xref: /linux/fs/proc/base.c (revision 913df4453f85f1fe79b35ecf3c9a0c0b707d22a2)
1 /*
2  *  linux/fs/proc/base.c
3  *
4  *  Copyright (C) 1991, 1992 Linus Torvalds
5  *
6  *  proc base directory handling functions
7  *
8  *  1999, Al Viro. Rewritten. Now it covers the whole per-process part.
9  *  Instead of using magical inumbers to determine the kind of object
10  *  we allocate and fill in-core inodes upon lookup. They don't even
11  *  go into icache. We cache the reference to task_struct upon lookup too.
12  *  Eventually it should become a filesystem in its own. We don't use the
13  *  rest of procfs anymore.
14  *
15  *
16  *  Changelog:
17  *  17-Jan-2005
18  *  Allan Bezerra
19  *  Bruna Moreira <bruna.moreira@indt.org.br>
20  *  Edjard Mota <edjard.mota@indt.org.br>
21  *  Ilias Biris <ilias.biris@indt.org.br>
22  *  Mauricio Lin <mauricio.lin@indt.org.br>
23  *
24  *  Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT
25  *
26  *  A new process specific entry (smaps) included in /proc. It shows the
27  *  size of rss for each memory area. The maps entry lacks information
28  *  about physical memory size (rss) for each mapped file, i.e.,
29  *  rss information for executables and library files.
30  *  This additional information is useful for any tools that need to know
31  *  about physical memory consumption for a process specific library.
32  *
33  *  Changelog:
34  *  21-Feb-2005
35  *  Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT
36  *  Pud inclusion in the page table walking.
37  *
38  *  ChangeLog:
39  *  10-Mar-2005
40  *  10LE Instituto Nokia de Tecnologia - INdT:
41  *  A better way to walks through the page table as suggested by Hugh Dickins.
42  *
43  *  Simo Piiroinen <simo.piiroinen@nokia.com>:
44  *  Smaps information related to shared, private, clean and dirty pages.
45  *
46  *  Paul Mundt <paul.mundt@nokia.com>:
47  *  Overall revision about smaps.
48  */
49 
50 #include <asm/uaccess.h>
51 
52 #include <linux/errno.h>
53 #include <linux/time.h>
54 #include <linux/proc_fs.h>
55 #include <linux/stat.h>
56 #include <linux/task_io_accounting_ops.h>
57 #include <linux/init.h>
58 #include <linux/capability.h>
59 #include <linux/file.h>
60 #include <linux/fdtable.h>
61 #include <linux/string.h>
62 #include <linux/seq_file.h>
63 #include <linux/namei.h>
64 #include <linux/mnt_namespace.h>
65 #include <linux/mm.h>
66 #include <linux/rcupdate.h>
67 #include <linux/kallsyms.h>
68 #include <linux/stacktrace.h>
69 #include <linux/resource.h>
70 #include <linux/module.h>
71 #include <linux/mount.h>
72 #include <linux/security.h>
73 #include <linux/ptrace.h>
74 #include <linux/tracehook.h>
75 #include <linux/cgroup.h>
76 #include <linux/cpuset.h>
77 #include <linux/audit.h>
78 #include <linux/poll.h>
79 #include <linux/nsproxy.h>
80 #include <linux/oom.h>
81 #include <linux/elf.h>
82 #include <linux/pid_namespace.h>
83 #include <linux/fs_struct.h>
84 #include "internal.h"
85 
86 /* NOTE:
87  *	Implementing inode permission operations in /proc is almost
88  *	certainly an error.  Permission checks need to happen during
89  *	each system call not at open time.  The reason is that most of
90  *	what we wish to check for permissions in /proc varies at runtime.
91  *
92  *	The classic example of a problem is opening file descriptors
93  *	in /proc for a task before it execs a suid executable.
94  */
95 
96 struct pid_entry {
97 	char *name;
98 	int len;
99 	mode_t mode;
100 	const struct inode_operations *iop;
101 	const struct file_operations *fop;
102 	union proc_op op;
103 };
104 
105 #define NOD(NAME, MODE, IOP, FOP, OP) {			\
106 	.name = (NAME),					\
107 	.len  = sizeof(NAME) - 1,			\
108 	.mode = MODE,					\
109 	.iop  = IOP,					\
110 	.fop  = FOP,					\
111 	.op   = OP,					\
112 }
113 
114 #define DIR(NAME, MODE, iops, fops)	\
115 	NOD(NAME, (S_IFDIR|(MODE)), &iops, &fops, {} )
116 #define LNK(NAME, get_link)					\
117 	NOD(NAME, (S_IFLNK|S_IRWXUGO),				\
118 		&proc_pid_link_inode_operations, NULL,		\
119 		{ .proc_get_link = get_link } )
120 #define REG(NAME, MODE, fops)				\
121 	NOD(NAME, (S_IFREG|(MODE)), NULL, &fops, {})
122 #define INF(NAME, MODE, read)				\
123 	NOD(NAME, (S_IFREG|(MODE)), 			\
124 		NULL, &proc_info_file_operations,	\
125 		{ .proc_read = read } )
126 #define ONE(NAME, MODE, show)				\
127 	NOD(NAME, (S_IFREG|(MODE)), 			\
128 		NULL, &proc_single_file_operations,	\
129 		{ .proc_show = show } )
130 
131 /*
132  * Count the number of hardlinks for the pid_entry table, excluding the .
133  * and .. links.
134  */
135 static unsigned int pid_entry_count_dirs(const struct pid_entry *entries,
136 	unsigned int n)
137 {
138 	unsigned int i;
139 	unsigned int count;
140 
141 	count = 0;
142 	for (i = 0; i < n; ++i) {
143 		if (S_ISDIR(entries[i].mode))
144 			++count;
145 	}
146 
147 	return count;
148 }
149 
150 static int get_fs_path(struct task_struct *task, struct path *path, bool root)
151 {
152 	struct fs_struct *fs;
153 	int result = -ENOENT;
154 
155 	task_lock(task);
156 	fs = task->fs;
157 	if (fs) {
158 		read_lock(&fs->lock);
159 		*path = root ? fs->root : fs->pwd;
160 		path_get(path);
161 		read_unlock(&fs->lock);
162 		result = 0;
163 	}
164 	task_unlock(task);
165 	return result;
166 }
167 
168 static int get_nr_threads(struct task_struct *tsk)
169 {
170 	unsigned long flags;
171 	int count = 0;
172 
173 	if (lock_task_sighand(tsk, &flags)) {
174 		count = atomic_read(&tsk->signal->count);
175 		unlock_task_sighand(tsk, &flags);
176 	}
177 	return count;
178 }
179 
180 static int proc_cwd_link(struct inode *inode, struct path *path)
181 {
182 	struct task_struct *task = get_proc_task(inode);
183 	int result = -ENOENT;
184 
185 	if (task) {
186 		result = get_fs_path(task, path, 0);
187 		put_task_struct(task);
188 	}
189 	return result;
190 }
191 
192 static int proc_root_link(struct inode *inode, struct path *path)
193 {
194 	struct task_struct *task = get_proc_task(inode);
195 	int result = -ENOENT;
196 
197 	if (task) {
198 		result = get_fs_path(task, path, 1);
199 		put_task_struct(task);
200 	}
201 	return result;
202 }
203 
204 /*
205  * Return zero if current may access user memory in @task, -error if not.
206  */
207 static int check_mem_permission(struct task_struct *task)
208 {
209 	/*
210 	 * A task can always look at itself, in case it chooses
211 	 * to use system calls instead of load instructions.
212 	 */
213 	if (task == current)
214 		return 0;
215 
216 	/*
217 	 * If current is actively ptrace'ing, and would also be
218 	 * permitted to freshly attach with ptrace now, permit it.
219 	 */
220 	if (task_is_stopped_or_traced(task)) {
221 		int match;
222 		rcu_read_lock();
223 		match = (tracehook_tracer_task(task) == current);
224 		rcu_read_unlock();
225 		if (match && ptrace_may_access(task, PTRACE_MODE_ATTACH))
226 			return 0;
227 	}
228 
229 	/*
230 	 * Noone else is allowed.
231 	 */
232 	return -EPERM;
233 }
234 
235 struct mm_struct *mm_for_maps(struct task_struct *task)
236 {
237 	struct mm_struct *mm;
238 
239 	if (mutex_lock_killable(&task->cred_guard_mutex))
240 		return NULL;
241 
242 	mm = get_task_mm(task);
243 	if (mm && mm != current->mm &&
244 			!ptrace_may_access(task, PTRACE_MODE_READ)) {
245 		mmput(mm);
246 		mm = NULL;
247 	}
248 	mutex_unlock(&task->cred_guard_mutex);
249 
250 	return mm;
251 }
252 
253 static int proc_pid_cmdline(struct task_struct *task, char * buffer)
254 {
255 	int res = 0;
256 	unsigned int len;
257 	struct mm_struct *mm = get_task_mm(task);
258 	if (!mm)
259 		goto out;
260 	if (!mm->arg_end)
261 		goto out_mm;	/* Shh! No looking before we're done */
262 
263  	len = mm->arg_end - mm->arg_start;
264 
265 	if (len > PAGE_SIZE)
266 		len = PAGE_SIZE;
267 
268 	res = access_process_vm(task, mm->arg_start, buffer, len, 0);
269 
270 	// If the nul at the end of args has been overwritten, then
271 	// assume application is using setproctitle(3).
272 	if (res > 0 && buffer[res-1] != '\0' && len < PAGE_SIZE) {
273 		len = strnlen(buffer, res);
274 		if (len < res) {
275 		    res = len;
276 		} else {
277 			len = mm->env_end - mm->env_start;
278 			if (len > PAGE_SIZE - res)
279 				len = PAGE_SIZE - res;
280 			res += access_process_vm(task, mm->env_start, buffer+res, len, 0);
281 			res = strnlen(buffer, res);
282 		}
283 	}
284 out_mm:
285 	mmput(mm);
286 out:
287 	return res;
288 }
289 
290 static int proc_pid_auxv(struct task_struct *task, char *buffer)
291 {
292 	int res = 0;
293 	struct mm_struct *mm = get_task_mm(task);
294 	if (mm) {
295 		unsigned int nwords = 0;
296 		do {
297 			nwords += 2;
298 		} while (mm->saved_auxv[nwords - 2] != 0); /* AT_NULL */
299 		res = nwords * sizeof(mm->saved_auxv[0]);
300 		if (res > PAGE_SIZE)
301 			res = PAGE_SIZE;
302 		memcpy(buffer, mm->saved_auxv, res);
303 		mmput(mm);
304 	}
305 	return res;
306 }
307 
308 
309 #ifdef CONFIG_KALLSYMS
310 /*
311  * Provides a wchan file via kallsyms in a proper one-value-per-file format.
312  * Returns the resolved symbol.  If that fails, simply return the address.
