page, this_len)) { 873 copied = -EFAULT; 874 break; 875 } 876 877 buf += this_len; 878 addr += this_len; 879 copied += this_len; 880 count -= this_len; 881 } 882 *ppos = addr; 883 884 mmput(mm); 885 free: 886 free_page((unsigned long) page); 887 return copied; 888 } 889 890 static ssize_t mem_read(struct file *file, char __user *buf, 891 size_t count, loff_t *ppos) 892 { 893 return mem_rw(file, buf, count, ppos, 0); 894 } 895 896 static ssize_t mem_write(struct file *file, const char __user *buf, 897 size_t count, loff_t *ppos) 898 { 899 return mem_rw(file, (char __user*)buf, count, ppos, 1); 900 } 901 902 loff_t mem_lseek(struct file *file, loff_t offset, int orig) 903 { 904 switch (orig) { 905 case 0: 906 file->f_pos = offset; 907 break; 908 case 1: 909 file->f_pos += offset; 910 break; 911 default: 912 return -EINVAL; 913 } 914 force_successful_syscall_return(); 915 return file->f_pos; 916 } 917 918 static int mem_release(struct inode *inode, struct file *file) 919 { 920 struct mm_struct *mm = file->private_data; 921 if (mm) 922 mmdrop(mm); 923 return 0; 924 } 925 926 static const struct file_operations proc_mem_operations = { 927 .llseek = mem_lseek, 928 .read = mem_read, 929 .write = mem_write, 930 .open = mem_open, 931 .release = mem_release, 932 }; 933 934 static int environ_open(struct inode *inode, struct file *file) 935 { 936 return __mem_open(inode, file, PTRACE_MODE_READ); 937 } 938 939 static ssize_t environ_read(struct file *file, char __user *buf, 940 size_t count, loff_t *ppos) 941 { 942 char *page; 943 unsigned long src = *ppos; 944 int ret = 0; 945 struct mm_struct *mm = file->private_data; 946 unsigned long env_start, env_end; 947 948 /* Ensure the process spawned far enough to have an environment. */ 949 if (!mm || !mm->env_end) 950 return 0; 951 952 page = (char *)__get_free_page(GFP_KERNEL); 953 if (!page) 954 return -ENOMEM; 955 956 ret = 0; 957 if (!mmget_not_zero(mm)) 958 goto free; 959 960 spin_lock(&mm->arg_lock); 961 env_start = mm->env_start; 962 env_end = mm->env_end; 963 spin_unlock(&mm->arg_lock); 964 965 while (count > 0) { 966 size_t this_len, max_len; 967 int retval; 968 969 if (src >= (env_end - env_start)) 970 break; 971 972 this_len = env_end - (env_start + src); 973 974 max_len = min_t(size_t, PAGE_SIZE, count); 975 this_len = min(max_len, this_len); 976 977 retval = access_remote_vm(mm, (env_start + src), page, this_len, FOLL_ANON); 978 979 if (retval <= 0) { 980 ret = retval; 981 break; 982 } 983 984 if (copy_to_user(buf, page, retval)) { 985 ret = -EFAULT; 986 break; 987 } 988 989 ret += retval; 990 src += retval; 991 buf += retval; 992 count -= retval; 993 } 994 *ppos = src; 995 mmput(mm); 996 997 free: 998 free_page((unsigned long) page); 999 return ret; 1000 } 1001 1002 static const struct file_operations proc_environ_operations = { 1003 .open = environ_open, 1004 .read = environ_read, 1005 .llseek = generic_file_llseek, 1006 .release = mem_release, 1007 }; 1008 1009 static int auxv_open(struct inode *inode, struct file *file) 1010 { 1011 return __mem_open(inode, file, PTRACE_MODE_READ_FSCREDS); 1012 } 1013 1014 static ssize_t auxv_read(struct file *file, char __user *buf, 1015 size_t count, loff_t *ppos) 1016 { 1017 struct mm_struct *mm = file->private_data; 1018 unsigned int nwords = 0; 1019 1020 if (!mm) 1021 return 0; 1022 do { 1023 nwords += 2; 1024 } while (mm->saved_auxv[nwords - 2] != 0); /* AT_NULL */ 1025 return simple_read_from_buffer(buf, count, ppos, mm->saved_auxv, 1026 nwords * sizeof(mm->saved_auxv[0])); 1027 } 1028 1029 static const struct file_operations proc_auxv_operations = { 1030 .open = auxv_open, 1031 .read = auxv_read, 1032 .llseek = generic_file_llseek, 1033 .release = mem_release, 1034 }; 1035 1036 static ssize_t oom_adj_read(struct file *file, char __user *buf, size_t count, 1037 loff_t *ppos) 1038 { 1039 struct task_struct *task = get_proc_task(file_inode(file)); 1040 char buffer[PROC_NUMBUF]; 1041 int oom_adj = OOM_ADJUST_MIN; 1042 size_t len; 1043 1044 if (!task) 1045 return -ESRCH; 1046 if (task->signal->oom_score_adj == OOM_SCORE_ADJ_MAX) 1047 oom_adj = OOM_ADJUST_MAX; 1048 else 1049 oom_adj = (task->signal->oom_score_adj * -OOM_DISABLE) / 1050 OOM_SCORE_ADJ_MAX; 1051 put_task_struct(task); 1052 len = snprintf(buffer, sizeof(buffer), "%d\n", oom_adj); 1053 return simple_read_from_buffer(buf, count, ppos, buffer, len); 1054 } 1055 1056 static int __set_oom_adj(struct file *file, int oom_adj, bool legacy) 1057 { 1058 static DEFINE_MUTEX(oom_adj_mutex); 1059 struct mm_struct *mm = NULL; 1060 struct task_struct *task; 1061 int err = 0; 1062 1063 task = get_proc_task(file_inode(file)); 1064 if (!task) 1065 return -ESRCH; 1066 1067 mutex_lock(&oom_adj_mutex); 1068 if (legacy) { 1069 if (oom_adj < task->signal->oom_score_adj && 1070 !capable(CAP_SYS_RESOURCE)) { 1071 err = -EACCES; 1072 goto err_unlock; 1073 } 1074 /* 1075 * /proc/pid/oom_adj is provided for legacy purposes, ask users to use 1076 * /proc/pid/oom_score_adj instead. 1077 */ 1078 pr_warn_once("%s (%d): /proc/%d/oom_adj is deprecated, please use /proc/%d/oom_score_adj instead.\n", 1079 current->comm, task_pid_nr(current), task_pid_nr(task), 1080 task_pid_nr(task)); 1081 } else { 1082 if ((short)oom_adj < task->signal->oom_score_adj_min && 1083 !capable(CAP_SYS_RESOURCE)) { 1084 err = -EACCES; 1085 goto err_unlock; 1086 } 1087 } 1088 1089 /* 1090 * Make sure we will check other processes sharing the mm if this is 1091 * not vfrok which wants its own oom_score_adj. 1092 * pin the mm so it doesn't go away and get reused after task_unlock 1093 */ 1094 if (!task->vfork_done) { 1095 struct task_struct *p = find_lock_task_mm(task); 1096 1097 if (p) { 1098 if (atomic_read(&p->mm->mm_users) > 1) { 1099 mm = p->mm; 1100 mmgrab(mm); 1101 } 1102 task_unlock(p); 1103 } 1104 } 1105 1106 task->signal->oom_score_adj = oom_adj; 1107 if (!legacy && has_capability_noaudit(current, CAP_SYS_RESOURCE)) 1108 task->signal->oom_score_adj_min = (short)oom_adj; 1109 trace_oom_score_adj_update(task); 1110 1111 if (mm) { 1112 struct task_struct *p; 1113 1114 rcu_read_lock(); 1115 for_each_process(p) { 1116 if (same_thread_group(task, p)) 1117 continue; 1118 1119 /* do not touch kernel threads or the global init */ 1120 if (p->flags & PF_KTHREAD || is_global_init(p)) 1121 continue; 1122 1123 task_lock(p); 1124 if (!p->vfork_done && process_shares_mm(p, mm)) { 1125 p->signal->oom_score_adj = oom_adj; 1126 if (!legacy && has_capability_noaudit(current, CAP_SYS_RESOURCE)) 1127 p->signal->oom_score_adj_min = (short)oom_adj; 1128 } 1129 task_unlock(p); 1130 } 1131 rcu_read_unlock(); 1132 mmdrop(mm); 1133 } 1134 err_unlock: 1135 mutex_unlock(&oom_adj_mutex); 1136 put_task_struct(task); 1137 return err; 1138 } 1139 1140 /* 1141 * /proc/pid/oom_adj exists solely for backwards compatibility with previous 1142 * kernels. The effective policy is defined by oom_score_adj, which has a 1143 * different scale: oom_adj grew exponentially and oom_score_adj grows linearly. 1144 * Values written to oom_adj are simply mapped linearly to oom_score_adj. 1145 * Processes that become oom disabled via oom_adj will still be oom disabled 1146 * with this implementation. 1147 * 1148 * oom_adj cannot be removed since existing userspace binaries use it. 1149 */ 1150 static ssize_t oom_adj_write(struct file *file, const char __user *buf, 1151 size_t count, loff_t *ppos) 1152 { 1153 char buffer[PROC_NUMBUF]; 1154 int oom_adj; 1155 int err; 1156 1157 memset(buffer, 0, sizeof(buffer)); 1158 if (count > sizeof(buffer) - 1) 1159 count = sizeof(buffer) - 1; 1160 if (copy_from_user(buffer, buf, count)) { 1161 err = -EFAULT; 1162 goto out; 1163 } 1164 1165 err = kstrtoint(strstrip(buffer), 0, &oom_adj); 1166 if (err) 1167 goto out; 1168 if ((oom_adj < OOM_ADJUST_MIN || oom_adj > OOM_ADJUST_MAX) && 1169 oom_adj != OOM_DISABLE) { 1170 err = -EINVAL; 1171 goto out; 1172 } 1173 1174 /* 1175 * Scale /proc/pid/oom_score_adj appropriately ensuring that a maximum 1176 * value is always attainable. 1177 */ 1178 if (oom_adj == OOM_ADJUST_MAX) 1179 oom_adj = OOM_SCORE_ADJ_MAX; 1180 else 1181 oom_adj = (oom_adj * OOM_SCORE_ADJ_MAX) / -OOM_DISABLE; 1182 1183 err = __set_oom_adj(file, oom_adj, true); 1184 out: 1185 return err < 0 ? err : count; 1186 } 1187 1188 static const struct file_operations proc_oom_adj_operations = { 1189 .read = oom_adj_read, 1190 .write = oom_adj_write, 1191 .llseek = generic_file_llseek, 1192 }; 1193 1194 static ssize_t oom_score_adj_read(struct file *file, char __user *buf, 1195 size_t count, loff_t *ppos) 1196 { 1197 struct task_struct *task = get_proc_task(file_inode(file)); 1198 char buffer[PROC_NUMBUF]; 1199 short oom_score_adj = OOM_SCORE_ADJ_MIN; 1200 size_t len; 1201 1202 if (!task) 1203 return -ESRCH; 1204 oom_score_adj = task->signal->oom_score_adj; 1205 put_task_struct(task); 1206 len = snprintf(buffer, sizeof(buffer), "%hd\n", oom_score_adj); 1207 return simple_read_from_buffer(buf, count, ppos, buffer, len); 1208 } 1209 1210 static ssize_t oom_score_adj_write(struct file *file, const char __user *buf, 1211 size_t count, loff_t *ppos) 1212 { 1213 char buffer[PROC_NUMBUF]; 1214 int oom_score_adj; 1215 int err; 1216 1217 memset(buffer, 0, sizeof(buffer)); 1218 if (count > sizeof(buffer) - 1) 1219 count = sizeof(buffer) - 1; 1220 if (copy_from_user(buffer, buf, count)) { 1221 err = -EFAULT; 1222 goto out; 1223 } 1224 1225 err = kstrtoint(strstrip(buffer), 0, &oom_score_adj); 1226 if (err) 1227 goto out; 1228 if (oom_score_adj < OOM_SCORE_ADJ_MIN || 1229 oom_score_adj > OOM_SCORE_ADJ_MAX) { 1230 err = -EINVAL; 1231 goto out; 1232 } 1233 1234 err = __set_oom_adj(file, oom_score_adj, false); 1235 out: 1236 return err < 0 ? err : count; 1237 } 1238 1239 static const struct file_operations proc_oom_score_adj_operations = { 1240 .read = oom_score_adj_read, 1241 .write = oom_score_adj_write, 1242 .llseek = default_llseek, 1243 }; 1244 1245 #ifdef CONFIG_AUDIT 1246 #define TMPBUFLEN 11 1247 static ssize_t proc_loginuid_read(struct file * file, char __user * buf, 1248 size_t count, loff_t *ppos) 1249 { 1250 struct inode * inode = file_inode(file); 1251 struct task_struct *task = get_proc_task(inode); 1252 ssize_t length; 1253 char tmpbuf[TMPBUFLEN]; 1254 1255 if (!task) 1256 return -ESRCH; 1257 length = scnprintf(tmpbuf, TMPBUFLEN, "%u", 