1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * linux/fs/proc/base.c 4 * 5 * Copyright (C) 1991, 1992 Linus Torvalds 6 * 7 * proc base directory handling functions 8 * 9 * 1999, Al Viro. Rewritten. Now it covers the whole per-process part. 10 * Instead of using magical inumbers to determine the kind of object 11 * we allocate and fill in-core inodes upon lookup. They don't even 12 * go into icache. We cache the reference to task_struct upon lookup too. 13 * Eventually it should become a filesystem in its own. We don't use the 14 * rest of procfs anymore. 15 * 16 * 17 * Changelog: 18 * 17-Jan-2005 19 * Allan Bezerra 20 * Bruna Moreira <bruna.moreira@indt.org.br> 21 * Edjard Mota <edjard.mota@indt.org.br> 22 * Ilias Biris <ilias.biris@indt.org.br> 23 * Mauricio Lin <mauricio.lin@indt.org.br> 24 * 25 * Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT 26 * 27 * A new process specific entry (smaps) included in /proc. It shows the 28 * size of rss for each memory area. The maps entry lacks information 29 * about physical memory size (rss) for each mapped file, i.e., 30 * rss information for executables and library files. 31 * This additional information is useful for any tools that need to know 32 * about physical memory consumption for a process specific library. 33 * 34 * Changelog: 35 * 21-Feb-2005 36 * Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT 37 * Pud inclusion in the page table walking. 38 * 39 * ChangeLog: 40 * 10-Mar-2005 41 * 10LE Instituto Nokia de Tecnologia - INdT: 42 * A better way to walks through the page table as suggested by Hugh Dickins. 43 * 44 * Simo Piiroinen <simo.piiroinen@nokia.com>: 45 * Smaps information related to shared, private, clean and dirty pages. 46 * 47 * Paul Mundt <paul.mundt@nokia.com>: 48 * Overall revision about smaps. 49 */ 50 51 #include <linux/uaccess.h> 52 53 #include <linux/errno.h> 54 #include <linux/time.h> 55 #include <linux/proc_fs.h> 56 #include <linux/stat.h> 57 #include <linux/task_io_accounting_ops.h> 58 #include <linux/init.h> 59 #include <linux/capability.h> 60 #include <linux/file.h> 61 #include <linux/generic-radix-tree.h> 62 #include <linux/string.h> 63 #include <linux/seq_file.h> 64 #include <linux/namei.h> 65 #include <linux/mnt_namespace.h> 66 #include <linux/mm.h> 67 #include <linux/swap.h> 68 #include <linux/rcupdate.h> 69 #include <linux/kallsyms.h> 70 #include <linux/stacktrace.h> 71 #include <linux/resource.h> 72 #include <linux/module.h> 73 #include <linux/mount.h> 74 #include <linux/security.h> 75 #include <linux/ptrace.h> 76 #include <linux/printk.h> 77 #include <linux/cache.h> 78 #include <linux/cgroup.h> 79 #include <linux/cpuset.h> 80 #include <linux/audit.h> 81 #include <linux/poll.h> 82 #include <linux/nsproxy.h> 83 #include <linux/oom.h> 84 #include <linux/elf.h> 85 #include <linux/pid_namespace.h> 86 #include <linux/user_namespace.h> 87 #include <linux/fs_parser.h> 88 #include <linux/fs_struct.h> 89 #include <linux/slab.h> 90 #include <linux/sched/autogroup.h> 91 #include <linux/sched/mm.h> 92 #include <linux/sched/coredump.h> 93 #include <linux/sched/debug.h> 94 #include <linux/sched/stat.h> 95 #include <linux/posix-timers.h> 96 #include <linux/time_namespace.h> 97 #include <linux/resctrl.h> 98 #include <linux/cn_proc.h> 99 #include <linux/ksm.h> 100 #include <uapi/linux/lsm.h> 101 #include <trace/events/oom.h> 102 #include "internal.h" 103 #include "fd.h" 104 105 #include "../../lib/kstrtox.h" 106 107 /* NOTE: 108 * Implementing inode permission operations in /proc is almost 109 * certainly an error. Permission checks need to happen during 110 * each system call not at open time. The reason is that most of 111 * what we wish to check for permissions in /proc varies at runtime. 112 * 113 * The classic example of a problem is opening file descriptors 114 * in /proc for a task before it execs a suid executable. 115 */ 116 117 static u8 nlink_tid __ro_after_init; 118 static u8 nlink_tgid __ro_after_init; 119 120 enum proc_mem_force { 121 PROC_MEM_FORCE_ALWAYS, 122 PROC_MEM_FORCE_PTRACE, 123 PROC_MEM_FORCE_NEVER 124 }; 125 126 static enum proc_mem_force proc_mem_force_override __ro_after_init = 127 IS_ENABLED(CONFIG_PROC_MEM_NO_FORCE) ? PROC_MEM_FORCE_NEVER : 128 IS_ENABLED(CONFIG_PROC_MEM_FORCE_PTRACE) ? PROC_MEM_FORCE_PTRACE : 129 PROC_MEM_FORCE_ALWAYS; 130 131 static const struct constant_table proc_mem_force_table[] __initconst = { 132 { "always", PROC_MEM_FORCE_ALWAYS }, 133 { "ptrace", PROC_MEM_FORCE_PTRACE }, 134 { "never", PROC_MEM_FORCE_NEVER }, 135 { } 136 }; 137 138 static int __init early_proc_mem_force_override(char *buf) 139 { 140 if (!buf) 141 return -EINVAL; 142 143 /* 144 * lookup_constant() defaults to proc_mem_force_override to preseve 145 * the initial Kconfig choice in case an invalid param gets passed. 146 */ 147 proc_mem_force_override = lookup_constant(proc_mem_force_table, 148 buf, proc_mem_force_override); 149 150 return 0; 151 } 152 early_param("proc_mem.force_override", early_proc_mem_force_override); 153 154 struct pid_entry { 155 const char *name; 156 unsigned int len; 157 umode_t mode; 158 const struct inode_operations *iop; 159 const struct file_operations *fop; 160 union proc_op op; 161 }; 162 163 #define NOD(NAME, MODE, IOP, FOP, OP) { \ 164 .name = (NAME), \ 165 .len = sizeof(NAME) - 1, \ 166 .mode = MODE, \ 167 .iop = IOP, \ 168 .fop = FOP, \ 169 .op = OP, \ 170 } 171 172 #define DIR(NAME, MODE, iops, fops) \ 173 NOD(NAME, (S_IFDIR|(MODE)), &iops, &fops, {} ) 174 #define LNK(NAME, get_link) \ 175 NOD(NAME, (S_IFLNK|S_IRWXUGO), \ 176 &proc_pid_link_inode_operations, NULL, \ 177 { .proc_get_link = get_link } ) 178 #define REG(NAME, MODE, fops) \ 179 NOD(NAME, (S_IFREG|(MODE)), NULL, &fops, {}) 180 #define ONE(NAME, MODE, show) \ 181 NOD(NAME, (S_IFREG|(MODE)), \ 182 NULL, &proc_single_file_operations, \ 183 { .proc_show = show } ) 184 #define ATTR(LSMID, NAME, MODE) \ 185 NOD(NAME, (S_IFREG|(MODE)), \ 186 NULL, &proc_pid_attr_operations, \ 187 { .lsmid = LSMID }) 188 189 /* 190 * Count the number of hardlinks for the pid_entry table, excluding the . 191 * and .. links. 192 */ 193 static unsigned int __init pid_entry_nlink(const struct pid_entry *entries, 194 unsigned int n) 195 { 196 unsigned int i; 197 unsigned int count; 198 199 count = 2; 200 for (i = 0; i < n; ++i) { 201 if (S_ISDIR(entries[i].mode)) 202 ++count; 203 } 204 205 return count; 206 } 207 208 static int get_task_root(struct task_struct *task, struct path *root) 209 { 210 int result = -ENOENT; 211 212 task_lock(task); 213 if (task->fs) { 214 get_fs_root(task->fs, root); 215 result = 0; 216 } 217 task_unlock(task); 218 return result; 219 } 220 221 static int proc_cwd_link(struct dentry *dentry, struct path *path) 222 { 223 struct task_struct *task = get_proc_task(d_inode(dentry)); 224 int result = -ENOENT; 225 226 if (task) { 227 task_lock(task); 228 if (task->fs) { 229 get_fs_pwd(task->fs, path); 230 result = 0; 231 } 232 task_unlock(task); 233 put_task_struct(task); 234 } 235 return result; 236 } 237 238 static int proc_root_link(struct dentry *dentry, struct path *path) 239 { 240 struct task_struct *task = get_proc_task(d_inode(dentry)); 241 int result = -ENOENT; 242 243 if (task) { 244 result = get_task_root(task, path); 245 put_task_struct(task); 246 } 247 return result; 248 } 249 250 /* 251 * If the user used setproctitle(), we just get the string from 252 * user space at arg_start, and limit it to a maximum of one page. 253 */ 254 static ssize_t get_mm_proctitle(struct mm_struct *mm, char __user *buf, 255 size_t count, unsigned long pos, 256 unsigned long arg_start) 257 { 258 char *page; 259 int ret, got; 260 261 if (pos >= PAGE_SIZE) 262 return 0; 263 264 page = (char *)__get_free_page(GFP_KERNEL); 265 if (!page) 266 return -ENOMEM; 267 268 ret = 0; 269 got = access_remote_vm(mm, arg_start, page, PAGE_SIZE, FOLL_ANON); 270 if (got > 0) { 271 int len = strnlen(page, got); 272 273 /* Include the NUL character if it was found */ 274 if (len < got) 275 len++; 276 277 if (len > pos) { 278 len -= pos; 279 if (len > count) 280 len = count; 281 len -= copy_to_user(buf, page+pos, len); 282 if (!len) 283 len = -EFAULT; 284 ret = len; 285 } 286 } 287 free_page((unsigned long)page); 288 return ret; 289 } 290 291 static ssize_t get_mm_cmdline(struct mm_struct *mm, char __user *buf, 292 size_t count, loff_t *ppos) 293 { 294 unsigned long arg_start, arg_end, env_start, env_end; 295 unsigned long pos, len; 296 char *page, c; 297 298 /* Check if process spawned far enough to have cmdline. */ 299 if (!mm->env_end) 300 return 0; 301 302 spin_lock(&mm->arg_lock); 303 arg_start = mm->arg_start; 304 arg_end = mm->arg_end; 305 env_start = mm->env_start; 306 env_end = mm->env_end; 307 spin_unlock(&mm->arg_lock); 308 309 if (arg_start >= arg_end) 310 return 0; 311 312 /* 313 * We allow setproctitle() to overwrite the argument 314 * strings, and overflow past the original end. But 315 * only when it overflows into the environment area. 316 */ 317 if (env_start != arg_end || env_end < env_start) 318 env_start = env_end = arg_end; 319 len = env_end - arg_start; 320 321 /* We're not going to care if "*ppos" has high bits set */ 322 pos = *ppos; 323 if (pos >= len) 324 return 0; 325 if (count > len - pos) 326 count = len - pos; 327 if (!count) 328 return 0; 329 330 /* 331 * Magical special case: if the argv[] end byte is not 332 * zero, the user has overwritten it with setproctitle(3). 333 * 334 * Possible future enhancement: do this only once when 335 * pos is 0, and set a flag in the 'struct file'. 336 */ 337 if (access_remote_vm(mm, arg_end-1, &c, 1, FOLL_ANON) == 1 && c) 338 return get_mm_proctitle(mm, buf, count, pos, arg_start); 339 340 /* 341 * For the non-setproctitle() case we limit things strictly 342 * to the [arg_start, arg_end[ range. 343 */ 344 pos += arg_start; 345 if (pos < arg_start || pos >= arg_end) 346 return 0; 347 if (count > arg_end - pos) 348 count = arg_end - pos; 349 350 page = (char *)__get_free_page(GFP_KERNEL); 351 if (!page) 352 return -ENOMEM; 353 354 len = 0; 355 while (count) { 356 int got; 357 size_t size = min_t(size_t, PAGE_SIZE, count); 358 359 got = access_remote_vm(mm, pos, page, size, FOLL_ANON); 360 if (got <= 0) 361 break; 362 got -= copy_to_user(buf, page, got); 363 if (unlikely(!got)) { 364 if (!len) 365 len = -EFAULT; 366 break; 367 } 368 pos += got; 369 buf += got; 370 len += got; 371 count -= got; 372 } 373 374 free_page((unsigned long)page); 375 return len; 376 } 377 378 static ssize_t get_task_cmdline(struct task_struct *tsk, char __user *buf, 379 size_t count, loff_t *pos) 380 { 381 struct mm_struct *mm; 382 ssize_t ret; 383 384 mm = get_task_mm(tsk); 385 if (!mm) 386 return 0; 387 388 ret = get_mm_cmdline(mm, buf, count, pos); 389 mmput(mm); 390 return ret; 391 } 392 393 static ssize_t proc_pid_cmdline_read(struct file *file, char __user *buf, 394 size_t count, loff_t *pos) 395 { 396 struct task_struct *tsk; 397 ssize_t ret; 398 399 BUG_ON(*pos < 0); 400 401 tsk = get_proc_task(file_inode(file)); 402 if (!tsk) 403 return -ESRCH; 404 ret = get_task_cmdline(tsk, buf, count, pos); 405 put_task_struct(tsk); 406 if (ret > 0) 407 *pos += ret; 408 return ret; 409 } 410 411 static const struct file_operations proc_pid_cmdline_ops = { 412 .read = proc_pid_cmdline_read, 413 .llseek = generic_file_llseek, 414 }; 415 416 #ifdef CONFIG_KALLSYMS 417 /* 418 * Provides a wchan file via kallsyms in a proper one-value-per-file format. 419 * Returns the resolved symbol. If that fails, simply return the address. 