xref: /linux/fs/proc/base.c (revision 8fa5723aa7e053d498336b48448b292fc2e0458b)
1 /*
2  *  linux/fs/proc/base.c
3  *
4  *  Copyright (C) 1991, 1992 Linus Torvalds
5  *
6  *  proc base directory handling functions
7  *
8  *  1999, Al Viro. Rewritten. Now it covers the whole per-process part.
9  *  Instead of using magical inumbers to determine the kind of object
10  *  we allocate and fill in-core inodes upon lookup. They don't even
11  *  go into icache. We cache the reference to task_struct upon lookup too.
12  *  Eventually it should become a filesystem in its own. We don't use the
13  *  rest of procfs anymore.
14  *
15  *
16  *  Changelog:
17  *  17-Jan-2005
18  *  Allan Bezerra
19  *  Bruna Moreira <bruna.moreira@indt.org.br>
20  *  Edjard Mota <edjard.mota@indt.org.br>
21  *  Ilias Biris <ilias.biris@indt.org.br>
22  *  Mauricio Lin <mauricio.lin@indt.org.br>
23  *
24  *  Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT
25  *
26  *  A new process specific entry (smaps) included in /proc. It shows the
27  *  size of rss for each memory area. The maps entry lacks information
28  *  about physical memory size (rss) for each mapped file, i.e.,
29  *  rss information for executables and library files.
30  *  This additional information is useful for any tools that need to know
31  *  about physical memory consumption for a process specific library.
32  *
33  *  Changelog:
34  *  21-Feb-2005
35  *  Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT
36  *  Pud inclusion in the page table walking.
37  *
38  *  ChangeLog:
39  *  10-Mar-2005
40  *  10LE Instituto Nokia de Tecnologia - INdT:
41  *  A better way to walks through the page table as suggested by Hugh Dickins.
42  *
43  *  Simo Piiroinen <simo.piiroinen@nokia.com>:
44  *  Smaps information related to shared, private, clean and dirty pages.
45  *
46  *  Paul Mundt <paul.mundt@nokia.com>:
47  *  Overall revision about smaps.
48  */
49 
50 #include <asm/uaccess.h>
51 
52 #include <linux/errno.h>
53 #include <linux/time.h>
54 #include <linux/proc_fs.h>
55 #include <linux/stat.h>
56 #include <linux/task_io_accounting_ops.h>
57 #include <linux/init.h>
58 #include <linux/capability.h>
59 #include <linux/file.h>
60 #include <linux/fdtable.h>
61 #include <linux/string.h>
62 #include <linux/seq_file.h>
63 #include <linux/namei.h>
64 #include <linux/mnt_namespace.h>
65 #include <linux/mm.h>
66 #include <linux/rcupdate.h>
67 #include <linux/kallsyms.h>
68 #include <linux/resource.h>
69 #include <linux/module.h>
70 #include <linux/mount.h>
71 #include <linux/security.h>
72 #include <linux/ptrace.h>
73 #include <linux/tracehook.h>
74 #include <linux/cgroup.h>
75 #include <linux/cpuset.h>
76 #include <linux/audit.h>
77 #include <linux/poll.h>
78 #include <linux/nsproxy.h>
79 #include <linux/oom.h>
80 #include <linux/elf.h>
81 #include <linux/pid_namespace.h>
82 #include "internal.h"
83 
84 /* NOTE:
85  *	Implementing inode permission operations in /proc is almost
86  *	certainly an error.  Permission checks need to happen during
87  *	each system call not at open time.  The reason is that most of
88  *	what we wish to check for permissions in /proc varies at runtime.
89  *
90  *	The classic example of a problem is opening file descriptors
91  *	in /proc for a task before it execs a suid executable.
92  */
93 
94 struct pid_entry {
95 	char *name;
96 	int len;
97 	mode_t mode;
98 	const struct inode_operations *iop;
99 	const struct file_operations *fop;
100 	union proc_op op;
101 };
102 
103 #define NOD(NAME, MODE, IOP, FOP, OP) {			\
104 	.name = (NAME),					\
105 	.len  = sizeof(NAME) - 1,			\
106 	.mode = MODE,					\
107 	.iop  = IOP,					\
108 	.fop  = FOP,					\
109 	.op   = OP,					\
110 }
111 
112 #define DIR(NAME, MODE, OTYPE)							\
113 	NOD(NAME, (S_IFDIR|(MODE)),						\
114 		&proc_##OTYPE##_inode_operations, &proc_##OTYPE##_operations,	\
115 		{} )
116 #define LNK(NAME, OTYPE)					\
117 	NOD(NAME, (S_IFLNK|S_IRWXUGO),				\
118 		&proc_pid_link_inode_operations, NULL,		\
119 		{ .proc_get_link = &proc_##OTYPE##_link } )
120 #define REG(NAME, MODE, OTYPE)				\
121 	NOD(NAME, (S_IFREG|(MODE)), NULL,		\
122 		&proc_##OTYPE##_operations, {})
123 #define INF(NAME, MODE, OTYPE)				\
124 	NOD(NAME, (S_IFREG|(MODE)), 			\
125 		NULL, &proc_info_file_operations,	\
126 		{ .proc_read = &proc_##OTYPE } )
127 #define ONE(NAME, MODE, OTYPE)				\
128 	NOD(NAME, (S_IFREG|(MODE)), 			\
129 		NULL, &proc_single_file_operations,	\
130 		{ .proc_show = &proc_##OTYPE } )
131 
132 /*
133  * Count the number of hardlinks for the pid_entry table, excluding the .
134  * and .. links.
135  */
136 static unsigned int pid_entry_count_dirs(const struct pid_entry *entries,
137 	unsigned int n)
138 {
139 	unsigned int i;
140 	unsigned int count;
141 
142 	count = 0;
143 	for (i = 0; i < n; ++i) {
144 		if (S_ISDIR(entries[i].mode))
145 			++count;
146 	}
147 
148 	return count;
149 }
150 
151 static struct fs_struct *get_fs_struct(struct task_struct *task)
152 {
153 	struct fs_struct *fs;
154 	task_lock(task);
155 	fs = task->fs;
156 	if(fs)
157 		atomic_inc(&fs->count);
158 	task_unlock(task);
159 	return fs;
160 }
161 
162 static int get_nr_threads(struct task_struct *tsk)
163 {
164 	unsigned long flags;
165 	int count = 0;
166 
167 	if (lock_task_sighand(tsk, &flags)) {
168 		count = atomic_read(&tsk->signal->count);
169 		unlock_task_sighand(tsk, &flags);
170 	}
171 	return count;
172 }
173 
174 static int proc_cwd_link(struct inode *inode, struct path *path)
175 {
176 	struct task_struct *task = get_proc_task(inode);
177 	struct fs_struct *fs = NULL;
178 	int result = -ENOENT;
179 
180 	if (task) {
181 		fs = get_fs_struct(task);
182 		put_task_struct(task);
183 	}
184 	if (fs) {
185 		read_lock(&fs->lock);
186 		*path = fs->pwd;
187 		path_get(&fs->pwd);
188 		read_unlock(&fs->lock);
189 		result = 0;
190 		put_fs_struct(fs);
191 	}
192 	return result;
193 }
194 
195 static int proc_root_link(struct inode *inode, struct path *path)
196 {
197 	struct task_struct *task = get_proc_task(inode);
198 	struct fs_struct *fs = NULL;
199 	int result = -ENOENT;
200 
201 	if (task) {
202 		fs = get_fs_struct(task);
203 		put_task_struct(task);
204 	}
205 	if (fs) {
206 		read_lock(&fs->lock);
207 		*path = fs->root;
208 		path_get(&fs->root);
209 		read_unlock(&fs->lock);
210 		result = 0;
211 		put_fs_struct(fs);
212 	}
213 	return result;
214 }
215 
216 /*
217  * Return zero if current may access user memory in @task, -error if not.
218  */
219 static int check_mem_permission(struct task_struct *task)
220 {
221 	/*
222 	 * A task can always look at itself, in case it chooses
223 	 * to use system calls instead of load instructions.
224 	 */
225 	if (task == current)
226 		return 0;
227 
228 	/*
229 	 * If current is actively ptrace'ing, and would also be
230 	 * permitted to freshly attach with ptrace now, permit it.
231 	 */
232 	if (task_is_stopped_or_traced(task)) {
233 		int match;
234 		rcu_read_lock();
235 		match = (tracehook_tracer_task(task) == current);
236 		rcu_read_unlock();
237 		if (match && ptrace_may_access(task, PTRACE_MODE_ATTACH))
238 			return 0;
239 	}
240 
241 	/*
242 	 * Noone else is allowed.
243 	 */
244 	return -EPERM;
245 }
246 
247 struct mm_struct *mm_for_maps(struct task_struct *task)
248 {
249 	struct mm_struct *mm = get_task_mm(task);
250 	if (!mm)
251 		return NULL;
252 	down_read(&mm->mmap_sem);
253 	task_lock(task);
254 	if (task->mm != mm)
255 		goto out;
256 	if (task->mm != current->mm &&
257 	    __ptrace_may_access(task, PTRACE_MODE_READ) < 0)
258 		goto out;
259 	task_unlock(task);
260 	return mm;
261 out:
262 	task_unlock(task);
263 	up_read(&mm->mmap_sem);
264 	mmput(mm);
265 	return NULL;
266 }
267 
268 static int proc_pid_cmdline(struct task_struct *task, char * buffer)
269 {
270 	int res = 0;
271 	unsigned int len;
272 	struct mm_struct *mm = get_task_mm(task);
273 	if (!mm)
274 		goto out;
275 	if (!mm->arg_end)
276 		goto out_mm;	/* Shh! No looking before we're done */
277 
278  	len = mm->arg_end - mm->arg_start;
279 
280 	if (len > PAGE_SIZE)
281 		len = PAGE_SIZE;
282 
283 	res = access_process_vm(task, mm->arg_start, buffer, len, 0);
284 
285 	// If the nul at the end of args has been overwritten, then
286 	// assume application is using setproctitle(3).
287 	if (res > 0 && buffer[res-1] != '\0' && len < PAGE_SIZE) {
288 		len = strnlen(buffer, res);
289 		if (len < res) {
290 		    res = len;
291 		} else {
292 			len = mm->env_end - mm->env_start;
293 			if (len > PAGE_SIZE - res)
294 				len = PAGE_SIZE - res;
295 			res += access_process_vm(task, mm->env_start, buffer+res, len, 0);
296 			res = strnlen(buffer, res);
297 		}
298 	}
299 out_mm:
300 	mmput(mm);
301 out:
302 	return res;
303 }
304 
305 static int proc_pid_auxv(struct task_struct *task, char *buffer)
306 {
307 	int res = 0;
308 	struct mm_struct *mm = get_task_mm(task);
309 	if (mm) {
310 		unsigned int nwords = 0;
311 		do
312 			nwords += 2;
313 		while (mm->saved_auxv[nwords - 2] != 0); /* AT_NULL */
314 		res = nwords * sizeof(mm->saved_auxv[0]);
315 		if (res > PAGE_SIZE)
316 			res = PAGE_SIZE;
317 		memcpy(buffer, mm->saved_auxv, res);
318 		mmput(mm);
319 	}
320 	return res;
321 }
322 
323 
324 #ifdef CONFIG_KALLSYMS
325 /*
326  * Provides a wchan file via kallsyms in a proper one-value-per-file format.
327  * Returns the resolved symbol.  If that fails, simply return the address.