1258 from_kuid(file->f_cred->user_ns, 1259 audit_get_loginuid(task))); 1260 put_task_struct(task); 1261 return simple_read_from_buffer(buf, count, ppos, tmpbuf, length); 1262 } 1263 1264 static ssize_t proc_loginuid_write(struct file * file, const char __user * buf, 1265 size_t count, loff_t *ppos) 1266 { 1267 struct inode * inode = file_inode(file); 1268 uid_t loginuid; 1269 kuid_t kloginuid; 1270 int rv; 1271 1272 rcu_read_lock(); 1273 if (current != pid_task(proc_pid(inode), PIDTYPE_PID)) { 1274 rcu_read_unlock(); 1275 return -EPERM; 1276 } 1277 rcu_read_unlock(); 1278 1279 if (*ppos != 0) { 1280 /* No partial writes. */ 1281 return -EINVAL; 1282 } 1283 1284 rv = kstrtou32_from_user(buf, count, 10, &loginuid); 1285 if (rv < 0) 1286 return rv; 1287 1288 /* is userspace tring to explicitly UNSET the loginuid? */ 1289 if (loginuid == AUDIT_UID_UNSET) { 1290 kloginuid = INVALID_UID; 1291 } else { 1292 kloginuid = make_kuid(file->f_cred->user_ns, loginuid); 1293 if (!uid_valid(kloginuid)) 1294 return -EINVAL; 1295 } 1296 1297 rv = audit_set_loginuid(kloginuid); 1298 if (rv < 0) 1299 return rv; 1300 return count; 1301 } 1302 1303 static const struct file_operations proc_loginuid_operations = { 1304 .read = proc_loginuid_read, 1305 .write = proc_loginuid_write, 1306 .llseek = generic_file_llseek, 1307 }; 1308 1309 static ssize_t proc_sessionid_read(struct file * file, char __user * buf, 1310 size_t count, loff_t *ppos) 1311 { 1312 struct inode * inode = file_inode(file); 1313 struct task_struct *task = get_proc_task(inode); 1314 ssize_t length; 1315 char tmpbuf[TMPBUFLEN]; 1316 1317 if (!task) 1318 return -ESRCH; 1319 length = scnprintf(tmpbuf, TMPBUFLEN, "%u", 1320 audit_get_sessionid(task)); 1321 put_task_struct(task); 1322 return simple_read_from_buffer(buf, count, ppos, tmpbuf, length); 1323 } 1324 1325 static const struct file_operations proc_sessionid_operations = { 1326 .read = proc_sessionid_read, 1327 .llseek = generic_file_llseek, 1328 }; 1329 #endif 1330 1331 #ifdef CONFIG_FAULT_INJECTION 1332 static ssize_t proc_fault_inject_read(struct file * file, char __user * buf, 1333 size_t count, loff_t *ppos) 1334 { 1335 struct task_struct *task = get_proc_task(file_inode(file)); 1336 char buffer[PROC_NUMBUF]; 1337 size_t len; 1338 int make_it_fail; 1339 1340 if (!task) 1341 return -ESRCH; 1342 make_it_fail = task->make_it_fail; 1343 put_task_struct(task); 1344 1345 len = snprintf(buffer, sizeof(buffer), "%i\n", make_it_fail); 1346 1347 return simple_read_from_buffer(buf, count, ppos, buffer, len); 1348 } 1349 1350 static ssize_t proc_fault_inject_write(struct file * file, 1351 const char __user * buf, size_t count, loff_t *ppos) 1352 { 1353 struct task_struct *task; 1354 char buffer[PROC_NUMBUF]; 1355 int make_it_fail; 1356 int rv; 1357 1358 if (!capable(CAP_SYS_RESOURCE)) 1359 return -EPERM; 1360 memset(buffer, 0, sizeof(buffer)); 1361 if (count > sizeof(buffer) - 1) 1362 count = sizeof(buffer) - 1; 1363 if (copy_from_user(buffer, buf, count)) 1364 return -EFAULT; 1365 rv = kstrtoint(strstrip(buffer), 0, &make_it_fail); 1366 if (rv < 0) 1367 return rv; 1368 if (make_it_fail < 0 || make_it_fail > 1) 1369 return -EINVAL; 1370 1371 task = get_proc_task(file_inode(file)); 1372 if (!task) 1373 return -ESRCH; 1374 task->make_it_fail = make_it_fail; 1375 put_task_struct(task); 1376 1377 return count; 1378 } 1379 1380 static const struct file_operations proc_fault_inject_operations = { 1381 .read = proc_fault_inject_read, 1382 .write = proc_fault_inject_write, 1383 .llseek = generic_file_llseek, 1384 }; 1385 1386 static ssize_t proc_fail_nth_write(struct file *file, const char __user *buf, 1387 size_t count, loff_t *ppos) 1388 { 1389 struct task_struct *task; 1390 int err; 1391 unsigned int n; 1392 1393 err = kstrtouint_from_user(buf, count, 0, &n); 1394 if (err) 1395 return err; 1396 1397 task = get_proc_task(file_inode(file)); 1398 if (!task) 1399 return -ESRCH; 1400 task->fail_nth = n; 1401 put_task_struct(task); 1402 1403 return count; 1404 } 1405 1406 static ssize_t proc_fail_nth_read(struct file *file, char __user *buf, 1407 size_t count, loff_t *ppos) 1408 { 1409 struct task_struct *task; 1410 char numbuf[PROC_NUMBUF]; 1411 ssize_t len; 1412 1413 task = get_proc_task(file_inode(file)); 1414 if (!task) 1415 return -ESRCH; 1416 len = snprintf(numbuf, sizeof(numbuf), "%u\n", task->fail_nth); 1417 put_task_struct(task); 1418 return simple_read_from_buffer(buf, count, ppos, numbuf, len); 1419 } 1420 1421 static const struct file_operations proc_fail_nth_operations = { 1422 .read = proc_fail_nth_read, 1423 .write = proc_fail_nth_write, 1424 }; 1425 #endif 1426 1427 1428 #ifdef CONFIG_SCHED_DEBUG 1429 /* 1430 * Print out various scheduling related per-task fields: 1431 */ 1432 static int sched_show(struct seq_file *m, void *v) 1433 { 1434 struct inode *inode = m->private; 1435 struct pid_namespace *ns = proc_pid_ns(inode->i_sb); 1436 struct task_struct *p; 1437 1438 p = get_proc_task(inode); 1439 if (!p) 1440 return -ESRCH; 1441 proc_sched_show_task(p, ns, m); 1442 1443 put_task_struct(p); 1444 1445 return 0; 1446 } 1447 1448 static ssize_t 1449 sched_write(struct file *file, const char __user *buf, 1450 size_t count, loff_t *offset) 1451 { 1452 struct inode *inode = file_inode(file); 1453 struct task_struct *p; 1454 1455 p = get_proc_task(inode); 1456 if (!p) 1457 return -ESRCH; 1458 proc_sched_set_task(p); 1459 1460 put_task_struct(p); 1461 1462 return count; 1463 } 1464 1465 static int sched_open(struct inode *inode, struct file *filp) 1466 { 1467 return single_open(filp, sched_show, inode); 1468 } 1469 1470 static const struct file_operations proc_pid_sched_operations = { 1471 .open = sched_open, 1472 .read = seq_read, 1473 .write = sched_write, 1474 .llseek = seq_lseek, 1475 .release = single_release, 1476 }; 1477 1478 #endif 1479 1480 #ifdef CONFIG_SCHED_AUTOGROUP 1481 /* 1482 * Print out autogroup related information: 1483 */ 1484 static int sched_autogroup_show(struct seq_file *m, void *v) 1485 { 1486 struct inode *inode = m->private; 1487 struct task_struct *p; 1488 1489 p = get_proc_task(inode); 1490 if (!p) 1491 return -ESRCH; 1492 proc_sched_autogroup_show_task(p, m); 1493 1494 put_task_struct(p); 1495 1496 return 0; 1497 } 1498 1499 static ssize_t 1500 sched_autogroup_write(struct file *file, const char __user *buf, 1501 size_t count, loff_t *offset) 1502 { 1503 struct inode *inode = file_inode(file); 1504 struct task_struct *p; 1505 char buffer[PROC_NUMBUF]; 1506 int nice; 1507 int err; 1508 1509 memset(buffer, 0, sizeof(buffer)); 1510 if (count > sizeof(buffer) - 1) 1511 count = sizeof(buffer) - 1; 1512 if (copy_from_user(buffer, buf, count)) 1513 return -EFAULT; 1514 1515 err = kstrtoint(strstrip(buffer), 0, &nice); 1516 if (err < 0) 1517 return err; 1518 1519 p = get_proc_task(inode); 1520 if (!p) 1521 return -ESRCH; 1522 1523 err = proc_sched_autogroup_set_nice(p, nice); 1524 if (err) 1525 count = err; 1526 1527 put_task_struct(p); 1528 1529 return count; 1530 } 1531 1532 static int sched_autogroup_open(struct inode *inode, struct file *filp) 1533 { 1534 int ret; 1535 1536 ret = single_open(filp, sched_autogroup_show, NULL); 1537 if (!ret) { 1538 struct seq_file *m = filp->private_data; 1539 1540 m->private = inode; 1541 } 1542 return ret; 1543 } 1544 1545 static const struct file_operations proc_pid_sched_autogroup_operations = { 1546 .open = sched_autogroup_open, 1547 .read = seq_read, 1548 .write = sched_autogroup_write, 1549 .llseek = seq_lseek, 1550 .release = single_release, 1551 }; 1552 1553 #endif /* CONFIG_SCHED_AUTOGROUP */ 1554 1555 #ifdef CONFIG_TIME_NS 1556 static int timens_offsets_show(struct seq_file *m, void *v) 1557 { 1558 struct task_struct *p; 1559 1560 p = get_proc_task(file_inode(m->file)); 1561 if (!p) 1562 return -ESRCH; 1563 proc_timens_show_offsets(p, m); 1564 1565 put_task_struct(p); 1566 1567 return 0; 1568 } 1569 1570 static ssize_t timens_offsets_write(struct file *file, const char __user *buf, 1571 size_t count, loff_t *ppos) 1572 { 1573 struct inode *inode = file_inode(file); 1574 struct proc_timens_offset offsets[2]; 1575 char *kbuf = NULL, *pos, *next_line; 1576 struct task_struct *p; 1577 int ret, noffsets; 1578 1579 /* Only allow < page size writes at the beginning of the file */ 1580 if ((*ppos != 0) || (count >= PAGE_SIZE)) 1581 return -EINVAL; 1582 1583 /* Slurp in the user data */ 1584 kbuf = memdup_user_nul(buf, count); 1585 if (IS_ERR(kbuf)) 1586 return PTR_ERR(kbuf); 1587 1588 /* Parse the user data */ 1589 ret = -EINVAL; 1590 noffsets = 0; 1591 for (pos = kbuf; pos; pos = next_line) { 1592 struct proc_timens_offset *off = &offsets[noffsets]; 1593 char clock[10]; 1594 int err; 1595 1596 /* Find the end of line and ensure we don't look past it */ 1597 next_line = strchr(pos, '\n'); 1598 if (next_line) { 1599 *next_line = '\0'; 1600 next_line++; 1601 if (*next_line == '\0') 1602 next_line = NULL; 1603 } 1604 1605 err = sscanf(pos, "%9s %lld %lu", clock, 1606 &off->val.tv_sec, &off->val.tv_nsec); 1607 if (err != 3 || off->val.tv_nsec >= NSEC_PER_SEC) 1608 goto out; 1609 1610 clock[sizeof(clock) - 1] = 0; 1611 if (strcmp(clock, "monotonic") == 0 || 1612 strcmp(clock, __stringify(CLOCK_MONOTONIC)) == 0) 1613 off->clockid = CLOCK_MONOTONIC; 1614 else if (strcmp(clock, "boottime") == 0 || 1615 strcmp(clock, __stringify(CLOCK_BOOTTIME)) == 0) 1616 off->clockid = CLOCK_BOOTTIME; 1617 else 1618 goto out; 1619 1620 noffsets++; 1621 if (noffsets == ARRAY_SIZE(offsets)) { 1622 if (next_line) 1623 count = next_line - kbuf; 1624 break; 1625 } 1626 } 1627 1628 ret = -ESRCH; 1629 p = get_proc_task(inode); 1630 if (!p) 1631 goto out; 1632 ret = proc_timens_set_offset(file, p, offsets, noffsets); 1633 put_task_struct(p); 1634 if (ret) 1635 goto out; 1636 1637 ret = count; 1638 out: 1639 kfree(kbuf); 1640 return ret; 1641 } 1642 1643 static int timens_offsets_open(struct inode *inode, struct file *filp) 1644 { 1645 return single_open(filp, timens_offsets_show, inode); 1646 } 1647 1648 static const struct file_operations proc_timens_offsets_operations = { 1649 .open = timens_offsets_open, 1650 .read = seq_read, 1651 .write = timens_offsets_write, 1652 .llseek = seq_lseek, 1653 .release = single_release, 1654 }; 1655 #endif /* CONFIG_TIME_NS */ 1656 1657 static ssize_t