420 */ 421 static int proc_pid_wchan(struct seq_file *m, struct pid_namespace *ns, 422 struct pid *pid, struct task_struct *task) 423 { 424 unsigned long wchan; 425 char symname[KSYM_NAME_LEN]; 426 427 if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS)) 428 goto print0; 429 430 wchan = get_wchan(task); 431 if (wchan && !lookup_symbol_name(wchan, symname)) { 432 seq_puts(m, symname); 433 return 0; 434 } 435 436 print0: 437 seq_putc(m, '0'); 438 return 0; 439 } 440 #endif /* CONFIG_KALLSYMS */ 441 442 static int lock_trace(struct task_struct *task) 443 { 444 int err = down_read_killable(&task->signal->exec_update_lock); 445 if (err) 446 return err; 447 if (!ptrace_may_access(task, PTRACE_MODE_ATTACH_FSCREDS)) { 448 up_read(&task->signal->exec_update_lock); 449 return -EPERM; 450 } 451 return 0; 452 } 453 454 static void unlock_trace(struct task_struct *task) 455 { 456 up_read(&task->signal->exec_update_lock); 457 } 458 459 #ifdef CONFIG_STACKTRACE 460 461 #define MAX_STACK_TRACE_DEPTH 64 462 463 static int proc_pid_stack(struct seq_file *m, struct pid_namespace *ns, 464 struct pid *pid, struct task_struct *task) 465 { 466 unsigned long *entries; 467 int err; 468 469 /* 470 * The ability to racily run the kernel stack unwinder on a running task 471 * and then observe the unwinder output is scary; while it is useful for 472 * debugging kernel issues, it can also allow an attacker to leak kernel 473 * stack contents. 474 * Doing this in a manner that is at least safe from races would require 475 * some work to ensure that the remote task can not be scheduled; and 476 * even then, this would still expose the unwinder as local attack 477 * surface. 478 * Therefore, this interface is restricted to root. 479 */ 480 if (!file_ns_capable(m->file, &init_user_ns, CAP_SYS_ADMIN)) 481 return -EACCES; 482 483 entries = kmalloc_array(MAX_STACK_TRACE_DEPTH, sizeof(*entries), 484 GFP_KERNEL); 485 if (!entries) 486 return -ENOMEM; 487 488 err = lock_trace(task); 489 if (!err) { 490 unsigned int i, nr_entries; 491 492 nr_entries = stack_trace_save_tsk(task, entries, 493 MAX_STACK_TRACE_DEPTH, 0); 494 495 for (i = 0; i < nr_entries; i++) { 496 seq_printf(m, "[<0>] %pB\n", (void *)entries[i]); 497 } 498 499 unlock_trace(task); 500 } 501 kfree(entries); 502 503 return err; 504 } 505 #endif 506 507 #ifdef CONFIG_SCHED_INFO 508 /* 509 * Provides /proc/PID/schedstat 510 */ 511 static int proc_pid_schedstat(struct seq_file *m, struct pid_namespace *ns, 512 struct pid *pid, struct task_struct *task) 513 { 514 if (unlikely(!sched_info_on())) 515 seq_puts(m, "0 0 0\n"); 516 else 517 seq_printf(m, "%llu %llu %lu\n", 518 (unsigned long long)task->se.sum_exec_runtime, 519 (unsigned long long)task->sched_info.run_delay, 520 task->sched_info.pcount); 521 522 return 0; 523 } 524 #endif 525 526 #ifdef CONFIG_LATENCYTOP 527 static int lstats_show_proc(struct seq_file *m, void *v) 528 { 529 int i; 530 struct inode *inode = m->private; 531 struct task_struct *task = get_proc_task(inode); 532 533 if (!task) 534 return -ESRCH; 535 seq_puts(m, "Latency Top version : v0.1\n"); 536 for (i = 0; i < LT_SAVECOUNT; i++) { 537 struct latency_record *lr = &task->latency_record[i]; 538 if (lr->backtrace[0]) { 539 int q; 540 seq_printf(m, "%i %li %li", 541 lr->count, lr->time, lr->max); 542 for (q = 0; q < LT_BACKTRACEDEPTH; q++) { 543 unsigned long bt = lr->backtrace[q]; 544 545 if (!bt) 546 break; 547 seq_printf(m, " %ps", (void *)bt); 548 } 549 seq_putc(m, '\n'); 550 } 551 552 } 553 put_task_struct(task); 554 return 0; 555 } 556 557 static int lstats_open(struct inode *inode, struct file *file) 558 { 559 return single_open(file, lstats_show_proc, inode); 560 } 561 562 static ssize_t lstats_write(struct file *file, const char __user *buf, 563 size_t count, loff_t *offs) 564 { 565 struct task_struct *task = get_proc_task(file_inode(file)); 566 567 if (!task) 568 return -ESRCH; 569 clear_tsk_latency_tracing(task); 570 put_task_struct(task); 571 572 return count; 573 } 574 575 static const struct file_operations proc_lstats_operations = { 576 .open = lstats_open, 577 .read = seq_read, 578 .write = lstats_write, 579 .llseek = seq_lseek, 580 .release = single_release, 581 }; 582 583 #endif 584 585 static int proc_oom_score(struct seq_file *m, struct pid_namespace *ns, 586 struct pid *pid, struct task_struct *task) 587 { 588 unsigned long totalpages = totalram_pages() + total_swap_pages; 589 unsigned long points = 0; 590 long badness; 591 592 badness = oom_badness(task, totalpages); 593 /* 594 * Special case OOM_SCORE_ADJ_MIN for all others scale the 595 * badness value into [0, 2000] range which we have been 596 * exporting for a long time so userspace might depend on it. 597 */ 598 if (badness != LONG_MIN) 599 points = (1000 + badness * 1000 / (long)totalpages) * 2 / 3; 600 601 seq_printf(m, "%lu\n", points); 602 603 return 0; 604 } 605 606 struct limit_names { 607 const char *name; 608 const char *unit; 609 }; 610 611 static const struct limit_names lnames[RLIM_NLIMITS] = { 612 [RLIMIT_CPU] = {"Max cpu time", "seconds"}, 613 [RLIMIT_FSIZE] = {"Max file size", "bytes"}, 614 [RLIMIT_DATA] = {"Max data size", "bytes"}, 615 [RLIMIT_STACK] = {"Max stack size", "bytes"}, 616 [RLIMIT_CORE] = {"Max core file size", "bytes"}, 617 [RLIMIT_RSS] = {"Max resident set", "bytes"}, 618 [RLIMIT_NPROC] = {"Max processes", "processes"}, 619 [RLIMIT_NOFILE] = {"Max open files", "files"}, 620 [RLIMIT_MEMLOCK] = {"Max locked memory", "bytes"}, 621 [RLIMIT_AS] = {"Max address space", "bytes"}, 622 [RLIMIT_LOCKS] = {"Max file locks", "locks"}, 623 [RLIMIT_SIGPENDING] = {"Max pending signals", "signals"}, 624 [RLIMIT_MSGQUEUE] = {"Max msgqueue size", "bytes"}, 625 [RLIMIT_NICE] = {"Max nice priority", NULL}, 626 [RLIMIT_RTPRIO] = {"Max realtime priority", NULL}, 627 [RLIMIT_RTTIME] = {"Max realtime timeout", "us"}, 628 }; 629 630 /* Display limits for a process */ 631 static int proc_pid_limits(struct seq_file *m, struct pid_namespace *ns, 632 struct pid *pid, struct task_struct *task) 633 { 634 unsigned int i; 635 unsigned long flags; 636 637 struct rlimit rlim[RLIM_NLIMITS]; 638 639 if (!lock_task_sighand(task, &flags)) 640 return 0; 641 memcpy(rlim, task->signal->rlim, sizeof(struct rlimit) * RLIM_NLIMITS); 642 unlock_task_sighand(task, &flags); 643 644 /* 645 * print the file header 646 */ 647 seq_puts(m, "Limit " 648 "Soft Limit " 649 "Hard Limit " 650 "Units \n"); 651 652 for (i = 0; i < RLIM_NLIMITS; i++) { 653 if (rlim[i].rlim_cur == RLIM_INFINITY) 654 seq_printf(m, "%-25s %-20s ", 655 lnames[i].name, "unlimited"); 656 else 657 seq_printf(m, "%-25s %-20lu ", 658 lnames[i].name, rlim[i].rlim_cur); 659 660 if (rlim[i].rlim_max == RLIM_INFINITY) 661 seq_printf(m, "%-20s ", "unlimited"); 662 else 663 seq_printf(m, "%-20lu ", rlim[i].rlim_max); 664 665 if (lnames[i].unit) 666 seq_printf(m, "%-10s\n", lnames[i].unit); 667 else 668 seq_putc(m, '\n'); 669 } 670 671 return 0; 672 } 673 674 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK 675 static int proc_pid_syscall(struct seq_file *m, struct pid_namespace *ns, 676 struct pid *pid, struct task_struct *task) 677 { 678 struct syscall_info info; 679 u64 *args = &info.data.args[0]; 680 int res; 681 682 res = lock_trace(task); 683 if (res) 684 return res; 685 686 if (task_current_syscall(task, &info)) 687 seq_puts(m, "running\n"); 688 else if (info.data.nr < 0) 689 seq_printf(m, "%d 0x%llx 0x%llx\n", 690 info.data.nr, info.sp, info.data.instruction_pointer); 691 else 692 seq_printf(m, 693 "%d 0x%llx 0x%llx 0x%llx 0x%llx 0x%llx 0x%llx 0x%llx 0x%llx\n", 694 info.data.nr, 695 args[0], args[1], args[2], args[3], args[4], args[5], 696 info.sp, info.data.instruction_pointer); 697 unlock_trace(task); 698 699 return 0; 700 } 701 #endif /* CONFIG_HAVE_ARCH_TRACEHOOK */ 702 703 /************************************************************************/ 704 /* Here the fs part begins */ 705 /************************************************************************/ 706 707 /* permission checks */ 708 static bool proc_fd_access_allowed(struct inode *inode) 709 { 710 struct task_struct *task; 711 bool allowed = false; 712 /* Allow access to a task's file descriptors if it is us or we 713 * may use ptrace attach to the process and find out that 714 * information. 715 */ 716 task = get_proc_task(inode); 717 if (task) { 718 allowed = ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS); 719 put_task_struct(task); 720 } 721 return allowed; 722 } 723 724 int proc_setattr(struct mnt_idmap *idmap, struct dentry *dentry, 725 struct iattr *attr) 726 { 727 int error; 728 struct inode *inode = d_inode(dentry); 729 730 if (attr->ia_valid & ATTR_MODE) 731 return -EPERM; 732 733 error = setattr_prepare(&nop_mnt_idmap, dentry, attr); 734 if (error) 735 return error; 736 737 setattr_copy(&nop_mnt_idmap, inode, attr); 738 return 0; 739 } 740 741 /* 742 * May current process learn task's sched/cmdline info (for hide_pid_min=1) 743 * or euid/egid (for hide_pid_min=2)? 744 */ 745 static bool has_pid_permissions(struct proc_fs_info *fs_info, 746 struct task_struct *task, 747 enum proc_hidepid hide_pid_min) 748 { 749 /* 750 * If 'hidpid' mount option is set force a ptrace check, 751 * we indicate that we are using a filesystem syscall 752 * by passing PTRACE_MODE_READ_FSCREDS 753 */ 754 if (fs_info->hide_pid == HIDEPID_NOT_PTRACEABLE) 755 return ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS); 756 757 if (fs_info->hide_pid < hide_pid_min) 758 return true; 759 if (in_group_p(fs_info->pid_gid)) 760 return true; 761 return ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS); 762 } 763 764 765 static int proc_pid_permission(struct mnt_idmap *idmap, 766 struct inode *inode, int mask) 767 { 768 struct proc_fs_info *fs_info = proc_sb_info(inode->i_sb); 769 struct task_struct *task; 770 bool has_perms; 771 772 task = get_proc_task(inode); 773 if (!task) 774 return -ESRCH; 775 has_perms = has_pid_permissions(fs_info, task, HIDEPID_NO_ACCESS); 776 put_task_struct(task); 777 778 if (!has_perms) { 779 if (fs_info->hide_pid == HIDEPID_INVISIBLE) { 780 /* 781 * Let's make getdents(), stat(), and open() 782 * consistent with each other. If a process 783 * may not stat() a file, it shouldn't be seen 784 * in procfs at all. 785 */ 786 return -ENOENT; 787 } 788 789 return -EPERM; 790 } 791 return generic_permission(&nop_mnt_idmap, inode, mask); 792 } 793 794 795 796 static const struct inode_operations proc_def_inode_operations = { 797 .setattr = proc_setattr, 798 }; 799 800 static int proc_single_show(struct seq_file *m, void *v) 801 { 802 struct inode *inode = m->private; 803 struct pid_namespace *ns = proc_pid_ns(inode->i_sb); 804 struct pid *pid = proc_pid(inode); 805 struct task_struct *task; 806 int ret; 807 808 task = get_pid_task(pid, PIDTYPE_PID); 809 if (!task) 810 return -ESRCH; 811 812 ret = PROC_I(inode)->op.proc_show(m, ns, pid, task); 813 814 put_task_struct(task); 815 return ret; 816 } 817 818 static int proc_single_open(struct inode *inode, struct file *filp) 819 { 820 return single_open(filp, proc_single_show, inode); 821 } 822 823 static const struct file_operations proc_single_file_operations = { 824 .open = proc_single_open, 825 .read = seq_read, 826 .llseek = seq_lseek, 827 .release = single_release, 828 }; 829 830 831 struct mm_struct *proc_mem_open(struct inode *inode, unsigned int mode) 832 { 833 struct task_struct *task = get_proc_task(inode); 834 struct mm_struct *mm; 835 836 if (!task) 837 return ERR_PTR(-ESRCH); 838 839 mm = mm_access(task, mode | PTRACE_MODE_FSCREDS); 840 put_task_struct(task); 841 842 if (IS_ERR(mm)) 843 return mm == ERR_PTR(-ESRCH) ? NULL : mm; 844 845 /* ensure this mm_struct can't be freed */ 846 mmgrab(mm); 847 /* but do not pin its memory */ 848 mmput(mm); 849 850 return mm; 851 } 852 853 static int __mem_open(struct inode *inode, struct file *file, unsigned int mode) 854 { 855 struct mm_struct *mm = proc_mem_open(inode, mode); 856 857 if (IS_ERR(mm)) 858 return PTR_ERR(mm); 859 860 file->private_data = mm; 861 return 0; 862 } 863 864 static int mem_open(struct inode *inode, struct file *file) 865 { 866 if (WARN_ON_ONCE(!