xref: /linux/fs/proc/base.c (revision 8f8d5745bb520c76b81abef4a2cb3023d0313bfd)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/fs/proc/base.c
4  *
5  *  Copyright (C) 1991, 1992 Linus Torvalds
6  *
7  *  proc base directory handling functions
8  *
9  *  1999, Al Viro. Rewritten. Now it covers the whole per-process part.
10  *  Instead of using magical inumbers to determine the kind of object
11  *  we allocate and fill in-core inodes upon lookup. They don't even
12  *  go into icache. We cache the reference to task_struct upon lookup too.
13  *  Eventually it should become a filesystem in its own. We don't use the
14  *  rest of procfs anymore.
15  *
16  *
17  *  Changelog:
18  *  17-Jan-2005
19  *  Allan Bezerra
20  *  Bruna Moreira <bruna.moreira@indt.org.br>
21  *  Edjard Mota <edjard.mota@indt.org.br>
22  *  Ilias Biris <ilias.biris@indt.org.br>
23  *  Mauricio Lin <mauricio.lin@indt.org.br>
24  *
25  *  Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT
26  *
27  *  A new process specific entry (smaps) included in /proc. It shows the
28  *  size of rss for each memory area. The maps entry lacks information
29  *  about physical memory size (rss) for each mapped file, i.e.,
30  *  rss information for executables and library files.
31  *  This additional information is useful for any tools that need to know
32  *  about physical memory consumption for a process specific library.
33  *
34  *  Changelog:
35  *  21-Feb-2005
36  *  Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT
37  *  Pud inclusion in the page table walking.
38  *
39  *  ChangeLog:
40  *  10-Mar-2005
41  *  10LE Instituto Nokia de Tecnologia - INdT:
42  *  A better way to walks through the page table as suggested by Hugh Dickins.
43  *
44  *  Simo Piiroinen <simo.piiroinen@nokia.com>:
45  *  Smaps information related to shared, private, clean and dirty pages.
46  *
47  *  Paul Mundt <paul.mundt@nokia.com>:
48  *  Overall revision about smaps.
49  */
50 
51 #include <linux/uaccess.h>
52 
53 #include <linux/errno.h>
54 #include <linux/time.h>
55 #include <linux/proc_fs.h>
56 #include <linux/stat.h>
57 #include <linux/task_io_accounting_ops.h>
58 #include <linux/init.h>
59 #include <linux/capability.h>
60 #include <linux/file.h>
61 #include <linux/fdtable.h>
62 #include <linux/generic-radix-tree.h>
63 #include <linux/string.h>
64 #include <linux/seq_file.h>
65 #include <linux/namei.h>
66 #include <linux/mnt_namespace.h>
67 #include <linux/mm.h>
68 #include <linux/swap.h>
69 #include <linux/rcupdate.h>
70 #include <linux/kallsyms.h>
71 #include <linux/stacktrace.h>
72 #include <linux/resource.h>
73 #include <linux/module.h>
74 #include <linux/mount.h>
75 #include <linux/security.h>
76 #include <linux/ptrace.h>
77 #include <linux/tracehook.h>
78 #include <linux/printk.h>
79 #include <linux/cache.h>
80 #include <linux/cgroup.h>
81 #include <linux/cpuset.h>
82 #include <linux/audit.h>
83 #include <linux/poll.h>
84 #include <linux/nsproxy.h>
85 #include <linux/oom.h>
86 #include <linux/elf.h>
87 #include <linux/pid_namespace.h>
88 #include <linux/user_namespace.h>
89 #include <linux/fs_struct.h>
90 #include <linux/slab.h>
91 #include <linux/sched/autogroup.h>
92 #include <linux/sched/mm.h>
93 #include <linux/sched/coredump.h>
94 #include <linux/sched/debug.h>
95 #include <linux/sched/stat.h>
96 #include <linux/posix-timers.h>
97 #include <trace/events/oom.h>
98 #include "internal.h"
99 #include "fd.h"
100 
101 #include "../../lib/kstrtox.h"
102 
103 /* NOTE:
104  *	Implementing inode permission operations in /proc is almost
105  *	certainly an error.  Permission checks need to happen during
106  *	each system call not at open time.  The reason is that most of
107  *	what we wish to check for permissions in /proc varies at runtime.
108  *
109  *	The classic example of a problem is opening file descriptors
110  *	in /proc for a task before it execs a suid executable.
111  */
112 
113 static u8 nlink_tid __ro_after_init;
114 static u8 nlink_tgid __ro_after_init;
115 
116 struct pid_entry {
117 	const char *name;
118 	unsigned int len;
119 	umode_t mode;
120 	const struct inode_operations *iop;
121 	const struct file_operations *fop;
122 	union proc_op op;
123 };
124 
125 #define NOD(NAME, MODE, IOP, FOP, OP) {			\
126 	.name = (NAME),					\
127 	.len  = sizeof(NAME) - 1,			\
128 	.mode = MODE,					\
129 	.iop  = IOP,					\
130 	.fop  = FOP,					\
131 	.op   = OP,					\
132 }
133 
134 #define DIR(NAME, MODE, iops, fops)	\
135 	NOD(NAME, (S_IFDIR|(MODE)), &iops, &fops, {} )
136 #define LNK(NAME, get_link)					\
137 	NOD(NAME, (S_IFLNK|S_IRWXUGO),				\
138 		&proc_pid_link_inode_operations, NULL,		\
139 		{ .proc_get_link = get_link } )
140 #define REG(NAME, MODE, fops)				\
141 	NOD(NAME, (S_IFREG|(MODE)), NULL, &fops, {})
142 #define ONE(NAME, MODE, show)				\
143 	NOD(NAME, (S_IFREG|(MODE)),			\
144 		NULL, &proc_single_file_operations,	\
145 		{ .proc_show = show } )
146 #define ATTR(LSM, NAME, MODE)				\
147 	NOD(NAME, (S_IFREG|(MODE)),			\
148 		NULL, &proc_pid_attr_operations,	\
149 		{ .lsm = LSM })
150 
151 /*
152  * Count the number of hardlinks for the pid_entry table, excluding the .
153  * and .. links.
154  */
155 static unsigned int __init pid_entry_nlink(const struct pid_entry *entries,
156 	unsigned int n)
157 {
158 	unsigned int i;
159 	unsigned int count;
160 
161 	count = 2;
162 	for (i = 0; i < n; ++i) {
163 		if (S_ISDIR(entries[i].mode))
164 			++count;
165 	}
166 
167 	return count;
168 }
169 
170 static int get_task_root(struct task_struct *task, struct path *root)
171 {
172 	int result = -ENOENT;
173 
174 	task_lock(task);
175 	if (task->fs) {
176 		get_fs_root(task->fs, root);
177 		result = 0;
178 	}
179 	task_unlock(task);
180 	return result;
181 }
182 
183 static int proc_cwd_link(struct dentry *dentry, struct path *path)
184 {
185 	struct task_struct *task = get_proc_task(d_inode(dentry));
186 	int result = -ENOENT;
187 
188 	if (task) {
189 		task_lock(task);
190 		if (task->fs) {
191 			get_fs_pwd(task->fs, path);
192 			result = 0;
193 		}
194 		task_unlock(task);
195 		put_task_struct(task);
196 	}
197 	return result;
198 }
199 
200 static int proc_root_link(struct dentry *dentry, struct path *path)
201 {
202 	struct task_struct *task = get_proc_task(d_inode(dentry));
203 	int result = -ENOENT;
204 
205 	if (task) {
206 		result = get_task_root(task, path);
207 		put_task_struct(task);
208 	}
209 	return result;
210 }
211 
212 static ssize_t get_mm_cmdline(struct mm_struct *mm, char __user *buf,
213 			      size_t count, loff_t *ppos)
214 {
215 	unsigned long arg_start, arg_end, env_start, env_end;
216 	unsigned long pos, len;
217 	char *page;
218 
219 	/* Check if process spawned far enough to have cmdline. */
220 	if (!mm->env_end)
221 		return 0;
222 
223 	spin_lock(&mm->arg_lock);
224 	arg_start = mm->arg_start;
225 	arg_end = mm->arg_end;
226 	env_start = mm->env_start;
227 	env_end = mm->env_end;
228 	spin_unlock(&mm->arg_lock);
229 
230 	if (arg_start >= arg_end)
231 		return 0;
232 
233 	/*
234 	 * We have traditionally allowed the user to re-write
235 	 * the argument strings and overflow the end result
236 	 * into the environment section. But only do that if
237 	 * the environment area is contiguous to the arguments.
238 	 */
239 	if (env_start != arg_end || env_start >= env_end)
240 		env_start = env_end = arg_end;
241 
242 	/* .. and limit it to a maximum of one page of slop */
243 	if (env_end >= arg_end + PAGE_SIZE)
244 		env_end = arg_end + PAGE_SIZE - 1;
245 
246 	/* We're not going to care if "*ppos" has high bits set */
247 	pos = arg_start + *ppos;
248 
249 	/* .. but we do check the result is in the proper range */
250 	if (pos < arg_start || pos >= env_end)
251 		return 0;
252 
253 	/* .. and we never go past env_end */
254 	if (env_end - pos < count)
255 		count = env_end - pos;
256 
257 	page = (char *)__get_free_page(GFP_KERNEL);
258 	if (!page)
259 		return -ENOMEM;
260 
261 	len = 0;
262 	while (count) {
263 		int got;
264 		size_t size = min_t(size_t, PAGE_SIZE, count);
265 		long offset;
266 
267 		/*
268 		 * Are we already starting past the official end?
269 		 * We always include the last byte that is *supposed*
270 		 * to be NUL
271 		 */
272 		offset = (pos >= arg_end) ? pos - arg_end + 1 : 0;
273 
274 		got = access_remote_vm(mm, pos - offset, page, size + offset, FOLL_ANON);
275 		if (got <= offset)
276 			break;
277 		got -= offset;
278 
279 		/* Don't walk past a NUL character once you hit arg_end */
280 		if (pos + got >= arg_end) {
281 			int n = 0;
282 
283 			/*
284 			 * If we started before 'arg_end' but ended up
285 			 * at or after it, we start the NUL character
286 			 * check at arg_end-1 (where we expect the normal
287 			 * EOF to be).
288 			 *
289 			 * NOTE! This is smaller than 'got', because
290 			 * pos + got >= arg_end
291 			 */
292 			if (pos < arg_end)
293 				n = arg_end - pos - 1;
294 
295 			/* Cut off at first NUL after 'n' */
296 			got = n + strnlen(page+n, offset+got-n);
297 			if (got < offset)
298 				break;
299 			got -= offset;
300 
301 			/* Include the NUL if it existed */
302 			if (got < size)
303 				got++;
304 		}
305 
306 		got -= copy_to_user(buf, page+offset, got);
307 		if (unlikely(!got)) {
308 			if (!len)
309 				len = -EFAULT;
310 			break;
311 		}
312 		pos += got;
313 		buf += got;
314 		len += got;
315 		count -= got;
316 	}
317 
318 	free_page((unsigned long)page);
319 	return len;
320 }
321 
322 static ssize_t get_task_cmdline(struct task_struct *tsk, char __user *buf,
323 				size_t count, loff_t *pos)
324 {
325 	struct mm_struct *mm;
326 	ssize_t ret;
327 
328 	mm = get_task_mm(tsk);
329 	if (!mm)
330 		return 0;
331 
332 	ret = get_mm_cmdline(mm, buf, count, pos);
333 	mmput(mm);
334 	return ret;
335 }
336 
337 static ssize_t proc_pid_cmdline_read(struct file *file, char __user *buf,
338 				     size_t count, loff_t *pos)
339 {
340 	struct task_struct *tsk;
341 	ssize_t ret;
342 
343 	BUG_ON(*pos < 0);
344 
345 	tsk = get_proc_task(file_inode(file));
346 	if (!tsk)
347 		return -ESRCH;
348 	ret = get_task_cmdline(tsk, buf, count, pos);
349 	put_task_struct(tsk);
350 	if (ret > 0)
351 		*pos += ret;
352 	return ret;
353 }
354 
355 static const struct file_operations proc_pid_cmdline_ops = {
356 	.read	= proc_pid_cmdline_read,
357 	.llseek	= generic_file_llseek,
358 };
359 
360 #ifdef CONFIG_KALLSYMS
361 /*
362  * Provides a wchan file via kallsyms in a proper one-value-per-file format.
363  * Returns the resolved symbol.  If that fails, simply return the address.
364  */
365 static int proc_pid_wchan(struct seq_file *m, struct pid_namespace *ns,
366 			  struct pid *pid, struct task_struct *task)
367 {
368 	unsigned long wchan;
369 	char symname[KSYM_NAME_LEN];
370 
371 	if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS))
372 		goto print0;
373 
374 	wchan = get_wchan(task);
375 	if (wchan && !lookup_symbol_name(wchan, symname)) {
376 		seq_puts(m, symname);
377 		return 0;
378 	}
379 
380 print0:
381 	seq_putc(m, '0');
382 	return 0;
383 }
384 #endif /* CONFIG_KALLSYMS */
385 
386 static int lock_trace(struct task_struct *task)
387 {
388 	int err = mutex_lock_killable(&task->signal->cred_guard_mutex);
389 	if (err)
390 		return err;
391 	if (!ptrace_may_access(task, PTRACE_MODE_ATTACH_FSCREDS)) {
392 		mutex_unlock(&task->signal->cred_guard_mutex);
393 		return -EPERM;
394 	}
395 	return 0;
396 }
397 
398 static void unlock_trace(struct task_struct *task)
399 {
400 	mutex_unlock(&task->signal->cred_guard_mutex);
401 }
402 
403 #ifdef CONFIG_STACKTRACE
404 
405 #define MAX_STACK_TRACE_DEPTH	64
406 
407 static int proc_pid_stack(struct seq_file *m, struct pid_namespace *ns,
408 			  struct pid *pid, struct task_struct *task)
409 {
410 	struct stack_trace trace;
411 	unsigned long *entries;
412 	int err;
413 
414 	/*
415 	 * The ability to racily run the kernel stack unwinder on a running task
416 	 * and then observe the unwinder output is scary; while it is useful for
417 	 * debugging kernel issues, it can also allow an attacker to leak kernel
418 	 * stack contents.
419 	 * Doing this in a manner that is at least safe from races would require
420 	 * some work to ensure that the remote task can not be scheduled; and
421 	 * even then, this would still expose the unwinder as local attack
422 	 * surface.
423 	 * Therefore, this interface is restricted to root.
