xref: /linux/fs/proc/base.c (revision 83bce9c2baa51e439480a713119a73d3c8b61083)
1 /*
2  *  linux/fs/proc/base.c
3  *
4  *  Copyright (C) 1991, 1992 Linus Torvalds
5  *
6  *  proc base directory handling functions
7  *
8  *  1999, Al Viro. Rewritten. Now it covers the whole per-process part.
9  *  Instead of using magical inumbers to determine the kind of object
10  *  we allocate and fill in-core inodes upon lookup. They don't even
11  *  go into icache. We cache the reference to task_struct upon lookup too.
12  *  Eventually it should become a filesystem in its own. We don't use the
13  *  rest of procfs anymore.
14  *
15  *
16  *  Changelog:
17  *  17-Jan-2005
18  *  Allan Bezerra
19  *  Bruna Moreira <bruna.moreira@indt.org.br>
20  *  Edjard Mota <edjard.mota@indt.org.br>
21  *  Ilias Biris <ilias.biris@indt.org.br>
22  *  Mauricio Lin <mauricio.lin@indt.org.br>
23  *
24  *  Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT
25  *
26  *  A new process specific entry (smaps) included in /proc. It shows the
27  *  size of rss for each memory area. The maps entry lacks information
28  *  about physical memory size (rss) for each mapped file, i.e.,
29  *  rss information for executables and library files.
30  *  This additional information is useful for any tools that need to know
31  *  about physical memory consumption for a process specific library.
32  *
33  *  Changelog:
34  *  21-Feb-2005
35  *  Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT
36  *  Pud inclusion in the page table walking.
37  *
38  *  ChangeLog:
39  *  10-Mar-2005
40  *  10LE Instituto Nokia de Tecnologia - INdT:
41  *  A better way to walks through the page table as suggested by Hugh Dickins.
42  *
43  *  Simo Piiroinen <simo.piiroinen@nokia.com>:
44  *  Smaps information related to shared, private, clean and dirty pages.
45  *
46  *  Paul Mundt <paul.mundt@nokia.com>:
47  *  Overall revision about smaps.
48  */
49 
50 #include <linux/uaccess.h>
51 
52 #include <linux/errno.h>
53 #include <linux/time.h>
54 #include <linux/proc_fs.h>
55 #include <linux/stat.h>
56 #include <linux/task_io_accounting_ops.h>
57 #include <linux/init.h>
58 #include <linux/capability.h>
59 #include <linux/file.h>
60 #include <linux/fdtable.h>
61 #include <linux/string.h>
62 #include <linux/seq_file.h>
63 #include <linux/namei.h>
64 #include <linux/mnt_namespace.h>
65 #include <linux/mm.h>
66 #include <linux/swap.h>
67 #include <linux/rcupdate.h>
68 #include <linux/kallsyms.h>
69 #include <linux/stacktrace.h>
70 #include <linux/resource.h>
71 #include <linux/module.h>
72 #include <linux/mount.h>
73 #include <linux/security.h>
74 #include <linux/ptrace.h>
75 #include <linux/tracehook.h>
76 #include <linux/printk.h>
77 #include <linux/cgroup.h>
78 #include <linux/cpuset.h>
79 #include <linux/audit.h>
80 #include <linux/poll.h>
81 #include <linux/nsproxy.h>
82 #include <linux/oom.h>
83 #include <linux/elf.h>
84 #include <linux/pid_namespace.h>
85 #include <linux/user_namespace.h>
86 #include <linux/fs_struct.h>
87 #include <linux/slab.h>
88 #include <linux/sched/autogroup.h>
89 #include <linux/sched/mm.h>
90 #include <linux/sched/coredump.h>
91 #include <linux/sched/debug.h>
92 #include <linux/sched/stat.h>
93 #include <linux/flex_array.h>
94 #include <linux/posix-timers.h>
95 #ifdef CONFIG_HARDWALL
96 #include <asm/hardwall.h>
97 #endif
98 #include <trace/events/oom.h>
99 #include "internal.h"
100 #include "fd.h"
101 
102 /* NOTE:
103  *	Implementing inode permission operations in /proc is almost
104  *	certainly an error.  Permission checks need to happen during
105  *	each system call not at open time.  The reason is that most of
106  *	what we wish to check for permissions in /proc varies at runtime.
107  *
108  *	The classic example of a problem is opening file descriptors
109  *	in /proc for a task before it execs a suid executable.
110  */
111 
112 static u8 nlink_tid;
113 static u8 nlink_tgid;
114 
115 struct pid_entry {
116 	const char *name;
117 	unsigned int len;
118 	umode_t mode;
119 	const struct inode_operations *iop;
120 	const struct file_operations *fop;
121 	union proc_op op;
122 };
123 
124 #define NOD(NAME, MODE, IOP, FOP, OP) {			\
125 	.name = (NAME),					\
126 	.len  = sizeof(NAME) - 1,			\
127 	.mode = MODE,					\
128 	.iop  = IOP,					\
129 	.fop  = FOP,					\
130 	.op   = OP,					\
131 }
132 
133 #define DIR(NAME, MODE, iops, fops)	\
134 	NOD(NAME, (S_IFDIR|(MODE)), &iops, &fops, {} )
135 #define LNK(NAME, get_link)					\
136 	NOD(NAME, (S_IFLNK|S_IRWXUGO),				\
137 		&proc_pid_link_inode_operations, NULL,		\
138 		{ .proc_get_link = get_link } )
139 #define REG(NAME, MODE, fops)				\
140 	NOD(NAME, (S_IFREG|(MODE)), NULL, &fops, {})
141 #define ONE(NAME, MODE, show)				\
142 	NOD(NAME, (S_IFREG|(MODE)), 			\
143 		NULL, &proc_single_file_operations,	\
144 		{ .proc_show = show } )
145 
146 /*
147  * Count the number of hardlinks for the pid_entry table, excluding the .
148  * and .. links.
149  */
150 static unsigned int __init pid_entry_nlink(const struct pid_entry *entries,
151 	unsigned int n)
152 {
153 	unsigned int i;
154 	unsigned int count;
155 
156 	count = 2;
157 	for (i = 0; i < n; ++i) {
158 		if (S_ISDIR(entries[i].mode))
159 			++count;
160 	}
161 
162 	return count;
163 }
164 
165 static int get_task_root(struct task_struct *task, struct path *root)
166 {
167 	int result = -ENOENT;
168 
169 	task_lock(task);
170 	if (task->fs) {
171 		get_fs_root(task->fs, root);
172 		result = 0;
173 	}
174 	task_unlock(task);
175 	return result;
176 }
177 
178 static int proc_cwd_link(struct dentry *dentry, struct path *path)
179 {
180 	struct task_struct *task = get_proc_task(d_inode(dentry));
181 	int result = -ENOENT;
182 
183 	if (task) {
184 		task_lock(task);
185 		if (task->fs) {
186 			get_fs_pwd(task->fs, path);
187 			result = 0;
188 		}
189 		task_unlock(task);
190 		put_task_struct(task);
191 	}
192 	return result;
193 }
194 
195 static int proc_root_link(struct dentry *dentry, struct path *path)
196 {
197 	struct task_struct *task = get_proc_task(d_inode(dentry));
198 	int result = -ENOENT;
199 
200 	if (task) {
201 		result = get_task_root(task, path);
202 		put_task_struct(task);
203 	}
204 	return result;
205 }
206 
207 static ssize_t proc_pid_cmdline_read(struct file *file, char __user *buf,
208 				     size_t _count, loff_t *pos)
209 {
210 	struct task_struct *tsk;
211 	struct mm_struct *mm;
212 	char *page;
213 	unsigned long count = _count;
214 	unsigned long arg_start, arg_end, env_start, env_end;
215 	unsigned long len1, len2, len;
216 	unsigned long p;
217 	char c;
218 	ssize_t rv;
219 
220 	BUG_ON(*pos < 0);
221 
222 	tsk = get_proc_task(file_inode(file));
223 	if (!tsk)
224 		return -ESRCH;
225 	mm = get_task_mm(tsk);
226 	put_task_struct(tsk);
227 	if (!mm)
228 		return 0;
229 	/* Check if process spawned far enough to have cmdline. */
230 	if (!mm->env_end) {
231 		rv = 0;
232 		goto out_mmput;
233 	}
234 
235 	page = (char *)__get_free_page(GFP_TEMPORARY);
236 	if (!page) {
237 		rv = -ENOMEM;
238 		goto out_mmput;
239 	}
240 
241 	down_read(&mm->mmap_sem);
242 	arg_start = mm->arg_start;
243 	arg_end = mm->arg_end;
244 	env_start = mm->env_start;
245 	env_end = mm->env_end;
246 	up_read(&mm->mmap_sem);
247 
248 	BUG_ON(arg_start > arg_end);
249 	BUG_ON(env_start > env_end);
250 
251 	len1 = arg_end - arg_start;
252 	len2 = env_end - env_start;
253 
254 	/* Empty ARGV. */
255 	if (len1 == 0) {
256 		rv = 0;
257 		goto out_free_page;
258 	}
259 	/*
260 	 * Inherently racy -- command line shares address space
261 	 * with code and data.
262 	 */
263 	rv = access_remote_vm(mm, arg_end - 1, &c, 1, 0);
264 	if (rv <= 0)
265 		goto out_free_page;
266 
267 	rv = 0;
268 
269 	if (c == '\0') {
270 		/* Command line (set of strings) occupies whole ARGV. */
271 		if (len1 <= *pos)
272 			goto out_free_page;
273 
274 		p = arg_start + *pos;
275 		len = len1 - *pos;
276 		while (count > 0 && len > 0) {
277 			unsigned int _count;
278 			int nr_read;
279 
280 			_count = min3(count, len, PAGE_SIZE);
281 			nr_read = access_remote_vm(mm, p, page, _count, 0);
282 			if (nr_read < 0)
283 				rv = nr_read;
284 			if (nr_read <= 0)
285 				goto out_free_page;
286 
287 			if (copy_to_user(buf, page, nr_read)) {
288 				rv = -EFAULT;
289 				goto out_free_page;
290 			}
291 
292 			p	+= nr_read;
293 			len	-= nr_read;
294 			buf	+= nr_read;
295 			count	-= nr_read;
296 			rv	+= nr_read;
297 		}
298 	} else {
299 		/*
300 		 * Command line (1 string) occupies ARGV and
301 		 * extends into ENVP.
302 		 */
303 		struct {
304 			unsigned long p;
305 			unsigned long len;
306 		} cmdline[2] = {
307 			{ .p = arg_start, .len = len1 },
308 			{ .p = env_start, .len = len2 },
309 		};
310 		loff_t pos1 = *pos;
311 		unsigned int i;
312 
313 		i = 0;
314 		while (i < 2 && pos1 >= cmdline[i].len) {
315 			pos1 -= cmdline[i].len;
316 			i++;
317 		}
318 		while (i < 2) {
319 			p = cmdline[i].p + pos1;
320 			len = cmdline[i].len - pos1;
321 			while (count > 0 && len > 0) {
322 				unsigned int _count, l;
323 				int nr_read;
324 				bool final;
325 
326 				_count = min3(count, len, PAGE_SIZE);
327 				nr_read = access_remote_vm(mm, p, page, _count, 0);
328 				if (nr_read < 0)
329 					rv = nr_read;
330 				if (nr_read <= 0)
331 					goto out_free_page;
332 
333 				/*
334 				 * Command line can be shorter than whole ARGV
335 				 * even if last "marker" byte says it is not.
336 				 */
337 				final = false;
338 				l = strnlen(page, nr_read);
339 				if (l < nr_read) {
340 					nr_read = l;
341 					final = true;
342 				}
343 
344 				if (copy_to_user(buf, page, nr_read)) {
345 					rv = -EFAULT;
346 					goto out_free_page;
347 				}
348 
349 				p	+= nr_read;
350 				len	-= nr_read;
351 				buf	+= nr_read;
352 				count	-= nr_read;
353 				rv	+= nr_read;
354 
355 				if (final)
356 					goto out_free_page;
357 			}
358 
359 			/* Only first chunk can be read partially. */
360 			pos1 = 0;
361 			i++;
362 		}
363 	}
364 
365 out_free_page:
366 	free_page((unsigned long)page);
367 out_mmput:
368 	mmput(mm);
369 	if (rv > 0)
370 		*pos += rv;
371 	return rv;
372 }
373 
374 static const struct file_operations proc_pid_cmdline_ops = {
375 	.read	= proc_pid_cmdline_read,
376 	.llseek	= generic_file_llseek,
377 };
378 
379 #ifdef CONFIG_KALLSYMS
380 /*
381  * Provides a wchan file via kallsyms in a proper one-value-per-file format.
382  * Returns the resolved symbol.  If that fails, simply return the address.