comm_write(struct file *file, const char __user *buf, 1658 size_t count, loff_t *offset) 1659 { 1660 struct inode *inode = file_inode(file); 1661 struct task_struct *p; 1662 char buffer[TASK_COMM_LEN]; 1663 const size_t maxlen = sizeof(buffer) - 1; 1664 1665 memset(buffer, 0, sizeof(buffer)); 1666 if (copy_from_user(buffer, buf, count > maxlen ? maxlen : count)) 1667 return -EFAULT; 1668 1669 p = get_proc_task(inode); 1670 if (!p) 1671 return -ESRCH; 1672 1673 if (same_thread_group(current, p)) 1674 set_task_comm(p, buffer); 1675 else 1676 count = -EINVAL; 1677 1678 put_task_struct(p); 1679 1680 return count; 1681 } 1682 1683 static int comm_show(struct seq_file *m, void *v) 1684 { 1685 struct inode *inode = m->private; 1686 struct task_struct *p; 1687 1688 p = get_proc_task(inode); 1689 if (!p) 1690 return -ESRCH; 1691 1692 proc_task_name(m, p, false); 1693 seq_putc(m, '\n'); 1694 1695 put_task_struct(p); 1696 1697 return 0; 1698 } 1699 1700 static int comm_open(struct inode *inode, struct file *filp) 1701 { 1702 return single_open(filp, comm_show, inode); 1703 } 1704 1705 static const struct file_operations proc_pid_set_comm_operations = { 1706 .open = comm_open, 1707 .read = seq_read, 1708 .write = comm_write, 1709 .llseek = seq_lseek, 1710 .release = single_release, 1711 }; 1712 1713 static int proc_exe_link(struct dentry *dentry, struct path *exe_path) 1714 { 1715 struct task_struct *task; 1716 struct file *exe_file; 1717 1718 task = get_proc_task(d_inode(dentry)); 1719 if (!task) 1720 return -ENOENT; 1721 exe_file = get_task_exe_file(task); 1722 put_task_struct(task); 1723 if (exe_file) { 1724 *exe_path = exe_file->f_path; 1725 path_get(&exe_file->f_path); 1726 fput(exe_file); 1727 return 0; 1728 } else 1729 return -ENOENT; 1730 } 1731 1732 static const char *proc_pid_get_link(struct dentry *dentry, 1733 struct inode *inode, 1734 struct delayed_call *done) 1735 { 1736 struct path path; 1737 int error = -EACCES; 1738 1739 if (!dentry) 1740 return ERR_PTR(-ECHILD); 1741 1742 /* Are we allowed to snoop on the tasks file descriptors? */ 1743 if (!proc_fd_access_allowed(inode)) 1744 goto out; 1745 1746 error = PROC_I(inode)->op.proc_get_link(dentry, &path); 1747 if (error) 1748 goto out; 1749 1750 error = nd_jump_link(&path); 1751 out: 1752 return ERR_PTR(error); 1753 } 1754 1755 static int do_proc_readlink(struct path *path, char __user *buffer, int buflen) 1756 { 1757 char *tmp = (char *)__get_free_page(GFP_KERNEL); 1758 char *pathname; 1759 int len; 1760 1761 if (!tmp) 1762 return -ENOMEM; 1763 1764 pathname = d_path(path, tmp, PAGE_SIZE); 1765 len = PTR_ERR(pathname); 1766 if (IS_ERR(pathname)) 1767 goto out; 1768 len = tmp + PAGE_SIZE - 1 - pathname; 1769 1770 if (len > buflen) 1771 len = buflen; 1772 if (copy_to_user(buffer, pathname, len)) 1773 len = -EFAULT; 1774 out: 1775 free_page((unsigned long)tmp); 1776 return len; 1777 } 1778 1779 static int proc_pid_readlink(struct dentry * dentry, char __user * buffer, int buflen) 1780 { 1781 int error = -EACCES; 1782 struct inode *inode = d_inode(dentry); 1783 struct path path; 1784 1785 /* Are we allowed to snoop on the tasks file descriptors? */ 1786 if (!proc_fd_access_allowed(inode)) 1787 goto out; 1788 1789 error = PROC_I(inode)->op.proc_get_link(dentry, &path); 1790 if (error) 1791 goto out; 1792 1793 error = do_proc_readlink(&path, buffer, buflen); 1794 path_put(&path); 1795 out: 1796 return error; 1797 } 1798 1799 const struct inode_operations proc_pid_link_inode_operations = { 1800 .readlink = proc_pid_readlink, 1801 .get_link = proc_pid_get_link, 1802 .setattr = proc_setattr, 1803 }; 1804 1805 1806 /* building an inode */ 1807 1808 void task_dump_owner(struct task_struct *task, umode_t mode, 1809 kuid_t *ruid, kgid_t *rgid) 1810 { 1811 /* Depending on the state of dumpable compute who should own a 1812 * proc file for a task. 1813 */ 1814 const struct cred *cred; 1815 kuid_t uid; 1816 kgid_t gid; 1817 1818 if (unlikely(task->flags & PF_KTHREAD)) { 1819 *ruid = GLOBAL_ROOT_UID; 1820 *rgid = GLOBAL_ROOT_GID; 1821 return; 1822 } 1823 1824 /* Default to the tasks effective ownership */ 1825 rcu_read_lock(); 1826 cred = __task_cred(task); 1827 uid = cred->euid; 1828 gid = cred->egid; 1829 rcu_read_unlock(); 1830 1831 /* 1832 * Before the /proc/pid/status file was created the only way to read 1833 * the effective uid of a /process was to stat /proc/pid. Reading 1834 * /proc/pid/status is slow enough that procps and other packages 1835 * kept stating /proc/pid. To keep the rules in /proc simple I have 1836 * made this apply to all per process world readable and executable 1837 * directories. 1838 */ 1839 if (mode != (S_IFDIR|S_IRUGO|S_IXUGO)) { 1840 struct mm_struct *mm; 1841 task_lock(task); 1842 mm = task->mm; 1843 /* Make non-dumpable tasks owned by some root */ 1844 if (mm) { 1845 if (get_dumpable(mm) != SUID_DUMP_USER) { 1846 struct user_namespace *user_ns = mm->user_ns; 1847 1848 uid = make_kuid(user_ns, 0); 1849 if (!uid_valid(uid)) 1850 uid = GLOBAL_ROOT_UID; 1851 1852 gid = make_kgid(user_ns, 0); 1853 if (!gid_valid(gid)) 1854 gid = GLOBAL_ROOT_GID; 1855 } 1856 } else { 1857 uid = GLOBAL_ROOT_UID; 1858 gid = GLOBAL_ROOT_GID; 1859 } 1860 task_unlock(task); 1861 } 1862 *ruid = uid; 1863 *rgid = gid; 1864 } 1865 1866 void proc_pid_evict_inode(struct proc_inode *ei) 1867 { 1868 struct pid *pid = ei->pid; 1869 1870 if (S_ISDIR(ei->vfs_inode.i_mode)) { 1871 spin_lock(&pid->lock); 1872 hlist_del_init_rcu(&ei->sibling_inodes); 1873 spin_unlock(&pid->lock); 1874 } 1875 1876 put_pid(pid); 1877 } 1878 1879 struct inode *proc_pid_make_inode(struct super_block * sb, 1880 struct task_struct *task, umode_t mode) 1881 { 1882 struct inode * inode; 1883 struct proc_inode *ei; 1884 struct pid *pid; 1885 1886 /* We need a new inode */ 1887 1888 inode = new_inode(sb); 1889 if (!inode) 1890 goto out; 1891 1892 /* Common stuff */ 1893 ei = PROC_I(inode); 1894 inode->i_mode = mode; 1895 inode->i_ino = get_next_ino(); 1896 inode->i_mtime = inode->i_atime = inode->i_ctime = current_time(inode); 1897 inode->i_op = &proc_def_inode_operations; 1898 1899 /* 1900 * grab the reference to task. 1901 */ 1902 pid = get_task_pid(task, PIDTYPE_PID); 1903 if (!pid) 1904 goto out_unlock; 1905 1906 /* Let the pid remember us for quick removal */ 1907 ei->pid = pid; 1908 if (S_ISDIR(mode)) { 1909 spin_lock(&pid->lock); 1910 hlist_add_head_rcu(&ei->sibling_inodes, &pid->inodes); 1911 spin_unlock(&pid->lock); 1912 } 1913 1914 task_dump_owner(task, 0, &inode->i_uid, &inode->i_gid); 1915 security_task_to_inode(task, inode); 1916 1917 out: 1918 return inode; 1919 1920 out_unlock: 1921 iput(inode); 1922 return NULL; 1923 } 1924 1925 int pid_getattr(const struct path *path, struct kstat *stat, 1926 u32 request_mask, unsigned int query_flags) 1927 { 1928 struct inode *inode = d_inode(path->dentry); 1929 struct proc_fs_info *fs_info = proc_sb_info(inode->i_sb); 1930 struct task_struct *task; 1931 1932 generic_fillattr(inode, stat); 1933 1934 stat->uid = GLOBAL_ROOT_UID; 1935 stat->gid = GLOBAL_ROOT_GID; 1936 rcu_read_lock(); 1937 task = pid_task(proc_pid(inode), PIDTYPE_PID); 1938 if (task) { 1939 if (!has_pid_permissions(fs_info, task, HIDEPID_INVISIBLE)) { 1940 rcu_read_unlock(); 1941 /* 1942 * This doesn't prevent learning whether PID exists, 1943 * it only makes getattr() consistent with readdir(). 1944 */ 1945 return -ENOENT; 1946 } 1947 task_dump_owner(task, inode->i_mode, &stat->uid, &stat->gid); 1948 } 1949 rcu_read_unlock(); 1950 return 0; 1951 } 1952 1953 /* dentry stuff */ 1954 1955 /* 1956 * Set <pid>/... inode ownership (can change due to setuid(), etc.) 1957 */ 1958 void pid_update_inode(struct task_struct *task, struct inode *inode) 1959 { 1960 task_dump_owner(task, inode->i_mode, &inode->i_uid, &inode->i_gid); 1961 1962 inode->i_mode &= ~(S_ISUID | S_ISGID); 1963 security_task_to_inode(task, inode); 1964 } 1965 1966 /* 1967 * Rewrite the inode's ownerships here because the owning task may have 1968 * performed a setuid(), etc. 1969 * 1970 */ 1971 static int pid_revalidate(struct dentry *dentry, unsigned int flags) 1972 { 1973 struct inode *inode; 1974 struct task_struct *task; 1975 1976 if (flags & LOOKUP_RCU) 1977 return -ECHILD; 1978 1979 inode = d_inode(dentry); 1980 task = get_proc_task(inode); 1981 1982 if (task) { 1983 pid_update_inode(task, inode); 1984 put_task_struct(task); 1985 return 1; 1986 } 1987 return 0; 1988 } 1989 1990 static inline bool proc_inode_is_dead(struct inode *inode) 1991 { 1992 return !proc_pid(inode)->tasks[PIDTYPE_PID].first; 1993 } 1994 1995 int pid_delete_dentry(const struct dentry *dentry) 1996 { 1997 /* Is the task we represent dead? 1998 * If so, then don't put the dentry on the lru list, 1999 * kill it immediately. 2000 */ 2001 return proc_inode_is_dead(d_inode(dentry)); 2002 } 2003 2004 const struct dentry_operations pid_dentry_operations = 2005 { 2006 .d_revalidate = pid_revalidate, 2007 .d_delete = pid_delete_dentry, 2008 }; 2009 2010 /* Lookups */ 2011 2012 /* 2013 * Fill a directory entry. 2014 * 2015 * If possible create the dcache entry and derive our inode number and 2016 * file type from dcache entry. 2017 * 2018 * Since all of the proc inode numbers are dynamically generated, the inode 2019 * numbers do not exist until the inode is cache. This means creating the 2020 * the dcache entry in readdir is necessary to keep the inode numbers 2021 * reported by readdir in sync with the inode numbers reported 2022 * by stat. 2023 */ 2024 bool proc_fill_cache(struct file *file, struct dir_context *ctx, 2025 const char *name, unsigned int len, 2026 instantiate_t instantiate, struct task_struct *task, const void *ptr) 2027 { 2028 struct dentry *child, *dir = file->f_path.dentry; 2029 struct qstr qname = QSTR_INIT(name, len); 2030 struct inode *inode; 2031 unsigned type = DT_UNKNOWN; 2032 ino_t ino = 1; 2033 2034 child = d_hash_and_lookup(dir, &qname); 2035 if (!child) { 2036 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq); 2037 child = d_alloc_parallel(dir, &qname, &wq); 2038 if (IS_ERR(child)) 2039 goto end_instantiate; 2040 if (d_in_lookup(child)) { 2041 struct dentry *res; 2042 res = instantiate(child, task, ptr); 2043 d_lookup_done(child); 2044 if (unlikely(res)) { 2045 dput(child); 2046 child = res; 2047 if (IS_ERR(child)) 2048 goto end_instantiate; 2049 } 2050 } 2051 } 2052 inode = d_inode(child); 2053 ino = inode->i_ino; 2054 type = inode->i_mode >> 12; 2055 dput(child); 2056 end_instantiate: 2057 return dir_emit(ctx, name, len, ino, type); 2058 } 2059 2060 /* 2061 * dname_to_vma_addr - maps a dentry name into two unsigned longs 2062 * which represent vma start and end addresses. 