313  */
314 static int proc_pid_wchan(struct task_struct *task, char *buffer)
315 {
316 	unsigned long wchan;
317 	char symname[KSYM_NAME_LEN];
318 
319 	wchan = get_wchan(task);
320 
321 	if (lookup_symbol_name(wchan, symname) < 0)
322 		if (!ptrace_may_access(task, PTRACE_MODE_READ))
323 			return 0;
324 		else
325 			return sprintf(buffer, "%lu", wchan);
326 	else
327 		return sprintf(buffer, "%s", symname);
328 }
329 #endif /* CONFIG_KALLSYMS */
330 
331 #ifdef CONFIG_STACKTRACE
332 
333 #define MAX_STACK_TRACE_DEPTH	64
334 
335 static int proc_pid_stack(struct seq_file *m, struct pid_namespace *ns,
336 			  struct pid *pid, struct task_struct *task)
337 {
338 	struct stack_trace trace;
339 	unsigned long *entries;
340 	int i;
341 
342 	entries = kmalloc(MAX_STACK_TRACE_DEPTH * sizeof(*entries), GFP_KERNEL);
343 	if (!entries)
344 		return -ENOMEM;
345 
346 	trace.nr_entries	= 0;
347 	trace.max_entries	= MAX_STACK_TRACE_DEPTH;
348 	trace.entries		= entries;
349 	trace.skip		= 0;
350 	save_stack_trace_tsk(task, &trace);
351 
352 	for (i = 0; i < trace.nr_entries; i++) {
353 		seq_printf(m, "[<%p>] %pS\n",
354 			   (void *)entries[i], (void *)entries[i]);
355 	}
356 	kfree(entries);
357 
358 	return 0;
359 }
360 #endif
361 
362 #ifdef CONFIG_SCHEDSTATS
363 /*
364  * Provides /proc/PID/schedstat
365  */
366 static int proc_pid_schedstat(struct task_struct *task, char *buffer)
367 {
368 	return sprintf(buffer, "%llu %llu %lu\n",
369 			(unsigned long long)task->se.sum_exec_runtime,
370 			(unsigned long long)task->sched_info.run_delay,
371 			task->sched_info.pcount);
372 }
373 #endif
374 
375 #ifdef CONFIG_LATENCYTOP
376 static int lstats_show_proc(struct seq_file *m, void *v)
377 {
378 	int i;
379 	struct inode *inode = m->private;
380 	struct task_struct *task = get_proc_task(inode);
381 
382 	if (!task)
383 		return -ESRCH;
384 	seq_puts(m, "Latency Top version : v0.1\n");
385 	for (i = 0; i < 32; i++) {
386 		if (task->latency_record[i].backtrace[0]) {
387 			int q;
388 			seq_printf(m, "%i %li %li ",
389 				task->latency_record[i].count,
390 				task->latency_record[i].time,
391 				task->latency_record[i].max);
392 			for (q = 0; q < LT_BACKTRACEDEPTH; q++) {
393 				char sym[KSYM_SYMBOL_LEN];
394 				char *c;
395 				if (!task->latency_record[i].backtrace[q])
396 					break;
397 				if (task->latency_record[i].backtrace[q] == ULONG_MAX)
398 					break;
399 				sprint_symbol(sym, task->latency_record[i].backtrace[q]);
400 				c = strchr(sym, '+');
401 				if (c)
402 					*c = 0;
403 				seq_printf(m, "%s ", sym);
404 			}
405 			seq_printf(m, "\n");
406 		}
407 
408 	}
409 	put_task_struct(task);
410 	return 0;
411 }
412 
413 static int lstats_open(struct inode *inode, struct file *file)
414 {
415 	return single_open(file, lstats_show_proc, inode);
416 }
417 
418 static ssize_t lstats_write(struct file *file, const char __user *buf,
419 			    size_t count, loff_t *offs)
420 {
421 	struct task_struct *task = get_proc_task(file->f_dentry->d_inode);
422 
423 	if (!task)
424 		return -ESRCH;
425 	clear_all_latency_tracing(task);
426 	put_task_struct(task);
427 
428 	return count;
429 }
430 
431 static const struct file_operations proc_lstats_operations = {
432 	.open		= lstats_open,
433 	.read		= seq_read,
434 	.write		= lstats_write,
435 	.llseek		= seq_lseek,
436 	.release	= single_release,
437 };
438 
439 #endif
440 
441 /* The badness from the OOM killer */
442 unsigned long badness(struct task_struct *p, unsigned long uptime);
443 static int proc_oom_score(struct task_struct *task, char *buffer)
444 {
445 	unsigned long points;
446 	struct timespec uptime;
447 
448 	do_posix_clock_monotonic_gettime(&uptime);
449 	read_lock(&tasklist_lock);
450 	points = badness(task->group_leader, uptime.tv_sec);
451 	read_unlock(&tasklist_lock);
452 	return sprintf(buffer, "%lu\n", points);
453 }
454 
455 struct limit_names {
456 	char *name;
457 	char *unit;
458 };
459 
460 static const struct limit_names lnames[RLIM_NLIMITS] = {
461 	[RLIMIT_CPU] = {"Max cpu time", "seconds"},
462 	[RLIMIT_FSIZE] = {"Max file size", "bytes"},
463 	[RLIMIT_DATA] = {"Max data size", "bytes"},
464 	[RLIMIT_STACK] = {"Max stack size", "bytes"},
465 	[RLIMIT_CORE] = {"Max core file size", "bytes"},
466 	[RLIMIT_RSS] = {"Max resident set", "bytes"},
467 	[RLIMIT_NPROC] = {"Max processes", "processes"},
468 	[RLIMIT_NOFILE] = {"Max open files", "files"},
469 	[RLIMIT_MEMLOCK] = {"Max locked memory", "bytes"},
470 	[RLIMIT_AS] = {"Max address space", "bytes"},
471 	[RLIMIT_LOCKS] = {"Max file locks", "locks"},
472 	[RLIMIT_SIGPENDING] = {"Max pending signals", "signals"},
473 	[RLIMIT_MSGQUEUE] = {"Max msgqueue size", "bytes"},
474 	[RLIMIT_NICE] = {"Max nice priority", NULL},
475 	[RLIMIT_RTPRIO] = {"Max realtime priority", NULL},
476 	[RLIMIT_RTTIME] = {"Max realtime timeout", "us"},
477 };
478 
479 /* Display limits for a process */
480 static int proc_pid_limits(struct task_struct *task, char *buffer)
481 {
482 	unsigned int i;
483 	int count = 0;
484 	unsigned long flags;
485 	char *bufptr = buffer;
486 
487 	struct rlimit rlim[RLIM_NLIMITS];
488 
489 	if (!lock_task_sighand(task, &flags))
490 		return 0;
491 	memcpy(rlim, task->signal->rlim, sizeof(struct rlimit) * RLIM_NLIMITS);
492 	unlock_task_sighand(task, &flags);
493 
494 	/*
495 	 * print the file header
496 	 */
497 	count += sprintf(&bufptr[count], "%-25s %-20s %-20s %-10s\n",
498 			"Limit", "Soft Limit", "Hard Limit", "Units");
499 
500 	for (i = 0; i < RLIM_NLIMITS; i++) {
501 		if (rlim[i].rlim_cur == RLIM_INFINITY)
502 			count += sprintf(&bufptr[count], "%-25s %-20s ",
503 					 lnames[i].name, "unlimited");
504 		else
505 			count += sprintf(&bufptr[count], "%-25s %-20lu ",
506 					 lnames[i].name, rlim[i].rlim_cur);
507 
508 		if (rlim[i].rlim_max == RLIM_INFINITY)
509 			count += sprintf(&bufptr[count], "%-20s ", "unlimited");
510 		else
511 			count += sprintf(&bufptr[count], "%-20lu ",
512 					 rlim[i].rlim_max);
513 
514 		if (lnames[i].unit)
515 			count += sprintf(&bufptr[count], "%-10s\n",
516 					 lnames[i].unit);
517 		else
518 			count += sprintf(&bufptr[count], "\n");
519 	}
520 
521 	return count;
522 }
523 
524 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK
525 static int proc_pid_syscall(struct task_struct *task, char *buffer)
526 {
527 	long nr;
528 	unsigned long args[6], sp, pc;
529 
530 	if (task_current_syscall(task, &nr, args, 6, &sp, &pc))
531 		return sprintf(buffer, "running\n");
532 
533 	if (nr < 0)
534 		return sprintf(buffer, "%ld 0x%lx 0x%lx\n", nr, sp, pc);
535 
536 	return sprintf(buffer,
537 		       "%ld 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx\n",
538 		       nr,
539 		       args[0], args[1], args[2], args[3], args[4], args[5],
540 		       sp, pc);
541 }
542 #endif /* CONFIG_HAVE_ARCH_TRACEHOOK */
543 
544 /************************************************************************/
545 /*                       Here the fs part begins                        */
546 /************************************************************************/
547 
548 /* permission checks */
549 static int proc_fd_access_allowed(struct inode *inode)
550 {
551 	struct task_struct *task;
552 	int allowed = 0;
553 	/* Allow access to a task's file descriptors if it is us or we
554 	 * may use ptrace attach to the process and find out that
555 	 * information.
556 	 */
557 	task = get_proc_task(inode);
558 	if (task) {
559 		allowed = ptrace_may_access(task, PTRACE_MODE_READ);
560 		put_task_struct(task);
561 	}
562 	return allowed;
563 }
564 
565 static int proc_setattr(struct dentry *dentry, struct iattr *attr)
566 {
567 	int error;
568 	struct inode *inode = dentry->d_inode;
569 
570 	if (attr->ia_valid & ATTR_MODE)
571 		return -EPERM;
572 
573 	error = inode_change_ok(inode, attr);
574 	if (!error)
575 		error = inode_setattr(inode, attr);
576 	return error;
577 }
578 
579 static const struct inode_operations proc_def_inode_operations = {
580 	.setattr	= proc_setattr,
581 };
582 
583 static int mounts_open_common(struct inode *inode, struct file *file,
584 			      const struct seq_operations *op)
585 {
586 	struct task_struct *task = get_proc_task(inode);
587 	struct nsproxy *nsp;
588 	struct mnt_namespace *ns = NULL;
589 	struct path root;
590 	struct proc_mounts *p;
591 	int ret = -EINVAL;
592 
593 	if (task) {
594 		rcu_read_lock();
595 		nsp = task_nsproxy(task);
596 		if (nsp) {
597 			ns = nsp->mnt_ns;
598 			if (ns)
599 				get_mnt_ns(ns);
600 		}
601 		rcu_read_unlock();
602 		if (ns && get_fs_path(task, &root, 1) == 0)
603 			ret = 0;
604 		put_task_struct(task);
605 	}
606 
607 	if (!ns)
608 		goto err;
609 	if (ret)
610 		goto err_put_ns;
611 
612 	ret = -ENOMEM;
613 	p = kmalloc(sizeof(struct proc_mounts), GFP_KERNEL);
614 	if (!p)
615 		goto err_put_path;
616 
617 	file->private_data = &p->m;
618 	ret = seq_open(file, op);
619 	if (ret)
620 		goto err_free;
621 
622 	p->m.private = p;
623 	p->ns = ns;
624 	p->root = root;
625 	p->event = ns->event;
626 
627 	return 0;
628 
629  err_free:
630 	kfree(p);
631  err_put_path:
632 	path_put(&root);
633  err_put_ns:
634 	put_mnt_ns(ns);
635  err:
636 	return ret;
637 }
638 
639 static int mounts_release(struct inode *inode, struct file *file)
640 {
641 	struct proc_mounts *p = file->private_data;
642 	path_put(&p->root);
643 	put_mnt_ns(p->ns);
644 	return seq_release(inode, file);
645 }
646 
647 static unsigned mounts_poll(struct file *file, poll_table *wait)
648 {
649 	struct proc_mounts *p = file->private_data;
650 	struct mnt_namespace *ns = p->ns;
651 	unsigned res = POLLIN | POLLRDNORM;
652 
653 	poll_wait(file, &ns->poll, wait);
654 
655 	spin_lock(&vfsmount_lock);
656 	if (p->event != ns->event) {
657 		p->event = ns->event;
658 		res |= POLLERR | POLLPRI;
659 	}
660 	spin_unlock(&vfsmount_lock);
661 
662 	return res;
663 }
664 
665 static int mounts_open(struct inode *inode, struct file *file)
666 {
667 	return mounts_open_common(inode, file, &mounts_op);
668 }
669 
670 static const struct file_operations proc_mounts_operations = {
671 	.open		= mounts_open,
672 	.read		= seq_read,
673 	.llseek		= seq_lseek,
674 	.release	= mounts_release,
675 	.poll		= mounts_poll,
676 };
677 
678 static int mountinfo_open(struct inode *inode, struct file *file)
679 {
680 	return mounts_open_common(inode, file, &mountinfo_op);
681 }
682 
683 static const struct file_operations proc_mountinfo_operations = {
684 	.open		= mountinfo_open,
685 	.read		= seq_read,
686 	.llseek		= seq_lseek,
687 	.release	= mounts_release,
688 	.poll		= mounts_poll,
689 };
690 
691 static int mountstats_open(struct inode *inode, struct file *file)
692 {
693 	return mounts_open_common(inode, file, &mountstats_op);
694 }
695 
696 static const struct file_operations proc_mountstats_operations = {
697 	.open		= mountstats_open,
698 	.read		= seq_read,
699 	.llseek		= seq_lseek,
700 	.release	= mounts_release,
701 };
702 
703 #define PROC_BLOCK_SIZE	(3*1024)		/* 4K page size but our output routines use some slack for overruns */
704 
705 static ssize_t proc_info_read(struct file * file, char __user * buf,
706 			  size_t count, loff_t *ppos)
707 {
708 	struct inode * inode = file->f_path.dentry->d_inode;
709 	unsigned long page;
710 	ssize_t length;
711 	struct task_struct *task = get_proc_task(inode);
712 
713 	length = -ESRCH;
714 	if (!task)
715 		goto out_no_task;
716 
717 	if (count > PROC_BLOCK_SIZE)
718 		count = PROC_BLOCK_SIZE;
719 
720 	length = -ENOMEM;
721 	if (!(page = __get_free_page(GFP_TEMPORARY)))
722 		goto out;
723 
724 	length = PROC_I(inode)->op.proc_read(task, (char*)page);
725 
726 	if (length >= 0)
727 		length = simple_read_from_buffer(buf, count, ppos, (char *)page, length);
728 	free_page(page);
729 out:
730 	put_task_struct(task);
731 out_no_task:
732 	return length;
733 }
734 
735 static const struct file_operations proc_info_file_operations = {
736 	.read		= proc_info_read,
737 };
738 
739 static int proc_single_show(struct seq_file *m, void *v)
740 {
741 	struct inode *inode = m->private;
742 	struct pid_namespace *ns;
743 	struct pid *pid;
744 	struct task_struct *task;
745 	int ret;
746 
747 	ns = inode->i_sb->s_fs_info;
748 	pid = proc_pid(inode);
749 	task = get_pid_task(pid, PIDTYPE_PID);
750 	if (!task)
751 		return -ESRCH;
752 
753 	ret = PROC_I(inode)->op.proc_show(m, ns, pid, task);
754 
755 	put_task_struct(task);
756 	return ret;
757 }
758 
759 static int proc_single_open(struct inode *inode, struct file *filp)
760 {
761 	int ret;
762 	ret = single_open(filp, proc_single_show, NULL);
763 	if (!ret) {
764 		struct seq_file *m = filp->private_data;
765 
766 		m->private = inode;
767 	}
768 	return ret;