383  */
384 static int proc_pid_wchan(struct seq_file *m, struct pid_namespace *ns,
385 			  struct pid *pid, struct task_struct *task)
386 {
387 	unsigned long wchan;
388 	char symname[KSYM_NAME_LEN];
389 
390 	wchan = get_wchan(task);
391 
392 	if (wchan && ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS)
393 			&& !lookup_symbol_name(wchan, symname))
394 		seq_printf(m, "%s", symname);
395 	else
396 		seq_putc(m, '0');
397 
398 	return 0;
399 }
400 #endif /* CONFIG_KALLSYMS */
401 
402 static int lock_trace(struct task_struct *task)
403 {
404 	int err = mutex_lock_killable(&task->signal->cred_guard_mutex);
405 	if (err)
406 		return err;
407 	if (!ptrace_may_access(task, PTRACE_MODE_ATTACH_FSCREDS)) {
408 		mutex_unlock(&task->signal->cred_guard_mutex);
409 		return -EPERM;
410 	}
411 	return 0;
412 }
413 
414 static void unlock_trace(struct task_struct *task)
415 {
416 	mutex_unlock(&task->signal->cred_guard_mutex);
417 }
418 
419 #ifdef CONFIG_STACKTRACE
420 
421 #define MAX_STACK_TRACE_DEPTH	64
422 
423 static int proc_pid_stack(struct seq_file *m, struct pid_namespace *ns,
424 			  struct pid *pid, struct task_struct *task)
425 {
426 	struct stack_trace trace;
427 	unsigned long *entries;
428 	int err;
429 	int i;
430 
431 	entries = kmalloc(MAX_STACK_TRACE_DEPTH * sizeof(*entries), GFP_KERNEL);
432 	if (!entries)
433 		return -ENOMEM;
434 
435 	trace.nr_entries	= 0;
436 	trace.max_entries	= MAX_STACK_TRACE_DEPTH;
437 	trace.entries		= entries;
438 	trace.skip		= 0;
439 
440 	err = lock_trace(task);
441 	if (!err) {
442 		save_stack_trace_tsk(task, &trace);
443 
444 		for (i = 0; i < trace.nr_entries; i++) {
445 			seq_printf(m, "[<%pK>] %pB\n",
446 				   (void *)entries[i], (void *)entries[i]);
447 		}
448 		unlock_trace(task);
449 	}
450 	kfree(entries);
451 
452 	return err;
453 }
454 #endif
455 
456 #ifdef CONFIG_SCHED_INFO
457 /*
458  * Provides /proc/PID/schedstat
459  */
460 static int proc_pid_schedstat(struct seq_file *m, struct pid_namespace *ns,
461 			      struct pid *pid, struct task_struct *task)
462 {
463 	if (unlikely(!sched_info_on()))
464 		seq_printf(m, "0 0 0\n");
465 	else
466 		seq_printf(m, "%llu %llu %lu\n",
467 		   (unsigned long long)task->se.sum_exec_runtime,
468 		   (unsigned long long)task->sched_info.run_delay,
469 		   task->sched_info.pcount);
470 
471 	return 0;
472 }
473 #endif
474 
475 #ifdef CONFIG_LATENCYTOP
476 static int lstats_show_proc(struct seq_file *m, void *v)
477 {
478 	int i;
479 	struct inode *inode = m->private;
480 	struct task_struct *task = get_proc_task(inode);
481 
482 	if (!task)
483 		return -ESRCH;
484 	seq_puts(m, "Latency Top version : v0.1\n");
485 	for (i = 0; i < 32; i++) {
486 		struct latency_record *lr = &task->latency_record[i];
487 		if (lr->backtrace[0]) {
488 			int q;
489 			seq_printf(m, "%i %li %li",
490 				   lr->count, lr->time, lr->max);
491 			for (q = 0; q < LT_BACKTRACEDEPTH; q++) {
492 				unsigned long bt = lr->backtrace[q];
493 				if (!bt)
494 					break;
495 				if (bt == ULONG_MAX)
496 					break;
497 				seq_printf(m, " %ps", (void *)bt);
498 			}
499 			seq_putc(m, '\n');
500 		}
501 
502 	}
503 	put_task_struct(task);
504 	return 0;
505 }
506 
507 static int lstats_open(struct inode *inode, struct file *file)
508 {
509 	return single_open(file, lstats_show_proc, inode);
510 }
511 
512 static ssize_t lstats_write(struct file *file, const char __user *buf,
513 			    size_t count, loff_t *offs)
514 {
515 	struct task_struct *task = get_proc_task(file_inode(file));
516 
517 	if (!task)
518 		return -ESRCH;
519 	clear_all_latency_tracing(task);
520 	put_task_struct(task);
521 
522 	return count;
523 }
524 
525 static const struct file_operations proc_lstats_operations = {
526 	.open		= lstats_open,
527 	.read		= seq_read,
528 	.write		= lstats_write,
529 	.llseek		= seq_lseek,
530 	.release	= single_release,
531 };
532 
533 #endif
534 
535 static int proc_oom_score(struct seq_file *m, struct pid_namespace *ns,
536 			  struct pid *pid, struct task_struct *task)
537 {
538 	unsigned long totalpages = totalram_pages + total_swap_pages;
539 	unsigned long points = 0;
540 
541 	points = oom_badness(task, NULL, NULL, totalpages) *
542 					1000 / totalpages;
543 	seq_printf(m, "%lu\n", points);
544 
545 	return 0;
546 }
547 
548 struct limit_names {
549 	const char *name;
550 	const char *unit;
551 };
552 
553 static const struct limit_names lnames[RLIM_NLIMITS] = {
554 	[RLIMIT_CPU] = {"Max cpu time", "seconds"},
555 	[RLIMIT_FSIZE] = {"Max file size", "bytes"},
556 	[RLIMIT_DATA] = {"Max data size", "bytes"},
557 	[RLIMIT_STACK] = {"Max stack size", "bytes"},
558 	[RLIMIT_CORE] = {"Max core file size", "bytes"},
559 	[RLIMIT_RSS] = {"Max resident set", "bytes"},
560 	[RLIMIT_NPROC] = {"Max processes", "processes"},
561 	[RLIMIT_NOFILE] = {"Max open files", "files"},
562 	[RLIMIT_MEMLOCK] = {"Max locked memory", "bytes"},
563 	[RLIMIT_AS] = {"Max address space", "bytes"},
564 	[RLIMIT_LOCKS] = {"Max file locks", "locks"},
565 	[RLIMIT_SIGPENDING] = {"Max pending signals", "signals"},
566 	[RLIMIT_MSGQUEUE] = {"Max msgqueue size", "bytes"},
567 	[RLIMIT_NICE] = {"Max nice priority", NULL},
568 	[RLIMIT_RTPRIO] = {"Max realtime priority", NULL},
569 	[RLIMIT_RTTIME] = {"Max realtime timeout", "us"},
570 };
571 
572 /* Display limits for a process */
573 static int proc_pid_limits(struct seq_file *m, struct pid_namespace *ns,
574 			   struct pid *pid, struct task_struct *task)
575 {
576 	unsigned int i;
577 	unsigned long flags;
578 
579 	struct rlimit rlim[RLIM_NLIMITS];
580 
581 	if (!lock_task_sighand(task, &flags))
582 		return 0;
583 	memcpy(rlim, task->signal->rlim, sizeof(struct rlimit) * RLIM_NLIMITS);
584 	unlock_task_sighand(task, &flags);
585 
586 	/*
587 	 * print the file header
588 	 */
589        seq_printf(m, "%-25s %-20s %-20s %-10s\n",
590 		  "Limit", "Soft Limit", "Hard Limit", "Units");
591 
592 	for (i = 0; i < RLIM_NLIMITS; i++) {
593 		if (rlim[i].rlim_cur == RLIM_INFINITY)
594 			seq_printf(m, "%-25s %-20s ",
595 				   lnames[i].name, "unlimited");
596 		else
597 			seq_printf(m, "%-25s %-20lu ",
598 				   lnames[i].name, rlim[i].rlim_cur);
599 
600 		if (rlim[i].rlim_max == RLIM_INFINITY)
601 			seq_printf(m, "%-20s ", "unlimited");
602 		else
603 			seq_printf(m, "%-20lu ", rlim[i].rlim_max);
604 
605 		if (lnames[i].unit)
606 			seq_printf(m, "%-10s\n", lnames[i].unit);
607 		else
608 			seq_putc(m, '\n');
609 	}
610 
611 	return 0;
612 }
613 
614 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK
615 static int proc_pid_syscall(struct seq_file *m, struct pid_namespace *ns,
616 			    struct pid *pid, struct task_struct *task)
617 {
618 	long nr;
619 	unsigned long args[6], sp, pc;
620 	int res;
621 
622 	res = lock_trace(task);
623 	if (res)
624 		return res;
625 
626 	if (task_current_syscall(task, &nr, args, 6, &sp, &pc))
627 		seq_puts(m, "running\n");
628 	else if (nr < 0)
629 		seq_printf(m, "%ld 0x%lx 0x%lx\n", nr, sp, pc);
630 	else
631 		seq_printf(m,
632 		       "%ld 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx\n",
633 		       nr,
634 		       args[0], args[1], args[2], args[3], args[4], args[5],
635 		       sp, pc);
636 	unlock_trace(task);
637 
638 	return 0;
639 }
640 #endif /* CONFIG_HAVE_ARCH_TRACEHOOK */
641 
642 /************************************************************************/
643 /*                       Here the fs part begins                        */
644 /************************************************************************/
645 
646 /* permission checks */
647 static int proc_fd_access_allowed(struct inode *inode)
648 {
649 	struct task_struct *task;
650 	int allowed = 0;
651 	/* Allow access to a task's file descriptors if it is us or we
652 	 * may use ptrace attach to the process and find out that
653 	 * information.
654 	 */
655 	task = get_proc_task(inode);
656 	if (task) {
657 		allowed = ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS);
658 		put_task_struct(task);
659 	}
660 	return allowed;
661 }
662 
663 int proc_setattr(struct dentry *dentry, struct iattr *attr)
664 {
665 	int error;
666 	struct inode *inode = d_inode(dentry);
667 
668 	if (attr->ia_valid & ATTR_MODE)
669 		return -EPERM;
670 
671 	error = setattr_prepare(dentry, attr);
672 	if (error)
673 		return error;
674 
675 	setattr_copy(inode, attr);
676 	mark_inode_dirty(inode);
677 	return 0;
678 }
679 
680 /*
681  * May current process learn task's sched/cmdline info (for hide_pid_min=1)
682  * or euid/egid (for hide_pid_min=2)?
683  */
684 static bool has_pid_permissions(struct pid_namespace *pid,
685 				 struct task_struct *task,
686 				 int hide_pid_min)
687 {
688 	if (pid->hide_pid < hide_pid_min)
689 		return true;
690 	if (in_group_p(pid->pid_gid))
691 		return true;
692 	return ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS);
693 }
694 
695 
696 static int proc_pid_permission(struct inode *inode, int mask)
697 {
698 	struct pid_namespace *pid = inode->i_sb->s_fs_info;
699 	struct task_struct *task;
700 	bool has_perms;
701 
702 	task = get_proc_task(inode);
703 	if (!task)
704 		return -ESRCH;
705 	has_perms = has_pid_permissions(pid, task, HIDEPID_NO_ACCESS);
706 	put_task_struct(task);
707 
708 	if (!has_perms) {
709 		if (pid->hide_pid == HIDEPID_INVISIBLE) {
710 			/*
711 			 * Let's make getdents(), stat(), and open()
712 			 * consistent with each other.  If a process
713 			 * may not stat() a file, it shouldn't be seen
714 			 * in procfs at all.
715 			 */
716 			return -ENOENT;
717 		}
718 
719 		return -EPERM;
720 	}
721 	return generic_permission(inode, mask);
722 }
723 
724 
725 
726 static const struct inode_operations proc_def_inode_operations = {
727 	.setattr	= proc_setattr,
728 };
729 
730 static int proc_single_show(struct seq_file *m, void *v)
731 {
732 	struct inode *inode = m->private;
733 	struct pid_namespace *ns;
734 	struct pid *pid;
735 	struct task_struct *task;
736 	int ret;
737 
738 	ns = inode->i_sb->s_fs_info;
739 	pid = proc_pid(inode);
740 	task = get_pid_task(pid, PIDTYPE_PID);
741 	if (!task)
742 		return -ESRCH;
743 
744 	ret = PROC_I(inode)->op.proc_show(m, ns, pid, task);
745 
746 	put_task_struct(task);
747 	return ret;
748 }
749 
750 static int proc_single_open(struct inode *inode, struct file *filp)
751 {
752 	return single_open(filp, proc_single_show, inode);
753 }
754 
755 static const struct file_operations proc_single_file_operations = {
756 	.open		= proc_single_open,
757 	.read		= seq_read,
758 	.llseek		= seq_lseek,
759 	.release	= single_release,
760 };
761 
762 
763 struct mm_struct *proc_mem_open(struct inode *inode, unsigned int mode)
764 {
765 	struct task_struct *task = get_proc_task(inode);
766 	struct mm_struct *mm = ERR_PTR(-ESRCH);
767 
768 	if (task) {
769 		mm = mm_access(task, mode | PTRACE_MODE_FSCREDS);
770 		put_task_struct(task);
771 
772 		if (!IS_ERR_OR_NULL(mm)) {
773 			/* ensure this mm_struct can't be freed */
774 			mmgrab(mm);
775 			/* but do not pin its memory */
776 			mmput(mm);
777 		}
778 	}
779 
780 	return mm;
781 }
782 
783 static int __mem_open(struct inode *inode, struct file *file, unsigned int mode)
784 {
785 	struct mm_struct *mm = proc_mem_open(inode, mode);
786 
787 	if (IS_ERR(mm))
788 		return PTR_ERR(mm);
789 
790 	file->private_data = mm;
791 	return 0;
792 }
793 
794 static int mem_open(struct inode *inode, struct file *file)
795 {
796 	int ret = __mem_open(inode, file, PTRACE_MODE_ATTACH);
797 
798 	/* OK to pass negative loff_t, we can catch out-of-range */
799 	file->f_mode |= FMODE_UNSIGNED_OFFSET;
800 
801 	return ret;
802 }
803 
804 static ssize_t mem_rw(struct file *file, char __user *buf,
805 			size_t count, loff_t *ppos, int write)
806 {
807 	struct mm_struct *mm = file->private_data;
808 	unsigned long addr = *ppos;
809 	ssize_t copied;
810 	char *page;
811 	unsigned int flags;
812 
813 	if (!mm)
814 		return 0;
815 
816 	page = (char *)__get_free_page(GFP_TEMPORARY);
817 	if (!page)
818 		return -ENOMEM;
819 
820 	copied = 0;
821 	if (!mmget_not_zero(mm))
822 		goto free;
823 
824 	/* Maybe we should limit FOLL_FORCE to actual ptrace users? */
825 	flags = FOLL_FORCE;
826 	if (write)
827 		flags |= FOLL_WRITE;
828 
829 	while (count > 0) {
830 		int this_len = min_t(int, count, PAGE_SIZE);
831 
832 		if (write && copy_from_user(page, buf, this_len)) {
833 			copied = -EFAULT;
834 			break;
835 		}
836 
837 		this_len = access_remote_vm(mm, addr, page, this_len, flags);
838 		if (!this_len) {
839 			if (!copied)
840 				copied = -EIO;
841 			break;
842 		}
843 
844 		if (!write && copy_to_user(buf, page, this_len)) {
845 			copied = -EFAULT;
846 			break;
847 		}
848 
849 		buf += this_len;
850 		addr += this_len;
851 		copied += this_len;
852 		count -= this_len;
853 	}
854 	*ppos = addr;
855 
856 	mmput(mm);
857 free:
858 	free_page((unsigned long) page);
859 	return copied;
860 }
861 
862 static ssize_t mem_read(struct file *file, char __user *buf,
863 			size_t count, loff_t *ppos)
864 {
865 	return mem_rw(file, buf, count, ppos, 0);
866 }
867 
868 static ssize_t mem_write(struct file *file, const char __user *buf,
869 			 size_t count, loff_t *ppos)
870 {
871 	return mem_rw(file, (char __user*)buf, count, ppos, 1);
872 }
873 
874 loff_t mem_lseek(struct file *file, loff_t offset, int orig)
875 {
876 	switch (orig) {
877 	case 0:
878 		file->f_pos = offset;
879 		break;
880 	case 1:
881 		file->f_pos += offset;
882 		break;
883 	default:
884 		return -EINVAL;
885 	}
886 	force_successful_syscall_return();
887 	return file->f_pos;
888 }
889 
890 static int mem_release(struct inode *inode, struct file *file)
891 {
892 	struct mm_struct *mm = file->private_data;
893 	if (mm)
894 		mmdrop(mm);
895 	return 0;
896 }
897 
898 static const struct file_operations proc_mem_operations = {
899 	.llseek		= mem_lseek,
900 	.read		= mem_read,
901 	.write		= mem_write,
902 	.open		= mem_open,
903 	.release	= mem_release,
904 };
905 
906 static int environ_open(struct inode *inode, struct file *file)
907 {
908 	return __mem_open(inode, file, PTRACE_MODE_READ);
909 }
910 
911 static ssize_t environ_read(struct file *file, char __user *buf,
912 			size_t count, loff_t *ppos)
913 {
914 	char *page;
915 	unsigned long src = *ppos;
916 	int ret = 0;
917 	struct mm_struct *mm = file->private_data;
918 	unsigned long env_start, env_end;
919 
920 	/* Ensure the process spawned far enough to have an environment. */
921 	if (!mm || !mm->env_end)
922 		return 0;
923 
924 	page = (char *)__get_free_page(GFP_TEMPORARY);
925 	if (!page)
926 		return -ENOMEM;
927 
928 	ret = 0;
929 	if (!mmget_not_zero(mm))
930 		goto free;
931 
932 	down_read(&mm->mmap_sem);
933 	env_start = mm->env_start;
934 	env_end = mm->env_end;
935 	up_read(&mm->mmap_sem);
936 
937 	while (count > 0) {
938 		size_t this_len, max_len;
939 		int retval;
940 
941 		if (src >= (env_end - env_start))
942 			break;
943 
944 		this_len = env_end - (env_start + src);
945 
946 		max_len = min_t(size_t, PAGE_SIZE, count);
947 		this_len = min(max_len, this_len);
948 
949 		retval = access_remote_vm(mm, (env_start + src), page, this_len, 0);
950 
951 		if (retval <= 0) {
952 			ret = retval;
953 			break;
954 		}
955 
956 		if (copy_to_user(buf, page, retval)) {
957 			ret = -EFAULT;
958 			break;
959 		}
960 
961 		ret += retval;
962 		src += retval;
963 		buf += retval;
964 		count -= retval;
965 	}
966 	*ppos = src;
967 	mmput(mm);
968 
969 free:
970 	free_page((unsigned long) page);
971 	return ret;
972 }
973 
974 static const struct file_operations proc_environ_operations = {
975 	.open		= environ_open,
976 	.read		= environ_read,
977 	.llseek		= generic_file_llseek,
978 	.release	= mem_release,
979 };
980 
981 static int auxv_open(struct inode *inode, struct file *file)
982 {
983 	return __mem_open(inode, file, PTRACE_MODE_READ_FSCREDS);
984 }
985 
986 static ssize_t auxv_read(struct file *file, char __user *buf,
987 			size_t count, loff_t *ppos)
988 {
989 	struct mm_struct *mm = file->private_data;
990 	unsigned int nwords = 0;
991 
992 	if (!mm)
993 		return 0;
994 	do {
995 		nwords += 2;
996 	} while (mm->saved_auxv[nwords - 2] != 0); /* AT_NULL */
997 	return simple_read_from_buffer(buf, count, ppos, mm->saved_auxv,
998 				       nwords * sizeof(mm->saved_auxv[0]));
999 }
1000 
1001 static const struct file_operations proc_auxv_operations = {
1002 	.open		= auxv_open,
1003 	.read		= auxv_read,
1004 	.llseek		= generic_file_llseek,
1005 	.release	= mem_release,
1006 };
1007 
1008 static ssize_t oom_adj_read(struct file *file, char __user *buf, size_t count,
1009 			    loff_t *ppos)
1010 {
1011 	struct task_struct *task = get_proc_task(file_inode(file));
1012 	char buffer[PROC_NUMBUF];
1013 	int oom_adj = OOM_ADJUST_MIN;
1014 	size_t len;
1015 
1016 	if (!task)
1017 		return -ESRCH;
1018 	if (task->signal->oom_score_adj == OOM_SCORE_ADJ_MAX)
1019 		oom_adj = OOM_ADJUST_MAX;
1020 	else
1021 		oom_adj = (task->signal->oom_score_adj * -OOM_DISABLE) /
1022 			  OOM_SCORE_ADJ_MAX;
1023 	put_task_struct(task);
1024 	len = snprintf(buffer, sizeof(buffer), "%d\n", oom_adj);
1025 	return simple_read_from_buffer(buf, count, ppos, buffer, len);
1026 }
1027 
1028 static int __set_oom_adj(struct file *file, int oom_adj, bool legacy)
1029 {
1030 	static DEFINE_MUTEX(oom_adj_mutex);
1031 	struct mm_struct *mm = NULL;
1032 	struct task_struct *task;
1033 	int err = 0;
1034 
1035 	task = get_proc_task(file_inode(file));
1036 	if (!task)
1037 		return -ESRCH;
1038 
1039 	mutex_lock(&oom_adj_mutex);
1040 	if (legacy) {
1041 		if (oom_adj < task->signal->oom_score_adj &&
1042 				!capable(CAP_SYS_RESOURCE)) {
1043 			err = -EACCES;
1044 			goto err_unlock;
1045 		}
1046 		/*
1047 		 * /proc/pid/oom_adj is provided for legacy purposes, ask users to use
1048 		 * /proc/pid/oom_score_adj instead.