328  */
329 static int proc_pid_wchan(struct task_struct *task, char *buffer)
330 {
331 	unsigned long wchan;
332 	char symname[KSYM_NAME_LEN];
333 
334 	wchan = get_wchan(task);
335 
336 	if (lookup_symbol_name(wchan, symname) < 0)
337 		return sprintf(buffer, "%lu", wchan);
338 	else
339 		return sprintf(buffer, "%s", symname);
340 }
341 #endif /* CONFIG_KALLSYMS */
342 
343 #ifdef CONFIG_SCHEDSTATS
344 /*
345  * Provides /proc/PID/schedstat
346  */
347 static int proc_pid_schedstat(struct task_struct *task, char *buffer)
348 {
349 	return sprintf(buffer, "%llu %llu %lu\n",
350 			task->sched_info.cpu_time,
351 			task->sched_info.run_delay,
352 			task->sched_info.pcount);
353 }
354 #endif
355 
356 #ifdef CONFIG_LATENCYTOP
357 static int lstats_show_proc(struct seq_file *m, void *v)
358 {
359 	int i;
360 	struct inode *inode = m->private;
361 	struct task_struct *task = get_proc_task(inode);
362 
363 	if (!task)
364 		return -ESRCH;
365 	seq_puts(m, "Latency Top version : v0.1\n");
366 	for (i = 0; i < 32; i++) {
367 		if (task->latency_record[i].backtrace[0]) {
368 			int q;
369 			seq_printf(m, "%i %li %li ",
370 				task->latency_record[i].count,
371 				task->latency_record[i].time,
372 				task->latency_record[i].max);
373 			for (q = 0; q < LT_BACKTRACEDEPTH; q++) {
374 				char sym[KSYM_NAME_LEN];
375 				char *c;
376 				if (!task->latency_record[i].backtrace[q])
377 					break;
378 				if (task->latency_record[i].backtrace[q] == ULONG_MAX)
379 					break;
380 				sprint_symbol(sym, task->latency_record[i].backtrace[q]);
381 				c = strchr(sym, '+');
382 				if (c)
383 					*c = 0;
384 				seq_printf(m, "%s ", sym);
385 			}
386 			seq_printf(m, "\n");
387 		}
388 
389 	}
390 	put_task_struct(task);
391 	return 0;
392 }
393 
394 static int lstats_open(struct inode *inode, struct file *file)
395 {
396 	return single_open(file, lstats_show_proc, inode);
397 }
398 
399 static ssize_t lstats_write(struct file *file, const char __user *buf,
400 			    size_t count, loff_t *offs)
401 {
402 	struct task_struct *task = get_proc_task(file->f_dentry->d_inode);
403 
404 	if (!task)
405 		return -ESRCH;
406 	clear_all_latency_tracing(task);
407 	put_task_struct(task);
408 
409 	return count;
410 }
411 
412 static const struct file_operations proc_lstats_operations = {
413 	.open		= lstats_open,
414 	.read		= seq_read,
415 	.write		= lstats_write,
416 	.llseek		= seq_lseek,
417 	.release	= single_release,
418 };
419 
420 #endif
421 
422 /* The badness from the OOM killer */
423 unsigned long badness(struct task_struct *p, unsigned long uptime);
424 static int proc_oom_score(struct task_struct *task, char *buffer)
425 {
426 	unsigned long points;
427 	struct timespec uptime;
428 
429 	do_posix_clock_monotonic_gettime(&uptime);
430 	read_lock(&tasklist_lock);
431 	points = badness(task, uptime.tv_sec);
432 	read_unlock(&tasklist_lock);
433 	return sprintf(buffer, "%lu\n", points);
434 }
435 
436 struct limit_names {
437 	char *name;
438 	char *unit;
439 };
440 
441 static const struct limit_names lnames[RLIM_NLIMITS] = {
442 	[RLIMIT_CPU] = {"Max cpu time", "ms"},
443 	[RLIMIT_FSIZE] = {"Max file size", "bytes"},
444 	[RLIMIT_DATA] = {"Max data size", "bytes"},
445 	[RLIMIT_STACK] = {"Max stack size", "bytes"},
446 	[RLIMIT_CORE] = {"Max core file size", "bytes"},
447 	[RLIMIT_RSS] = {"Max resident set", "bytes"},
448 	[RLIMIT_NPROC] = {"Max processes", "processes"},
449 	[RLIMIT_NOFILE] = {"Max open files", "files"},
450 	[RLIMIT_MEMLOCK] = {"Max locked memory", "bytes"},
451 	[RLIMIT_AS] = {"Max address space", "bytes"},
452 	[RLIMIT_LOCKS] = {"Max file locks", "locks"},
453 	[RLIMIT_SIGPENDING] = {"Max pending signals", "signals"},
454 	[RLIMIT_MSGQUEUE] = {"Max msgqueue size", "bytes"},
455 	[RLIMIT_NICE] = {"Max nice priority", NULL},
456 	[RLIMIT_RTPRIO] = {"Max realtime priority", NULL},
457 	[RLIMIT_RTTIME] = {"Max realtime timeout", "us"},
458 };
459 
460 /* Display limits for a process */
461 static int proc_pid_limits(struct task_struct *task, char *buffer)
462 {
463 	unsigned int i;
464 	int count = 0;
465 	unsigned long flags;
466 	char *bufptr = buffer;
467 
468 	struct rlimit rlim[RLIM_NLIMITS];
469 
470 	if (!lock_task_sighand(task, &flags))
471 		return 0;
472 	memcpy(rlim, task->signal->rlim, sizeof(struct rlimit) * RLIM_NLIMITS);
473 	unlock_task_sighand(task, &flags);
474 
475 	/*
476 	 * print the file header
477 	 */
478 	count += sprintf(&bufptr[count], "%-25s %-20s %-20s %-10s\n",
479 			"Limit", "Soft Limit", "Hard Limit", "Units");
480 
481 	for (i = 0; i < RLIM_NLIMITS; i++) {
482 		if (rlim[i].rlim_cur == RLIM_INFINITY)
483 			count += sprintf(&bufptr[count], "%-25s %-20s ",
484 					 lnames[i].name, "unlimited");
485 		else
486 			count += sprintf(&bufptr[count], "%-25s %-20lu ",
487 					 lnames[i].name, rlim[i].rlim_cur);
488 
489 		if (rlim[i].rlim_max == RLIM_INFINITY)
490 			count += sprintf(&bufptr[count], "%-20s ", "unlimited");
491 		else
492 			count += sprintf(&bufptr[count], "%-20lu ",
493 					 rlim[i].rlim_max);
494 
495 		if (lnames[i].unit)
496 			count += sprintf(&bufptr[count], "%-10s\n",
497 					 lnames[i].unit);
498 		else
499 			count += sprintf(&bufptr[count], "\n");
500 	}
501 
502 	return count;
503 }
504 
505 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK
506 static int proc_pid_syscall(struct task_struct *task, char *buffer)
507 {
508 	long nr;
509 	unsigned long args[6], sp, pc;
510 
511 	if (task_current_syscall(task, &nr, args, 6, &sp, &pc))
512 		return sprintf(buffer, "running\n");
513 
514 	if (nr < 0)
515 		return sprintf(buffer, "%ld 0x%lx 0x%lx\n", nr, sp, pc);
516 
517 	return sprintf(buffer,
518 		       "%ld 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx\n",
519 		       nr,
520 		       args[0], args[1], args[2], args[3], args[4], args[5],
521 		       sp, pc);
522 }
523 #endif /* CONFIG_HAVE_ARCH_TRACEHOOK */
524 
525 /************************************************************************/
526 /*                       Here the fs part begins                        */
527 /************************************************************************/
528 
529 /* permission checks */
530 static int proc_fd_access_allowed(struct inode *inode)
531 {
532 	struct task_struct *task;
533 	int allowed = 0;
534 	/* Allow access to a task's file descriptors if it is us or we
535 	 * may use ptrace attach to the process and find out that
536 	 * information.
537 	 */
538 	task = get_proc_task(inode);
539 	if (task) {
540 		allowed = ptrace_may_access(task, PTRACE_MODE_READ);
541 		put_task_struct(task);
542 	}
543 	return allowed;
544 }
545 
546 static int proc_setattr(struct dentry *dentry, struct iattr *attr)
547 {
548 	int error;
549 	struct inode *inode = dentry->d_inode;
550 
551 	if (attr->ia_valid & ATTR_MODE)
552 		return -EPERM;
553 
554 	error = inode_change_ok(inode, attr);
555 	if (!error)
556 		error = inode_setattr(inode, attr);
557 	return error;
558 }
559 
560 static const struct inode_operations proc_def_inode_operations = {
561 	.setattr	= proc_setattr,
562 };
563 
564 static int mounts_open_common(struct inode *inode, struct file *file,
565 			      const struct seq_operations *op)
566 {
567 	struct task_struct *task = get_proc_task(inode);
568 	struct nsproxy *nsp;
569 	struct mnt_namespace *ns = NULL;
570 	struct fs_struct *fs = NULL;
571 	struct path root;
572 	struct proc_mounts *p;
573 	int ret = -EINVAL;
574 
575 	if (task) {
576 		rcu_read_lock();
577 		nsp = task_nsproxy(task);
578 		if (nsp) {
579 			ns = nsp->mnt_ns;
580 			if (ns)
581 				get_mnt_ns(ns);
582 		}
583 		rcu_read_unlock();
584 		if (ns)
585 			fs = get_fs_struct(task);
586 		put_task_struct(task);
587 	}
588 
589 	if (!ns)
590 		goto err;
591 	if (!fs)
592 		goto err_put_ns;
593 
594 	read_lock(&fs->lock);
595 	root = fs->root;
596 	path_get(&root);
597 	read_unlock(&fs->lock);
598 	put_fs_struct(fs);
599 
600 	ret = -ENOMEM;
601 	p = kmalloc(sizeof(struct proc_mounts), GFP_KERNEL);
602 	if (!p)
603 		goto err_put_path;
604 
605 	file->private_data = &p->m;
606 	ret = seq_open(file, op);
607 	if (ret)
608 		goto err_free;
609 
610 	p->m.private = p;
611 	p->ns = ns;
612 	p->root = root;
613 	p->event = ns->event;
614 
615 	return 0;
616 
617  err_free:
618 	kfree(p);
619  err_put_path:
620 	path_put(&root);
621  err_put_ns:
622 	put_mnt_ns(ns);
623  err:
624 	return ret;
625 }
626 
627 static int mounts_release(struct inode *inode, struct file *file)
628 {
629 	struct proc_mounts *p = file->private_data;
630 	path_put(&p->root);
631 	put_mnt_ns(p->ns);
632 	return seq_release(inode, file);
633 }
634 
635 static unsigned mounts_poll(struct file *file, poll_table *wait)
636 {
637 	struct proc_mounts *p = file->private_data;
638 	struct mnt_namespace *ns = p->ns;
639 	unsigned res = 0;
640 
641 	poll_wait(file, &ns->poll, wait);
642 
643 	spin_lock(&vfsmount_lock);
644 	if (p->event != ns->event) {
645 		p->event = ns->event;
646 		res = POLLERR;
647 	}
648 	spin_unlock(&vfsmount_lock);
649 
650 	return res;
651 }
652 
653 static int mounts_open(struct inode *inode, struct file *file)
654 {
655 	return mounts_open_common(inode, file, &mounts_op);
656 }
657 
658 static const struct file_operations proc_mounts_operations = {
659 	.open		= mounts_open,
660 	.read		= seq_read,
661 	.llseek		= seq_lseek,
662 	.release	= mounts_release,
663 	.poll		= mounts_poll,
664 };
665 
666 static int mountinfo_open(struct inode *inode, struct file *file)
667 {
668 	return mounts_open_common(inode, file, &mountinfo_op);
669 }
670 
671 static const struct file_operations proc_mountinfo_operations = {
672 	.open		= mountinfo_open,
673 	.read		= seq_read,
674 	.llseek		= seq_lseek,
675 	.release	= mounts_release,
676 	.poll		= mounts_poll,
677 };
678 
679 static int mountstats_open(struct inode *inode, struct file *file)
680 {
681 	return mounts_open_common(inode, file, &mountstats_op);
682 }
683 
684 static const struct file_operations proc_mountstats_operations = {
685 	.open		= mountstats_open,
686 	.read		= seq_read,
687 	.llseek		= seq_lseek,
688 	.release	= mounts_release,
689 };
690 
691 #define PROC_BLOCK_SIZE	(3*1024)		/* 4K page size but our output routines use some slack for overruns */
692 
693 static ssize_t proc_info_read(struct file * file, char __user * buf,
694 			  size_t count, loff_t *ppos)
695 {
696 	struct inode * inode = file->f_path.dentry->d_inode;
697 	unsigned long page;
698 	ssize_t length;
699 	struct task_struct *task = get_proc_task(inode);
700 
701 	length = -ESRCH;
702 	if (!task)
703 		goto out_no_task;
704 
705 	if (count > PROC_BLOCK_SIZE)
706 		count = PROC_BLOCK_SIZE;
707 
708 	length = -ENOMEM;
709 	if (!(page = __get_free_page(GFP_TEMPORARY)))
710 		goto out;
711 
712 	length = PROC_I(inode)->op.proc_read(task, (char*)page);
713 
714 	if (length >= 0)
715 		length = simple_read_from_buffer(buf, count, ppos, (char *)page, length);
716 	free_page(page);
717 out:
718 	put_task_struct(task);
719 out_no_task:
720 	return length;
721 }
722 
723 static const struct file_operations proc_info_file_operations = {
724 	.read		= proc_info_read,
725 };
726 
727 static int proc_single_show(struct seq_file *m, void *v)
728 {
729 	struct inode *inode = m->private;
730 	struct pid_namespace *ns;
731 	struct pid *pid;
732 	struct task_struct *task;
733 	int ret;
734 
735 	ns = inode->i_sb->s_fs_info;
736 	pid = proc_pid(inode);
737 	task = get_pid_task(pid, PIDTYPE_PID);
738 	if (!task)
739 		return -ESRCH;
740 
741 	ret = PROC_I(inode)->op.proc_show(m, ns, pid, task);
742 
743 	put_task_struct(task);
744 	return ret;
745 }
746 
747 static int proc_single_open(struct inode *inode, struct file *filp)
748 {
749 	int ret;
750 	ret = single_open(filp, proc_single_show, NULL);
751 	if (!ret) {
752 		struct seq_file *m = filp->private_data;
753 
754 		m->private = inode;
755 	}
756 	return ret;
757 }
758 
759 static const struct file_operations proc_single_file_operations = {
760 	.open		= proc_single_open,
761 	.read		= seq_read,
762 	.llseek		= seq_lseek,
763 	.release	= single_release,
764 };
765 
766 static int mem_open(struct inode* inode, struct file* file)