424 	 */
425 	if (!file_ns_capable(m->file, &init_user_ns, CAP_SYS_ADMIN))
426 		return -EACCES;
427 
428 	entries = kmalloc_array(MAX_STACK_TRACE_DEPTH, sizeof(*entries),
429 				GFP_KERNEL);
430 	if (!entries)
431 		return -ENOMEM;
432 
433 	trace.nr_entries	= 0;
434 	trace.max_entries	= MAX_STACK_TRACE_DEPTH;
435 	trace.entries		= entries;
436 	trace.skip		= 0;
437 
438 	err = lock_trace(task);
439 	if (!err) {
440 		unsigned int i;
441 
442 		save_stack_trace_tsk(task, &trace);
443 
444 		for (i = 0; i < trace.nr_entries; i++) {
445 			seq_printf(m, "[<0>] %pB\n", (void *)entries[i]);
446 		}
447 		unlock_trace(task);
448 	}
449 	kfree(entries);
450 
451 	return err;
452 }
453 #endif
454 
455 #ifdef CONFIG_SCHED_INFO
456 /*
457  * Provides /proc/PID/schedstat
458  */
459 static int proc_pid_schedstat(struct seq_file *m, struct pid_namespace *ns,
460 			      struct pid *pid, struct task_struct *task)
461 {
462 	if (unlikely(!sched_info_on()))
463 		seq_puts(m, "0 0 0\n");
464 	else
465 		seq_printf(m, "%llu %llu %lu\n",
466 		   (unsigned long long)task->se.sum_exec_runtime,
467 		   (unsigned long long)task->sched_info.run_delay,
468 		   task->sched_info.pcount);
469 
470 	return 0;
471 }
472 #endif
473 
474 #ifdef CONFIG_LATENCYTOP
475 static int lstats_show_proc(struct seq_file *m, void *v)
476 {
477 	int i;
478 	struct inode *inode = m->private;
479 	struct task_struct *task = get_proc_task(inode);
480 
481 	if (!task)
482 		return -ESRCH;
483 	seq_puts(m, "Latency Top version : v0.1\n");
484 	for (i = 0; i < LT_SAVECOUNT; i++) {
485 		struct latency_record *lr = &task->latency_record[i];
486 		if (lr->backtrace[0]) {
487 			int q;
488 			seq_printf(m, "%i %li %li",
489 				   lr->count, lr->time, lr->max);
490 			for (q = 0; q < LT_BACKTRACEDEPTH; q++) {
491 				unsigned long bt = lr->backtrace[q];
492 				if (!bt)
493 					break;
494 				if (bt == ULONG_MAX)
495 					break;
496 				seq_printf(m, " %ps", (void *)bt);
497 			}
498 			seq_putc(m, '\n');
499 		}
500 
501 	}
502 	put_task_struct(task);
503 	return 0;
504 }
505 
506 static int lstats_open(struct inode *inode, struct file *file)
507 {
508 	return single_open(file, lstats_show_proc, inode);
509 }
510 
511 static ssize_t lstats_write(struct file *file, const char __user *buf,
512 			    size_t count, loff_t *offs)
513 {
514 	struct task_struct *task = get_proc_task(file_inode(file));
515 
516 	if (!task)
517 		return -ESRCH;
518 	clear_all_latency_tracing(task);
519 	put_task_struct(task);
520 
521 	return count;
522 }
523 
524 static const struct file_operations proc_lstats_operations = {
525 	.open		= lstats_open,
526 	.read		= seq_read,
527 	.write		= lstats_write,
528 	.llseek		= seq_lseek,
529 	.release	= single_release,
530 };
531 
532 #endif
533 
534 static int proc_oom_score(struct seq_file *m, struct pid_namespace *ns,
535 			  struct pid *pid, struct task_struct *task)
536 {
537 	unsigned long totalpages = totalram_pages() + total_swap_pages;
538 	unsigned long points = 0;
539 
540 	points = oom_badness(task, NULL, NULL, totalpages) *
541 					1000 / totalpages;
542 	seq_printf(m, "%lu\n", points);
543 
544 	return 0;
545 }
546 
547 struct limit_names {
548 	const char *name;
549 	const char *unit;
550 };
551 
552 static const struct limit_names lnames[RLIM_NLIMITS] = {
553 	[RLIMIT_CPU] = {"Max cpu time", "seconds"},
554 	[RLIMIT_FSIZE] = {"Max file size", "bytes"},
555 	[RLIMIT_DATA] = {"Max data size", "bytes"},
556 	[RLIMIT_STACK] = {"Max stack size", "bytes"},
557 	[RLIMIT_CORE] = {"Max core file size", "bytes"},
558 	[RLIMIT_RSS] = {"Max resident set", "bytes"},
559 	[RLIMIT_NPROC] = {"Max processes", "processes"},
560 	[RLIMIT_NOFILE] = {"Max open files", "files"},
561 	[RLIMIT_MEMLOCK] = {"Max locked memory", "bytes"},
562 	[RLIMIT_AS] = {"Max address space", "bytes"},
563 	[RLIMIT_LOCKS] = {"Max file locks", "locks"},
564 	[RLIMIT_SIGPENDING] = {"Max pending signals", "signals"},
565 	[RLIMIT_MSGQUEUE] = {"Max msgqueue size", "bytes"},
566 	[RLIMIT_NICE] = {"Max nice priority", NULL},
567 	[RLIMIT_RTPRIO] = {"Max realtime priority", NULL},
568 	[RLIMIT_RTTIME] = {"Max realtime timeout", "us"},
569 };
570 
571 /* Display limits for a process */
572 static int proc_pid_limits(struct seq_file *m, struct pid_namespace *ns,
573 			   struct pid *pid, struct task_struct *task)
574 {
575 	unsigned int i;
576 	unsigned long flags;
577 
578 	struct rlimit rlim[RLIM_NLIMITS];
579 
580 	if (!lock_task_sighand(task, &flags))
581 		return 0;
582 	memcpy(rlim, task->signal->rlim, sizeof(struct rlimit) * RLIM_NLIMITS);
583 	unlock_task_sighand(task, &flags);
584 
585 	/*
586 	 * print the file header
587 	 */
588 	seq_puts(m, "Limit                     "
589 		"Soft Limit           "
590 		"Hard Limit           "
591 		"Units     \n");
592 
593 	for (i = 0; i < RLIM_NLIMITS; i++) {
594 		if (rlim[i].rlim_cur == RLIM_INFINITY)
595 			seq_printf(m, "%-25s %-20s ",
596 				   lnames[i].name, "unlimited");
597 		else
598 			seq_printf(m, "%-25s %-20lu ",
599 				   lnames[i].name, rlim[i].rlim_cur);
600 
601 		if (rlim[i].rlim_max == RLIM_INFINITY)
602 			seq_printf(m, "%-20s ", "unlimited");
603 		else
604 			seq_printf(m, "%-20lu ", rlim[i].rlim_max);
605 
606 		if (lnames[i].unit)
607 			seq_printf(m, "%-10s\n", lnames[i].unit);
608 		else
609 			seq_putc(m, '\n');
610 	}
611 
612 	return 0;
613 }
614 
615 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK
616 static int proc_pid_syscall(struct seq_file *m, struct pid_namespace *ns,
617 			    struct pid *pid, struct task_struct *task)
618 {
619 	struct syscall_info info;
620 	u64 *args = &info.data.args[0];
621 	int res;
622 
623 	res = lock_trace(task);
624 	if (res)
625 		return res;
626 
627 	if (task_current_syscall(task, &info))
628 		seq_puts(m, "running\n");
629 	else if (info.data.nr < 0)
630 		seq_printf(m, "%d 0x%llx 0x%llx\n",
631 			   info.data.nr, info.sp, info.data.instruction_pointer);
632 	else
633 		seq_printf(m,
634 		       "%d 0x%llx 0x%llx 0x%llx 0x%llx 0x%llx 0x%llx 0x%llx 0x%llx\n",
635 		       info.data.nr,
636 		       args[0], args[1], args[2], args[3], args[4], args[5],
637 		       info.sp, info.data.instruction_pointer);
638 	unlock_trace(task);
639 
640 	return 0;
641 }
642 #endif /* CONFIG_HAVE_ARCH_TRACEHOOK */
643 
644 /************************************************************************/
645 /*                       Here the fs part begins                        */
646 /************************************************************************/
647 
648 /* permission checks */
649 static int proc_fd_access_allowed(struct inode *inode)
650 {
651 	struct task_struct *task;
652 	int allowed = 0;
653 	/* Allow access to a task's file descriptors if it is us or we
654 	 * may use ptrace attach to the process and find out that
655 	 * information.
656 	 */
657 	task = get_proc_task(inode);
658 	if (task) {
659 		allowed = ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS);
660 		put_task_struct(task);
661 	}
662 	return allowed;
663 }
664 
665 int proc_setattr(struct dentry *dentry, struct iattr *attr)
666 {
667 	int error;
668 	struct inode *inode = d_inode(dentry);
669 
670 	if (attr->ia_valid & ATTR_MODE)
671 		return -EPERM;
672 
673 	error = setattr_prepare(dentry, attr);
674 	if (error)
675 		return error;
676 
677 	setattr_copy(inode, attr);
678 	mark_inode_dirty(inode);
679 	return 0;
680 }
681 
682 /*
683  * May current process learn task's sched/cmdline info (for hide_pid_min=1)
684  * or euid/egid (for hide_pid_min=2)?
685  */
686 static bool has_pid_permissions(struct pid_namespace *pid,
687 				 struct task_struct *task,
688 				 int hide_pid_min)
689 {
690 	if (pid->hide_pid < hide_pid_min)
691 		return true;
692 	if (in_group_p(pid->pid_gid))
693 		return true;
694 	return ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS);
695 }
696 
697 
698 static int proc_pid_permission(struct inode *inode, int mask)
699 {
700 	struct pid_namespace *pid = proc_pid_ns(inode);
701 	struct task_struct *task;
702 	bool has_perms;
703 
704 	task = get_proc_task(inode);
705 	if (!task)
706 		return -ESRCH;
707 	has_perms = has_pid_permissions(pid, task, HIDEPID_NO_ACCESS);
708 	put_task_struct(task);
709 
710 	if (!has_perms) {
711 		if (pid->hide_pid == HIDEPID_INVISIBLE) {
712 			/*
713 			 * Let's make getdents(), stat(), and open()
714 			 * consistent with each other.  If a process
715 			 * may not stat() a file, it shouldn't be seen
716 			 * in procfs at all.
717 			 */
718 			return -ENOENT;
719 		}
720 
721 		return -EPERM;
722 	}
723 	return generic_permission(inode, mask);
724 }
725 
726 
727 
728 static const struct inode_operations proc_def_inode_operations = {
729 	.setattr	= proc_setattr,
730 };
731 
732 static int proc_single_show(struct seq_file *m, void *v)
733 {
734 	struct inode *inode = m->private;
735 	struct pid_namespace *ns = proc_pid_ns(inode);
736 	struct pid *pid = proc_pid(inode);
737 	struct task_struct *task;
738 	int ret;
739 
740 	task = get_pid_task(pid, PIDTYPE_PID);
741 	if (!task)
742 		return -ESRCH;
743 
744 	ret = PROC_I(inode)->op.proc_show(m, ns, pid, task);
745 
746 	put_task_struct(task);
747 	return ret;
748 }
749 
750 static int proc_single_open(struct inode *inode, struct file *filp)
751 {
752 	return single_open(filp, proc_single_show, inode);
753 }
754 
755 static const struct file_operations proc_single_file_operations = {
756 	.open		= proc_single_open,
757 	.read		= seq_read,
758 	.llseek		= seq_lseek,
759 	.release	= single_release,
760 };
761 
762 
763 struct mm_struct *proc_mem_open(struct inode *inode, unsigned int mode)
764 {
765 	struct task_struct *task = get_proc_task(inode);
766 	struct mm_struct *mm = ERR_PTR(-ESRCH);
767 
768 	if (task) {
769 		mm = mm_access(task, mode | PTRACE_MODE_FSCREDS);
770 		put_task_struct(task);
771 
772 		if (!IS_ERR_OR_NULL(mm)) {
773 			/* ensure this mm_struct can't be freed */
774 			mmgrab(mm);
775 			/* but do not pin its memory */
776 			mmput(mm);
777 		}
778 	}
779 
780 	return mm;
781 }
782 
783 static int __mem_open(struct inode *inode, struct file *file, unsigned int mode)
784 {
785 	struct mm_struct *mm = proc_mem_open(inode, mode);
786 
787 	if (IS_ERR(mm))
788 		return PTR_ERR(mm);
789 
790 	file->private_data = mm;
791 	return 0;
792 }
793 
794 static int mem_open(struct inode *inode, struct file *file)
795 {
796 	int ret = __mem_open(inode, file, PTRACE_MODE_ATTACH);
797 
798 	/* OK to pass negative loff_t, we can catch out-of-range */
799 	file->f_mode |= FMODE_UNSIGNED_OFFSET;
800 
801 	return ret;
802 }
803 
804 static ssize_t mem_rw(struct file *file, char __user *buf,
805 			size_t count, loff_t *ppos, int write)
806 {
807 	struct mm_struct *mm = file->private_data;
808 	unsigned long addr = *ppos;
809 	ssize_t copied;
810 	char *page;
811 	unsigned int flags;
812 
813 	if (!mm)
814 		return 0;
815 
816 	page = (char *)__get_free_page(GFP_KERNEL);
817 	if (!page)
818 		return -ENOMEM;
819 
820 	copied = 0;
821 	if (!mmget_not_zero(mm))
822 		goto free;
823 
824 	flags = FOLL_FORCE | (write ? FOLL_WRITE : 0);
825 
826 	while (count > 0) {
827 		int this_len = min_t(int, count, PAGE_SIZE);
828 
829 		if (write && copy_from_user(page, buf, this_len)) {
830 			copied = -EFAULT;
831 			break;
832 		}
833 
834 		this_len = access_remote_vm(mm, addr, page, this_len, flags);
835 		if (!this_len) {
836 			if (!copied)
837 				copied = -EIO;
838 			break;
839 		}
840 
841 		if (!write && copy_to_user(buf, page, this_len)) {
842 			copied = -EFAULT;
843 			break;
844 		}
845 
846 		buf += this_len;
847 		addr += this_len;
848 		copied += this_len;
849 		count -= this_len;
850 	}
851 	*ppos = addr;
852 
853 	mmput(mm);
854 free:
855 	free_page((unsigned long) page);
856 	return copied;
857 }
858 
859 static ssize_t mem_read(struct file *file, char __user *buf,
860 			size_t count, loff_t *ppos)
861 {
862 	return mem_rw(file, buf, count, ppos, 0);
863 }
864 
865 static ssize_t mem_write(struct file *file, const char __user *buf,
866 			 size_t count, loff_t *ppos)
867 {
868 	return mem_rw(file, (char __user*)buf, count, ppos, 1);
869 }
870 
871 loff_t mem_lseek(struct file *file, loff_t offset, int orig)
872 {
873 	switch (orig) {
874 	case 0:
875 		file->f_pos = offset;
876 		break;
877 	case 1:
878 		file->f_pos += offset;
879 		break;
880 	default:
881 		return -EINVAL;
882 	}
883 	force_successful_syscall_return();
884 	return file->f_pos;
885 }
886 
887 static int mem_release(struct inode *inode, struct file *file)
888 {
889 	struct mm_struct *mm = file->private_data;
890 	if (mm)
891 		mmdrop(mm);
892 	return 0;
893 }
894 
895 static const struct file_operations proc_mem_operations = {
896 	.llseek		= mem_lseek,
897 	.read		= mem_read,
898 	.write		= mem_write,
899 	.open		= mem_open,
900 	.release	= mem_release,
901 };
902 
903 static int environ_open(struct inode *inode, struct file *file)
904 {
905 	return __mem_open(inode, file, PTRACE_MODE_READ);
906 }
907 
908 static ssize_t environ_read(struct file *file, char __user *buf,
909 			size_t count, loff_t *ppos)
910 {
911 	char *page;
912 	unsigned long src = *ppos;
913 	int ret = 0;
914 	struct mm_struct *mm = file->private_data;
915 	unsigned long env_start, env_end;
916 
917 	/* Ensure the process spawned far enough to have an environment. */
918 	if (!mm || !mm->env_end)
919 		return 0;
920 
921 	page = (char *)__get_free_page(GFP_KERNEL);
922 	if (!page)
923 		return -ENOMEM;
924 
925 	ret = 0;
926 	if (!mmget_not_zero(mm))
927 		goto free;
928 
929 	spin_lock(&mm->arg_lock);
930 	env_start = mm->env_start;
931 	env_end = mm->env_end;
932 	spin_unlock(&mm->arg_lock);
933 
934 	while (count > 0) {
935 		size_t this_len, max_len;
936 		int retval;
937 
938 		if (src >= (env_end - env_start))
939 			break;
940 
941 		this_len = env_end - (env_start + src);
942 
943 		max_len = min_t(size_t, PAGE_SIZE, count);
944 		this_len = min(max_len, this_len);
945 
946 		retval = access_remote_vm(mm, (env_start + src), page, this_len, FOLL_ANON);
947 
948 		if (retval <= 0) {
949 			ret = retval;
950 			break;
951 		}
952 
953 		if (copy_to_user(buf, page, retval)) {
954 			ret = -EFAULT;
955 			break;
956 		}
957 
958 		ret += retval;
959 		src += retval;
960 		buf += retval;
961 		count -= retval;
962 	}
963 	*ppos = src;
964 	mmput(mm);
965 
966 free:
967 	free_page((unsigned long) page);
968 	return ret;
969 }
970 
971 static const struct file_operations proc_environ_operations = {
972 	.open		= environ_open,
973 	.read		= environ_read,
974 	.llseek		= generic_file_llseek,
975 	.release	= mem_release,
976 };
977 
978 static int auxv_open(struct inode *inode, struct file *file)
979 {
980 	return __mem_open(inode, file, PTRACE_MODE_READ_FSCREDS);
981 }
982 
983 static ssize_t auxv_read(struct file *file, char __user *buf,
984 			size_t count, loff_t *ppos)
985 {
986 	struct mm_struct *mm = file->private_data;
987 	unsigned int nwords = 0;
988 
989 	if (!mm)
990 		return 0;
991 	do {
992 		nwords += 2;
993 	} while (mm->saved_auxv[nwords - 2] != 0); /* AT_NULL */
994 	return simple_read_from_buffer(buf, count, ppos, mm->saved_auxv,
995 				       nwords * sizeof(mm->saved_auxv[0]));
996 }
997 
998 static const struct file_operations proc_auxv_operations = {
999 	.open		= auxv_open,
1000 	.read		= auxv_read,
1001 	.llseek		= generic_file_llseek,
1002 	.release	= mem_release,
1003 };
1004 
1005 static ssize_t oom_adj_read(struct file *file, char __user *buf, size_t count,
1006 			    loff_t *ppos)
1007 {
1008 	struct task_struct *task = get_proc_task(file_inode(file));
1009 	char buffer[PROC_NUMBUF];
1010 	int oom_adj = OOM_ADJUST_MIN;
1011 	size_t len;
1012 
1013 	if (!task)
1014 		return -ESRCH;
1015 	if (task->signal->oom_score_adj == OOM_SCORE_ADJ_MAX)
1016 		oom_adj = OOM_ADJUST_MAX;
1017 	else
1018 		oom_adj = (task->signal->oom_score_adj * -OOM_DISABLE) /
1019 			  OOM_SCORE_ADJ_MAX;
1020 	put_task_struct(task);
1021 	len = snprintf(buffer, sizeof(buffer), "%d\n", oom_adj);
1022 	return simple_read_from_buffer(buf, count, ppos, buffer, len);
1023 }
1024 
1025 static int __set_oom_adj(struct file *file, int oom_adj, bool legacy)
1026 {
1027 	static DEFINE_MUTEX(oom_adj_mutex);
1028 	struct mm_struct *mm = NULL;
1029 	struct task_struct *task;
1030 	int err = 0;
1031 
1032 	task = get_proc_task(file_inode(file));
1033 	if (!task)
1034 		return -ESRCH;
1035 
1036 	mutex_lock(&oom_adj_mutex);
1037 	if (legacy) {
1038 		if (oom_adj < task->signal->oom_score_adj &&
1039 				!capable(CAP_SYS_RESOURCE)) {
1040 			err = -EACCES;
1041 			goto err_unlock;
1042 		}
1043 		/*
1044 		 * /proc/pid/oom_adj is provided for legacy purposes, ask users to use
1045 		 * /proc/pid/oom_score_adj instead.