(file->f_op->fop_flags & FOP_UNSIGNED_OFFSET))) 867 return -EINVAL; 868 return __mem_open(inode, file, PTRACE_MODE_ATTACH); 869 } 870 871 static bool proc_mem_foll_force(struct file *file, struct mm_struct *mm) 872 { 873 struct task_struct *task; 874 bool ptrace_active = false; 875 876 switch (proc_mem_force_override) { 877 case PROC_MEM_FORCE_NEVER: 878 return false; 879 case PROC_MEM_FORCE_PTRACE: 880 task = get_proc_task(file_inode(file)); 881 if (task) { 882 ptrace_active = READ_ONCE(task->ptrace) && 883 READ_ONCE(task->mm) == mm && 884 READ_ONCE(task->parent) == current; 885 put_task_struct(task); 886 } 887 return ptrace_active; 888 default: 889 return true; 890 } 891 } 892 893 static ssize_t mem_rw(struct file *file, char __user *buf, 894 size_t count, loff_t *ppos, int write) 895 { 896 struct mm_struct *mm = file->private_data; 897 unsigned long addr = *ppos; 898 ssize_t copied; 899 char *page; 900 unsigned int flags; 901 902 if (!mm) 903 return 0; 904 905 page = (char *)__get_free_page(GFP_KERNEL); 906 if (!page) 907 return -ENOMEM; 908 909 copied = 0; 910 if (!mmget_not_zero(mm)) 911 goto free; 912 913 flags = write ? FOLL_WRITE : 0; 914 if (proc_mem_foll_force(file, mm)) 915 flags |= FOLL_FORCE; 916 917 while (count > 0) { 918 size_t this_len = min_t(size_t, count, PAGE_SIZE); 919 920 if (write && copy_from_user(page, buf, this_len)) { 921 copied = -EFAULT; 922 break; 923 } 924 925 this_len = access_remote_vm(mm, addr, page, this_len, flags); 926 if (!this_len) { 927 if (!copied) 928 copied = -EIO; 929 break; 930 } 931 932 if (!write && copy_to_user(buf, page, this_len)) { 933 copied = -EFAULT; 934 break; 935 } 936 937 buf += this_len; 938 addr += this_len; 939 copied += this_len; 940 count -= this_len; 941 } 942 *ppos = addr; 943 944 mmput(mm); 945 free: 946 free_page((unsigned long) page); 947 return copied; 948 } 949 950 static ssize_t mem_read(struct file *file, char __user *buf, 951 size_t count, loff_t *ppos) 952 { 953 return mem_rw(file, buf, count, ppos, 0); 954 } 955 956 static ssize_t mem_write(struct file *file, const char __user *buf, 957 size_t count, loff_t *ppos) 958 { 959 return mem_rw(file, (char __user*)buf, count, ppos, 1); 960 } 961 962 loff_t mem_lseek(struct file *file, loff_t offset, int orig) 963 { 964 switch (orig) { 965 case 0: 966 file->f_pos = offset; 967 break; 968 case 1: 969 file->f_pos += offset; 970 break; 971 default: 972 return -EINVAL; 973 } 974 force_successful_syscall_return(); 975 return file->f_pos; 976 } 977 978 static int mem_release(struct inode *inode, struct file *file) 979 { 980 struct mm_struct *mm = file->private_data; 981 if (mm) 982 mmdrop(mm); 983 return 0; 984 } 985 986 static const struct file_operations proc_mem_operations = { 987 .llseek = mem_lseek, 988 .read = mem_read, 989 .write = mem_write, 990 .open = mem_open, 991 .release = mem_release, 992 .fop_flags = FOP_UNSIGNED_OFFSET, 993 }; 994 995 static int environ_open(struct inode *inode, struct file *file) 996 { 997 return __mem_open(inode, file, PTRACE_MODE_READ); 998 } 999 1000 static ssize_t environ_read(struct file *file, char __user *buf, 1001 size_t count, loff_t *ppos) 1002 { 1003 char *page; 1004 unsigned long src = *ppos; 1005 int ret = 0; 1006 struct mm_struct *mm = file->private_data; 1007 unsigned long env_start, env_end; 1008 1009 /* Ensure the process spawned far enough to have an environment. */ 1010 if (!mm || !mm->env_end) 1011 return 0; 1012 1013 page = (char *)__get_free_page(GFP_KERNEL); 1014 if (!page) 1015 return -ENOMEM; 1016 1017 ret = 0; 1018 if (!mmget_not_zero(mm)) 1019 goto free; 1020 1021 spin_lock(&mm->arg_lock); 1022 env_start = mm->env_start; 1023 env_end = mm->env_end; 1024 spin_unlock(&mm->arg_lock); 1025 1026 while (count > 0) { 1027 size_t this_len, max_len; 1028 int retval; 1029 1030 if (src >= (env_end - env_start)) 1031 break; 1032 1033 this_len = env_end - (env_start + src); 1034 1035 max_len = min_t(size_t, PAGE_SIZE, count); 1036 this_len = min(max_len, this_len); 1037 1038 retval = access_remote_vm(mm, (env_start + src), page, this_len, FOLL_ANON); 1039 1040 if (retval <= 0) { 1041 ret = retval; 1042 break; 1043 } 1044 1045 if (copy_to_user(buf, page, retval)) { 1046 ret = -EFAULT; 1047 break; 1048 } 1049 1050 ret += retval; 1051 src += retval; 1052 buf += retval; 1053 count -= retval; 1054 } 1055 *ppos = src; 1056 mmput(mm); 1057 1058 free: 1059 free_page((unsigned long) page); 1060 return ret; 1061 } 1062 1063 static const struct file_operations proc_environ_operations = { 1064 .open = environ_open, 1065 .read = environ_read, 1066 .llseek = generic_file_llseek, 1067 .release = mem_release, 1068 }; 1069 1070 static int auxv_open(struct inode *inode, struct file *file) 1071 { 1072 return __mem_open(inode, file, PTRACE_MODE_READ_FSCREDS); 1073 } 1074 1075 static ssize_t auxv_read(struct file *file, char __user *buf, 1076 size_t count, loff_t *ppos) 1077 { 1078 struct mm_struct *mm = file->private_data; 1079 unsigned int nwords = 0; 1080 1081 if (!mm) 1082 return 0; 1083 do { 1084 nwords += 2; 1085 } while (mm->saved_auxv[nwords - 2] != 0); /* AT_NULL */ 1086 return simple_read_from_buffer(buf, count, ppos, mm->saved_auxv, 1087 nwords * sizeof(mm->saved_auxv[0])); 1088 } 1089 1090 static const struct file_operations proc_auxv_operations = { 1091 .open = auxv_open, 1092 .read = auxv_read, 1093 .llseek = generic_file_llseek, 1094 .release = mem_release, 1095 }; 1096 1097 static ssize_t oom_adj_read(struct file *file, char __user *buf, size_t count, 1098 loff_t *ppos) 1099 { 1100 struct task_struct *task = get_proc_task(file_inode(file)); 1101 char buffer[PROC_NUMBUF]; 1102 int oom_adj = OOM_ADJUST_MIN; 1103 size_t len; 1104 1105 if (!task) 1106 return -ESRCH; 1107 if (task->signal->oom_score_adj == OOM_SCORE_ADJ_MAX) 1108 oom_adj = OOM_ADJUST_MAX; 1109 else 1110 oom_adj = (task->signal->oom_score_adj * -OOM_DISABLE) / 1111 OOM_SCORE_ADJ_MAX; 1112 put_task_struct(task); 1113 if (oom_adj > OOM_ADJUST_MAX) 1114 oom_adj = OOM_ADJUST_MAX; 1115 len = snprintf(buffer, sizeof(buffer), "%d\n", oom_adj); 1116 return simple_read_from_buffer(buf, count, ppos, buffer, len); 1117 } 1118 1119 static int __set_oom_adj(struct file *file, int oom_adj, bool legacy) 1120 { 1121 struct mm_struct *mm = NULL; 1122 struct task_struct *task; 1123 int err = 0; 1124 1125 task = get_proc_task(file_inode(file)); 1126 if (!task) 1127 return -ESRCH; 1128 1129 mutex_lock(&oom_adj_mutex); 1130 if (legacy) { 1131 if (oom_adj < task->signal->oom_score_adj && 1132 !capable(CAP_SYS_RESOURCE)) { 1133 err = -EACCES; 1134 goto err_unlock; 1135 } 1136 /* 1137 * /proc/pid/oom_adj is provided for legacy purposes, ask users to use 1138 * /proc/pid/oom_score_adj instead. 1139 */ 1140 pr_warn_once("%s (%d): /proc/%d/oom_adj is deprecated, please use /proc/%d/oom_score_adj instead.\n", 1141 current->comm, task_pid_nr(current), task_pid_nr(task), 1142 task_pid_nr(task)); 1143 } else { 1144 if ((short)oom_adj < task->signal->oom_score_adj_min && 1145 !capable(CAP_SYS_RESOURCE)) { 1146 err = -EACCES; 1147 goto err_unlock; 1148 } 1149 } 1150 1151 /* 1152 * Make sure we will check other processes sharing the mm if this is 1153 * not vfrok which wants its own oom_score_adj. 1154 * pin the mm so it doesn't go away and get reused after task_unlock 1155 */ 1156 if (!task->vfork_done) { 1157 struct task_struct *p = find_lock_task_mm(task); 1158 1159 if (p) { 1160 if (test_bit(MMF_MULTIPROCESS, &p->mm->flags)) { 1161 mm = p->mm; 1162 mmgrab(mm); 1163 } 1164 task_unlock(p); 1165 } 1166 } 1167 1168 task->signal->oom_score_adj = oom_adj; 1169 if (!legacy && has_capability_noaudit(current, CAP_SYS_RESOURCE)) 1170 task->signal->oom_score_adj_min = (short)oom_adj; 1171 trace_oom_score_adj_update(task); 1172 1173 if (mm) { 1174 struct task_struct *p; 1175 1176 rcu_read_lock(); 1177 for_each_process(p) { 1178 if (same_thread_group(task, p)) 1179 continue; 1180 1181 /* do not touch kernel threads or the global init */ 1182 if (p->flags & PF_KTHREAD || is_global_init(p)) 1183 continue; 1184 1185 task_lock(p); 1186 if (!p->vfork_done && process_shares_mm(p, mm)) { 1187 p->signal->oom_score_adj = oom_adj; 1188 if (!legacy && has_capability_noaudit(current, CAP_SYS_RESOURCE)) 1189 p->signal->oom_score_adj_min = (short)oom_adj; 1190 } 1191 task_unlock(p); 1192 } 1193 rcu_read_unlock(); 1194 mmdrop(mm); 1195 } 1196 err_unlock: 1197 mutex_unlock(&oom_adj_mutex); 1198 put_task_struct(task); 1199 return err; 1200 } 1201 1202 /* 1203 * /proc/pid/oom_adj exists solely for backwards compatibility with previous 1204 * kernels. The effective policy is defined by oom_score_adj, which has a 1205 * different scale: oom_adj grew exponentially and oom_score_adj grows linearly. 1206 * Values written to oom_adj are simply mapped linearly to oom_score_adj. 1207 * Processes that become oom disabled via oom_adj will still be oom disabled 1208 * with this implementation. 1209 * 1210 * oom_adj cannot be removed since existing userspace binaries use it. 1211 */ 1212 static ssize_t oom_adj_write(struct file *file, const char __user *buf, 1213 size_t count, loff_t *ppos) 1214 { 1215 char buffer[PROC_NUMBUF] = {}; 1216 int oom_adj; 1217 int err; 1218 1219 if (count > sizeof(buffer) - 1) 1220 count = sizeof(buffer) - 1; 1221 if (copy_from_user(buffer, buf, count)) { 1222 err = -EFAULT; 1223 goto out; 1224 } 1225 1226 err = kstrtoint(strstrip(buffer), 0, &oom_adj); 1227 if (err) 1228 goto out; 1229 if ((oom_adj < OOM_ADJUST_MIN || oom_adj > OOM_ADJUST_MAX) && 1230 oom_adj != OOM_DISABLE) { 1231 err = -EINVAL; 1232 goto out; 1233 } 1234 1235 /* 1236 * Scale /proc/pid/oom_score_adj appropriately ensuring that a maximum 1237 * value is always attainable. 1238 */ 1239 if (oom_adj == OOM_ADJUST_MAX) 1240 oom_adj = OOM_SCORE_ADJ_MAX; 1241 else 1242 oom_adj = (oom_adj * OOM_SCORE_ADJ_MAX) / -OOM_DISABLE; 1243 1244 err = __set_oom_adj(file, oom_adj, true); 1245 out: 1246 return err < 0 ? err : count; 1247 } 1248 1249 static const struct file_operations proc_oom_adj_operations = { 1250 .read = oom_adj_read, 1251 .write = oom_adj_write, 1252 .llseek = generic_file_llseek, 1253 }; 1254 1255 static ssize_t oom_score_adj_read(struct file *file, char __user *buf, 1256 size_t count, loff_t *ppos) 1257 { 1258 struct task_struct *task = get_proc_task(file_inode(file)); 1259 char buffer[PROC_NUMBUF]; 1260 short oom_score_adj = OOM_SCORE_ADJ_MIN; 1261 size_t len; 1262 1263 if (!task) 1264 return -ESRCH; 1265 oom_score_adj = task->signal->oom_score_adj; 1266 put_task_struct(task); 1267 len = snprintf(buffer, sizeof(buffer), "%hd\n", oom_score_adj); 1268 return simple_read_from_buffer(buf, count, ppos, buffer, len); 1269 } 1270 1271 static ssize_t oom_score_adj_write(struct file *file, const char __user *buf, 1272 size_t count, loff_t *ppos) 1273 { 1274 char buffer[PROC_NUMBUF] = {}; 1275 int oom_score_adj; 1276 int err; 1277 1278 if (count > sizeof(buffer) - 1) 1279 count = sizeof(buffer) - 1; 1280 if (copy_from_user(buffer, buf, count)) { 1281 err = -EFAULT; 1282 goto out; 1283 } 1284 1285 err = kstrtoint(strstrip(buffer), 0, &oom_score_adj); 1286 if (err) 1287 goto out; 1288 if (oom_score_adj < OOM_SCORE_ADJ_MIN || 1289 oom_score_adj > OOM_SCORE_ADJ_MAX) { 1290 err = -EINVAL; 1291 goto out; 1292 } 1293 1294 err = __set_oom_adj(file, oom_score_adj, false); 1295 out: 1296 return err < 0 ? err : count; 1297 } 1298 1299 static const struct file_operations proc_oom_score_adj_operations = { 1300 .read = oom_score_adj_read, 1301 .write = oom_score_adj_write, 1302 .llseek = default_llseek, 1303 }; 1304 1305 #ifdef CONFIG_AUDIT 1306 #define TMPBUFLEN 11 1307 static ssize_t proc_loginuid_read(struct file * file, char __user * buf, 1308 size_t count, loff_t *ppos) 1309 { 1310 struct inode * inode = file_inode(file); 1311 struct task_struct *task = get_proc_task(inode); 1312 ssize_t length; 1313 char tmpbuf[TMPBUFLEN]; 1314 1315 if (!task) 1316 return -ESRCH; 1317 length = scnprintf(tmpbuf, TMPBUFLEN, "%u", 1318 from_kuid(file->f_cred->user_ns, 1319 audit_get_loginuid(task))); 1320 put_task_struct(task); 1321 return simple_read_from_buffer(buf, count, ppos, tmpbuf, length); 1322 } 1323 1324 static ssize_t proc_loginuid_write(struct file * file, const char __user * buf, 1325 size_t count, loff_t *ppos) 1326 { 1327 struct inode * inode = file_inode(file); 1328 uid_t loginuid; 1329 kuid_t kloginuid; 1330 int rv; 1331 1332 /* Don't let kthreads write their own loginuid */ 1333 if (current->flags & PF_KTHREAD) 1334 return -EPERM; 1335 1336 rcu_read_lock(); 1337 if (current != pid_task(proc_pid(inode), PIDTYPE_PID)) { 1338 rcu_read_unlock(); 1339 return -EPERM; 1340 } 1341 rcu_read_unlock(); 1342 1343 if (*ppos != 0) { 1344 /* No partial writes. */ 1345 return -EINVAL; 1346 } 1347 1348 rv = kstrtou32_from_user(buf, count, 10, &loginuid); 1349 if (rv < 0) 1350 return rv; 1351 1352 /* is userspace tring to explicitly UNSET the loginuid? */ 1353 if (loginuid == AUDIT_UID_UNSET) { 1354 kloginuid = INVALID_UID; 1355 } else { 1356 kloginuid = make_kuid(file->f_cred->user_ns, loginuid); 1357 if (!uid_valid(kloginuid)) 1358 return -EINVAL; 1359 } 1360 1361 rv = audit_set_loginuid(kloginuid); 1362 if (rv < 0) 1363 return rv; 1364 return count; 1365 } 1366 1367 static const struct file_operations proc_loginuid_operations = { 1368 .read = proc_loginuid_read, 1369 .write = proc_loginuid_write, 1370 .llseek = generic_file_llseek, 1371 }; 1372 1373 static ssize_t proc_sessionid_read(struct file * file, char __user * buf, 1374 size_t count, loff_t *ppos) 1375 { 1376 struct inode * inode = file_inode(file); 1377 struct task_struct *task = get_proc_task(inode); 1378 ssize_t length; 1379 char tmpbuf[TMPBUFLEN]; 1380 1381 if (!task) 1382 return -ESRCH; 1383 length = scnprintf(tmpbuf, TMPBUFLEN, "%u", 1384 audit_get_sessionid(task)); 1385 put_task_struct(task); 1386 return simple_read_from_buffer(buf, count, ppos, tmpbuf, length); 1387 } 1388 1389 static const struct file_operations proc_sessionid_operations = { 1390 .read = proc_sessionid_read, 1391 .llseek = generic_file_llseek, 1392 }; 1393 #endif 1394 1395 #ifdef CONFIG_FAULT_INJECTION 1396 static ssize_t proc_fault_inject_read(struct file * file, char __user * buf, 1397 size_t count, loff_t *ppos) 1398 { 1399 struct task_struct *task = get_proc_task(file_inode(file)); 1400 char buffer[PROC_NUMBUF]; 1401 size_t len; 1402 int make_it_fail; 1403 1404 if (!task) 1405 return -ESRCH; 1406 make_it_fail = task->make_it_fail; 1407 put_task_struct(task); 1408 1409 len = snprintf(buffer, sizeof(buffer), "%i\n", make_it_fail); 1410 1411 return simple_read_from_buffer(buf, count, ppos, buffer, len); 1412 } 1413 1414 static ssize_t proc_fault_inject_write(struct file * file, 1415 const char __user * buf, size_t count, loff_t *ppos) 1416 { 1417 struct task_struct *task; 1418 char buffer[PROC_NUMBUF] = {}; 1419 int make_it_fail; 1420 int rv; 1421 1422 if (!capable(CAP_SYS_RESOURCE)) 1423 return -EPERM; 1424 1425 if (count > sizeof(buffer) - 1) 1426 count = sizeof(buffer) - 1; 1427 if (copy_from_user(buffer, buf, count)) 1428 return -EFAULT; 1429 rv = kstrtoint(strstrip(buffer), 0, &make_it_fail); 1430 if (rv < 0) 1431 return rv; 1432 if (make_it_fail < 0 || make_it_fail > 1) 1433 return -EINVAL; 1434 1435 task = get_proc_task(file_inode(file)); 1436 if (!task) 1437 return -ESRCH; 1438 task->make_it_fail = make_it_fail; 1439 put_task_struct(task); 1440 1441 return count; 1442 } 1443 1444 static const struct file_operations proc_fault_inject_operations = { 1445 .read = proc_fault_inject_read, 1446 .write = proc_fault_inject_write, 1447 .llseek = generic_file_llseek, 1448 }; 1449 1450 static ssize_t proc_fail_nth_write(struct file *file, const char __user *buf, 1451 size_t count, loff_t *ppos) 1452 { 1453 struct task_struct *task; 1454 int err; 1455 unsigned int n; 1456 1457 err = kstrtouint_from_user(buf, count, 0, &n); 1458 if (err) 1459 return err; 1460 1461 task = get_proc_task(file_inode(file)); 1462 if (!task) 1463 return -ESRCH; 1464 task->fail_nth = n; 1465 put_task_struct(task); 1466 1467 return count; 1468 } 1469 1470 static ssize_t proc_fail_nth_read(struct file *file, char __user *buf, 1471 size_t count, loff_t *ppos) 1472 { 1473 struct task_struct *task; 1474 char numbuf[PROC_NUMBUF]; 1475 ssize_t len; 1476 1477 task = get_proc_task(file_inode(file)); 1478 if (!task) 1479 return -ESRCH; 1480 len = snprintf(numbuf, sizeof(numbuf), "%u\n", task->fail_nth); 1481 put_task_struct(task); 1482 return simple_read_from_buffer(buf, count, ppos, numbuf, len); 1483 } 1484 1485 static const struct file_operations proc_fail_nth_operations = { 1486 .read = proc_fail_nth_read, 1487 .write = proc_fail_nth_write, 1488 }; 1489 #endif 1490 1491 1492 #ifdef CONFIG_SCHED_DEBUG 1493 /* 1494 * Print out various scheduling related per-task fields: 1495 */ 1496 static int sched_show(struct seq_file *m, void *v) 1497 { 1498 struct inode *inode = m->private; 1499 struct pid_namespace *ns = proc_pid_ns(inode->i_sb); 1500 struct task_struct *p; 1501 1502 p = get_proc_task(inode); 1503 if (!p) 1504 return -ESRCH; 1505 proc_sched_show_task(p, ns, m); 1506 1507 put_task_struct(p); 1508 1509 return 0; 1510 } 1511 1512 static ssize_t 1513 sched_write(struct file *file, const char __user *buf, 1514 size_t count, loff_t *offset) 1515 { 1516 struct inode *inode = file_inode(file); 1517 struct task_struct *p; 1518 1519 p = get_proc_task(inode); 1520 if (!p) 1521 return -ESRCH; 1522 proc_sched_set_task(p); 1523 1524 put_task_struct(p); 1525 1526 return count; 1527 } 1528 1529 static int sched_open(struct inode *inode, struct file *filp) 1530 { 1531 return single_open(filp, sched_show, inode); 1532 } 1533 1534 static const struct file_operations proc_pid_sched_operations = { 1535 .open = sched_open, 1536 .read = seq_read, 1537 .write = sched_write, 1538 .llseek = seq_lseek, 1539 .release = single_release, 1540 }; 1541 1542 #endif 1543 1544 #ifdef CONFIG_SCHED_AUTOGROUP 1545 /* 1546 * Print out autogroup related information: 1547 */ 1548 static int sched_autogroup_show(struct seq_file *m, void *v) 1549 { 1550 struct inode *inode = m->private; 1551 struct task_struct *p; 1552 1553 p = get_proc_task(inode); 1554 if (!p) 1555 return -ESRCH; 1556 proc_sched_autogroup_show_task(p, m); 1557 1558 put_task_struct(p); 1559 1560 return 0; 1561 } 1562 1563 static ssize_t 1564 sched_autogroup_write(struct file *file, const char __user *buf, 1565 size_t count, loff_t *offset) 1566 { 1567 struct inode *inode = file_inode(file); 1568 struct task_struct *p; 1569 char buffer[PROC_NUMBUF] = {}; 1570 int nice; 1571 int err; 1572 1573 if (count > sizeof(buffer) - 1) 1574 count = sizeof(buffer) - 1; 1575 if (copy_from_user(buffer, buf, count)) 1576 return -EFAULT; 1577 1578 err = kstrtoint(strstrip(buffer), 0, &nice); 1579 if (err < 0) 1580 return err; 1581 1582 p = get_proc_task(inode); 1583 if (!p) 1584 return -ESRCH; 1585 1586 err = proc_sched_autogroup_set_nice(p, nice); 1587 if (err) 1588 count = err; 1589 1590 put_task_struct(p); 1591 1592 return count; 1593 } 1594 1595 static int sched_autogroup_open(struct inode *inode, struct file *filp) 1596 { 1597 int ret; 1598 1599 ret = single_open(filp, sched_autogroup_show, NULL); 1600 if (!ret) { 1601 struct seq_file *m = filp->private_data; 1602 1603 m->private = inode; 1604 } 1605 return ret; 1606 } 1607 1608 static const struct file_operations proc_pid_sched_autogroup_operations = { 1609 .open = sched_autogroup_open, 1610 .read = seq_read, 1611 .write = sched_autogroup_write, 1612 .llseek = seq_lseek, 1613 .release = single_release, 1614 }; 1615 1616 #endif /* CONFIG_SCHED_AUTOGROUP */ 1617 1618 #ifdef CONFIG_TIME_NS 1619 static int timens_offsets_show(struct seq_file *m, void *v) 1620 { 1621 struct task_struct *p; 1622 1623 p = get_proc_task(file_inode(m->file)); 1624 if (!p) 1625 return -ESRCH; 1626 proc_timens_show_offsets(p, m); 1627 1628 put_task_struct(p); 1629 1630 return 0; 1631 } 1632 1633 static ssize_t timens_offsets_write(struct file *file, const char __user *buf, 1634 size_t count, loff_t *ppos) 1635 { 1636 struct inode *inode = file_inode(file); 1637 struct proc_timens_offset offsets[2]; 1638 char *kbuf = NULL, *pos, *next_line; 1639 struct task_struct *p; 1640 int ret, noffsets; 1641 1642 /* Only allow < page size writes at the beginning of the file */ 1643 if ((*ppos != 0) || (count >= PAGE_SIZE)) 1644 return -EINVAL; 1645 1646 /* Slurp in the user data */ 1647 kbuf = memdup_user_nul(buf, count); 1648 if (IS_ERR(kbuf)) 1649 return PTR_ERR(kbuf); 1650 1651 /* Parse the user data */ 1652 ret = -EINVAL; 1653 noffsets = 0; 1654 for (pos = kbuf; pos; pos = next_line) { 1655 struct proc_timens_offset *off = &offsets[noffsets]; 1656 char clock[10]; 1657 int err; 1658 1659 /* Find the end of line and ensure we don't look past it */ 1660 next_line = strchr(pos, '\n'); 1661 if (next_line) { 1662 *next_line = '\0'; 1663 next_line++; 1664 if (*next_line == '\0') 1665 next_line = NULL; 1666 } 1667 1668 err = sscanf(pos, "%9s %lld %lu", clock, 1669 &off->val.tv_sec, &off->val.tv_nsec); 1670 if (err != 3 || off->val.tv_nsec >= NSEC_PER_SEC) 1671 goto out; 1672 1673 clock[sizeof(clock) - 1] = 0; 1674 if (strcmp(clock, "monotonic") == 0 || 1675 strcmp(clock, __stringify(CLOCK_MONOTONIC)) == 0) 1676 off->clockid = CLOCK_MONOTONIC; 1677 else if (strcmp(clock, "boottime") == 0 || 1678 strcmp(clock, __stringify(CLOCK_BOOTTIME)) == 0) 1679 off->clockid = CLOCK_BOOTTIME; 1680 else 1681 goto out; 1682 1683 noffsets++; 1684 if (noffsets == ARRAY_SIZE(offsets)) { 1685 if (next_line) 1686 count = next_line - kbuf; 1687 break; 1688 } 1689 } 1690 1691 ret = -ESRCH; 1692 p = get_proc_task(inode); 1693 if (!p) 1694 goto out; 1695 ret = proc_timens_set_offset(file, p, offsets, noffsets); 1696 put_task_struct(p); 1697 if (ret) 1698 goto out; 1699 1700 ret = count; 1701 out: 1702 kfree(kbuf); 1703 return ret; 1704 } 1705 1706 static int timens_offsets_open(struct inode *inode, struct file *filp) 1707 { 1708 return single_open(filp, timens_offsets_show, inode); 1709 } 1710 1711 static const struct file_operations proc_timens_offsets_operations = { 1712 .open = timens_offsets_open, 1713 .read = seq_read, 1714 .write = timens_offsets_write, 1715 .llseek = seq_lseek, 1716 .release = single_release, 1717 }; 1718 #endif /* CONFIG_TIME_NS */ 1719 1720 static ssize_t comm_write(struct file *file, const char __user *buf, 1721 size_t count, loff_t *offset) 1722 { 1723 struct inode *inode = file_inode(file); 1724 struct task_struct *p; 1725 char buffer[TASK_COMM_LEN] = {}; 1726 const size_t maxlen = sizeof(buffer) - 1; 1727 1728 if (copy_from_user(buffer, buf, count > maxlen ? maxlen : count)) 1729 return -EFAULT; 1730 1731 p = get_proc_task(inode); 1732 if (!p) 1733 return -ESRCH; 1734 1735 if (same_thread_group(current, p)) { 1736 set_task_comm(p, buffer); 1737 proc_comm_connector(p); 1738 } 1739 else 1740 count = -EINVAL; 1741 1742 put_task_struct(p); 1743 1744 return count; 1745 } 1746 1747 static int comm_show(struct seq_file *m, void *v) 1748 { 1749 struct inode *inode = m->private; 1750 struct task_struct *p; 1751 1752 p = get_proc_task(inode); 1753 if (!p) 1754 return -ESRCH; 1755 1756 proc_task_name(m, p, false); 1757 seq_putc(m, '\n'); 1758 1759 put_task_struct(p); 1760 1761 return 0; 1762 } 1763 1764 static int comm_open(struct inode *inode, struct file *filp) 1765 { 1766 return single_open(filp, comm_show, inode); 1767 } 1768 1769 static const struct file_operations proc_pid_set_comm_operations = { 1770 .open = comm_open, 1771 .read = seq_read, 1772 .write = comm_write, 1773 .llseek = seq_lseek, 1774 .release = single_release, 1775 }; 1776 1777 static int proc_exe_link(struct dentry *dentry, struct path *exe_path) 1778 { 1779 struct task_struct *task; 1780 struct file *exe_file; 1781 1782 task = get_proc_task(d_inode(dentry)); 1783 if (!task) 1784 return -ENOENT; 1785 exe_file = get_task_exe_file(task); 1786 put_task_struct(task); 1787 if (exe_file) { 1788 *exe_path = exe_file->f_path; 1789 path_get(&exe_file->f_path); 1790 fput(exe_file); 1791 return 0; 1792 } else 1793 return -ENOENT; 1794 } 1795 1796 static const char *proc_pid_get_link(struct dentry *dentry, 1797 struct inode *inode, 1798 struct delayed_call *done) 1799 { 1800 struct path path; 1801 int error = -EACCES; 1802 1803 if (!dentry) 1804 return ERR_PTR(-ECHILD); 1805 1806 /* Are we allowed to snoop on the tasks file descriptors? */ 1807 if (!proc_fd_access_allowed(inode)) 1808 goto out; 1809 1810 error = PROC_I(inode)->op.proc_get_link(dentry, &path); 1811 if (error) 1812 goto out; 1813 1814 error = nd_jump_link(&path); 1815 out: 1816 return ERR_PTR(error); 1817 } 1818 1819 static int do_proc_readlink(const struct path *path, char __user *buffer, int buflen) 1820 { 1821 char *tmp = kmalloc(PATH_MAX, GFP_KERNEL); 1822 char *pathname; 1823 int len; 1824 1825 if (!tmp) 1826 return -ENOMEM; 1827 1828 pathname = d_path(path, tmp, PATH_MAX); 1829 len = PTR_ERR(pathname); 1830 if (IS_ERR(pathname)) 1831 goto out; 1832 len = tmp + PATH_MAX - 1 - pathname; 1833 1834 if (len > buflen) 1835 len = buflen; 1836 if (copy_to_user(buffer, pathname, len)) 1837 len = -EFAULT; 1838 out: 1839 kfree(tmp); 1840 return len; 1841 } 1842 1843 static int proc_pid_readlink(struct dentry * dentry, char __user * buffer, int buflen) 1844 { 1845 int error = -EACCES; 1846 struct inode *inode = d_inode(dentry); 1847 struct path path; 1848 1849 /* Are we allowed to snoop on the tasks file descriptors? */ 1850 if (!proc_fd_access_allowed(inode)) 1851 goto out; 1852 1853 error = PROC_I(inode)->op.proc_get_link(dentry, &path); 1854 if (error) 1855 goto out; 1856 1857 error = do_proc_readlink(&path, buffer, buflen); 1858 path_put(&path); 1859 out: 1860 return error; 1861 } 1862 1863 const struct inode_operations proc_pid_link_inode_operations = { 1864 .readlink = proc_pid_readlink, 1865 .get_link = proc_pid_get_link, 1866 .setattr = proc_setattr, 1867 }; 1868 1869 1870 /* building an inode */ 1871 1872 void task_dump_owner(struct task_struct *task, umode_t mode, 1873 kuid_t *ruid, kgid_t *rgid) 1874 { 1875 /* Depending on the state of dumpable compute who should own a 1876 * proc file for a task. 1877 */ 1878 const struct cred *cred; 1879 kuid_t uid; 1880 kgid_t gid; 1881 1882 if (unlikely(task->flags & PF_KTHREAD)) { 1883 *ruid = GLOBAL_ROOT_UID; 1884 *rgid = GLOBAL_ROOT_GID; 1885 return; 1886 } 1887 1888 /* Default to the tasks effective ownership */ 1889 rcu_read_lock(); 1890 cred = __task_cred(task); 1891 uid = cred->euid; 1892 gid = cred->egid; 1893 rcu_read_unlock(); 1894 1895 /* 1896 * Before the /proc/pid/status file was created the only way to read 1897 * the effective uid of a /process was to stat /proc/pid. Reading 1898 * /proc/pid/status is slow enough that procps and other packages 1899 * kept stating /proc/pid. To keep the rules in /proc simple I have 1900 * made this apply to all per process world readable and executable 1901 * directories. 