769 }
770 
771 static const struct file_operations proc_single_file_operations = {
772 	.open		= proc_single_open,
773 	.read		= seq_read,
774 	.llseek		= seq_lseek,
775 	.release	= single_release,
776 };
777 
778 static int mem_open(struct inode* inode, struct file* file)
779 {
780 	file->private_data = (void*)((long)current->self_exec_id);
781 	return 0;
782 }
783 
784 static ssize_t mem_read(struct file * file, char __user * buf,
785 			size_t count, loff_t *ppos)
786 {
787 	struct task_struct *task = get_proc_task(file->f_path.dentry->d_inode);
788 	char *page;
789 	unsigned long src = *ppos;
790 	int ret = -ESRCH;
791 	struct mm_struct *mm;
792 
793 	if (!task)
794 		goto out_no_task;
795 
796 	if (check_mem_permission(task))
797 		goto out;
798 
799 	ret = -ENOMEM;
800 	page = (char *)__get_free_page(GFP_TEMPORARY);
801 	if (!page)
802 		goto out;
803 
804 	ret = 0;
805 
806 	mm = get_task_mm(task);
807 	if (!mm)
808 		goto out_free;
809 
810 	ret = -EIO;
811 
812 	if (file->private_data != (void*)((long)current->self_exec_id))
813 		goto out_put;
814 
815 	ret = 0;
816 
817 	while (count > 0) {
818 		int this_len, retval;
819 
820 		this_len = (count > PAGE_SIZE) ? PAGE_SIZE : count;
821 		retval = access_process_vm(task, src, page, this_len, 0);
822 		if (!retval || check_mem_permission(task)) {
823 			if (!ret)
824 				ret = -EIO;
825 			break;
826 		}
827 
828 		if (copy_to_user(buf, page, retval)) {
829 			ret = -EFAULT;
830 			break;
831 		}
832 
833 		ret += retval;
834 		src += retval;
835 		buf += retval;
836 		count -= retval;
837 	}
838 	*ppos = src;
839 
840 out_put:
841 	mmput(mm);
842 out_free:
843 	free_page((unsigned long) page);
844 out:
845 	put_task_struct(task);
846 out_no_task:
847 	return ret;
848 }
849 
850 #define mem_write NULL
851 
852 #ifndef mem_write
853 /* This is a security hazard */
854 static ssize_t mem_write(struct file * file, const char __user *buf,
855 			 size_t count, loff_t *ppos)
856 {
857 	int copied;
858 	char *page;
859 	struct task_struct *task = get_proc_task(file->f_path.dentry->d_inode);
860 	unsigned long dst = *ppos;
861 
862 	copied = -ESRCH;
863 	if (!task)
864 		goto out_no_task;
865 
866 	if (check_mem_permission(task))
867 		goto out;
868 
869 	copied = -ENOMEM;
870 	page = (char *)__get_free_page(GFP_TEMPORARY);
871 	if (!page)
872 		goto out;
873 
874 	copied = 0;
875 	while (count > 0) {
876 		int this_len, retval;
877 
878 		this_len = (count > PAGE_SIZE) ? PAGE_SIZE : count;
879 		if (copy_from_user(page, buf, this_len)) {
880 			copied = -EFAULT;
881 			break;
882 		}
883 		retval = access_process_vm(task, dst, page, this_len, 1);
884 		if (!retval) {
885 			if (!copied)
886 				copied = -EIO;
887 			break;
888 		}
889 		copied += retval;
890 		buf += retval;
891 		dst += retval;
892 		count -= retval;
893 	}
894 	*ppos = dst;
895 	free_page((unsigned long) page);
896 out:
897 	put_task_struct(task);
898 out_no_task:
899 	return copied;
900 }
901 #endif
902 
903 loff_t mem_lseek(struct file *file, loff_t offset, int orig)
904 {
905 	switch (orig) {
906 	case 0:
907 		file->f_pos = offset;
908 		break;
909 	case 1:
910 		file->f_pos += offset;
911 		break;
912 	default:
913 		return -EINVAL;
914 	}
915 	force_successful_syscall_return();
916 	return file->f_pos;
917 }
918 
919 static const struct file_operations proc_mem_operations = {
920 	.llseek		= mem_lseek,
921 	.read		= mem_read,
922 	.write		= mem_write,
923 	.open		= mem_open,
924 };
925 
926 static ssize_t environ_read(struct file *file, char __user *buf,
927 			size_t count, loff_t *ppos)
928 {
929 	struct task_struct *task = get_proc_task(file->f_dentry->d_inode);
930 	char *page;
931 	unsigned long src = *ppos;
932 	int ret = -ESRCH;
933 	struct mm_struct *mm;
934 
935 	if (!task)
936 		goto out_no_task;
937 
938 	if (!ptrace_may_access(task, PTRACE_MODE_READ))
939 		goto out;
940 
941 	ret = -ENOMEM;
942 	page = (char *)__get_free_page(GFP_TEMPORARY);
943 	if (!page)
944 		goto out;
945 
946 	ret = 0;
947 
948 	mm = get_task_mm(task);
949 	if (!mm)
950 		goto out_free;
951 
952 	while (count > 0) {
953 		int this_len, retval, max_len;
954 
955 		this_len = mm->env_end - (mm->env_start + src);
956 
957 		if (this_len <= 0)
958 			break;
959 
960 		max_len = (count > PAGE_SIZE) ? PAGE_SIZE : count;
961 		this_len = (this_len > max_len) ? max_len : this_len;
962 
963 		retval = access_process_vm(task, (mm->env_start + src),
964 			page, this_len, 0);
965 
966 		if (retval <= 0) {
967 			ret = retval;
968 			break;
969 		}
970 
971 		if (copy_to_user(buf, page, retval)) {
972 			ret = -EFAULT;
973 			break;
974 		}
975 
976 		ret += retval;
977 		src += retval;
978 		buf += retval;
979 		count -= retval;
980 	}
981 	*ppos = src;
982 
983 	mmput(mm);
984 out_free:
985 	free_page((unsigned long) page);
986 out:
987 	put_task_struct(task);
988 out_no_task:
989 	return ret;
990 }
991 
992 static const struct file_operations proc_environ_operations = {
993 	.read		= environ_read,
994 };
995 
996 static ssize_t oom_adjust_read(struct file *file, char __user *buf,
997 				size_t count, loff_t *ppos)
998 {
999 	struct task_struct *task = get_proc_task(file->f_path.dentry->d_inode);
1000 	char buffer[PROC_NUMBUF];
1001 	size_t len;
1002 	int oom_adjust = OOM_DISABLE;
1003 	unsigned long flags;
1004 
1005 	if (!task)
1006 		return -ESRCH;
1007 
1008 	if (lock_task_sighand(task, &flags)) {
1009 		oom_adjust = task->signal->oom_adj;
1010 		unlock_task_sighand(task, &flags);
1011 	}
1012 
1013 	put_task_struct(task);
1014 
1015 	len = snprintf(buffer, sizeof(buffer), "%i\n", oom_adjust);
1016 
1017 	return simple_read_from_buffer(buf, count, ppos, buffer, len);
1018 }
1019 
1020 static ssize_t oom_adjust_write(struct file *file, const char __user *buf,
1021 				size_t count, loff_t *ppos)
1022 {
1023 	struct task_struct *task;
1024 	char buffer[PROC_NUMBUF];
1025 	long oom_adjust;
1026 	unsigned long flags;
1027 	int err;
1028 
1029 	memset(buffer, 0, sizeof(buffer));
1030 	if (count > sizeof(buffer) - 1)
1031 		count = sizeof(buffer) - 1;
1032 	if (copy_from_user(buffer, buf, count))
1033 		return -EFAULT;
1034 
1035 	err = strict_strtol(strstrip(buffer), 0, &oom_adjust);
1036 	if (err)
1037 		return -EINVAL;
1038 	if ((oom_adjust < OOM_ADJUST_MIN || oom_adjust > OOM_ADJUST_MAX) &&
1039 	     oom_adjust != OOM_DISABLE)
1040 		return -EINVAL;
1041 
1042 	task = get_proc_task(file->f_path.dentry->d_inode);
1043 	if (!task)
1044 		return -ESRCH;
1045 	if (!lock_task_sighand(task, &flags)) {
1046 		put_task_struct(task);
1047 		return -ESRCH;
1048 	}
1049 
1050 	if (oom_adjust < task->signal->oom_adj && !capable(CAP_SYS_RESOURCE)) {
1051 		unlock_task_sighand(task, &flags);
1052 		put_task_struct(task);
1053 		return -EACCES;
1054 	}
1055 
1056 	task->signal->oom_adj = oom_adjust;
1057 
1058 	unlock_task_sighand(task, &flags);
1059 	put_task_struct(task);
1060 
1061 	return count;
1062 }
1063 
1064 static const struct file_operations proc_oom_adjust_operations = {
1065 	.read		= oom_adjust_read,
1066 	.write		= oom_adjust_write,
1067 };
1068 
1069 #ifdef CONFIG_AUDITSYSCALL
1070 #define TMPBUFLEN 21
1071 static ssize_t proc_loginuid_read(struct file * file, char __user * buf,
1072 				  size_t count, loff_t *ppos)
1073 {
1074 	struct inode * inode = file->f_path.dentry->d_inode;
1075 	struct task_struct *task = get_proc_task(inode);
1076 	ssize_t length;
1077 	char tmpbuf[TMPBUFLEN];
1078 
1079 	if (!task)
1080 		return -ESRCH;
1081 	length = scnprintf(tmpbuf, TMPBUFLEN, "%u",
1082 				audit_get_loginuid(task));
1083 	put_task_struct(task);
1084 	return simple_read_from_buffer(buf, count, ppos, tmpbuf, length);
1085 }
1086 
1087 static ssize_t proc_loginuid_write(struct file * file, const char __user * buf,
1088 				   size_t count, loff_t *ppos)
1089 {
1090 	struct inode * inode = file->f_path.dentry->d_inode;
1091 	char *page, *tmp;
1092 	ssize_t length;
1093 	uid_t loginuid;
1094 
1095 	if (!capable(CAP_AUDIT_CONTROL))
1096 		return -EPERM;
1097 
1098 	if (current != pid_task(proc_pid(inode), PIDTYPE_PID))
1099 		return -EPERM;
1100 
1101 	if (count >= PAGE_SIZE)
1102 		count = PAGE_SIZE - 1;
1103 
1104 	if (*ppos != 0) {
1105 		/* No partial writes. */
1106 		return -EINVAL;
1107 	}
1108 	page = (char*)__get_free_page(GFP_TEMPORARY);
1109 	if (!page)
1110 		return -ENOMEM;
1111 	length = -EFAULT;
1112 	if (copy_from_user(page, buf, count))
1113 		goto out_free_page;
1114 
1115 	page[count] = '\0';
1116 	loginuid = simple_strtoul(page, &tmp, 10);
1117 	if (tmp == page) {
1118 		length = -EINVAL;
1119 		goto out_free_page;
1120 
1121 	}
1122 	length = audit_set_loginuid(current, loginuid);
1123 	if (likely(length == 0))
1124 		length = count;
1125 
1126 out_free_page:
1127 	free_page((unsigned long) page);
1128 	return length;
1129 }
1130 
1131 static const struct file_operations proc_loginuid_operations = {
1132 	.read		= proc_loginuid_read,
1133 	.write		= proc_loginuid_write,
1134 };
1135 
1136 static ssize_t proc_sessionid_read(struct file * file, char __user * buf,
1137 				  size_t count, loff_t *ppos)
1138 {
1139 	struct inode * inode = file->f_path.dentry->d_inode;
1140 	struct task_struct *task = get_proc_task(inode);
1141 	ssize_t length;
1142 	char tmpbuf[TMPBUFLEN];
1143 
1144 	if (!task)
1145 		return -ESRCH;
1146 	length = scnprintf(tmpbuf, TMPBUFLEN, "%u",
1147 				audit_get_sessionid(task));
1148 	put_task_struct(task);
1149 	return simple_read_from_buffer(buf, count, ppos, tmpbuf, length);
1150 }
1151 
1152 static const struct file_operations proc_sessionid_operations = {
1153 	.read		= proc_sessionid_read,
1154 };
1155 #endif
1156 
1157 #ifdef CONFIG_FAULT_INJECTION
1158 static ssize_t proc_fault_inject_read(struct file * file, char __user * buf,
1159 				      size_t count, loff_t *ppos)
1160 {
1161 	struct task_struct *task = get_proc_task(file->f_dentry->d_inode);
1162 	char buffer[PROC_NUMBUF];
1163 	size_t len;
1164 	int make_it_fail;
1165 
1166 	if (!task)
1167 		return -ESRCH;
1168 	make_it_fail = task->make_it_fail;
1169 	put_task_struct(task);
1170 
1171 	len = snprintf(buffer, sizeof(buffer), "%i\n", make_it_fail);
1172 
1173 	return simple_read_from_buffer(buf, count, ppos, buffer, len);
1174 }
1175 
1176 static ssize_t proc_fault_inject_write(struct file * file,
1177 			const char __user * buf, size_t count, loff_t *ppos)
1178 {
1179 	struct task_struct *task;
1180 	char buffer[PROC_NUMBUF], *end;
1181 	int make_it_fail;
1182 
1183 	if (!capable(CAP_SYS_RESOURCE))
1184 		return -EPERM;
1185 	memset(buffer, 0, sizeof(buffer));
1186 	if (count > sizeof(buffer) - 1)
1187 		count = sizeof(buffer) - 1;
1188 	if (copy_from_user(buffer, buf, count))
1189 		return -EFAULT;
1190 	make_it_fail = simple_strtol(strstrip(buffer), &end, 0);
1191 	if (*end)
1192 		return -EINVAL;
1193 	task = get_proc_task(file->f_dentry->d_inode);
1194 	if (!task)
1195 		return -ESRCH;
1196 	task->make_it_fail = make_it_fail;
1197 	put_task_struct(task);
1198 
1199 	return count;
1200 }
1201 
1202 static const struct file_operations proc_fault_inject_operations = {
1203 	.read		= proc_fault_inject_read,
1204 	.write		= proc_fault_inject_write,
1205 };
1206 #endif
1207 
1208 
1209 #ifdef CONFIG_SCHED_DEBUG
1210 /*
1211  * Print out various scheduling related per-task fields:
1212  */
1213 static int sched_show(struct seq_file *m, void *v)
1214 {
1215 	struct inode *inode = m->private;
1216 	struct task_struct *p;
1217 
1218 	p = get_proc_task(inode);
1219 	if (!p)
1220 		return -ESRCH;
1221 	proc_sched_show_task(p, m);
1222 
1223 	put_task_struct(p);
1224 
1225 	return 0;
1226 }
1227 
1228 static ssize_t
1229 sched_write(struct file *file, const char __user *buf,
1230 	    size_t count, loff_t *offset)
1231 {
1232 	struct inode *inode = file->f_path.dentry->d_inode;
1233 	struct task_struct *p;
1234 
1235 	p = get_proc_task(inode);
1236 	if (!p)
1237 		return -ESRCH;
1238 	proc_sched_set_task(p);
1239 
1240 	put_task_struct(p);
1241 
1242 	return count;
1243 }
1244 
1245 static int sched_open(struct inode *inode, struct file *filp)
1246 {
1247 	int ret;
1248 
1249 	ret = single_open(filp, sched_show, NULL);
1250 	if (!ret) {
1251 		struct seq_file *m = filp->private_data;
1252 
1253 		m->private = inode;
1254 	}
1255 	return ret;
1256 }
1257 
1258 static const struct file_operations proc_pid_sched_operations = {
1259 	.open		= sched_open,
1260 	.read		= seq_read,
1261 	.write		= sched_write,
1262 	.llseek		= seq_lseek,
1263 	.release	= single_release,
1264 };
1265 
1266 #endif
1267 
1268 /*
1269  * We added or removed a vma mapping the executable. The vmas are only mapped
1270  * during exec and are not mapped with the mmap system call.