1049 		 */
1050 		pr_warn_once("%s (%d): /proc/%d/oom_adj is deprecated, please use /proc/%d/oom_score_adj instead.\n",
1051 			  current->comm, task_pid_nr(current), task_pid_nr(task),
1052 			  task_pid_nr(task));
1053 	} else {
1054 		if ((short)oom_adj < task->signal->oom_score_adj_min &&
1055 				!capable(CAP_SYS_RESOURCE)) {
1056 			err = -EACCES;
1057 			goto err_unlock;
1058 		}
1059 	}
1060 
1061 	/*
1062 	 * Make sure we will check other processes sharing the mm if this is
1063 	 * not vfrok which wants its own oom_score_adj.
1064 	 * pin the mm so it doesn't go away and get reused after task_unlock
1065 	 */
1066 	if (!task->vfork_done) {
1067 		struct task_struct *p = find_lock_task_mm(task);
1068 
1069 		if (p) {
1070 			if (atomic_read(&p->mm->mm_users) > 1) {
1071 				mm = p->mm;
1072 				mmgrab(mm);
1073 			}
1074 			task_unlock(p);
1075 		}
1076 	}
1077 
1078 	task->signal->oom_score_adj = oom_adj;
1079 	if (!legacy && has_capability_noaudit(current, CAP_SYS_RESOURCE))
1080 		task->signal->oom_score_adj_min = (short)oom_adj;
1081 	trace_oom_score_adj_update(task);
1082 
1083 	if (mm) {
1084 		struct task_struct *p;
1085 
1086 		rcu_read_lock();
1087 		for_each_process(p) {
1088 			if (same_thread_group(task, p))
1089 				continue;
1090 
1091 			/* do not touch kernel threads or the global init */
1092 			if (p->flags & PF_KTHREAD || is_global_init(p))
1093 				continue;
1094 
1095 			task_lock(p);
1096 			if (!p->vfork_done && process_shares_mm(p, mm)) {
1097 				pr_info("updating oom_score_adj for %d (%s) from %d to %d because it shares mm with %d (%s). Report if this is unexpected.\n",
1098 						task_pid_nr(p), p->comm,
1099 						p->signal->oom_score_adj, oom_adj,
1100 						task_pid_nr(task), task->comm);
1101 				p->signal->oom_score_adj = oom_adj;
1102 				if (!legacy && has_capability_noaudit(current, CAP_SYS_RESOURCE))
1103 					p->signal->oom_score_adj_min = (short)oom_adj;
1104 			}
1105 			task_unlock(p);
1106 		}
1107 		rcu_read_unlock();
1108 		mmdrop(mm);
1109 	}
1110 err_unlock:
1111 	mutex_unlock(&oom_adj_mutex);
1112 	put_task_struct(task);
1113 	return err;
1114 }
1115 
1116 /*
1117  * /proc/pid/oom_adj exists solely for backwards compatibility with previous
1118  * kernels.  The effective policy is defined by oom_score_adj, which has a
1119  * different scale: oom_adj grew exponentially and oom_score_adj grows linearly.
1120  * Values written to oom_adj are simply mapped linearly to oom_score_adj.
1121  * Processes that become oom disabled via oom_adj will still be oom disabled
1122  * with this implementation.
1123  *
1124  * oom_adj cannot be removed since existing userspace binaries use it.
1125  */
1126 static ssize_t oom_adj_write(struct file *file, const char __user *buf,
1127 			     size_t count, loff_t *ppos)
1128 {
1129 	char buffer[PROC_NUMBUF];
1130 	int oom_adj;
1131 	int err;
1132 
1133 	memset(buffer, 0, sizeof(buffer));
1134 	if (count > sizeof(buffer) - 1)
1135 		count = sizeof(buffer) - 1;
1136 	if (copy_from_user(buffer, buf, count)) {
1137 		err = -EFAULT;
1138 		goto out;
1139 	}
1140 
1141 	err = kstrtoint(strstrip(buffer), 0, &oom_adj);
1142 	if (err)
1143 		goto out;
1144 	if ((oom_adj < OOM_ADJUST_MIN || oom_adj > OOM_ADJUST_MAX) &&
1145 	     oom_adj != OOM_DISABLE) {
1146 		err = -EINVAL;
1147 		goto out;
1148 	}
1149 
1150 	/*
1151 	 * Scale /proc/pid/oom_score_adj appropriately ensuring that a maximum
1152 	 * value is always attainable.
1153 	 */
1154 	if (oom_adj == OOM_ADJUST_MAX)
1155 		oom_adj = OOM_SCORE_ADJ_MAX;
1156 	else
1157 		oom_adj = (oom_adj * OOM_SCORE_ADJ_MAX) / -OOM_DISABLE;
1158 
1159 	err = __set_oom_adj(file, oom_adj, true);
1160 out:
1161 	return err < 0 ? err : count;
1162 }
1163 
1164 static const struct file_operations proc_oom_adj_operations = {
1165 	.read		= oom_adj_read,
1166 	.write		= oom_adj_write,
1167 	.llseek		= generic_file_llseek,
1168 };
1169 
1170 static ssize_t oom_score_adj_read(struct file *file, char __user *buf,
1171 					size_t count, loff_t *ppos)
1172 {
1173 	struct task_struct *task = get_proc_task(file_inode(file));
1174 	char buffer[PROC_NUMBUF];
1175 	short oom_score_adj = OOM_SCORE_ADJ_MIN;
1176 	size_t len;
1177 
1178 	if (!task)
1179 		return -ESRCH;
1180 	oom_score_adj = task->signal->oom_score_adj;
1181 	put_task_struct(task);
1182 	len = snprintf(buffer, sizeof(buffer), "%hd\n", oom_score_adj);
1183 	return simple_read_from_buffer(buf, count, ppos, buffer, len);
1184 }
1185 
1186 static ssize_t oom_score_adj_write(struct file *file, const char __user *buf,
1187 					size_t count, loff_t *ppos)
1188 {
1189 	char buffer[PROC_NUMBUF];
1190 	int oom_score_adj;
1191 	int err;
1192 
1193 	memset(buffer, 0, sizeof(buffer));
1194 	if (count > sizeof(buffer) - 1)
1195 		count = sizeof(buffer) - 1;
1196 	if (copy_from_user(buffer, buf, count)) {
1197 		err = -EFAULT;
1198 		goto out;
1199 	}
1200 
1201 	err = kstrtoint(strstrip(buffer), 0, &oom_score_adj);
1202 	if (err)
1203 		goto out;
1204 	if (oom_score_adj < OOM_SCORE_ADJ_MIN ||
1205 			oom_score_adj > OOM_SCORE_ADJ_MAX) {
1206 		err = -EINVAL;
1207 		goto out;
1208 	}
1209 
1210 	err = __set_oom_adj(file, oom_score_adj, false);
1211 out:
1212 	return err < 0 ? err : count;
1213 }
1214 
1215 static const struct file_operations proc_oom_score_adj_operations = {
1216 	.read		= oom_score_adj_read,
1217 	.write		= oom_score_adj_write,
1218 	.llseek		= default_llseek,
1219 };
1220 
1221 #ifdef CONFIG_AUDITSYSCALL
1222 #define TMPBUFLEN 11
1223 static ssize_t proc_loginuid_read(struct file * file, char __user * buf,
1224 				  size_t count, loff_t *ppos)
1225 {
1226 	struct inode * inode = file_inode(file);
1227 	struct task_struct *task = get_proc_task(inode);
1228 	ssize_t length;
1229 	char tmpbuf[TMPBUFLEN];
1230 
1231 	if (!task)
1232 		return -ESRCH;
1233 	length = scnprintf(tmpbuf, TMPBUFLEN, "%u",
1234 			   from_kuid(file->f_cred->user_ns,
1235 				     audit_get_loginuid(task)));
1236 	put_task_struct(task);
1237 	return simple_read_from_buffer(buf, count, ppos, tmpbuf, length);
1238 }
1239 
1240 static ssize_t proc_loginuid_write(struct file * file, const char __user * buf,
1241 				   size_t count, loff_t *ppos)
1242 {
1243 	struct inode * inode = file_inode(file);
1244 	uid_t loginuid;
1245 	kuid_t kloginuid;
1246 	int rv;
1247 
1248 	rcu_read_lock();
1249 	if (current != pid_task(proc_pid(inode), PIDTYPE_PID)) {
1250 		rcu_read_unlock();
1251 		return -EPERM;
1252 	}
1253 	rcu_read_unlock();
1254 
1255 	if (*ppos != 0) {
1256 		/* No partial writes. */
1257 		return -EINVAL;
1258 	}
1259 
1260 	rv = kstrtou32_from_user(buf, count, 10, &loginuid);
1261 	if (rv < 0)
1262 		return rv;
1263 
1264 	/* is userspace tring to explicitly UNSET the loginuid? */
1265 	if (loginuid == AUDIT_UID_UNSET) {
1266 		kloginuid = INVALID_UID;
1267 	} else {
1268 		kloginuid = make_kuid(file->f_cred->user_ns, loginuid);
1269 		if (!uid_valid(kloginuid))
1270 			return -EINVAL;
1271 	}
1272 
1273 	rv = audit_set_loginuid(kloginuid);
1274 	if (rv < 0)
1275 		return rv;
1276 	return count;
1277 }
1278 
1279 static const struct file_operations proc_loginuid_operations = {
1280 	.read		= proc_loginuid_read,
1281 	.write		= proc_loginuid_write,
1282 	.llseek		= generic_file_llseek,
1283 };
1284 
1285 static ssize_t proc_sessionid_read(struct file * file, char __user * buf,
1286 				  size_t count, loff_t *ppos)
1287 {
1288 	struct inode * inode = file_inode(file);
1289 	struct task_struct *task = get_proc_task(inode);
1290 	ssize_t length;
1291 	char tmpbuf[TMPBUFLEN];
1292 
1293 	if (!task)
1294 		return -ESRCH;
1295 	length = scnprintf(tmpbuf, TMPBUFLEN, "%u",
1296 				audit_get_sessionid(task));
1297 	put_task_struct(task);
1298 	return simple_read_from_buffer(buf, count, ppos, tmpbuf, length);
1299 }
1300 
1301 static const struct file_operations proc_sessionid_operations = {
1302 	.read		= proc_sessionid_read,
1303 	.llseek		= generic_file_llseek,
1304 };
1305 #endif
1306 
1307 #ifdef CONFIG_FAULT_INJECTION
1308 static ssize_t proc_fault_inject_read(struct file * file, char __user * buf,
1309 				      size_t count, loff_t *ppos)
1310 {
1311 	struct task_struct *task = get_proc_task(file_inode(file));
1312 	char buffer[PROC_NUMBUF];
1313 	size_t len;
1314 	int make_it_fail;
1315 
1316 	if (!task)
1317 		return -ESRCH;
1318 	make_it_fail = task->make_it_fail;
1319 	put_task_struct(task);
1320 
1321 	len = snprintf(buffer, sizeof(buffer), "%i\n", make_it_fail);
1322 
1323 	return simple_read_from_buffer(buf, count, ppos, buffer, len);
1324 }
1325 
1326 static ssize_t proc_fault_inject_write(struct file * file,
1327 			const char __user * buf, size_t count, loff_t *ppos)
1328 {
1329 	struct task_struct *task;
1330 	char buffer[PROC_NUMBUF];
1331 	int make_it_fail;
1332 	int rv;
1333 
1334 	if (!capable(CAP_SYS_RESOURCE))
1335 		return -EPERM;
1336 	memset(buffer, 0, sizeof(buffer));
1337 	if (count > sizeof(buffer) - 1)
1338 		count = sizeof(buffer) - 1;
1339 	if (copy_from_user(buffer, buf, count))
1340 		return -EFAULT;
1341 	rv = kstrtoint(strstrip(buffer), 0, &make_it_fail);
1342 	if (rv < 0)
1343 		return rv;
1344 	if (make_it_fail < 0 || make_it_fail > 1)
1345 		return -EINVAL;
1346 
1347 	task = get_proc_task(file_inode(file));
1348 	if (!task)
1349 		return -ESRCH;
1350 	task->make_it_fail = make_it_fail;
1351 	put_task_struct(task);
1352 
1353 	return count;
1354 }
1355 
1356 static const struct file_operations proc_fault_inject_operations = {
1357 	.read		= proc_fault_inject_read,
1358 	.write		= proc_fault_inject_write,
1359 	.llseek		= generic_file_llseek,
1360 };
1361 #endif
1362 
1363 
1364 #ifdef CONFIG_SCHED_DEBUG
1365 /*
1366  * Print out various scheduling related per-task fields:
1367  */
1368 static int sched_show(struct seq_file *m, void *v)
1369 {
1370 	struct inode *inode = m->private;
1371 	struct task_struct *p;
1372 
1373 	p = get_proc_task(inode);
1374 	if (!p)
1375 		return -ESRCH;
1376 	proc_sched_show_task(p, m);
1377 
1378 	put_task_struct(p);
1379 
1380 	return 0;
1381 }
1382 
1383 static ssize_t
1384 sched_write(struct file *file, const char __user *buf,
1385 	    size_t count, loff_t *offset)
1386 {
1387 	struct inode *inode = file_inode(file);
1388 	struct task_struct *p;
1389 
1390 	p = get_proc_task(inode);
1391 	if (!p)
1392 		return -ESRCH;
1393 	proc_sched_set_task(p);
1394 
1395 	put_task_struct(p);
1396 
1397 	return count;
1398 }
1399 
1400 static int sched_open(struct inode *inode, struct file *filp)
1401 {
1402 	return single_open(filp, sched_show, inode);
1403 }
1404 
1405 static const struct file_operations proc_pid_sched_operations = {
1406 	.open		= sched_open,
1407 	.read		= seq_read,
1408 	.write		= sched_write,
1409 	.llseek		= seq_lseek,
1410 	.release	= single_release,
1411 };
1412 
1413 #endif
1414 
1415 #ifdef CONFIG_SCHED_AUTOGROUP
1416 /*
1417  * Print out autogroup related information:
1418  */
1419 static int sched_autogroup_show(struct seq_file *m, void *v)
1420 {
1421 	struct inode *inode = m->private;
1422 	struct task_struct *p;
1423 
1424 	p = get_proc_task(inode);
1425 	if (!p)
1426 		return -ESRCH;
1427 	proc_sched_autogroup_show_task(p, m);
1428 
1429 	put_task_struct(p);
1430 
1431 	return 0;
1432 }
1433 
1434 static ssize_t
1435 sched_autogroup_write(struct file *file, const char __user *buf,
1436 	    size_t count, loff_t *offset)
1437 {
1438 	struct inode *inode = file_inode(file);
1439 	struct task_struct *p;
1440 	char buffer[PROC_NUMBUF];
1441 	int nice;
1442 	int err;
1443 
1444 	memset(buffer, 0, sizeof(buffer));