1046 		 */
1047 		pr_warn_once("%s (%d): /proc/%d/oom_adj is deprecated, please use /proc/%d/oom_score_adj instead.\n",
1048 			  current->comm, task_pid_nr(current), task_pid_nr(task),
1049 			  task_pid_nr(task));
1050 	} else {
1051 		if ((short)oom_adj < task->signal->oom_score_adj_min &&
1052 				!capable(CAP_SYS_RESOURCE)) {
1053 			err = -EACCES;
1054 			goto err_unlock;
1055 		}
1056 	}
1057 
1058 	/*
1059 	 * Make sure we will check other processes sharing the mm if this is
1060 	 * not vfrok which wants its own oom_score_adj.
1061 	 * pin the mm so it doesn't go away and get reused after task_unlock
1062 	 */
1063 	if (!task->vfork_done) {
1064 		struct task_struct *p = find_lock_task_mm(task);
1065 
1066 		if (p) {
1067 			if (atomic_read(&p->mm->mm_users) > 1) {
1068 				mm = p->mm;
1069 				mmgrab(mm);
1070 			}
1071 			task_unlock(p);
1072 		}
1073 	}
1074 
1075 	task->signal->oom_score_adj = oom_adj;
1076 	if (!legacy && has_capability_noaudit(current, CAP_SYS_RESOURCE))
1077 		task->signal->oom_score_adj_min = (short)oom_adj;
1078 	trace_oom_score_adj_update(task);
1079 
1080 	if (mm) {
1081 		struct task_struct *p;
1082 
1083 		rcu_read_lock();
1084 		for_each_process(p) {
1085 			if (same_thread_group(task, p))
1086 				continue;
1087 
1088 			/* do not touch kernel threads or the global init */
1089 			if (p->flags & PF_KTHREAD || is_global_init(p))
1090 				continue;
1091 
1092 			task_lock(p);
1093 			if (!p->vfork_done && process_shares_mm(p, mm)) {
1094 				p->signal->oom_score_adj = oom_adj;
1095 				if (!legacy && has_capability_noaudit(current, CAP_SYS_RESOURCE))
1096 					p->signal->oom_score_adj_min = (short)oom_adj;
1097 			}
1098 			task_unlock(p);
1099 		}
1100 		rcu_read_unlock();
1101 		mmdrop(mm);
1102 	}
1103 err_unlock:
1104 	mutex_unlock(&oom_adj_mutex);
1105 	put_task_struct(task);
1106 	return err;
1107 }
1108 
1109 /*
1110  * /proc/pid/oom_adj exists solely for backwards compatibility with previous
1111  * kernels.  The effective policy is defined by oom_score_adj, which has a
1112  * different scale: oom_adj grew exponentially and oom_score_adj grows linearly.
1113  * Values written to oom_adj are simply mapped linearly to oom_score_adj.
1114  * Processes that become oom disabled via oom_adj will still be oom disabled
1115  * with this implementation.
1116  *
1117  * oom_adj cannot be removed since existing userspace binaries use it.
1118  */
1119 static ssize_t oom_adj_write(struct file *file, const char __user *buf,
1120 			     size_t count, loff_t *ppos)
1121 {
1122 	char buffer[PROC_NUMBUF];
1123 	int oom_adj;
1124 	int err;
1125 
1126 	memset(buffer, 0, sizeof(buffer));
1127 	if (count > sizeof(buffer) - 1)
1128 		count = sizeof(buffer) - 1;
1129 	if (copy_from_user(buffer, buf, count)) {
1130 		err = -EFAULT;
1131 		goto out;
1132 	}
1133 
1134 	err = kstrtoint(strstrip(buffer), 0, &oom_adj);
1135 	if (err)
1136 		goto out;
1137 	if ((oom_adj < OOM_ADJUST_MIN || oom_adj > OOM_ADJUST_MAX) &&
1138 	     oom_adj != OOM_DISABLE) {
1139 		err = -EINVAL;
1140 		goto out;
1141 	}
1142 
1143 	/*
1144 	 * Scale /proc/pid/oom_score_adj appropriately ensuring that a maximum
1145 	 * value is always attainable.
1146 	 */
1147 	if (oom_adj == OOM_ADJUST_MAX)
1148 		oom_adj = OOM_SCORE_ADJ_MAX;
1149 	else
1150 		oom_adj = (oom_adj * OOM_SCORE_ADJ_MAX) / -OOM_DISABLE;
1151 
1152 	err = __set_oom_adj(file, oom_adj, true);
1153 out:
1154 	return err < 0 ? err : count;
1155 }
1156 
1157 static const struct file_operations proc_oom_adj_operations = {
1158 	.read		= oom_adj_read,
1159 	.write		= oom_adj_write,
1160 	.llseek		= generic_file_llseek,
1161 };
1162 
1163 static ssize_t oom_score_adj_read(struct file *file, char __user *buf,
1164 					size_t count, loff_t *ppos)
1165 {
1166 	struct task_struct *task = get_proc_task(file_inode(file));
1167 	char buffer[PROC_NUMBUF];
1168 	short oom_score_adj = OOM_SCORE_ADJ_MIN;
1169 	size_t len;
1170 
1171 	if (!task)
1172 		return -ESRCH;
1173 	oom_score_adj = task->signal->oom_score_adj;
1174 	put_task_struct(task);
1175 	len = snprintf(buffer, sizeof(buffer), "%hd\n", oom_score_adj);
1176 	return simple_read_from_buffer(buf, count, ppos, buffer, len);
1177 }
1178 
1179 static ssize_t oom_score_adj_write(struct file *file, const char __user *buf,
1180 					size_t count, loff_t *ppos)
1181 {
1182 	char buffer[PROC_NUMBUF];
1183 	int oom_score_adj;
1184 	int err;
1185 
1186 	memset(buffer, 0, sizeof(buffer));
1187 	if (count > sizeof(buffer) - 1)
1188 		count = sizeof(buffer) - 1;
1189 	if (copy_from_user(buffer, buf, count)) {
1190 		err = -EFAULT;
1191 		goto out;
1192 	}
1193 
1194 	err = kstrtoint(strstrip(buffer), 0, &oom_score_adj);
1195 	if (err)
1196 		goto out;
1197 	if (oom_score_adj < OOM_SCORE_ADJ_MIN ||
1198 			oom_score_adj > OOM_SCORE_ADJ_MAX) {
1199 		err = -EINVAL;
1200 		goto out;
1201 	}
1202 
1203 	err = __set_oom_adj(file, oom_score_adj, false);
1204 out:
1205 	return err < 0 ? err : count;
1206 }
1207 
1208 static const struct file_operations proc_oom_score_adj_operations = {
1209 	.read		= oom_score_adj_read,
1210 	.write		= oom_score_adj_write,
1211 	.llseek		= default_llseek,
1212 };
1213 
1214 #ifdef CONFIG_AUDIT
1215 #define TMPBUFLEN 11
1216 static ssize_t proc_loginuid_read(struct file * file, char __user * buf,
1217 				  size_t count, loff_t *ppos)
1218 {
1219 	struct inode * inode = file_inode(file);
1220 	struct task_struct *task = get_proc_task(inode);
1221 	ssize_t length;
1222 	char tmpbuf[TMPBUFLEN];
1223 
1224 	if (!task)
1225 		return -ESRCH;
1226 	length = scnprintf(tmpbuf, TMPBUFLEN, "%u",
1227 			   from_kuid(file->f_cred->user_ns,
1228 				     audit_get_loginuid(task)));
1229 	put_task_struct(task);
1230 	return simple_read_from_buffer(buf, count, ppos, tmpbuf, length);
1231 }
1232 
1233 static ssize_t proc_loginuid_write(struct file * file, const char __user * buf,
1234 				   size_t count, loff_t *ppos)
1235 {
1236 	struct inode * inode = file_inode(file);
1237 	uid_t loginuid;
1238 	kuid_t kloginuid;
1239 	int rv;
1240 
1241 	rcu_read_lock();
1242 	if (current != pid_task(proc_pid(inode), PIDTYPE_PID)) {
1243 		rcu_read_unlock();
1244 		return -EPERM;
1245 	}
1246 	rcu_read_unlock();
1247 
1248 	if (*ppos != 0) {
1249 		/* No partial writes. */
1250 		return -EINVAL;
1251 	}
1252 
1253 	rv = kstrtou32_from_user(buf, count, 10, &loginuid);
1254 	if (rv < 0)
1255 		return rv;
1256 
1257 	/* is userspace tring to explicitly UNSET the loginuid? */
1258 	if (loginuid == AUDIT_UID_UNSET) {
1259 		kloginuid = INVALID_UID;
1260 	} else {
1261 		kloginuid = make_kuid(file->f_cred->user_ns, loginuid);
1262 		if (!uid_valid(kloginuid))
1263 			return -EINVAL;
1264 	}
1265 
1266 	rv = audit_set_loginuid(kloginuid);
1267 	if (rv < 0)
1268 		return rv;
1269 	return count;
1270 }
1271 
1272 static const struct file_operations proc_loginuid_operations = {
1273 	.read		= proc_loginuid_read,
1274 	.write		= proc_loginuid_write,
1275 	.llseek		= generic_file_llseek,
1276 };
1277 
1278 static ssize_t proc_sessionid_read(struct file * file, char __user * buf,
1279 				  size_t count, loff_t *ppos)
1280 {
1281 	struct inode * inode = file_inode(file);
1282 	struct task_struct *task = get_proc_task(inode);
1283 	ssize_t length;
1284 	char tmpbuf[TMPBUFLEN];
1285 
1286 	if (!task)
1287 		return -ESRCH;
1288 	length = scnprintf(tmpbuf, TMPBUFLEN, "%u",
1289 				audit_get_sessionid(task));
1290 	put_task_struct(task);
1291 	return simple_read_from_buffer(buf, count, ppos, tmpbuf, length);
1292 }
1293 
1294 static const struct file_operations proc_sessionid_operations = {
1295 	.read		= proc_sessionid_read,
1296 	.llseek		= generic_file_llseek,
1297 };
1298 #endif
1299 
1300 #ifdef CONFIG_FAULT_INJECTION
1301 static ssize_t proc_fault_inject_read(struct file * file, char __user * buf,
1302 				      size_t count, loff_t *ppos)
1303 {
1304 	struct task_struct *task = get_proc_task(file_inode(file));
1305 	char buffer[PROC_NUMBUF];
1306 	size_t len;
1307 	int make_it_fail;
1308 
1309 	if (!task)
1310 		return -ESRCH;
1311 	make_it_fail = task->make_it_fail;
1312 	put_task_struct(task);
1313 
1314 	len = snprintf(buffer, sizeof(buffer), "%i\n", make_it_fail);
1315 
1316 	return simple_read_from_buffer(buf, count, ppos, buffer, len);
1317 }
1318 
1319 static ssize_t proc_fault_inject_write(struct file * file,
1320 			const char __user * buf, size_t count, loff_t *ppos)
1321 {
1322 	struct task_struct *task;
1323 	char buffer[PROC_NUMBUF];
1324 	int make_it_fail;
1325 	int rv;
1326 
1327 	if (!capable(CAP_SYS_RESOURCE))
1328 		return -EPERM;
1329 	memset(buffer, 0, sizeof(buffer));
1330 	if (count > sizeof(buffer) - 1)
1331 		count = sizeof(buffer) - 1;
1332 	if (copy_from_user(buffer, buf, count))
1333 		return -EFAULT;
1334 	rv = kstrtoint(strstrip(buffer), 0, &make_it_fail);
1335 	if (rv < 0)
1336 		return rv;
1337 	if (make_it_fail < 0 || make_it_fail > 1)
1338 		return -EINVAL;
1339 
1340 	task = get_proc_task(file_inode(file));
1341 	if (!task)
1342 		return -ESRCH;
1343 	task->make_it_fail = make_it_fail;
1344 	put_task_struct(task);
1345 
1346 	return count;
1347 }
1348 
1349 static const struct file_operations proc_fault_inject_operations = {
1350 	.read		= proc_fault_inject_read,
1351 	.write		= proc_fault_inject_write,
1352 	.llseek		= generic_file_llseek,
1353 };
1354 
1355 static ssize_t proc_fail_nth_write(struct file *file, const char __user *buf,
1356 				   size_t count, loff_t *ppos)
1357 {
1358 	struct task_struct *task;
1359 	int err;
1360 	unsigned int n;
1361 
1362 	err = kstrtouint_from_user(buf, count, 0, &n);
1363 	if (err)
1364 		return err;
1365 
1366 	task = get_proc_task(file_inode(file));
1367 	if (!task)
1368 		return -ESRCH;
1369 	task->fail_nth = n;
1370 	put_task_struct(task);
1371 
1372 	return count;
1373 }
1374 
1375 static ssize_t proc_fail_nth_read(struct file *file, char __user *buf,
1376 				  size_t count, loff_t *ppos)
1377 {
1378 	struct task_struct *task;
1379 	char numbuf[PROC_NUMBUF];
1380 	ssize_t len;
1381 
1382 	task = get_proc_task(file_inode(file));
1383 	if (!task)
1384 		return -ESRCH;
1385 	len = snprintf(numbuf, sizeof(numbuf), "%u\n", task->fail_nth);
1386 	put_task_struct(task);
1387 	return simple_read_from_buffer(buf, count, ppos, numbuf, len);
1388 }
1389 
1390 static const struct file_operations proc_fail_nth_operations = {
1391 	.read		= proc_fail_nth_read,
1392 	.write		= proc_fail_nth_write,
1393 };
1394 #endif
1395 
1396 
1397 #ifdef CONFIG_SCHED_DEBUG
1398 /*
1399  * Print out various scheduling related per-task fields:
1400  */
1401 static int sched_show(struct seq_file *m, void *v)
1402 {
1403 	struct inode *inode = m->private;
1404 	struct pid_namespace *ns = proc_pid_ns(inode);
1405 	struct task_struct *p;
1406 
1407 	p = get_proc_task(inode);
1408 	if (!p)
1409 		return -ESRCH;
1410 	proc_sched_show_task(p, ns, m);
1411 
1412 	put_task_struct(p);
1413 
1414 	return 0;
1415 }
1416 
1417 static ssize_t
1418 sched_write(struct file *file, const char __user *buf,
1419 	    size_t count, loff_t *offset)
1420 {
1421 	struct inode *inode = file_inode(file);
1422 	struct task_struct *p;
1423 
1424 	p = get_proc_task(inode);
1425 	if (!p)
1426 		return -ESRCH;
1427 	proc_sched_set_task(p);
1428 
1429 	put_task_struct(p);
1430 
1431 	return count;
1432 }
1433 
1434 static int sched_open(struct inode *inode, struct file *filp)
1435 {
1436 	return single_open(filp, sched_show, inode);
1437 }
1438 
1439 static const struct file_operations proc_pid_sched_operations = {
1440 	.open		= sched_open,
1441 	.read		= seq_read,
1442 	.write		= sched_write,
1443 	.llseek		= seq_lseek,
1444 	.release	= single_release,
1445 };
1446 
1447 #endif
1448 
1449 #ifdef CONFIG_SCHED_AUTOGROUP
1450 /*
1451  * Print out autogroup related information:
1452  */
1453 static int sched_autogroup_show(struct seq_file *m, void *v)
1454 {
1455 	struct inode *inode = m->private;
1456 	struct task_struct *p;
1457 
1458 	p = get_proc_task(inode);
1459 	if (!p)
1460 		return -ESRCH;
1461 	proc_sched_autogroup_show_task(p, m);
1462 