1902 */ 1903 if (mode != (S_IFDIR|S_IRUGO|S_IXUGO)) { 1904 struct mm_struct *mm; 1905 task_lock(task); 1906 mm = task->mm; 1907 /* Make non-dumpable tasks owned by some root */ 1908 if (mm) { 1909 if (get_dumpable(mm) != SUID_DUMP_USER) { 1910 struct user_namespace *user_ns = mm->user_ns; 1911 1912 uid = make_kuid(user_ns, 0); 1913 if (!uid_valid(uid)) 1914 uid = GLOBAL_ROOT_UID; 1915 1916 gid = make_kgid(user_ns, 0); 1917 if (!gid_valid(gid)) 1918 gid = GLOBAL_ROOT_GID; 1919 } 1920 } else { 1921 uid = GLOBAL_ROOT_UID; 1922 gid = GLOBAL_ROOT_GID; 1923 } 1924 task_unlock(task); 1925 } 1926 *ruid = uid; 1927 *rgid = gid; 1928 } 1929 1930 void proc_pid_evict_inode(struct proc_inode *ei) 1931 { 1932 struct pid *pid = ei->pid; 1933 1934 if (S_ISDIR(ei->vfs_inode.i_mode)) { 1935 spin_lock(&pid->lock); 1936 hlist_del_init_rcu(&ei->sibling_inodes); 1937 spin_unlock(&pid->lock); 1938 } 1939 } 1940 1941 struct inode *proc_pid_make_inode(struct super_block *sb, 1942 struct task_struct *task, umode_t mode) 1943 { 1944 struct inode * inode; 1945 struct proc_inode *ei; 1946 struct pid *pid; 1947 1948 /* We need a new inode */ 1949 1950 inode = new_inode(sb); 1951 if (!inode) 1952 goto out; 1953 1954 /* Common stuff */ 1955 ei = PROC_I(inode); 1956 inode->i_mode = mode; 1957 inode->i_ino = get_next_ino(); 1958 simple_inode_init_ts(inode); 1959 inode->i_op = &proc_def_inode_operations; 1960 1961 /* 1962 * grab the reference to task. 1963 */ 1964 pid = get_task_pid(task, PIDTYPE_PID); 1965 if (!pid) 1966 goto out_unlock; 1967 1968 /* Let the pid remember us for quick removal */ 1969 ei->pid = pid; 1970 1971 task_dump_owner(task, 0, &inode->i_uid, &inode->i_gid); 1972 security_task_to_inode(task, inode); 1973 1974 out: 1975 return inode; 1976 1977 out_unlock: 1978 iput(inode); 1979 return NULL; 1980 } 1981 1982 /* 1983 * Generating an inode and adding it into @pid->inodes, so that task will 1984 * invalidate inode's dentry before being released. 1985 * 1986 * This helper is used for creating dir-type entries under '/proc' and 1987 * '/proc/<tgid>/task'. Other entries(eg. fd, stat) under '/proc/<tgid>' 1988 * can be released by invalidating '/proc/<tgid>' dentry. 1989 * In theory, dentries under '/proc/<tgid>/task' can also be released by 1990 * invalidating '/proc/<tgid>' dentry, we reserve it to handle single 1991 * thread exiting situation: Any one of threads should invalidate its 1992 * '/proc/<tgid>/task/<pid>' dentry before released. 1993 */ 1994 static struct inode *proc_pid_make_base_inode(struct super_block *sb, 1995 struct task_struct *task, umode_t mode) 1996 { 1997 struct inode *inode; 1998 struct proc_inode *ei; 1999 struct pid *pid; 2000 2001 inode = proc_pid_make_inode(sb, task, mode); 2002 if (!inode) 2003 return NULL; 2004 2005 /* Let proc_flush_pid find this directory inode */ 2006 ei = PROC_I(inode); 2007 pid = ei->pid; 2008 spin_lock(&pid->lock); 2009 hlist_add_head_rcu(&ei->sibling_inodes, &pid->inodes); 2010 spin_unlock(&pid->lock); 2011 2012 return inode; 2013 } 2014 2015 int pid_getattr(struct mnt_idmap *idmap, const struct path *path, 2016 struct kstat *stat, u32 request_mask, unsigned int query_flags) 2017 { 2018 struct inode *inode = d_inode(path->dentry); 2019 struct proc_fs_info *fs_info = proc_sb_info(inode->i_sb); 2020 struct task_struct *task; 2021 2022 generic_fillattr(&nop_mnt_idmap, request_mask, inode, stat); 2023 2024 stat->uid = GLOBAL_ROOT_UID; 2025 stat->gid = GLOBAL_ROOT_GID; 2026 rcu_read_lock(); 2027 task = pid_task(proc_pid(inode), PIDTYPE_PID); 2028 if (task) { 2029 if (!has_pid_permissions(fs_info, task, HIDEPID_INVISIBLE)) { 2030 rcu_read_unlock(); 2031 /* 2032 * This doesn't prevent learning whether PID exists, 2033 * it only makes getattr() consistent with readdir(). 2034 */ 2035 return -ENOENT; 2036 } 2037 task_dump_owner(task, inode->i_mode, &stat->uid, &stat->gid); 2038 } 2039 rcu_read_unlock(); 2040 return 0; 2041 } 2042 2043 /* dentry stuff */ 2044 2045 /* 2046 * Set <pid>/... inode ownership (can change due to setuid(), etc.) 2047 */ 2048 void pid_update_inode(struct task_struct *task, struct inode *inode) 2049 { 2050 task_dump_owner(task, inode->i_mode, &inode->i_uid, &inode->i_gid); 2051 2052 inode->i_mode &= ~(S_ISUID | S_ISGID); 2053 security_task_to_inode(task, inode); 2054 } 2055 2056 /* 2057 * Rewrite the inode's ownerships here because the owning task may have 2058 * performed a setuid(), etc. 2059 * 2060 */ 2061 static int pid_revalidate(struct inode *dir, const struct qstr *name, 2062 struct dentry *dentry, unsigned int flags) 2063 { 2064 struct inode *inode; 2065 struct task_struct *task; 2066 int ret = 0; 2067 2068 rcu_read_lock(); 2069 inode = d_inode_rcu(dentry); 2070 if (!inode) 2071 goto out; 2072 task = pid_task(proc_pid(inode), PIDTYPE_PID); 2073 2074 if (task) { 2075 pid_update_inode(task, inode); 2076 ret = 1; 2077 } 2078 out: 2079 rcu_read_unlock(); 2080 return ret; 2081 } 2082 2083 static inline bool proc_inode_is_dead(struct inode *inode) 2084 { 2085 return !proc_pid(inode)->tasks[PIDTYPE_PID].first; 2086 } 2087 2088 int pid_delete_dentry(const struct dentry *dentry) 2089 { 2090 /* Is the task we represent dead? 2091 * If so, then don't put the dentry on the lru list, 2092 * kill it immediately. 2093 */ 2094 return proc_inode_is_dead(d_inode(dentry)); 2095 } 2096 2097 const struct dentry_operations pid_dentry_operations = 2098 { 2099 .d_revalidate = pid_revalidate, 2100 .d_delete = pid_delete_dentry, 2101 }; 2102 2103 /* Lookups */ 2104 2105 /* 2106 * Fill a directory entry. 2107 * 2108 * If possible create the dcache entry and derive our inode number and 2109 * file type from dcache entry. 2110 * 2111 * Since all of the proc inode numbers are dynamically generated, the inode 2112 * numbers do not exist until the inode is cache. This means creating 2113 * the dcache entry in readdir is necessary to keep the inode numbers 2114 * reported by readdir in sync with the inode numbers reported 2115 * by stat. 2116 */ 2117 bool proc_fill_cache(struct file *file, struct dir_context *ctx, 2118 const char *name, unsigned int len, 2119 instantiate_t instantiate, struct task_struct *task, const void *ptr) 2120 { 2121 struct dentry *child, *dir = file->f_path.dentry; 2122 struct qstr qname = QSTR_INIT(name, len); 2123 struct inode *inode; 2124 unsigned type = DT_UNKNOWN; 2125 ino_t ino = 1; 2126 2127 child = d_hash_and_lookup(dir, &qname); 2128 if (!child) { 2129 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq); 2130 child = d_alloc_parallel(dir, &qname, &wq); 2131 if (IS_ERR(child)) 2132 goto end_instantiate; 2133 if (d_in_lookup(child)) { 2134 struct dentry *res; 2135 res = instantiate(child, task, ptr); 2136 d_lookup_done(child); 2137 if (unlikely(res)) { 2138 dput(child); 2139 child = res; 2140 if (IS_ERR(child)) 2141 goto end_instantiate; 2142 } 2143 } 2144 } 2145 inode = d_inode(child); 2146 ino = inode->i_ino; 2147 type = inode->i_mode >> 12; 2148 dput(child); 2149 end_instantiate: 2150 return dir_emit(ctx, name, len, ino, type); 2151 } 2152 2153 /* 2154 * dname_to_vma_addr - maps a dentry name into two unsigned longs 2155 * which represent vma start and end addresses. 2156 */ 2157 static int dname_to_vma_addr(struct dentry *dentry, 2158 unsigned long *start, unsigned long *end) 2159 { 2160 const char *str = dentry->d_name.name; 2161 unsigned long long sval, eval; 2162 unsigned int len; 2163 2164 if (str[0] == '0' && str[1] != '-') 2165 return -EINVAL; 2166 len = _parse_integer(str, 16, &sval); 2167 if (len & KSTRTOX_OVERFLOW) 2168 return -EINVAL; 2169 if (sval != (unsigned long)sval) 2170 return -EINVAL; 2171 str += len; 2172 2173 if (*str != '-') 2174 return -EINVAL; 2175 str++; 2176 2177 if (str[0] == '0' && str[1]) 2178 return -EINVAL; 2179 len = _parse_integer(str, 16, &eval); 2180 if (len & KSTRTOX_OVERFLOW) 2181 return -EINVAL; 2182 if (eval != (unsigned long)eval) 2183 return -EINVAL; 2184 str += len; 2185 2186 if (*str != '\0') 2187 return -EINVAL; 2188 2189 *start = sval; 2190 *end = eval; 2191 2192 return 0; 2193 } 2194 2195 static int map_files_d_revalidate(struct inode *dir, const struct qstr *name, 2196 struct dentry *dentry, unsigned int flags) 2197 { 2198 unsigned long vm_start, vm_end; 2199 bool exact_vma_exists = false; 2200 struct mm_struct *mm = NULL; 2201 struct task_struct *task; 2202 struct inode *inode; 2203 int status = 0; 2204 2205 if (flags & LOOKUP_RCU) 2206 return -ECHILD; 2207 2208 inode = d_inode(dentry); 2209 task = get_proc_task(inode); 2210 if (!task) 2211 goto out_notask; 2212 2213 mm = mm_access(task, PTRACE_MODE_READ_FSCREDS); 2214 if (IS_ERR(mm)) 2215 goto out; 2216 2217 if (!dname_to_vma_addr(dentry, &vm_start, &vm_end)) { 2218 status = mmap_read_lock_killable(mm); 2219 if (!status) { 2220 exact_vma_exists = !!find_exact_vma(mm, vm_start, 2221 vm_end); 2222 mmap_read_unlock(mm); 2223 } 2224 } 2225 2226 mmput(mm); 2227 2228 if (exact_vma_exists) { 2229 task_dump_owner(task, 0, &inode->i_uid, &inode->i_gid); 2230 2231 security_task_to_inode(task, inode); 2232 status = 1; 2233 } 2234 2235 out: 2236 put_task_struct(task); 2237 2238 out_notask: 2239 return status; 2240 } 2241 2242 static const struct dentry_operations tid_map_files_dentry_operations = { 2243 .d_revalidate = map_files_d_revalidate, 2244 .d_delete = pid_delete_dentry, 2245 }; 2246 2247 static int map_files_get_link(struct dentry *dentry, struct path *path) 2248 { 2249 unsigned long vm_start, vm_end; 2250 struct vm_area_struct *vma; 2251 struct task_struct *task; 2252 struct mm_struct *mm; 2253 int rc; 2254 2255 rc = -ENOENT; 2256 task = get_proc_task(d_inode(dentry)); 2257 if (!task) 2258 goto out; 2259 2260 mm = get_task_mm(task); 2261 put_task_struct(task); 2262 if (!mm) 2263 goto out; 2264 2265 rc = dname_to_vma_addr(dentry, &vm_start, &vm_end); 2266 if (rc) 2267 goto out_mmput; 2268 2269 rc = mmap_read_lock_killable(mm); 2270 if (rc) 2271 goto out_mmput; 2272 2273 rc = -ENOENT; 2274 vma = find_exact_vma(mm, vm_start, vm_end); 2275 if (vma && vma->vm_file) { 2276 *path = *file_user_path(vma->vm_file); 2277 path_get(path); 2278 rc = 0; 2279 } 2280 mmap_read_unlock(mm); 2281 2282 out_mmput: 2283 mmput(mm); 2284 out: 2285 return rc; 2286 } 2287 2288 struct map_files_info { 2289 unsigned long start; 2290 unsigned long end; 2291 fmode_t mode; 2292 }; 2293 2294 /* 2295 * Only allow CAP_SYS_ADMIN and CAP_CHECKPOINT_RESTORE to follow the links, due 2296 * to concerns about how the symlinks may be used to bypass permissions on 2297 * ancestor directories in the path to the file in question. 