1445 	if (count > sizeof(buffer) - 1)
1446 		count = sizeof(buffer) - 1;
1447 	if (copy_from_user(buffer, buf, count))
1448 		return -EFAULT;
1449 
1450 	err = kstrtoint(strstrip(buffer), 0, &nice);
1451 	if (err < 0)
1452 		return err;
1453 
1454 	p = get_proc_task(inode);
1455 	if (!p)
1456 		return -ESRCH;
1457 
1458 	err = proc_sched_autogroup_set_nice(p, nice);
1459 	if (err)
1460 		count = err;
1461 
1462 	put_task_struct(p);
1463 
1464 	return count;
1465 }
1466 
1467 static int sched_autogroup_open(struct inode *inode, struct file *filp)
1468 {
1469 	int ret;
1470 
1471 	ret = single_open(filp, sched_autogroup_show, NULL);
1472 	if (!ret) {
1473 		struct seq_file *m = filp->private_data;
1474 
1475 		m->private = inode;
1476 	}
1477 	return ret;
1478 }
1479 
1480 static const struct file_operations proc_pid_sched_autogroup_operations = {
1481 	.open		= sched_autogroup_open,
1482 	.read		= seq_read,
1483 	.write		= sched_autogroup_write,
1484 	.llseek		= seq_lseek,
1485 	.release	= single_release,
1486 };
1487 
1488 #endif /* CONFIG_SCHED_AUTOGROUP */
1489 
1490 static ssize_t comm_write(struct file *file, const char __user *buf,
1491 				size_t count, loff_t *offset)
1492 {
1493 	struct inode *inode = file_inode(file);
1494 	struct task_struct *p;
1495 	char buffer[TASK_COMM_LEN];
1496 	const size_t maxlen = sizeof(buffer) - 1;
1497 
1498 	memset(buffer, 0, sizeof(buffer));
1499 	if (copy_from_user(buffer, buf, count > maxlen ? maxlen : count))
1500 		return -EFAULT;
1501 
1502 	p = get_proc_task(inode);
1503 	if (!p)
1504 		return -ESRCH;
1505 
1506 	if (same_thread_group(current, p))
1507 		set_task_comm(p, buffer);
1508 	else
1509 		count = -EINVAL;
1510 
1511 	put_task_struct(p);
1512 
1513 	return count;
1514 }
1515 
1516 static int comm_show(struct seq_file *m, void *v)
1517 {
1518 	struct inode *inode = m->private;
1519 	struct task_struct *p;
1520 
1521 	p = get_proc_task(inode);
1522 	if (!p)
1523 		return -ESRCH;
1524 
1525 	task_lock(p);
1526 	seq_printf(m, "%s\n", p->comm);
1527 	task_unlock(p);
1528 
1529 	put_task_struct(p);
1530 
1531 	return 0;
1532 }
1533 
1534 static int comm_open(struct inode *inode, struct file *filp)
1535 {
1536 	return single_open(filp, comm_show, inode);
1537 }
1538 
1539 static const struct file_operations proc_pid_set_comm_operations = {
1540 	.open		= comm_open,
1541 	.read		= seq_read,
1542 	.write		= comm_write,
1543 	.llseek		= seq_lseek,
1544 	.release	= single_release,
1545 };
1546 
1547 static int proc_exe_link(struct dentry *dentry, struct path *exe_path)
1548 {
1549 	struct task_struct *task;
1550 	struct file *exe_file;
1551 
1552 	task = get_proc_task(d_inode(dentry));
1553 	if (!task)
1554 		return -ENOENT;
1555 	exe_file = get_task_exe_file(task);
1556 	put_task_struct(task);
1557 	if (exe_file) {
1558 		*exe_path = exe_file->f_path;
1559 		path_get(&exe_file->f_path);
1560 		fput(exe_file);
1561 		return 0;
1562 	} else
1563 		return -ENOENT;
1564 }
1565 
1566 static const char *proc_pid_get_link(struct dentry *dentry,
1567 				     struct inode *inode,
1568 				     struct delayed_call *done)
1569 {
1570 	struct path path;
1571 	int error = -EACCES;
1572 
1573 	if (!dentry)
1574 		return ERR_PTR(-ECHILD);
1575 
1576 	/* Are we allowed to snoop on the tasks file descriptors? */
1577 	if (!proc_fd_access_allowed(inode))
1578 		goto out;
1579 
1580 	error = PROC_I(inode)->op.proc_get_link(dentry, &path);
1581 	if (error)
1582 		goto out;
1583 
1584 	nd_jump_link(&path);
1585 	return NULL;
1586 out:
1587 	return ERR_PTR(error);
1588 }
1589 
1590 static int do_proc_readlink(struct path *path, char __user *buffer, int buflen)
1591 {
1592 	char *tmp = (char*)__get_free_page(GFP_TEMPORARY);
1593 	char *pathname;
1594 	int len;
1595 
1596 	if (!tmp)
1597 		return -ENOMEM;
1598 
1599 	pathname = d_path(path, tmp, PAGE_SIZE);
1600 	len = PTR_ERR(pathname);
1601 	if (IS_ERR(pathname))
1602 		goto out;
1603 	len = tmp + PAGE_SIZE - 1 - pathname;
1604 
1605 	if (len > buflen)
1606 		len = buflen;
1607 	if (copy_to_user(buffer, pathname, len))
1608 		len = -EFAULT;
1609  out:
1610 	free_page((unsigned long)tmp);
1611 	return len;
1612 }
1613 
1614 static int proc_pid_readlink(struct dentry * dentry, char __user * buffer, int buflen)
1615 {
1616 	int error = -EACCES;
1617 	struct inode *inode = d_inode(dentry);
1618 	struct path path;
1619 
1620 	/* Are we allowed to snoop on the tasks file descriptors? */
1621 	if (!proc_fd_access_allowed(inode))
1622 		goto out;
1623 
1624 	error = PROC_I(inode)->op.proc_get_link(dentry, &path);
1625 	if (error)
1626 		goto out;
1627 
1628 	error = do_proc_readlink(&path, buffer, buflen);
1629 	path_put(&path);
1630 out:
1631 	return error;
1632 }
1633 
1634 const struct inode_operations proc_pid_link_inode_operations = {
1635 	.readlink	= proc_pid_readlink,
1636 	.get_link	= proc_pid_get_link,
1637 	.setattr	= proc_setattr,
1638 };
1639 
1640 
1641 /* building an inode */
1642 
1643 void task_dump_owner(struct task_struct *task, mode_t mode,
1644 		     kuid_t *ruid, kgid_t *rgid)
1645 {
1646 	/* Depending on the state of dumpable compute who should own a
1647 	 * proc file for a task.
1648 	 */
1649 	const struct cred *cred;
1650 	kuid_t uid;
1651 	kgid_t gid;
1652 
1653 	/* Default to the tasks effective ownership */
1654 	rcu_read_lock();
1655 	cred = __task_cred(task);
1656 	uid = cred->euid;
1657 	gid = cred->egid;
1658 	rcu_read_unlock();
1659 
1660 	/*
1661 	 * Before the /proc/pid/status file was created the only way to read
1662 	 * the effective uid of a /process was to stat /proc/pid.  Reading
1663 	 * /proc/pid/status is slow enough that procps and other packages
1664 	 * kept stating /proc/pid.  To keep the rules in /proc simple I have
1665 	 * made this apply to all per process world readable and executable
1666 	 * directories.
1667 	 */
1668 	if (mode != (S_IFDIR|S_IRUGO|S_IXUGO)) {
1669 		struct mm_struct *mm;
1670 		task_lock(task);
1671 		mm = task->mm;
1672 		/* Make non-dumpable tasks owned by some root */
1673 		if (mm) {
1674 			if (get_dumpable(mm) != SUID_DUMP_USER) {
1675 				struct user_namespace *user_ns = mm->user_ns;
1676 
1677 				uid = make_kuid(user_ns, 0);
1678 				if (!uid_valid(uid))
1679 					uid = GLOBAL_ROOT_UID;
1680 
1681 				gid = make_kgid(user_ns, 0);
1682 				if (!gid_valid(gid))
1683 					gid = GLOBAL_ROOT_GID;
1684 			}
1685 		} else {
1686 			uid = GLOBAL_ROOT_UID;
1687 			gid = GLOBAL_ROOT_GID;
1688 		}
1689 		task_unlock(task);
1690 	}
1691 	*ruid = uid;
1692 	*rgid = gid;
1693 }
1694 
1695 struct inode *proc_pid_make_inode(struct super_block * sb,
1696 				  struct task_struct *task, umode_t mode)
1697 {
1698 	struct inode * inode;
1699 	struct proc_inode *ei;
1700 
1701 	/* We need a new inode */
1702 
1703 	inode = new_inode(sb);
1704 	if (!inode)
1705 		goto out;
1706 
1707 	/* Common stuff */
1708 	ei = PROC_I(inode);
1709 	inode->i_mode = mode;
1710 	inode->i_ino = get_next_ino();
1711 	inode->i_mtime = inode->i_atime = inode->i_ctime = current_time(inode);
1712 	inode->i_op = &proc_def_inode_operations;
1713 
1714 	/*
1715 	 * grab the reference to task.
1716 	 */
1717 	ei->pid = get_task_pid(task, PIDTYPE_PID);
1718 	if (!ei->pid)
1719 		goto out_unlock;
1720 
1721 	task_dump_owner(task, 0, &inode->i_uid, &inode->i_gid);
1722 	security_task_to_inode(task, inode);
1723 
1724 out:
1725 	return inode;
1726 
1727 out_unlock:
1728 	iput(inode);
1729 	return NULL;
1730 }
1731 
1732 int pid_getattr(const struct path *path, struct kstat *stat,
1733 		u32 request_mask, unsigned int query_flags)
1734 {
1735 	struct inode *inode = d_inode(path->dentry);
1736 	struct task_struct *task;
1737 	struct pid_namespace *pid = path->dentry->d_sb->s_fs_info;
1738 
1739 	generic_fillattr(inode, stat);
1740 
1741 	rcu_read_lock();
1742 	stat->uid = GLOBAL_ROOT_UID;
1743 	stat->gid = GLOBAL_ROOT_GID;
1744 	task = pid_task(proc_pid(inode), PIDTYPE_PID);
1745 	if (task) {
1746 		if (!has_pid_permissions(pid, task, HIDEPID_INVISIBLE)) {
1747 			rcu_read_unlock();
1748 			/*
1749 			 * This doesn't prevent learning whether PID exists,
1750 			 * it only makes getattr() consistent with readdir().
1751 			 */
1752 			return -ENOENT;
1753 		}
1754 		task_dump_owner(task, inode->i_mode, &stat->uid, &stat->gid);
1755 	}
1756 	rcu_read_unlock();
1757 	return 0;
1758 }
1759 
1760 /* dentry stuff */
1761 
1762 /*
1763  *	Exceptional case: normally we are not allowed to unhash a busy
1764  * directory. In this case, however, we can do it - no aliasing problems
1765  * due to the way we treat inodes.
1766  *
1767  * Rewrite the inode's ownerships here because the owning task may have
1768  * performed a setuid(), etc.
1769  *
1770  */
1771 int pid_revalidate(struct dentry *dentry, unsigned int flags)
1772 {
1773 	struct inode *inode;
1774 	struct task_struct *task;
1775 
1776 	if (flags & LOOKUP_RCU)
1777 		return -ECHILD;
1778 
1779 	inode = d_inode(dentry);
1780 	task = get_proc_task(inode);
1781 
1782 	if (task) {
1783 		task_dump_owner(task, inode->i_mode, &inode->i_uid, &inode->i_gid);
1784 
1785 		inode->i_mode &= ~(S_ISUID | S_ISGID);
1786 		security_task_to_inode(task, inode);
1787 		put_task_struct(task);
1788 		return 1;
1789 	}
1790 	return 0;
1791 }
1792 
1793 static inline bool proc_inode_is_dead(struct inode *inode)
1794 {
1795 	return !proc_pid(inode)->tasks[PIDTYPE_PID].first;
1796 }
1797 
1798 int pid_delete_dentry(const struct dentry *dentry)
1799 {
1800 	/* Is the task we represent dead?
1801 	 * If so, then don't put the dentry on the lru list,
1802 	 * kill it immediately.
1803 	 */
1804 	return proc_inode_is_dead(d_inode(dentry));
1805 }
1806 
1807 const struct dentry_operations pid_dentry_operations =
1808 {
1809 	.d_revalidate	= pid_revalidate,
1810 	.d_delete	= pid_delete_dentry,
1811 };
1812 
1813 /* Lookups */
1814 
1815 /*
1816  * Fill a directory entry.
1817  *
1818  * If possible create the dcache entry and derive our inode number and
1819  * file type from dcache entry.
1820  *
1821  * Since all of the proc inode numbers are dynamically generated, the inode
1822  * numbers do not exist until the inode is cache.  This means creating the
1823  * the dcache entry in readdir is necessary to keep the inode numbers
1824  * reported by readdir in sync with the inode numbers reported
1825  * by stat.
1826  */
1827 bool proc_fill_cache(struct file *file, struct dir_context *ctx,
1828 	const char *name, int len,
1829 	instantiate_t instantiate, struct task_struct *task, const void *ptr)
1830 {
1831 	struct dentry *child, *dir = file->f_path.dentry;
1832 	struct qstr qname = QSTR_INIT(name, len);
1833 	struct inode *inode;
1834 	unsigned type;
1835 	ino_t ino;
1836 
1837 	child = d_hash_and_lookup(dir, &qname);
1838 	if (!child) {
1839 		DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
1840 		child = d_alloc_parallel(dir, &qname, &wq);
1841 		if (IS_ERR(child))
1842 			goto end_instantiate;
1843 		if (d_in_lookup(child)) {
1844 			int err = instantiate(d_inode(dir), child, task, ptr);
1845 			d_lookup_done(child);
1846 			if (err < 0) {
1847 				dput(child);
1848 				goto end_instantiate;
1849 			}
1850 		}
1851 	}
1852 	inode = d_inode(child);
1853 	ino = inode->i_ino;
1854 	type = inode->i_mode >> 12;
1855 	dput(child);
1856 	return dir_emit(ctx, name, len, ino, type);
1857 
1858 end_instantiate:
1859 	return dir_emit(ctx, name, len, 1, DT_UNKNOWN);
1860 }
1861 
1862 /*
1863  * dname_to_vma_addr - maps a dentry name into two unsigned longs
1864  * which represent vma start and end addresses.