1463 	put_task_struct(p);
1464 
1465 	return 0;
1466 }
1467 
1468 static ssize_t
1469 sched_autogroup_write(struct file *file, const char __user *buf,
1470 	    size_t count, loff_t *offset)
1471 {
1472 	struct inode *inode = file_inode(file);
1473 	struct task_struct *p;
1474 	char buffer[PROC_NUMBUF];
1475 	int nice;
1476 	int err;
1477 
1478 	memset(buffer, 0, sizeof(buffer));
1479 	if (count > sizeof(buffer) - 1)
1480 		count = sizeof(buffer) - 1;
1481 	if (copy_from_user(buffer, buf, count))
1482 		return -EFAULT;
1483 
1484 	err = kstrtoint(strstrip(buffer), 0, &nice);
1485 	if (err < 0)
1486 		return err;
1487 
1488 	p = get_proc_task(inode);
1489 	if (!p)
1490 		return -ESRCH;
1491 
1492 	err = proc_sched_autogroup_set_nice(p, nice);
1493 	if (err)
1494 		count = err;
1495 
1496 	put_task_struct(p);
1497 
1498 	return count;
1499 }
1500 
1501 static int sched_autogroup_open(struct inode *inode, struct file *filp)
1502 {
1503 	int ret;
1504 
1505 	ret = single_open(filp, sched_autogroup_show, NULL);
1506 	if (!ret) {
1507 		struct seq_file *m = filp->private_data;
1508 
1509 		m->private = inode;
1510 	}
1511 	return ret;
1512 }
1513 
1514 static const struct file_operations proc_pid_sched_autogroup_operations = {
1515 	.open		= sched_autogroup_open,
1516 	.read		= seq_read,
1517 	.write		= sched_autogroup_write,
1518 	.llseek		= seq_lseek,
1519 	.release	= single_release,
1520 };
1521 
1522 #endif /* CONFIG_SCHED_AUTOGROUP */
1523 
1524 static ssize_t comm_write(struct file *file, const char __user *buf,
1525 				size_t count, loff_t *offset)
1526 {
1527 	struct inode *inode = file_inode(file);
1528 	struct task_struct *p;
1529 	char buffer[TASK_COMM_LEN];
1530 	const size_t maxlen = sizeof(buffer) - 1;
1531 
1532 	memset(buffer, 0, sizeof(buffer));
1533 	if (copy_from_user(buffer, buf, count > maxlen ? maxlen : count))
1534 		return -EFAULT;
1535 
1536 	p = get_proc_task(inode);
1537 	if (!p)
1538 		return -ESRCH;
1539 
1540 	if (same_thread_group(current, p))
1541 		set_task_comm(p, buffer);
1542 	else
1543 		count = -EINVAL;
1544 
1545 	put_task_struct(p);
1546 
1547 	return count;
1548 }
1549 
1550 static int comm_show(struct seq_file *m, void *v)
1551 {
1552 	struct inode *inode = m->private;
1553 	struct task_struct *p;
1554 
1555 	p = get_proc_task(inode);
1556 	if (!p)
1557 		return -ESRCH;
1558 
1559 	proc_task_name(m, p, false);
1560 	seq_putc(m, '\n');
1561 
1562 	put_task_struct(p);
1563 
1564 	return 0;
1565 }
1566 
1567 static int comm_open(struct inode *inode, struct file *filp)
1568 {
1569 	return single_open(filp, comm_show, inode);
1570 }
1571 
1572 static const struct file_operations proc_pid_set_comm_operations = {
1573 	.open		= comm_open,
1574 	.read		= seq_read,
1575 	.write		= comm_write,
1576 	.llseek		= seq_lseek,
1577 	.release	= single_release,
1578 };
1579 
1580 static int proc_exe_link(struct dentry *dentry, struct path *exe_path)
1581 {
1582 	struct task_struct *task;
1583 	struct file *exe_file;
1584 
1585 	task = get_proc_task(d_inode(dentry));
1586 	if (!task)
1587 		return -ENOENT;
1588 	exe_file = get_task_exe_file(task);
1589 	put_task_struct(task);
1590 	if (exe_file) {
1591 		*exe_path = exe_file->f_path;
1592 		path_get(&exe_file->f_path);
1593 		fput(exe_file);
1594 		return 0;
1595 	} else
1596 		return -ENOENT;
1597 }
1598 
1599 static const char *proc_pid_get_link(struct dentry *dentry,
1600 				     struct inode *inode,
1601 				     struct delayed_call *done)
1602 {
1603 	struct path path;
1604 	int error = -EACCES;
1605 
1606 	if (!dentry)
1607 		return ERR_PTR(-ECHILD);
1608 
1609 	/* Are we allowed to snoop on the tasks file descriptors? */
1610 	if (!proc_fd_access_allowed(inode))
1611 		goto out;
1612 
1613 	error = PROC_I(inode)->op.proc_get_link(dentry, &path);
1614 	if (error)
1615 		goto out;
1616 
1617 	nd_jump_link(&path);
1618 	return NULL;
1619 out:
1620 	return ERR_PTR(error);
1621 }
1622 
1623 static int do_proc_readlink(struct path *path, char __user *buffer, int buflen)
1624 {
1625 	char *tmp = (char *)__get_free_page(GFP_KERNEL);
1626 	char *pathname;
1627 	int len;
1628 
1629 	if (!tmp)
1630 		return -ENOMEM;
1631 
1632 	pathname = d_path(path, tmp, PAGE_SIZE);
1633 	len = PTR_ERR(pathname);
1634 	if (IS_ERR(pathname))
1635 		goto out;
1636 	len = tmp + PAGE_SIZE - 1 - pathname;
1637 
1638 	if (len > buflen)
1639 		len = buflen;
1640 	if (copy_to_user(buffer, pathname, len))
1641 		len = -EFAULT;
1642  out:
1643 	free_page((unsigned long)tmp);
1644 	return len;
1645 }
1646 
1647 static int proc_pid_readlink(struct dentry * dentry, char __user * buffer, int buflen)
1648 {
1649 	int error = -EACCES;
1650 	struct inode *inode = d_inode(dentry);
1651 	struct path path;
1652 
1653 	/* Are we allowed to snoop on the tasks file descriptors? */
1654 	if (!proc_fd_access_allowed(inode))
1655 		goto out;
1656 
1657 	error = PROC_I(inode)->op.proc_get_link(dentry, &path);
1658 	if (error)
1659 		goto out;
1660 
1661 	error = do_proc_readlink(&path, buffer, buflen);
1662 	path_put(&path);
1663 out:
1664 	return error;
1665 }
1666 
1667 const struct inode_operations proc_pid_link_inode_operations = {
1668 	.readlink	= proc_pid_readlink,
1669 	.get_link	= proc_pid_get_link,
1670 	.setattr	= proc_setattr,
1671 };
1672 
1673 
1674 /* building an inode */
1675 
1676 void task_dump_owner(struct task_struct *task, umode_t mode,
1677 		     kuid_t *ruid, kgid_t *rgid)
1678 {
1679 	/* Depending on the state of dumpable compute who should own a
1680 	 * proc file for a task.
1681 	 */
1682 	const struct cred *cred;
1683 	kuid_t uid;
1684 	kgid_t gid;
1685 
1686 	if (unlikely(task->flags & PF_KTHREAD)) {
1687 		*ruid = GLOBAL_ROOT_UID;
1688 		*rgid = GLOBAL_ROOT_GID;
1689 		return;
1690 	}
1691 
1692 	/* Default to the tasks effective ownership */
1693 	rcu_read_lock();
1694 	cred = __task_cred(task);
1695 	uid = cred->euid;
1696 	gid = cred->egid;
1697 	rcu_read_unlock();
1698 
1699 	/*
1700 	 * Before the /proc/pid/status file was created the only way to read
1701 	 * the effective uid of a /process was to stat /proc/pid.  Reading
1702 	 * /proc/pid/status is slow enough that procps and other packages
1703 	 * kept stating /proc/pid.  To keep the rules in /proc simple I have
1704 	 * made this apply to all per process world readable and executable
1705 	 * directories.
1706 	 */
1707 	if (mode != (S_IFDIR|S_IRUGO|S_IXUGO)) {
1708 		struct mm_struct *mm;
1709 		task_lock(task);
1710 		mm = task->mm;
1711 		/* Make non-dumpable tasks owned by some root */
1712 		if (mm) {
1713 			if (get_dumpable(mm) != SUID_DUMP_USER) {
1714 				struct user_namespace *user_ns = mm->user_ns;
1715 
1716 				uid = make_kuid(user_ns, 0);
1717 				if (!uid_valid(uid))
1718 					uid = GLOBAL_ROOT_UID;
1719 
1720 				gid = make_kgid(user_ns, 0);
1721 				if (!gid_valid(gid))
1722 					gid = GLOBAL_ROOT_GID;
1723 			}
1724 		} else {
1725 			uid = GLOBAL_ROOT_UID;
1726 			gid = GLOBAL_ROOT_GID;
1727 		}
1728 		task_unlock(task);
1729 	}
1730 	*ruid = uid;
1731 	*rgid = gid;
1732 }
1733 
1734 struct inode *proc_pid_make_inode(struct super_block * sb,
1735 				  struct task_struct *task, umode_t mode)
1736 {
1737 	struct inode * inode;
1738 	struct proc_inode *ei;
1739 
1740 	/* We need a new inode */
1741 
1742 	inode = new_inode(sb);
1743 	if (!inode)
1744 		goto out;
1745 
1746 	/* Common stuff */
1747 	ei = PROC_I(inode);
1748 	inode->i_mode = mode;
1749 	inode->i_ino = get_next_ino();
1750 	inode->i_mtime = inode->i_atime = inode->i_ctime = current_time(inode);
1751 	inode->i_op = &proc_def_inode_operations;
1752 
1753 	/*
1754 	 * grab the reference to task.
1755 	 */
1756 	ei->pid = get_task_pid(task, PIDTYPE_PID);
1757 	if (!ei->pid)
1758 		goto out_unlock;
1759 
1760 	task_dump_owner(task, 0, &inode->i_uid, &inode->i_gid);
1761 	security_task_to_inode(task, inode);
1762 
1763 out:
1764 	return inode;
1765 
1766 out_unlock:
1767 	iput(inode);
1768 	return NULL;
1769 }
1770 
1771 int pid_getattr(const struct path *path, struct kstat *stat,
1772 		u32 request_mask, unsigned int query_flags)
1773 {
1774 	struct inode *inode = d_inode(path->dentry);
1775 	struct pid_namespace *pid = proc_pid_ns(inode);
1776 	struct task_struct *task;
1777 
1778 	generic_fillattr(inode, stat);
1779 
1780 	stat->uid = GLOBAL_ROOT_UID;
1781 	stat->gid = GLOBAL_ROOT_GID;
1782 	rcu_read_lock();
1783 	task = pid_task(proc_pid(inode), PIDTYPE_PID);
1784 	if (task) {
1785 		if (!has_pid_permissions(pid, task, HIDEPID_INVISIBLE)) {
1786 			rcu_read_unlock();
1787 			/*
1788 			 * This doesn't prevent learning whether PID exists,
1789 			 * it only makes getattr() consistent with readdir().
1790 			 */
1791 			return -ENOENT;
1792 		}
1793 		task_dump_owner(task, inode->i_mode, &stat->uid, &stat->gid);
1794 	}
1795 	rcu_read_unlock();
1796 	return 0;
1797 }
1798 
1799 /* dentry stuff */
1800 
1801 /*
1802  * Set <pid>/... inode ownership (can change due to setuid(), etc.)
1803  */
1804 void pid_update_inode(struct task_struct *task, struct inode *inode)
1805 {
1806 	task_dump_owner(task, inode->i_mode, &inode->i_uid, &inode->i_gid);
1807 
1808 	inode->i_mode &= ~(S_ISUID | S_ISGID);
1809 	security_task_to_inode(task, inode);
1810 }
1811 
1812 /*
1813  * Rewrite the inode's ownerships here because the owning task may have
1814  * performed a setuid(), etc.
1815  *
1816  */
1817 static int pid_revalidate(struct dentry *dentry, unsigned int flags)
1818 {
1819 	struct inode *inode;
1820 	struct task_struct *task;
1821 
1822 	if (flags & LOOKUP_RCU)
1823 		return -ECHILD;
1824 
1825 	inode = d_inode(dentry);
1826 	task = get_proc_task(inode);
1827 
1828 	if (task) {
1829 		pid_update_inode(task, inode);
1830 		put_task_struct(task);
1831 		return 1;
1832 	}
1833 	return 0;
1834 }
1835 
1836 static inline bool proc_inode_is_dead(struct inode *inode)
1837 {
1838 	return !proc_pid(inode)->tasks[PIDTYPE_PID].first;
1839 }
1840 
1841 int pid_delete_dentry(const struct dentry *dentry)
1842 {
1843 	/* Is the task we represent dead?
1844 	 * If so, then don't put the dentry on the lru list,
1845 	 * kill it immediately.
1846 	 */
1847 	return proc_inode_is_dead(d_inode(dentry));
1848 }
1849 
1850 const struct dentry_operations pid_dentry_operations =
1851 {
1852 	.d_revalidate	= pid_revalidate,
1853 	.d_delete	= pid_delete_dentry,
1854 };
1855 
1856 /* Lookups */
1857 
1858 /*
1859  * Fill a directory entry.
1860  *
1861  * If possible create the dcache entry and derive our inode number and
1862  * file type from dcache entry.
1863  *
1864  * Since all of the proc inode numbers are dynamically generated, the inode
1865  * numbers do not exist until the inode is cache.  This means creating the
1866  * the dcache entry in readdir is necessary to keep the inode numbers
1867  * reported by readdir in sync with the inode numbers reported
1868  * by stat.
1869  */
1870 bool proc_fill_cache(struct file *file, struct dir_context *ctx,
1871 	const char *name, unsigned int len,
1872 	instantiate_t instantiate, struct task_struct *task, const void *ptr)
1873 {
1874 	struct dentry *child, *dir = file->f_path.dentry;
1875 	struct qstr qname = QSTR_INIT(name, len);
1876 	struct inode *inode;
1877 	unsigned type = DT_UNKNOWN;
1878 	ino_t ino = 1;
1879 
1880 	child = d_hash_and_lookup(dir, &qname);
1881 	if (!child) {
1882 		DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
1883 		child = d_alloc_parallel(dir, &qname, &wq);
1884 		if (IS_ERR(child))
1885 			goto end_instantiate;
1886 		if (d_in_lookup(child)) {
1887 			struct dentry *res;
1888 			res = instantiate(child, task, ptr);
1889 			d_lookup_done(child);
1890 			if (unlikely(res)) {
1891 				dput(child);
1892 				child = res;
1893 				if (IS_ERR(child))
1894 					goto end_instantiate;
1895 			}
1896 		}
1897 	}
1898 	inode = d_inode(child);
1899 	ino = inode->i_ino;
1900 	type = inode->i_mode >> 12;
1901 	dput(child);
1902 end_instantiate:
1903 	return dir_emit(ctx, name, len, ino, type);
1904 }
1905 
1906 /*
1907  * dname_to_vma_addr - maps a dentry name into two unsigned longs
1908  * which represent vma start and end addresses.