1271  * Callers must hold down_write() on the mm's mmap_sem for these
1272  */
1273 void added_exe_file_vma(struct mm_struct *mm)
1274 {
1275 	mm->num_exe_file_vmas++;
1276 }
1277 
1278 void removed_exe_file_vma(struct mm_struct *mm)
1279 {
1280 	mm->num_exe_file_vmas--;
1281 	if ((mm->num_exe_file_vmas == 0) && mm->exe_file){
1282 		fput(mm->exe_file);
1283 		mm->exe_file = NULL;
1284 	}
1285 
1286 }
1287 
1288 void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
1289 {
1290 	if (new_exe_file)
1291 		get_file(new_exe_file);
1292 	if (mm->exe_file)
1293 		fput(mm->exe_file);
1294 	mm->exe_file = new_exe_file;
1295 	mm->num_exe_file_vmas = 0;
1296 }
1297 
1298 struct file *get_mm_exe_file(struct mm_struct *mm)
1299 {
1300 	struct file *exe_file;
1301 
1302 	/* We need mmap_sem to protect against races with removal of
1303 	 * VM_EXECUTABLE vmas */
1304 	down_read(&mm->mmap_sem);
1305 	exe_file = mm->exe_file;
1306 	if (exe_file)
1307 		get_file(exe_file);
1308 	up_read(&mm->mmap_sem);
1309 	return exe_file;
1310 }
1311 
1312 void dup_mm_exe_file(struct mm_struct *oldmm, struct mm_struct *newmm)
1313 {
1314 	/* It's safe to write the exe_file pointer without exe_file_lock because
1315 	 * this is called during fork when the task is not yet in /proc */
1316 	newmm->exe_file = get_mm_exe_file(oldmm);
1317 }
1318 
1319 static int proc_exe_link(struct inode *inode, struct path *exe_path)
1320 {
1321 	struct task_struct *task;
1322 	struct mm_struct *mm;
1323 	struct file *exe_file;
1324 
1325 	task = get_proc_task(inode);
1326 	if (!task)
1327 		return -ENOENT;
1328 	mm = get_task_mm(task);
1329 	put_task_struct(task);
1330 	if (!mm)
1331 		return -ENOENT;
1332 	exe_file = get_mm_exe_file(mm);
1333 	mmput(mm);
1334 	if (exe_file) {
1335 		*exe_path = exe_file->f_path;
1336 		path_get(&exe_file->f_path);
1337 		fput(exe_file);
1338 		return 0;
1339 	} else
1340 		return -ENOENT;
1341 }
1342 
1343 static void *proc_pid_follow_link(struct dentry *dentry, struct nameidata *nd)
1344 {
1345 	struct inode *inode = dentry->d_inode;
1346 	int error = -EACCES;
1347 
1348 	/* We don't need a base pointer in the /proc filesystem */
1349 	path_put(&nd->path);
1350 
1351 	/* Are we allowed to snoop on the tasks file descriptors? */
1352 	if (!proc_fd_access_allowed(inode))
1353 		goto out;
1354 
1355 	error = PROC_I(inode)->op.proc_get_link(inode, &nd->path);
1356 	nd->last_type = LAST_BIND;
1357 out:
1358 	return ERR_PTR(error);
1359 }
1360 
1361 static int do_proc_readlink(struct path *path, char __user *buffer, int buflen)
1362 {
1363 	char *tmp = (char*)__get_free_page(GFP_TEMPORARY);
1364 	char *pathname;
1365 	int len;
1366 
1367 	if (!tmp)
1368 		return -ENOMEM;
1369 
1370 	pathname = d_path(path, tmp, PAGE_SIZE);
1371 	len = PTR_ERR(pathname);
1372 	if (IS_ERR(pathname))
1373 		goto out;
1374 	len = tmp + PAGE_SIZE - 1 - pathname;
1375 
1376 	if (len > buflen)
1377 		len = buflen;
1378 	if (copy_to_user(buffer, pathname, len))
1379 		len = -EFAULT;
1380  out:
1381 	free_page((unsigned long)tmp);
1382 	return len;
1383 }
1384 
1385 static int proc_pid_readlink(struct dentry * dentry, char __user * buffer, int buflen)
1386 {
1387 	int error = -EACCES;
1388 	struct inode *inode = dentry->d_inode;
1389 	struct path path;
1390 
1391 	/* Are we allowed to snoop on the tasks file descriptors? */
1392 	if (!proc_fd_access_allowed(inode))
1393 		goto out;
1394 
1395 	error = PROC_I(inode)->op.proc_get_link(inode, &path);
1396 	if (error)
1397 		goto out;
1398 
1399 	error = do_proc_readlink(&path, buffer, buflen);
1400 	path_put(&path);
1401 out:
1402 	return error;
1403 }
1404 
1405 static const struct inode_operations proc_pid_link_inode_operations = {
1406 	.readlink	= proc_pid_readlink,
1407 	.follow_link	= proc_pid_follow_link,
1408 	.setattr	= proc_setattr,
1409 };
1410 
1411 
1412 /* building an inode */
1413 
1414 static int task_dumpable(struct task_struct *task)
1415 {
1416 	int dumpable = 0;
1417 	struct mm_struct *mm;
1418 
1419 	task_lock(task);
1420 	mm = task->mm;
1421 	if (mm)
1422 		dumpable = get_dumpable(mm);
1423 	task_unlock(task);
1424 	if(dumpable == 1)
1425 		return 1;
1426 	return 0;
1427 }
1428 
1429 
1430 static struct inode *proc_pid_make_inode(struct super_block * sb, struct task_struct *task)
1431 {
1432 	struct inode * inode;
1433 	struct proc_inode *ei;
1434 	const struct cred *cred;
1435 
1436 	/* We need a new inode */
1437 
1438 	inode = new_inode(sb);
1439 	if (!inode)
1440 		goto out;
1441 
1442 	/* Common stuff */
1443 	ei = PROC_I(inode);
1444 	inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
1445 	inode->i_op = &proc_def_inode_operations;
1446 
1447 	/*
1448 	 * grab the reference to task.
1449 	 */
1450 	ei->pid = get_task_pid(task, PIDTYPE_PID);
1451 	if (!ei->pid)
1452 		goto out_unlock;
1453 
1454 	if (task_dumpable(task)) {
1455 		rcu_read_lock();
1456 		cred = __task_cred(task);
1457 		inode->i_uid = cred->euid;
1458 		inode->i_gid = cred->egid;
1459 		rcu_read_unlock();
1460 	}
1461 	security_task_to_inode(task, inode);
1462 
1463 out:
1464 	return inode;
1465 
1466 out_unlock:
1467 	iput(inode);
1468 	return NULL;
1469 }
1470 
1471 static int pid_getattr(struct vfsmount *mnt, struct dentry *dentry, struct kstat *stat)
1472 {
1473 	struct inode *inode = dentry->d_inode;
1474 	struct task_struct *task;
1475 	const struct cred *cred;
1476 
1477 	generic_fillattr(inode, stat);
1478 
1479 	rcu_read_lock();
1480 	stat->uid = 0;
1481 	stat->gid = 0;
1482 	task = pid_task(proc_pid(inode), PIDTYPE_PID);
1483 	if (task) {
1484 		if ((inode->i_mode == (S_IFDIR|S_IRUGO|S_IXUGO)) ||
1485 		    task_dumpable(task)) {
1486 			cred = __task_cred(task);
1487 			stat->uid = cred->euid;
1488 			stat->gid = cred->egid;
1489 		}
1490 	}
1491 	rcu_read_unlock();
1492 	return 0;
1493 }
1494 
1495 /* dentry stuff */
1496 
1497 /*
1498  *	Exceptional case: normally we are not allowed to unhash a busy
1499  * directory. In this case, however, we can do it - no aliasing problems
1500  * due to the way we treat inodes.
1501  *
1502  * Rewrite the inode's ownerships here because the owning task may have
1503  * performed a setuid(), etc.
1504  *
1505  * Before the /proc/pid/status file was created the only way to read
1506  * the effective uid of a /process was to stat /proc/pid.  Reading
1507  * /proc/pid/status is slow enough that procps and other packages
1508  * kept stating /proc/pid.  To keep the rules in /proc simple I have
1509  * made this apply to all per process world readable and executable
1510  * directories.
1511  */
1512 static int pid_revalidate(struct dentry *dentry, struct nameidata *nd)
1513 {
1514 	struct inode *inode = dentry->d_inode;
1515 	struct task_struct *task = get_proc_task(inode);
1516 	const struct cred *cred;
1517 
1518 	if (task) {
1519 		if ((inode->i_mode == (S_IFDIR|S_IRUGO|S_IXUGO)) ||
1520 		    task_dumpable(task)) {
1521 			rcu_read_lock();
1522 			cred = __task_cred(task);
1523 			inode->i_uid = cred->euid;
1524 			inode->i_gid = cred->egid;
1525 			rcu_read_unlock();
1526 		} else {
1527 			inode->i_uid = 0;
1528 			inode->i_gid = 0;
1529 		}
1530 		inode->i_mode &= ~(S_ISUID | S_ISGID);
1531 		security_task_to_inode(task, inode);
1532 		put_task_struct(task);
1533 		return 1;
1534 	}
1535 	d_drop(dentry);
1536 	return 0;
1537 }
1538 
1539 static int pid_delete_dentry(struct dentry * dentry)
1540 {
1541 	/* Is the task we represent dead?
1542 	 * If so, then don't put the dentry on the lru list,
1543 	 * kill it immediately.
1544 	 */
1545 	return !proc_pid(dentry->d_inode)->tasks[PIDTYPE_PID].first;
1546 }
1547 
1548 static const struct dentry_operations pid_dentry_operations =
1549 {
1550 	.d_revalidate	= pid_revalidate,
1551 	.d_delete	= pid_delete_dentry,
1552 };
1553 
1554 /* Lookups */
1555 
1556 typedef struct dentry *instantiate_t(struct inode *, struct dentry *,
1557 				struct task_struct *, const void *);
1558 
1559 /*
1560  * Fill a directory entry.
1561  *
1562  * If possible create the dcache entry and derive our inode number and
1563  * file type from dcache entry.
1564  *
1565  * Since all of the proc inode numbers are dynamically generated, the inode
1566  * numbers do not exist until the inode is cache.  This means creating the
1567  * the dcache entry in readdir is necessary to keep the inode numbers
1568  * reported by readdir in sync with the inode numbers reported
1569  * by stat.
1570  */
1571 static int proc_fill_cache(struct file *filp, void *dirent, filldir_t filldir,
1572 	char *name, int len,
1573 	instantiate_t instantiate, struct task_struct *task, const void *ptr)
1574 {
1575 	struct dentry *child, *dir = filp->f_path.dentry;
1576 	struct inode *inode;
1577 	struct qstr qname;
1578 	ino_t ino = 0;
1579 	unsigned type = DT_UNKNOWN;
1580 
1581 	qname.name = name;
1582 	qname.len  = len;
1583 	qname.hash = full_name_hash(name, len);
1584 
1585 	child = d_lookup(dir, &qname);
1586 	if (!child) {
1587 		struct dentry *new;
1588 		new = d_alloc(dir, &qname);
1589 		if (new) {
1590 			child = instantiate(dir->d_inode, new, task, ptr);
1591 			if (child)
1592 				dput(new);
1593 			else
1594 				child = new;
1595 		}
1596 	}
1597 	if (!child || IS_ERR(child) || !child->d_inode)
1598 		goto end_instantiate;
1599 	inode = child->d_inode;
1600 	if (inode) {
1601 		ino = inode->i_ino;
1602 		type = inode->i_mode >> 12;
1603 	}
1604 	dput(child);
1605 end_instantiate:
1606 	if (!ino)
1607 		ino = find_inode_number(dir, &qname);
1608 	if (!ino)
1609 		ino = 1;
1610 	return filldir(dirent, name, len, filp->f_pos, ino, type);
1611 }
1612 
1613 static unsigned name_to_int(struct dentry *dentry)
1614 {
1615 	const char *name = dentry->d_name.name;
1616 	int len = dentry->d_name.len;
1617 	unsigned n = 0;
1618 
1619 	if (len > 1 && *name == '0')
1620 		goto out;
1621 	while (len-- > 0) {
1622 		unsigned c = *name++ - '0';
1623 		if (c > 9)
1624 			goto out;
1625 		if (n >= (~0U-9)/10)
1626 			goto out;
1627 		n *= 10;
1628 		n += c;
1629 	}
1630 	return n;
1631 out:
1632 	return ~0U;
1633 }
1634 
1635 #define PROC_FDINFO_MAX 64
1636 
1637 static int proc_fd_info(struct inode *inode, struct path *path, char *info)
1638 {
1639 	struct task_struct *task = get_proc_task(inode);
1640 	struct files_struct *files = NULL;
1641 	struct file *file;
1642 	int fd = proc_fd(inode);
1643 
1644 	if (task) {
1645 		files = get_files_struct(task);
1646 		put_task_struct(task);
1647 	}
1648 	if (files) {
1649 		/*
1650 		 * We are not taking a ref to the file structure, so we must
1651 		 * hold ->file_lock.
1652 		 */
1653 		spin_lock(&files->file_lock);
1654 		file = fcheck_files(files, fd);
1655 		if (file) {
1656 			if (path) {
1657 				*path = file->f_path;
1658 				path_get(&file->f_path);
1659 			}
1660 			if (info)
1661 				snprintf(info, PROC_FDINFO_MAX,
1662 					 "pos:\t%lli\n"
1663 					 "flags:\t0%o\n",
1664 					 (long long) file->f_pos,
1665 					 file->f_flags);
1666 			spin_unlock(&files->file_lock);
1667 			put_files_struct(files);
1668 			return 0;
1669 		}
1670 		spin_unlock(&files->file_lock);
1671 		put_files_struct(files);
1672 	}
1673 	return -ENOENT;
1674 }
1675 
1676 static int proc_fd_link(struct inode *inode, struct path *path)
1677 {
1678 	return proc_fd_info(inode, path, NULL);
1679 }
1680 
1681 static int tid_fd_revalidate(struct dentry *dentry, struct nameidata *nd)
1682 {
1683 	struct inode *inode = dentry->d_inode;
1684 	struct task_struct *task = get_proc_task(inode);
1685 	int fd = proc_fd(inode);
1686 	struct files_struct *files;
1687 	const struct cred *cred;
1688 
1689 	if (task) {
1690 		files = get_files_struct(task);
1691 		if (files) {
1692 			rcu_read_lock();
1693 			if (fcheck_files(files, fd)) {
1694 				rcu_read_unlock();
1695 				put_files_struct(files);
1696 				if (task_dumpable(task)) {
1697 					rcu_read_lock();
1698 					cred = __task_cred(task);
1699 					inode->i_uid = cred->euid;
1700 					inode->i_gid = cred->egid;
1701 					rcu_read_unlock();
1702 				} else {
1703 					inode->i_uid = 0;
1704 					inode->i_gid = 0;
1705 				}
1706 				inode->i_mode &= ~(S_ISUID | S_ISGID);
1707 				security_task_to_inode(task, inode);
1708 				put_task_struct(task);
1709 				return 1;
1710 			}
1711 			rcu_read_unlock();
1712 			put_files_struct(files);
1713 		}
1714 		put_task_struct(task);
1715 	}
1716 	d_drop(dentry);
1717 	return 0;
1718 }
1719 
1720 static const struct dentry_operations tid_fd_dentry_operations =
1721 {
1722 	.d_revalidate	= tid_fd_revalidate,
1723 	.d_delete	= pid_delete_dentry,
1724 };
1725 
1726 static struct dentry *proc_fd_instantiate(struct inode *dir,
1727 	struct dentry *dentry, struct task_struct *task, const void *ptr)
1728 {
1729 	unsigned fd = *(const unsigned *)ptr;
1730 	struct file *file;
1731 	struct files_struct *files;
1732  	struct inode *inode;
1733  	struct proc_inode *ei;
1734 	struct dentry *error = ERR_PTR(-ENOENT);
1735 
1736 	inode = proc_pid_make_inode(dir->i_sb, task);
1737 	if (!inode)
1738 		goto out;
1739 	ei = PROC_I(inode);
1740 	ei->fd = fd;
1741 	files = get_files_struct(task);
1742 	if (!files)
1743 		goto out_iput;
1744 	inode->i_mode = S_IFLNK;
1745 
1746 	/*
1747 	 * We are not taking a ref to the file structure, so we must
1748 	 * hold ->file_lock.