1865  */
1866 static int dname_to_vma_addr(struct dentry *dentry,
1867 			     unsigned long *start, unsigned long *end)
1868 {
1869 	if (sscanf(dentry->d_name.name, "%lx-%lx", start, end) != 2)
1870 		return -EINVAL;
1871 
1872 	return 0;
1873 }
1874 
1875 static int map_files_d_revalidate(struct dentry *dentry, unsigned int flags)
1876 {
1877 	unsigned long vm_start, vm_end;
1878 	bool exact_vma_exists = false;
1879 	struct mm_struct *mm = NULL;
1880 	struct task_struct *task;
1881 	struct inode *inode;
1882 	int status = 0;
1883 
1884 	if (flags & LOOKUP_RCU)
1885 		return -ECHILD;
1886 
1887 	inode = d_inode(dentry);
1888 	task = get_proc_task(inode);
1889 	if (!task)
1890 		goto out_notask;
1891 
1892 	mm = mm_access(task, PTRACE_MODE_READ_FSCREDS);
1893 	if (IS_ERR_OR_NULL(mm))
1894 		goto out;
1895 
1896 	if (!dname_to_vma_addr(dentry, &vm_start, &vm_end)) {
1897 		down_read(&mm->mmap_sem);
1898 		exact_vma_exists = !!find_exact_vma(mm, vm_start, vm_end);
1899 		up_read(&mm->mmap_sem);
1900 	}
1901 
1902 	mmput(mm);
1903 
1904 	if (exact_vma_exists) {
1905 		task_dump_owner(task, 0, &inode->i_uid, &inode->i_gid);
1906 
1907 		security_task_to_inode(task, inode);
1908 		status = 1;
1909 	}
1910 
1911 out:
1912 	put_task_struct(task);
1913 
1914 out_notask:
1915 	return status;
1916 }
1917 
1918 static const struct dentry_operations tid_map_files_dentry_operations = {
1919 	.d_revalidate	= map_files_d_revalidate,
1920 	.d_delete	= pid_delete_dentry,
1921 };
1922 
1923 static int map_files_get_link(struct dentry *dentry, struct path *path)
1924 {
1925 	unsigned long vm_start, vm_end;
1926 	struct vm_area_struct *vma;
1927 	struct task_struct *task;
1928 	struct mm_struct *mm;
1929 	int rc;
1930 
1931 	rc = -ENOENT;
1932 	task = get_proc_task(d_inode(dentry));
1933 	if (!task)
1934 		goto out;
1935 
1936 	mm = get_task_mm(task);
1937 	put_task_struct(task);
1938 	if (!mm)
1939 		goto out;
1940 
1941 	rc = dname_to_vma_addr(dentry, &vm_start, &vm_end);
1942 	if (rc)
1943 		goto out_mmput;
1944 
1945 	rc = -ENOENT;
1946 	down_read(&mm->mmap_sem);
1947 	vma = find_exact_vma(mm, vm_start, vm_end);
1948 	if (vma && vma->vm_file) {
1949 		*path = vma->vm_file->f_path;
1950 		path_get(path);
1951 		rc = 0;
1952 	}
1953 	up_read(&mm->mmap_sem);
1954 
1955 out_mmput:
1956 	mmput(mm);
1957 out:
1958 	return rc;
1959 }
1960 
1961 struct map_files_info {
1962 	fmode_t		mode;
1963 	unsigned int	len;
1964 	unsigned char	name[4*sizeof(long)+2]; /* max: %lx-%lx\0 */
1965 };
1966 
1967 /*
1968  * Only allow CAP_SYS_ADMIN to follow the links, due to concerns about how the
1969  * symlinks may be used to bypass permissions on ancestor directories in the
1970  * path to the file in question.
1971  */
1972 static const char *
1973 proc_map_files_get_link(struct dentry *dentry,
1974 			struct inode *inode,
1975 		        struct delayed_call *done)
1976 {
1977 	if (!capable(CAP_SYS_ADMIN))
1978 		return ERR_PTR(-EPERM);
1979 
1980 	return proc_pid_get_link(dentry, inode, done);
1981 }
1982 
1983 /*
1984  * Identical to proc_pid_link_inode_operations except for get_link()
1985  */
1986 static const struct inode_operations proc_map_files_link_inode_operations = {
1987 	.readlink	= proc_pid_readlink,
1988 	.get_link	= proc_map_files_get_link,
1989 	.setattr	= proc_setattr,
1990 };
1991 
1992 static int
1993 proc_map_files_instantiate(struct inode *dir, struct dentry *dentry,
1994 			   struct task_struct *task, const void *ptr)
1995 {
1996 	fmode_t mode = (fmode_t)(unsigned long)ptr;
1997 	struct proc_inode *ei;
1998 	struct inode *inode;
1999 
2000 	inode = proc_pid_make_inode(dir->i_sb, task, S_IFLNK |
2001 				    ((mode & FMODE_READ ) ? S_IRUSR : 0) |
2002 				    ((mode & FMODE_WRITE) ? S_IWUSR : 0));
2003 	if (!inode)
2004 		return -ENOENT;
2005 
2006 	ei = PROC_I(inode);
2007 	ei->op.proc_get_link = map_files_get_link;
2008 
2009 	inode->i_op = &proc_map_files_link_inode_operations;
2010 	inode->i_size = 64;
2011 
2012 	d_set_d_op(dentry, &tid_map_files_dentry_operations);
2013 	d_add(dentry, inode);
2014 
2015 	return 0;
2016 }
2017 
2018 static struct dentry *proc_map_files_lookup(struct inode *dir,
2019 		struct dentry *dentry, unsigned int flags)
2020 {
2021 	unsigned long vm_start, vm_end;
2022 	struct vm_area_struct *vma;
2023 	struct task_struct *task;
2024 	int result;
2025 	struct mm_struct *mm;
2026 
2027 	result = -ENOENT;
2028 	task = get_proc_task(dir);
2029 	if (!task)
2030 		goto out;
2031 
2032 	result = -EACCES;
2033 	if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS))
2034 		goto out_put_task;
2035 
2036 	result = -ENOENT;
2037 	if (dname_to_vma_addr(dentry, &vm_start, &vm_end))
2038 		goto out_put_task;
2039 
2040 	mm = get_task_mm(task);
2041 	if (!mm)
2042 		goto out_put_task;
2043 
2044 	down_read(&mm->mmap_sem);
2045 	vma = find_exact_vma(mm, vm_start, vm_end);
2046 	if (!vma)
2047 		goto out_no_vma;
2048 
2049 	if (vma->vm_file)
2050 		result = proc_map_files_instantiate(dir, dentry, task,
2051 				(void *)(unsigned long)vma->vm_file->f_mode);
2052 
2053 out_no_vma:
2054 	up_read(&mm->mmap_sem);
2055 	mmput(mm);
2056 out_put_task:
2057 	put_task_struct(task);
2058 out:
2059 	return ERR_PTR(result);
2060 }
2061 
2062 static const struct inode_operations proc_map_files_inode_operations = {
2063 	.lookup		= proc_map_files_lookup,
2064 	.permission	= proc_fd_permission,
2065 	.setattr	= proc_setattr,
2066 };
2067 
2068 static int
2069 proc_map_files_readdir(struct file *file, struct dir_context *ctx)
2070 {
2071 	struct vm_area_struct *vma;
2072 	struct task_struct *task;
2073 	struct mm_struct *mm;
2074 	unsigned long nr_files, pos, i;
2075 	struct flex_array *fa = NULL;
2076 	struct map_files_info info;
2077 	struct map_files_info *p;
2078 	int ret;
2079 
2080 	ret = -ENOENT;
2081 	task = get_proc_task(file_inode(file));
2082 	if (!task)
2083 		goto out;
2084 
2085 	ret = -EACCES;
2086 	if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS))
2087 		goto out_put_task;
2088 
2089 	ret = 0;
2090 	if (!dir_emit_dots(file, ctx))
2091 		goto out_put_task;
2092 
2093 	mm = get_task_mm(task);
2094 	if (!mm)
2095 		goto out_put_task;
2096 	down_read(&mm->mmap_sem);
2097 
2098 	nr_files = 0;
2099 
2100 	/*
2101 	 * We need two passes here:
2102 	 *
2103 	 *  1) Collect vmas of mapped files with mmap_sem taken
2104 	 *  2) Release mmap_sem and instantiate entries
2105 	 *
2106 	 * otherwise we get lockdep complained, since filldir()
2107 	 * routine might require mmap_sem taken in might_fault().
2108 	 */
2109 
2110 	for (vma = mm->mmap, pos = 2; vma; vma = vma->vm_next) {
2111 		if (vma->vm_file && ++pos > ctx->pos)
2112 			nr_files++;
2113 	}
2114 
2115 	if (nr_files) {
2116 		fa = flex_array_alloc(sizeof(info), nr_files,
2117 					GFP_KERNEL);
2118 		if (!fa || flex_array_prealloc(fa, 0, nr_files,
2119 						GFP_KERNEL)) {
2120 			ret = -ENOMEM;
2121 			if (fa)
2122 				flex_array_free(fa);
2123 			up_read(&mm->mmap_sem);
2124 			mmput(mm);
2125 			goto out_put_task;
2126 		}
2127 		for (i = 0, vma = mm->mmap, pos = 2; vma;
2128 				vma = vma->vm_next) {
2129 			if (!vma->vm_file)
2130 				continue;
2131 			if (++pos <= ctx->pos)
2132 				continue;
2133 
2134 			info.mode = vma->vm_file->f_mode;
2135 			info.len = snprintf(info.name,
2136 					sizeof(info.name), "%lx-%lx",
2137 					vma->vm_start, vma->vm_end);
2138 			if (flex_array_put(fa, i++, &info, GFP_KERNEL))
2139 				BUG();
2140 		}
2141 	}
2142 	up_read(&mm->mmap_sem);
2143 
2144 	for (i = 0; i < nr_files; i++) {
2145 		p = flex_array_get(fa, i);
2146 		if (!proc_fill_cache(file, ctx,
2147 				      p->name, p->len,
2148 				      proc_map_files_instantiate,
2149 				      task,
2150 				      (void *)(unsigned long)p->mode))
2151 			break;
2152 		ctx->pos++;
2153 	}
2154 	if (fa)
2155 		flex_array_free(fa);
2156 	mmput(mm);
2157 
2158 out_put_task:
2159 	put_task_struct(task);
2160 out:
2161 	return ret;
2162 }
2163 
2164 static const struct file_operations proc_map_files_operations = {
2165 	.read		= generic_read_dir,
2166 	.iterate_shared	= proc_map_files_readdir,
2167 	.llseek		= generic_file_llseek,
2168 };
2169 
2170 #if defined(CONFIG_CHECKPOINT_RESTORE) && defined(CONFIG_POSIX_TIMERS)
2171 struct timers_private {
2172 	struct pid *pid;
2173 	struct task_struct *task;
2174 	struct sighand_struct *sighand;
2175 	struct pid_namespace *ns;
2176 	unsigned long flags;
2177 };
2178 
2179 static void *timers_start(struct seq_file *m, loff_t *pos)
2180 {
2181 	struct timers_private *tp = m->private;
2182 
2183 	tp->task = get_pid_task(tp->pid, PIDTYPE_PID);
2184 	if (!tp->task)
2185 		return ERR_PTR(-ESRCH);
2186 
2187 	tp->sighand = lock_task_sighand(tp->task, &tp->flags);
2188 	if (!tp->sighand)
2189 		return ERR_PTR(-ESRCH);
2190 
2191 	return seq_list_start(&tp->task->signal->posix_timers, *pos);
2192 }
2193 
2194 static void *timers_next(struct seq_file *m, void *v, loff_t *pos)
2195 {
2196 	struct timers_private *tp = m->private;
2197 	return seq_list_next(v, &tp->task->signal->posix_timers, pos);
2198 }
2199 
2200 static void timers_stop(struct seq_file *m, void *v)
2201 {
2202 	struct timers_private *tp = m->private;
2203 
2204 	if (tp->sighand) {
2205 		unlock_task_sighand(tp->task, &tp->flags);
2206 		tp->sighand = NULL;
2207 	}
2208 
2209 	if (tp->task) {
2210 		put_task_struct(tp->task);
2211 		tp->task = NULL;
2212 	}
2213 }
2214 
2215 static int show_timer(struct seq_file *m, void *v)
2216 {
2217 	struct k_itimer *timer;
2218 	struct timers_private *tp = m->private;
2219 	int notify;
2220 	static const char * const nstr[] = {
2221 		[SIGEV_SIGNAL] = "signal",
2222 		[SIGEV_NONE] = "none",
2223 		[SIGEV_THREAD] = "thread",
2224 	};
2225 
2226 	timer = list_entry((struct list_head *)v, struct k_itimer, list);
2227 	notify = timer->it_sigev_notify;
2228 
2229 	seq_printf(m, "ID: %d\n", timer->it_id);
2230 	seq_printf(m, "signal: %d/%p\n",
2231 		   timer->sigq->info.si_signo,
2232 		   timer->sigq->info.si_value.sival_ptr);
2233 	seq_printf(m, "notify: %s/%s.%d\n",
2234 		   nstr[notify & ~SIGEV_THREAD_ID],
2235 		   (notify & SIGEV_THREAD_ID) ? "tid" : "pid",
2236 		   pid_nr_ns(timer->it_pid, tp->ns));
2237 	seq_printf(m, "ClockID: %d\n", timer->it_clock);
2238 
2239 	return 0;
2240 }
2241 
2242 static const struct seq_operations proc_timers_seq_ops = {
2243 	.start	= timers_start,
2244 	.next	= timers_next,
2245 	.stop	= timers_stop,
2246 	.show	= show_timer,
2247 };
2248 
2249 static int proc_timers_open(struct inode *inode, struct file *file)
2250 {
2251 	struct timers_private *tp;
2252 
2253 	tp = __seq_open_private(file, &proc_timers_seq_ops,
2254 			sizeof(struct timers_private));
2255 	if (!tp)
2256 		return -ENOMEM;
2257 
2258 	tp->pid = proc_pid(inode);
2259 	tp->ns = inode->i_sb->s_fs_info;
2260 	return 0;
2261 }
2262 
2263 static const struct file_operations proc_timers_operations = {
2264 	.open		= proc_timers_open,
2265 	.read		= seq_read,
2266 	.llseek		= seq_lseek,
2267 	.release	= seq_release_private,
2268 };
2269 #endif
2270 
2271 static ssize_t timerslack_ns_write(struct file *file, const char __user *buf,
2272 					size_t count, loff_t *offset)
2273 {
2274 	struct inode *inode = file_inode(file);
2275 	struct task_struct *p;
2276 	u64 slack_ns;
2277 	int err;
2278 
2279 	err = kstrtoull_from_user(buf, count, 10, &slack_ns);
2280 	if (err < 0)
2281 		return err;
2282 
2283 	p = get_proc_task(inode);
2284 	if (!p)
2285 		return -ESRCH;
2286 
2287 	if (p != current) {
2288 		if (!capable(CAP_SYS_NICE)) {
2289 			count = -EPERM;
2290 			goto out;
2291 		}
2292 
2293 		err = security_task_setscheduler(p);
2294 		if (err) {
2295 			count = err;
2296 			goto out;
2297 		}
2298 	}
2299 
2300 	task_lock(p);
2301 	if (slack_ns == 0)
2302 		p->timer_slack_ns = p->default_timer_slack_ns;
2303 	else
2304 		p->timer_slack_ns = slack_ns;
2305 	task_unlock(p);
2306 
2307 out:
2308 	put_task_struct(p);
2309 
2310 	return count;
2311 }
2312 
2313 static int timerslack_ns_show(struct seq_file *m, void *v)
2314 {
2315 	struct inode *inode = m->private;
2316 	struct task_struct *p;
2317 	int err = 0;
2318 
2319 	p = get_proc_task(inode);
2320 	if (!p)
2321 		return -ESRCH;
2322 
2323 	if (p != current) {
2324 
2325 		if (!capable(CAP_SYS_NICE)) {
2326 			err = -EPERM;
2327 			goto out;
2328 		}
2329 		err = security_task_getscheduler(p);
2330 		if (err)
2331 			goto out;
2332 	}
2333 
2334 	task_lock(p);
2335 	seq_printf(m, "%llu\n", p->timer_slack_ns);
2336 	task_unlock(p);
2337 
2338 out:
2339 	put_task_struct(p);
2340 
2341 	return err;
2342 }
2343 
2344 static int timerslack_ns_open(struct inode *inode, struct file *filp)
2345 {
2346 	return single_open(filp, timerslack_ns_show, inode);
2347 }
2348 
2349 static const struct file_operations proc_pid_set_timerslack_ns_operations = {
2350 	.open		= timerslack_ns_open,
2351 	.read		= seq_read,
2352 	.write		= timerslack_ns_write,
2353 	.llseek		= seq_lseek,
2354 	.release	= single_release,
2355 };
2356 
2357 static int proc_pident_instantiate(struct inode *dir,
2358 	struct dentry *dentry, struct task_struct *task, const void *ptr)
2359 {
2360 	const struct pid_entry *p = ptr;
2361 	struct inode *inode;
2362 	struct proc_inode *ei;
2363 
2364 	inode = proc_pid_make_inode(dir->i_sb, task, p->mode);
2365 	if (!inode)
2366 		goto out;
2367 
2368 	ei = PROC_I(inode);
2369 	if (S_ISDIR(inode->i_mode))
2370 		set_nlink(inode, 2);	/* Use getattr to fix if necessary */
2371 	if (p->iop)
2372 		inode->i_op = p->iop;
2373 	if (p->fop)
2374 		inode->i_fop = p->fop;
2375 	ei->op = p->op;
2376 	d_set_d_op(dentry, &pid_dentry_operations);
2377 	d_add(dentry, inode);
2378 	/* Close the race of the process dying before we return the dentry */
2379 	if (pid_revalidate(dentry, 0))
2380 		return 0;
2381 out:
2382 	return -ENOENT;
2383 }
2384 
2385 static struct dentry *proc_pident_lookup(struct inode *dir,
2386 					 struct dentry *dentry,
2387 					 const struct pid_entry *ents,
2388 					 unsigned int nents)
2389 {
2390 	int error;
2391 	struct task_struct *task = get_proc_task(dir);
2392 	const struct pid_entry *p, *last;
2393 
2394 	error = -ENOENT;
2395 
2396 	if (!task)
2397 		goto out_no_task;
2398 
2399 	/*
2400 	 * Yes, it does not scale. And it should not. Don't add
2401 	 * new entries into /proc/<tgid>/ without very good reasons.