1909  */
1910 static int dname_to_vma_addr(struct dentry *dentry,
1911 			     unsigned long *start, unsigned long *end)
1912 {
1913 	const char *str = dentry->d_name.name;
1914 	unsigned long long sval, eval;
1915 	unsigned int len;
1916 
1917 	if (str[0] == '0' && str[1] != '-')
1918 		return -EINVAL;
1919 	len = _parse_integer(str, 16, &sval);
1920 	if (len & KSTRTOX_OVERFLOW)
1921 		return -EINVAL;
1922 	if (sval != (unsigned long)sval)
1923 		return -EINVAL;
1924 	str += len;
1925 
1926 	if (*str != '-')
1927 		return -EINVAL;
1928 	str++;
1929 
1930 	if (str[0] == '0' && str[1])
1931 		return -EINVAL;
1932 	len = _parse_integer(str, 16, &eval);
1933 	if (len & KSTRTOX_OVERFLOW)
1934 		return -EINVAL;
1935 	if (eval != (unsigned long)eval)
1936 		return -EINVAL;
1937 	str += len;
1938 
1939 	if (*str != '\0')
1940 		return -EINVAL;
1941 
1942 	*start = sval;
1943 	*end = eval;
1944 
1945 	return 0;
1946 }
1947 
1948 static int map_files_d_revalidate(struct dentry *dentry, unsigned int flags)
1949 {
1950 	unsigned long vm_start, vm_end;
1951 	bool exact_vma_exists = false;
1952 	struct mm_struct *mm = NULL;
1953 	struct task_struct *task;
1954 	struct inode *inode;
1955 	int status = 0;
1956 
1957 	if (flags & LOOKUP_RCU)
1958 		return -ECHILD;
1959 
1960 	inode = d_inode(dentry);
1961 	task = get_proc_task(inode);
1962 	if (!task)
1963 		goto out_notask;
1964 
1965 	mm = mm_access(task, PTRACE_MODE_READ_FSCREDS);
1966 	if (IS_ERR_OR_NULL(mm))
1967 		goto out;
1968 
1969 	if (!dname_to_vma_addr(dentry, &vm_start, &vm_end)) {
1970 		down_read(&mm->mmap_sem);
1971 		exact_vma_exists = !!find_exact_vma(mm, vm_start, vm_end);
1972 		up_read(&mm->mmap_sem);
1973 	}
1974 
1975 	mmput(mm);
1976 
1977 	if (exact_vma_exists) {
1978 		task_dump_owner(task, 0, &inode->i_uid, &inode->i_gid);
1979 
1980 		security_task_to_inode(task, inode);
1981 		status = 1;
1982 	}
1983 
1984 out:
1985 	put_task_struct(task);
1986 
1987 out_notask:
1988 	return status;
1989 }
1990 
1991 static const struct dentry_operations tid_map_files_dentry_operations = {
1992 	.d_revalidate	= map_files_d_revalidate,
1993 	.d_delete	= pid_delete_dentry,
1994 };
1995 
1996 static int map_files_get_link(struct dentry *dentry, struct path *path)
1997 {
1998 	unsigned long vm_start, vm_end;
1999 	struct vm_area_struct *vma;
2000 	struct task_struct *task;
2001 	struct mm_struct *mm;
2002 	int rc;
2003 
2004 	rc = -ENOENT;
2005 	task = get_proc_task(d_inode(dentry));
2006 	if (!task)
2007 		goto out;
2008 
2009 	mm = get_task_mm(task);
2010 	put_task_struct(task);
2011 	if (!mm)
2012 		goto out;
2013 
2014 	rc = dname_to_vma_addr(dentry, &vm_start, &vm_end);
2015 	if (rc)
2016 		goto out_mmput;
2017 
2018 	rc = -ENOENT;
2019 	down_read(&mm->mmap_sem);
2020 	vma = find_exact_vma(mm, vm_start, vm_end);
2021 	if (vma && vma->vm_file) {
2022 		*path = vma->vm_file->f_path;
2023 		path_get(path);
2024 		rc = 0;
2025 	}
2026 	up_read(&mm->mmap_sem);
2027 
2028 out_mmput:
2029 	mmput(mm);
2030 out:
2031 	return rc;
2032 }
2033 
2034 struct map_files_info {
2035 	unsigned long	start;
2036 	unsigned long	end;
2037 	fmode_t		mode;
2038 };
2039 
2040 /*
2041  * Only allow CAP_SYS_ADMIN to follow the links, due to concerns about how the
2042  * symlinks may be used to bypass permissions on ancestor directories in the
2043  * path to the file in question.
2044  */
2045 static const char *
2046 proc_map_files_get_link(struct dentry *dentry,
2047 			struct inode *inode,
2048 		        struct delayed_call *done)
2049 {
2050 	if (!capable(CAP_SYS_ADMIN))
2051 		return ERR_PTR(-EPERM);
2052 
2053 	return proc_pid_get_link(dentry, inode, done);
2054 }
2055 
2056 /*
2057  * Identical to proc_pid_link_inode_operations except for get_link()
2058  */
2059 static const struct inode_operations proc_map_files_link_inode_operations = {
2060 	.readlink	= proc_pid_readlink,
2061 	.get_link	= proc_map_files_get_link,
2062 	.setattr	= proc_setattr,
2063 };
2064 
2065 static struct dentry *
2066 proc_map_files_instantiate(struct dentry *dentry,
2067 			   struct task_struct *task, const void *ptr)
2068 {
2069 	fmode_t mode = (fmode_t)(unsigned long)ptr;
2070 	struct proc_inode *ei;
2071 	struct inode *inode;
2072 
2073 	inode = proc_pid_make_inode(dentry->d_sb, task, S_IFLNK |
2074 				    ((mode & FMODE_READ ) ? S_IRUSR : 0) |
2075 				    ((mode & FMODE_WRITE) ? S_IWUSR : 0));
2076 	if (!inode)
2077 		return ERR_PTR(-ENOENT);
2078 
2079 	ei = PROC_I(inode);
2080 	ei->op.proc_get_link = map_files_get_link;
2081 
2082 	inode->i_op = &proc_map_files_link_inode_operations;
2083 	inode->i_size = 64;
2084 
2085 	d_set_d_op(dentry, &tid_map_files_dentry_operations);
2086 	return d_splice_alias(inode, dentry);
2087 }
2088 
2089 static struct dentry *proc_map_files_lookup(struct inode *dir,
2090 		struct dentry *dentry, unsigned int flags)
2091 {
2092 	unsigned long vm_start, vm_end;
2093 	struct vm_area_struct *vma;
2094 	struct task_struct *task;
2095 	struct dentry *result;
2096 	struct mm_struct *mm;
2097 
2098 	result = ERR_PTR(-ENOENT);
2099 	task = get_proc_task(dir);
2100 	if (!task)
2101 		goto out;
2102 
2103 	result = ERR_PTR(-EACCES);
2104 	if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS))
2105 		goto out_put_task;
2106 
2107 	result = ERR_PTR(-ENOENT);
2108 	if (dname_to_vma_addr(dentry, &vm_start, &vm_end))
2109 		goto out_put_task;
2110 
2111 	mm = get_task_mm(task);
2112 	if (!mm)
2113 		goto out_put_task;
2114 
2115 	down_read(&mm->mmap_sem);
2116 	vma = find_exact_vma(mm, vm_start, vm_end);
2117 	if (!vma)
2118 		goto out_no_vma;
2119 
2120 	if (vma->vm_file)
2121 		result = proc_map_files_instantiate(dentry, task,
2122 				(void *)(unsigned long)vma->vm_file->f_mode);
2123 
2124 out_no_vma:
2125 	up_read(&mm->mmap_sem);
2126 	mmput(mm);
2127 out_put_task:
2128 	put_task_struct(task);
2129 out:
2130 	return result;
2131 }
2132 
2133 static const struct inode_operations proc_map_files_inode_operations = {
2134 	.lookup		= proc_map_files_lookup,
2135 	.permission	= proc_fd_permission,
2136 	.setattr	= proc_setattr,
2137 };
2138 
2139 static int
2140 proc_map_files_readdir(struct file *file, struct dir_context *ctx)
2141 {
2142 	struct vm_area_struct *vma;
2143 	struct task_struct *task;
2144 	struct mm_struct *mm;
2145 	unsigned long nr_files, pos, i;
2146 	GENRADIX(struct map_files_info) fa;
2147 	struct map_files_info *p;
2148 	int ret;
2149 
2150 	genradix_init(&fa);
2151 
2152 	ret = -ENOENT;
2153 	task = get_proc_task(file_inode(file));
2154 	if (!task)
2155 		goto out;
2156 
2157 	ret = -EACCES;
2158 	if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS))
2159 		goto out_put_task;
2160 
2161 	ret = 0;
2162 	if (!dir_emit_dots(file, ctx))
2163 		goto out_put_task;
2164 
2165 	mm = get_task_mm(task);
2166 	if (!mm)
2167 		goto out_put_task;
2168 	down_read(&mm->mmap_sem);
2169 
2170 	nr_files = 0;
2171 
2172 	/*
2173 	 * We need two passes here:
2174 	 *
2175 	 *  1) Collect vmas of mapped files with mmap_sem taken
2176 	 *  2) Release mmap_sem and instantiate entries
2177 	 *
2178 	 * otherwise we get lockdep complained, since filldir()
2179 	 * routine might require mmap_sem taken in might_fault().
2180 	 */
2181 
2182 	for (vma = mm->mmap, pos = 2; vma; vma = vma->vm_next) {
2183 		if (!vma->vm_file)
2184 			continue;
2185 		if (++pos <= ctx->pos)
2186 			continue;
2187 
2188 		p = genradix_ptr_alloc(&fa, nr_files++, GFP_KERNEL);
2189 		if (!p) {
2190 			ret = -ENOMEM;
2191 			up_read(&mm->mmap_sem);
2192 			mmput(mm);
2193 			goto out_put_task;
2194 		}
2195 
2196 		p->start = vma->vm_start;
2197 		p->end = vma->vm_end;
2198 		p->mode = vma->vm_file->f_mode;
2199 	}
2200 	up_read(&mm->mmap_sem);
2201 	mmput(mm);
2202 
2203 	for (i = 0; i < nr_files; i++) {
2204 		char buf[4 * sizeof(long) + 2];	/* max: %lx-%lx\0 */
2205 		unsigned int len;
2206 
2207 		p = genradix_ptr(&fa, i);
2208 		len = snprintf(buf, sizeof(buf), "%lx-%lx", p->start, p->end);
2209 		if (!proc_fill_cache(file, ctx,
2210 				      buf, len,
2211 				      proc_map_files_instantiate,
2212 				      task,
2213 				      (void *)(unsigned long)p->mode))
2214 			break;
2215 		ctx->pos++;
2216 	}
2217 
2218 out_put_task:
2219 	put_task_struct(task);
2220 out:
2221 	genradix_free(&fa);
2222 	return ret;
2223 }
2224 
2225 static const struct file_operations proc_map_files_operations = {
2226 	.read		= generic_read_dir,
2227 	.iterate_shared	= proc_map_files_readdir,
2228 	.llseek		= generic_file_llseek,
2229 };
2230 
2231 #if defined(CONFIG_CHECKPOINT_RESTORE) && defined(CONFIG_POSIX_TIMERS)
2232 struct timers_private {
2233 	struct pid *pid;
2234 	struct task_struct *task;
2235 	struct sighand_struct *sighand;
2236 	struct pid_namespace *ns;
2237 	unsigned long flags;
2238 };
2239 
2240 static void *timers_start(struct seq_file *m, loff_t *pos)
2241 {
2242 	struct timers_private *tp = m->private;
2243 
2244 	tp->task = get_pid_task(tp->pid, PIDTYPE_PID);
2245 	if (!tp->task)
2246 		return ERR_PTR(-ESRCH);
2247 
2248 	tp->sighand = lock_task_sighand(tp->task, &tp->flags);
2249 	if (!tp->sighand)
2250 		return ERR_PTR(-ESRCH);
2251 
2252 	return seq_list_start(&tp->task->signal->posix_timers, *pos);
2253 }
2254 
2255 static void *timers_next(struct seq_file *m, void *v, loff_t *pos)
2256 {
2257 	struct timers_private *tp = m->private;
2258 	return seq_list_next(v, &tp->task->signal->posix_timers, pos);
2259 }
2260 
2261 static void timers_stop(struct seq_file *m, void *v)
2262 {
2263 	struct timers_private *tp = m->private;
2264 
2265 	if (tp->sighand) {
2266 		unlock_task_sighand(tp->task, &tp->flags);
2267 		tp->sighand = NULL;
2268 	}
2269 
2270 	if (tp->task) {
2271 		put_task_struct(tp->task);
2272 		tp->task = NULL;
2273 	}
2274 }
2275 
2276 static int show_timer(struct seq_file *m, void *v)
2277 {
2278 	struct k_itimer *timer;
2279 	struct timers_private *tp = m->private;
2280 	int notify;
2281 	static const char * const nstr[] = {
2282 		[SIGEV_SIGNAL] = "signal",
2283 		[SIGEV_NONE] = "none",
2284 		[SIGEV_THREAD] = "thread",
2285 	};
2286 
2287 	timer = list_entry((struct list_head *)v, struct k_itimer, list);
2288 	notify = timer->it_sigev_notify;
2289 
2290 	seq_printf(m, "ID: %d\n", timer->it_id);
2291 	seq_printf(m, "signal: %d/%px\n",
2292 		   timer->sigq->info.si_signo,
2293 		   timer->sigq->info.si_value.sival_ptr);
2294 	seq_printf(m, "notify: %s/%s.%d\n",
2295 		   nstr[notify & ~SIGEV_THREAD_ID],
2296 		   (notify & SIGEV_THREAD_ID) ? "tid" : "pid",
2297 		   pid_nr_ns(timer->it_pid, tp->ns));
2298 	seq_printf(m, "ClockID: %d\n", timer->it_clock);
2299 
2300 	return 0;
2301 }
2302 
2303 static const struct seq_operations proc_timers_seq_ops = {
2304 	.start	= timers_start,
2305 	.next	= timers_next,
2306 	.stop	= timers_stop,
2307 	.show	= show_timer,
2308 };
2309 
2310 static int proc_timers_open(struct inode *inode, struct file *file)
2311 {
2312 	struct timers_private *tp;
2313 
2314 	tp = __seq_open_private(file, &proc_timers_seq_ops,
2315 			sizeof(struct timers_private));
2316 	if (!tp)
2317 		return -ENOMEM;
2318 
2319 	tp->pid = proc_pid(inode);
2320 	tp->ns = proc_pid_ns(inode);
2321 	return 0;
2322 }
2323 
2324 static const struct file_operations proc_timers_operations = {
2325 	.open		= proc_timers_open,
2326 	.read		= seq_read,
2327 	.llseek		= seq_lseek,
2328 	.release	= seq_release_private,
2329 };
2330 #endif
2331 
2332 static ssize_t timerslack_ns_write(struct file *file, const char __user *buf,
2333 					size_t count, loff_t *offset)
2334 {
2335 	struct inode *inode = file_inode(file);
2336 	struct task_struct *p;
2337 	u64 slack_ns;
2338 	int err;
2339 
2340 	err = kstrtoull_from_user(buf, count, 10, &slack_ns);
2341 	if (err < 0)
2342 		return err;
2343 
2344 	p = get_proc_task(inode);
2345 	if (!p)
2346 		return -ESRCH;
2347 
2348 	if (p != current) {
2349 		rcu_read_lock();
2350 		if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
2351 			rcu_read_unlock();
2352 			count = -EPERM;
2353 			goto out;
2354 		}
2355 		rcu_read_unlock();
2356 
2357 		err = security_task_setscheduler(p);
2358 		if (err) {
2359 			count = err;
2360 			goto out;
2361 		}
2362 	}
2363 
2364 	task_lock(p);
2365 	if (slack_ns == 0)
2366 		p->timer_slack_ns = p->default_timer_slack_ns;
2367 	else
2368 		p->timer_slack_ns = slack_ns;
2369 	task_unlock(p);
2370 
2371 out:
2372 	put_task_struct(p);
2373 
2374 	return count;
2375 }
2376 
2377 static int timerslack_ns_show(struct seq_file *m, void *v)
2378 {
2379 	struct inode *inode = m->private;
2380 	struct task_struct *p;
2381 	int err = 0;
2382 
2383 	p = get_proc_task(inode);
2384 	if (!p)
2385 		return -ESRCH;
2386 
2387 	if (p != current) {
2388 		rcu_read_lock();
2389 		if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
2390 			rcu_read_unlock();
2391 			err = -EPERM;
2392 			goto out;
2393 		}
2394 		rcu_read_unlock();
2395 
2396 		err = security_task_getscheduler(p);
2397 		if (err)
2398 			goto out;
2399 	}
2400 
2401 	task_lock(p);
2402 	seq_printf(m, "%llu\n", p->timer_slack_ns);
2403 	task_unlock(p);
2404 
2405 out:
2406 	put_task_struct(p);
2407 
2408 	return err;
2409 }
2410 
2411 static int timerslack_ns_open(struct inode *inode, struct file *filp)
2412 {
2413 	return single_open(filp, timerslack_ns_show, inode);
2414 }
2415 
2416 static const struct file_operations proc_pid_set_timerslack_ns_operations = {
2417 	.open		= timerslack_ns_open,
2418 	.read		= seq_read,
2419 	.write		= timerslack_ns_write,
2420 	.llseek		= seq_lseek,
2421 	.release	= single_release,
2422 };
2423 
2424 static struct dentry *proc_pident_instantiate(struct dentry *dentry,
2425 	struct task_struct *task, const void *ptr)
2426 {
2427 	const struct pid_entry *p = ptr;
2428 	struct inode *inode;
2429 	struct proc_inode *ei;
2430 
2431 	inode = proc_pid_make_inode(dentry->d_sb, task, p->mode);
2432 	if (!inode)
2433 		return ERR_PTR(-ENOENT);
2434 
2435 	ei = PROC_I(inode);
2436 	if (S_ISDIR(inode->i_mode))
2437 		set_nlink(inode, 2);	/* Use getattr to fix if necessary */
2438 	if (p->iop)
2439 		inode->i_op = p->iop;
2440 	if (p->fop)
2441 		inode->i_fop = p->fop;
2442 	ei->op = p->op;
2443 	pid_update_inode(task, inode);
2444 	d_set_d_op(dentry, &pid_dentry_operations);
2445 	return d_splice_alias(inode, dentry);
2446 }
2447 
2448 static struct dentry *proc_pident_lookup(struct inode *dir,
2449 					 struct dentry *dentry,
2450 					 const struct pid_entry *p,
2451 					 const struct pid_entry *end)
2452 {
2453 	struct task_struct *task = get_proc_task(dir);
2454 	struct dentry *res = ERR_PTR(-ENOENT);
2455 
2456 	if (!task)
2457 		goto out_no_task;
2458 
2459 	/*
2460 	 * Yes, it does not scale. And it should not. Don't add
2461 	 * new entries into /proc/<tgid>/ without very good reasons.