2063 */ 2064 static int dname_to_vma_addr(struct dentry *dentry, 2065 unsigned long *start, unsigned long *end) 2066 { 2067 const char *str = dentry->d_name.name; 2068 unsigned long long sval, eval; 2069 unsigned int len; 2070 2071 if (str[0] == '0' && str[1] != '-') 2072 return -EINVAL; 2073 len = _parse_integer(str, 16, &sval); 2074 if (len & KSTRTOX_OVERFLOW) 2075 return -EINVAL; 2076 if (sval != (unsigned long)sval) 2077 return -EINVAL; 2078 str += len; 2079 2080 if (*str != '-') 2081 return -EINVAL; 2082 str++; 2083 2084 if (str[0] == '0' && str[1]) 2085 return -EINVAL; 2086 len = _parse_integer(str, 16, &eval); 2087 if (len & KSTRTOX_OVERFLOW) 2088 return -EINVAL; 2089 if (eval != (unsigned long)eval) 2090 return -EINVAL; 2091 str += len; 2092 2093 if (*str != '\0') 2094 return -EINVAL; 2095 2096 *start = sval; 2097 *end = eval; 2098 2099 return 0; 2100 } 2101 2102 static int map_files_d_revalidate(struct dentry *dentry, unsigned int flags) 2103 { 2104 unsigned long vm_start, vm_end; 2105 bool exact_vma_exists = false; 2106 struct mm_struct *mm = NULL; 2107 struct task_struct *task; 2108 struct inode *inode; 2109 int status = 0; 2110 2111 if (flags & LOOKUP_RCU) 2112 return -ECHILD; 2113 2114 inode = d_inode(dentry); 2115 task = get_proc_task(inode); 2116 if (!task) 2117 goto out_notask; 2118 2119 mm = mm_access(task, PTRACE_MODE_READ_FSCREDS); 2120 if (IS_ERR_OR_NULL(mm)) 2121 goto out; 2122 2123 if (!dname_to_vma_addr(dentry, &vm_start, &vm_end)) { 2124 status = mmap_read_lock_killable(mm); 2125 if (!status) { 2126 exact_vma_exists = !!find_exact_vma(mm, vm_start, 2127 vm_end); 2128 mmap_read_unlock(mm); 2129 } 2130 } 2131 2132 mmput(mm); 2133 2134 if (exact_vma_exists) { 2135 task_dump_owner(task, 0, &inode->i_uid, &inode->i_gid); 2136 2137 security_task_to_inode(task, inode); 2138 status = 1; 2139 } 2140 2141 out: 2142 put_task_struct(task); 2143 2144 out_notask: 2145 return status; 2146 } 2147 2148 static const struct dentry_operations tid_map_files_dentry_operations = { 2149 .d_revalidate = map_files_d_revalidate, 2150 .d_delete = pid_delete_dentry, 2151 }; 2152 2153 static int map_files_get_link(struct dentry *dentry, struct path *path) 2154 { 2155 unsigned long vm_start, vm_end; 2156 struct vm_area_struct *vma; 2157 struct task_struct *task; 2158 struct mm_struct *mm; 2159 int rc; 2160 2161 rc = -ENOENT; 2162 task = get_proc_task(d_inode(dentry)); 2163 if (!task) 2164 goto out; 2165 2166 mm = get_task_mm(task); 2167 put_task_struct(task); 2168 if (!mm) 2169 goto out; 2170 2171 rc = dname_to_vma_addr(dentry, &vm_start, &vm_end); 2172 if (rc) 2173 goto out_mmput; 2174 2175 rc = mmap_read_lock_killable(mm); 2176 if (rc) 2177 goto out_mmput; 2178 2179 rc = -ENOENT; 2180 vma = find_exact_vma(mm, vm_start, vm_end); 2181 if (vma && vma->vm_file) { 2182 *path = vma->vm_file->f_path; 2183 path_get(path); 2184 rc = 0; 2185 } 2186 mmap_read_unlock(mm); 2187 2188 out_mmput: 2189 mmput(mm); 2190 out: 2191 return rc; 2192 } 2193 2194 struct map_files_info { 2195 unsigned long start; 2196 unsigned long end; 2197 fmode_t mode; 2198 }; 2199 2200 /* 2201 * Only allow CAP_SYS_ADMIN and CAP_CHECKPOINT_RESTORE to follow the links, due 2202 * to concerns about how the symlinks may be used to bypass permissions on 2203 * ancestor directories in the path to the file in question. 2204 */ 2205 static const char * 2206 proc_map_files_get_link(struct dentry *dentry, 2207 struct inode *inode, 2208 struct delayed_call *done) 2209 { 2210 if (!checkpoint_restore_ns_capable(&init_user_ns)) 2211 return ERR_PTR(-EPERM); 2212 2213 return proc_pid_get_link(dentry, inode, done); 2214 } 2215 2216 /* 2217 * Identical to proc_pid_link_inode_operations except for get_link() 2218 */ 2219 static const struct inode_operations proc_map_files_link_inode_operations = { 2220 .readlink = proc_pid_readlink, 2221 .get_link = proc_map_files_get_link, 2222 .setattr = proc_setattr, 2223 }; 2224 2225 static struct dentry * 2226 proc_map_files_instantiate(struct dentry *dentry, 2227 struct task_struct *task, const void *ptr) 2228 { 2229 fmode_t mode = (fmode_t)(unsigned long)ptr; 2230 struct proc_inode *ei; 2231 struct inode *inode; 2232 2233 inode = proc_pid_make_inode(dentry->d_sb, task, S_IFLNK | 2234 ((mode & FMODE_READ ) ? S_IRUSR : 0) | 2235 ((mode & FMODE_WRITE) ? S_IWUSR : 0)); 2236 if (!inode) 2237 return ERR_PTR(-ENOENT); 2238 2239 ei = PROC_I(inode); 2240 ei->op.proc_get_link = map_files_get_link; 2241 2242 inode->i_op = &proc_map_files_link_inode_operations; 2243 inode->i_size = 64; 2244 2245 d_set_d_op(dentry, &tid_map_files_dentry_operations); 2246 return d_splice_alias(inode, dentry); 2247 } 2248 2249 static struct dentry *proc_map_files_lookup(struct inode *dir, 2250 struct dentry *dentry, unsigned int flags) 2251 { 2252 unsigned long vm_start, vm_end; 2253 struct vm_area_struct *vma; 2254 struct task_struct *task; 2255 struct dentry *result; 2256 struct mm_struct *mm; 2257 2258 result = ERR_PTR(-ENOENT); 2259 task = get_proc_task(dir); 2260 if (!task) 2261 goto out; 2262 2263 result = ERR_PTR(-EACCES); 2264 if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS)) 2265 goto out_put_task; 2266 2267 result = ERR_PTR(-ENOENT); 2268 if (dname_to_vma_addr(dentry, &vm_start, &vm_end)) 2269 goto out_put_task; 2270 2271 mm = get_task_mm(task); 2272 if (!mm) 2273 goto out_put_task; 2274 2275 result = ERR_PTR(-EINTR); 2276 if (mmap_read_lock_killable(mm)) 2277 goto out_put_mm; 2278 2279 result = ERR_PTR(-ENOENT); 2280 vma = find_exact_vma(mm, vm_start, vm_end); 2281 if (!vma) 2282 goto out_no_vma; 2283 2284 if (vma->vm_file) 2285 result = proc_map_files_instantiate(dentry, task, 2286 (void *)(unsigned long)vma->vm_file->f_mode); 2287 2288 out_no_vma: 2289 mmap_read_unlock(mm); 2290 out_put_mm: 2291 mmput(mm); 2292 out_put_task: 2293 put_task_struct(task); 2294 out: 2295 return result; 2296 } 2297 2298 static const struct inode_operations proc_map_files_inode_operations = { 2299 .lookup = proc_map_files_lookup, 2300 .permission = proc_fd_permission, 2301 .setattr = proc_setattr, 2302 }; 2303 2304 static int 2305 proc_map_files_readdir(struct file *file, struct dir_context *ctx) 2306 { 2307 struct vm_area_struct *vma; 2308 struct task_struct *task; 2309 struct mm_struct *mm; 2310 unsigned long nr_files, pos, i; 2311 GENRADIX(struct map_files_info) fa; 2312 struct map_files_info *p; 2313 int ret; 2314 2315 genradix_init(&fa); 2316 2317 ret = -ENOENT; 2318 task = get_proc_task(file_inode(file)); 2319 if (!task) 2320 goto out; 2321 2322 ret = -EACCES; 2323 if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS)) 2324 goto out_put_task; 2325 2326 ret = 0; 2327 if (!dir_emit_dots(file, ctx)) 2328 goto out_put_task; 2329 2330 mm = get_task_mm(task); 2331 if (!mm) 2332 goto out_put_task; 2333 2334 ret = mmap_read_lock_killable(mm); 2335 if (ret) { 2336 mmput(mm); 2337 goto out_put_task; 2338 } 2339 2340 nr_files = 0; 2341 2342 /* 2343 * We need two passes here: 2344 * 2345 * 1) Collect vmas of mapped files with mmap_lock taken 2346 * 2) Release mmap_lock and instantiate entries 2347 * 2348 * otherwise we get lockdep complained, since filldir() 2349 * routine might require mmap_lock taken in might_fault(). 2350 */ 2351 2352 for (vma = mm->mmap, pos = 2; vma; vma = vma->vm_next) { 2353 if (!vma->vm_file) 2354 continue; 2355 if (++pos <= ctx->pos) 2356 continue; 2357 2358 p = genradix_ptr_alloc(&fa, nr_files++, GFP_KERNEL); 2359 if (!p) { 2360 ret = -ENOMEM; 2361 mmap_read_unlock(mm); 2362 mmput(mm); 2363 goto out_put_task; 2364 } 2365 2366 p->start = vma->vm_start; 2367 p->end = vma->vm_end; 2368 p->mode = vma->vm_file->f_mode; 2369 } 2370 mmap_read_unlock(mm); 2371 mmput(mm); 2372 2373 for (i = 0; i < nr_files; i++) { 2374 char buf[4 * sizeof(long) + 2]; /* max: %lx-%lx\0 */ 2375 unsigned int len; 2376 2377 p = genradix_ptr(&fa, i); 2378 len = snprintf(buf, sizeof(buf), "%lx-%lx", p->start, p->end); 2379 if (!proc_fill_cache(file, ctx, 2380 buf, len, 2381 proc_map_files_instantiate, 2382 task, 2383 (void *)(unsigned long)p->mode)) 2384 break; 2385 ctx->pos++; 2386 } 2387 2388 out_put_task: 2389 put_task_struct(task); 2390 out: 2391 genradix_free(&fa); 2392 return ret; 2393 } 2394 2395 static const struct file_operations proc_map_files_operations = { 2396 .read = generic_read_dir, 2397 .iterate_shared = proc_map_files_readdir, 2398 .llseek = generic_file_llseek, 2399 }; 2400 2401 #if defined(CONFIG_CHECKPOINT_RESTORE) && defined(CONFIG_POSIX_TIMERS) 2402 struct timers_private { 2403 struct pid *pid; 2404 struct task_struct *task; 2405 struct sighand_struct *sighand; 2406 struct pid_namespace *ns; 2407 unsigned long flags; 2408 }; 2409 2410 static void *timers_start(struct seq_file *m, loff_t *pos) 2411 { 2412 struct timers_private *tp = m->private; 2413 2414 tp->task = get_pid_task(tp->pid, PIDTYPE_PID); 2415 if (!tp->task) 2416 return ERR_PTR(-ESRCH); 2417 2418 tp->sighand = lock_task_sighand(tp->task, &tp->flags); 2419 if (!tp->sighand) 2420 return ERR_PTR(-ESRCH); 2421 2422 return seq_list_start(&tp->task->signal->posix_timers, *pos); 2423 } 2424 2425 static void *timers_next(struct seq_file *m, void *v, loff_t *pos) 2426 { 2427 struct timers_private *tp = m->private; 2428 return seq_list_next(v, &tp->task->signal->posix_timers, pos); 2429 } 2430 2431 static void timers_stop(struct seq_file *m, void *v) 2432 { 2433 struct timers_private *tp = m->private; 2434 2435 if (tp->sighand) { 2436 unlock_task_sighand(tp->task, &tp->flags); 2437 tp->sighand = NULL; 2438 } 2439 2440 if (tp->task) { 2441 put_task_struct(tp->task); 2442 tp->task = NULL; 2443 } 2444 } 2445 2446 static int show_timer(struct seq_file *m, void *v) 2447 { 2448 struct k_itimer *timer; 2449 struct timers_private *tp = m->private; 2450 int notify; 2451 static const char * const nstr[] = { 2452 [SIGEV_SIGNAL] = "signal", 2453 [SIGEV_NONE] = "none", 2454 [SIGEV_THREAD] = "thread", 2455 }; 2456 2457 timer = list_entry((struct list_head *)v, struct k_itimer, list); 2458 notify = timer->it_sigev_notify; 2459 2460 seq_printf(m, "ID: %d\n", timer->it_id); 2461 seq_printf(m, "signal: %d/%px\n", 2462 timer->sigq->info.si_signo, 2463 timer->sigq->info.si_value.sival_ptr); 2464 seq_printf(m, "notify: %s/%s.