2402 	 */
2403 	last = &ents[nents];
2404 	for (p = ents; p < last; p++) {
2405 		if (p->len != dentry->d_name.len)
2406 			continue;
2407 		if (!memcmp(dentry->d_name.name, p->name, p->len))
2408 			break;
2409 	}
2410 	if (p >= last)
2411 		goto out;
2412 
2413 	error = proc_pident_instantiate(dir, dentry, task, p);
2414 out:
2415 	put_task_struct(task);
2416 out_no_task:
2417 	return ERR_PTR(error);
2418 }
2419 
2420 static int proc_pident_readdir(struct file *file, struct dir_context *ctx,
2421 		const struct pid_entry *ents, unsigned int nents)
2422 {
2423 	struct task_struct *task = get_proc_task(file_inode(file));
2424 	const struct pid_entry *p;
2425 
2426 	if (!task)
2427 		return -ENOENT;
2428 
2429 	if (!dir_emit_dots(file, ctx))
2430 		goto out;
2431 
2432 	if (ctx->pos >= nents + 2)
2433 		goto out;
2434 
2435 	for (p = ents + (ctx->pos - 2); p < ents + nents; p++) {
2436 		if (!proc_fill_cache(file, ctx, p->name, p->len,
2437 				proc_pident_instantiate, task, p))
2438 			break;
2439 		ctx->pos++;
2440 	}
2441 out:
2442 	put_task_struct(task);
2443 	return 0;
2444 }
2445 
2446 #ifdef CONFIG_SECURITY
2447 static ssize_t proc_pid_attr_read(struct file * file, char __user * buf,
2448 				  size_t count, loff_t *ppos)
2449 {
2450 	struct inode * inode = file_inode(file);
2451 	char *p = NULL;
2452 	ssize_t length;
2453 	struct task_struct *task = get_proc_task(inode);
2454 
2455 	if (!task)
2456 		return -ESRCH;
2457 
2458 	length = security_getprocattr(task,
2459 				      (char*)file->f_path.dentry->d_name.name,
2460 				      &p);
2461 	put_task_struct(task);
2462 	if (length > 0)
2463 		length = simple_read_from_buffer(buf, count, ppos, p, length);
2464 	kfree(p);
2465 	return length;
2466 }
2467 
2468 static ssize_t proc_pid_attr_write(struct file * file, const char __user * buf,
2469 				   size_t count, loff_t *ppos)
2470 {
2471 	struct inode * inode = file_inode(file);
2472 	void *page;
2473 	ssize_t length;
2474 	struct task_struct *task = get_proc_task(inode);
2475 
2476 	length = -ESRCH;
2477 	if (!task)
2478 		goto out_no_task;
2479 
2480 	/* A task may only write its own attributes. */
2481 	length = -EACCES;
2482 	if (current != task)
2483 		goto out;
2484 
2485 	if (count > PAGE_SIZE)
2486 		count = PAGE_SIZE;
2487 
2488 	/* No partial writes. */
2489 	length = -EINVAL;
2490 	if (*ppos != 0)
2491 		goto out;
2492 
2493 	page = memdup_user(buf, count);
2494 	if (IS_ERR(page)) {
2495 		length = PTR_ERR(page);
2496 		goto out;
2497 	}
2498 
2499 	/* Guard against adverse ptrace interaction */
2500 	length = mutex_lock_interruptible(&current->signal->cred_guard_mutex);
2501 	if (length < 0)
2502 		goto out_free;
2503 
2504 	length = security_setprocattr(file->f_path.dentry->d_name.name,
2505 				      page, count);
2506 	mutex_unlock(&current->signal->cred_guard_mutex);
2507 out_free:
2508 	kfree(page);
2509 out:
2510 	put_task_struct(task);
2511 out_no_task:
2512 	return length;
2513 }
2514 
2515 static const struct file_operations proc_pid_attr_operations = {
2516 	.read		= proc_pid_attr_read,
2517 	.write		= proc_pid_attr_write,
2518 	.llseek		= generic_file_llseek,
2519 };
2520 
2521 static const struct pid_entry attr_dir_stuff[] = {
2522 	REG("current",    S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2523 	REG("prev",       S_IRUGO,	   proc_pid_attr_operations),
2524 	REG("exec",       S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2525 	REG("fscreate",   S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2526 	REG("keycreate",  S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2527 	REG("sockcreate", S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2528 };
2529 
2530 static int proc_attr_dir_readdir(struct file *file, struct dir_context *ctx)
2531 {
2532 	return proc_pident_readdir(file, ctx,
2533 				   attr_dir_stuff, ARRAY_SIZE(attr_dir_stuff));
2534 }
2535 
2536 static const struct file_operations proc_attr_dir_operations = {
2537 	.read		= generic_read_dir,
2538 	.iterate_shared	= proc_attr_dir_readdir,
2539 	.llseek		= generic_file_llseek,
2540 };
2541 
2542 static struct dentry *proc_attr_dir_lookup(struct inode *dir,
2543 				struct dentry *dentry, unsigned int flags)
2544 {
2545 	return proc_pident_lookup(dir, dentry,
2546 				  attr_dir_stuff, ARRAY_SIZE(attr_dir_stuff));
2547 }
2548 
2549 static const struct inode_operations proc_attr_dir_inode_operations = {
2550 	.lookup		= proc_attr_dir_lookup,
2551 	.getattr	= pid_getattr,
2552 	.setattr	= proc_setattr,
2553 };
2554 
2555 #endif
2556 
2557 #ifdef CONFIG_ELF_CORE
2558 static ssize_t proc_coredump_filter_read(struct file *file, char __user *buf,
2559 					 size_t count, loff_t *ppos)
2560 {
2561 	struct task_struct *task = get_proc_task(file_inode(file));
2562 	struct mm_struct *mm;
2563 	char buffer[PROC_NUMBUF];
2564 	size_t len;
2565 	int ret;
2566 
2567 	if (!task)
2568 		return -ESRCH;
2569 
2570 	ret = 0;
2571 	mm = get_task_mm(task);
2572 	if (mm) {
2573 		len = snprintf(buffer, sizeof(buffer), "%08lx\n",
2574 			       ((mm->flags & MMF_DUMP_FILTER_MASK) >>
2575 				MMF_DUMP_FILTER_SHIFT));
2576 		mmput(mm);
2577 		ret = simple_read_from_buffer(buf, count, ppos, buffer, len);
2578 	}
2579 
2580 	put_task_struct(task);
2581 
2582 	return ret;
2583 }
2584 
2585 static ssize_t proc_coredump_filter_write(struct file *file,
2586 					  const char __user *buf,
2587 					  size_t count,
2588 					  loff_t *ppos)
2589 {
2590 	struct task_struct *task;
2591 	struct mm_struct *mm;
2592 	unsigned int val;
2593 	int ret;
2594 	int i;
2595 	unsigned long mask;
2596 
2597 	ret = kstrtouint_from_user(buf, count, 0, &val);
2598 	if (ret < 0)
2599 		return ret;
2600 
2601 	ret = -ESRCH;
2602 	task = get_proc_task(file_inode(file));
2603 	if (!task)
2604 		goto out_no_task;
2605 
2606 	mm = get_task_mm(task);
2607 	if (!mm)
2608 		goto out_no_mm;
2609 	ret = 0;
2610 
2611 	for (i = 0, mask = 1; i < MMF_DUMP_FILTER_BITS; i++, mask <<= 1) {
2612 		if (val & mask)
2613 			set_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags);
2614 		else
2615 			clear_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags);
2616 	}
2617 
2618 	mmput(mm);
2619  out_no_mm:
2620 	put_task_struct(task);
2621  out_no_task:
2622 	if (ret < 0)
2623 		return ret;
2624 	return count;
2625 }
2626 
2627 static const struct file_operations proc_coredump_filter_operations = {
2628 	.read		= proc_coredump_filter_read,
2629 	.write		= proc_coredump_filter_write,
2630 	.llseek		= generic_file_llseek,
2631 };
2632 #endif
2633 
2634 #ifdef CONFIG_TASK_IO_ACCOUNTING
2635 static int do_io_accounting(struct task_struct *task, struct seq_file *m, int whole)
2636 {
2637 	struct task_io_accounting acct = task->ioac;
2638 	unsigned long flags;
2639 	int result;
2640 
2641 	result = mutex_lock_killable(&task->signal->cred_guard_mutex);
2642 	if (result)
2643 		return result;
2644 
2645 	if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS)) {
2646 		result = -EACCES;
2647 		goto out_unlock;
2648 	}
2649 
2650 	if (whole && lock_task_sighand(task, &flags)) {
2651 		struct task_struct *t = task;
2652 
2653 		task_io_accounting_add(&acct, &task->signal->ioac);
2654 		while_each_thread(task, t)
2655 			task_io_accounting_add(&acct, &t->ioac);
2656 
2657 		unlock_task_sighand(task, &flags);
2658 	}
2659 	seq_printf(m,
2660 		   "rchar: %llu\n"
2661 		   "wchar: %llu\n"
2662 		   "syscr: %llu\n"
2663 		   "syscw: %llu\n"
2664 		   "read_bytes: %llu\n"
2665 		   "write_bytes: %llu\n"
2666 		   "cancelled_write_bytes: %llu\n",
2667 		   (unsigned long long)acct.rchar,
2668 		   (unsigned long long)acct.wchar,
2669 		   (unsigned long long)acct.syscr,
2670 		   (unsigned long long)acct.syscw,
2671 		   (unsigned long long)acct.read_bytes,
2672 		   (unsigned long long)acct.write_bytes,
2673 		   (unsigned long long)acct.cancelled_write_bytes);
2674 	result = 0;
2675 
2676 out_unlock:
2677 	mutex_unlock(&task->signal->cred_guard_mutex);
2678 	return result;
2679 }
2680 
2681 static int proc_tid_io_accounting(struct seq_file *m, struct pid_namespace *ns,
2682 				  struct pid *pid, struct task_struct *task)
2683 {
2684 	return do_io_accounting(task, m, 0);
2685 }
2686 
2687 static int proc_tgid_io_accounting(struct seq_file *m, struct pid_namespace *ns,
2688 				   struct pid *pid, struct task_struct *task)
2689 {
2690 	return do_io_accounting(task, m, 1);
2691 }
2692 #endif /* CONFIG_TASK_IO_ACCOUNTING */
2693 
2694 #ifdef CONFIG_USER_NS
2695 static int proc_id_map_open(struct inode *inode, struct file *file,
2696 	const struct seq_operations *seq_ops)
2697 {
2698 	struct user_namespace *ns = NULL;
2699 	struct task_struct *task;
2700 	struct seq_file *seq;
2701 	int ret = -EINVAL;
2702 
2703 	task = get_proc_task(inode);
2704 	if (task) {
2705 		rcu_read_lock();
2706 		ns = get_user_ns(task_cred_xxx(task, user_ns));
2707 		rcu_read_unlock();
2708 		put_task_struct(task);
2709 	}
2710 	if (!ns)
2711 		goto err;
2712 
2713 	ret = seq_open(file, seq_ops);
2714 	if (ret)
2715 		goto err_put_ns;
2716 
2717 	seq = file->private_data;
2718 	seq->private = ns;
2719 
2720 	return 0;
2721 err_put_ns:
2722 	put_user_ns(ns);
2723 err:
2724 	return ret;
2725 }
2726 
2727 static int proc_id_map_release(struct inode *inode, struct file *file)
2728 {
2729 	struct seq_file *seq = file->private_data;
2730 	struct user_namespace *ns = seq->private;
2731 	put_user_ns(ns);
2732 	return seq_release(inode, file);
2733 }
2734 
2735 static int proc_uid_map_open(struct inode *inode, struct file *file)
2736 {
2737 	return proc_id_map_open(inode, file, &proc_uid_seq_operations);
2738 }
2739 
2740 static int proc_gid_map_open(struct inode *inode, struct file *file)
2741 {
2742 	return proc_id_map_open(inode, file, &proc_gid_seq_operations);
2743 }
2744 
2745 static int proc_projid_map_open(struct inode *inode, struct file *file)
2746 {
2747 	return proc_id_map_open(inode, file, &proc_projid_seq_operations);
2748 }
2749 
2750 static const struct file_operations proc_uid_map_operations = {
2751 	.open		= proc_uid_map_open,
2752 	.write		= proc_uid_map_write,
2753 	.read		= seq_read,
2754 	.llseek		= seq_lseek,
2755 	.release	= proc_id_map_release,
2756 };
2757 
2758 static const struct file_operations proc_gid_map_operations = {
2759 	.open		= proc_gid_map_open,
2760 	.write		= proc_gid_map_write,
2761 	.read		= seq_read,
2762 	.llseek		= seq_lseek,
2763 	.release	= proc_id_map_release,
2764 };
2765 
2766 static const struct file_operations proc_projid_map_operations = {
2767 	.open		= proc_projid_map_open,
2768 	.write		= proc_projid_map_write,
2769 	.read		= seq_read,
2770 	.llseek		= seq_lseek,
2771 	.release	= proc_id_map_release,
2772 };
2773 
2774 static int proc_setgroups_open(struct inode *inode, struct file *file)
2775 {
2776 	struct user_namespace *ns = NULL;
2777 	struct task_struct *task;
2778 	int ret;
2779 
2780 	ret = -ESRCH;
2781 	task = get_proc_task(inode);
2782 	if (task) {
2783 		rcu_read_lock();
2784 		ns = get_user_ns(task_cred_xxx(task, user_ns));
2785 		rcu_read_unlock();
2786 		put_task_struct(task);
2787 	}
2788 	if (!ns)
2789 		goto err;
2790 
2791 	if (file->f_mode & FMODE_WRITE) {
2792 		ret = -EACCES;
2793 		if (!ns_capable(ns, CAP_SYS_ADMIN))
2794 			goto err_put_ns;
2795 	}
2796 
2797 	ret = single_open(file, &proc_setgroups_show, ns);
2798 	if (ret)
2799 		goto err_put_ns;
2800 
2801 	return 0;
2802 err_put_ns:
2803 	put_user_ns(ns);
2804 err:
2805 	return ret;
2806 }
2807 
2808 static int proc_setgroups_release(struct inode *inode, struct file *file)
2809 {
2810 	struct seq_file *seq = file->private_data;
2811 	struct user_namespace *ns = seq->private;
2812 	int ret = single_release(inode, file);
2813 	put_user_ns(ns);
2814 	return ret;
2815 }
2816 
2817 static const struct file_operations proc_setgroups_operations = {
2818 	.open		= proc_setgroups_open,
2819 	.write		= proc_setgroups_write,
2820 	.read		= seq_read,
2821 	.llseek		= seq_lseek,
2822 	.release	= proc_setgroups_release,
2823 };
2824 #endif /* CONFIG_USER_NS */
2825 
2826 static int proc_pid_personality(struct seq_file *m, struct pid_namespace *ns,
2827 				struct pid *pid, struct task_struct *task)
2828 {
2829 	int err = lock_trace(task);
2830 	if (!err) {
2831 		seq_printf(m, "%08x\n", task->personality);
2832 		unlock_trace(task);
2833 	}
2834 	return err;
2835 }
2836 
2837 /*
2838  * Thread groups
2839  */