1749 	 */
1750 	spin_lock(&files->file_lock);
1751 	file = fcheck_files(files, fd);
1752 	if (!file)
1753 		goto out_unlock;
1754 	if (file->f_mode & FMODE_READ)
1755 		inode->i_mode |= S_IRUSR | S_IXUSR;
1756 	if (file->f_mode & FMODE_WRITE)
1757 		inode->i_mode |= S_IWUSR | S_IXUSR;
1758 	spin_unlock(&files->file_lock);
1759 	put_files_struct(files);
1760 
1761 	inode->i_op = &proc_pid_link_inode_operations;
1762 	inode->i_size = 64;
1763 	ei->op.proc_get_link = proc_fd_link;
1764 	dentry->d_op = &tid_fd_dentry_operations;
1765 	d_add(dentry, inode);
1766 	/* Close the race of the process dying before we return the dentry */
1767 	if (tid_fd_revalidate(dentry, NULL))
1768 		error = NULL;
1769 
1770  out:
1771 	return error;
1772 out_unlock:
1773 	spin_unlock(&files->file_lock);
1774 	put_files_struct(files);
1775 out_iput:
1776 	iput(inode);
1777 	goto out;
1778 }
1779 
1780 static struct dentry *proc_lookupfd_common(struct inode *dir,
1781 					   struct dentry *dentry,
1782 					   instantiate_t instantiate)
1783 {
1784 	struct task_struct *task = get_proc_task(dir);
1785 	unsigned fd = name_to_int(dentry);
1786 	struct dentry *result = ERR_PTR(-ENOENT);
1787 
1788 	if (!task)
1789 		goto out_no_task;
1790 	if (fd == ~0U)
1791 		goto out;
1792 
1793 	result = instantiate(dir, dentry, task, &fd);
1794 out:
1795 	put_task_struct(task);
1796 out_no_task:
1797 	return result;
1798 }
1799 
1800 static int proc_readfd_common(struct file * filp, void * dirent,
1801 			      filldir_t filldir, instantiate_t instantiate)
1802 {
1803 	struct dentry *dentry = filp->f_path.dentry;
1804 	struct inode *inode = dentry->d_inode;
1805 	struct task_struct *p = get_proc_task(inode);
1806 	unsigned int fd, ino;
1807 	int retval;
1808 	struct files_struct * files;
1809 
1810 	retval = -ENOENT;
1811 	if (!p)
1812 		goto out_no_task;
1813 	retval = 0;
1814 
1815 	fd = filp->f_pos;
1816 	switch (fd) {
1817 		case 0:
1818 			if (filldir(dirent, ".", 1, 0, inode->i_ino, DT_DIR) < 0)
1819 				goto out;
1820 			filp->f_pos++;
1821 		case 1:
1822 			ino = parent_ino(dentry);
1823 			if (filldir(dirent, "..", 2, 1, ino, DT_DIR) < 0)
1824 				goto out;
1825 			filp->f_pos++;
1826 		default:
1827 			files = get_files_struct(p);
1828 			if (!files)
1829 				goto out;
1830 			rcu_read_lock();
1831 			for (fd = filp->f_pos-2;
1832 			     fd < files_fdtable(files)->max_fds;
1833 			     fd++, filp->f_pos++) {
1834 				char name[PROC_NUMBUF];
1835 				int len;
1836 
1837 				if (!fcheck_files(files, fd))
1838 					continue;
1839 				rcu_read_unlock();
1840 
1841 				len = snprintf(name, sizeof(name), "%d", fd);
1842 				if (proc_fill_cache(filp, dirent, filldir,
1843 						    name, len, instantiate,
1844 						    p, &fd) < 0) {
1845 					rcu_read_lock();
1846 					break;
1847 				}
1848 				rcu_read_lock();
1849 			}
1850 			rcu_read_unlock();
1851 			put_files_struct(files);
1852 	}
1853 out:
1854 	put_task_struct(p);
1855 out_no_task:
1856 	return retval;
1857 }
1858 
1859 static struct dentry *proc_lookupfd(struct inode *dir, struct dentry *dentry,
1860 				    struct nameidata *nd)
1861 {
1862 	return proc_lookupfd_common(dir, dentry, proc_fd_instantiate);
1863 }
1864 
1865 static int proc_readfd(struct file *filp, void *dirent, filldir_t filldir)
1866 {
1867 	return proc_readfd_common(filp, dirent, filldir, proc_fd_instantiate);
1868 }
1869 
1870 static ssize_t proc_fdinfo_read(struct file *file, char __user *buf,
1871 				      size_t len, loff_t *ppos)
1872 {
1873 	char tmp[PROC_FDINFO_MAX];
1874 	int err = proc_fd_info(file->f_path.dentry->d_inode, NULL, tmp);
1875 	if (!err)
1876 		err = simple_read_from_buffer(buf, len, ppos, tmp, strlen(tmp));
1877 	return err;
1878 }
1879 
1880 static const struct file_operations proc_fdinfo_file_operations = {
1881 	.open		= nonseekable_open,
1882 	.read		= proc_fdinfo_read,
1883 };
1884 
1885 static const struct file_operations proc_fd_operations = {
1886 	.read		= generic_read_dir,
1887 	.readdir	= proc_readfd,
1888 };
1889 
1890 /*
1891  * /proc/pid/fd needs a special permission handler so that a process can still
1892  * access /proc/self/fd after it has executed a setuid().
1893  */
1894 static int proc_fd_permission(struct inode *inode, int mask)
1895 {
1896 	int rv;
1897 
1898 	rv = generic_permission(inode, mask, NULL);
1899 	if (rv == 0)
1900 		return 0;
1901 	if (task_pid(current) == proc_pid(inode))
1902 		rv = 0;
1903 	return rv;
1904 }
1905 
1906 /*
1907  * proc directories can do almost nothing..
1908  */
1909 static const struct inode_operations proc_fd_inode_operations = {
1910 	.lookup		= proc_lookupfd,
1911 	.permission	= proc_fd_permission,
1912 	.setattr	= proc_setattr,
1913 };
1914 
1915 static struct dentry *proc_fdinfo_instantiate(struct inode *dir,
1916 	struct dentry *dentry, struct task_struct *task, const void *ptr)
1917 {
1918 	unsigned fd = *(unsigned *)ptr;
1919  	struct inode *inode;
1920  	struct proc_inode *ei;
1921 	struct dentry *error = ERR_PTR(-ENOENT);
1922 
1923 	inode = proc_pid_make_inode(dir->i_sb, task);
1924 	if (!inode)
1925 		goto out;
1926 	ei = PROC_I(inode);
1927 	ei->fd = fd;
1928 	inode->i_mode = S_IFREG | S_IRUSR;
1929 	inode->i_fop = &proc_fdinfo_file_operations;
1930 	dentry->d_op = &tid_fd_dentry_operations;
1931 	d_add(dentry, inode);
1932 	/* Close the race of the process dying before we return the dentry */
1933 	if (tid_fd_revalidate(dentry, NULL))
1934 		error = NULL;
1935 
1936  out:
1937 	return error;
1938 }
1939 
1940 static struct dentry *proc_lookupfdinfo(struct inode *dir,
1941 					struct dentry *dentry,
1942 					struct nameidata *nd)
1943 {
1944 	return proc_lookupfd_common(dir, dentry, proc_fdinfo_instantiate);
1945 }
1946 
1947 static int proc_readfdinfo(struct file *filp, void *dirent, filldir_t filldir)
1948 {
1949 	return proc_readfd_common(filp, dirent, filldir,
1950 				  proc_fdinfo_instantiate);
1951 }
1952 
1953 static const struct file_operations proc_fdinfo_operations = {
1954 	.read		= generic_read_dir,
1955 	.readdir	= proc_readfdinfo,
1956 };
1957 
1958 /*
1959  * proc directories can do almost nothing..
1960  */
1961 static const struct inode_operations proc_fdinfo_inode_operations = {
1962 	.lookup		= proc_lookupfdinfo,
1963 	.setattr	= proc_setattr,
1964 };
1965 
1966 
1967 static struct dentry *proc_pident_instantiate(struct inode *dir,
1968 	struct dentry *dentry, struct task_struct *task, const void *ptr)
1969 {
1970 	const struct pid_entry *p = ptr;
1971 	struct inode *inode;
1972 	struct proc_inode *ei;
1973 	struct dentry *error = ERR_PTR(-ENOENT);
1974 
1975 	inode = proc_pid_make_inode(dir->i_sb, task);
1976 	if (!inode)
1977 		goto out;
1978 
1979 	ei = PROC_I(inode);
1980 	inode->i_mode = p->mode;
1981 	if (S_ISDIR(inode->i_mode))
1982 		inode->i_nlink = 2;	/* Use getattr to fix if necessary */
1983 	if (p->iop)
1984 		inode->i_op = p->iop;
1985 	if (p->fop)
1986 		inode->i_fop = p->fop;
1987 	ei->op = p->op;
1988 	dentry->d_op = &pid_dentry_operations;
1989 	d_add(dentry, inode);
1990 	/* Close the race of the process dying before we return the dentry */
1991 	if (pid_revalidate(dentry, NULL))
1992 		error = NULL;
1993 out:
1994 	return error;
1995 }
1996 
1997 static struct dentry *proc_pident_lookup(struct inode *dir,
1998 					 struct dentry *dentry,
1999 					 const struct pid_entry *ents,
2000 					 unsigned int nents)
2001 {
2002 	struct dentry *error;
2003 	struct task_struct *task = get_proc_task(dir);
2004 	const struct pid_entry *p, *last;
2005 
2006 	error = ERR_PTR(-ENOENT);
2007 
2008 	if (!task)
2009 		goto out_no_task;
2010 
2011 	/*
2012 	 * Yes, it does not scale. And it should not. Don't add
2013 	 * new entries into /proc/<tgid>/ without very good reasons.