2298 */ 2299 static const char * 2300 proc_map_files_get_link(struct dentry *dentry, 2301 struct inode *inode, 2302 struct delayed_call *done) 2303 { 2304 if (!checkpoint_restore_ns_capable(&init_user_ns)) 2305 return ERR_PTR(-EPERM); 2306 2307 return proc_pid_get_link(dentry, inode, done); 2308 } 2309 2310 /* 2311 * Identical to proc_pid_link_inode_operations except for get_link() 2312 */ 2313 static const struct inode_operations proc_map_files_link_inode_operations = { 2314 .readlink = proc_pid_readlink, 2315 .get_link = proc_map_files_get_link, 2316 .setattr = proc_setattr, 2317 }; 2318 2319 static struct dentry * 2320 proc_map_files_instantiate(struct dentry *dentry, 2321 struct task_struct *task, const void *ptr) 2322 { 2323 fmode_t mode = (fmode_t)(unsigned long)ptr; 2324 struct proc_inode *ei; 2325 struct inode *inode; 2326 2327 inode = proc_pid_make_inode(dentry->d_sb, task, S_IFLNK | 2328 ((mode & FMODE_READ ) ? S_IRUSR : 0) | 2329 ((mode & FMODE_WRITE) ? S_IWUSR : 0)); 2330 if (!inode) 2331 return ERR_PTR(-ENOENT); 2332 2333 ei = PROC_I(inode); 2334 ei->op.proc_get_link = map_files_get_link; 2335 2336 inode->i_op = &proc_map_files_link_inode_operations; 2337 inode->i_size = 64; 2338 2339 return proc_splice_unmountable(inode, dentry, 2340 &tid_map_files_dentry_operations); 2341 } 2342 2343 static struct dentry *proc_map_files_lookup(struct inode *dir, 2344 struct dentry *dentry, unsigned int flags) 2345 { 2346 unsigned long vm_start, vm_end; 2347 struct vm_area_struct *vma; 2348 struct task_struct *task; 2349 struct dentry *result; 2350 struct mm_struct *mm; 2351 2352 result = ERR_PTR(-ENOENT); 2353 task = get_proc_task(dir); 2354 if (!task) 2355 goto out; 2356 2357 result = ERR_PTR(-EACCES); 2358 if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS)) 2359 goto out_put_task; 2360 2361 result = ERR_PTR(-ENOENT); 2362 if (dname_to_vma_addr(dentry, &vm_start, &vm_end)) 2363 goto out_put_task; 2364 2365 mm = get_task_mm(task); 2366 if (!mm) 2367 goto out_put_task; 2368 2369 result = ERR_PTR(-EINTR); 2370 if (mmap_read_lock_killable(mm)) 2371 goto out_put_mm; 2372 2373 result = ERR_PTR(-ENOENT); 2374 vma = find_exact_vma(mm, vm_start, vm_end); 2375 if (!vma) 2376 goto out_no_vma; 2377 2378 if (vma->vm_file) 2379 result = proc_map_files_instantiate(dentry, task, 2380 (void *)(unsigned long)vma->vm_file->f_mode); 2381 2382 out_no_vma: 2383 mmap_read_unlock(mm); 2384 out_put_mm: 2385 mmput(mm); 2386 out_put_task: 2387 put_task_struct(task); 2388 out: 2389 return result; 2390 } 2391 2392 static const struct inode_operations proc_map_files_inode_operations = { 2393 .lookup = proc_map_files_lookup, 2394 .permission = proc_fd_permission, 2395 .setattr = proc_setattr, 2396 }; 2397 2398 static int 2399 proc_map_files_readdir(struct file *file, struct dir_context *ctx) 2400 { 2401 struct vm_area_struct *vma; 2402 struct task_struct *task; 2403 struct mm_struct *mm; 2404 unsigned long nr_files, pos, i; 2405 GENRADIX(struct map_files_info) fa; 2406 struct map_files_info *p; 2407 int ret; 2408 struct vma_iterator vmi; 2409 2410 genradix_init(&fa); 2411 2412 ret = -ENOENT; 2413 task = get_proc_task(file_inode(file)); 2414 if (!task) 2415 goto out; 2416 2417 ret = -EACCES; 2418 if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS)) 2419 goto out_put_task; 2420 2421 ret = 0; 2422 if (!dir_emit_dots(file, ctx)) 2423 goto out_put_task; 2424 2425 mm = get_task_mm(task); 2426 if (!mm) 2427 goto out_put_task; 2428 2429 ret = mmap_read_lock_killable(mm); 2430 if (ret) { 2431 mmput(mm); 2432 goto out_put_task; 2433 } 2434 2435 nr_files = 0; 2436 2437 /* 2438 * We need two passes here: 2439 * 2440 * 1) Collect vmas of mapped files with mmap_lock taken 2441 * 2) Release mmap_lock and instantiate entries 2442 * 2443 * otherwise we get lockdep complained, since filldir() 2444 * routine might require mmap_lock taken in might_fault(). 2445 */ 2446 2447 pos = 2; 2448 vma_iter_init(&vmi, mm, 0); 2449 for_each_vma(vmi, vma) { 2450 if (!vma->vm_file) 2451 continue; 2452 if (++pos <= ctx->pos) 2453 continue; 2454 2455 p = genradix_ptr_alloc(&fa, nr_files++, GFP_KERNEL); 2456 if (!p) { 2457 ret = -ENOMEM; 2458 mmap_read_unlock(mm); 2459 mmput(mm); 2460 goto out_put_task; 2461 } 2462 2463 p->start = vma->vm_start; 2464 p->end = vma->vm_end; 2465 p->mode = vma->vm_file->f_mode; 2466 } 2467 mmap_read_unlock(mm); 2468 mmput(mm); 2469 2470 for (i = 0; i < nr_files; i++) { 2471 char buf[4 * sizeof(long) + 2]; /* max: %lx-%lx\0 */ 2472 unsigned int len; 2473 2474 p = genradix_ptr(&fa, i); 2475 len = snprintf(buf, sizeof(buf), "%lx-%lx", p->start, p->end); 2476 if (!proc_fill_cache(file, ctx, 2477 buf, len, 2478 proc_map_files_instantiate, 2479 task, 2480 (void *)(unsigned long)p->mode)) 2481 break; 2482 ctx->pos++; 2483 } 2484 2485 out_put_task: 2486 put_task_struct(task); 2487 out: 2488 genradix_free(&fa); 2489 return ret; 2490 } 2491 2492 static const struct file_operations proc_map_files_operations = { 2493 .read = generic_read_dir, 2494 .iterate_shared = proc_map_files_readdir, 2495 .llseek = generic_file_llseek, 2496 }; 2497 2498 #if defined(CONFIG_CHECKPOINT_RESTORE) && defined(CONFIG_POSIX_TIMERS) 2499 struct timers_private { 2500 struct pid *pid; 2501 struct task_struct *task; 2502 struct sighand_struct *sighand; 2503 struct pid_namespace *ns; 2504 unsigned long flags; 2505 }; 2506 2507 static void *timers_start(struct seq_file *m, loff_t *pos) 2508 { 2509 struct timers_private *tp = m->private; 2510 2511 tp->task = get_pid_task(tp->pid, PIDTYPE_PID); 2512 if (!tp->task) 2513 return ERR_PTR(-ESRCH); 2514 2515 tp->sighand = lock_task_sighand(tp->task, &tp->flags); 2516 if (!tp->sighand) 2517 return ERR_PTR(-ESRCH); 2518 2519 return seq_hlist_start(&tp->task->signal->posix_timers, *pos); 2520 } 2521 2522 static void *timers_next(struct seq_file *m, void *v, loff_t *pos) 2523 { 2524 struct timers_private *tp = m->private; 2525 return seq_hlist_next(v, &tp->task->signal->posix_timers, pos); 2526 } 2527 2528 static void timers_stop(struct seq_file *m, void *v) 2529 { 2530 struct timers_private *tp = m->private; 2531 2532 if (tp->sighand) { 2533 unlock_task_sighand(tp->task, &tp->flags); 2534 tp->sighand = NULL; 2535 } 2536 2537 if (tp->task) { 2538 put_task_struct(tp->task); 2539 tp->task = NULL; 2540 } 2541 } 2542 2543 static int show_timer(struct seq_file *m, void *v) 2544 { 2545 struct k_itimer *timer; 2546 struct timers_private *tp = m->private; 2547 int notify; 2548 static const char * const nstr[] = { 2549 [SIGEV_SIGNAL] = "signal", 2550 [SIGEV_NONE] = "none", 2551 [SIGEV_THREAD] = "thread", 2552 }; 2553 2554 timer = hlist_entry((struct hlist_node *)v, struct k_itimer, list); 2555 notify = timer->it_sigev_notify; 2556 2557 seq_printf(m, "ID: %d\n", timer->it_id); 2558 seq_printf(m, "signal: %d/%px\n", 2559 timer->sigq.info.si_signo, 2560 timer->sigq.info.si_value.sival_ptr); 2561 seq_printf(m, "notify: %s/%s.%d\n", 2562 nstr[notify & ~SIGEV_THREAD_ID], 2563 (notify & SIGEV_THREAD_ID) ? "tid" : "pid", 2564 pid_nr_ns(timer->it_pid, tp->ns)); 2565 seq_printf(m, "ClockID: %d\n", timer->it_clock); 2566 2567 return 0; 2568 } 2569 2570 static const struct seq_operations proc_timers_seq_ops = { 2571 .start = timers_start, 2572 .next = timers_next, 2573 .stop = timers_stop, 2574 .show = show_timer, 2575 }; 2576 2577 static int proc_timers_open(struct inode *inode, struct file *file) 2578 { 2579 struct timers_private *tp; 2580 2581 tp = __seq_open_private(file, &proc_timers_seq_ops, 2582 sizeof(struct timers_private)); 2583 if (!tp) 2584 return -ENOMEM; 2585 2586 tp->pid = proc_pid(inode); 2587 tp->ns = proc_pid_ns(inode->i_sb); 2588 return 0; 2589 } 2590 2591 static const struct file_operations proc_timers_operations = { 2592 .open = proc_timers_open, 2593 .read = seq_read, 2594 .llseek = seq_lseek, 2595 .release = seq_release_private, 2596 }; 2597 #endif 2598 2599 static ssize_t timerslack_ns_write(struct file *file, const char __user *buf, 2600 size_t count, loff_t *offset) 2601 { 2602 struct inode *inode = file_inode(file); 2603 struct task_struct *p; 2604 u64 slack_ns; 2605 int err; 2606 2607 err = kstrtoull_from_user(buf, count, 10, &slack_ns); 2608 if (err < 0) 2609 return err; 2610 2611 p = get_proc_task(inode); 2612 if (!p) 2613 return -ESRCH; 2614 2615 if (p != current) { 2616 rcu_read_lock(); 2617 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) { 2618 rcu_read_unlock(); 2619 count = -EPERM; 2620 goto out; 2621 } 2622 rcu_read_unlock(); 2623 2624 err = security_task_setscheduler(p); 2625 if (err) { 2626 count = err; 2627 goto out; 2628 } 2629 } 2630 2631 task_lock(p); 2632 if (rt_or_dl_task_policy(p)) 2633 slack_ns = 0; 2634 else if (slack_ns == 0) 2635 slack_ns = p->default_timer_slack_ns; 2636 p->timer_slack_ns = slack_ns; 2637 task_unlock(p); 2638 2639 out: 2640 put_task_struct(p); 2641 2642 return count; 2643 } 2644 2645 static int timerslack_ns_show(struct seq_file *m, void *v) 2646 { 2647 struct inode *inode = m->private; 2648 struct task_struct *p; 2649 int err = 0; 2650 2651 p = get_proc_task(inode); 2652 if (!p) 2653 return -ESRCH; 2654 2655 if (p != current) { 2656 rcu_read_lock(); 2657 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) { 2658 rcu_read_unlock(); 2659 err = -EPERM; 2660 goto out; 2661 } 2662 rcu_read_unlock(); 2663 2664 err = security_task_getscheduler(p); 2665 if (err) 2666 goto out; 2667 } 2668 2669 task_lock(p); 2670 seq_printf(m, "%llu\n", p->timer_slack_ns); 2671 task_unlock(p); 2672 2673 out: 2674 put_task_struct(p); 2675 2676 return err; 2677 } 2678 2679 static int timerslack_ns_open(struct inode *inode, struct file *filp) 2680 { 2681 return single_open(filp, timerslack_ns_show, inode); 2682 } 2683 2684 static const struct file_operations proc_pid_set_timerslack_ns_operations = { 2685 .open = timerslack_ns_open, 2686 .read = seq_read, 2687 .write = timerslack_ns_write, 2688 .llseek = seq_lseek, 2689 .release = single_release, 2690 }; 2691 2692 static struct dentry *proc_pident_instantiate(struct dentry *dentry, 2693 struct task_struct *task, const void *ptr) 2694 { 2695 const struct pid_entry *p = ptr; 2696 struct inode *inode; 2697 struct proc_inode *ei; 2698 2699 inode = proc_pid_make_inode(dentry->d_sb, task, p->mode); 2700 if (!inode) 2701 return ERR_PTR(-ENOENT); 2702 2703 ei = PROC_I(inode); 2704 if (S_ISDIR(inode->i_mode)) 2705 set_nlink(inode, 2); /* Use getattr to fix if necessary */ 2706 if (p->iop) 2707 inode->i_op = p->iop; 2708 if (p->fop) 2709 inode->i_fop = p->fop; 2710 ei->op = p->op; 2711 pid_update_inode(task, inode); 2712 d_set_d_op(dentry, &pid_dentry_operations); 2713 return d_splice_alias(inode, dentry); 2714 } 2715 2716 static struct dentry *proc_pident_lookup(struct inode *dir, 2717 struct dentry *dentry, 2718 const struct pid_entry *p, 2719 const struct pid_entry *end) 2720 { 2721 struct task_struct *task = get_proc_task(dir); 2722 struct dentry *res = ERR_PTR(-ENOENT); 2723 2724 if (!task) 2725 goto out_no_task; 2726 2727 /* 2728 * Yes, it does not scale. And it should not. Don't add 2729 * new entries into /proc/<tgid>/ without very good reasons. 