%d\n", 2465 nstr[notify & ~SIGEV_THREAD_ID], 2466 (notify & SIGEV_THREAD_ID) ? "tid" : "pid", 2467 pid_nr_ns(timer->it_pid, tp->ns)); 2468 seq_printf(m, "ClockID: %d\n", timer->it_clock); 2469 2470 return 0; 2471 } 2472 2473 static const struct seq_operations proc_timers_seq_ops = { 2474 .start = timers_start, 2475 .next = timers_next, 2476 .stop = timers_stop, 2477 .show = show_timer, 2478 }; 2479 2480 static int proc_timers_open(struct inode *inode, struct file *file) 2481 { 2482 struct timers_private *tp; 2483 2484 tp = __seq_open_private(file, &proc_timers_seq_ops, 2485 sizeof(struct timers_private)); 2486 if (!tp) 2487 return -ENOMEM; 2488 2489 tp->pid = proc_pid(inode); 2490 tp->ns = proc_pid_ns(inode->i_sb); 2491 return 0; 2492 } 2493 2494 static const struct file_operations proc_timers_operations = { 2495 .open = proc_timers_open, 2496 .read = seq_read, 2497 .llseek = seq_lseek, 2498 .release = seq_release_private, 2499 }; 2500 #endif 2501 2502 static ssize_t timerslack_ns_write(struct file *file, const char __user *buf, 2503 size_t count, loff_t *offset) 2504 { 2505 struct inode *inode = file_inode(file); 2506 struct task_struct *p; 2507 u64 slack_ns; 2508 int err; 2509 2510 err = kstrtoull_from_user(buf, count, 10, &slack_ns); 2511 if (err < 0) 2512 return err; 2513 2514 p = get_proc_task(inode); 2515 if (!p) 2516 return -ESRCH; 2517 2518 if (p != current) { 2519 rcu_read_lock(); 2520 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) { 2521 rcu_read_unlock(); 2522 count = -EPERM; 2523 goto out; 2524 } 2525 rcu_read_unlock(); 2526 2527 err = security_task_setscheduler(p); 2528 if (err) { 2529 count = err; 2530 goto out; 2531 } 2532 } 2533 2534 task_lock(p); 2535 if (slack_ns == 0) 2536 p->timer_slack_ns = p->default_timer_slack_ns; 2537 else 2538 p->timer_slack_ns = slack_ns; 2539 task_unlock(p); 2540 2541 out: 2542 put_task_struct(p); 2543 2544 return count; 2545 } 2546 2547 static int timerslack_ns_show(struct seq_file *m, void *v) 2548 { 2549 struct inode *inode = m->private; 2550 struct task_struct *p; 2551 int err = 0; 2552 2553 p = get_proc_task(inode); 2554 if (!p) 2555 return -ESRCH; 2556 2557 if (p != current) { 2558 rcu_read_lock(); 2559 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) { 2560 rcu_read_unlock(); 2561 err = -EPERM; 2562 goto out; 2563 } 2564 rcu_read_unlock(); 2565 2566 err = security_task_getscheduler(p); 2567 if (err) 2568 goto out; 2569 } 2570 2571 task_lock(p); 2572 seq_printf(m, "%llu\n", p->timer_slack_ns); 2573 task_unlock(p); 2574 2575 out: 2576 put_task_struct(p); 2577 2578 return err; 2579 } 2580 2581 static int timerslack_ns_open(struct inode *inode, struct file *filp) 2582 { 2583 return single_open(filp, timerslack_ns_show, inode); 2584 } 2585 2586 static const struct file_operations proc_pid_set_timerslack_ns_operations = { 2587 .open = timerslack_ns_open, 2588 .read = seq_read, 2589 .write = timerslack_ns_write, 2590 .llseek = seq_lseek, 2591 .release = single_release, 2592 }; 2593 2594 static struct dentry *proc_pident_instantiate(struct dentry *dentry, 2595 struct task_struct *task, const void *ptr) 2596 { 2597 const struct pid_entry *p = ptr; 2598 struct inode *inode; 2599 struct proc_inode *ei; 2600 2601 inode = proc_pid_make_inode(dentry->d_sb, task, p->mode); 2602 if (!inode) 2603 return ERR_PTR(-ENOENT); 2604 2605 ei = PROC_I(inode); 2606 if (S_ISDIR(inode->i_mode)) 2607 set_nlink(inode, 2); /* Use getattr to fix if necessary */ 2608 if (p->iop) 2609 inode->i_op = p->iop; 2610 if (p->fop) 2611 inode->i_fop = p->fop; 2612 ei->op = p->op; 2613 pid_update_inode(task, inode); 2614 d_set_d_op(dentry, &pid_dentry_operations); 2615 return d_splice_alias(inode, dentry); 2616 } 2617 2618 static struct dentry *proc_pident_lookup(struct inode *dir, 2619 struct dentry *dentry, 2620 const struct pid_entry *p, 2621 const struct pid_entry *end) 2622 { 2623 struct task_struct *task = get_proc_task(dir); 2624 struct dentry *res = ERR_PTR(-ENOENT); 2625 2626 if (!task) 2627 goto out_no_task; 2628 2629 /* 2630 * Yes, it does not scale. And it should not. Don't add 2631 * new entries into /proc/<tgid>/ without very good reasons. 2632 */ 2633 for (; p < end; p++) { 2634 if (p->len != dentry->d_name.len) 2635 continue; 2636 if (!memcmp(dentry->d_name.name, p->name, p->len)) { 2637 res = proc_pident_instantiate(dentry, task, p); 2638 break; 2639 } 2640 } 2641 put_task_struct(task); 2642 out_no_task: 2643 return res; 2644 } 2645 2646 static int proc_pident_readdir(struct file *file, struct dir_context *ctx, 2647 const struct pid_entry *ents, unsigned int nents) 2648 { 2649 struct task_struct *task = get_proc_task(file_inode(file)); 2650 const struct pid_entry *p; 2651 2652 if (!task) 2653 return -ENOENT; 2654 2655 if (!dir_emit_dots(file, ctx)) 2656 goto out; 2657 2658 if (ctx->pos >= nents + 2) 2659 goto out; 2660 2661 for (p = ents + (ctx->pos - 2); p < ents + nents; p++) { 2662 if (!proc_fill_cache(file, ctx, p->name, p->len, 2663 proc_pident_instantiate, task, p)) 2664 break; 2665 ctx->pos++; 2666 } 2667 out: 2668 put_task_struct(task); 2669 return 0; 2670 } 2671 2672 #ifdef CONFIG_SECURITY 2673 static ssize_t proc_pid_attr_read(struct file * file, char __user * buf, 2674 size_t count, loff_t *ppos) 2675 { 2676 struct inode * inode = file_inode(file); 2677 char *p = NULL; 2678 ssize_t length; 2679 struct task_struct *task = get_proc_task(inode); 2680 2681 if (!task) 2682 return -ESRCH; 2683 2684 length = security_getprocattr(task, PROC_I(inode)->op.lsm, 2685 (char*)file->f_path.dentry->d_name.name, 2686 &p); 2687 put_task_struct(task); 2688 if (length > 0) 2689 length = simple_read_from_buffer(buf, count, ppos, p, length); 2690 kfree(p); 2691 return length; 2692 } 2693 2694 static ssize_t proc_pid_attr_write(struct file * file, const char __user * buf, 2695 size_t count, loff_t *ppos) 2696 { 2697 struct inode * inode = file_inode(file); 2698 struct task_struct *task; 2699 void *page; 2700 int rv; 2701 2702 rcu_read_lock(); 2703 task = pid_task(proc_pid(inode), PIDTYPE_PID); 2704 if (!task) { 2705 rcu_read_unlock(); 2706 return -ESRCH; 2707 } 2708 /* A task may only write its own attributes. */ 2709 if (current != task) { 2710 rcu_read_unlock(); 2711 return -EACCES; 2712 } 2713 /* Prevent changes to overridden credentials. */ 2714 if (current_cred() != current_real_cred()) { 2715 rcu_read_unlock(); 2716 return -EBUSY; 2717 } 2718 rcu_read_unlock(); 2719 2720 if (count > PAGE_SIZE) 2721 count = PAGE_SIZE; 2722 2723 /* No partial writes. */ 2724 if (*ppos != 0) 2725 return -EINVAL; 2726 2727 page = memdup_user(buf, count); 2728 if (IS_ERR(page)) { 2729 rv = PTR_ERR(page); 2730 goto out; 2731 } 2732 2733 /* Guard against adverse ptrace interaction */ 2734 rv = mutex_lock_interruptible(¤t->signal->cred_guard_mutex); 2735 if (rv < 0) 2736 goto out_free; 2737 2738 rv = security_setprocattr(PROC_I(inode)->op.lsm, 2739 file->f_path.dentry->d_name.name, page, 2740 count); 2741 mutex_unlock(¤t->signal->cred_guard_mutex); 2742 out_free: 2743 kfree(page); 2744 out: 2745 return rv; 2746 } 2747 2748 static const struct file_operations proc_pid_attr_operations = { 2749 .read = proc_pid_attr_read, 2750 .write = proc_pid_attr_write, 2751 .llseek = generic_file_llseek, 2752 }; 2753 2754 #define LSM_DIR_OPS(LSM) \ 2755 static int proc_##LSM##_attr_dir_iterate(struct file *filp, \ 2756 struct dir_context *ctx) \ 2757 { \ 2758 return proc_pident_readdir(filp, ctx, \ 2759 LSM##_attr_dir_stuff, \ 2760 ARRAY_SIZE(LSM##_attr_dir_stuff)); \ 2761 } \ 2762 \ 2763 static const struct file_operations proc_##LSM##_attr_dir_ops = { \ 2764 .read = generic_read_dir, \ 2765 .iterate = proc_##LSM##_attr_dir_iterate, \ 2766 .llseek = default_llseek, \ 2767 }; \ 2768 \ 2769 static struct dentry *proc_##LSM##_attr_dir_lookup(struct inode *dir, \ 2770 struct dentry *dentry, unsigned int flags) \ 2771 { \ 2772 return proc_pident_lookup(dir, dentry, \ 2773 LSM##_attr_dir_stuff, \ 2774 LSM##_attr_dir_stuff + ARRAY_SIZE(LSM##_attr_dir_stuff)); \ 2775 } \ 2776 \ 2777 static const struct inode_operations proc_##LSM##_attr_dir_inode_ops = { \ 2778 .lookup = proc_##LSM##_attr_dir_lookup, \ 2779 .getattr = pid_getattr, \ 2780 .setattr = proc_setattr, \ 2781 } 2782 2783 #ifdef CONFIG_SECURITY_SMACK 2784 static const struct pid_entry smack_attr_dir_stuff[] = { 2785 ATTR("smack", "current", 0666), 2786 }; 2787 LSM_DIR_OPS(smack); 2788 #endif 2789 2790 #ifdef CONFIG_SECURITY_APPARMOR 2791 static const struct pid_entry apparmor_attr_dir_stuff[] = { 2792 ATTR("apparmor", "current", 0666), 2793 ATTR("apparmor", "prev", 0444), 2794 ATTR("apparmor", "exec", 0666), 2795 }; 2796 LSM_DIR_OPS(apparmor); 2797 #endif 2798 2799 static const struct pid_entry attr_dir_stuff[] = { 2800 ATTR(NULL, "current", 0666), 2801 ATTR(NULL, "prev", 0444), 2802 ATTR(NULL, "exec", 0666), 2803 ATTR(NULL, "fscreate", 0666), 2804 ATTR(NULL, "keycreate", 0666), 2805 ATTR(NULL, "sockcreate", 0666), 2806 #ifdef CONFIG_SECURITY_SMACK 2807 DIR("smack", 0555, 2808 proc_smack_attr_dir_inode_ops, proc_smack_attr_dir_ops), 2809 #endif 2810 #ifdef CONFIG_SECURITY_APPARMOR 2811 DIR("apparmor", 0555, 2812 proc_apparmor_attr_dir_inode_ops, proc_apparmor_attr_dir_ops), 2813 #endif 2814 }; 2815 2816 static int proc_attr_dir_readdir(struct file *file, struct dir_context *ctx) 2817 { 2818 return proc_pident_readdir(file, ctx, 2819 attr_dir_stuff, ARRAY_SIZE(attr_dir_stuff)); 2820 } 2821 2822 static const struct file_operations proc_attr_dir_operations = { 2823 .read = generic_read_dir, 2824 .iterate_shared = proc_attr_dir_readdir, 2825 .llseek = generic_file_llseek, 2826 }; 2827 2828 static struct dentry *proc_attr_dir_lookup(struct inode *dir, 2829 struct dentry *dentry, unsigned int flags) 2830 { 2831 return proc_pident_lookup(dir, dentry, 2832 attr_dir_stuff, 2833 attr_dir_stuff + ARRAY_SIZE(attr_dir_stuff)); 2834 } 2835 2836 static const struct inode_operations proc_attr_dir_inode_operations = { 2837 .lookup = proc_attr_dir_lookup, 2838 .getattr = pid_getattr, 2839 .setattr = proc_setattr, 2840 }; 