767 {
768 	file->private_data = (void*)((long)current->self_exec_id);
769 	return 0;
770 }
771 
772 static ssize_t mem_read(struct file * file, char __user * buf,
773 			size_t count, loff_t *ppos)
774 {
775 	struct task_struct *task = get_proc_task(file->f_path.dentry->d_inode);
776 	char *page;
777 	unsigned long src = *ppos;
778 	int ret = -ESRCH;
779 	struct mm_struct *mm;
780 
781 	if (!task)
782 		goto out_no_task;
783 
784 	if (check_mem_permission(task))
785 		goto out;
786 
787 	ret = -ENOMEM;
788 	page = (char *)__get_free_page(GFP_TEMPORARY);
789 	if (!page)
790 		goto out;
791 
792 	ret = 0;
793 
794 	mm = get_task_mm(task);
795 	if (!mm)
796 		goto out_free;
797 
798 	ret = -EIO;
799 
800 	if (file->private_data != (void*)((long)current->self_exec_id))
801 		goto out_put;
802 
803 	ret = 0;
804 
805 	while (count > 0) {
806 		int this_len, retval;
807 
808 		this_len = (count > PAGE_SIZE) ? PAGE_SIZE : count;
809 		retval = access_process_vm(task, src, page, this_len, 0);
810 		if (!retval || check_mem_permission(task)) {
811 			if (!ret)
812 				ret = -EIO;
813 			break;
814 		}
815 
816 		if (copy_to_user(buf, page, retval)) {
817 			ret = -EFAULT;
818 			break;
819 		}
820 
821 		ret += retval;
822 		src += retval;
823 		buf += retval;
824 		count -= retval;
825 	}
826 	*ppos = src;
827 
828 out_put:
829 	mmput(mm);
830 out_free:
831 	free_page((unsigned long) page);
832 out:
833 	put_task_struct(task);
834 out_no_task:
835 	return ret;
836 }
837 
838 #define mem_write NULL
839 
840 #ifndef mem_write
841 /* This is a security hazard */
842 static ssize_t mem_write(struct file * file, const char __user *buf,
843 			 size_t count, loff_t *ppos)
844 {
845 	int copied;
846 	char *page;
847 	struct task_struct *task = get_proc_task(file->f_path.dentry->d_inode);
848 	unsigned long dst = *ppos;
849 
850 	copied = -ESRCH;
851 	if (!task)
852 		goto out_no_task;
853 
854 	if (check_mem_permission(task))
855 		goto out;
856 
857 	copied = -ENOMEM;
858 	page = (char *)__get_free_page(GFP_TEMPORARY);
859 	if (!page)
860 		goto out;
861 
862 	copied = 0;
863 	while (count > 0) {
864 		int this_len, retval;
865 
866 		this_len = (count > PAGE_SIZE) ? PAGE_SIZE : count;
867 		if (copy_from_user(page, buf, this_len)) {
868 			copied = -EFAULT;
869 			break;
870 		}
871 		retval = access_process_vm(task, dst, page, this_len, 1);
872 		if (!retval) {
873 			if (!copied)
874 				copied = -EIO;
875 			break;
876 		}
877 		copied += retval;
878 		buf += retval;
879 		dst += retval;
880 		count -= retval;
881 	}
882 	*ppos = dst;
883 	free_page((unsigned long) page);
884 out:
885 	put_task_struct(task);
886 out_no_task:
887 	return copied;
888 }
889 #endif
890 
891 loff_t mem_lseek(struct file *file, loff_t offset, int orig)
892 {
893 	switch (orig) {
894 	case 0:
895 		file->f_pos = offset;
896 		break;
897 	case 1:
898 		file->f_pos += offset;
899 		break;
900 	default:
901 		return -EINVAL;
902 	}
903 	force_successful_syscall_return();
904 	return file->f_pos;
905 }
906 
907 static const struct file_operations proc_mem_operations = {
908 	.llseek		= mem_lseek,
909 	.read		= mem_read,
910 	.write		= mem_write,
911 	.open		= mem_open,
912 };
913 
914 static ssize_t environ_read(struct file *file, char __user *buf,
915 			size_t count, loff_t *ppos)
916 {
917 	struct task_struct *task = get_proc_task(file->f_dentry->d_inode);
918 	char *page;
919 	unsigned long src = *ppos;
920 	int ret = -ESRCH;
921 	struct mm_struct *mm;
922 
923 	if (!task)
924 		goto out_no_task;
925 
926 	if (!ptrace_may_access(task, PTRACE_MODE_READ))
927 		goto out;
928 
929 	ret = -ENOMEM;
930 	page = (char *)__get_free_page(GFP_TEMPORARY);
931 	if (!page)
932 		goto out;
933 
934 	ret = 0;
935 
936 	mm = get_task_mm(task);
937 	if (!mm)
938 		goto out_free;
939 
940 	while (count > 0) {
941 		int this_len, retval, max_len;
942 
943 		this_len = mm->env_end - (mm->env_start + src);
944 
945 		if (this_len <= 0)
946 			break;
947 
948 		max_len = (count > PAGE_SIZE) ? PAGE_SIZE : count;
949 		this_len = (this_len > max_len) ? max_len : this_len;
950 
951 		retval = access_process_vm(task, (mm->env_start + src),
952 			page, this_len, 0);
953 
954 		if (retval <= 0) {
955 			ret = retval;
956 			break;
957 		}
958 
959 		if (copy_to_user(buf, page, retval)) {
960 			ret = -EFAULT;
961 			break;
962 		}
963 
964 		ret += retval;
965 		src += retval;
966 		buf += retval;
967 		count -= retval;
968 	}
969 	*ppos = src;
970 
971 	mmput(mm);
972 out_free:
973 	free_page((unsigned long) page);
974 out:
975 	put_task_struct(task);
976 out_no_task:
977 	return ret;
978 }
979 
980 static const struct file_operations proc_environ_operations = {
981 	.read		= environ_read,
982 };
983 
984 static ssize_t oom_adjust_read(struct file *file, char __user *buf,
985 				size_t count, loff_t *ppos)
986 {
987 	struct task_struct *task = get_proc_task(file->f_path.dentry->d_inode);
988 	char buffer[PROC_NUMBUF];
989 	size_t len;
990 	int oom_adjust;
991 
992 	if (!task)
993 		return -ESRCH;
994 	oom_adjust = task->oomkilladj;
995 	put_task_struct(task);
996 
997 	len = snprintf(buffer, sizeof(buffer), "%i\n", oom_adjust);
998 
999 	return simple_read_from_buffer(buf, count, ppos, buffer, len);
1000 }
1001 
1002 static ssize_t oom_adjust_write(struct file *file, const char __user *buf,
1003 				size_t count, loff_t *ppos)
1004 {
1005 	struct task_struct *task;
1006 	char buffer[PROC_NUMBUF], *end;
1007 	int oom_adjust;
1008 
1009 	memset(buffer, 0, sizeof(buffer));
1010 	if (count > sizeof(buffer) - 1)
1011 		count = sizeof(buffer) - 1;
1012 	if (copy_from_user(buffer, buf, count))
1013 		return -EFAULT;
1014 	oom_adjust = simple_strtol(buffer, &end, 0);
1015 	if ((oom_adjust < OOM_ADJUST_MIN || oom_adjust > OOM_ADJUST_MAX) &&
1016 	     oom_adjust != OOM_DISABLE)
1017 		return -EINVAL;
1018 	if (*end == '\n')
1019 		end++;
1020 	task = get_proc_task(file->f_path.dentry->d_inode);
1021 	if (!task)
1022 		return -ESRCH;
1023 	if (oom_adjust < task->oomkilladj && !capable(CAP_SYS_RESOURCE)) {
1024 		put_task_struct(task);
1025 		return -EACCES;
1026 	}
1027 	task->oomkilladj = oom_adjust;
1028 	put_task_struct(task);
1029 	if (end - buffer == 0)
1030 		return -EIO;
1031 	return end - buffer;
1032 }
1033 
1034 static const struct file_operations proc_oom_adjust_operations = {
1035 	.read		= oom_adjust_read,
1036 	.write		= oom_adjust_write,
1037 };
1038 
1039 #ifdef CONFIG_AUDITSYSCALL
1040 #define TMPBUFLEN 21
1041 static ssize_t proc_loginuid_read(struct file * file, char __user * buf,
1042 				  size_t count, loff_t *ppos)
1043 {
1044 	struct inode * inode = file->f_path.dentry->d_inode;
1045 	struct task_struct *task = get_proc_task(inode);
1046 	ssize_t length;
1047 	char tmpbuf[TMPBUFLEN];
1048 
1049 	if (!task)
1050 		return -ESRCH;
1051 	length = scnprintf(tmpbuf, TMPBUFLEN, "%u",
1052 				audit_get_loginuid(task));
1053 	put_task_struct(task);
1054 	return simple_read_from_buffer(buf, count, ppos, tmpbuf, length);
1055 }
1056 
1057 static ssize_t proc_loginuid_write(struct file * file, const char __user * buf,
1058 				   size_t count, loff_t *ppos)
1059 {
1060 	struct inode * inode = file->f_path.dentry->d_inode;
1061 	char *page, *tmp;
1062 	ssize_t length;
1063 	uid_t loginuid;
1064 
1065 	if (!capable(CAP_AUDIT_CONTROL))
1066 		return -EPERM;
1067 
1068 	if (current != pid_task(proc_pid(inode), PIDTYPE_PID))
1069 		return -EPERM;
1070 
1071 	if (count >= PAGE_SIZE)
1072 		count = PAGE_SIZE - 1;
1073 
1074 	if (*ppos != 0) {
1075 		/* No partial writes. */
1076 		return -EINVAL;
1077 	}
1078 	page = (char*)__get_free_page(GFP_TEMPORARY);
1079 	if (!page)
1080 		return -ENOMEM;
1081 	length = -EFAULT;
1082 	if (copy_from_user(page, buf, count))
1083 		goto out_free_page;
1084 
1085 	page[count] = '\0';
1086 	loginuid = simple_strtoul(page, &tmp, 10);
1087 	if (tmp == page) {
1088 		length = -EINVAL;
1089 		goto out_free_page;
1090 
1091 	}
1092 	length = audit_set_loginuid(current, loginuid);
1093 	if (likely(length == 0))
1094 		length = count;
1095 
1096 out_free_page:
1097 	free_page((unsigned long) page);
1098 	return length;
1099 }
1100 
1101 static const struct file_operations proc_loginuid_operations = {
1102 	.read		= proc_loginuid_read,
1103 	.write		= proc_loginuid_write,
1104 };
1105 
1106 static ssize_t proc_sessionid_read(struct file * file, char __user * buf,
1107 				  size_t count, loff_t *ppos)
1108 {
1109 	struct inode * inode = file->f_path.dentry->d_inode;
1110 	struct task_struct *task = get_proc_task(inode);
1111 	ssize_t length;
1112 	char tmpbuf[TMPBUFLEN];
1113 
1114 	if (!task)
1115 		return -ESRCH;
1116 	length = scnprintf(tmpbuf, TMPBUFLEN, "%u",
1117 				audit_get_sessionid(task));
1118 	put_task_struct(task);
1119 	return simple_read_from_buffer(buf, count, ppos, tmpbuf, length);
1120 }
1121 
1122 static const struct file_operations proc_sessionid_operations = {
1123 	.read		= proc_sessionid_read,
1124 };
1125 #endif
1126 
1127 #ifdef CONFIG_FAULT_INJECTION
1128 static ssize_t proc_fault_inject_read(struct file * file, char __user * buf,
1129 				      size_t count, loff_t *ppos)
1130 {
1131 	struct task_struct *task = get_proc_task(file->f_dentry->d_inode);
1132 	char buffer[PROC_NUMBUF];
1133 	size_t len;
1134 	int make_it_fail;
1135 
1136 	if (!task)
1137 		return -ESRCH;
1138 	make_it_fail = task->make_it_fail;
1139 	put_task_struct(task);
1140 
1141 	len = snprintf(buffer, sizeof(buffer), "%i\n", make_it_fail);
1142 
1143 	return simple_read_from_buffer(buf, count, ppos, buffer, len);
1144 }
1145 
1146 static ssize_t proc_fault_inject_write(struct file * file,
1147 			const char __user * buf, size_t count, loff_t *ppos)
1148 {
1149 	struct task_struct *task;
1150 	char buffer[PROC_NUMBUF], *end;
1151 	int make_it_fail;
1152 
1153 	if (!capable(CAP_SYS_RESOURCE))
1154 		return -EPERM;
1155 	memset(buffer, 0, sizeof(buffer));
1156 	if (count > sizeof(buffer) - 1)
1157 		count = sizeof(buffer) - 1;
1158 	if (copy_from_user(buffer, buf, count))
1159 		return -EFAULT;
1160 	make_it_fail = simple_strtol(buffer, &end, 0);
1161 	if (*end == '\n')
1162 		end++;
1163 	task = get_proc_task(file->f_dentry->d_inode);
1164 	if (!task)
1165 		return -ESRCH;
1166 	task->make_it_fail = make_it_fail;
1167 	put_task_struct(task);
1168 	if (end - buffer == 0)
1169 		return -EIO;
1170 	return end - buffer;
1171 }
1172 
1173 static const struct file_operations proc_fault_inject_operations = {
1174 	.read		= proc_fault_inject_read,
1175 	.write		= proc_fault_inject_write,
1176 };
1177 #endif
1178 
1179 
1180 #ifdef CONFIG_SCHED_DEBUG
1181 /*
1182  * Print out various scheduling related per-task fields:
1183  */
1184 static int sched_show(struct seq_file *m, void *v)
1185 {
1186 	struct inode *inode = m->private;
1187 	struct task_struct *p;
1188 
1189 	WARN_ON(!inode);
1190 
1191 	p = get_proc_task(inode);
1192 	if (!p)
1193 		return -ESRCH;
1194 	proc_sched_show_task(p, m);
1195 
1196 	put_task_struct(p);
1197 
1198 	return 0;
1199 }
1200 
1201 static ssize_t
1202 sched_write(struct file *file, const char __user *buf,
1203 	    size_t count, loff_t *offset)
1204 {
1205 	struct inode *inode = file->f_path.dentry->d_inode;
1206 	struct task_struct *p;
1207 
1208 	WARN_ON(!inode);
1209 
1210 	p = get_proc_task(inode);
1211 	if (!p)
1212 		return -ESRCH;
1213 	proc_sched_set_task(p);
1214 
1215 	put_task_struct(p);
1216 
1217 	return count;
1218 }
1219 
1220 static int sched_open(struct inode *inode, struct file *filp)
1221 {
1222 	int ret;
1223 
1224 	ret = single_open(filp, sched_show, NULL);
1225 	if (!ret) {
1226 		struct seq_file *m = filp->private_data;
1227 
1228 		m->private = inode;
1229 	}
1230 	return ret;
1231 }
1232 
1233 static const struct file_operations proc_pid_sched_operations = {
1234 	.open		= sched_open,
1235 	.read		= seq_read,
1236 	.write		= sched_write,
1237 	.llseek		= seq_lseek,
1238 	.release	= single_release,
1239 };
1240 
1241 #endif
1242 
1243 /*
1244  * We added or removed a vma mapping the executable. The vmas are only mapped
1245  * during exec and are not mapped with the mmap system call.