2730 */ 2731 for (; p < end; p++) { 2732 if (p->len != dentry->d_name.len) 2733 continue; 2734 if (!memcmp(dentry->d_name.name, p->name, p->len)) { 2735 res = proc_pident_instantiate(dentry, task, p); 2736 break; 2737 } 2738 } 2739 put_task_struct(task); 2740 out_no_task: 2741 return res; 2742 } 2743 2744 static int proc_pident_readdir(struct file *file, struct dir_context *ctx, 2745 const struct pid_entry *ents, unsigned int nents) 2746 { 2747 struct task_struct *task = get_proc_task(file_inode(file)); 2748 const struct pid_entry *p; 2749 2750 if (!task) 2751 return -ENOENT; 2752 2753 if (!dir_emit_dots(file, ctx)) 2754 goto out; 2755 2756 if (ctx->pos >= nents + 2) 2757 goto out; 2758 2759 for (p = ents + (ctx->pos - 2); p < ents + nents; p++) { 2760 if (!proc_fill_cache(file, ctx, p->name, p->len, 2761 proc_pident_instantiate, task, p)) 2762 break; 2763 ctx->pos++; 2764 } 2765 out: 2766 put_task_struct(task); 2767 return 0; 2768 } 2769 2770 #ifdef CONFIG_SECURITY 2771 static int proc_pid_attr_open(struct inode *inode, struct file *file) 2772 { 2773 file->private_data = NULL; 2774 __mem_open(inode, file, PTRACE_MODE_READ_FSCREDS); 2775 return 0; 2776 } 2777 2778 static ssize_t proc_pid_attr_read(struct file * file, char __user * buf, 2779 size_t count, loff_t *ppos) 2780 { 2781 struct inode * inode = file_inode(file); 2782 char *p = NULL; 2783 ssize_t length; 2784 struct task_struct *task = get_proc_task(inode); 2785 2786 if (!task) 2787 return -ESRCH; 2788 2789 length = security_getprocattr(task, PROC_I(inode)->op.lsmid, 2790 file->f_path.dentry->d_name.name, 2791 &p); 2792 put_task_struct(task); 2793 if (length > 0) 2794 length = simple_read_from_buffer(buf, count, ppos, p, length); 2795 kfree(p); 2796 return length; 2797 } 2798 2799 static ssize_t proc_pid_attr_write(struct file * file, const char __user * buf, 2800 size_t count, loff_t *ppos) 2801 { 2802 struct inode * inode = file_inode(file); 2803 struct task_struct *task; 2804 void *page; 2805 int rv; 2806 2807 /* A task may only write when it was the opener. */ 2808 if (file->private_data != current->mm) 2809 return -EPERM; 2810 2811 rcu_read_lock(); 2812 task = pid_task(proc_pid(inode), PIDTYPE_PID); 2813 if (!task) { 2814 rcu_read_unlock(); 2815 return -ESRCH; 2816 } 2817 /* A task may only write its own attributes. */ 2818 if (current != task) { 2819 rcu_read_unlock(); 2820 return -EACCES; 2821 } 2822 /* Prevent changes to overridden credentials. */ 2823 if (current_cred() != current_real_cred()) { 2824 rcu_read_unlock(); 2825 return -EBUSY; 2826 } 2827 rcu_read_unlock(); 2828 2829 if (count > PAGE_SIZE) 2830 count = PAGE_SIZE; 2831 2832 /* No partial writes. */ 2833 if (*ppos != 0) 2834 return -EINVAL; 2835 2836 page = memdup_user(buf, count); 2837 if (IS_ERR(page)) { 2838 rv = PTR_ERR(page); 2839 goto out; 2840 } 2841 2842 /* Guard against adverse ptrace interaction */ 2843 rv = mutex_lock_interruptible(¤t->signal->cred_guard_mutex); 2844 if (rv < 0) 2845 goto out_free; 2846 2847 rv = security_setprocattr(PROC_I(inode)->op.lsmid, 2848 file->f_path.dentry->d_name.name, page, 2849 count); 2850 mutex_unlock(¤t->signal->cred_guard_mutex); 2851 out_free: 2852 kfree(page); 2853 out: 2854 return rv; 2855 } 2856 2857 static const struct file_operations proc_pid_attr_operations = { 2858 .open = proc_pid_attr_open, 2859 .read = proc_pid_attr_read, 2860 .write = proc_pid_attr_write, 2861 .llseek = generic_file_llseek, 2862 .release = mem_release, 2863 }; 2864 2865 #define LSM_DIR_OPS(LSM) \ 2866 static int proc_##LSM##_attr_dir_iterate(struct file *filp, \ 2867 struct dir_context *ctx) \ 2868 { \ 2869 return proc_pident_readdir(filp, ctx, \ 2870 LSM##_attr_dir_stuff, \ 2871 ARRAY_SIZE(LSM##_attr_dir_stuff)); \ 2872 } \ 2873 \ 2874 static const struct file_operations proc_##LSM##_attr_dir_ops = { \ 2875 .read = generic_read_dir, \ 2876 .iterate_shared = proc_##LSM##_attr_dir_iterate, \ 2877 .llseek = default_llseek, \ 2878 }; \ 2879 \ 2880 static struct dentry *proc_##LSM##_attr_dir_lookup(struct inode *dir, \ 2881 struct dentry *dentry, unsigned int flags) \ 2882 { \ 2883 return proc_pident_lookup(dir, dentry, \ 2884 LSM##_attr_dir_stuff, \ 2885 LSM##_attr_dir_stuff + ARRAY_SIZE(LSM##_attr_dir_stuff)); \ 2886 } \ 2887 \ 2888 static const struct inode_operations proc_##LSM##_attr_dir_inode_ops = { \ 2889 .lookup = proc_##LSM##_attr_dir_lookup, \ 2890 .getattr = pid_getattr, \ 2891 .setattr = proc_setattr, \ 2892 } 2893 2894 #ifdef CONFIG_SECURITY_SMACK 2895 static const struct pid_entry smack_attr_dir_stuff[] = { 2896 ATTR(LSM_ID_SMACK, "current", 0666), 2897 }; 2898 LSM_DIR_OPS(smack); 2899 #endif 2900 2901 #ifdef CONFIG_SECURITY_APPARMOR 2902 static const struct pid_entry apparmor_attr_dir_stuff[] = { 2903 ATTR(LSM_ID_APPARMOR, "current", 0666), 2904 ATTR(LSM_ID_APPARMOR, "prev", 0444), 2905 ATTR(LSM_ID_APPARMOR, "exec", 0666), 2906 }; 2907 LSM_DIR_OPS(apparmor); 2908 #endif 2909 2910 static const struct pid_entry attr_dir_stuff[] = { 2911 ATTR(LSM_ID_UNDEF, "current", 0666), 2912 ATTR(LSM_ID_UNDEF, "prev", 0444), 2913 ATTR(LSM_ID_UNDEF, "exec", 0666), 2914 ATTR(LSM_ID_UNDEF, "fscreate", 0666), 2915 ATTR(LSM_ID_UNDEF, "keycreate", 0666), 2916 ATTR(LSM_ID_UNDEF, "sockcreate", 0666), 2917 #ifdef CONFIG_SECURITY_SMACK 2918 DIR("smack", 0555, 2919 proc_smack_attr_dir_inode_ops, proc_smack_attr_dir_ops), 2920 #endif 2921 #ifdef CONFIG_SECURITY_APPARMOR 2922 DIR("apparmor", 0555, 2923 proc_apparmor_attr_dir_inode_ops, proc_apparmor_attr_dir_ops), 2924 #endif 2925 }; 2926 2927 static int proc_attr_dir_readdir(struct file *file, struct dir_context *ctx) 2928 { 2929 return proc_pident_readdir(file, ctx, 2930 attr_dir_stuff, ARRAY_SIZE(attr_dir_stuff)); 2931 } 2932 2933 static const struct file_operations proc_attr_dir_operations = { 2934 .read = generic_read_dir, 2935 .iterate_shared = proc_attr_dir_readdir, 2936 .llseek = generic_file_llseek, 2937 }; 2938 2939 static struct dentry *proc_attr_dir_lookup(struct inode *dir, 2940 struct dentry *dentry, unsigned int flags) 2941 { 2942 return proc_pident_lookup(dir, dentry, 2943 attr_dir_stuff, 2944 attr_dir_stuff + ARRAY_SIZE(attr_dir_stuff)); 2945 } 2946 2947 static const struct inode_operations proc_attr_dir_inode_operations = { 2948 .lookup = proc_attr_dir_lookup, 2949 .getattr = pid_getattr, 2950 .setattr = proc_setattr, 2951 }; 2952 2953 #endif 2954 2955 #ifdef CONFIG_ELF_CORE 2956 static ssize_t proc_coredump_filter_read(struct file *file, char __user *buf, 2957 size_t count, loff_t *ppos) 2958 { 2959 struct task_struct *task = get_proc_task(file_inode(file)); 2960 struct mm_struct *mm; 2961 char buffer[PROC_NUMBUF]; 2962 size_t len; 2963 int ret; 2964 2965 if (!task) 2966 return -ESRCH; 2967 2968 ret = 0; 2969 mm = get_task_mm(task); 2970 if (mm) { 2971 len = snprintf(buffer, sizeof(buffer), "%08lx\n", 2972 ((mm->flags & MMF_DUMP_FILTER_MASK) >> 2973 MMF_DUMP_FILTER_SHIFT)); 2974 mmput(mm); 2975 ret = simple_read_from_buffer(buf, count, ppos, buffer, len); 2976 } 2977 2978 put_task_struct(task); 2979 2980 return ret; 2981 } 2982 2983 static ssize_t proc_coredump_filter_write(struct file *file, 2984 const char __user *buf, 2985 size_t count, 2986 loff_t *ppos) 2987 { 2988 struct task_struct *task; 2989 struct mm_struct *mm; 2990 unsigned int val; 2991 int ret; 2992 int i; 2993 unsigned long mask; 2994 2995 ret = kstrtouint_from_user(buf, count, 0, &val); 2996 if (ret < 0) 2997 return ret; 2998 2999 ret = -ESRCH; 3000 task = get_proc_task(file_inode(file)); 3001 if (!task) 3002 goto out_no_task; 3003 3004 mm = get_task_mm(task); 3005 if (!mm) 3006 goto out_no_mm; 3007 ret = 0; 3008 3009 for (i = 0, mask = 1; i < MMF_DUMP_FILTER_BITS; i++, mask <<= 1) { 3010 if (val & mask) 3011 set_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags); 3012 else 3013 clear_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags); 3014 } 3015 3016 mmput(mm); 3017 out_no_mm: 3018 put_task_struct(task); 3019 out_no_task: 3020 if (ret < 0) 3021 return ret; 3022 return count; 3023 } 3024 3025 static const struct file_operations proc_coredump_filter_operations = { 3026 .read = proc_coredump_filter_read, 3027 .write = proc_coredump_filter_write, 3028 .llseek = generic_file_llseek, 3029 }; 3030 #endif 3031 3032 #ifdef CONFIG_TASK_IO_ACCOUNTING 3033 static int do_io_accounting(struct task_struct *task, struct seq_file *m, int whole) 3034 { 3035 struct task_io_accounting acct; 3036 int result; 3037 3038 result = down_read_killable(&task->signal->exec_update_lock); 3039 if (result) 3040 return result; 3041 3042 if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS)) { 3043 result = -EACCES; 3044 goto out_unlock; 3045 } 3046 3047 if (whole) { 3048 struct signal_struct *sig = task->signal; 3049 struct task_struct *t; 3050 unsigned int seq = 1; 3051 unsigned long flags; 3052 3053 rcu_read_lock(); 3054 do { 3055 seq++; /* 2 on the 1st/lockless path, otherwise odd */ 3056 flags = read_seqbegin_or_lock_irqsave(&sig->stats_lock, &seq); 3057 3058 acct = sig->ioac; 3059 __for_each_thread(sig, t) 3060 task_io_accounting_add(&acct, &t->ioac); 3061 3062 } while (need_seqretry(&sig->stats_lock, seq)); 3063 done_seqretry_irqrestore(&sig->stats_lock, seq, flags); 3064 rcu_read_unlock(); 3065 } else { 3066 acct = task->ioac; 3067 } 3068 3069 seq_printf(m, 3070 "rchar: %llu\n" 3071 "wchar: %llu\n" 3072 "syscr: %llu\n" 3073 "syscw: %llu\n" 3074 "read_bytes: %llu\n" 3075 "write_bytes: %llu\n" 3076 "cancelled_write_bytes: %llu\n", 3077 (unsigned long long)acct.rchar, 3078 (unsigned long long)acct.wchar, 3079 (unsigned long long)acct.syscr, 3080 (unsigned long long)acct.syscw, 3081 (unsigned long long)acct.read_bytes, 3082 (unsigned long long)acct.write_bytes, 3083 (unsigned long long)acct.cancelled_write_bytes); 3084 result = 0; 3085 3086 out_unlock: 3087 up_read(&task->signal->exec_update_lock); 3088 return result; 3089 } 3090 3091 static int proc_tid_io_accounting(struct seq_file *m, struct pid_namespace *ns, 3092 struct pid *pid, struct task_struct *task) 3093 { 3094 return do_io_accounting(task, m, 0); 3095 } 3096 3097 static int proc_tgid_io_accounting(struct seq_file *m, struct pid_namespace *ns, 3098 struct pid *pid, struct task_struct *task) 3099 { 3100 return do_io_accounting(task, m, 1); 3101 } 3102 #endif /* CONFIG_TASK_IO_ACCOUNTING */ 3103 3104 #ifdef CONFIG_USER_NS 3105 static int proc_id_map_open(struct inode *inode, struct file *file, 3106 const struct seq_operations *seq_ops) 3107 { 3108 struct user_namespace *ns = NULL; 3109 struct task_struct *task; 3110 struct seq_file *seq; 3111 int ret = -EINVAL; 3112 3113 task = get_proc_task(inode); 3114 if (task) { 3115 rcu_read_lock(); 3116 ns = get_user_ns(task_cred_xxx(task, user_ns)); 3117 rcu_read_unlock(); 3118 put_task_struct(task); 3119 } 3120 if (!ns) 3121 goto err; 3122 3123 ret = seq_open(file, seq_ops); 3124 if (ret) 3125 goto err_put_ns; 3126 3127 seq = file->private_data; 3128 seq->private = ns; 3129 3130 return 0; 3131 err_put_ns: 3132 put_user_ns(ns); 3133 err: 3134 return ret; 3135 } 3136 3137 static int proc_id_map_release(struct inode *inode, struct file *file) 3138 { 3139 struct seq_file *seq = file->private_data; 3140 struct user_namespace *ns = seq->private; 3141 put_user_ns(ns); 3142 return seq_release(inode, file); 3143 } 3144 3145 static int proc_uid_map_open(struct inode *inode, struct file *file) 3146 { 3147 return proc_id_map_open(inode, file, &proc_uid_seq_operations); 3148 } 3149 3150 static int proc_gid_map_open(struct inode *inode, struct file *file) 3151 { 3152 return proc_id_map_open(inode, file, &proc_gid_seq_operations); 3153 } 3154 3155 static int proc_projid_map_open(struct inode *inode, struct file *file) 3156 { 3157 return proc_id_map_open(inode, file, &proc_projid_seq_operations); 3158 } 3159 3160 static const struct file_operations proc_uid_map_operations = { 3161 .open = proc_uid_map_open, 3162 .write = proc_uid_map_write, 3163 .read = seq_read, 3164 .llseek = seq_lseek, 3165 .release = proc_id_map_release, 3166 }; 3167 3168 static const struct file_operations proc_gid_map_operations = { 3169 .open = proc_gid_map_open, 3170 .write = proc_gid_map_write, 3171 .read = seq_read, 3172 .llseek = seq_lseek, 3173 .release = proc_id_map_release, 3174 }; 3175 3176 static const struct file_operations proc_projid_map_operations = { 3177 .open = proc_projid_map_open, 3178 .write = proc_projid_map_write, 3179 .read = seq_read, 3180 .llseek = seq_lseek, 3181 .release = proc_id_map_release, 3182 }; 3183 3184 static int proc_setgroups_open(struct inode *inode, struct file *file) 3185 { 3186 struct user_namespace *ns = NULL; 3187 struct task_struct *task; 3188 int ret; 3189 3190 ret = -ESRCH; 3191 task = get_proc_task(inode); 3192 if (task) { 3193 rcu_read_lock(); 3194 ns = get_user_ns(task_cred_xxx(task, user_ns)); 3195 rcu_read_unlock(); 3196 put_task_struct(task); 3197 } 3198 if (!ns) 3199 goto err; 3200 3201 if (file->f_mode & FMODE_WRITE) { 3202 ret = -EACCES; 3203 if (!ns_capable(ns, CAP_SYS_ADMIN)) 3204 goto err_put_ns; 3205 } 3206 3207 ret = single_open(file, &proc_setgroups_show, ns); 3208 if (ret) 3209 goto err_put_ns; 3210 3211 return 0; 3212 err_put_ns: 3213 put_user_ns(ns); 3214 err: 3215 return ret; 3216 } 3217 3218 static int proc_setgroups_release(struct inode *inode, struct file *file) 3219 { 3220 struct seq_file *seq = file->private_data; 3221 struct user_namespace *ns = seq->private; 3222 int ret = single_release(inode, file); 3223 put_user_ns(ns); 3224 