2840 static const struct file_operations proc_task_operations;
2841 static const struct inode_operations proc_task_inode_operations;
2842 
2843 static const struct pid_entry tgid_base_stuff[] = {
2844 	DIR("task",       S_IRUGO|S_IXUGO, proc_task_inode_operations, proc_task_operations),
2845 	DIR("fd",         S_IRUSR|S_IXUSR, proc_fd_inode_operations, proc_fd_operations),
2846 	DIR("map_files",  S_IRUSR|S_IXUSR, proc_map_files_inode_operations, proc_map_files_operations),
2847 	DIR("fdinfo",     S_IRUSR|S_IXUSR, proc_fdinfo_inode_operations, proc_fdinfo_operations),
2848 	DIR("ns",	  S_IRUSR|S_IXUGO, proc_ns_dir_inode_operations, proc_ns_dir_operations),
2849 #ifdef CONFIG_NET
2850 	DIR("net",        S_IRUGO|S_IXUGO, proc_net_inode_operations, proc_net_operations),
2851 #endif
2852 	REG("environ",    S_IRUSR, proc_environ_operations),
2853 	REG("auxv",       S_IRUSR, proc_auxv_operations),
2854 	ONE("status",     S_IRUGO, proc_pid_status),
2855 	ONE("personality", S_IRUSR, proc_pid_personality),
2856 	ONE("limits",	  S_IRUGO, proc_pid_limits),
2857 #ifdef CONFIG_SCHED_DEBUG
2858 	REG("sched",      S_IRUGO|S_IWUSR, proc_pid_sched_operations),
2859 #endif
2860 #ifdef CONFIG_SCHED_AUTOGROUP
2861 	REG("autogroup",  S_IRUGO|S_IWUSR, proc_pid_sched_autogroup_operations),
2862 #endif
2863 	REG("comm",      S_IRUGO|S_IWUSR, proc_pid_set_comm_operations),
2864 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK
2865 	ONE("syscall",    S_IRUSR, proc_pid_syscall),
2866 #endif
2867 	REG("cmdline",    S_IRUGO, proc_pid_cmdline_ops),
2868 	ONE("stat",       S_IRUGO, proc_tgid_stat),
2869 	ONE("statm",      S_IRUGO, proc_pid_statm),
2870 	REG("maps",       S_IRUGO, proc_pid_maps_operations),
2871 #ifdef CONFIG_NUMA
2872 	REG("numa_maps",  S_IRUGO, proc_pid_numa_maps_operations),
2873 #endif
2874 	REG("mem",        S_IRUSR|S_IWUSR, proc_mem_operations),
2875 	LNK("cwd",        proc_cwd_link),
2876 	LNK("root",       proc_root_link),
2877 	LNK("exe",        proc_exe_link),
2878 	REG("mounts",     S_IRUGO, proc_mounts_operations),
2879 	REG("mountinfo",  S_IRUGO, proc_mountinfo_operations),
2880 	REG("mountstats", S_IRUSR, proc_mountstats_operations),
2881 #ifdef CONFIG_PROC_PAGE_MONITOR
2882 	REG("clear_refs", S_IWUSR, proc_clear_refs_operations),
2883 	REG("smaps",      S_IRUGO, proc_pid_smaps_operations),
2884 	REG("pagemap",    S_IRUSR, proc_pagemap_operations),
2885 #endif
2886 #ifdef CONFIG_SECURITY
2887 	DIR("attr",       S_IRUGO|S_IXUGO, proc_attr_dir_inode_operations, proc_attr_dir_operations),
2888 #endif
2889 #ifdef CONFIG_KALLSYMS
2890 	ONE("wchan",      S_IRUGO, proc_pid_wchan),
2891 #endif
2892 #ifdef CONFIG_STACKTRACE
2893 	ONE("stack",      S_IRUSR, proc_pid_stack),
2894 #endif
2895 #ifdef CONFIG_SCHED_INFO
2896 	ONE("schedstat",  S_IRUGO, proc_pid_schedstat),
2897 #endif
2898 #ifdef CONFIG_LATENCYTOP
2899 	REG("latency",  S_IRUGO, proc_lstats_operations),
2900 #endif
2901 #ifdef CONFIG_PROC_PID_CPUSET
2902 	ONE("cpuset",     S_IRUGO, proc_cpuset_show),
2903 #endif
2904 #ifdef CONFIG_CGROUPS
2905 	ONE("cgroup",  S_IRUGO, proc_cgroup_show),
2906 #endif
2907 	ONE("oom_score",  S_IRUGO, proc_oom_score),
2908 	REG("oom_adj",    S_IRUGO|S_IWUSR, proc_oom_adj_operations),
2909 	REG("oom_score_adj", S_IRUGO|S_IWUSR, proc_oom_score_adj_operations),
2910 #ifdef CONFIG_AUDITSYSCALL
2911 	REG("loginuid",   S_IWUSR|S_IRUGO, proc_loginuid_operations),
2912 	REG("sessionid",  S_IRUGO, proc_sessionid_operations),
2913 #endif
2914 #ifdef CONFIG_FAULT_INJECTION
2915 	REG("make-it-fail", S_IRUGO|S_IWUSR, proc_fault_inject_operations),
2916 #endif
2917 #ifdef CONFIG_ELF_CORE
2918 	REG("coredump_filter", S_IRUGO|S_IWUSR, proc_coredump_filter_operations),
2919 #endif
2920 #ifdef CONFIG_TASK_IO_ACCOUNTING
2921 	ONE("io",	S_IRUSR, proc_tgid_io_accounting),
2922 #endif
2923 #ifdef CONFIG_HARDWALL
2924 	ONE("hardwall",   S_IRUGO, proc_pid_hardwall),
2925 #endif
2926 #ifdef CONFIG_USER_NS
2927 	REG("uid_map",    S_IRUGO|S_IWUSR, proc_uid_map_operations),
2928 	REG("gid_map",    S_IRUGO|S_IWUSR, proc_gid_map_operations),
2929 	REG("projid_map", S_IRUGO|S_IWUSR, proc_projid_map_operations),
2930 	REG("setgroups",  S_IRUGO|S_IWUSR, proc_setgroups_operations),
2931 #endif
2932 #if defined(CONFIG_CHECKPOINT_RESTORE) && defined(CONFIG_POSIX_TIMERS)
2933 	REG("timers",	  S_IRUGO, proc_timers_operations),
2934 #endif
2935 	REG("timerslack_ns", S_IRUGO|S_IWUGO, proc_pid_set_timerslack_ns_operations),
2936 };
2937 
2938 static int proc_tgid_base_readdir(struct file *file, struct dir_context *ctx)
2939 {
2940 	return proc_pident_readdir(file, ctx,
2941 				   tgid_base_stuff, ARRAY_SIZE(tgid_base_stuff));
2942 }
2943 
2944 static const struct file_operations proc_tgid_base_operations = {
2945 	.read		= generic_read_dir,
2946 	.iterate_shared	= proc_tgid_base_readdir,
2947 	.llseek		= generic_file_llseek,
2948 };
2949 
2950 static struct dentry *proc_tgid_base_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
2951 {
2952 	return proc_pident_lookup(dir, dentry,
2953 				  tgid_base_stuff, ARRAY_SIZE(tgid_base_stuff));
2954 }
2955 
2956 static const struct inode_operations proc_tgid_base_inode_operations = {
2957 	.lookup		= proc_tgid_base_lookup,
2958 	.getattr	= pid_getattr,
2959 	.setattr	= proc_setattr,
2960 	.permission	= proc_pid_permission,
2961 };
2962 
2963 static void proc_flush_task_mnt(struct vfsmount *mnt, pid_t pid, pid_t tgid)
2964 {
2965 	struct dentry *dentry, *leader, *dir;
2966 	char buf[PROC_NUMBUF];
2967 	struct qstr name;
2968 
2969 	name.name = buf;
2970 	name.len = snprintf(buf, sizeof(buf), "%d", pid);
2971 	/* no ->d_hash() rejects on procfs */
2972 	dentry = d_hash_and_lookup(mnt->mnt_root, &name);
2973 	if (dentry) {
2974 		d_invalidate(dentry);
2975 		dput(dentry);
2976 	}
2977 
2978 	if (pid == tgid)
2979 		return;
2980 
2981 	name.name = buf;
2982 	name.len = snprintf(buf, sizeof(buf), "%d", tgid);
2983 	leader = d_hash_and_lookup(mnt->mnt_root, &name);
2984 	if (!leader)
2985 		goto out;
2986 
2987 	name.name = "task";
2988 	name.len = strlen(name.name);
2989 	dir = d_hash_and_lookup(leader, &name);
2990 	if (!dir)
2991 		goto out_put_leader;
2992 
2993 	name.name = buf;
2994 	name.len = snprintf(buf, sizeof(buf), "%d", pid);
2995 	dentry = d_hash_and_lookup(dir, &name);
2996 	if (dentry) {
2997 		d_invalidate(dentry);
2998 		dput(dentry);
2999 	}
3000 
3001 	dput(dir);
3002 out_put_leader:
3003 	dput(leader);
3004 out:
3005 	return;
3006 }
3007 
3008 /**
3009  * proc_flush_task -  Remove dcache entries for @task from the /proc dcache.
3010  * @task: task that should be flushed.
3011  *
3012  * When flushing dentries from proc, one needs to flush them from global
3013  * proc (proc_mnt) and from all the namespaces' procs this task was seen
3014  * in. This call is supposed to do all of this job.
3015  *
3016  * Looks in the dcache for
3017  * /proc/@pid
3018  * /proc/@tgid/task/@pid
3019  * if either directory is present flushes it and all of it'ts children
3020  * from the dcache.
3021  *
3022  * It is safe and reasonable to cache /proc entries for a task until
3023  * that task exits.  After that they just clog up the dcache with
3024  * useless entries, possibly causing useful dcache entries to be
3025  * flushed instead.  This routine is proved to flush those useless
3026  * dcache entries at process exit time.
3027  *
3028  * NOTE: This routine is just an optimization so it does not guarantee
3029  *       that no dcache entries will exist at process exit time it
3030  *       just makes it very unlikely that any will persist.
3031  */
3032 
3033 void proc_flush_task(struct task_struct *task)
3034 {
3035 	int i;
3036 	struct pid *pid, *tgid;
3037 	struct upid *upid;
3038 
3039 	pid = task_pid(task);
3040 	tgid = task_tgid(task);
3041 
3042 	for (i = 0; i <= pid->level; i++) {
3043 		upid = &pid->numbers[i];
3044 		proc_flush_task_mnt(upid->ns->proc_mnt, upid->nr,
3045 					tgid->numbers[i].nr);
3046 	}
3047 }
3048 
3049 static int proc_pid_instantiate(struct inode *dir,
3050 				   struct dentry * dentry,
3051 				   struct task_struct *task, const void *ptr)
3052 {
3053 	struct inode *inode;
3054 
3055 	inode = proc_pid_make_inode(dir->i_sb, task, S_IFDIR | S_IRUGO | S_IXUGO);
3056 	if (!inode)
3057 		goto out;
3058 
3059 	inode->i_op = &proc_tgid_base_inode_operations;
3060 	inode->i_fop = &proc_tgid_base_operations;
3061 	inode->i_flags|=S_IMMUTABLE;
3062 
3063 	set_nlink(inode, nlink_tgid);
3064 
3065 	d_set_d_op(dentry, &pid_dentry_operations);
3066 
3067 	d_add(dentry, inode);
3068 	/* Close the race of the process dying before we return the dentry */
3069 	if (pid_revalidate(dentry, 0))
3070 		return 0;
3071 out:
3072 	return -ENOENT;
3073 }
3074 
3075 struct dentry *proc_pid_lookup(struct inode *dir, struct dentry * dentry, unsigned int flags)
3076 {
3077 	int result = -ENOENT;
3078 	struct task_struct *task;
3079 	unsigned tgid;
3080 	struct pid_namespace *ns;
3081 
3082 	tgid = name_to_int(&dentry->d_name);
3083 	if (tgid == ~0U)
3084 		goto out;
3085 
3086 	ns = dentry->d_sb->s_fs_info;
3087 	rcu_read_lock();
3088 	task = find_task_by_pid_ns(tgid, ns);
3089 	if (task)
3090 		get_task_struct(task);
3091 	rcu_read_unlock();
3092 	if (!task)
3093 		goto out;
3094 
3095 	result = proc_pid_instantiate(dir, dentry, task, NULL);
3096 	put_task_struct(task);
3097 out:
3098 	return ERR_PTR(result);
3099 }
3100 
3101 /*
3102  * Find the first task with tgid >= tgid
3103  *
3104  */
3105 struct tgid_iter {
3106 	unsigned int tgid;
3107 	struct task_struct *task;
3108 };
3109 static struct tgid_iter next_tgid(struct pid_namespace *ns, struct tgid_iter iter)
3110 {
3111 	struct pid *pid;
3112 
3113 	if (iter.task)
3114 		put_task_struct(iter.task);
3115 	rcu_read_lock();
3116 retry:
3117 	iter.task = NULL;
3118 	pid = find_ge_pid(iter.tgid, ns);
3119 	if (pid) {
3120 		iter.tgid = pid_nr_ns(pid, ns);
3121 		iter.task = pid_task(pid, PIDTYPE_PID);
3122 		/* What we to know is if the pid we have find is the
3123 		 * pid of a thread_group_leader.  Testing for task
3124 		 * being a thread_group_leader is the obvious thing
3125 		 * todo but there is a window when it fails, due to
3126 		 * the pid transfer logic in de_thread.
3127 		 *
3128 		 * So we perform the straight forward test of seeing
3129 		 * if the pid we have found is the pid of a thread
3130 		 * group leader, and don't worry if the task we have
3131 		 * found doesn't happen to be a thread group leader.
3132 		 * As we don't care in the case of readdir.
3133 		 */
3134 		if (!iter.task || !has_group_leader_pid(iter.task)) {
3135 			iter.tgid += 1;
3136 			goto retry;
3137 		}
3138 		get_task_struct(iter.task);
3139 	}
3140 	rcu_read_unlock();
3141 	return iter;
3142 }
3143 
3144 #define TGID_OFFSET (FIRST_PROCESS_ENTRY + 2)
3145 
3146 /* for the /proc/ directory itself, after non-process stuff has been done */
3147 int proc_pid_readdir(struct file *file, struct dir_context *ctx)
3148 {
3149 	struct tgid_iter iter;
3150 	struct pid_namespace *ns = file_inode(file)->i_sb->s_fs_info;
3151 	loff_t pos = ctx->pos;
3152 
3153 	if (pos >= PID_MAX_LIMIT + TGID_OFFSET)
3154 		return 0;
3155 
3156 	if (pos == TGID_OFFSET - 2) {
3157 		struct inode *inode = d_inode(ns->proc_self);
3158 		if (!dir_emit(ctx, "self", 4, inode->i_ino, DT_LNK))
3159 			return 0;
3160 		ctx->pos = pos = pos + 1;
3161 	}
3162 	if (pos == TGID_OFFSET - 1) {
3163 		struct inode *inode = d_inode(ns->proc_thread_self);
3164 		if (!dir_emit(ctx, "thread-self", 11, inode->i_ino, DT_LNK))
3165 			return 0;
3166 		ctx->pos = pos = pos + 1;
3167 	}
3168 	iter.tgid = pos - TGID_OFFSET;
3169 	iter.task = NULL;
3170 	for (iter = next_tgid(ns, iter);
3171 	     iter.task;
3172 	     iter.tgid += 1, iter = next_tgid(ns, iter)) {
3173 		char name[PROC_NUMBUF];
3174 		int len;
3175 
3176 		cond_resched();
3177 		if (!has_pid_permissions(ns, iter.task, HIDEPID_INVISIBLE))
3178 			continue;
3179 
3180 		len = snprintf(name, sizeof(name), "%d", iter.tgid);
3181 		ctx->pos = iter.tgid + TGID_OFFSET;
3182 		if (!proc_fill_cache(file, ctx, name, len,
3183 				     proc_pid_instantiate, iter.task, NULL)) {
3184 			put_task_struct(iter.task);
3185 			return 0;
3186 		}
3187 	}
3188 	ctx->pos = PID_MAX_LIMIT + TGID_OFFSET;
3189 	return 0;
3190 }
3191 
3192 /*
3193  * proc_tid_comm_permission is a special permission function exclusively
3194  * used for the node /proc/<pid>/task/<tid>/comm.