2462 	 */
2463 	for (; p < end; p++) {
2464 		if (p->len != dentry->d_name.len)
2465 			continue;
2466 		if (!memcmp(dentry->d_name.name, p->name, p->len)) {
2467 			res = proc_pident_instantiate(dentry, task, p);
2468 			break;
2469 		}
2470 	}
2471 	put_task_struct(task);
2472 out_no_task:
2473 	return res;
2474 }
2475 
2476 static int proc_pident_readdir(struct file *file, struct dir_context *ctx,
2477 		const struct pid_entry *ents, unsigned int nents)
2478 {
2479 	struct task_struct *task = get_proc_task(file_inode(file));
2480 	const struct pid_entry *p;
2481 
2482 	if (!task)
2483 		return -ENOENT;
2484 
2485 	if (!dir_emit_dots(file, ctx))
2486 		goto out;
2487 
2488 	if (ctx->pos >= nents + 2)
2489 		goto out;
2490 
2491 	for (p = ents + (ctx->pos - 2); p < ents + nents; p++) {
2492 		if (!proc_fill_cache(file, ctx, p->name, p->len,
2493 				proc_pident_instantiate, task, p))
2494 			break;
2495 		ctx->pos++;
2496 	}
2497 out:
2498 	put_task_struct(task);
2499 	return 0;
2500 }
2501 
2502 #ifdef CONFIG_SECURITY
2503 static ssize_t proc_pid_attr_read(struct file * file, char __user * buf,
2504 				  size_t count, loff_t *ppos)
2505 {
2506 	struct inode * inode = file_inode(file);
2507 	char *p = NULL;
2508 	ssize_t length;
2509 	struct task_struct *task = get_proc_task(inode);
2510 
2511 	if (!task)
2512 		return -ESRCH;
2513 
2514 	length = security_getprocattr(task, PROC_I(inode)->op.lsm,
2515 				      (char*)file->f_path.dentry->d_name.name,
2516 				      &p);
2517 	put_task_struct(task);
2518 	if (length > 0)
2519 		length = simple_read_from_buffer(buf, count, ppos, p, length);
2520 	kfree(p);
2521 	return length;
2522 }
2523 
2524 static ssize_t proc_pid_attr_write(struct file * file, const char __user * buf,
2525 				   size_t count, loff_t *ppos)
2526 {
2527 	struct inode * inode = file_inode(file);
2528 	struct task_struct *task;
2529 	void *page;
2530 	int rv;
2531 
2532 	rcu_read_lock();
2533 	task = pid_task(proc_pid(inode), PIDTYPE_PID);
2534 	if (!task) {
2535 		rcu_read_unlock();
2536 		return -ESRCH;
2537 	}
2538 	/* A task may only write its own attributes. */
2539 	if (current != task) {
2540 		rcu_read_unlock();
2541 		return -EACCES;
2542 	}
2543 	rcu_read_unlock();
2544 
2545 	if (count > PAGE_SIZE)
2546 		count = PAGE_SIZE;
2547 
2548 	/* No partial writes. */
2549 	if (*ppos != 0)
2550 		return -EINVAL;
2551 
2552 	page = memdup_user(buf, count);
2553 	if (IS_ERR(page)) {
2554 		rv = PTR_ERR(page);
2555 		goto out;
2556 	}
2557 
2558 	/* Guard against adverse ptrace interaction */
2559 	rv = mutex_lock_interruptible(&current->signal->cred_guard_mutex);
2560 	if (rv < 0)
2561 		goto out_free;
2562 
2563 	rv = security_setprocattr(PROC_I(inode)->op.lsm,
2564 				  file->f_path.dentry->d_name.name, page,
2565 				  count);
2566 	mutex_unlock(&current->signal->cred_guard_mutex);
2567 out_free:
2568 	kfree(page);
2569 out:
2570 	return rv;
2571 }
2572 
2573 static const struct file_operations proc_pid_attr_operations = {
2574 	.read		= proc_pid_attr_read,
2575 	.write		= proc_pid_attr_write,
2576 	.llseek		= generic_file_llseek,
2577 };
2578 
2579 #define LSM_DIR_OPS(LSM) \
2580 static int proc_##LSM##_attr_dir_iterate(struct file *filp, \
2581 			     struct dir_context *ctx) \
2582 { \
2583 	return proc_pident_readdir(filp, ctx, \
2584 				   LSM##_attr_dir_stuff, \
2585 				   ARRAY_SIZE(LSM##_attr_dir_stuff)); \
2586 } \
2587 \
2588 static const struct file_operations proc_##LSM##_attr_dir_ops = { \
2589 	.read		= generic_read_dir, \
2590 	.iterate	= proc_##LSM##_attr_dir_iterate, \
2591 	.llseek		= default_llseek, \
2592 }; \
2593 \
2594 static struct dentry *proc_##LSM##_attr_dir_lookup(struct inode *dir, \
2595 				struct dentry *dentry, unsigned int flags) \
2596 { \
2597 	return proc_pident_lookup(dir, dentry, \
2598 				  LSM##_attr_dir_stuff, \
2599 				  LSM##_attr_dir_stuff + ARRAY_SIZE(LSM##_attr_dir_stuff)); \
2600 } \
2601 \
2602 static const struct inode_operations proc_##LSM##_attr_dir_inode_ops = { \
2603 	.lookup		= proc_##LSM##_attr_dir_lookup, \
2604 	.getattr	= pid_getattr, \
2605 	.setattr	= proc_setattr, \
2606 }
2607 
2608 #ifdef CONFIG_SECURITY_SMACK
2609 static const struct pid_entry smack_attr_dir_stuff[] = {
2610 	ATTR("smack", "current",	0666),
2611 };
2612 LSM_DIR_OPS(smack);
2613 #endif
2614 
2615 static const struct pid_entry attr_dir_stuff[] = {
2616 	ATTR(NULL, "current",		0666),
2617 	ATTR(NULL, "prev",		0444),
2618 	ATTR(NULL, "exec",		0666),
2619 	ATTR(NULL, "fscreate",		0666),
2620 	ATTR(NULL, "keycreate",		0666),
2621 	ATTR(NULL, "sockcreate",	0666),
2622 #ifdef CONFIG_SECURITY_SMACK
2623 	DIR("smack",			0555,
2624 	    proc_smack_attr_dir_inode_ops, proc_smack_attr_dir_ops),
2625 #endif
2626 };
2627 
2628 static int proc_attr_dir_readdir(struct file *file, struct dir_context *ctx)
2629 {
2630 	return proc_pident_readdir(file, ctx,
2631 				   attr_dir_stuff, ARRAY_SIZE(attr_dir_stuff));
2632 }
2633 
2634 static const struct file_operations proc_attr_dir_operations = {
2635 	.read		= generic_read_dir,
2636 	.iterate_shared	= proc_attr_dir_readdir,
2637 	.llseek		= generic_file_llseek,
2638 };
2639 
2640 static struct dentry *proc_attr_dir_lookup(struct inode *dir,
2641 				struct dentry *dentry, unsigned int flags)
2642 {
2643 	return proc_pident_lookup(dir, dentry,
2644 				  attr_dir_stuff,
2645 				  attr_dir_stuff + ARRAY_SIZE(attr_dir_stuff));
2646 }
2647 
2648 static const struct inode_operations proc_attr_dir_inode_operations = {
2649 	.lookup		= proc_attr_dir_lookup,
2650 	.getattr	= pid_getattr,
2651 	.setattr	= proc_setattr,
2652 };
2653 
2654 #endif
2655 
2656 #ifdef CONFIG_ELF_CORE
2657 static ssize_t proc_coredump_filter_read(struct file *file, char __user *buf,
2658 					 size_t count, loff_t *ppos)
2659 {
2660 	struct task_struct *task = get_proc_task(file_inode(file));
2661 	struct mm_struct *mm;
2662 	char buffer[PROC_NUMBUF];
2663 	size_t len;
2664 	int ret;
2665 
2666 	if (!task)
2667 		return -ESRCH;
2668 
2669 	ret = 0;
2670 	mm = get_task_mm(task);
2671 	if (mm) {
2672 		len = snprintf(buffer, sizeof(buffer), "%08lx\n",
2673 			       ((mm->flags & MMF_DUMP_FILTER_MASK) >>
2674 				MMF_DUMP_FILTER_SHIFT));
2675 		mmput(mm);
2676 		ret = simple_read_from_buffer(buf, count, ppos, buffer, len);
2677 	}
2678 
2679 	put_task_struct(task);
2680 
2681 	return ret;
2682 }
2683 
2684 static ssize_t proc_coredump_filter_write(struct file *file,
2685 					  const char __user *buf,
2686 					  size_t count,
2687 					  loff_t *ppos)
2688 {
2689 	struct task_struct *task;
2690 	struct mm_struct *mm;
2691 	unsigned int val;
2692 	int ret;
2693 	int i;
2694 	unsigned long mask;
2695 
2696 	ret = kstrtouint_from_user(buf, count, 0, &val);
2697 	if (ret < 0)
2698 		return ret;
2699 
2700 	ret = -ESRCH;
2701 	task = get_proc_task(file_inode(file));
2702 	if (!task)
2703 		goto out_no_task;
2704 
2705 	mm = get_task_mm(task);
2706 	if (!mm)
2707 		goto out_no_mm;
2708 	ret = 0;
2709 
2710 	for (i = 0, mask = 1; i < MMF_DUMP_FILTER_BITS; i++, mask <<= 1) {
2711 		if (val & mask)
2712 			set_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags);
2713 		else
2714 			clear_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags);
2715 	}
2716 
2717 	mmput(mm);
2718  out_no_mm:
2719 	put_task_struct(task);
2720  out_no_task:
2721 	if (ret < 0)
2722 		return ret;
2723 	return count;
2724 }
2725 
2726 static const struct file_operations proc_coredump_filter_operations = {
2727 	.read		= proc_coredump_filter_read,
2728 	.write		= proc_coredump_filter_write,
2729 	.llseek		= generic_file_llseek,
2730 };
2731 #endif
2732 
2733 #ifdef CONFIG_TASK_IO_ACCOUNTING
2734 static int do_io_accounting(struct task_struct *task, struct seq_file *m, int whole)
2735 {
2736 	struct task_io_accounting acct = task->ioac;
2737 	unsigned long flags;
2738 	int result;
2739 
2740 	result = mutex_lock_killable(&task->signal->cred_guard_mutex);
2741 	if (result)
2742 		return result;
2743 
2744 	if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS)) {
2745 		result = -EACCES;
2746 		goto out_unlock;
2747 	}
2748 
2749 	if (whole && lock_task_sighand(task, &flags)) {
2750 		struct task_struct *t = task;
2751 
2752 		task_io_accounting_add(&acct, &task->signal->ioac);
2753 		while_each_thread(task, t)
2754 			task_io_accounting_add(&acct, &t->ioac);
2755 
2756 		unlock_task_sighand(task, &flags);
2757 	}
2758 	seq_printf(m,
2759 		   "rchar: %llu\n"
2760 		   "wchar: %llu\n"
2761 		   "syscr: %llu\n"
2762 		   "syscw: %llu\n"
2763 		   "read_bytes: %llu\n"
2764 		   "write_bytes: %llu\n"
2765 		   "cancelled_write_bytes: %llu\n",
2766 		   (unsigned long long)acct.rchar,
2767 		   (unsigned long long)acct.wchar,
2768 		   (unsigned long long)acct.syscr,
2769 		   (unsigned long long)acct.syscw,
2770 		   (unsigned long long)acct.read_bytes,
2771 		   (unsigned long long)acct.write_bytes,
2772 		   (unsigned long long)acct.cancelled_write_bytes);
2773 	result = 0;
2774 
2775 out_unlock:
2776 	mutex_unlock(&task->signal->cred_guard_mutex);
2777 	return result;
2778 }
2779 
2780 static int proc_tid_io_accounting(struct seq_file *m, struct pid_namespace *ns,
2781 				  struct pid *pid, struct task_struct *task)
2782 {
2783 	return do_io_accounting(task, m, 0);
2784 }
2785 
2786 static int proc_tgid_io_accounting(struct seq_file *m, struct pid_namespace *ns,
2787 				   struct pid *pid, struct task_struct *task)
2788 {
2789 	return do_io_accounting(task, m, 1);
2790 }
2791 #endif /* CONFIG_TASK_IO_ACCOUNTING */
2792 
2793 #ifdef CONFIG_USER_NS
2794 static int proc_id_map_open(struct inode *inode, struct file *file,
2795 	const struct seq_operations *seq_ops)
2796 {
2797 	struct user_namespace *ns = NULL;
2798 	struct task_struct *task;
2799 	struct seq_file *seq;
2800 	int ret = -EINVAL;
2801 
2802 	task = get_proc_task(inode);
2803 	if (task) {
2804 		rcu_read_lock();
2805 		ns = get_user_ns(task_cred_xxx(task, user_ns));
2806 		rcu_read_unlock();
2807 		put_task_struct(task);
2808 	}
2809 	if (!ns)
2810 		goto err;
2811 
2812 	ret = seq_open(file, seq_ops);
2813 	if (ret)
2814 		goto err_put_ns;
2815 
2816 	seq = file->private_data;
2817 	seq->private = ns;
2818 
2819 	return 0;
2820 err_put_ns:
2821 	put_user_ns(ns);
2822 err:
2823 	return ret;
2824 }
2825 
2826 static int proc_id_map_release(struct inode *inode, struct file *file)
2827 {
2828 	struct seq_file *seq = file->private_data;
2829 	struct user_namespace *ns = seq->private;
2830 	put_user_ns(ns);
2831 	return seq_release(inode, file);
2832 }
2833 
2834 static int proc_uid_map_open(struct inode *inode, struct file *file)
2835 {
2836 	return proc_id_map_open(inode, file, &proc_uid_seq_operations);
2837 }
2838 
2839 static int proc_gid_map_open(struct inode *inode, struct file *file)
2840 {
2841 	return proc_id_map_open(inode, file, &proc_gid_seq_operations);
2842 }
2843 
2844 static int proc_projid_map_open(struct inode *inode, struct file *file)
2845 {
2846 	return proc_id_map_open(inode, file, &proc_projid_seq_operations);
2847 }
2848 
2849 static const struct file_operations proc_uid_map_operations = {
2850 	.open		= proc_uid_map_open,
2851 	.write		= proc_uid_map_write,
2852 	.read		= seq_read,
2853 	.llseek		= seq_lseek,
2854 	.release	= proc_id_map_release,
2855 };
2856 
2857 static const struct file_operations proc_gid_map_operations = {
2858 	.open		= proc_gid_map_open,
2859 	.write		= proc_gid_map_write,
2860 	.read		= seq_read,
2861 	.llseek		= seq_lseek,
2862 	.release	= proc_id_map_release,
2863 };
2864 
2865 static const struct file_operations proc_projid_map_operations = {
2866 	.open		= proc_projid_map_open,
2867 	.write		= proc_projid_map_write,
2868 	.read		= seq_read,
2869 	.llseek		= seq_lseek,
2870 	.release	= proc_id_map_release,
2871 };
2872 
2873 static int proc_setgroups_open(struct inode *inode, struct file *file)
2874 {
2875 	struct user_namespace *ns = NULL;
2876 	struct task_struct *task;
2877 	int ret;
2878 
2879 	ret = -ESRCH;
2880 	task = get_proc_task(inode);
2881 	if (task) {
2882 		rcu_read_lock();
2883 		ns = get_user_ns(task_cred_xxx(task, user_ns));
2884 		rcu_read_unlock();
2885 		put_task_struct(task);
2886 	}
2887 	if (!ns)
2888 		goto err;
2889 
2890 	if (file->f_mode & FMODE_WRITE) {
2891 		ret = -EACCES;
2892 		if (!ns_capable(ns, CAP_SYS_ADMIN))
2893 			goto err_put_ns;
2894 	}
2895 
2896 	ret = single_open(file, &proc_setgroups_show, ns);
2897 	if (ret)
2898 		goto err_put_ns;
2899 
2900 	return 0;
2901 err_put_ns:
2902 	put_user_ns(ns);
2903 err:
2904 	return ret;
2905 }
2906 
2907 static int proc_setgroups_release(struct inode *inode, struct file *file)