1246  * Callers must hold down_write() on the mm's mmap_sem for these
1247  */
1248 void added_exe_file_vma(struct mm_struct *mm)
1249 {
1250 	mm->num_exe_file_vmas++;
1251 }
1252 
1253 void removed_exe_file_vma(struct mm_struct *mm)
1254 {
1255 	mm->num_exe_file_vmas--;
1256 	if ((mm->num_exe_file_vmas == 0) && mm->exe_file){
1257 		fput(mm->exe_file);
1258 		mm->exe_file = NULL;
1259 	}
1260 
1261 }
1262 
1263 void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
1264 {
1265 	if (new_exe_file)
1266 		get_file(new_exe_file);
1267 	if (mm->exe_file)
1268 		fput(mm->exe_file);
1269 	mm->exe_file = new_exe_file;
1270 	mm->num_exe_file_vmas = 0;
1271 }
1272 
1273 struct file *get_mm_exe_file(struct mm_struct *mm)
1274 {
1275 	struct file *exe_file;
1276 
1277 	/* We need mmap_sem to protect against races with removal of
1278 	 * VM_EXECUTABLE vmas */
1279 	down_read(&mm->mmap_sem);
1280 	exe_file = mm->exe_file;
1281 	if (exe_file)
1282 		get_file(exe_file);
1283 	up_read(&mm->mmap_sem);
1284 	return exe_file;
1285 }
1286 
1287 void dup_mm_exe_file(struct mm_struct *oldmm, struct mm_struct *newmm)
1288 {
1289 	/* It's safe to write the exe_file pointer without exe_file_lock because
1290 	 * this is called during fork when the task is not yet in /proc */
1291 	newmm->exe_file = get_mm_exe_file(oldmm);
1292 }
1293 
1294 static int proc_exe_link(struct inode *inode, struct path *exe_path)
1295 {
1296 	struct task_struct *task;
1297 	struct mm_struct *mm;
1298 	struct file *exe_file;
1299 
1300 	task = get_proc_task(inode);
1301 	if (!task)
1302 		return -ENOENT;
1303 	mm = get_task_mm(task);
1304 	put_task_struct(task);
1305 	if (!mm)
1306 		return -ENOENT;
1307 	exe_file = get_mm_exe_file(mm);
1308 	mmput(mm);
1309 	if (exe_file) {
1310 		*exe_path = exe_file->f_path;
1311 		path_get(&exe_file->f_path);
1312 		fput(exe_file);
1313 		return 0;
1314 	} else
1315 		return -ENOENT;
1316 }
1317 
1318 static void *proc_pid_follow_link(struct dentry *dentry, struct nameidata *nd)
1319 {
1320 	struct inode *inode = dentry->d_inode;
1321 	int error = -EACCES;
1322 
1323 	/* We don't need a base pointer in the /proc filesystem */
1324 	path_put(&nd->path);
1325 
1326 	/* Are we allowed to snoop on the tasks file descriptors? */
1327 	if (!proc_fd_access_allowed(inode))
1328 		goto out;
1329 
1330 	error = PROC_I(inode)->op.proc_get_link(inode, &nd->path);
1331 	nd->last_type = LAST_BIND;
1332 out:
1333 	return ERR_PTR(error);
1334 }
1335 
1336 static int do_proc_readlink(struct path *path, char __user *buffer, int buflen)
1337 {
1338 	char *tmp = (char*)__get_free_page(GFP_TEMPORARY);
1339 	char *pathname;
1340 	int len;
1341 
1342 	if (!tmp)
1343 		return -ENOMEM;
1344 
1345 	pathname = d_path(path, tmp, PAGE_SIZE);
1346 	len = PTR_ERR(pathname);
1347 	if (IS_ERR(pathname))
1348 		goto out;
1349 	len = tmp + PAGE_SIZE - 1 - pathname;
1350 
1351 	if (len > buflen)
1352 		len = buflen;
1353 	if (copy_to_user(buffer, pathname, len))
1354 		len = -EFAULT;
1355  out:
1356 	free_page((unsigned long)tmp);
1357 	return len;
1358 }
1359 
1360 static int proc_pid_readlink(struct dentry * dentry, char __user * buffer, int buflen)
1361 {
1362 	int error = -EACCES;
1363 	struct inode *inode = dentry->d_inode;
1364 	struct path path;
1365 
1366 	/* Are we allowed to snoop on the tasks file descriptors? */
1367 	if (!proc_fd_access_allowed(inode))
1368 		goto out;
1369 
1370 	error = PROC_I(inode)->op.proc_get_link(inode, &path);
1371 	if (error)
1372 		goto out;
1373 
1374 	error = do_proc_readlink(&path, buffer, buflen);
1375 	path_put(&path);
1376 out:
1377 	return error;
1378 }
1379 
1380 static const struct inode_operations proc_pid_link_inode_operations = {
1381 	.readlink	= proc_pid_readlink,
1382 	.follow_link	= proc_pid_follow_link,
1383 	.setattr	= proc_setattr,
1384 };
1385 
1386 
1387 /* building an inode */
1388 
1389 static int task_dumpable(struct task_struct *task)
1390 {
1391 	int dumpable = 0;
1392 	struct mm_struct *mm;
1393 
1394 	task_lock(task);
1395 	mm = task->mm;
1396 	if (mm)
1397 		dumpable = get_dumpable(mm);
1398 	task_unlock(task);
1399 	if(dumpable == 1)
1400 		return 1;
1401 	return 0;
1402 }
1403 
1404 
1405 static struct inode *proc_pid_make_inode(struct super_block * sb, struct task_struct *task)
1406 {
1407 	struct inode * inode;
1408 	struct proc_inode *ei;
1409 
1410 	/* We need a new inode */
1411 
1412 	inode = new_inode(sb);
1413 	if (!inode)
1414 		goto out;
1415 
1416 	/* Common stuff */
1417 	ei = PROC_I(inode);
1418 	inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
1419 	inode->i_op = &proc_def_inode_operations;
1420 
1421 	/*
1422 	 * grab the reference to task.
1423 	 */
1424 	ei->pid = get_task_pid(task, PIDTYPE_PID);
1425 	if (!ei->pid)
1426 		goto out_unlock;
1427 
1428 	inode->i_uid = 0;
1429 	inode->i_gid = 0;
1430 	if (task_dumpable(task)) {
1431 		inode->i_uid = task->euid;
1432 		inode->i_gid = task->egid;
1433 	}
1434 	security_task_to_inode(task, inode);
1435 
1436 out:
1437 	return inode;
1438 
1439 out_unlock:
1440 	iput(inode);
1441 	return NULL;
1442 }
1443 
1444 static int pid_getattr(struct vfsmount *mnt, struct dentry *dentry, struct kstat *stat)
1445 {
1446 	struct inode *inode = dentry->d_inode;
1447 	struct task_struct *task;
1448 	generic_fillattr(inode, stat);
1449 
1450 	rcu_read_lock();
1451 	stat->uid = 0;
1452 	stat->gid = 0;
1453 	task = pid_task(proc_pid(inode), PIDTYPE_PID);
1454 	if (task) {
1455 		if ((inode->i_mode == (S_IFDIR|S_IRUGO|S_IXUGO)) ||
1456 		    task_dumpable(task)) {
1457 			stat->uid = task->euid;
1458 			stat->gid = task->egid;
1459 		}
1460 	}
1461 	rcu_read_unlock();
1462 	return 0;
1463 }
1464 
1465 /* dentry stuff */
1466 
1467 /*
1468  *	Exceptional case: normally we are not allowed to unhash a busy
1469  * directory. In this case, however, we can do it - no aliasing problems
1470  * due to the way we treat inodes.
1471  *
1472  * Rewrite the inode's ownerships here because the owning task may have
1473  * performed a setuid(), etc.
1474  *
1475  * Before the /proc/pid/status file was created the only way to read
1476  * the effective uid of a /process was to stat /proc/pid.  Reading
1477  * /proc/pid/status is slow enough that procps and other packages
1478  * kept stating /proc/pid.  To keep the rules in /proc simple I have
1479  * made this apply to all per process world readable and executable
1480  * directories.
1481  */
1482 static int pid_revalidate(struct dentry *dentry, struct nameidata *nd)
1483 {
1484 	struct inode *inode = dentry->d_inode;
1485 	struct task_struct *task = get_proc_task(inode);
1486 	if (task) {
1487 		if ((inode->i_mode == (S_IFDIR|S_IRUGO|S_IXUGO)) ||
1488 		    task_dumpable(task)) {
1489 			inode->i_uid = task->euid;
1490 			inode->i_gid = task->egid;
1491 		} else {
1492 			inode->i_uid = 0;
1493 			inode->i_gid = 0;
1494 		}
1495 		inode->i_mode &= ~(S_ISUID | S_ISGID);
1496 		security_task_to_inode(task, inode);
1497 		put_task_struct(task);
1498 		return 1;
1499 	}
1500 	d_drop(dentry);
1501 	return 0;
1502 }
1503 
1504 static int pid_delete_dentry(struct dentry * dentry)
1505 {
1506 	/* Is the task we represent dead?
1507 	 * If so, then don't put the dentry on the lru list,
1508 	 * kill it immediately.
1509 	 */
1510 	return !proc_pid(dentry->d_inode)->tasks[PIDTYPE_PID].first;
1511 }
1512 
1513 static struct dentry_operations pid_dentry_operations =
1514 {
1515 	.d_revalidate	= pid_revalidate,
1516 	.d_delete	= pid_delete_dentry,
1517 };
1518 
1519 /* Lookups */
1520 
1521 typedef struct dentry *instantiate_t(struct inode *, struct dentry *,
1522 				struct task_struct *, const void *);
1523 
1524 /*
1525  * Fill a directory entry.
1526  *
1527  * If possible create the dcache entry and derive our inode number and
1528  * file type from dcache entry.
1529  *
1530  * Since all of the proc inode numbers are dynamically generated, the inode
1531  * numbers do not exist until the inode is cache.  This means creating the
1532  * the dcache entry in readdir is necessary to keep the inode numbers
1533  * reported by readdir in sync with the inode numbers reported
1534  * by stat.
1535  */
1536 static int proc_fill_cache(struct file *filp, void *dirent, filldir_t filldir,
1537 	char *name, int len,
1538 	instantiate_t instantiate, struct task_struct *task, const void *ptr)
1539 {
1540 	struct dentry *child, *dir = filp->f_path.dentry;
1541 	struct inode *inode;
1542 	struct qstr qname;
1543 	ino_t ino = 0;
1544 	unsigned type = DT_UNKNOWN;
1545 
1546 	qname.name = name;
1547 	qname.len  = len;
1548 	qname.hash = full_name_hash(name, len);
1549 
1550 	child = d_lookup(dir, &qname);
1551 	if (!child) {
1552 		struct dentry *new;
1553 		new = d_alloc(dir, &qname);
1554 		if (new) {
1555 			child = instantiate(dir->d_inode, new, task, ptr);
1556 			if (child)
1557 				dput(new);
1558 			else
1559 				child = new;
1560 		}
1561 	}
1562 	if (!child || IS_ERR(child) || !child->d_inode)
1563 		goto end_instantiate;
1564 	inode = child->d_inode;
1565 	if (inode) {
1566 		ino = inode->i_ino;
1567 		type = inode->i_mode >> 12;
1568 	}
1569 	dput(child);
1570 end_instantiate:
1571 	if (!ino)
1572 		ino = find_inode_number(dir, &qname);
1573 	if (!ino)
1574 		ino = 1;
1575 	return filldir(dirent, name, len, filp->f_pos, ino, type);
1576 }
1577 
1578 static unsigned name_to_int(struct dentry *dentry)
1579 {
1580 	const char *name = dentry->d_name.name;
1581 	int len = dentry->d_name.len;
1582 	unsigned n = 0;
1583 
1584 	if (len > 1 && *name == '0')
1585 		goto out;
1586 	while (len-- > 0) {
1587 		unsigned c = *name++ - '0';
1588 		if (c > 9)
1589 			goto out;
1590 		if (n >= (~0U-9)/10)
1591 			goto out;
1592 		n *= 10;
1593 		n += c;
1594 	}
1595 	return n;
1596 out:
1597 	return ~0U;
1598 }
1599 
1600 #define PROC_FDINFO_MAX 64
1601 
1602 static int proc_fd_info(struct inode *inode, struct path *path, char *info)
1603 {
1604 	struct task_struct *task = get_proc_task(inode);
1605 	struct files_struct *files = NULL;
1606 	struct file *file;
1607 	int fd = proc_fd(inode);
1608 
1609 	if (task) {
1610 		files = get_files_struct(task);
1611 		put_task_struct(task);
1612 	}
1613 	if (files) {
1614 		/*
1615 		 * We are not taking a ref to the file structure, so we must
1616 		 * hold ->file_lock.
1617 		 */
1618 		spin_lock(&files->file_lock);
1619 		file = fcheck_files(files, fd);
1620 		if (file) {
1621 			if (path) {
1622 				*path = file->f_path;
1623 				path_get(&file->f_path);
1624 			}
1625 			if (info)
1626 				snprintf(info, PROC_FDINFO_MAX,
1627 					 "pos:\t%lli\n"
1628 					 "flags:\t0%o\n",
1629 					 (long long) file->f_pos,
1630 					 file->f_flags);
1631 			spin_unlock(&files->file_lock);
1632 			put_files_struct(files);
1633 			return 0;
1634 		}
1635 		spin_unlock(&files->file_lock);
1636 		put_files_struct(files);
1637 	}
1638 	return -ENOENT;
1639 }
1640 
1641 static int proc_fd_link(struct inode *inode, struct path *path)
1642 {
1643 	return proc_fd_info(inode, path, NULL);
1644 }
1645 
1646 static int tid_fd_revalidate(struct dentry *dentry, struct nameidata *nd)
1647 {
1648 	struct inode *inode = dentry->d_inode;
1649 	struct task_struct *task = get_proc_task(inode);
1650 	int fd = proc_fd(inode);
1651 	struct files_struct *files;
1652 
1653 	if (task) {
1654 		files = get_files_struct(task);
1655 		if (files) {
1656 			rcu_read_lock();
1657 			if (fcheck_files(files, fd)) {
1658 				rcu_read_unlock();
1659 				put_files_struct(files);
1660 				if (task_dumpable(task)) {
1661 					inode->i_uid = task->euid;
1662 					inode->i_gid = task->egid;
1663 				} else {
1664 					inode->i_uid = 0;
1665 					inode->i_gid = 0;
1666 				}
1667 				inode->i_mode &= ~(S_ISUID | S_ISGID);
1668 				security_task_to_inode(task, inode);
1669 				put_task_struct(task);
1670 				return 1;
1671 			}
1672 			rcu_read_unlock();
1673 			put_files_struct(files);
1674 		}
1675 		put_task_struct(task);
1676 	}
1677 	d_drop(dentry);
1678 	return 0;
1679 }
1680 
1681 static struct dentry_operations tid_fd_dentry_operations =
1682 {
1683 	.d_revalidate	= tid_fd_revalidate,
1684 	.d_delete	= pid_delete_dentry,
1685 };
1686 
1687 static struct dentry *proc_fd_instantiate(struct inode *dir,
1688 	struct dentry *dentry, struct task_struct *task, const void *ptr)
1689 {
1690 	unsigned fd = *(const unsigned *)ptr;
1691 	struct file *file;
1692 	struct files_struct *files;
1693  	struct inode *inode;
1694  	struct proc_inode *ei;
1695 	struct dentry *error = ERR_PTR(-ENOENT);
1696 
1697 	inode = proc_pid_make_inode(dir->i_sb, task);
1698 	if (!inode)
1699 		goto out;
1700 	ei = PROC_I(inode);
1701 	ei->fd = fd;
1702 	files = get_files_struct(task);
1703 	if (!files)
1704 		goto out_iput;
1705 	inode->i_mode = S_IFLNK;
1706 
1707 	/*
1708 	 * We are not taking a ref to the file structure, so we must
1709 	 * hold ->file_lock.