3195  * It bypasses generic permission checks in the case where a task of the same
3196  * task group attempts to access the node.
3197  * The rationale behind this is that glibc and bionic access this node for
3198  * cross thread naming (pthread_set/getname_np(!self)). However, if
3199  * PR_SET_DUMPABLE gets set to 0 this node among others becomes uid=0 gid=0,
3200  * which locks out the cross thread naming implementation.
3201  * This function makes sure that the node is always accessible for members of
3202  * same thread group.
3203  */
3204 static int proc_tid_comm_permission(struct inode *inode, int mask)
3205 {
3206 	bool is_same_tgroup;
3207 	struct task_struct *task;
3208 
3209 	task = get_proc_task(inode);
3210 	if (!task)
3211 		return -ESRCH;
3212 	is_same_tgroup = same_thread_group(current, task);
3213 	put_task_struct(task);
3214 
3215 	if (likely(is_same_tgroup && !(mask & MAY_EXEC))) {
3216 		/* This file (/proc/<pid>/task/<tid>/comm) can always be
3217 		 * read or written by the members of the corresponding
3218 		 * thread group.
3219 		 */
3220 		return 0;
3221 	}
3222 
3223 	return generic_permission(inode, mask);
3224 }
3225 
3226 static const struct inode_operations proc_tid_comm_inode_operations = {
3227 		.permission = proc_tid_comm_permission,
3228 };
3229 
3230 /*
3231  * Tasks
3232  */
3233 static const struct pid_entry tid_base_stuff[] = {
3234 	DIR("fd",        S_IRUSR|S_IXUSR, proc_fd_inode_operations, proc_fd_operations),
3235 	DIR("fdinfo",    S_IRUSR|S_IXUSR, proc_fdinfo_inode_operations, proc_fdinfo_operations),
3236 	DIR("ns",	 S_IRUSR|S_IXUGO, proc_ns_dir_inode_operations, proc_ns_dir_operations),
3237 #ifdef CONFIG_NET
3238 	DIR("net",        S_IRUGO|S_IXUGO, proc_net_inode_operations, proc_net_operations),
3239 #endif
3240 	REG("environ",   S_IRUSR, proc_environ_operations),
3241 	REG("auxv",      S_IRUSR, proc_auxv_operations),
3242 	ONE("status",    S_IRUGO, proc_pid_status),
3243 	ONE("personality", S_IRUSR, proc_pid_personality),
3244 	ONE("limits",	 S_IRUGO, proc_pid_limits),
3245 #ifdef CONFIG_SCHED_DEBUG
3246 	REG("sched",     S_IRUGO|S_IWUSR, proc_pid_sched_operations),
3247 #endif
3248 	NOD("comm",      S_IFREG|S_IRUGO|S_IWUSR,
3249 			 &proc_tid_comm_inode_operations,
3250 			 &proc_pid_set_comm_operations, {}),
3251 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK
3252 	ONE("syscall",   S_IRUSR, proc_pid_syscall),
3253 #endif
3254 	REG("cmdline",   S_IRUGO, proc_pid_cmdline_ops),
3255 	ONE("stat",      S_IRUGO, proc_tid_stat),
3256 	ONE("statm",     S_IRUGO, proc_pid_statm),
3257 	REG("maps",      S_IRUGO, proc_tid_maps_operations),
3258 #ifdef CONFIG_PROC_CHILDREN
3259 	REG("children",  S_IRUGO, proc_tid_children_operations),
3260 #endif
3261 #ifdef CONFIG_NUMA
3262 	REG("numa_maps", S_IRUGO, proc_tid_numa_maps_operations),
3263 #endif
3264 	REG("mem",       S_IRUSR|S_IWUSR, proc_mem_operations),
3265 	LNK("cwd",       proc_cwd_link),
3266 	LNK("root",      proc_root_link),
3267 	LNK("exe",       proc_exe_link),
3268 	REG("mounts",    S_IRUGO, proc_mounts_operations),
3269 	REG("mountinfo",  S_IRUGO, proc_mountinfo_operations),
3270 #ifdef CONFIG_PROC_PAGE_MONITOR
3271 	REG("clear_refs", S_IWUSR, proc_clear_refs_operations),
3272 	REG("smaps",     S_IRUGO, proc_tid_smaps_operations),
3273 	REG("pagemap",    S_IRUSR, proc_pagemap_operations),
3274 #endif
3275 #ifdef CONFIG_SECURITY
3276 	DIR("attr",      S_IRUGO|S_IXUGO, proc_attr_dir_inode_operations, proc_attr_dir_operations),
3277 #endif
3278 #ifdef CONFIG_KALLSYMS
3279 	ONE("wchan",     S_IRUGO, proc_pid_wchan),
3280 #endif
3281 #ifdef CONFIG_STACKTRACE
3282 	ONE("stack",      S_IRUSR, proc_pid_stack),
3283 #endif
3284 #ifdef CONFIG_SCHED_INFO
3285 	ONE("schedstat", S_IRUGO, proc_pid_schedstat),
3286 #endif
3287 #ifdef CONFIG_LATENCYTOP
3288 	REG("latency",  S_IRUGO, proc_lstats_operations),
3289 #endif
3290 #ifdef CONFIG_PROC_PID_CPUSET
3291 	ONE("cpuset",    S_IRUGO, proc_cpuset_show),
3292 #endif
3293 #ifdef CONFIG_CGROUPS
3294 	ONE("cgroup",  S_IRUGO, proc_cgroup_show),
3295 #endif
3296 	ONE("oom_score", S_IRUGO, proc_oom_score),
3297 	REG("oom_adj",   S_IRUGO|S_IWUSR, proc_oom_adj_operations),
3298 	REG("oom_score_adj", S_IRUGO|S_IWUSR, proc_oom_score_adj_operations),
3299 #ifdef CONFIG_AUDITSYSCALL
3300 	REG("loginuid",  S_IWUSR|S_IRUGO, proc_loginuid_operations),
3301 	REG("sessionid",  S_IRUGO, proc_sessionid_operations),
3302 #endif
3303 #ifdef CONFIG_FAULT_INJECTION
3304 	REG("make-it-fail", S_IRUGO|S_IWUSR, proc_fault_inject_operations),
3305 #endif
3306 #ifdef CONFIG_TASK_IO_ACCOUNTING
3307 	ONE("io",	S_IRUSR, proc_tid_io_accounting),
3308 #endif
3309 #ifdef CONFIG_HARDWALL
3310 	ONE("hardwall",   S_IRUGO, proc_pid_hardwall),
3311 #endif
3312 #ifdef CONFIG_USER_NS
3313 	REG("uid_map",    S_IRUGO|S_IWUSR, proc_uid_map_operations),
3314 	REG("gid_map",    S_IRUGO|S_IWUSR, proc_gid_map_operations),
3315 	REG("projid_map", S_IRUGO|S_IWUSR, proc_projid_map_operations),
3316 	REG("setgroups",  S_IRUGO|S_IWUSR, proc_setgroups_operations),
3317 #endif
3318 };
3319 
3320 static int proc_tid_base_readdir(struct file *file, struct dir_context *ctx)
3321 {
3322 	return proc_pident_readdir(file, ctx,
3323 				   tid_base_stuff, ARRAY_SIZE(tid_base_stuff));
3324 }
3325 
3326 static struct dentry *proc_tid_base_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
3327 {
3328 	return proc_pident_lookup(dir, dentry,
3329 				  tid_base_stuff, ARRAY_SIZE(tid_base_stuff));
3330 }
3331 
3332 static const struct file_operations proc_tid_base_operations = {
3333 	.read		= generic_read_dir,
3334 	.iterate_shared	= proc_tid_base_readdir,
3335 	.llseek		= generic_file_llseek,
3336 };
3337 
3338 static const struct inode_operations proc_tid_base_inode_operations = {
3339 	.lookup		= proc_tid_base_lookup,
3340 	.getattr	= pid_getattr,
3341 	.setattr	= proc_setattr,
3342 };
3343 
3344 static int proc_task_instantiate(struct inode *dir,
3345 	struct dentry *dentry, struct task_struct *task, const void *ptr)
3346 {
3347 	struct inode *inode;
3348 	inode = proc_pid_make_inode(dir->i_sb, task, S_IFDIR | S_IRUGO | S_IXUGO);
3349 
3350 	if (!inode)
3351 		goto out;
3352 	inode->i_op = &proc_tid_base_inode_operations;
3353 	inode->i_fop = &proc_tid_base_operations;
3354 	inode->i_flags|=S_IMMUTABLE;
3355 
3356 	set_nlink(inode, nlink_tid);
3357 
3358 	d_set_d_op(dentry, &pid_dentry_operations);
3359 
3360 	d_add(dentry, inode);
3361 	/* Close the race of the process dying before we return the dentry */
3362 	if (pid_revalidate(dentry, 0))
3363 		return 0;
3364 out:
3365 	return -ENOENT;
3366 }
3367 
3368 static struct dentry *proc_task_lookup(struct inode *dir, struct dentry * dentry, unsigned int flags)
3369 {
3370 	int result = -ENOENT;
3371 	struct task_struct *task;
3372 	struct task_struct *leader = get_proc_task(dir);
3373 	unsigned tid;
3374 	struct pid_namespace *ns;
3375 
3376 	if (!leader)
3377 		goto out_no_task;
3378 
3379 	tid = name_to_int(&dentry->d_name);
3380 	if (tid == ~0U)
3381 		goto out;
3382 
3383 	ns = dentry->d_sb->s_fs_info;
3384 	rcu_read_lock();
3385 	task = find_task_by_pid_ns(tid, ns);
3386 	if (task)
3387 		get_task_struct(task);
3388 	rcu_read_unlock();
3389 	if (!task)
3390 		goto out;
3391 	if (!same_thread_group(leader, task))
3392 		goto out_drop_task;
3393 
3394 	result = proc_task_instantiate(dir, dentry, task, NULL);
3395 out_drop_task:
3396 	put_task_struct(task);
3397 out:
3398 	put_task_struct(leader);
3399 out_no_task:
3400 	return ERR_PTR(result);
3401 }
3402 
3403 /*
3404  * Find the first tid of a thread group to return to user space.
3405  *
3406  * Usually this is just the thread group leader, but if the users
3407  * buffer was too small or there was a seek into the middle of the
3408  * directory we have more work todo.
3409  *
3410  * In the case of a short read we start with find_task_by_pid.
3411  *
3412  * In the case of a seek we start with the leader and walk nr
3413  * threads past it.
3414  */
3415 static struct task_struct *first_tid(struct pid *pid, int tid, loff_t f_pos,
3416 					struct pid_namespace *ns)
3417 {
3418 	struct task_struct *pos, *task;
3419 	unsigned long nr = f_pos;
3420 
3421 	if (nr != f_pos)	/* 32bit overflow? */
3422 		return NULL;
3423 
3424 	rcu_read_lock();
3425 	task = pid_task(pid, PIDTYPE_PID);
3426 	if (!task)
3427 		goto fail;
3428 
3429 	/* Attempt to start with the tid of a thread */
3430 	if (tid && nr) {
3431 		pos = find_task_by_pid_ns(tid, ns);
3432 		if (pos && same_thread_group(pos, task))
3433 			goto found;
3434 	}
3435 
3436 	/* If nr exceeds the number of threads there is nothing todo */
3437 	if (nr >= get_nr_threads(task))
3438 		goto fail;
3439 
3440 	/* If we haven't found our starting place yet start
3441 	 * with the leader and walk nr threads forward.
3442 	 */
3443 	pos = task = task->group_leader;
3444 	do {
3445 		if (!nr--)
3446 			goto found;
3447 	} while_each_thread(task, pos);
3448 fail:
3449 	pos = NULL;
3450 	goto out;
3451 found:
3452 	get_task_struct(pos);
3453 out:
3454 	rcu_read_unlock();
3455 	return pos;
3456 }
3457 
3458 /*
3459  * Find the next thread in the thread list.
3460  * Return NULL if there is an error or no next thread.
3461  *
3462  * The reference to the input task_struct is released.
3463  */
3464 static struct task_struct *next_tid(struct task_struct *start)
3465 {
3466 	struct task_struct *pos = NULL;
3467 	rcu_read_lock();
3468 	if (pid_alive(start)) {
3469 		pos = next_thread(start);
3470 		if (thread_group_leader(pos))
3471 			pos = NULL;
3472 		else
3473 			get_task_struct(pos);
3474 	}
3475 	rcu_read_unlock();
3476 	put_task_struct(start);
3477 	return pos;
3478 }
3479 
3480 /* for the /proc/TGID/task/ directories */
3481 static int proc_task_readdir(struct file *file, struct dir_context *ctx)
3482 {
3483 	struct inode *inode = file_inode(file);
3484 	struct task_struct *task;
3485 	struct pid_namespace *ns;
3486 	int tid;
3487 
3488 	if (proc_inode_is_dead(inode))
3489 		return -ENOENT;
3490 
3491 	if (!dir_emit_dots(file, ctx))
3492 		return 0;
3493 
3494 	/* f_version caches the tgid value that the last readdir call couldn't
3495 	 * return. lseek aka telldir automagically resets f_version to 0.
3496 	 */
3497 	ns = inode->i_sb->s_fs_info;
3498 	tid = (int)file->f_version;
3499 	file->f_version = 0;
3500 	for (task = first_tid(proc_pid(inode), tid, ctx->pos - 2, ns);
3501 	     task;
3502 	     task = next_tid(task), ctx->pos++) {
3503 		char name[PROC_NUMBUF];
3504 		int len;
3505 		tid = task_pid_nr_ns(task, ns);
3506 		len = snprintf(name, sizeof(name), "%d", tid);
3507 		if (!proc_fill_cache(file, ctx, name, len,
3508 				proc_task_instantiate, task, NULL)) {
3509 			/* returning this tgid failed, save it as the first
3510 			 * pid for the next readir call */
3511 			file->f_version = (u64)tid;
3512 			put_task_struct(task);
3513 			break;
3514 		}
3515 	}
3516 
3517 	return 0;
3518 }
3519 
3520 static int proc_task_getattr(const struct path *path, struct kstat *stat,
3521 			     u32 request_mask, unsigned int query_flags)
3522 {
3523 	struct inode *inode = d_inode(path->dentry);
3524 	struct task_struct *p = get_proc_task(inode);
3525 	generic_fillattr(inode, stat);
3526 
3527 	if (p) {
3528 		stat->nlink += get_nr_threads(p);
3529 		put_task_struct(p);
3530 	}
3531 
3532 	return 0;
3533 }
3534 
3535 static const struct inode_operations proc_task_inode_operations = {
3536 	.lookup		= proc_task_lookup,
3537 	.getattr	= proc_task_getattr,
3538 	.setattr	= proc_setattr,
3539 	.permission	= proc_pid_permission,
3540 };
3541 
3542 static const struct file_operations proc_task_operations = {
3543 	.read		= generic_read_dir,
3544 	.iterate_shared	= proc_task_readdir,
3545 	.llseek		= generic_file_llseek,
3546 };
3547 
3548 void __init set_proc_pid_nlink(void)
3549 {
3550 	nlink_tid = pid_entry_nlink(tid_base_stuff, ARRAY_SIZE(tid_base_stuff));
3551 	nlink_tgid = pid_entry_nlink(tgid_base_stuff, ARRAY_SIZE(tgid_base_stuff));
3552 }
3553