2908 {
2909 	struct seq_file *seq = file->private_data;
2910 	struct user_namespace *ns = seq->private;
2911 	int ret = single_release(inode, file);
2912 	put_user_ns(ns);
2913 	return ret;
2914 }
2915 
2916 static const struct file_operations proc_setgroups_operations = {
2917 	.open		= proc_setgroups_open,
2918 	.write		= proc_setgroups_write,
2919 	.read		= seq_read,
2920 	.llseek		= seq_lseek,
2921 	.release	= proc_setgroups_release,
2922 };
2923 #endif /* CONFIG_USER_NS */
2924 
2925 static int proc_pid_personality(struct seq_file *m, struct pid_namespace *ns,
2926 				struct pid *pid, struct task_struct *task)
2927 {
2928 	int err = lock_trace(task);
2929 	if (!err) {
2930 		seq_printf(m, "%08x\n", task->personality);
2931 		unlock_trace(task);
2932 	}
2933 	return err;
2934 }
2935 
2936 #ifdef CONFIG_LIVEPATCH
2937 static int proc_pid_patch_state(struct seq_file *m, struct pid_namespace *ns,
2938 				struct pid *pid, struct task_struct *task)
2939 {
2940 	seq_printf(m, "%d\n", task->patch_state);
2941 	return 0;
2942 }
2943 #endif /* CONFIG_LIVEPATCH */
2944 
2945 #ifdef CONFIG_STACKLEAK_METRICS
2946 static int proc_stack_depth(struct seq_file *m, struct pid_namespace *ns,
2947 				struct pid *pid, struct task_struct *task)
2948 {
2949 	unsigned long prev_depth = THREAD_SIZE -
2950 				(task->prev_lowest_stack & (THREAD_SIZE - 1));
2951 	unsigned long depth = THREAD_SIZE -
2952 				(task->lowest_stack & (THREAD_SIZE - 1));
2953 
2954 	seq_printf(m, "previous stack depth: %lu\nstack depth: %lu\n",
2955 							prev_depth, depth);
2956 	return 0;
2957 }
2958 #endif /* CONFIG_STACKLEAK_METRICS */
2959 
2960 /*
2961  * Thread groups
2962  */
2963 static const struct file_operations proc_task_operations;
2964 static const struct inode_operations proc_task_inode_operations;
2965 
2966 static const struct pid_entry tgid_base_stuff[] = {
2967 	DIR("task",       S_IRUGO|S_IXUGO, proc_task_inode_operations, proc_task_operations),
2968 	DIR("fd",         S_IRUSR|S_IXUSR, proc_fd_inode_operations, proc_fd_operations),
2969 	DIR("map_files",  S_IRUSR|S_IXUSR, proc_map_files_inode_operations, proc_map_files_operations),
2970 	DIR("fdinfo",     S_IRUSR|S_IXUSR, proc_fdinfo_inode_operations, proc_fdinfo_operations),
2971 	DIR("ns",	  S_IRUSR|S_IXUGO, proc_ns_dir_inode_operations, proc_ns_dir_operations),
2972 #ifdef CONFIG_NET
2973 	DIR("net",        S_IRUGO|S_IXUGO, proc_net_inode_operations, proc_net_operations),
2974 #endif
2975 	REG("environ",    S_IRUSR, proc_environ_operations),
2976 	REG("auxv",       S_IRUSR, proc_auxv_operations),
2977 	ONE("status",     S_IRUGO, proc_pid_status),
2978 	ONE("personality", S_IRUSR, proc_pid_personality),
2979 	ONE("limits",	  S_IRUGO, proc_pid_limits),
2980 #ifdef CONFIG_SCHED_DEBUG
2981 	REG("sched",      S_IRUGO|S_IWUSR, proc_pid_sched_operations),
2982 #endif
2983 #ifdef CONFIG_SCHED_AUTOGROUP
2984 	REG("autogroup",  S_IRUGO|S_IWUSR, proc_pid_sched_autogroup_operations),
2985 #endif
2986 	REG("comm",      S_IRUGO|S_IWUSR, proc_pid_set_comm_operations),
2987 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK
2988 	ONE("syscall",    S_IRUSR, proc_pid_syscall),
2989 #endif
2990 	REG("cmdline",    S_IRUGO, proc_pid_cmdline_ops),
2991 	ONE("stat",       S_IRUGO, proc_tgid_stat),
2992 	ONE("statm",      S_IRUGO, proc_pid_statm),
2993 	REG("maps",       S_IRUGO, proc_pid_maps_operations),
2994 #ifdef CONFIG_NUMA
2995 	REG("numa_maps",  S_IRUGO, proc_pid_numa_maps_operations),
2996 #endif
2997 	REG("mem",        S_IRUSR|S_IWUSR, proc_mem_operations),
2998 	LNK("cwd",        proc_cwd_link),
2999 	LNK("root",       proc_root_link),
3000 	LNK("exe",        proc_exe_link),
3001 	REG("mounts",     S_IRUGO, proc_mounts_operations),
3002 	REG("mountinfo",  S_IRUGO, proc_mountinfo_operations),
3003 	REG("mountstats", S_IRUSR, proc_mountstats_operations),
3004 #ifdef CONFIG_PROC_PAGE_MONITOR
3005 	REG("clear_refs", S_IWUSR, proc_clear_refs_operations),
3006 	REG("smaps",      S_IRUGO, proc_pid_smaps_operations),
3007 	REG("smaps_rollup", S_IRUGO, proc_pid_smaps_rollup_operations),
3008 	REG("pagemap",    S_IRUSR, proc_pagemap_operations),
3009 #endif
3010 #ifdef CONFIG_SECURITY
3011 	DIR("attr",       S_IRUGO|S_IXUGO, proc_attr_dir_inode_operations, proc_attr_dir_operations),
3012 #endif
3013 #ifdef CONFIG_KALLSYMS
3014 	ONE("wchan",      S_IRUGO, proc_pid_wchan),
3015 #endif
3016 #ifdef CONFIG_STACKTRACE
3017 	ONE("stack",      S_IRUSR, proc_pid_stack),
3018 #endif
3019 #ifdef CONFIG_SCHED_INFO
3020 	ONE("schedstat",  S_IRUGO, proc_pid_schedstat),
3021 #endif
3022 #ifdef CONFIG_LATENCYTOP
3023 	REG("latency",  S_IRUGO, proc_lstats_operations),
3024 #endif
3025 #ifdef CONFIG_PROC_PID_CPUSET
3026 	ONE("cpuset",     S_IRUGO, proc_cpuset_show),
3027 #endif
3028 #ifdef CONFIG_CGROUPS
3029 	ONE("cgroup",  S_IRUGO, proc_cgroup_show),
3030 #endif
3031 	ONE("oom_score",  S_IRUGO, proc_oom_score),
3032 	REG("oom_adj",    S_IRUGO|S_IWUSR, proc_oom_adj_operations),
3033 	REG("oom_score_adj", S_IRUGO|S_IWUSR, proc_oom_score_adj_operations),
3034 #ifdef CONFIG_AUDIT
3035 	REG("loginuid",   S_IWUSR|S_IRUGO, proc_loginuid_operations),
3036 	REG("sessionid",  S_IRUGO, proc_sessionid_operations),
3037 #endif
3038 #ifdef CONFIG_FAULT_INJECTION
3039 	REG("make-it-fail", S_IRUGO|S_IWUSR, proc_fault_inject_operations),
3040 	REG("fail-nth", 0644, proc_fail_nth_operations),
3041 #endif
3042 #ifdef CONFIG_ELF_CORE
3043 	REG("coredump_filter", S_IRUGO|S_IWUSR, proc_coredump_filter_operations),
3044 #endif
3045 #ifdef CONFIG_TASK_IO_ACCOUNTING
3046 	ONE("io",	S_IRUSR, proc_tgid_io_accounting),
3047 #endif
3048 #ifdef CONFIG_USER_NS
3049 	REG("uid_map",    S_IRUGO|S_IWUSR, proc_uid_map_operations),
3050 	REG("gid_map",    S_IRUGO|S_IWUSR, proc_gid_map_operations),
3051 	REG("projid_map", S_IRUGO|S_IWUSR, proc_projid_map_operations),
3052 	REG("setgroups",  S_IRUGO|S_IWUSR, proc_setgroups_operations),
3053 #endif
3054 #if defined(CONFIG_CHECKPOINT_RESTORE) && defined(CONFIG_POSIX_TIMERS)
3055 	REG("timers",	  S_IRUGO, proc_timers_operations),
3056 #endif
3057 	REG("timerslack_ns", S_IRUGO|S_IWUGO, proc_pid_set_timerslack_ns_operations),
3058 #ifdef CONFIG_LIVEPATCH
3059 	ONE("patch_state",  S_IRUSR, proc_pid_patch_state),
3060 #endif
3061 #ifdef CONFIG_STACKLEAK_METRICS
3062 	ONE("stack_depth", S_IRUGO, proc_stack_depth),
3063 #endif
3064 };
3065 
3066 static int proc_tgid_base_readdir(struct file *file, struct dir_context *ctx)
3067 {
3068 	return proc_pident_readdir(file, ctx,
3069 				   tgid_base_stuff, ARRAY_SIZE(tgid_base_stuff));
3070 }
3071 
3072 static const struct file_operations proc_tgid_base_operations = {
3073 	.read		= generic_read_dir,
3074 	.iterate_shared	= proc_tgid_base_readdir,
3075 	.llseek		= generic_file_llseek,
3076 };
3077 
3078 struct pid *tgid_pidfd_to_pid(const struct file *file)
3079 {
3080 	if (!d_is_dir(file->f_path.dentry) ||
3081 	    (file->f_op != &proc_tgid_base_operations))
3082 		return ERR_PTR(-EBADF);
3083 
3084 	return proc_pid(file_inode(file));
3085 }
3086 
3087 static struct dentry *proc_tgid_base_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
3088 {
3089 	return proc_pident_lookup(dir, dentry,
3090 				  tgid_base_stuff,
3091 				  tgid_base_stuff + ARRAY_SIZE(tgid_base_stuff));
3092 }
3093 
3094 static const struct inode_operations proc_tgid_base_inode_operations = {
3095 	.lookup		= proc_tgid_base_lookup,
3096 	.getattr	= pid_getattr,
3097 	.setattr	= proc_setattr,
3098 	.permission	= proc_pid_permission,
3099 };
3100 
3101 static void proc_flush_task_mnt(struct vfsmount *mnt, pid_t pid, pid_t tgid)
3102 {
3103 	struct dentry *dentry, *leader, *dir;
3104 	char buf[10 + 1];
3105 	struct qstr name;
3106 
3107 	name.name = buf;
3108 	name.len = snprintf(buf, sizeof(buf), "%u", pid);
3109 	/* no ->d_hash() rejects on procfs */
3110 	dentry = d_hash_and_lookup(mnt->mnt_root, &name);
3111 	if (dentry) {
3112 		d_invalidate(dentry);
3113 		dput(dentry);
3114 	}
3115 
3116 	if (pid == tgid)
3117 		return;
3118 
3119 	name.name = buf;
3120 	name.len = snprintf(buf, sizeof(buf), "%u", tgid);
3121 	leader = d_hash_and_lookup(mnt->mnt_root, &name);
3122 	if (!leader)
3123 		goto out;
3124 
3125 	name.name = "task";
3126 	name.len = strlen(name.name);
3127 	dir = d_hash_and_lookup(leader, &name);
3128 	if (!dir)
3129 		goto out_put_leader;
3130 
3131 	name.name = buf;
3132 	name.len = snprintf(buf, sizeof(buf), "%u", pid);
3133 	dentry = d_hash_and_lookup(dir, &name);
3134 	if (dentry) {
3135 		d_invalidate(dentry);
3136 		dput(dentry);
3137 	}
3138 
3139 	dput(dir);
3140 out_put_leader:
3141 	dput(leader);
3142 out:
3143 	return;
3144 }
3145 
3146 /**
3147  * proc_flush_task -  Remove dcache entries for @task from the /proc dcache.
3148  * @task: task that should be flushed.
3149  *
3150  * When flushing dentries from proc, one needs to flush them from global
3151  * proc (proc_mnt) and from all the namespaces' procs this task was seen
3152  * in. This call is supposed to do all of this job.
3153  *
3154  * Looks in the dcache for
3155  * /proc/@pid
3156  * /proc/@tgid/task/@pid
3157  * if either directory is present flushes it and all of it'ts children
3158  * from the dcache.
3159  *
3160  * It is safe and reasonable to cache /proc entries for a task until
3161  * that task exits.  After that they just clog up the dcache with
3162  * useless entries, possibly causing useful dcache entries to be
3163  * flushed instead.  This routine is proved to flush those useless
3164  * dcache entries at process exit time.
3165  *
3166  * NOTE: This routine is just an optimization so it does not guarantee
3167  *       that no dcache entries will exist at process exit time it
3168  *       just makes it very unlikely that any will persist.
3169  */
3170 
3171 void proc_flush_task(struct task_struct *task)
3172 {
3173 	int i;
3174 	struct pid *pid, *tgid;
3175 	struct upid *upid;
3176 
3177 	pid = task_pid(task);
3178 	tgid = task_tgid(task);
3179 
3180 	for (i = 0; i <= pid->level; i++) {
3181 		upid = &pid->numbers[i];
3182 		proc_flush_task_mnt(upid->ns->proc_mnt, upid->nr,
3183 					tgid->numbers[i].nr);
3184 	}
3185 }
3186 
3187 static struct dentry *proc_pid_instantiate(struct dentry * dentry,
3188 				   struct task_struct *task, const void *ptr)
3189 {
3190 	struct inode *inode;
3191 
3192 	inode = proc_pid_make_inode(dentry->d_sb, task, S_IFDIR | S_IRUGO | S_IXUGO);
3193 	if (!inode)
3194 		return ERR_PTR(-ENOENT);
3195 
3196 	inode->i_op = &proc_tgid_base_inode_operations;
3197 	inode->i_fop = &proc_tgid_base_operations;
3198 	inode->i_flags|=S_IMMUTABLE;
3199 
3200 	set_nlink(inode, nlink_tgid);
3201 	pid_update_inode(task, inode);
3202 
3203 	d_set_d_op(dentry, &pid_dentry_operations);
3204 	return d_splice_alias(inode, dentry);
3205 }
3206 
3207 struct dentry *proc_pid_lookup(struct dentry *dentry, unsigned int flags)
3208 {
3209 	struct task_struct *task;
3210 	unsigned tgid;
3211 	struct pid_namespace *ns;
3212 	struct dentry *result = ERR_PTR(-ENOENT);
3213 
3214 	tgid = name_to_int(&dentry->d_name);
3215 	if (tgid == ~0U)
3216 		goto out;
3217 
3218 	ns = dentry->d_sb->s_fs_info;
3219 	rcu_read_lock();
3220 	task = find_task_by_pid_ns(tgid, ns);
3221 	if (task)
3222 		get_task_struct(task);
3223 	rcu_read_unlock();
3224 	if (!task)
3225 		goto out;
3226 
3227 	result = proc_pid_instantiate(dentry, task, NULL);
3228 	put_task_struct(task);
3229 out:
3230 	return result;
3231 }
3232 
3233 /*
3234  * Find the first task with tgid >= tgid
3235  *
3236  */
3237 struct tgid_iter {
3238 	unsigned int tgid;
3239 	struct task_struct *task;
3240 };
3241 static struct tgid_iter next_tgid(struct pid_namespace *ns, struct tgid_iter iter)
3242 {
3243 	struct pid *pid;
3244 
3245 	if (iter.task)
3246 		put_task_struct(iter.task);
3247 	rcu_read_lock();
3248 retry:
3249 	iter.task = NULL;
3250 	pid = find_ge_pid(iter.tgid, ns);
3251 	if (pid) {
3252 		iter.tgid = pid_nr_ns(pid, ns);
3253 		iter.task = pid_task(pid, PIDTYPE_PID);
3254 		/* What we to know is if the pid we have find is the
3255 		 * pid of a thread_group_leader.  Testing for task
3256 		 * being a thread_group_leader is the obvious thing
3257 		 * todo but there is a window when it fails, due to
3258 		 * the pid transfer logic in de_thread.
3259 		 *
3260 		 * So we perform the straight forward test of seeing
3261 		 * if the pid we have found is the pid of a thread
3262 		 * group leader, and don't worry if the task we have
3263 		 * found doesn't happen to be a thread group leader.
3264 		 * As we don't care in the case of readdir.