1710 	 */
1711 	spin_lock(&files->file_lock);
1712 	file = fcheck_files(files, fd);
1713 	if (!file)
1714 		goto out_unlock;
1715 	if (file->f_mode & FMODE_READ)
1716 		inode->i_mode |= S_IRUSR | S_IXUSR;
1717 	if (file->f_mode & FMODE_WRITE)
1718 		inode->i_mode |= S_IWUSR | S_IXUSR;
1719 	spin_unlock(&files->file_lock);
1720 	put_files_struct(files);
1721 
1722 	inode->i_op = &proc_pid_link_inode_operations;
1723 	inode->i_size = 64;
1724 	ei->op.proc_get_link = proc_fd_link;
1725 	dentry->d_op = &tid_fd_dentry_operations;
1726 	d_add(dentry, inode);
1727 	/* Close the race of the process dying before we return the dentry */
1728 	if (tid_fd_revalidate(dentry, NULL))
1729 		error = NULL;
1730 
1731  out:
1732 	return error;
1733 out_unlock:
1734 	spin_unlock(&files->file_lock);
1735 	put_files_struct(files);
1736 out_iput:
1737 	iput(inode);
1738 	goto out;
1739 }
1740 
1741 static struct dentry *proc_lookupfd_common(struct inode *dir,
1742 					   struct dentry *dentry,
1743 					   instantiate_t instantiate)
1744 {
1745 	struct task_struct *task = get_proc_task(dir);
1746 	unsigned fd = name_to_int(dentry);
1747 	struct dentry *result = ERR_PTR(-ENOENT);
1748 
1749 	if (!task)
1750 		goto out_no_task;
1751 	if (fd == ~0U)
1752 		goto out;
1753 
1754 	result = instantiate(dir, dentry, task, &fd);
1755 out:
1756 	put_task_struct(task);
1757 out_no_task:
1758 	return result;
1759 }
1760 
1761 static int proc_readfd_common(struct file * filp, void * dirent,
1762 			      filldir_t filldir, instantiate_t instantiate)
1763 {
1764 	struct dentry *dentry = filp->f_path.dentry;
1765 	struct inode *inode = dentry->d_inode;
1766 	struct task_struct *p = get_proc_task(inode);
1767 	unsigned int fd, ino;
1768 	int retval;
1769 	struct files_struct * files;
1770 
1771 	retval = -ENOENT;
1772 	if (!p)
1773 		goto out_no_task;
1774 	retval = 0;
1775 
1776 	fd = filp->f_pos;
1777 	switch (fd) {
1778 		case 0:
1779 			if (filldir(dirent, ".", 1, 0, inode->i_ino, DT_DIR) < 0)
1780 				goto out;
1781 			filp->f_pos++;
1782 		case 1:
1783 			ino = parent_ino(dentry);
1784 			if (filldir(dirent, "..", 2, 1, ino, DT_DIR) < 0)
1785 				goto out;
1786 			filp->f_pos++;
1787 		default:
1788 			files = get_files_struct(p);
1789 			if (!files)
1790 				goto out;
1791 			rcu_read_lock();
1792 			for (fd = filp->f_pos-2;
1793 			     fd < files_fdtable(files)->max_fds;
1794 			     fd++, filp->f_pos++) {
1795 				char name[PROC_NUMBUF];
1796 				int len;
1797 
1798 				if (!fcheck_files(files, fd))
1799 					continue;
1800 				rcu_read_unlock();
1801 
1802 				len = snprintf(name, sizeof(name), "%d", fd);
1803 				if (proc_fill_cache(filp, dirent, filldir,
1804 						    name, len, instantiate,
1805 						    p, &fd) < 0) {
1806 					rcu_read_lock();
1807 					break;
1808 				}
1809 				rcu_read_lock();
1810 			}
1811 			rcu_read_unlock();
1812 			put_files_struct(files);
1813 	}
1814 out:
1815 	put_task_struct(p);
1816 out_no_task:
1817 	return retval;
1818 }
1819 
1820 static struct dentry *proc_lookupfd(struct inode *dir, struct dentry *dentry,
1821 				    struct nameidata *nd)
1822 {
1823 	return proc_lookupfd_common(dir, dentry, proc_fd_instantiate);
1824 }
1825 
1826 static int proc_readfd(struct file *filp, void *dirent, filldir_t filldir)
1827 {
1828 	return proc_readfd_common(filp, dirent, filldir, proc_fd_instantiate);
1829 }
1830 
1831 static ssize_t proc_fdinfo_read(struct file *file, char __user *buf,
1832 				      size_t len, loff_t *ppos)
1833 {
1834 	char tmp[PROC_FDINFO_MAX];
1835 	int err = proc_fd_info(file->f_path.dentry->d_inode, NULL, tmp);
1836 	if (!err)
1837 		err = simple_read_from_buffer(buf, len, ppos, tmp, strlen(tmp));
1838 	return err;
1839 }
1840 
1841 static const struct file_operations proc_fdinfo_file_operations = {
1842 	.open		= nonseekable_open,
1843 	.read		= proc_fdinfo_read,
1844 };
1845 
1846 static const struct file_operations proc_fd_operations = {
1847 	.read		= generic_read_dir,
1848 	.readdir	= proc_readfd,
1849 };
1850 
1851 /*
1852  * /proc/pid/fd needs a special permission handler so that a process can still
1853  * access /proc/self/fd after it has executed a setuid().
1854  */
1855 static int proc_fd_permission(struct inode *inode, int mask)
1856 {
1857 	int rv;
1858 
1859 	rv = generic_permission(inode, mask, NULL);
1860 	if (rv == 0)
1861 		return 0;
1862 	if (task_pid(current) == proc_pid(inode))
1863 		rv = 0;
1864 	return rv;
1865 }
1866 
1867 /*
1868  * proc directories can do almost nothing..
1869  */
1870 static const struct inode_operations proc_fd_inode_operations = {
1871 	.lookup		= proc_lookupfd,
1872 	.permission	= proc_fd_permission,
1873 	.setattr	= proc_setattr,
1874 };
1875 
1876 static struct dentry *proc_fdinfo_instantiate(struct inode *dir,
1877 	struct dentry *dentry, struct task_struct *task, const void *ptr)
1878 {
1879 	unsigned fd = *(unsigned *)ptr;
1880  	struct inode *inode;
1881  	struct proc_inode *ei;
1882 	struct dentry *error = ERR_PTR(-ENOENT);
1883 
1884 	inode = proc_pid_make_inode(dir->i_sb, task);
1885 	if (!inode)
1886 		goto out;
1887 	ei = PROC_I(inode);
1888 	ei->fd = fd;
1889 	inode->i_mode = S_IFREG | S_IRUSR;
1890 	inode->i_fop = &proc_fdinfo_file_operations;
1891 	dentry->d_op = &tid_fd_dentry_operations;
1892 	d_add(dentry, inode);
1893 	/* Close the race of the process dying before we return the dentry */
1894 	if (tid_fd_revalidate(dentry, NULL))
1895 		error = NULL;
1896 
1897  out:
1898 	return error;
1899 }
1900 
1901 static struct dentry *proc_lookupfdinfo(struct inode *dir,
1902 					struct dentry *dentry,
1903 					struct nameidata *nd)
1904 {
1905 	return proc_lookupfd_common(dir, dentry, proc_fdinfo_instantiate);
1906 }
1907 
1908 static int proc_readfdinfo(struct file *filp, void *dirent, filldir_t filldir)
1909 {
1910 	return proc_readfd_common(filp, dirent, filldir,
1911 				  proc_fdinfo_instantiate);
1912 }
1913 
1914 static const struct file_operations proc_fdinfo_operations = {
1915 	.read		= generic_read_dir,
1916 	.readdir	= proc_readfdinfo,
1917 };
1918 
1919 /*
1920  * proc directories can do almost nothing..
1921  */
1922 static const struct inode_operations proc_fdinfo_inode_operations = {
1923 	.lookup		= proc_lookupfdinfo,
1924 	.setattr	= proc_setattr,
1925 };
1926 
1927 
1928 static struct dentry *proc_pident_instantiate(struct inode *dir,
1929 	struct dentry *dentry, struct task_struct *task, const void *ptr)
1930 {
1931 	const struct pid_entry *p = ptr;
1932 	struct inode *inode;
1933 	struct proc_inode *ei;
1934 	struct dentry *error = ERR_PTR(-EINVAL);
1935 
1936 	inode = proc_pid_make_inode(dir->i_sb, task);
1937 	if (!inode)
1938 		goto out;
1939 
1940 	ei = PROC_I(inode);
1941 	inode->i_mode = p->mode;
1942 	if (S_ISDIR(inode->i_mode))
1943 		inode->i_nlink = 2;	/* Use getattr to fix if necessary */
1944 	if (p->iop)
1945 		inode->i_op = p->iop;
1946 	if (p->fop)
1947 		inode->i_fop = p->fop;
1948 	ei->op = p->op;
1949 	dentry->d_op = &pid_dentry_operations;
1950 	d_add(dentry, inode);
1951 	/* Close the race of the process dying before we return the dentry */
1952 	if (pid_revalidate(dentry, NULL))
1953 		error = NULL;
1954 out:
1955 	return error;
1956 }
1957 
1958 static struct dentry *proc_pident_lookup(struct inode *dir,
1959 					 struct dentry *dentry,
1960 					 const struct pid_entry *ents,
1961 					 unsigned int nents)
1962 {
1963 	struct inode *inode;
1964 	struct dentry *error;
1965 	struct task_struct *task = get_proc_task(dir);
1966 	const struct pid_entry *p, *last;
1967 
1968 	error = ERR_PTR(-ENOENT);
1969 	inode = NULL;
1970 
1971 	if (!task)
1972 		goto out_no_task;
1973 
1974 	/*
1975 	 * Yes, it does not scale. And it should not. Don't add
1976 	 * new entries into /proc/<tgid>/ without very good reasons.