2014 	 */
2015 	last = &ents[nents - 1];
2016 	for (p = ents; p <= last; p++) {
2017 		if (p->len != dentry->d_name.len)
2018 			continue;
2019 		if (!memcmp(dentry->d_name.name, p->name, p->len))
2020 			break;
2021 	}
2022 	if (p > last)
2023 		goto out;
2024 
2025 	error = proc_pident_instantiate(dir, dentry, task, p);
2026 out:
2027 	put_task_struct(task);
2028 out_no_task:
2029 	return error;
2030 }
2031 
2032 static int proc_pident_fill_cache(struct file *filp, void *dirent,
2033 	filldir_t filldir, struct task_struct *task, const struct pid_entry *p)
2034 {
2035 	return proc_fill_cache(filp, dirent, filldir, p->name, p->len,
2036 				proc_pident_instantiate, task, p);
2037 }
2038 
2039 static int proc_pident_readdir(struct file *filp,
2040 		void *dirent, filldir_t filldir,
2041 		const struct pid_entry *ents, unsigned int nents)
2042 {
2043 	int i;
2044 	struct dentry *dentry = filp->f_path.dentry;
2045 	struct inode *inode = dentry->d_inode;
2046 	struct task_struct *task = get_proc_task(inode);
2047 	const struct pid_entry *p, *last;
2048 	ino_t ino;
2049 	int ret;
2050 
2051 	ret = -ENOENT;
2052 	if (!task)
2053 		goto out_no_task;
2054 
2055 	ret = 0;
2056 	i = filp->f_pos;
2057 	switch (i) {
2058 	case 0:
2059 		ino = inode->i_ino;
2060 		if (filldir(dirent, ".", 1, i, ino, DT_DIR) < 0)
2061 			goto out;
2062 		i++;
2063 		filp->f_pos++;
2064 		/* fall through */
2065 	case 1:
2066 		ino = parent_ino(dentry);
2067 		if (filldir(dirent, "..", 2, i, ino, DT_DIR) < 0)
2068 			goto out;
2069 		i++;
2070 		filp->f_pos++;
2071 		/* fall through */
2072 	default:
2073 		i -= 2;
2074 		if (i >= nents) {
2075 			ret = 1;
2076 			goto out;
2077 		}
2078 		p = ents + i;
2079 		last = &ents[nents - 1];
2080 		while (p <= last) {
2081 			if (proc_pident_fill_cache(filp, dirent, filldir, task, p) < 0)
2082 				goto out;
2083 			filp->f_pos++;
2084 			p++;
2085 		}
2086 	}
2087 
2088 	ret = 1;
2089 out:
2090 	put_task_struct(task);
2091 out_no_task:
2092 	return ret;
2093 }
2094 
2095 #ifdef CONFIG_SECURITY
2096 static ssize_t proc_pid_attr_read(struct file * file, char __user * buf,
2097 				  size_t count, loff_t *ppos)
2098 {
2099 	struct inode * inode = file->f_path.dentry->d_inode;
2100 	char *p = NULL;
2101 	ssize_t length;
2102 	struct task_struct *task = get_proc_task(inode);
2103 
2104 	if (!task)
2105 		return -ESRCH;
2106 
2107 	length = security_getprocattr(task,
2108 				      (char*)file->f_path.dentry->d_name.name,
2109 				      &p);
2110 	put_task_struct(task);
2111 	if (length > 0)
2112 		length = simple_read_from_buffer(buf, count, ppos, p, length);
2113 	kfree(p);
2114 	return length;
2115 }
2116 
2117 static ssize_t proc_pid_attr_write(struct file * file, const char __user * buf,
2118 				   size_t count, loff_t *ppos)
2119 {
2120 	struct inode * inode = file->f_path.dentry->d_inode;
2121 	char *page;
2122 	ssize_t length;
2123 	struct task_struct *task = get_proc_task(inode);
2124 
2125 	length = -ESRCH;
2126 	if (!task)
2127 		goto out_no_task;
2128 	if (count > PAGE_SIZE)
2129 		count = PAGE_SIZE;
2130 
2131 	/* No partial writes. */
2132 	length = -EINVAL;
2133 	if (*ppos != 0)
2134 		goto out;
2135 
2136 	length = -ENOMEM;
2137 	page = (char*)__get_free_page(GFP_TEMPORARY);
2138 	if (!page)
2139 		goto out;
2140 
2141 	length = -EFAULT;
2142 	if (copy_from_user(page, buf, count))
2143 		goto out_free;
2144 
2145 	/* Guard against adverse ptrace interaction */
2146 	length = mutex_lock_interruptible(&task->cred_guard_mutex);
2147 	if (length < 0)
2148 		goto out_free;
2149 
2150 	length = security_setprocattr(task,
2151 				      (char*)file->f_path.dentry->d_name.name,
2152 				      (void*)page, count);
2153 	mutex_unlock(&task->cred_guard_mutex);
2154 out_free:
2155 	free_page((unsigned long) page);
2156 out:
2157 	put_task_struct(task);
2158 out_no_task:
2159 	return length;
2160 }
2161 
2162 static const struct file_operations proc_pid_attr_operations = {
2163 	.read		= proc_pid_attr_read,
2164 	.write		= proc_pid_attr_write,
2165 };
2166 
2167 static const struct pid_entry attr_dir_stuff[] = {
2168 	REG("current",    S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2169 	REG("prev",       S_IRUGO,	   proc_pid_attr_operations),
2170 	REG("exec",       S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2171 	REG("fscreate",   S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2172 	REG("keycreate",  S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2173 	REG("sockcreate", S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2174 };
2175 
2176 static int proc_attr_dir_readdir(struct file * filp,
2177 			     void * dirent, filldir_t filldir)
2178 {
2179 	return proc_pident_readdir(filp,dirent,filldir,
2180 				   attr_dir_stuff,ARRAY_SIZE(attr_dir_stuff));
2181 }
2182 
2183 static const struct file_operations proc_attr_dir_operations = {
2184 	.read		= generic_read_dir,
2185 	.readdir	= proc_attr_dir_readdir,
2186 };
2187 
2188 static struct dentry *proc_attr_dir_lookup(struct inode *dir,
2189 				struct dentry *dentry, struct nameidata *nd)
2190 {
2191 	return proc_pident_lookup(dir, dentry,
2192 				  attr_dir_stuff, ARRAY_SIZE(attr_dir_stuff));
2193 }
2194 
2195 static const struct inode_operations proc_attr_dir_inode_operations = {
2196 	.lookup		= proc_attr_dir_lookup,
2197 	.getattr	= pid_getattr,
2198 	.setattr	= proc_setattr,
2199 };
2200 
2201 #endif
2202 
2203 #if defined(USE_ELF_CORE_DUMP) && defined(CONFIG_ELF_CORE)
2204 static ssize_t proc_coredump_filter_read(struct file *file, char __user *buf,
2205 					 size_t count, loff_t *ppos)
2206 {
2207 	struct task_struct *task = get_proc_task(file->f_dentry->d_inode);
2208 	struct mm_struct *mm;
2209 	char buffer[PROC_NUMBUF];
2210 	size_t len;
2211 	int ret;
2212 
2213 	if (!task)
2214 		return -ESRCH;
2215 
2216 	ret = 0;
2217 	mm = get_task_mm(task);
2218 	if (mm) {
2219 		len = snprintf(buffer, sizeof(buffer), "%08lx\n",
2220 			       ((mm->flags & MMF_DUMP_FILTER_MASK) >>
2221 				MMF_DUMP_FILTER_SHIFT));
2222 		mmput(mm);
2223 		ret = simple_read_from_buffer(buf, count, ppos, buffer, len);
2224 	}
2225 
2226 	put_task_struct(task);
2227 
2228 	return ret;
2229 }
2230 
2231 static ssize_t proc_coredump_filter_write(struct file *file,
2232 					  const char __user *buf,
2233 					  size_t count,
2234 					  loff_t *ppos)
2235 {
2236 	struct task_struct *task;
2237 	struct mm_struct *mm;
2238 	char buffer[PROC_NUMBUF], *end;
2239 	unsigned int val;
2240 	int ret;
2241 	int i;
2242 	unsigned long mask;
2243 
2244 	ret = -EFAULT;
2245 	memset(buffer, 0, sizeof(buffer));
2246 	if (count > sizeof(buffer) - 1)
2247 		count = sizeof(buffer) - 1;
2248 	if (copy_from_user(buffer, buf, count))
2249 		goto out_no_task;
2250 
2251 	ret = -EINVAL;
2252 	val = (unsigned int)simple_strtoul(buffer, &end, 0);
2253 	if (*end == '\n')
2254 		end++;
2255 	if (end - buffer == 0)
2256 		goto out_no_task;
2257 
2258 	ret = -ESRCH;
2259 	task = get_proc_task(file->f_dentry->d_inode);
2260 	if (!task)
2261 		goto out_no_task;
2262 
2263 	ret = end - buffer;
2264 	mm = get_task_mm(task);
2265 	if (!mm)
2266 		goto out_no_mm;
2267 
2268 	for (i = 0, mask = 1; i < MMF_DUMP_FILTER_BITS; i++, mask <<= 1) {
2269 		if (val & mask)
2270 			set_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags);
2271 		else
2272 			clear_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags);
2273 	}
2274 
2275 	mmput(mm);
2276  out_no_mm:
2277 	put_task_struct(task);
2278  out_no_task:
2279 	return ret;
2280 }
2281 
2282 static const struct file_operations proc_coredump_filter_operations = {
2283 	.read		= proc_coredump_filter_read,
2284 	.write		= proc_coredump_filter_write,
2285 };
2286 #endif
2287 
2288 /*
2289  * /proc/self:
2290  */
2291 static int proc_self_readlink(struct dentry *dentry, char __user *buffer,
2292 			      int buflen)
2293 {
2294 	struct pid_namespace *ns = dentry->d_sb->s_fs_info;
2295 	pid_t tgid = task_tgid_nr_ns(current, ns);
2296 	char tmp[PROC_NUMBUF];
2297 	if (!tgid)
2298 		return -ENOENT;
2299 	sprintf(tmp, "%d", tgid);
2300 	return vfs_readlink(dentry,buffer,buflen,tmp);
2301 }
2302 
2303 static void *proc_self_follow_link(struct dentry *dentry, struct nameidata *nd)
2304 {
2305 	struct pid_namespace *ns = dentry->d_sb->s_fs_info;
2306 	pid_t tgid = task_tgid_nr_ns(current, ns);
2307 	char tmp[PROC_NUMBUF];
2308 	if (!tgid)
2309 		return ERR_PTR(-ENOENT);
2310 	sprintf(tmp, "%d", task_tgid_nr_ns(current, ns));
2311 	return ERR_PTR(vfs_follow_link(nd,tmp));
2312 }
2313 
2314 static const struct inode_operations proc_self_inode_operations = {
2315 	.readlink	= proc_self_readlink,
2316 	.follow_link	= proc_self_follow_link,
2317 };
2318 
2319 /*
2320  * proc base
2321  *
2322  * These are the directory entries in the root directory of /proc
2323  * that properly belong to the /proc filesystem, as they describe
2324  * describe something that is process related.
2325  */
2326 static const struct pid_entry proc_base_stuff[] = {
2327 	NOD("self", S_IFLNK|S_IRWXUGO,
2328 		&proc_self_inode_operations, NULL, {}),
2329 };
2330 
2331 /*
2332  *	Exceptional case: normally we are not allowed to unhash a busy
2333  * directory. In this case, however, we can do it - no aliasing problems
2334  * due to the way we treat inodes.
2335  */
2336 static int proc_base_revalidate(struct dentry *dentry, struct nameidata *nd)
2337 {
2338 	struct inode *inode = dentry->d_inode;
2339 	struct task_struct *task = get_proc_task(inode);
2340 	if (task) {
2341 		put_task_struct(task);
2342 		return 1;
2343 	}
2344 	d_drop(dentry);
2345 	return 0;
2346 }
2347 
2348 static const struct dentry_operations proc_base_dentry_operations =
2349 {
2350 	.d_revalidate	= proc_base_revalidate,
2351 	.d_delete	= pid_delete_dentry,
2352 };
2353 
2354 static struct dentry *proc_base_instantiate(struct inode *dir,
2355 	struct dentry *dentry, struct task_struct *task, const void *ptr)
2356 {
2357 	const struct pid_entry *p = ptr;
2358 	struct inode *inode;
2359 	struct proc_inode *ei;
2360 	struct dentry *error = ERR_PTR(-EINVAL);
2361 
2362 	/* Allocate the inode */
2363 	error = ERR_PTR(-ENOMEM);
2364 	inode = new_inode(dir->i_sb);
2365 	if (!inode)
2366 		goto out;
2367 
2368 	/* Initialize the inode */
2369 	ei = PROC_I(inode);
2370 	inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
2371 
2372 	/*
2373 	 * grab the reference to the task.
2374 	 */
2375 	ei->pid = get_task_pid(task, PIDTYPE_PID);
2376 	if (!ei->pid)
2377 		goto out_iput;
2378 
2379 	inode->i_mode = p->mode;
2380 	if (S_ISDIR(inode->i_mode))
2381 		inode->i_nlink = 2;
2382 	if (S_ISLNK(inode->i_mode))
2383 		inode->i_size = 64;
2384 	if (p->iop)
2385 		inode->i_op = p->iop;
2386 	if (p->fop)
2387 		inode->i_fop = p->fop;
2388 	ei->op = p->op;
2389 	dentry->d_op = &proc_base_dentry_operations;
2390 	d_add(dentry, inode);
2391 	error = NULL;
2392 out:
2393 	return error;
2394 out_iput:
2395 	iput(inode);
2396 	goto out;
2397 }
2398 
2399 static struct dentry *proc_base_lookup(struct inode *dir, struct dentry *dentry)
2400 {
2401 	struct dentry *error;
2402 	struct task_struct *task = get_proc_task(dir);
2403 	const struct pid_entry *p, *last;
2404 
2405 	error = ERR_PTR(-ENOENT);
2406 
2407 	if (!task)
2408 		goto out_no_task;
2409 
2410 	/* Lookup the directory entry */
2411 	last = &proc_base_stuff[ARRAY_SIZE(proc_base_stuff) - 1];
2412 	for (p = proc_base_stuff; p <= last; p++) {
2413 		if (p->len != dentry->d_name.len)
2414 			continue;
2415 		if (!memcmp(dentry->d_name.name, p->name, p->len))
2416 			break;
2417 	}
2418 	if (p > last)
2419 		goto out;
2420 
2421 	error = proc_base_instantiate(dir, dentry, task, p);
2422 
2423 out:
2424 	put_task_struct(task);
2425 out_no_task:
2426 	return error;