2841 2842 #endif 2843 2844 #ifdef CONFIG_ELF_CORE 2845 static ssize_t proc_coredump_filter_read(struct file *file, char __user *buf, 2846 size_t count, loff_t *ppos) 2847 { 2848 struct task_struct *task = get_proc_task(file_inode(file)); 2849 struct mm_struct *mm; 2850 char buffer[PROC_NUMBUF]; 2851 size_t len; 2852 int ret; 2853 2854 if (!task) 2855 return -ESRCH; 2856 2857 ret = 0; 2858 mm = get_task_mm(task); 2859 if (mm) { 2860 len = snprintf(buffer, sizeof(buffer), "%08lx\n", 2861 ((mm->flags & MMF_DUMP_FILTER_MASK) >> 2862 MMF_DUMP_FILTER_SHIFT)); 2863 mmput(mm); 2864 ret = simple_read_from_buffer(buf, count, ppos, buffer, len); 2865 } 2866 2867 put_task_struct(task); 2868 2869 return ret; 2870 } 2871 2872 static ssize_t proc_coredump_filter_write(struct file *file, 2873 const char __user *buf, 2874 size_t count, 2875 loff_t *ppos) 2876 { 2877 struct task_struct *task; 2878 struct mm_struct *mm; 2879 unsigned int val; 2880 int ret; 2881 int i; 2882 unsigned long mask; 2883 2884 ret = kstrtouint_from_user(buf, count, 0, &val); 2885 if (ret < 0) 2886 return ret; 2887 2888 ret = -ESRCH; 2889 task = get_proc_task(file_inode(file)); 2890 if (!task) 2891 goto out_no_task; 2892 2893 mm = get_task_mm(task); 2894 if (!mm) 2895 goto out_no_mm; 2896 ret = 0; 2897 2898 for (i = 0, mask = 1; i < MMF_DUMP_FILTER_BITS; i++, mask <<= 1) { 2899 if (val & mask) 2900 set_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags); 2901 else 2902 clear_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags); 2903 } 2904 2905 mmput(mm); 2906 out_no_mm: 2907 put_task_struct(task); 2908 out_no_task: 2909 if (ret < 0) 2910 return ret; 2911 return count; 2912 } 2913 2914 static const struct file_operations proc_coredump_filter_operations = { 2915 .read = proc_coredump_filter_read, 2916 .write = proc_coredump_filter_write, 2917 .llseek = generic_file_llseek, 2918 }; 2919 #endif 2920 2921 #ifdef CONFIG_TASK_IO_ACCOUNTING 2922 static int do_io_accounting(struct task_struct *task, struct seq_file *m, int whole) 2923 { 2924 struct task_io_accounting acct = task->ioac; 2925 unsigned long flags; 2926 int result; 2927 2928 result = mutex_lock_killable(&task->signal->exec_update_mutex); 2929 if (result) 2930 return result; 2931 2932 if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS)) { 2933 result = -EACCES; 2934 goto out_unlock; 2935 } 2936 2937 if (whole && lock_task_sighand(task, &flags)) { 2938 struct task_struct *t = task; 2939 2940 task_io_accounting_add(&acct, &task->signal->ioac); 2941 while_each_thread(task, t) 2942 task_io_accounting_add(&acct, &t->ioac); 2943 2944 unlock_task_sighand(task, &flags); 2945 } 2946 seq_printf(m, 2947 "rchar: %llu\n" 2948 "wchar: %llu\n" 2949 "syscr: %llu\n" 2950 "syscw: %llu\n" 2951 "read_bytes: %llu\n" 2952 "write_bytes: %llu\n" 2953 "cancelled_write_bytes: %llu\n", 2954 (unsigned long long)acct.rchar, 2955 (unsigned long long)acct.wchar, 2956 (unsigned long long)acct.syscr, 2957 (unsigned long long)acct.syscw, 2958 (unsigned long long)acct.read_bytes, 2959 (unsigned long long)acct.write_bytes, 2960 (unsigned long long)acct.cancelled_write_bytes); 2961 result = 0; 2962 2963 out_unlock: 2964 mutex_unlock(&task->signal->exec_update_mutex); 2965 return result; 2966 } 2967 2968 static int proc_tid_io_accounting(struct seq_file *m, struct pid_namespace *ns, 2969 struct pid *pid, struct task_struct *task) 2970 { 2971 return do_io_accounting(task, m, 0); 2972 } 2973 2974 static int proc_tgid_io_accounting(struct seq_file *m, struct pid_namespace *ns, 2975 struct pid *pid, struct task_struct *task) 2976 { 2977 return do_io_accounting(task, m, 1); 2978 } 2979 #endif /* CONFIG_TASK_IO_ACCOUNTING */ 2980 2981 #ifdef CONFIG_USER_NS 2982 static int proc_id_map_open(struct inode *inode, struct file *file, 2983 const struct seq_operations *seq_ops) 2984 { 2985 struct user_namespace *ns = NULL; 2986 struct task_struct *task; 2987 struct seq_file *seq; 2988 int ret = -EINVAL; 2989 2990 task = get_proc_task(inode); 2991 if (task) { 2992 rcu_read_lock(); 2993 ns = get_user_ns(task_cred_xxx(task, user_ns)); 2994 rcu_read_unlock(); 2995 put_task_struct(task); 2996 } 2997 if (!ns) 2998 goto err; 2999 3000 ret = seq_open(file, seq_ops); 3001 if (ret) 3002 goto err_put_ns; 3003 3004 seq = file->private_data; 3005 seq->private = ns; 3006 3007 return 0; 3008 err_put_ns: 3009 put_user_ns(ns); 3010 err: 3011 return ret; 3012 } 3013 3014 static int proc_id_map_release(struct inode *inode, struct file *file) 3015 { 3016 struct seq_file *seq = file->private_data; 3017 struct user_namespace *ns = seq->private; 3018 put_user_ns(ns); 3019 return seq_release(inode, file); 3020 } 3021 3022 static int proc_uid_map_open(struct inode *inode, struct file *file) 3023 { 3024 return proc_id_map_open(inode, file, &proc_uid_seq_operations); 3025 } 3026 3027 static int proc_gid_map_open(struct inode *inode, struct file *file) 3028 { 3029 return proc_id_map_open(inode, file, &proc_gid_seq_operations); 3030 } 3031 3032 static int proc_projid_map_open(struct inode *inode, struct file *file) 3033 { 3034 return proc_id_map_open(inode, file, &proc_projid_seq_operations); 3035 } 3036 3037 static const struct file_operations proc_uid_map_operations = { 3038 .open = proc_uid_map_open, 3039 .write = proc_uid_map_write, 3040 .read = seq_read, 3041 .llseek = seq_lseek, 3042 .release = proc_id_map_release, 3043 }; 3044 3045 static const struct file_operations proc_gid_map_operations = { 3046 .open = proc_gid_map_open, 3047 .write = proc_gid_map_write, 3048 .read = seq_read, 3049 .llseek = seq_lseek, 3050 .release = proc_id_map_release, 3051 }; 3052 3053 static const struct file_operations proc_projid_map_operations = { 3054 .open = proc_projid_map_open, 3055 .write = proc_projid_map_write, 3056 .read = seq_read, 3057 .llseek = seq_lseek, 3058 .release = proc_id_map_release, 3059 }; 3060 3061 static int proc_setgroups_open(struct inode *inode, struct file *file) 3062 { 3063 struct user_namespace *ns = NULL; 3064 struct task_struct *task; 3065 int ret; 3066 3067 ret = -ESRCH; 3068 task = get_proc_task(inode); 3069 if (task) { 3070 rcu_read_lock(); 3071 ns = get_user_ns(task_cred_xxx(task, user_ns)); 3072 rcu_read_unlock(); 3073 put_task_struct(task); 3074 } 3075 if (!ns) 3076 goto err; 3077 3078 if (file->f_mode & FMODE_WRITE) { 3079 ret = -EACCES; 3080 if (!ns_capable(ns, CAP_SYS_ADMIN)) 3081 goto err_put_ns; 3082 } 3083 3084 ret = single_open(file, &proc_setgroups_show, ns); 3085 if (ret) 3086 goto err_put_ns; 3087 3088 return 0; 3089 err_put_ns: 3090 put_user_ns(ns); 3091 err: 3092 return ret; 3093 } 3094 3095 static int proc_setgroups_release(struct inode *inode, struct file *file) 3096 { 3097 struct seq_file *seq = file->private_data; 3098 struct user_namespace *ns = seq->private; 3099 int ret = single_release(inode, file); 3100 put_user_ns(ns); 3101 return ret; 3102 } 3103 3104 static const struct file_operations proc_setgroups_operations = { 3105 .open = proc_setgroups_open, 3106 .write = proc_setgroups_write, 3107 .read = seq_read, 3108 .llseek = seq_lseek, 3109 .release = proc_setgroups_release, 3110 }; 3111 #endif /* CONFIG_USER_NS */ 3112 3113 static int proc_pid_personality(struct seq_file *m, struct pid_namespace *ns, 3114 struct pid *pid, struct task_struct *task) 3115 { 3116 int err = lock_trace(task); 3117 if (!err) { 3118 seq_printf(m, "%08x\n", task->personality); 3119 unlock_trace(task); 3120 } 3121 return err; 3122 } 3123 3124 #ifdef CONFIG_LIVEPATCH 3125 static int proc_pid_patch_state(struct seq_file *m, struct pid_namespace *ns, 3126 struct pid *pid, struct task_struct *task) 3127 { 3128 seq_printf(m, "%d\n", task->patch_state); 3129 return 0; 3130 } 3131 #endif /* CONFIG_LIVEPATCH */ 3132 3133 #ifdef CONFIG_STACKLEAK_METRICS 3134 static int proc_stack_depth(struct seq_file *m, struct pid_namespace *ns, 3135 struct pid *pid, struct task_struct *task) 3136 { 3137 unsigned long prev_depth = THREAD_SIZE - 3138 (task->prev_lowest_stack & (THREAD_SIZE - 1)); 3139 unsigned long depth = THREAD_SIZE - 3140 (task->lowest_stack & (THREAD_SIZE - 1)); 3141 3142 seq_printf(m, "previous stack depth: %lu\nstack depth: %lu\n", 3143 prev_depth, depth); 3144 return 0; 3145 } 3146 #endif /* CONFIG_STACKLEAK_METRICS */ 3147 3148 /* 3149 * Thread groups 3150 */ 3151 static const struct file_operations proc_task_operations; 3152 static const struct inode_operations proc_task_inode_operations; 3153 3154 static const struct pid_entry tgid_base_stuff[] = { 3155 DIR("task", S_IRUGO|S_IXUGO, proc_task_inode_operations, proc_task_operations), 3156 DIR("fd", S_IRUSR|S_IXUSR, proc_fd_inode_operations, proc_fd_operations), 3157 DIR("map_files", S_IRUSR|S_IXUSR, proc_map_files_inode_operations, proc_map_files_operations), 3158 DIR("fdinfo", S_IRUSR|S_IXUSR, proc_fdinfo_inode_operations, proc_fdinfo_operations), 3159 DIR("ns", S_IRUSR|S_IXUGO, proc_ns_dir_inode_operations, proc_ns_dir_operations), 3160 #ifdef CONFIG_NET 3161 DIR("net", S_IRUGO|S_IXUGO, proc_net_inode_operations, proc_net_operations), 3162 #endif 3163 REG("environ", S_IRUSR, proc_environ_operations), 3164 REG("auxv", S_IRUSR, proc_auxv_operations), 3165 ONE("status", S_IRUGO, proc_pid_status), 3166 ONE("personality", S_IRUSR, proc_pid_personality), 3167 ONE("limits", S_IRUGO, proc_pid_limits), 3168 #ifdef CONFIG_SCHED_DEBUG 3169 REG("sched", S_IRUGO|S_IWUSR, proc_pid_sched_operations), 3170 #endif 3171 #ifdef CONFIG_SCHED_AUTOGROUP 3172 REG("autogroup", S_IRUGO|S_IWUSR, proc_pid_sched_autogroup_operations), 3173 #endif 3174 #ifdef CONFIG_TIME_NS 3175 REG("timens_offsets", S_IRUGO|S_IWUSR, proc_timens_offsets_operations), 3176 #endif 3177 REG("comm", S_IRUGO|S_IWUSR, proc_pid_set_comm_operations), 3178 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK 3179 ONE("syscall", S_IRUSR, proc_pid_syscall), 3180 #endif 3181 REG("cmdline", S_IRUGO, proc_pid_cmdline_ops), 3182 ONE("stat", S_IRUGO, proc_tgid_stat), 3183 ONE("statm", S_IRUGO, proc_pid_statm), 3184 REG("maps", S_IRUGO, proc_pid_maps_operations), 3185 #ifdef CONFIG_NUMA 3186 REG("numa_maps", S_IRUGO, proc_pid_numa_maps_operations), 3187 #endif 3188 REG("mem", S_IRUSR|S_IWUSR, proc_mem_operations), 3189 LNK("cwd", proc_cwd_link), 3190 LNK("root", proc_root_link), 3191 LNK("exe", proc_exe_link), 3192 REG("mounts", S_IRUGO, proc_mounts_operations), 