1977 	 */
1978 	last = &ents[nents - 1];
1979 	for (p = ents; p <= last; p++) {
1980 		if (p->len != dentry->d_name.len)
1981 			continue;
1982 		if (!memcmp(dentry->d_name.name, p->name, p->len))
1983 			break;
1984 	}
1985 	if (p > last)
1986 		goto out;
1987 
1988 	error = proc_pident_instantiate(dir, dentry, task, p);
1989 out:
1990 	put_task_struct(task);
1991 out_no_task:
1992 	return error;
1993 }
1994 
1995 static int proc_pident_fill_cache(struct file *filp, void *dirent,
1996 	filldir_t filldir, struct task_struct *task, const struct pid_entry *p)
1997 {
1998 	return proc_fill_cache(filp, dirent, filldir, p->name, p->len,
1999 				proc_pident_instantiate, task, p);
2000 }
2001 
2002 static int proc_pident_readdir(struct file *filp,
2003 		void *dirent, filldir_t filldir,
2004 		const struct pid_entry *ents, unsigned int nents)
2005 {
2006 	int i;
2007 	struct dentry *dentry = filp->f_path.dentry;
2008 	struct inode *inode = dentry->d_inode;
2009 	struct task_struct *task = get_proc_task(inode);
2010 	const struct pid_entry *p, *last;
2011 	ino_t ino;
2012 	int ret;
2013 
2014 	ret = -ENOENT;
2015 	if (!task)
2016 		goto out_no_task;
2017 
2018 	ret = 0;
2019 	i = filp->f_pos;
2020 	switch (i) {
2021 	case 0:
2022 		ino = inode->i_ino;
2023 		if (filldir(dirent, ".", 1, i, ino, DT_DIR) < 0)
2024 			goto out;
2025 		i++;
2026 		filp->f_pos++;
2027 		/* fall through */
2028 	case 1:
2029 		ino = parent_ino(dentry);
2030 		if (filldir(dirent, "..", 2, i, ino, DT_DIR) < 0)
2031 			goto out;
2032 		i++;
2033 		filp->f_pos++;
2034 		/* fall through */
2035 	default:
2036 		i -= 2;
2037 		if (i >= nents) {
2038 			ret = 1;
2039 			goto out;
2040 		}
2041 		p = ents + i;
2042 		last = &ents[nents - 1];
2043 		while (p <= last) {
2044 			if (proc_pident_fill_cache(filp, dirent, filldir, task, p) < 0)
2045 				goto out;
2046 			filp->f_pos++;
2047 			p++;
2048 		}
2049 	}
2050 
2051 	ret = 1;
2052 out:
2053 	put_task_struct(task);
2054 out_no_task:
2055 	return ret;
2056 }
2057 
2058 #ifdef CONFIG_SECURITY
2059 static ssize_t proc_pid_attr_read(struct file * file, char __user * buf,
2060 				  size_t count, loff_t *ppos)
2061 {
2062 	struct inode * inode = file->f_path.dentry->d_inode;
2063 	char *p = NULL;
2064 	ssize_t length;
2065 	struct task_struct *task = get_proc_task(inode);
2066 
2067 	if (!task)
2068 		return -ESRCH;
2069 
2070 	length = security_getprocattr(task,
2071 				      (char*)file->f_path.dentry->d_name.name,
2072 				      &p);
2073 	put_task_struct(task);
2074 	if (length > 0)
2075 		length = simple_read_from_buffer(buf, count, ppos, p, length);
2076 	kfree(p);
2077 	return length;
2078 }
2079 
2080 static ssize_t proc_pid_attr_write(struct file * file, const char __user * buf,
2081 				   size_t count, loff_t *ppos)
2082 {
2083 	struct inode * inode = file->f_path.dentry->d_inode;
2084 	char *page;
2085 	ssize_t length;
2086 	struct task_struct *task = get_proc_task(inode);
2087 
2088 	length = -ESRCH;
2089 	if (!task)
2090 		goto out_no_task;
2091 	if (count > PAGE_SIZE)
2092 		count = PAGE_SIZE;
2093 
2094 	/* No partial writes. */
2095 	length = -EINVAL;
2096 	if (*ppos != 0)
2097 		goto out;
2098 
2099 	length = -ENOMEM;
2100 	page = (char*)__get_free_page(GFP_TEMPORARY);
2101 	if (!page)
2102 		goto out;
2103 
2104 	length = -EFAULT;
2105 	if (copy_from_user(page, buf, count))
2106 		goto out_free;
2107 
2108 	length = security_setprocattr(task,
2109 				      (char*)file->f_path.dentry->d_name.name,
2110 				      (void*)page, count);
2111 out_free:
2112 	free_page((unsigned long) page);
2113 out:
2114 	put_task_struct(task);
2115 out_no_task:
2116 	return length;
2117 }
2118 
2119 static const struct file_operations proc_pid_attr_operations = {
2120 	.read		= proc_pid_attr_read,
2121 	.write		= proc_pid_attr_write,
2122 };
2123 
2124 static const struct pid_entry attr_dir_stuff[] = {
2125 	REG("current",    S_IRUGO|S_IWUGO, pid_attr),
2126 	REG("prev",       S_IRUGO,	   pid_attr),
2127 	REG("exec",       S_IRUGO|S_IWUGO, pid_attr),
2128 	REG("fscreate",   S_IRUGO|S_IWUGO, pid_attr),
2129 	REG("keycreate",  S_IRUGO|S_IWUGO, pid_attr),
2130 	REG("sockcreate", S_IRUGO|S_IWUGO, pid_attr),
2131 };
2132 
2133 static int proc_attr_dir_readdir(struct file * filp,
2134 			     void * dirent, filldir_t filldir)
2135 {
2136 	return proc_pident_readdir(filp,dirent,filldir,
2137 				   attr_dir_stuff,ARRAY_SIZE(attr_dir_stuff));
2138 }
2139 
2140 static const struct file_operations proc_attr_dir_operations = {
2141 	.read		= generic_read_dir,
2142 	.readdir	= proc_attr_dir_readdir,
2143 };
2144 
2145 static struct dentry *proc_attr_dir_lookup(struct inode *dir,
2146 				struct dentry *dentry, struct nameidata *nd)
2147 {
2148 	return proc_pident_lookup(dir, dentry,
2149 				  attr_dir_stuff, ARRAY_SIZE(attr_dir_stuff));
2150 }
2151 
2152 static const struct inode_operations proc_attr_dir_inode_operations = {
2153 	.lookup		= proc_attr_dir_lookup,
2154 	.getattr	= pid_getattr,
2155 	.setattr	= proc_setattr,
2156 };
2157 
2158 #endif
2159 
2160 #if defined(USE_ELF_CORE_DUMP) && defined(CONFIG_ELF_CORE)
2161 static ssize_t proc_coredump_filter_read(struct file *file, char __user *buf,
2162 					 size_t count, loff_t *ppos)
2163 {
2164 	struct task_struct *task = get_proc_task(file->f_dentry->d_inode);
2165 	struct mm_struct *mm;
2166 	char buffer[PROC_NUMBUF];
2167 	size_t len;
2168 	int ret;
2169 
2170 	if (!task)
2171 		return -ESRCH;
2172 
2173 	ret = 0;
2174 	mm = get_task_mm(task);
2175 	if (mm) {
2176 		len = snprintf(buffer, sizeof(buffer), "%08lx\n",
2177 			       ((mm->flags & MMF_DUMP_FILTER_MASK) >>
2178 				MMF_DUMP_FILTER_SHIFT));
2179 		mmput(mm);
2180 		ret = simple_read_from_buffer(buf, count, ppos, buffer, len);
2181 	}
2182 
2183 	put_task_struct(task);
2184 
2185 	return ret;
2186 }
2187 
2188 static ssize_t proc_coredump_filter_write(struct file *file,
2189 					  const char __user *buf,
2190 					  size_t count,
2191 					  loff_t *ppos)
2192 {
2193 	struct task_struct *task;
2194 	struct mm_struct *mm;
2195 	char buffer[PROC_NUMBUF], *end;
2196 	unsigned int val;
2197 	int ret;
2198 	int i;
2199 	unsigned long mask;
2200 
2201 	ret = -EFAULT;
2202 	memset(buffer, 0, sizeof(buffer));
2203 	if (count > sizeof(buffer) - 1)
2204 		count = sizeof(buffer) - 1;
2205 	if (copy_from_user(buffer, buf, count))
2206 		goto out_no_task;
2207 
2208 	ret = -EINVAL;
2209 	val = (unsigned int)simple_strtoul(buffer, &end, 0);
2210 	if (*end == '\n')
2211 		end++;
2212 	if (end - buffer == 0)
2213 		goto out_no_task;
2214 
2215 	ret = -ESRCH;
2216 	task = get_proc_task(file->f_dentry->d_inode);
2217 	if (!task)
2218 		goto out_no_task;
2219 
2220 	ret = end - buffer;
2221 	mm = get_task_mm(task);
2222 	if (!mm)
2223 		goto out_no_mm;
2224 
2225 	for (i = 0, mask = 1; i < MMF_DUMP_FILTER_BITS; i++, mask <<= 1) {
2226 		if (val & mask)
2227 			set_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags);
2228 		else
2229 			clear_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags);
2230 	}
2231 
2232 	mmput(mm);
2233  out_no_mm:
2234 	put_task_struct(task);
2235  out_no_task:
2236 	return ret;
2237 }
2238 
2239 static const struct file_operations proc_coredump_filter_operations = {
2240 	.read		= proc_coredump_filter_read,
2241 	.write		= proc_coredump_filter_write,
2242 };
2243 #endif
2244 
2245 /*
2246  * /proc/self:
2247  */
2248 static int proc_self_readlink(struct dentry *dentry, char __user *buffer,
2249 			      int buflen)
2250 {
2251 	struct pid_namespace *ns = dentry->d_sb->s_fs_info;
2252 	pid_t tgid = task_tgid_nr_ns(current, ns);
2253 	char tmp[PROC_NUMBUF];
2254 	if (!tgid)
2255 		return -ENOENT;
2256 	sprintf(tmp, "%d", tgid);
2257 	return vfs_readlink(dentry,buffer,buflen,tmp);
2258 }
2259 
2260 static void *proc_self_follow_link(struct dentry *dentry, struct nameidata *nd)
2261 {
2262 	struct pid_namespace *ns = dentry->d_sb->s_fs_info;
2263 	pid_t tgid = task_tgid_nr_ns(current, ns);
2264 	char tmp[PROC_NUMBUF];
2265 	if (!tgid)
2266 		return ERR_PTR(-ENOENT);
2267 	sprintf(tmp, "%d", task_tgid_nr_ns(current, ns));
2268 	return ERR_PTR(vfs_follow_link(nd,tmp));
2269 }
2270 
2271 static const struct inode_operations proc_self_inode_operations = {
2272 	.readlink	= proc_self_readlink,
2273 	.follow_link	= proc_self_follow_link,
2274 };
2275 
2276 /*
2277  * proc base
2278  *
2279  * These are the directory entries in the root directory of /proc
2280  * that properly belong to the /proc filesystem, as they describe
2281  * describe something that is process related.
2282  */
2283 static const struct pid_entry proc_base_stuff[] = {
2284 	NOD("self", S_IFLNK|S_IRWXUGO,
2285 		&proc_self_inode_operations, NULL, {}),
2286 };
2287 
2288 /*
2289  *	Exceptional case: normally we are not allowed to unhash a busy
2290  * directory. In this case, however, we can do it - no aliasing problems
2291  * due to the way we treat inodes.
2292  */
2293 static int proc_base_revalidate(struct dentry *dentry, struct nameidata *nd)
2294 {
2295 	struct inode *inode = dentry->d_inode;
2296 	struct task_struct *task = get_proc_task(inode);
2297 	if (task) {
2298 		put_task_struct(task);
2299 		return 1;
2300 	}
2301 	d_drop(dentry);
2302 	return 0;
2303 }
2304 
2305 static struct dentry_operations proc_base_dentry_operations =
2306 {
2307 	.d_revalidate	= proc_base_revalidate,
2308 	.d_delete	= pid_delete_dentry,
2309 };
2310 
2311 static struct dentry *proc_base_instantiate(struct inode *dir,
2312 	struct dentry *dentry, struct task_struct *task, const void *ptr)
2313 {
2314 	const struct pid_entry *p = ptr;
2315 	struct inode *inode;
2316 	struct proc_inode *ei;
2317 	struct dentry *error = ERR_PTR(-EINVAL);
2318 
2319 	/* Allocate the inode */
2320 	error = ERR_PTR(-ENOMEM);
2321 	inode = new_inode(dir->i_sb);
2322 	if (!inode)
2323 		goto out;
2324 
2325 	/* Initialize the inode */
2326 	ei = PROC_I(inode);
2327 	inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
2328 
2329 	/*
2330 	 * grab the reference to the task.