2427 }
2428 
2429 static int proc_base_fill_cache(struct file *filp, void *dirent,
2430 	filldir_t filldir, struct task_struct *task, const struct pid_entry *p)
2431 {
2432 	return proc_fill_cache(filp, dirent, filldir, p->name, p->len,
2433 				proc_base_instantiate, task, p);
2434 }
2435 
2436 #ifdef CONFIG_TASK_IO_ACCOUNTING
2437 static int do_io_accounting(struct task_struct *task, char *buffer, int whole)
2438 {
2439 	struct task_io_accounting acct = task->ioac;
2440 	unsigned long flags;
2441 
2442 	if (whole && lock_task_sighand(task, &flags)) {
2443 		struct task_struct *t = task;
2444 
2445 		task_io_accounting_add(&acct, &task->signal->ioac);
2446 		while_each_thread(task, t)
2447 			task_io_accounting_add(&acct, &t->ioac);
2448 
2449 		unlock_task_sighand(task, &flags);
2450 	}
2451 	return sprintf(buffer,
2452 			"rchar: %llu\n"
2453 			"wchar: %llu\n"
2454 			"syscr: %llu\n"
2455 			"syscw: %llu\n"
2456 			"read_bytes: %llu\n"
2457 			"write_bytes: %llu\n"
2458 			"cancelled_write_bytes: %llu\n",
2459 			(unsigned long long)acct.rchar,
2460 			(unsigned long long)acct.wchar,
2461 			(unsigned long long)acct.syscr,
2462 			(unsigned long long)acct.syscw,
2463 			(unsigned long long)acct.read_bytes,
2464 			(unsigned long long)acct.write_bytes,
2465 			(unsigned long long)acct.cancelled_write_bytes);
2466 }
2467 
2468 static int proc_tid_io_accounting(struct task_struct *task, char *buffer)
2469 {
2470 	return do_io_accounting(task, buffer, 0);
2471 }
2472 
2473 static int proc_tgid_io_accounting(struct task_struct *task, char *buffer)
2474 {
2475 	return do_io_accounting(task, buffer, 1);
2476 }
2477 #endif /* CONFIG_TASK_IO_ACCOUNTING */
2478 
2479 static int proc_pid_personality(struct seq_file *m, struct pid_namespace *ns,
2480 				struct pid *pid, struct task_struct *task)
2481 {
2482 	seq_printf(m, "%08x\n", task->personality);
2483 	return 0;
2484 }
2485 
2486 /*
2487  * Thread groups
2488  */
2489 static const struct file_operations proc_task_operations;
2490 static const struct inode_operations proc_task_inode_operations;
2491 
2492 static const struct pid_entry tgid_base_stuff[] = {
2493 	DIR("task",       S_IRUGO|S_IXUGO, proc_task_inode_operations, proc_task_operations),
2494 	DIR("fd",         S_IRUSR|S_IXUSR, proc_fd_inode_operations, proc_fd_operations),
2495 	DIR("fdinfo",     S_IRUSR|S_IXUSR, proc_fdinfo_inode_operations, proc_fdinfo_operations),
2496 #ifdef CONFIG_NET
2497 	DIR("net",        S_IRUGO|S_IXUGO, proc_net_inode_operations, proc_net_operations),
2498 #endif
2499 	REG("environ",    S_IRUSR, proc_environ_operations),
2500 	INF("auxv",       S_IRUSR, proc_pid_auxv),
2501 	ONE("status",     S_IRUGO, proc_pid_status),
2502 	ONE("personality", S_IRUSR, proc_pid_personality),
2503 	INF("limits",	  S_IRUSR, proc_pid_limits),
2504 #ifdef CONFIG_SCHED_DEBUG
2505 	REG("sched",      S_IRUGO|S_IWUSR, proc_pid_sched_operations),
2506 #endif
2507 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK
2508 	INF("syscall",    S_IRUSR, proc_pid_syscall),
2509 #endif
2510 	INF("cmdline",    S_IRUGO, proc_pid_cmdline),
2511 	ONE("stat",       S_IRUGO, proc_tgid_stat),
2512 	ONE("statm",      S_IRUGO, proc_pid_statm),
2513 	REG("maps",       S_IRUGO, proc_maps_operations),
2514 #ifdef CONFIG_NUMA
2515 	REG("numa_maps",  S_IRUGO, proc_numa_maps_operations),
2516 #endif
2517 	REG("mem",        S_IRUSR|S_IWUSR, proc_mem_operations),
2518 	LNK("cwd",        proc_cwd_link),
2519 	LNK("root",       proc_root_link),
2520 	LNK("exe",        proc_exe_link),
2521 	REG("mounts",     S_IRUGO, proc_mounts_operations),
2522 	REG("mountinfo",  S_IRUGO, proc_mountinfo_operations),
2523 	REG("mountstats", S_IRUSR, proc_mountstats_operations),
2524 #ifdef CONFIG_PROC_PAGE_MONITOR
2525 	REG("clear_refs", S_IWUSR, proc_clear_refs_operations),
2526 	REG("smaps",      S_IRUGO, proc_smaps_operations),
2527 	REG("pagemap",    S_IRUSR, proc_pagemap_operations),
2528 #endif
2529 #ifdef CONFIG_SECURITY
2530 	DIR("attr",       S_IRUGO|S_IXUGO, proc_attr_dir_inode_operations, proc_attr_dir_operations),
2531 #endif
2532 #ifdef CONFIG_KALLSYMS
2533 	INF("wchan",      S_IRUGO, proc_pid_wchan),
2534 #endif
2535 #ifdef CONFIG_STACKTRACE
2536 	ONE("stack",      S_IRUSR, proc_pid_stack),
2537 #endif
2538 #ifdef CONFIG_SCHEDSTATS
2539 	INF("schedstat",  S_IRUGO, proc_pid_schedstat),
2540 #endif
2541 #ifdef CONFIG_LATENCYTOP
2542 	REG("latency",  S_IRUGO, proc_lstats_operations),
2543 #endif
2544 #ifdef CONFIG_PROC_PID_CPUSET
2545 	REG("cpuset",     S_IRUGO, proc_cpuset_operations),
2546 #endif
2547 #ifdef CONFIG_CGROUPS
2548 	REG("cgroup",  S_IRUGO, proc_cgroup_operations),
2549 #endif
2550 	INF("oom_score",  S_IRUGO, proc_oom_score),
2551 	REG("oom_adj",    S_IRUGO|S_IWUSR, proc_oom_adjust_operations),
2552 #ifdef CONFIG_AUDITSYSCALL
2553 	REG("loginuid",   S_IWUSR|S_IRUGO, proc_loginuid_operations),
2554 	REG("sessionid",  S_IRUGO, proc_sessionid_operations),
2555 #endif
2556 #ifdef CONFIG_FAULT_INJECTION
2557 	REG("make-it-fail", S_IRUGO|S_IWUSR, proc_fault_inject_operations),
2558 #endif
2559 #if defined(USE_ELF_CORE_DUMP) && defined(CONFIG_ELF_CORE)
2560 	REG("coredump_filter", S_IRUGO|S_IWUSR, proc_coredump_filter_operations),
2561 #endif
2562 #ifdef CONFIG_TASK_IO_ACCOUNTING
2563 	INF("io",	S_IRUGO, proc_tgid_io_accounting),
2564 #endif
2565 };
2566 
2567 static int proc_tgid_base_readdir(struct file * filp,
2568 			     void * dirent, filldir_t filldir)
2569 {
2570 	return proc_pident_readdir(filp,dirent,filldir,
2571 				   tgid_base_stuff,ARRAY_SIZE(tgid_base_stuff));
2572 }
2573 
2574 static const struct file_operations proc_tgid_base_operations = {
2575 	.read		= generic_read_dir,
2576 	.readdir	= proc_tgid_base_readdir,
2577 };
2578 
2579 static struct dentry *proc_tgid_base_lookup(struct inode *dir, struct dentry *dentry, struct nameidata *nd){
2580 	return proc_pident_lookup(dir, dentry,
2581 				  tgid_base_stuff, ARRAY_SIZE(tgid_base_stuff));
2582 }
2583 
2584 static const struct inode_operations proc_tgid_base_inode_operations = {
2585 	.lookup		= proc_tgid_base_lookup,
2586 	.getattr	= pid_getattr,
2587 	.setattr	= proc_setattr,
2588 };
2589 
2590 static void proc_flush_task_mnt(struct vfsmount *mnt, pid_t pid, pid_t tgid)
2591 {
2592 	struct dentry *dentry, *leader, *dir;
2593 	char buf[PROC_NUMBUF];
2594 	struct qstr name;
2595 
2596 	name.name = buf;
2597 	name.len = snprintf(buf, sizeof(buf), "%d", pid);
2598 	dentry = d_hash_and_lookup(mnt->mnt_root, &name);
2599 	if (dentry) {
2600 		if (!(current->flags & PF_EXITING))
2601 			shrink_dcache_parent(dentry);
2602 		d_drop(dentry);
2603 		dput(dentry);
2604 	}
2605 
2606 	name.name = buf;
2607 	name.len = snprintf(buf, sizeof(buf), "%d", tgid);
2608 	leader = d_hash_and_lookup(mnt->mnt_root, &name);
2609 	if (!leader)
2610 		goto out;
2611 
2612 	name.name = "task";
2613 	name.len = strlen(name.name);
2614 	dir = d_hash_and_lookup(leader, &name);
2615 	if (!dir)
2616 		goto out_put_leader;
2617 
2618 	name.name = buf;
2619 	name.len = snprintf(buf, sizeof(buf), "%d", pid);
2620 	dentry = d_hash_and_lookup(dir, &name);
2621 	if (dentry) {
2622 		shrink_dcache_parent(dentry);
2623 		d_drop(dentry);
2624 		dput(dentry);
2625 	}
2626 
2627 	dput(dir);
2628 out_put_leader:
2629 	dput(leader);
2630 out:
2631 	return;
2632 }
2633 
2634 /**
2635  * proc_flush_task -  Remove dcache entries for @task from the /proc dcache.
2636  * @task: task that should be flushed.
2637  *
2638  * When flushing dentries from proc, one needs to flush them from global
2639  * proc (proc_mnt) and from all the namespaces' procs this task was seen
2640  * in. This call is supposed to do all of this job.
2641  *
2642  * Looks in the dcache for
2643  * /proc/@pid
2644  * /proc/@tgid/task/@pid
2645  * if either directory is present flushes it and all of it'ts children
2646  * from the dcache.
2647  *
2648  * It is safe and reasonable to cache /proc entries for a task until
2649  * that task exits.  After that they just clog up the dcache with
2650  * useless entries, possibly causing useful dcache entries to be
2651  * flushed instead.  This routine is proved to flush those useless
2652  * dcache entries at process exit time.
2653  *
2654  * NOTE: This routine is just an optimization so it does not guarantee
2655  *       that no dcache entries will exist at process exit time it
2656  *       just makes it very unlikely that any will persist.
2657  */
2658 
2659 void proc_flush_task(struct task_struct *task)
2660 {
2661 	int i;
2662 	struct pid *pid, *tgid;
2663 	struct upid *upid;
2664 
2665 	pid = task_pid(task);
2666 	tgid = task_tgid(task);
2667 
2668 	for (i = 0; i <= pid->level; i++) {
2669 		upid = &pid->numbers[i];
2670 		proc_flush_task_mnt(upid->ns->proc_mnt, upid->nr,
2671 					tgid->numbers[i].nr);
2672 	}
2673 
2674 	upid = &pid->numbers[pid->level];
2675 	if (upid->nr == 1)
2676 		pid_ns_release_proc(upid->ns);
2677 }
2678 
2679 static struct dentry *proc_pid_instantiate(struct inode *dir,
2680 					   struct dentry * dentry,
2681 					   struct task_struct *task, const void *ptr)
2682 {
2683 	struct dentry *error = ERR_PTR(-ENOENT);
2684 	struct inode *inode;
2685 
2686 	inode = proc_pid_make_inode(dir->i_sb, task);
2687 	if (!inode)
2688 		goto out;
2689 
2690 	inode->i_mode = S_IFDIR|S_IRUGO|S_IXUGO;
2691 	inode->i_op = &proc_tgid_base_inode_operations;
2692 	inode->i_fop = &proc_tgid_base_operations;
2693 	inode->i_flags|=S_IMMUTABLE;
2694 
2695 	inode->i_nlink = 2 + pid_entry_count_dirs(tgid_base_stuff,
2696 		ARRAY_SIZE(tgid_base_stuff));
2697 
2698 	dentry->d_op = &pid_dentry_operations;
2699 
2700 	d_add(dentry, inode);
2701 	/* Close the race of the process dying before we return the dentry */
2702 	if (pid_revalidate(dentry, NULL))
2703 		error = NULL;
2704 out:
2705 	return error;
2706 }
2707 
2708 struct dentry *proc_pid_lookup(struct inode *dir, struct dentry * dentry, struct nameidata *nd)
2709 {
2710 	struct dentry *result = ERR_PTR(-ENOENT);
2711 	struct task_struct *task;
2712 	unsigned tgid;
2713 	struct pid_namespace *ns;
2714 
2715 	result = proc_base_lookup(dir, dentry);
2716 	if (!IS_ERR(result) || PTR_ERR(result) != -ENOENT)
2717 		goto out;
2718 
2719 	tgid = name_to_int(dentry);
2720 	if (tgid == ~0U)
2721 		goto out;
2722 
2723 	ns = dentry->d_sb->s_fs_info;
2724 	rcu_read_lock();
2725 	task = find_task_by_pid_ns(tgid, ns);
2726 	if (task)
2727 		get_task_struct(task);
2728 	rcu_read_unlock();
2729 	if (!task)
2730 		goto out;
2731 
2732 	result = proc_pid_instantiate(dir, dentry, task, NULL);
2733 	put_task_struct(task);
2734 out:
2735 	return result;
2736 }
2737 
2738 /*
2739  * Find the first task with tgid >= tgid
2740  *
2741  */
2742 struct tgid_iter {
2743 	unsigned int tgid;
2744 	struct task_struct *task;
2745 };
2746 static struct tgid_iter next_tgid(struct pid_namespace *ns, struct tgid_iter iter)
2747 {
2748 	struct pid *pid;
2749 
2750 	if (iter.task)
2751 		put_task_struct(iter.task);
2752 	rcu_read_lock();
2753 retry:
2754 	iter.task = NULL;
2755 	pid = find_ge_pid(iter.tgid, ns);
2756 	if (pid) {
2757 		iter.tgid = pid_nr_ns(pid, ns);
2758 		iter.task = pid_task(pid, PIDTYPE_PID);
2759 		/* What we to know is if the pid we have find is the
2760 		 * pid of a thread_group_leader.  Testing for task
2761 		 * being a thread_group_leader is the obvious thing
2762 		 * todo but there is a window when it fails, due to
2763 		 * the pid transfer logic in de_thread.
2764 		 *
2765 		 * So we perform the straight forward test of seeing
2766 		 * if the pid we have found is the pid of a thread
2767 		 * group leader, and don't worry if the task we have
2768 		 * found doesn't happen to be a thread group leader.
2769 		 * As we don't care in the case of readdir.