3265 		 */
3266 		if (!iter.task || !has_group_leader_pid(iter.task)) {
3267 			iter.tgid += 1;
3268 			goto retry;
3269 		}
3270 		get_task_struct(iter.task);
3271 	}
3272 	rcu_read_unlock();
3273 	return iter;
3274 }
3275 
3276 #define TGID_OFFSET (FIRST_PROCESS_ENTRY + 2)
3277 
3278 /* for the /proc/ directory itself, after non-process stuff has been done */
3279 int proc_pid_readdir(struct file *file, struct dir_context *ctx)
3280 {
3281 	struct tgid_iter iter;
3282 	struct pid_namespace *ns = proc_pid_ns(file_inode(file));
3283 	loff_t pos = ctx->pos;
3284 
3285 	if (pos >= PID_MAX_LIMIT + TGID_OFFSET)
3286 		return 0;
3287 
3288 	if (pos == TGID_OFFSET - 2) {
3289 		struct inode *inode = d_inode(ns->proc_self);
3290 		if (!dir_emit(ctx, "self", 4, inode->i_ino, DT_LNK))
3291 			return 0;
3292 		ctx->pos = pos = pos + 1;
3293 	}
3294 	if (pos == TGID_OFFSET - 1) {
3295 		struct inode *inode = d_inode(ns->proc_thread_self);
3296 		if (!dir_emit(ctx, "thread-self", 11, inode->i_ino, DT_LNK))
3297 			return 0;
3298 		ctx->pos = pos = pos + 1;
3299 	}
3300 	iter.tgid = pos - TGID_OFFSET;
3301 	iter.task = NULL;
3302 	for (iter = next_tgid(ns, iter);
3303 	     iter.task;
3304 	     iter.tgid += 1, iter = next_tgid(ns, iter)) {
3305 		char name[10 + 1];
3306 		unsigned int len;
3307 
3308 		cond_resched();
3309 		if (!has_pid_permissions(ns, iter.task, HIDEPID_INVISIBLE))
3310 			continue;
3311 
3312 		len = snprintf(name, sizeof(name), "%u", iter.tgid);
3313 		ctx->pos = iter.tgid + TGID_OFFSET;
3314 		if (!proc_fill_cache(file, ctx, name, len,
3315 				     proc_pid_instantiate, iter.task, NULL)) {
3316 			put_task_struct(iter.task);
3317 			return 0;
3318 		}
3319 	}
3320 	ctx->pos = PID_MAX_LIMIT + TGID_OFFSET;
3321 	return 0;
3322 }
3323 
3324 /*
3325  * proc_tid_comm_permission is a special permission function exclusively
3326  * used for the node /proc/<pid>/task/<tid>/comm.
3327  * It bypasses generic permission checks in the case where a task of the same
3328  * task group attempts to access the node.
3329  * The rationale behind this is that glibc and bionic access this node for
3330  * cross thread naming (pthread_set/getname_np(!self)). However, if
3331  * PR_SET_DUMPABLE gets set to 0 this node among others becomes uid=0 gid=0,
3332  * which locks out the cross thread naming implementation.
3333  * This function makes sure that the node is always accessible for members of
3334  * same thread group.
3335  */
3336 static int proc_tid_comm_permission(struct inode *inode, int mask)
3337 {
3338 	bool is_same_tgroup;
3339 	struct task_struct *task;
3340 
3341 	task = get_proc_task(inode);
3342 	if (!task)
3343 		return -ESRCH;
3344 	is_same_tgroup = same_thread_group(current, task);
3345 	put_task_struct(task);
3346 
3347 	if (likely(is_same_tgroup && !(mask & MAY_EXEC))) {
3348 		/* This file (/proc/<pid>/task/<tid>/comm) can always be
3349 		 * read or written by the members of the corresponding
3350 		 * thread group.
3351 		 */
3352 		return 0;
3353 	}
3354 
3355 	return generic_permission(inode, mask);
3356 }
3357 
3358 static const struct inode_operations proc_tid_comm_inode_operations = {
3359 		.permission = proc_tid_comm_permission,
3360 };
3361 
3362 /*
3363  * Tasks
3364  */
3365 static const struct pid_entry tid_base_stuff[] = {
3366 	DIR("fd",        S_IRUSR|S_IXUSR, proc_fd_inode_operations, proc_fd_operations),
3367 	DIR("fdinfo",    S_IRUSR|S_IXUSR, proc_fdinfo_inode_operations, proc_fdinfo_operations),
3368 	DIR("ns",	 S_IRUSR|S_IXUGO, proc_ns_dir_inode_operations, proc_ns_dir_operations),
3369 #ifdef CONFIG_NET
3370 	DIR("net",        S_IRUGO|S_IXUGO, proc_net_inode_operations, proc_net_operations),
3371 #endif
3372 	REG("environ",   S_IRUSR, proc_environ_operations),
3373 	REG("auxv",      S_IRUSR, proc_auxv_operations),
3374 	ONE("status",    S_IRUGO, proc_pid_status),
3375 	ONE("personality", S_IRUSR, proc_pid_personality),
3376 	ONE("limits",	 S_IRUGO, proc_pid_limits),
3377 #ifdef CONFIG_SCHED_DEBUG
3378 	REG("sched",     S_IRUGO|S_IWUSR, proc_pid_sched_operations),
3379 #endif
3380 	NOD("comm",      S_IFREG|S_IRUGO|S_IWUSR,
3381 			 &proc_tid_comm_inode_operations,
3382 			 &proc_pid_set_comm_operations, {}),
3383 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK
3384 	ONE("syscall",   S_IRUSR, proc_pid_syscall),
3385 #endif
3386 	REG("cmdline",   S_IRUGO, proc_pid_cmdline_ops),
3387 	ONE("stat",      S_IRUGO, proc_tid_stat),
3388 	ONE("statm",     S_IRUGO, proc_pid_statm),
3389 	REG("maps",      S_IRUGO, proc_pid_maps_operations),
3390 #ifdef CONFIG_PROC_CHILDREN
3391 	REG("children",  S_IRUGO, proc_tid_children_operations),
3392 #endif
3393 #ifdef CONFIG_NUMA
3394 	REG("numa_maps", S_IRUGO, proc_pid_numa_maps_operations),
3395 #endif
3396 	REG("mem",       S_IRUSR|S_IWUSR, proc_mem_operations),
3397 	LNK("cwd",       proc_cwd_link),
3398 	LNK("root",      proc_root_link),
3399 	LNK("exe",       proc_exe_link),
3400 	REG("mounts",    S_IRUGO, proc_mounts_operations),
3401 	REG("mountinfo",  S_IRUGO, proc_mountinfo_operations),
3402 #ifdef CONFIG_PROC_PAGE_MONITOR
3403 	REG("clear_refs", S_IWUSR, proc_clear_refs_operations),
3404 	REG("smaps",     S_IRUGO, proc_pid_smaps_operations),
3405 	REG("smaps_rollup", S_IRUGO, proc_pid_smaps_rollup_operations),
3406 	REG("pagemap",    S_IRUSR, proc_pagemap_operations),
3407 #endif
3408 #ifdef CONFIG_SECURITY
3409 	DIR("attr",      S_IRUGO|S_IXUGO, proc_attr_dir_inode_operations, proc_attr_dir_operations),
3410 #endif
3411 #ifdef CONFIG_KALLSYMS
3412 	ONE("wchan",     S_IRUGO, proc_pid_wchan),
3413 #endif
3414 #ifdef CONFIG_STACKTRACE
3415 	ONE("stack",      S_IRUSR, proc_pid_stack),
3416 #endif
3417 #ifdef CONFIG_SCHED_INFO
3418 	ONE("schedstat", S_IRUGO, proc_pid_schedstat),
3419 #endif
3420 #ifdef CONFIG_LATENCYTOP
3421 	REG("latency",  S_IRUGO, proc_lstats_operations),
3422 #endif
3423 #ifdef CONFIG_PROC_PID_CPUSET
3424 	ONE("cpuset",    S_IRUGO, proc_cpuset_show),
3425 #endif
3426 #ifdef CONFIG_CGROUPS
3427 	ONE("cgroup",  S_IRUGO, proc_cgroup_show),
3428 #endif
3429 	ONE("oom_score", S_IRUGO, proc_oom_score),
3430 	REG("oom_adj",   S_IRUGO|S_IWUSR, proc_oom_adj_operations),
3431 	REG("oom_score_adj", S_IRUGO|S_IWUSR, proc_oom_score_adj_operations),
3432 #ifdef CONFIG_AUDIT
3433 	REG("loginuid",  S_IWUSR|S_IRUGO, proc_loginuid_operations),
3434 	REG("sessionid",  S_IRUGO, proc_sessionid_operations),
3435 #endif
3436 #ifdef CONFIG_FAULT_INJECTION
3437 	REG("make-it-fail", S_IRUGO|S_IWUSR, proc_fault_inject_operations),
3438 	REG("fail-nth", 0644, proc_fail_nth_operations),
3439 #endif
3440 #ifdef CONFIG_TASK_IO_ACCOUNTING
3441 	ONE("io",	S_IRUSR, proc_tid_io_accounting),
3442 #endif
3443 #ifdef CONFIG_USER_NS
3444 	REG("uid_map",    S_IRUGO|S_IWUSR, proc_uid_map_operations),
3445 	REG("gid_map",    S_IRUGO|S_IWUSR, proc_gid_map_operations),
3446 	REG("projid_map", S_IRUGO|S_IWUSR, proc_projid_map_operations),
3447 	REG("setgroups",  S_IRUGO|S_IWUSR, proc_setgroups_operations),
3448 #endif
3449 #ifdef CONFIG_LIVEPATCH
3450 	ONE("patch_state",  S_IRUSR, proc_pid_patch_state),
3451 #endif
3452 };
3453 
3454 static int proc_tid_base_readdir(struct file *file, struct dir_context *ctx)
3455 {
3456 	return proc_pident_readdir(file, ctx,
3457 				   tid_base_stuff, ARRAY_SIZE(tid_base_stuff));
3458 }
3459 
3460 static struct dentry *proc_tid_base_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
3461 {
3462 	return proc_pident_lookup(dir, dentry,
3463 				  tid_base_stuff,
3464 				  tid_base_stuff + ARRAY_SIZE(tid_base_stuff));
3465 }
3466 
3467 static const struct file_operations proc_tid_base_operations = {
3468 	.read		= generic_read_dir,
3469 	.iterate_shared	= proc_tid_base_readdir,
3470 	.llseek		= generic_file_llseek,
3471 };
3472 
3473 static const struct inode_operations proc_tid_base_inode_operations = {
3474 	.lookup		= proc_tid_base_lookup,
3475 	.getattr	= pid_getattr,
3476 	.setattr	= proc_setattr,
3477 };
3478 
3479 static struct dentry *proc_task_instantiate(struct dentry *dentry,
3480 	struct task_struct *task, const void *ptr)
3481 {
3482 	struct inode *inode;
3483 	inode = proc_pid_make_inode(dentry->d_sb, task, S_IFDIR | S_IRUGO | S_IXUGO);
3484 	if (!inode)
3485 		return ERR_PTR(-ENOENT);
3486 
3487 	inode->i_op = &proc_tid_base_inode_operations;
3488 	inode->i_fop = &proc_tid_base_operations;
3489 	inode->i_flags |= S_IMMUTABLE;
3490 
3491 	set_nlink(inode, nlink_tid);
3492 	pid_update_inode(task, inode);
3493 
3494 	d_set_d_op(dentry, &pid_dentry_operations);
3495 	return d_splice_alias(inode, dentry);
3496 }
3497 
3498 static struct dentry *proc_task_lookup(struct inode *dir, struct dentry * dentry, unsigned int flags)
3499 {
3500 	struct task_struct *task;
3501 	struct task_struct *leader = get_proc_task(dir);
3502 	unsigned tid;
3503 	struct pid_namespace *ns;
3504 	struct dentry *result = ERR_PTR(-ENOENT);
3505 
3506 	if (!leader)
3507 		goto out_no_task;
3508 
3509 	tid = name_to_int(&dentry->d_name);
3510 	if (tid == ~0U)
3511 		goto out;
3512 
3513 	ns = dentry->d_sb->s_fs_info;
3514 	rcu_read_lock();
3515 	task = find_task_by_pid_ns(tid, ns);
3516 	if (task)
3517 		get_task_struct(task);
3518 	rcu_read_unlock();
3519 	if (!task)
3520 		goto out;
3521 	if (!same_thread_group(leader, task))
3522 		goto out_drop_task;
3523 
3524 	result = proc_task_instantiate(dentry, task, NULL);
3525 out_drop_task:
3526 	put_task_struct(task);
3527 out:
3528 	put_task_struct(leader);
3529 out_no_task:
3530 	return result;
3531 }
3532 
3533 /*
3534  * Find the first tid of a thread group to return to user space.
3535  *
3536  * Usually this is just the thread group leader, but if the users
3537  * buffer was too small or there was a seek into the middle of the
3538  * directory we have more work todo.
3539  *
3540  * In the case of a short read we start with find_task_by_pid.
3541  *
3542  * In the case of a seek we start with the leader and walk nr
3543  * threads past it.
3544  */
3545 static struct task_struct *first_tid(struct pid *pid, int tid, loff_t f_pos,
3546 					struct pid_namespace *ns)
3547 {
3548 	struct task_struct *pos, *task;
3549 	unsigned long nr = f_pos;
3550 
3551 	if (nr != f_pos)	/* 32bit overflow? */
3552 		return NULL;
3553 
3554 	rcu_read_lock();
3555 	task = pid_task(pid, PIDTYPE_PID);
3556 	if (!task)
3557 		goto fail;
3558 
3559 	/* Attempt to start with the tid of a thread */
3560 	if (tid && nr) {
3561 		pos = find_task_by_pid_ns(tid, ns);
3562 		if (pos && same_thread_group(pos, task))
3563 			goto found;
3564 	}
3565 
3566 	/* If nr exceeds the number of threads there is nothing todo */
3567 	if (nr >= get_nr_threads(task))
3568 		goto fail;
3569 
3570 	/* If we haven't found our starting place yet start
3571 	 * with the leader and walk nr threads forward.
3572 	 */
3573 	pos = task = task->group_leader;
3574 	do {
3575 		if (!nr--)
3576 			goto found;
3577 	} while_each_thread(task, pos);
3578 fail:
3579 	pos = NULL;
3580 	goto out;
3581 found:
3582 	get_task_struct(pos);
3583 out:
3584 	rcu_read_unlock();
3585 	return pos;
3586 }
3587 
3588 /*
3589  * Find the next thread in the thread list.
3590  * Return NULL if there is an error or no next thread.
3591  *
3592  * The reference to the input task_struct is released.
3593  */
3594 static struct task_struct *next_tid(struct task_struct *start)
3595 {
3596 	struct task_struct *pos = NULL;
3597 	rcu_read_lock();
3598 	if (pid_alive(start)) {
3599 		pos = next_thread(start);
3600 		if (thread_group_leader(pos))
3601 			pos = NULL;
3602 		else
3603 			get_task_struct(pos);
3604 	}
3605 	rcu_read_unlock();
3606 	put_task_struct(start);
3607 	return pos;
3608 }
3609 
3610 /* for the /proc/TGID/task/ directories */
3611 static int proc_task_readdir(struct file *file, struct dir_context *ctx)
3612 {
3613 	struct inode *inode = file_inode(file);
3614 	struct task_struct *task;
3615 	struct pid_namespace *ns;
3616 	int tid;
3617 
3618 	if (proc_inode_is_dead(inode))
3619 		return -ENOENT;
3620 
3621 	if (!dir_emit_dots(file, ctx))
3622 		return 0;
3623 
3624 	/* f_version caches the tgid value that the last readdir call couldn't
3625 	 * return. lseek aka telldir automagically resets f_version to 0.
3626 	 */
3627 	ns = proc_pid_ns(inode);
3628 	tid = (int)file->f_version;
3629 	file->f_version = 0;
3630 	for (task = first_tid(proc_pid(inode), tid, ctx->pos - 2, ns);
3631 	     task;
3632 	     task = next_tid(task), ctx->pos++) {
3633 		char name[10 + 1];
3634 		unsigned int len;
3635 		tid = task_pid_nr_ns(task, ns);
3636 		len = snprintf(name, sizeof(name), "%u", tid);
3637 		if (!proc_fill_cache(file, ctx, name, len,
3638 				proc_task_instantiate, task, NULL)) {
3639 			/* returning this tgid failed, save it as the first
3640 			 * pid for the next readir call */
3641 			file->f_version = (u64)tid;
3642 			put_task_struct(task);
3643 			break;
3644 		}
3645 	}
3646 
3647 	return 0;
3648 }
3649 
3650 static int proc_task_getattr(const struct path *path, struct kstat *stat,
3651 			     u32 request_mask, unsigned int query_flags)
3652 {
3653 	struct inode *inode = d_inode(path->dentry);
3654 	struct task_struct *p = get_proc_task(inode);
3655 	generic_fillattr(inode, stat);
3656 
3657 	if (p) {
3658 		stat->nlink += get_nr_threads(p);
3659 		put_task_struct(p);
3660 	}
3661 
3662 	return 0;
3663 }
3664 
3665 static const struct inode_operations proc_task_inode_operations = {
3666 	.lookup		= proc_task_lookup,
3667 	.getattr	= proc_task_getattr,
3668 	.setattr	= proc_setattr,
3669 	.permission	= proc_pid_permission,
3670 };
3671 
3672 static const struct file_operations proc_task_operations = {
3673 	.read		= generic_read_dir,
3674 	.iterate_shared	= proc_task_readdir,
3675 	.llseek		= generic_file_llseek,
3676 };
3677 
3678 void __init set_proc_pid_nlink(void)
3679 {
3680 	nlink_tid = pid_entry_nlink(tid_base_stuff, ARRAY_SIZE(tid_base_stuff));
3681 	nlink_tgid = pid_entry_nlink(tgid_base_stuff, ARRAY_SIZE(tgid_base_stuff));
3682 }
3683