2331 	 */
2332 	ei->pid = get_task_pid(task, PIDTYPE_PID);
2333 	if (!ei->pid)
2334 		goto out_iput;
2335 
2336 	inode->i_uid = 0;
2337 	inode->i_gid = 0;
2338 	inode->i_mode = p->mode;
2339 	if (S_ISDIR(inode->i_mode))
2340 		inode->i_nlink = 2;
2341 	if (S_ISLNK(inode->i_mode))
2342 		inode->i_size = 64;
2343 	if (p->iop)
2344 		inode->i_op = p->iop;
2345 	if (p->fop)
2346 		inode->i_fop = p->fop;
2347 	ei->op = p->op;
2348 	dentry->d_op = &proc_base_dentry_operations;
2349 	d_add(dentry, inode);
2350 	error = NULL;
2351 out:
2352 	return error;
2353 out_iput:
2354 	iput(inode);
2355 	goto out;
2356 }
2357 
2358 static struct dentry *proc_base_lookup(struct inode *dir, struct dentry *dentry)
2359 {
2360 	struct dentry *error;
2361 	struct task_struct *task = get_proc_task(dir);
2362 	const struct pid_entry *p, *last;
2363 
2364 	error = ERR_PTR(-ENOENT);
2365 
2366 	if (!task)
2367 		goto out_no_task;
2368 
2369 	/* Lookup the directory entry */
2370 	last = &proc_base_stuff[ARRAY_SIZE(proc_base_stuff) - 1];
2371 	for (p = proc_base_stuff; p <= last; p++) {
2372 		if (p->len != dentry->d_name.len)
2373 			continue;
2374 		if (!memcmp(dentry->d_name.name, p->name, p->len))
2375 			break;
2376 	}
2377 	if (p > last)
2378 		goto out;
2379 
2380 	error = proc_base_instantiate(dir, dentry, task, p);
2381 
2382 out:
2383 	put_task_struct(task);
2384 out_no_task:
2385 	return error;
2386 }
2387 
2388 static int proc_base_fill_cache(struct file *filp, void *dirent,
2389 	filldir_t filldir, struct task_struct *task, const struct pid_entry *p)
2390 {
2391 	return proc_fill_cache(filp, dirent, filldir, p->name, p->len,
2392 				proc_base_instantiate, task, p);
2393 }
2394 
2395 #ifdef CONFIG_TASK_IO_ACCOUNTING
2396 static int do_io_accounting(struct task_struct *task, char *buffer, int whole)
2397 {
2398 	struct task_io_accounting acct = task->ioac;
2399 	unsigned long flags;
2400 
2401 	if (whole && lock_task_sighand(task, &flags)) {
2402 		struct task_struct *t = task;
2403 
2404 		task_io_accounting_add(&acct, &task->signal->ioac);
2405 		while_each_thread(task, t)
2406 			task_io_accounting_add(&acct, &t->ioac);
2407 
2408 		unlock_task_sighand(task, &flags);
2409 	}
2410 	return sprintf(buffer,
2411 			"rchar: %llu\n"
2412 			"wchar: %llu\n"
2413 			"syscr: %llu\n"
2414 			"syscw: %llu\n"
2415 			"read_bytes: %llu\n"
2416 			"write_bytes: %llu\n"
2417 			"cancelled_write_bytes: %llu\n",
2418 			(unsigned long long)acct.rchar,
2419 			(unsigned long long)acct.wchar,
2420 			(unsigned long long)acct.syscr,
2421 			(unsigned long long)acct.syscw,
2422 			(unsigned long long)acct.read_bytes,
2423 			(unsigned long long)acct.write_bytes,
2424 			(unsigned long long)acct.cancelled_write_bytes);
2425 }
2426 
2427 static int proc_tid_io_accounting(struct task_struct *task, char *buffer)
2428 {
2429 	return do_io_accounting(task, buffer, 0);
2430 }
2431 
2432 static int proc_tgid_io_accounting(struct task_struct *task, char *buffer)
2433 {
2434 	return do_io_accounting(task, buffer, 1);
2435 }
2436 #endif /* CONFIG_TASK_IO_ACCOUNTING */
2437 
2438 static int proc_pid_personality(struct seq_file *m, struct pid_namespace *ns,
2439 				struct pid *pid, struct task_struct *task)
2440 {
2441 	seq_printf(m, "%08x\n", task->personality);
2442 	return 0;
2443 }
2444 
2445 /*
2446  * Thread groups
2447  */
2448 static const struct file_operations proc_task_operations;
2449 static const struct inode_operations proc_task_inode_operations;
2450 
2451 static const struct pid_entry tgid_base_stuff[] = {
2452 	DIR("task",       S_IRUGO|S_IXUGO, task),
2453 	DIR("fd",         S_IRUSR|S_IXUSR, fd),
2454 	DIR("fdinfo",     S_IRUSR|S_IXUSR, fdinfo),
2455 #ifdef CONFIG_NET
2456 	DIR("net",        S_IRUGO|S_IXUGO, net),
2457 #endif
2458 	REG("environ",    S_IRUSR, environ),
2459 	INF("auxv",       S_IRUSR, pid_auxv),
2460 	ONE("status",     S_IRUGO, pid_status),
2461 	ONE("personality", S_IRUSR, pid_personality),
2462 	INF("limits",	  S_IRUSR, pid_limits),
2463 #ifdef CONFIG_SCHED_DEBUG
2464 	REG("sched",      S_IRUGO|S_IWUSR, pid_sched),
2465 #endif
2466 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK
2467 	INF("syscall",    S_IRUSR, pid_syscall),
2468 #endif
2469 	INF("cmdline",    S_IRUGO, pid_cmdline),
2470 	ONE("stat",       S_IRUGO, tgid_stat),
2471 	ONE("statm",      S_IRUGO, pid_statm),
2472 	REG("maps",       S_IRUGO, maps),
2473 #ifdef CONFIG_NUMA
2474 	REG("numa_maps",  S_IRUGO, numa_maps),
2475 #endif
2476 	REG("mem",        S_IRUSR|S_IWUSR, mem),
2477 	LNK("cwd",        cwd),
2478 	LNK("root",       root),
2479 	LNK("exe",        exe),
2480 	REG("mounts",     S_IRUGO, mounts),
2481 	REG("mountinfo",  S_IRUGO, mountinfo),
2482 	REG("mountstats", S_IRUSR, mountstats),
2483 #ifdef CONFIG_PROC_PAGE_MONITOR
2484 	REG("clear_refs", S_IWUSR, clear_refs),
2485 	REG("smaps",      S_IRUGO, smaps),
2486 	REG("pagemap",    S_IRUSR, pagemap),
2487 #endif
2488 #ifdef CONFIG_SECURITY
2489 	DIR("attr",       S_IRUGO|S_IXUGO, attr_dir),
2490 #endif
2491 #ifdef CONFIG_KALLSYMS
2492 	INF("wchan",      S_IRUGO, pid_wchan),
2493 #endif
2494 #ifdef CONFIG_SCHEDSTATS
2495 	INF("schedstat",  S_IRUGO, pid_schedstat),
2496 #endif
2497 #ifdef CONFIG_LATENCYTOP
2498 	REG("latency",  S_IRUGO, lstats),
2499 #endif
2500 #ifdef CONFIG_PROC_PID_CPUSET
2501 	REG("cpuset",     S_IRUGO, cpuset),
2502 #endif
2503 #ifdef CONFIG_CGROUPS
2504 	REG("cgroup",  S_IRUGO, cgroup),
2505 #endif
2506 	INF("oom_score",  S_IRUGO, oom_score),
2507 	REG("oom_adj",    S_IRUGO|S_IWUSR, oom_adjust),
2508 #ifdef CONFIG_AUDITSYSCALL
2509 	REG("loginuid",   S_IWUSR|S_IRUGO, loginuid),
2510 	REG("sessionid",  S_IRUGO, sessionid),
2511 #endif
2512 #ifdef CONFIG_FAULT_INJECTION
2513 	REG("make-it-fail", S_IRUGO|S_IWUSR, fault_inject),
2514 #endif
2515 #if defined(USE_ELF_CORE_DUMP) && defined(CONFIG_ELF_CORE)
2516 	REG("coredump_filter", S_IRUGO|S_IWUSR, coredump_filter),
2517 #endif
2518 #ifdef CONFIG_TASK_IO_ACCOUNTING
2519 	INF("io",	S_IRUGO, tgid_io_accounting),
2520 #endif
2521 };
2522 
2523 static int proc_tgid_base_readdir(struct file * filp,
2524 			     void * dirent, filldir_t filldir)
2525 {
2526 	return proc_pident_readdir(filp,dirent,filldir,
2527 				   tgid_base_stuff,ARRAY_SIZE(tgid_base_stuff));
2528 }
2529 
2530 static const struct file_operations proc_tgid_base_operations = {
2531 	.read		= generic_read_dir,
2532 	.readdir	= proc_tgid_base_readdir,
2533 };
2534 
2535 static struct dentry *proc_tgid_base_lookup(struct inode *dir, struct dentry *dentry, struct nameidata *nd){
2536 	return proc_pident_lookup(dir, dentry,
2537 				  tgid_base_stuff, ARRAY_SIZE(tgid_base_stuff));
2538 }
2539 
2540 static const struct inode_operations proc_tgid_base_inode_operations = {
2541 	.lookup		= proc_tgid_base_lookup,
2542 	.getattr	= pid_getattr,
2543 	.setattr	= proc_setattr,
2544 };
2545 
2546 static void proc_flush_task_mnt(struct vfsmount *mnt, pid_t pid, pid_t tgid)
2547 {
2548 	struct dentry *dentry, *leader, *dir;
2549 	char buf[PROC_NUMBUF];
2550 	struct qstr name;
2551 
2552 	name.name = buf;
2553 	name.len = snprintf(buf, sizeof(buf), "%d", pid);
2554 	dentry = d_hash_and_lookup(mnt->mnt_root, &name);
2555 	if (dentry) {
2556 		if (!(current->flags & PF_EXITING))
2557 			shrink_dcache_parent(dentry);
2558 		d_drop(dentry);
2559 		dput(dentry);
2560 	}
2561 
2562 	if (tgid == 0)
2563 		goto out;
2564 
2565 	name.name = buf;
2566 	name.len = snprintf(buf, sizeof(buf), "%d", tgid);
2567 	leader = d_hash_and_lookup(mnt->mnt_root, &name);
2568 	if (!leader)
2569 		goto out;
2570 
2571 	name.name = "task";
2572 	name.len = strlen(name.name);
2573 	dir = d_hash_and_lookup(leader, &name);
2574 	if (!dir)
2575 		goto out_put_leader;
2576 
2577 	name.name = buf;
2578 	name.len = snprintf(buf, sizeof(buf), "%d", pid);
2579 	dentry = d_hash_and_lookup(dir, &name);
2580 	if (dentry) {
2581 		shrink_dcache_parent(dentry);
2582 		d_drop(dentry);
2583 		dput(dentry);
2584 	}
2585 
2586 	dput(dir);
2587 out_put_leader:
2588 	dput(leader);
2589 out:
2590 	return;
2591 }
2592 
2593 /**
2594  * proc_flush_task -  Remove dcache entries for @task from the /proc dcache.
2595  * @task: task that should be flushed.
2596  *
2597  * When flushing dentries from proc, one needs to flush them from global
2598  * proc (proc_mnt) and from all the namespaces' procs this task was seen
2599  * in. This call is supposed to do all of this job.
2600  *
2601  * Looks in the dcache for
2602  * /proc/@pid
2603  * /proc/@tgid/task/@pid
2604  * if either directory is present flushes it and all of it'ts children
2605  * from the dcache.
2606  *
2607  * It is safe and reasonable to cache /proc entries for a task until
2608  * that task exits.  After that they just clog up the dcache with
2609  * useless entries, possibly causing useful dcache entries to be
2610  * flushed instead.  This routine is proved to flush those useless
2611  * dcache entries at process exit time.
2612  *
2613  * NOTE: This routine is just an optimization so it does not guarantee
2614  *       that no dcache entries will exist at process exit time it
2615  *       just makes it very unlikely that any will persist.
2616  */
2617 
2618 void proc_flush_task(struct task_struct *task)
2619 {
2620 	int i;
2621 	struct pid *pid, *tgid = NULL;
2622 	struct upid *upid;
2623 
2624 	pid = task_pid(task);
2625 	if (thread_group_leader(task))
2626 		tgid = task_tgid(task);
2627 
2628 	for (i = 0; i <= pid->level; i++) {
2629 		upid = &pid->numbers[i];
2630 		proc_flush_task_mnt(upid->ns->proc_mnt, upid->nr,
2631 			tgid ? tgid->numbers[i].nr : 0);
2632 	}
2633 
2634 	upid = &pid->numbers[pid->level];
2635 	if (upid->nr == 1)
2636 		pid_ns_release_proc(upid->ns);
2637 }
2638 
2639 static struct dentry *proc_pid_instantiate(struct inode *dir,
2640 					   struct dentry * dentry,
2641 					   struct task_struct *task, const void *ptr)
2642 {
2643 	struct dentry *error = ERR_PTR(-ENOENT);
2644 	struct inode *inode;
2645 
2646 	inode = proc_pid_make_inode(dir->i_sb, task);
2647 	if (!inode)
2648 		goto out;
2649 
2650 	inode->i_mode = S_IFDIR|S_IRUGO|S_IXUGO;
2651 	inode->i_op = &proc_tgid_base_inode_operations;
2652 	inode->i_fop = &proc_tgid_base_operations;
2653 	inode->i_flags|=S_IMMUTABLE;
2654 
2655 	inode->i_nlink = 2 + pid_entry_count_dirs(tgid_base_stuff,
2656 		ARRAY_SIZE(tgid_base_stuff));
2657 
2658 	dentry->d_op = &pid_dentry_operations;
2659 
2660 	d_add(dentry, inode);
2661 	/* Close the race of the process dying before we return the dentry */
2662 	if (pid_revalidate(dentry, NULL))
2663 		error = NULL;
2664 out:
2665 	return error;
2666 }
2667 
2668 struct dentry *proc_pid_lookup(struct inode *dir, struct dentry * dentry, struct nameidata *nd)
2669 {
2670 	struct dentry *result = ERR_PTR(-ENOENT);
2671 	struct task_struct *task;
2672 	unsigned tgid;
2673 	struct pid_namespace *ns;
2674 
2675 	result = proc_base_lookup(dir, dentry);
2676 	if (!IS_ERR(result) || PTR_ERR(result) != -ENOENT)
2677 		goto out;
2678 
2679 	tgid = name_to_int(dentry);
2680 	if (tgid == ~0U)
2681 		goto out;
2682 
2683 	ns = dentry->d_sb->s_fs_info;
2684 	rcu_read_lock();
2685 	task = find_task_by_pid_ns(tgid, ns);
2686 	if (task)
2687 		get_task_struct(task);
2688 	rcu_read_unlock();
2689 	if (!task)
2690 		goto out;
2691 
2692 	result = proc_pid_instantiate(dir, dentry, task, NULL);
2693 	put_task_struct(task);
2694 out:
2695 	return result;
2696 }
2697 
2698 /*
2699  * Find the first task with tgid >= tgid
2700  *
2701  */
2702 struct tgid_iter {
2703 	unsigned int tgid;
2704 	struct task_struct *task;
2705 };
2706 static struct tgid_iter next_tgid(struct pid_namespace *ns, struct tgid_iter iter)
2707 {
2708 	struct pid *pid;
2709 
2710 	if (iter.task)
2711 		put_task_struct(iter.task);
2712 	rcu_read_lock();
2713 retry:
2714 	iter.task = NULL;
2715 	pid = find_ge_pid(iter.tgid, ns);
2716 	if (pid) {
2717 		iter.tgid = pid_nr_ns(pid, ns);
2718 		iter.task = pid_task(pid, PIDTYPE_PID);
2719 		/* What we to know is if the pid we have find is the
2720 		 * pid of a thread_group_leader.  Testing for task
2721 		 * being a thread_group_leader is the obvious thing
2722 		 * todo but there is a window when it fails, due to
2723 		 * the pid transfer logic in de_thread.
2724 		 *
2725 		 * So we perform the straight forward test of seeing
2726 		 * if the pid we have found is the pid of a thread
2727 		 * group leader, and don't worry if the task we have
2728 		 * found doesn't happen to be a thread group leader.
2729 		 * As we don't care in the case of readdir.