3193 REG("mountinfo", S_IRUGO, proc_mountinfo_operations), 3194 REG("mountstats", S_IRUSR, proc_mountstats_operations), 3195 #ifdef CONFIG_PROC_PAGE_MONITOR 3196 REG("clear_refs", S_IWUSR, proc_clear_refs_operations), 3197 REG("smaps", S_IRUGO, proc_pid_smaps_operations), 3198 REG("smaps_rollup", S_IRUGO, proc_pid_smaps_rollup_operations), 3199 REG("pagemap", S_IRUSR, proc_pagemap_operations), 3200 #endif 3201 #ifdef CONFIG_SECURITY 3202 DIR("attr", S_IRUGO|S_IXUGO, proc_attr_dir_inode_operations, proc_attr_dir_operations), 3203 #endif 3204 #ifdef CONFIG_KALLSYMS 3205 ONE("wchan", S_IRUGO, proc_pid_wchan), 3206 #endif 3207 #ifdef CONFIG_STACKTRACE 3208 ONE("stack", S_IRUSR, proc_pid_stack), 3209 #endif 3210 #ifdef CONFIG_SCHED_INFO 3211 ONE("schedstat", S_IRUGO, proc_pid_schedstat), 3212 #endif 3213 #ifdef CONFIG_LATENCYTOP 3214 REG("latency", S_IRUGO, proc_lstats_operations), 3215 #endif 3216 #ifdef CONFIG_PROC_PID_CPUSET 3217 ONE("cpuset", S_IRUGO, proc_cpuset_show), 3218 #endif 3219 #ifdef CONFIG_CGROUPS 3220 ONE("cgroup", S_IRUGO, proc_cgroup_show), 3221 #endif 3222 #ifdef CONFIG_PROC_CPU_RESCTRL 3223 ONE("cpu_resctrl_groups", S_IRUGO, proc_resctrl_show), 3224 #endif 3225 ONE("oom_score", S_IRUGO, proc_oom_score), 3226 REG("oom_adj", S_IRUGO|S_IWUSR, proc_oom_adj_operations), 3227 REG("oom_score_adj", S_IRUGO|S_IWUSR, proc_oom_score_adj_operations), 3228 #ifdef CONFIG_AUDIT 3229 REG("loginuid", S_IWUSR|S_IRUGO, proc_loginuid_operations), 3230 REG("sessionid", S_IRUGO, proc_sessionid_operations), 3231 #endif 3232 #ifdef CONFIG_FAULT_INJECTION 3233 REG("make-it-fail", S_IRUGO|S_IWUSR, proc_fault_inject_operations), 3234 REG("fail-nth", 0644, proc_fail_nth_operations), 3235 #endif 3236 #ifdef CONFIG_ELF_CORE 3237 REG("coredump_filter", S_IRUGO|S_IWUSR, proc_coredump_filter_operations), 3238 #endif 3239 #ifdef CONFIG_TASK_IO_ACCOUNTING 3240 ONE("io", S_IRUSR, proc_tgid_io_accounting), 3241 #endif 3242 #ifdef CONFIG_USER_NS 3243 REG("uid_map", S_IRUGO|S_IWUSR, proc_uid_map_operations), 3244 REG("gid_map", S_IRUGO|S_IWUSR, proc_gid_map_operations), 3245 REG("projid_map", S_IRUGO|S_IWUSR, proc_projid_map_operations), 3246 REG("setgroups", S_IRUGO|S_IWUSR, proc_setgroups_operations), 3247 #endif 3248 #if defined(CONFIG_CHECKPOINT_RESTORE) && defined(CONFIG_POSIX_TIMERS) 3249 REG("timers", S_IRUGO, proc_timers_operations), 3250 #endif 3251 REG("timerslack_ns", S_IRUGO|S_IWUGO, proc_pid_set_timerslack_ns_operations), 3252 #ifdef CONFIG_LIVEPATCH 3253 ONE("patch_state", S_IRUSR, proc_pid_patch_state), 3254 #endif 3255 #ifdef CONFIG_STACKLEAK_METRICS 3256 ONE("stack_depth", S_IRUGO, proc_stack_depth), 3257 #endif 3258 #ifdef CONFIG_PROC_PID_ARCH_STATUS 3259 ONE("arch_status", S_IRUGO, proc_pid_arch_status), 3260 #endif 3261 }; 3262 3263 static int proc_tgid_base_readdir(struct file *file, struct dir_context *ctx) 3264 { 3265 return proc_pident_readdir(file, ctx, 3266 tgid_base_stuff, ARRAY_SIZE(tgid_base_stuff)); 3267 } 3268 3269 static const struct file_operations proc_tgid_base_operations = { 3270 .read = generic_read_dir, 3271 .iterate_shared = proc_tgid_base_readdir, 3272 .llseek = generic_file_llseek, 3273 }; 3274 3275 struct pid *tgid_pidfd_to_pid(const struct file *file) 3276 { 3277 if (file->f_op != &proc_tgid_base_operations) 3278 return ERR_PTR(-EBADF); 3279 3280 return proc_pid(file_inode(file)); 3281 } 3282 3283 static struct dentry *proc_tgid_base_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags) 3284 { 3285 return proc_pident_lookup(dir, dentry, 3286 tgid_base_stuff, 3287 tgid_base_stuff + ARRAY_SIZE(tgid_base_stuff)); 3288 } 3289 3290 static const struct inode_operations proc_tgid_base_inode_operations = { 3291 .lookup = proc_tgid_base_lookup, 3292 .getattr = pid_getattr, 3293 .setattr = proc_setattr, 3294 .permission = proc_pid_permission, 3295 }; 3296 3297 /** 3298 * proc_flush_pid - Remove dcache entries for @pid from the /proc dcache. 3299 * @pid: pid that should be flushed. 3300 * 3301 * This function walks a list of inodes (that belong to any proc 3302 * filesystem) that are attached to the pid and flushes them from 3303 * the dentry cache. 3304 * 3305 * It is safe and reasonable to cache /proc entries for a task until 3306 * that task exits. After that they just clog up the dcache with 3307 * useless entries, possibly causing useful dcache entries to be 3308 * flushed instead. This routine is provided to flush those useless 3309 * dcache entries when a process is reaped. 3310 * 3311 * NOTE: This routine is just an optimization so it does not guarantee 3312 * that no dcache entries will exist after a process is reaped 3313 * it just makes it very unlikely that any will persist. 3314 */ 3315 3316 void proc_flush_pid(struct pid *pid) 3317 { 3318 proc_invalidate_siblings_dcache(&pid->inodes, &pid->lock); 3319 } 3320 3321 static struct dentry *proc_pid_instantiate(struct dentry * dentry, 3322 struct task_struct *task, const void *ptr) 3323 { 3324 struct inode *inode; 3325 3326 inode = proc_pid_make_inode(dentry->d_sb, task, S_IFDIR | S_IRUGO | S_IXUGO); 3327 if (!inode) 3328 return ERR_PTR(-ENOENT); 3329 3330 inode->i_op = &proc_tgid_base_inode_operations; 3331 inode->i_fop = &proc_tgid_base_operations; 3332 inode->i_flags|=S_IMMUTABLE; 3333 3334 set_nlink(inode, nlink_tgid); 3335 pid_update_inode(task, inode); 3336 3337 d_set_d_op(dentry, &pid_dentry_operations); 3338 return d_splice_alias(inode, dentry); 3339 } 3340 3341 struct dentry *proc_pid_lookup(struct dentry *dentry, unsigned int flags) 3342 { 3343 struct task_struct *task; 3344 unsigned tgid; 3345 struct proc_fs_info *fs_info; 3346 struct pid_namespace *ns; 3347 struct dentry *result = ERR_PTR(-ENOENT); 3348 3349 tgid = name_to_int(&dentry->d_name); 3350 if (tgid == ~0U) 3351 goto out; 3352 3353 fs_info = proc_sb_info(dentry->d_sb); 3354 ns = fs_info->pid_ns; 3355 rcu_read_lock(); 3356 task = find_task_by_pid_ns(tgid, ns); 3357 if (task) 3358 get_task_struct(task); 3359 rcu_read_unlock(); 3360 if (!task) 3361 goto out; 3362 3363 /* Limit procfs to only ptraceable tasks */ 3364 if (fs_info->hide_pid == HIDEPID_NOT_PTRACEABLE) { 3365 if (!has_pid_permissions(fs_info, task, HIDEPID_NO_ACCESS)) 3366 goto out_put_task; 3367 } 3368 3369 result = proc_pid_instantiate(dentry, task, NULL); 3370 out_put_task: 3371 put_task_struct(task); 3372 out: 3373 return result; 3374 } 3375 3376 /* 3377 * Find the first task with tgid >= tgid 3378 * 3379 */ 3380 struct tgid_iter { 3381 unsigned int tgid; 3382 struct task_struct *task; 3383 }; 3384 static struct tgid_iter next_tgid(struct pid_namespace *ns, struct tgid_iter iter) 3385 { 3386 struct pid *pid; 3387 3388 if (iter.task) 3389 put_task_struct(iter.task); 3390 rcu_read_lock(); 3391 retry: 3392 iter.task = NULL; 3393 pid = find_ge_pid(iter.tgid, ns); 3394 if (pid) { 3395 iter.tgid = pid_nr_ns(pid, ns); 3396 iter.task = pid_task(pid, PIDTYPE_TGID); 3397 if (!iter.task) { 3398 iter.tgid += 1; 3399 goto retry; 3400 } 3401 get_task_struct(iter.task); 3402 } 3403 rcu_read_unlock(); 3404 return iter; 3405 } 3406 3407 #define TGID_OFFSET (FIRST_PROCESS_ENTRY + 2) 3408 3409 /* for the /proc/ directory itself, after non-process stuff has been done */ 3410 int proc_pid_readdir(struct file *file, struct dir_context *ctx) 3411 { 3412 struct tgid_iter iter; 3413 struct proc_fs_info *fs_info = proc_sb_info(file_inode(file)->i_sb); 3414 struct pid_namespace *ns = proc_pid_ns(file_inode(file)->i_sb); 3415 loff_t pos = ctx->pos; 3416 3417 if (pos >= PID_MAX_LIMIT + TGID_OFFSET) 3418 return 0; 3419 3420 if (pos == TGID_OFFSET - 2) { 3421 struct inode *inode = d_inode(fs_info->proc_self); 3422 if (!dir_emit(ctx, "self", 4, inode->i_ino, DT_LNK)) 3423 return 0; 3424 ctx->pos = pos = pos + 1; 3425 } 3426 if (pos == TGID_OFFSET - 1) { 3427 struct inode *inode = d_inode(fs_info->proc_thread_self); 3428 if (!dir_emit(ctx, "thread-self", 11, inode->i_ino, DT_LNK)) 3429 return 0; 3430 ctx->pos = pos = pos + 1; 3431 } 3432 iter.tgid = pos - TGID_OFFSET; 3433 iter.task = NULL; 3434 for (iter = next_tgid(ns, iter); 3435 iter.task; 3436 iter.tgid += 1, iter = next_tgid(ns, iter)) { 3437 char name[10 + 1]; 3438 unsigned int len; 3439 3440 cond_resched(); 3441 if (!has_pid_permissions(fs_info, iter.task, HIDEPID_INVISIBLE)) 3442 continue; 3443 3444 len = snprintf(name, sizeof(name), "%u", iter.tgid); 3445 ctx->pos = iter.tgid + TGID_OFFSET; 3446 if (!proc_fill_cache(file, ctx, name, len, 3447 proc_pid_instantiate, iter.task, NULL)) { 3448 put_task_struct(iter.task); 3449 return 0; 3450 } 3451 } 3452 ctx->pos = PID_MAX_LIMIT + TGID_OFFSET; 3453 return 0; 3454 } 3455 3456 /* 3457 * proc_tid_comm_permission is a special permission function exclusively 3458 * used for the node /proc/<pid>/task/<tid>/comm. 3459 * It bypasses generic permission checks in the case where a task of the same 3460 * task group attempts to access the node. 3461 * The rationale behind this is that glibc and bionic access this node for 3462 * cross thread naming (pthread_set/getname_np(!self)). However, if 3463 * PR_SET_DUMPABLE gets set to 0 this node among others becomes uid=0 gid=0, 3464 * which locks out the cross thread naming implementation. 3465 * This function makes sure that the node is always accessible for members of 3466 * same thread group. 3467 */ 3468 static int proc_tid_comm_permission(struct inode *inode, int mask) 3469 { 3470 bool is_same_tgroup; 3471 struct task_struct *task; 3472 3473 task = get_proc_task(inode); 3474 if (!task) 3475 return -ESRCH; 3476 is_same_tgroup = same_thread_group(current, task); 3477 put_task_struct(task); 3478 3479 if (likely(is_same_tgroup && !(mask & MAY_EXEC))) { 3480 /* This file (/proc/<pid>/task/<tid>/comm) can always be 3481 * read or written by the members of the corresponding 3482 * thread group. 