2770 		 */
2771 		if (!iter.task || !has_group_leader_pid(iter.task)) {
2772 			iter.tgid += 1;
2773 			goto retry;
2774 		}
2775 		get_task_struct(iter.task);
2776 	}
2777 	rcu_read_unlock();
2778 	return iter;
2779 }
2780 
2781 #define TGID_OFFSET (FIRST_PROCESS_ENTRY + ARRAY_SIZE(proc_base_stuff))
2782 
2783 static int proc_pid_fill_cache(struct file *filp, void *dirent, filldir_t filldir,
2784 	struct tgid_iter iter)
2785 {
2786 	char name[PROC_NUMBUF];
2787 	int len = snprintf(name, sizeof(name), "%d", iter.tgid);
2788 	return proc_fill_cache(filp, dirent, filldir, name, len,
2789 				proc_pid_instantiate, iter.task, NULL);
2790 }
2791 
2792 /* for the /proc/ directory itself, after non-process stuff has been done */
2793 int proc_pid_readdir(struct file * filp, void * dirent, filldir_t filldir)
2794 {
2795 	unsigned int nr = filp->f_pos - FIRST_PROCESS_ENTRY;
2796 	struct task_struct *reaper = get_proc_task(filp->f_path.dentry->d_inode);
2797 	struct tgid_iter iter;
2798 	struct pid_namespace *ns;
2799 
2800 	if (!reaper)
2801 		goto out_no_task;
2802 
2803 	for (; nr < ARRAY_SIZE(proc_base_stuff); filp->f_pos++, nr++) {
2804 		const struct pid_entry *p = &proc_base_stuff[nr];
2805 		if (proc_base_fill_cache(filp, dirent, filldir, reaper, p) < 0)
2806 			goto out;
2807 	}
2808 
2809 	ns = filp->f_dentry->d_sb->s_fs_info;
2810 	iter.task = NULL;
2811 	iter.tgid = filp->f_pos - TGID_OFFSET;
2812 	for (iter = next_tgid(ns, iter);
2813 	     iter.task;
2814 	     iter.tgid += 1, iter = next_tgid(ns, iter)) {
2815 		filp->f_pos = iter.tgid + TGID_OFFSET;
2816 		if (proc_pid_fill_cache(filp, dirent, filldir, iter) < 0) {
2817 			put_task_struct(iter.task);
2818 			goto out;
2819 		}
2820 	}
2821 	filp->f_pos = PID_MAX_LIMIT + TGID_OFFSET;
2822 out:
2823 	put_task_struct(reaper);
2824 out_no_task:
2825 	return 0;
2826 }
2827 
2828 /*
2829  * Tasks
2830  */
2831 static const struct pid_entry tid_base_stuff[] = {
2832 	DIR("fd",        S_IRUSR|S_IXUSR, proc_fd_inode_operations, proc_fd_operations),
2833 	DIR("fdinfo",    S_IRUSR|S_IXUSR, proc_fdinfo_inode_operations, proc_fd_operations),
2834 	REG("environ",   S_IRUSR, proc_environ_operations),
2835 	INF("auxv",      S_IRUSR, proc_pid_auxv),
2836 	ONE("status",    S_IRUGO, proc_pid_status),
2837 	ONE("personality", S_IRUSR, proc_pid_personality),
2838 	INF("limits",	 S_IRUSR, proc_pid_limits),
2839 #ifdef CONFIG_SCHED_DEBUG
2840 	REG("sched",     S_IRUGO|S_IWUSR, proc_pid_sched_operations),
2841 #endif
2842 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK
2843 	INF("syscall",   S_IRUSR, proc_pid_syscall),
2844 #endif
2845 	INF("cmdline",   S_IRUGO, proc_pid_cmdline),
2846 	ONE("stat",      S_IRUGO, proc_tid_stat),
2847 	ONE("statm",     S_IRUGO, proc_pid_statm),
2848 	REG("maps",      S_IRUGO, proc_maps_operations),
2849 #ifdef CONFIG_NUMA
2850 	REG("numa_maps", S_IRUGO, proc_numa_maps_operations),
2851 #endif
2852 	REG("mem",       S_IRUSR|S_IWUSR, proc_mem_operations),
2853 	LNK("cwd",       proc_cwd_link),
2854 	LNK("root",      proc_root_link),
2855 	LNK("exe",       proc_exe_link),
2856 	REG("mounts",    S_IRUGO, proc_mounts_operations),
2857 	REG("mountinfo",  S_IRUGO, proc_mountinfo_operations),
2858 #ifdef CONFIG_PROC_PAGE_MONITOR
2859 	REG("clear_refs", S_IWUSR, proc_clear_refs_operations),
2860 	REG("smaps",     S_IRUGO, proc_smaps_operations),
2861 	REG("pagemap",    S_IRUSR, proc_pagemap_operations),
2862 #endif
2863 #ifdef CONFIG_SECURITY
2864 	DIR("attr",      S_IRUGO|S_IXUGO, proc_attr_dir_inode_operations, proc_attr_dir_operations),
2865 #endif
2866 #ifdef CONFIG_KALLSYMS
2867 	INF("wchan",     S_IRUGO, proc_pid_wchan),
2868 #endif
2869 #ifdef CONFIG_STACKTRACE
2870 	ONE("stack",      S_IRUSR, proc_pid_stack),
2871 #endif
2872 #ifdef CONFIG_SCHEDSTATS
2873 	INF("schedstat", S_IRUGO, proc_pid_schedstat),
2874 #endif
2875 #ifdef CONFIG_LATENCYTOP
2876 	REG("latency",  S_IRUGO, proc_lstats_operations),
2877 #endif
2878 #ifdef CONFIG_PROC_PID_CPUSET
2879 	REG("cpuset",    S_IRUGO, proc_cpuset_operations),
2880 #endif
2881 #ifdef CONFIG_CGROUPS
2882 	REG("cgroup",  S_IRUGO, proc_cgroup_operations),
2883 #endif
2884 	INF("oom_score", S_IRUGO, proc_oom_score),
2885 	REG("oom_adj",   S_IRUGO|S_IWUSR, proc_oom_adjust_operations),
2886 #ifdef CONFIG_AUDITSYSCALL
2887 	REG("loginuid",  S_IWUSR|S_IRUGO, proc_loginuid_operations),
2888 	REG("sessionid",  S_IRUSR, proc_sessionid_operations),
2889 #endif
2890 #ifdef CONFIG_FAULT_INJECTION
2891 	REG("make-it-fail", S_IRUGO|S_IWUSR, proc_fault_inject_operations),
2892 #endif
2893 #ifdef CONFIG_TASK_IO_ACCOUNTING
2894 	INF("io",	S_IRUGO, proc_tid_io_accounting),
2895 #endif
2896 };
2897 
2898 static int proc_tid_base_readdir(struct file * filp,
2899 			     void * dirent, filldir_t filldir)
2900 {
2901 	return proc_pident_readdir(filp,dirent,filldir,
2902 				   tid_base_stuff,ARRAY_SIZE(tid_base_stuff));
2903 }
2904 
2905 static struct dentry *proc_tid_base_lookup(struct inode *dir, struct dentry *dentry, struct nameidata *nd){
2906 	return proc_pident_lookup(dir, dentry,
2907 				  tid_base_stuff, ARRAY_SIZE(tid_base_stuff));
2908 }
2909 
2910 static const struct file_operations proc_tid_base_operations = {
2911 	.read		= generic_read_dir,
2912 	.readdir	= proc_tid_base_readdir,
2913 };
2914 
2915 static const struct inode_operations proc_tid_base_inode_operations = {
2916 	.lookup		= proc_tid_base_lookup,
2917 	.getattr	= pid_getattr,
2918 	.setattr	= proc_setattr,
2919 };
2920 
2921 static struct dentry *proc_task_instantiate(struct inode *dir,
2922 	struct dentry *dentry, struct task_struct *task, const void *ptr)
2923 {
2924 	struct dentry *error = ERR_PTR(-ENOENT);
2925 	struct inode *inode;
2926 	inode = proc_pid_make_inode(dir->i_sb, task);
2927 
2928 	if (!inode)
2929 		goto out;
2930 	inode->i_mode = S_IFDIR|S_IRUGO|S_IXUGO;
2931 	inode->i_op = &proc_tid_base_inode_operations;
2932 	inode->i_fop = &proc_tid_base_operations;
2933 	inode->i_flags|=S_IMMUTABLE;
2934 
2935 	inode->i_nlink = 2 + pid_entry_count_dirs(tid_base_stuff,
2936 		ARRAY_SIZE(tid_base_stuff));
2937 
2938 	dentry->d_op = &pid_dentry_operations;
2939 
2940 	d_add(dentry, inode);
2941 	/* Close the race of the process dying before we return the dentry */
2942 	if (pid_revalidate(dentry, NULL))
2943 		error = NULL;
2944 out:
2945 	return error;
2946 }
2947 
2948 static struct dentry *proc_task_lookup(struct inode *dir, struct dentry * dentry, struct nameidata *nd)
2949 {
2950 	struct dentry *result = ERR_PTR(-ENOENT);
2951 	struct task_struct *task;
2952 	struct task_struct *leader = get_proc_task(dir);
2953 	unsigned tid;
2954 	struct pid_namespace *ns;
2955 
2956 	if (!leader)
2957 		goto out_no_task;
2958 
2959 	tid = name_to_int(dentry);
2960 	if (tid == ~0U)
2961 		goto out;
2962 
2963 	ns = dentry->d_sb->s_fs_info;
2964 	rcu_read_lock();
2965 	task = find_task_by_pid_ns(tid, ns);
2966 	if (task)
2967 		get_task_struct(task);
2968 	rcu_read_unlock();
2969 	if (!task)
2970 		goto out;
2971 	if (!same_thread_group(leader, task))
2972 		goto out_drop_task;
2973 
2974 	result = proc_task_instantiate(dir, dentry, task, NULL);
2975 out_drop_task:
2976 	put_task_struct(task);
2977 out:
2978 	put_task_struct(leader);
2979 out_no_task:
2980 	return result;
2981 }
2982 
2983 /*
2984  * Find the first tid of a thread group to return to user space.
2985  *
2986  * Usually this is just the thread group leader, but if the users
2987  * buffer was too small or there was a seek into the middle of the
2988  * directory we have more work todo.
2989  *
2990  * In the case of a short read we start with find_task_by_pid.
2991  *
2992  * In the case of a seek we start with the leader and walk nr
2993  * threads past it.
2994  */
2995 static struct task_struct *first_tid(struct task_struct *leader,
2996 		int tid, int nr, struct pid_namespace *ns)
2997 {
2998 	struct task_struct *pos;
2999 
3000 	rcu_read_lock();
3001 	/* Attempt to start with the pid of a thread */
3002 	if (tid && (nr > 0)) {
3003 		pos = find_task_by_pid_ns(tid, ns);
3004 		if (pos && (pos->group_leader == leader))
3005 			goto found;
3006 	}
3007 
3008 	/* If nr exceeds the number of threads there is nothing todo */
3009 	pos = NULL;
3010 	if (nr && nr >= get_nr_threads(leader))
3011 		goto out;
3012 
3013 	/* If we haven't found our starting place yet start
3014 	 * with the leader and walk nr threads forward.
3015 	 */
3016 	for (pos = leader; nr > 0; --nr) {
3017 		pos = next_thread(pos);
3018 		if (pos == leader) {
3019 			pos = NULL;
3020 			goto out;
3021 		}
3022 	}
3023 found:
3024 	get_task_struct(pos);
3025 out:
3026 	rcu_read_unlock();
3027 	return pos;
3028 }
3029 
3030 /*
3031  * Find the next thread in the thread list.
3032  * Return NULL if there is an error or no next thread.
3033  *
3034  * The reference to the input task_struct is released.
3035  */
3036 static struct task_struct *next_tid(struct task_struct *start)
3037 {
3038 	struct task_struct *pos = NULL;
3039 	rcu_read_lock();
3040 	if (pid_alive(start)) {
3041 		pos = next_thread(start);
3042 		if (thread_group_leader(pos))
3043 			pos = NULL;
3044 		else
3045 			get_task_struct(pos);
3046 	}
3047 	rcu_read_unlock();
3048 	put_task_struct(start);
3049 	return pos;
3050 }
3051 
3052 static int proc_task_fill_cache(struct file *filp, void *dirent, filldir_t filldir,
3053 	struct task_struct *task, int tid)
3054 {
3055 	char name[PROC_NUMBUF];
3056 	int len = snprintf(name, sizeof(name), "%d", tid);
3057 	return proc_fill_cache(filp, dirent, filldir, name, len,
3058 				proc_task_instantiate, task, NULL);
3059 }
3060 
3061 /* for the /proc/TGID/task/ directories */
3062 static int proc_task_readdir(struct file * filp, void * dirent, filldir_t filldir)
3063 {
3064 	struct dentry *dentry = filp->f_path.dentry;
3065 	struct inode *inode = dentry->d_inode;
3066 	struct task_struct *leader = NULL;
3067 	struct task_struct *task;
3068 	int retval = -ENOENT;
3069 	ino_t ino;
3070 	int tid;
3071 	struct pid_namespace *ns;
3072 
3073 	task = get_proc_task(inode);
3074 	if (!task)
3075 		goto out_no_task;
3076 	rcu_read_lock();
3077 	if (pid_alive(task)) {
3078 		leader = task->group_leader;
3079 		get_task_struct(leader);
3080 	}
3081 	rcu_read_unlock();
3082 	put_task_struct(task);
3083 	if (!leader)
3084 		goto out_no_task;
3085 	retval = 0;
3086 
3087 	switch ((unsigned long)filp->f_pos) {
3088 	case 0:
3089 		ino = inode->i_ino;
3090 		if (filldir(dirent, ".", 1, filp->f_pos, ino, DT_DIR) < 0)
3091 			goto out;
3092 		filp->f_pos++;
3093 		/* fall through */
3094 	case 1:
3095 		ino = parent_ino(dentry);
3096 		if (filldir(dirent, "..", 2, filp->f_pos, ino, DT_DIR) < 0)
3097 			goto out;
3098 		filp->f_pos++;
3099 		/* fall through */
3100 	}
3101 
3102 	/* f_version caches the tgid value that the last readdir call couldn't
3103 	 * return. lseek aka telldir automagically resets f_version to 0.
3104 	 */
3105 	ns = filp->f_dentry->d_sb->s_fs_info;
3106 	tid = (int)filp->f_version;
3107 	filp->f_version = 0;
3108 	for (task = first_tid(leader, tid, filp->f_pos - 2, ns);
3109 	     task;
3110 	     task = next_tid(task), filp->f_pos++) {
3111 		tid = task_pid_nr_ns(task, ns);
3112 		if (proc_task_fill_cache(filp, dirent, filldir, task, tid) < 0) {
3113 			/* returning this tgid failed, save it as the first
3114 			 * pid for the next readir call */
3115 			filp->f_version = (u64)tid;
3116 			put_task_struct(task);
3117 			break;
3118 		}
3119 	}
3120 out:
3121 	put_task_struct(leader);
3122 out_no_task:
3123 	return retval;
3124 }
3125 
3126 static int proc_task_getattr(struct vfsmount *mnt, struct dentry *dentry, struct kstat *stat)
3127 {
3128 	struct inode *inode = dentry->d_inode;
3129 	struct task_struct *p = get_proc_task(inode);
3130 	generic_fillattr(inode, stat);
3131 
3132 	if (p) {
3133 		stat->nlink += get_nr_threads(p);
3134 		put_task_struct(p);
3135 	}
3136 
3137 	return 0;
3138 }
3139 
3140 static const struct inode_operations proc_task_inode_operations = {
3141 	.lookup		= proc_task_lookup,
3142 	.getattr	= proc_task_getattr,
3143 	.setattr	= proc_setattr,
3144 };
3145 
3146 static const struct file_operations proc_task_operations = {
3147 	.read		= generic_read_dir,
3148 	.readdir	= proc_task_readdir,
3149 };
3150