2730 		 */
2731 		if (!iter.task || !has_group_leader_pid(iter.task)) {
2732 			iter.tgid += 1;
2733 			goto retry;
2734 		}
2735 		get_task_struct(iter.task);
2736 	}
2737 	rcu_read_unlock();
2738 	return iter;
2739 }
2740 
2741 #define TGID_OFFSET (FIRST_PROCESS_ENTRY + ARRAY_SIZE(proc_base_stuff))
2742 
2743 static int proc_pid_fill_cache(struct file *filp, void *dirent, filldir_t filldir,
2744 	struct tgid_iter iter)
2745 {
2746 	char name[PROC_NUMBUF];
2747 	int len = snprintf(name, sizeof(name), "%d", iter.tgid);
2748 	return proc_fill_cache(filp, dirent, filldir, name, len,
2749 				proc_pid_instantiate, iter.task, NULL);
2750 }
2751 
2752 /* for the /proc/ directory itself, after non-process stuff has been done */
2753 int proc_pid_readdir(struct file * filp, void * dirent, filldir_t filldir)
2754 {
2755 	unsigned int nr = filp->f_pos - FIRST_PROCESS_ENTRY;
2756 	struct task_struct *reaper = get_proc_task(filp->f_path.dentry->d_inode);
2757 	struct tgid_iter iter;
2758 	struct pid_namespace *ns;
2759 
2760 	if (!reaper)
2761 		goto out_no_task;
2762 
2763 	for (; nr < ARRAY_SIZE(proc_base_stuff); filp->f_pos++, nr++) {
2764 		const struct pid_entry *p = &proc_base_stuff[nr];
2765 		if (proc_base_fill_cache(filp, dirent, filldir, reaper, p) < 0)
2766 			goto out;
2767 	}
2768 
2769 	ns = filp->f_dentry->d_sb->s_fs_info;
2770 	iter.task = NULL;
2771 	iter.tgid = filp->f_pos - TGID_OFFSET;
2772 	for (iter = next_tgid(ns, iter);
2773 	     iter.task;
2774 	     iter.tgid += 1, iter = next_tgid(ns, iter)) {
2775 		filp->f_pos = iter.tgid + TGID_OFFSET;
2776 		if (proc_pid_fill_cache(filp, dirent, filldir, iter) < 0) {
2777 			put_task_struct(iter.task);
2778 			goto out;
2779 		}
2780 	}
2781 	filp->f_pos = PID_MAX_LIMIT + TGID_OFFSET;
2782 out:
2783 	put_task_struct(reaper);
2784 out_no_task:
2785 	return 0;
2786 }
2787 
2788 /*
2789  * Tasks
2790  */
2791 static const struct pid_entry tid_base_stuff[] = {
2792 	DIR("fd",        S_IRUSR|S_IXUSR, fd),
2793 	DIR("fdinfo",    S_IRUSR|S_IXUSR, fdinfo),
2794 	REG("environ",   S_IRUSR, environ),
2795 	INF("auxv",      S_IRUSR, pid_auxv),
2796 	ONE("status",    S_IRUGO, pid_status),
2797 	ONE("personality", S_IRUSR, pid_personality),
2798 	INF("limits",	 S_IRUSR, pid_limits),
2799 #ifdef CONFIG_SCHED_DEBUG
2800 	REG("sched",     S_IRUGO|S_IWUSR, pid_sched),
2801 #endif
2802 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK
2803 	INF("syscall",   S_IRUSR, pid_syscall),
2804 #endif
2805 	INF("cmdline",   S_IRUGO, pid_cmdline),
2806 	ONE("stat",      S_IRUGO, tid_stat),
2807 	ONE("statm",     S_IRUGO, pid_statm),
2808 	REG("maps",      S_IRUGO, maps),
2809 #ifdef CONFIG_NUMA
2810 	REG("numa_maps", S_IRUGO, numa_maps),
2811 #endif
2812 	REG("mem",       S_IRUSR|S_IWUSR, mem),
2813 	LNK("cwd",       cwd),
2814 	LNK("root",      root),
2815 	LNK("exe",       exe),
2816 	REG("mounts",    S_IRUGO, mounts),
2817 	REG("mountinfo",  S_IRUGO, mountinfo),
2818 #ifdef CONFIG_PROC_PAGE_MONITOR
2819 	REG("clear_refs", S_IWUSR, clear_refs),
2820 	REG("smaps",     S_IRUGO, smaps),
2821 	REG("pagemap",    S_IRUSR, pagemap),
2822 #endif
2823 #ifdef CONFIG_SECURITY
2824 	DIR("attr",      S_IRUGO|S_IXUGO, attr_dir),
2825 #endif
2826 #ifdef CONFIG_KALLSYMS
2827 	INF("wchan",     S_IRUGO, pid_wchan),
2828 #endif
2829 #ifdef CONFIG_SCHEDSTATS
2830 	INF("schedstat", S_IRUGO, pid_schedstat),
2831 #endif
2832 #ifdef CONFIG_LATENCYTOP
2833 	REG("latency",  S_IRUGO, lstats),
2834 #endif
2835 #ifdef CONFIG_PROC_PID_CPUSET
2836 	REG("cpuset",    S_IRUGO, cpuset),
2837 #endif
2838 #ifdef CONFIG_CGROUPS
2839 	REG("cgroup",  S_IRUGO, cgroup),
2840 #endif
2841 	INF("oom_score", S_IRUGO, oom_score),
2842 	REG("oom_adj",   S_IRUGO|S_IWUSR, oom_adjust),
2843 #ifdef CONFIG_AUDITSYSCALL
2844 	REG("loginuid",  S_IWUSR|S_IRUGO, loginuid),
2845 	REG("sessionid",  S_IRUSR, sessionid),
2846 #endif
2847 #ifdef CONFIG_FAULT_INJECTION
2848 	REG("make-it-fail", S_IRUGO|S_IWUSR, fault_inject),
2849 #endif
2850 #ifdef CONFIG_TASK_IO_ACCOUNTING
2851 	INF("io",	S_IRUGO, tid_io_accounting),
2852 #endif
2853 };
2854 
2855 static int proc_tid_base_readdir(struct file * filp,
2856 			     void * dirent, filldir_t filldir)
2857 {
2858 	return proc_pident_readdir(filp,dirent,filldir,
2859 				   tid_base_stuff,ARRAY_SIZE(tid_base_stuff));
2860 }
2861 
2862 static struct dentry *proc_tid_base_lookup(struct inode *dir, struct dentry *dentry, struct nameidata *nd){
2863 	return proc_pident_lookup(dir, dentry,
2864 				  tid_base_stuff, ARRAY_SIZE(tid_base_stuff));
2865 }
2866 
2867 static const struct file_operations proc_tid_base_operations = {
2868 	.read		= generic_read_dir,
2869 	.readdir	= proc_tid_base_readdir,
2870 };
2871 
2872 static const struct inode_operations proc_tid_base_inode_operations = {
2873 	.lookup		= proc_tid_base_lookup,
2874 	.getattr	= pid_getattr,
2875 	.setattr	= proc_setattr,
2876 };
2877 
2878 static struct dentry *proc_task_instantiate(struct inode *dir,
2879 	struct dentry *dentry, struct task_struct *task, const void *ptr)
2880 {
2881 	struct dentry *error = ERR_PTR(-ENOENT);
2882 	struct inode *inode;
2883 	inode = proc_pid_make_inode(dir->i_sb, task);
2884 
2885 	if (!inode)
2886 		goto out;
2887 	inode->i_mode = S_IFDIR|S_IRUGO|S_IXUGO;
2888 	inode->i_op = &proc_tid_base_inode_operations;
2889 	inode->i_fop = &proc_tid_base_operations;
2890 	inode->i_flags|=S_IMMUTABLE;
2891 
2892 	inode->i_nlink = 2 + pid_entry_count_dirs(tid_base_stuff,
2893 		ARRAY_SIZE(tid_base_stuff));
2894 
2895 	dentry->d_op = &pid_dentry_operations;
2896 
2897 	d_add(dentry, inode);
2898 	/* Close the race of the process dying before we return the dentry */
2899 	if (pid_revalidate(dentry, NULL))
2900 		error = NULL;
2901 out:
2902 	return error;
2903 }
2904 
2905 static struct dentry *proc_task_lookup(struct inode *dir, struct dentry * dentry, struct nameidata *nd)
2906 {
2907 	struct dentry *result = ERR_PTR(-ENOENT);
2908 	struct task_struct *task;
2909 	struct task_struct *leader = get_proc_task(dir);
2910 	unsigned tid;
2911 	struct pid_namespace *ns;
2912 
2913 	if (!leader)
2914 		goto out_no_task;
2915 
2916 	tid = name_to_int(dentry);
2917 	if (tid == ~0U)
2918 		goto out;
2919 
2920 	ns = dentry->d_sb->s_fs_info;
2921 	rcu_read_lock();
2922 	task = find_task_by_pid_ns(tid, ns);
2923 	if (task)
2924 		get_task_struct(task);
2925 	rcu_read_unlock();
2926 	if (!task)
2927 		goto out;
2928 	if (!same_thread_group(leader, task))
2929 		goto out_drop_task;
2930 
2931 	result = proc_task_instantiate(dir, dentry, task, NULL);
2932 out_drop_task:
2933 	put_task_struct(task);
2934 out:
2935 	put_task_struct(leader);
2936 out_no_task:
2937 	return result;
2938 }
2939 
2940 /*
2941  * Find the first tid of a thread group to return to user space.
2942  *
2943  * Usually this is just the thread group leader, but if the users
2944  * buffer was too small or there was a seek into the middle of the
2945  * directory we have more work todo.
2946  *
2947  * In the case of a short read we start with find_task_by_pid.
2948  *
2949  * In the case of a seek we start with the leader and walk nr
2950  * threads past it.
2951  */
2952 static struct task_struct *first_tid(struct task_struct *leader,
2953 		int tid, int nr, struct pid_namespace *ns)
2954 {
2955 	struct task_struct *pos;
2956 
2957 	rcu_read_lock();
2958 	/* Attempt to start with the pid of a thread */
2959 	if (tid && (nr > 0)) {
2960 		pos = find_task_by_pid_ns(tid, ns);
2961 		if (pos && (pos->group_leader == leader))
2962 			goto found;
2963 	}
2964 
2965 	/* If nr exceeds the number of threads there is nothing todo */
2966 	pos = NULL;
2967 	if (nr && nr >= get_nr_threads(leader))
2968 		goto out;
2969 
2970 	/* If we haven't found our starting place yet start
2971 	 * with the leader and walk nr threads forward.
2972 	 */
2973 	for (pos = leader; nr > 0; --nr) {
2974 		pos = next_thread(pos);
2975 		if (pos == leader) {
2976 			pos = NULL;
2977 			goto out;
2978 		}
2979 	}
2980 found:
2981 	get_task_struct(pos);
2982 out:
2983 	rcu_read_unlock();
2984 	return pos;
2985 }
2986 
2987 /*
2988  * Find the next thread in the thread list.
2989  * Return NULL if there is an error or no next thread.
2990  *
2991  * The reference to the input task_struct is released.
2992  */
2993 static struct task_struct *next_tid(struct task_struct *start)
2994 {
2995 	struct task_struct *pos = NULL;
2996 	rcu_read_lock();
2997 	if (pid_alive(start)) {
2998 		pos = next_thread(start);
2999 		if (thread_group_leader(pos))
3000 			pos = NULL;
3001 		else
3002 			get_task_struct(pos);
3003 	}
3004 	rcu_read_unlock();
3005 	put_task_struct(start);
3006 	return pos;
3007 }
3008 
3009 static int proc_task_fill_cache(struct file *filp, void *dirent, filldir_t filldir,
3010 	struct task_struct *task, int tid)
3011 {
3012 	char name[PROC_NUMBUF];
3013 	int len = snprintf(name, sizeof(name), "%d", tid);
3014 	return proc_fill_cache(filp, dirent, filldir, name, len,
3015 				proc_task_instantiate, task, NULL);
3016 }
3017 
3018 /* for the /proc/TGID/task/ directories */
3019 static int proc_task_readdir(struct file * filp, void * dirent, filldir_t filldir)
3020 {
3021 	struct dentry *dentry = filp->f_path.dentry;
3022 	struct inode *inode = dentry->d_inode;
3023 	struct task_struct *leader = NULL;
3024 	struct task_struct *task;
3025 	int retval = -ENOENT;
3026 	ino_t ino;
3027 	int tid;
3028 	unsigned long pos = filp->f_pos;  /* avoiding "long long" filp->f_pos */
3029 	struct pid_namespace *ns;
3030 
3031 	task = get_proc_task(inode);
3032 	if (!task)
3033 		goto out_no_task;
3034 	rcu_read_lock();
3035 	if (pid_alive(task)) {
3036 		leader = task->group_leader;
3037 		get_task_struct(leader);
3038 	}
3039 	rcu_read_unlock();
3040 	put_task_struct(task);
3041 	if (!leader)
3042 		goto out_no_task;
3043 	retval = 0;
3044 
3045 	switch (pos) {
3046 	case 0:
3047 		ino = inode->i_ino;
3048 		if (filldir(dirent, ".", 1, pos, ino, DT_DIR) < 0)
3049 			goto out;
3050 		pos++;
3051 		/* fall through */
3052 	case 1:
3053 		ino = parent_ino(dentry);
3054 		if (filldir(dirent, "..", 2, pos, ino, DT_DIR) < 0)
3055 			goto out;
3056 		pos++;
3057 		/* fall through */
3058 	}
3059 
3060 	/* f_version caches the tgid value that the last readdir call couldn't
3061 	 * return. lseek aka telldir automagically resets f_version to 0.
3062 	 */
3063 	ns = filp->f_dentry->d_sb->s_fs_info;
3064 	tid = (int)filp->f_version;
3065 	filp->f_version = 0;
3066 	for (task = first_tid(leader, tid, pos - 2, ns);
3067 	     task;
3068 	     task = next_tid(task), pos++) {
3069 		tid = task_pid_nr_ns(task, ns);
3070 		if (proc_task_fill_cache(filp, dirent, filldir, task, tid) < 0) {
3071 			/* returning this tgid failed, save it as the first
3072 			 * pid for the next readir call */
3073 			filp->f_version = (u64)tid;
3074 			put_task_struct(task);
3075 			break;
3076 		}
3077 	}
3078 out:
3079 	filp->f_pos = pos;
3080 	put_task_struct(leader);
3081 out_no_task:
3082 	return retval;
3083 }
3084 
3085 static int proc_task_getattr(struct vfsmount *mnt, struct dentry *dentry, struct kstat *stat)
3086 {
3087 	struct inode *inode = dentry->d_inode;
3088 	struct task_struct *p = get_proc_task(inode);
3089 	generic_fillattr(inode, stat);
3090 
3091 	if (p) {
3092 		stat->nlink += get_nr_threads(p);
3093 		put_task_struct(p);
3094 	}
3095 
3096 	return 0;
3097 }
3098 
3099 static const struct inode_operations proc_task_inode_operations = {
3100 	.lookup		= proc_task_lookup,
3101 	.getattr	= proc_task_getattr,
3102 	.setattr	= proc_setattr,
3103 };
3104 
3105 static const struct file_operations proc_task_operations = {
3106 	.read		= generic_read_dir,
3107 	.readdir	= proc_task_readdir,
3108 };
3109