3483 */ 3484 return 0; 3485 } 3486 3487 return generic_permission(inode, mask); 3488 } 3489 3490 static const struct inode_operations proc_tid_comm_inode_operations = { 3491 .permission = proc_tid_comm_permission, 3492 }; 3493 3494 /* 3495 * Tasks 3496 */ 3497 static const struct pid_entry tid_base_stuff[] = { 3498 DIR("fd", S_IRUSR|S_IXUSR, proc_fd_inode_operations, proc_fd_operations), 3499 DIR("fdinfo", S_IRUSR|S_IXUSR, proc_fdinfo_inode_operations, proc_fdinfo_operations), 3500 DIR("ns", S_IRUSR|S_IXUGO, proc_ns_dir_inode_operations, proc_ns_dir_operations), 3501 #ifdef CONFIG_NET 3502 DIR("net", S_IRUGO|S_IXUGO, proc_net_inode_operations, proc_net_operations), 3503 #endif 3504 REG("environ", S_IRUSR, proc_environ_operations), 3505 REG("auxv", S_IRUSR, proc_auxv_operations), 3506 ONE("status", S_IRUGO, proc_pid_status), 3507 ONE("personality", S_IRUSR, proc_pid_personality), 3508 ONE("limits", S_IRUGO, proc_pid_limits), 3509 #ifdef CONFIG_SCHED_DEBUG 3510 REG("sched", S_IRUGO|S_IWUSR, proc_pid_sched_operations), 3511 #endif 3512 NOD("comm", S_IFREG|S_IRUGO|S_IWUSR, 3513 &proc_tid_comm_inode_operations, 3514 &proc_pid_set_comm_operations, {}), 3515 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK 3516 ONE("syscall", S_IRUSR, proc_pid_syscall), 3517 #endif 3518 REG("cmdline", S_IRUGO, proc_pid_cmdline_ops), 3519 ONE("stat", S_IRUGO, proc_tid_stat), 3520 ONE("statm", S_IRUGO, proc_pid_statm), 3521 REG("maps", S_IRUGO, proc_pid_maps_operations), 3522 #ifdef CONFIG_PROC_CHILDREN 3523 REG("children", S_IRUGO, proc_tid_children_operations), 3524 #endif 3525 #ifdef CONFIG_NUMA 3526 REG("numa_maps", S_IRUGO, proc_pid_numa_maps_operations), 3527 #endif 3528 REG("mem", S_IRUSR|S_IWUSR, proc_mem_operations), 3529 LNK("cwd", proc_cwd_link), 3530 LNK("root", proc_root_link), 3531 LNK("exe", proc_exe_link), 3532 REG("mounts", S_IRUGO, proc_mounts_operations), 3533 REG("mountinfo", S_IRUGO, proc_mountinfo_operations), 3534 #ifdef CONFIG_PROC_PAGE_MONITOR 3535 REG("clear_refs", S_IWUSR, proc_clear_refs_operations), 3536 REG("smaps", S_IRUGO, proc_pid_smaps_operations), 3537 REG("smaps_rollup", S_IRUGO, proc_pid_smaps_rollup_operations), 3538 REG("pagemap", S_IRUSR, proc_pagemap_operations), 3539 #endif 3540 #ifdef CONFIG_SECURITY 3541 DIR("attr", S_IRUGO|S_IXUGO, proc_attr_dir_inode_operations, proc_attr_dir_operations), 3542 #endif 3543 #ifdef CONFIG_KALLSYMS 3544 ONE("wchan", S_IRUGO, proc_pid_wchan), 3545 #endif 3546 #ifdef CONFIG_STACKTRACE 3547 ONE("stack", S_IRUSR, proc_pid_stack), 3548 #endif 3549 #ifdef CONFIG_SCHED_INFO 3550 ONE("schedstat", S_IRUGO, proc_pid_schedstat), 3551 #endif 3552 #ifdef CONFIG_LATENCYTOP 3553 REG("latency", S_IRUGO, proc_lstats_operations), 3554 #endif 3555 #ifdef CONFIG_PROC_PID_CPUSET 3556 ONE("cpuset", S_IRUGO, proc_cpuset_show), 3557 #endif 3558 #ifdef CONFIG_CGROUPS 3559 ONE("cgroup", S_IRUGO, proc_cgroup_show), 3560 #endif 3561 #ifdef CONFIG_PROC_CPU_RESCTRL 3562 ONE("cpu_resctrl_groups", S_IRUGO, proc_resctrl_show), 3563 #endif 3564 ONE("oom_score", S_IRUGO, proc_oom_score), 3565 REG("oom_adj", S_IRUGO|S_IWUSR, proc_oom_adj_operations), 3566 REG("oom_score_adj", S_IRUGO|S_IWUSR, proc_oom_score_adj_operations), 3567 #ifdef CONFIG_AUDIT 3568 REG("loginuid", S_IWUSR|S_IRUGO, proc_loginuid_operations), 3569 REG("sessionid", S_IRUGO, proc_sessionid_operations), 3570 #endif 3571 #ifdef CONFIG_FAULT_INJECTION 3572 REG("make-it-fail", S_IRUGO|S_IWUSR, proc_fault_inject_operations), 3573 REG("fail-nth", 0644, proc_fail_nth_operations), 3574 #endif 3575 #ifdef CONFIG_TASK_IO_ACCOUNTING 3576 ONE("io", S_IRUSR, proc_tid_io_accounting), 3577 #endif 3578 #ifdef CONFIG_USER_NS 3579 REG("uid_map", S_IRUGO|S_IWUSR, proc_uid_map_operations), 3580 REG("gid_map", S_IRUGO|S_IWUSR, proc_gid_map_operations), 3581 REG("projid_map", S_IRUGO|S_IWUSR, proc_projid_map_operations), 3582 REG("setgroups", S_IRUGO|S_IWUSR, proc_setgroups_operations), 3583 #endif 3584 #ifdef CONFIG_LIVEPATCH 3585 ONE("patch_state", S_IRUSR, proc_pid_patch_state), 3586 #endif 3587 #ifdef CONFIG_PROC_PID_ARCH_STATUS 3588 ONE("arch_status", S_IRUGO, proc_pid_arch_status), 3589 #endif 3590 }; 3591 3592 static int proc_tid_base_readdir(struct file *file, struct dir_context *ctx) 3593 { 3594 return proc_pident_readdir(file, ctx, 3595 tid_base_stuff, ARRAY_SIZE(tid_base_stuff)); 3596 } 3597 3598 static struct dentry *proc_tid_base_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags) 3599 { 3600 return proc_pident_lookup(dir, dentry, 3601 tid_base_stuff, 3602 tid_base_stuff + ARRAY_SIZE(tid_base_stuff)); 3603 } 3604 3605 static const struct file_operations proc_tid_base_operations = { 3606 .read = generic_read_dir, 3607 .iterate_shared = proc_tid_base_readdir, 3608 .llseek = generic_file_llseek, 3609 }; 3610 3611 static const struct inode_operations proc_tid_base_inode_operations = { 3612 .lookup = proc_tid_base_lookup, 3613 .getattr = pid_getattr, 3614 .setattr = proc_setattr, 3615 }; 3616 3617 static struct dentry *proc_task_instantiate(struct dentry *dentry, 3618 struct task_struct *task, const void *ptr) 3619 { 3620 struct inode *inode; 3621 inode = proc_pid_make_inode(dentry->d_sb, task, S_IFDIR | S_IRUGO | S_IXUGO); 3622 if (!inode) 3623 return ERR_PTR(-ENOENT); 3624 3625 inode->i_op = &proc_tid_base_inode_operations; 3626 inode->i_fop = &proc_tid_base_operations; 3627 inode->i_flags |= S_IMMUTABLE; 3628 3629 set_nlink(inode, nlink_tid); 3630 pid_update_inode(task, inode); 3631 3632 d_set_d_op(dentry, &pid_dentry_operations); 3633 return d_splice_alias(inode, dentry); 3634 } 3635 3636 static struct dentry *proc_task_lookup(struct inode *dir, struct dentry * dentry, unsigned int flags) 3637 { 3638 struct task_struct *task; 3639 struct task_struct *leader = get_proc_task(dir); 3640 unsigned tid; 3641 struct proc_fs_info *fs_info; 3642 struct pid_namespace *ns; 3643 struct dentry *result = ERR_PTR(-ENOENT); 3644 3645 if (!leader) 3646 goto out_no_task; 3647 3648 tid = name_to_int(&dentry->d_name); 3649 if (tid == ~0U) 3650 goto out; 3651 3652 fs_info = proc_sb_info(dentry->d_sb); 3653 ns = fs_info->pid_ns; 3654 rcu_read_lock(); 3655 task = find_task_by_pid_ns(tid, ns); 3656 if (task) 3657 get_task_struct(task); 3658 rcu_read_unlock(); 3659 if (!task) 3660 goto out; 3661 if (!same_thread_group(leader, task)) 3662 goto out_drop_task; 3663 3664 result = proc_task_instantiate(dentry, task, NULL); 3665 out_drop_task: 3666 put_task_struct(task); 3667 out: 3668 put_task_struct(leader); 3669 out_no_task: 3670 return result; 3671 } 3672 3673 /* 3674 * Find the first tid of a thread group to return to user space. 3675 * 3676 * Usually this is just the thread group leader, but if the users 3677 * buffer was too small or there was a seek into the middle of the 3678 * directory we have more work todo. 3679 * 3680 * In the case of a short read we start with find_task_by_pid. 3681 * 3682 * In the case of a seek we start with the leader and walk nr 3683 * threads past it. 3684 */ 3685 static struct task_struct *first_tid(struct pid *pid, int tid, loff_t f_pos, 3686 struct pid_namespace *ns) 3687 { 3688 struct task_struct *pos, *task; 3689 unsigned long nr = f_pos; 3690 3691 if (nr != f_pos) /* 32bit overflow? */ 3692 return NULL; 3693 3694 rcu_read_lock(); 3695 task = pid_task(pid, PIDTYPE_PID); 3696 if (!task) 3697 goto fail; 3698 3699 /* Attempt to start with the tid of a thread */ 3700 if (tid && nr) { 3701 pos = find_task_by_pid_ns(tid, ns); 3702 if (pos && same_thread_group(pos, task)) 3703 goto found; 3704 } 3705 3706 /* If nr exceeds the number of threads there is nothing todo */ 3707 if (nr >= get_nr_threads(task)) 3708 goto fail; 3709 3710 /* If we haven't found our starting place yet start 3711 * with the leader and walk nr threads forward. 3712 */ 3713 pos = task = task->group_leader; 3714 do { 3715 if (!nr--) 3716 goto found; 3717 } while_each_thread(task, pos); 3718 fail: 3719 pos = NULL; 3720 goto out; 3721 found: 3722 get_task_struct(pos); 3723 out: 3724 rcu_read_unlock(); 3725 return pos; 3726 } 3727 3728 /* 3729 * Find the next thread in the thread list. 3730 * Return NULL if there is an error or no next thread. 3731 * 3732 * The reference to the input task_struct is released. 3733 */ 3734 static struct task_struct *next_tid(struct task_struct *start) 3735 { 3736 struct task_struct *pos = NULL; 3737 rcu_read_lock(); 3738 if (pid_alive(start)) { 3739 pos = next_thread(start); 3740 if (thread_group_leader(pos)) 3741 pos = NULL; 3742 else 3743 get_task_struct(pos); 3744 } 3745 rcu_read_unlock(); 3746 put_task_struct(start); 3747 return pos; 3748 } 3749 3750 /* for the /proc/TGID/task/ directories */ 3751 static int proc_task_readdir(struct file *file, struct dir_context *ctx) 3752 { 3753 struct inode *inode = file_inode(file); 3754 struct task_struct *task; 3755 struct pid_namespace *ns; 3756 int tid; 3757 3758 if (proc_inode_is_dead(inode)) 3759 return -ENOENT; 3760 3761 if (!dir_emit_dots(file, ctx)) 3762 return 0; 3763 3764 /* f_version caches the tgid value that the last readdir call couldn't 3765 * return. lseek aka telldir automagically resets f_version to 0. 3766 */ 3767 ns = proc_pid_ns(inode->i_sb); 3768 tid = (int)file->f_version; 3769 file->f_version = 0; 3770 for (task = first_tid(proc_pid(inode), tid, ctx->pos - 2, ns); 3771 task; 3772 task = next_tid(task), ctx->pos++) { 3773 char name[10 + 1]; 3774 unsigned int len; 3775 tid = task_pid_nr_ns(task, ns); 3776 len = snprintf(name, sizeof(name), "%u", tid); 3777 if (!proc_fill_cache(file, ctx, name, len, 3778 proc_task_instantiate, task, NULL)) { 3779 /* returning this tgid failed, save it as the first 3780 * pid for the next readir call */ 3781 file->f_version = (u64)tid; 3782 put_task_struct(task); 3783 break; 3784 } 3785 } 3786 3787 return 0; 3788 } 3789 3790 static int proc_task_getattr(const struct path *path, struct kstat *stat, 3791 u32 request_mask, unsigned int query_flags) 3792 { 3793 struct inode *inode = d_inode(path->dentry); 3794 struct task_struct *p = get_proc_task(inode); 3795 generic_fillattr(inode, stat); 3796 3797 if (p) { 3798 stat->nlink += get_nr_threads(p); 3799 put_task_struct(p); 3800 } 3801 3802 return 0; 3803 } 3804 3805 static const struct inode_operations proc_task_inode_operations = { 3806 .lookup = proc_task_lookup, 3807 .getattr = proc_task_getattr, 3808 .setattr = proc_setattr, 3809 .permission = proc_pid_permission, 3810 }; 3811 3812 static const struct file_operations proc_task_operations = { 3813 .read = generic_read_dir, 3814 .iterate_shared = proc_task_readdir, 3815 .llseek = generic_file_llseek, 3816 }; 3817 3818 void __init set_proc_pid_nlink(void) 3819 { 3820 nlink_tid = pid_entry_nlink(tid_base_stuff, ARRAY_SIZE(tid_base_stuff)); 3821 nlink_tgid = pid_entry_nlink(tgid_base_stuff, ARRAY_SIZE(tgid_base_stuff)); 3822 } 3823