return ret; 3225 } 3226 3227 static const struct file_operations proc_setgroups_operations = { 3228 .open = proc_setgroups_open, 3229 .write = proc_setgroups_write, 3230 .read = seq_read, 3231 .llseek = seq_lseek, 3232 .release = proc_setgroups_release, 3233 }; 3234 #endif /* CONFIG_USER_NS */ 3235 3236 static int proc_pid_personality(struct seq_file *m, struct pid_namespace *ns, 3237 struct pid *pid, struct task_struct *task) 3238 { 3239 int err = lock_trace(task); 3240 if (!err) { 3241 seq_printf(m, "%08x\n", task->personality); 3242 unlock_trace(task); 3243 } 3244 return err; 3245 } 3246 3247 #ifdef CONFIG_LIVEPATCH 3248 static int proc_pid_patch_state(struct seq_file *m, struct pid_namespace *ns, 3249 struct pid *pid, struct task_struct *task) 3250 { 3251 seq_printf(m, "%d\n", task->patch_state); 3252 return 0; 3253 } 3254 #endif /* CONFIG_LIVEPATCH */ 3255 3256 #ifdef CONFIG_KSM 3257 static int proc_pid_ksm_merging_pages(struct seq_file *m, struct pid_namespace *ns, 3258 struct pid *pid, struct task_struct *task) 3259 { 3260 struct mm_struct *mm; 3261 3262 mm = get_task_mm(task); 3263 if (mm) { 3264 seq_printf(m, "%lu\n", mm->ksm_merging_pages); 3265 mmput(mm); 3266 } 3267 3268 return 0; 3269 } 3270 static int proc_pid_ksm_stat(struct seq_file *m, struct pid_namespace *ns, 3271 struct pid *pid, struct task_struct *task) 3272 { 3273 struct mm_struct *mm; 3274 int ret = 0; 3275 3276 mm = get_task_mm(task); 3277 if (mm) { 3278 seq_printf(m, "ksm_rmap_items %lu\n", mm->ksm_rmap_items); 3279 seq_printf(m, "ksm_zero_pages %ld\n", mm_ksm_zero_pages(mm)); 3280 seq_printf(m, "ksm_merging_pages %lu\n", mm->ksm_merging_pages); 3281 seq_printf(m, "ksm_process_profit %ld\n", ksm_process_profit(mm)); 3282 seq_printf(m, "ksm_merge_any: %s\n", 3283 test_bit(MMF_VM_MERGE_ANY, &mm->flags) ? "yes" : "no"); 3284 ret = mmap_read_lock_killable(mm); 3285 if (ret) { 3286 mmput(mm); 3287 return ret; 3288 } 3289 seq_printf(m, "ksm_mergeable: %s\n", 3290 ksm_process_mergeable(mm) ? "yes" : "no"); 3291 mmap_read_unlock(mm); 3292 mmput(mm); 3293 } 3294 3295 return 0; 3296 } 3297 #endif /* CONFIG_KSM */ 3298 3299 #ifdef CONFIG_STACKLEAK_METRICS 3300 static int proc_stack_depth(struct seq_file *m, struct pid_namespace *ns, 3301 struct pid *pid, struct task_struct *task) 3302 { 3303 unsigned long prev_depth = THREAD_SIZE - 3304 (task->prev_lowest_stack & (THREAD_SIZE - 1)); 3305 unsigned long depth = THREAD_SIZE - 3306 (task->lowest_stack & (THREAD_SIZE - 1)); 3307 3308 seq_printf(m, "previous stack depth: %lu\nstack depth: %lu\n", 3309 prev_depth, depth); 3310 return 0; 3311 } 3312 #endif /* CONFIG_STACKLEAK_METRICS */ 3313 3314 /* 3315 * Thread groups 3316 */ 3317 static const struct file_operations proc_task_operations; 3318 static const struct inode_operations proc_task_inode_operations; 3319 3320 static const struct pid_entry tgid_base_stuff[] = { 3321 DIR("task", S_IRUGO|S_IXUGO, proc_task_inode_operations, proc_task_operations), 3322 DIR("fd", S_IRUSR|S_IXUSR, proc_fd_inode_operations, proc_fd_operations), 3323 DIR("map_files", S_IRUSR|S_IXUSR, proc_map_files_inode_operations, proc_map_files_operations), 3324 DIR("fdinfo", S_IRUGO|S_IXUGO, proc_fdinfo_inode_operations, proc_fdinfo_operations), 3325 DIR("ns", S_IRUSR|S_IXUGO, proc_ns_dir_inode_operations, proc_ns_dir_operations), 3326 #ifdef CONFIG_NET 3327 DIR("net", S_IRUGO|S_IXUGO, proc_net_inode_operations, proc_net_operations), 3328 #endif 3329 REG("environ", S_IRUSR, proc_environ_operations), 3330 REG("auxv", S_IRUSR, proc_auxv_operations), 3331 ONE("status", S_IRUGO, proc_pid_status), 3332 ONE("personality", S_IRUSR, proc_pid_personality), 3333 ONE("limits", S_IRUGO, proc_pid_limits), 3334 #ifdef CONFIG_SCHED_DEBUG 3335 REG("sched", S_IRUGO|S_IWUSR, proc_pid_sched_operations), 3336 #endif 3337 #ifdef CONFIG_SCHED_AUTOGROUP 3338 REG("autogroup", S_IRUGO|S_IWUSR, proc_pid_sched_autogroup_operations), 3339 #endif 3340 #ifdef CONFIG_TIME_NS 3341 REG("timens_offsets", S_IRUGO|S_IWUSR, proc_timens_offsets_operations), 3342 #endif 3343 REG("comm", S_IRUGO|S_IWUSR, proc_pid_set_comm_operations), 3344 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK 3345 ONE("syscall", S_IRUSR, proc_pid_syscall), 3346 #endif 3347 REG("cmdline", S_IRUGO, proc_pid_cmdline_ops), 3348 ONE("stat", S_IRUGO, proc_tgid_stat), 3349 ONE("statm", S_IRUGO, proc_pid_statm), 3350 REG("maps", S_IRUGO, proc_pid_maps_operations), 3351 #ifdef CONFIG_NUMA 3352 REG("numa_maps", S_IRUGO, proc_pid_numa_maps_operations), 3353 #endif 3354 REG("mem", S_IRUSR|S_IWUSR, proc_mem_operations), 3355 LNK("cwd", proc_cwd_link), 3356 LNK("root", proc_root_link), 3357 LNK("exe", proc_exe_link), 3358 REG("mounts", S_IRUGO, proc_mounts_operations), 3359 REG("mountinfo", S_IRUGO, proc_mountinfo_operations), 3360 REG("mountstats", S_IRUSR, proc_mountstats_operations), 3361 #ifdef CONFIG_PROC_PAGE_MONITOR 3362 REG("clear_refs", S_IWUSR, proc_clear_refs_operations), 3363 REG("smaps", S_IRUGO, proc_pid_smaps_operations), 3364 REG("smaps_rollup", S_IRUGO, proc_pid_smaps_rollup_operations), 3365 REG("pagemap", S_IRUSR, proc_pagemap_operations), 3366 #endif 3367 #ifdef CONFIG_SECURITY 3368 DIR("attr", S_IRUGO|S_IXUGO, proc_attr_dir_inode_operations, proc_attr_dir_operations), 3369 #endif 3370 #ifdef CONFIG_KALLSYMS 3371 ONE("wchan", S_IRUGO, proc_pid_wchan), 3372 #endif 3373 #ifdef CONFIG_STACKTRACE 3374 ONE("stack", S_IRUSR, proc_pid_stack), 3375 #endif 3376 #ifdef CONFIG_SCHED_INFO 3377 ONE("schedstat", S_IRUGO, proc_pid_schedstat), 3378 #endif 3379 #ifdef CONFIG_LATENCYTOP 3380 REG("latency", S_IRUGO, proc_lstats_operations), 3381 #endif 3382 #ifdef CONFIG_PROC_PID_CPUSET 3383 ONE("cpuset", S_IRUGO, proc_cpuset_show), 3384 #endif 3385 #ifdef CONFIG_CGROUPS 3386 ONE("cgroup", S_IRUGO, proc_cgroup_show), 3387 #endif 3388 #ifdef CONFIG_PROC_CPU_RESCTRL 3389 ONE("cpu_resctrl_groups", S_IRUGO, proc_resctrl_show), 3390 #endif 3391 ONE("oom_score", S_IRUGO, proc_oom_score), 3392 REG("oom_adj", S_IRUGO|S_IWUSR, proc_oom_adj_operations), 3393 REG("oom_score_adj", S_IRUGO|S_IWUSR, proc_oom_score_adj_operations), 3394 #ifdef CONFIG_AUDIT 3395 REG("loginuid", S_IWUSR|S_IRUGO, proc_loginuid_operations), 3396 REG("sessionid", S_IRUGO, proc_sessionid_operations), 3397 #endif 3398 #ifdef CONFIG_FAULT_INJECTION 3399 REG("make-it-fail", S_IRUGO|S_IWUSR, proc_fault_inject_operations), 3400 REG("fail-nth", 0644, proc_fail_nth_operations), 3401 #endif 3402 #ifdef CONFIG_ELF_CORE 3403 REG("coredump_filter", S_IRUGO|S_IWUSR, proc_coredump_filter_operations), 3404 #endif 3405 #ifdef CONFIG_TASK_IO_ACCOUNTING 3406 ONE("io", S_IRUSR, proc_tgid_io_accounting), 3407 #endif 3408 #ifdef CONFIG_USER_NS 3409 REG("uid_map", S_IRUGO|S_IWUSR, proc_uid_map_operations), 3410 REG("gid_map", S_IRUGO|S_IWUSR, proc_gid_map_operations), 3411 REG("projid_map", S_IRUGO|S_IWUSR, proc_projid_map_operations), 3412 REG("setgroups", S_IRUGO|S_IWUSR, proc_setgroups_operations), 3413 #endif 3414 #if defined(CONFIG_CHECKPOINT_RESTORE) && defined(CONFIG_POSIX_TIMERS) 3415 REG("timers", S_IRUGO, proc_timers_operations), 3416 #endif 3417 REG("timerslack_ns", S_IRUGO|S_IWUGO, proc_pid_set_timerslack_ns_operations), 3418 #ifdef CONFIG_LIVEPATCH 3419 ONE("patch_state", S_IRUSR, proc_pid_patch_state), 3420 #endif 3421 #ifdef CONFIG_STACKLEAK_METRICS 3422 ONE("stack_depth", S_IRUGO, proc_stack_depth), 3423 #endif 3424 #ifdef CONFIG_PROC_PID_ARCH_STATUS 3425 ONE("arch_status", S_IRUGO, proc_pid_arch_status), 3426 #endif 3427 #ifdef CONFIG_SECCOMP_CACHE_DEBUG 3428 ONE("seccomp_cache", S_IRUSR, proc_pid_seccomp_cache), 3429 #endif 3430 #ifdef CONFIG_KSM 3431 ONE("ksm_merging_pages", S_IRUSR, proc_pid_ksm_merging_pages), 3432 ONE("ksm_stat", S_IRUSR, proc_pid_ksm_stat), 3433 #endif 3434 }; 3435 3436 static int proc_tgid_base_readdir(struct file *file, struct dir_context *ctx) 3437 { 3438 return proc_pident_readdir(file, ctx, 3439 tgid_base_stuff, ARRAY_SIZE(tgid_base_stuff)); 3440 } 3441 3442 static const struct file_operations proc_tgid_base_operations = { 3443 .read = generic_read_dir, 3444 .iterate_shared = proc_tgid_base_readdir, 3445 .llseek = generic_file_llseek, 3446 }; 3447 3448 struct pid *tgid_pidfd_to_pid(const struct file *file) 3449 { 3450 if (file->f_op != &proc_tgid_base_operations) 3451 return ERR_PTR(-EBADF); 3452 3453 return proc_pid(file_inode(file)); 3454 } 3455 3456 static struct dentry *proc_tgid_base_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags) 3457 { 3458 return proc_pident_lookup(dir, dentry, 3459 tgid_base_stuff, 3460 tgid_base_stuff + ARRAY_SIZE(tgid_base_stuff)); 3461 } 3462 3463 static const struct inode_operations proc_tgid_base_inode_operations = { 3464 .lookup = proc_tgid_base_lookup, 3465 .getattr = pid_getattr, 3466 .setattr = proc_setattr, 3467 .permission = proc_pid_permission, 3468 }; 3469 3470 /** 3471 * proc_flush_pid - Remove dcache entries for @pid from the /proc dcache. 3472 * @pid: pid that should be flushed. 3473 * 3474 * This function walks a list of inodes (that belong to any proc 3475 * filesystem) that are attached to the pid and flushes them from 3476 * the dentry cache. 3477 * 3478 * It is safe and reasonable to cache /proc entries for a task until 3479 * that task exits. After that they just clog up the dcache with 3480 * useless entries, possibly causing useful dcache entries to be 3481 * flushed instead. This routine is provided to flush those useless 3482 * dcache entries when a process is reaped. 3483 * 3484 * NOTE: This routine is just an optimization so it does not guarantee 3485 * that no dcache entries will exist after a process is reaped 3486 * it just makes it very unlikely that any will persist. 3487 */ 3488 3489 void proc_flush_pid(struct pid *pid) 3490 { 3491 proc_invalidate_siblings_dcache(&pid->inodes, &pid->lock); 3492 } 3493 3494 static struct dentry *proc_pid_instantiate(struct dentry * dentry, 3495 struct task_struct *task, const void *ptr) 3496 { 3497 struct inode *inode; 3498 3499 inode = proc_pid_make_base_inode(dentry->d_sb, task, 3500 S_IFDIR | S_IRUGO | S_IXUGO); 3501 if (!inode) 3502 return ERR_PTR(-ENOENT); 3503 3504 inode->i_op = &proc_tgid_base_inode_operations; 3505 inode->i_fop = &proc_tgid_base_operations; 3506 inode->i_flags|=S_IMMUTABLE; 3507 3508 set_nlink(inode, nlink_tgid); 3509 pid_update_inode(task, inode); 3510 3511 d_set_d_op(dentry, &pid_dentry_operations); 3512 return d_splice_alias(inode, dentry); 3513 } 3514 3515 struct dentry *proc_pid_lookup(struct dentry *dentry, unsigned int flags) 3516 { 3517 struct task_struct *task; 3518 unsigned tgid; 3519 struct proc_fs_info *fs_info; 3520 struct pid_namespace *ns; 3521 struct dentry *result = ERR_PTR(-ENOENT); 3522 3523 tgid = name_to_int(&dentry->d_name); 3524 if (tgid == ~0U) 3525 goto out; 3526 3527 fs_info = proc_sb_info(dentry->d_sb); 3528 ns = fs_info->pid_ns; 3529 rcu_read_lock(); 3530 task = find_task_by_pid_ns(tgid, ns); 3531 if (task) 3532 get_task_struct(task); 3533 rcu_read_unlock(); 3534 if (!task) 3535 goto out; 3536 3537 /* Limit procfs to only ptraceable tasks */ 3538 if (fs_info->hide_pid == HIDEPID_NOT_PTRACEABLE) { 3539 if (!has_pid_permissions(fs_info, task, HIDEPID_NO_ACCESS)) 3540 goto out_put_task; 3541 } 3542 3543 result = proc_pid_instantiate(dentry, task, NULL); 3544 out_put_task: 3545 put_task_struct(task); 3546 out: 3547 return result; 3548 } 3549 3550 /* 3551 * Find the first task with tgid >= tgid 3552 * 3553 */ 3554 struct tgid_iter { 3555 unsigned int tgid; 3556 struct task_struct *task; 3557 }; 3558 static struct tgid_iter next_tgid(struct pid_namespace *ns, struct tgid_iter iter) 3559 { 3560 struct pid *pid; 3561 3562 if (iter.task) 3563 put_task_struct(iter.task); 3564 rcu_read_lock(); 3565 retry: 3566 iter.task = NULL; 3567 pid = find_ge_pid(iter.tgid, ns); 3568 if (pid) { 3569 iter.tgid = pid_nr_ns(pid, ns); 3570 iter.task = pid_task(pid, PIDTYPE_TGID); 3571 if (!iter.task) { 3572 iter.tgid += 1; 3573 goto retry; 3574 } 3575 get_task_struct(iter.task); 3576 } 3577 rcu_read_unlock(); 3578 return iter; 3579 } 3580 3581 #define TGID_OFFSET (FIRST_PROCESS_ENTRY + 2) 3582 3583 /* for the /proc/ directory itself, after non-process stuff has been done */ 3584 int proc_pid_readdir(struct file *file, struct dir_context *ctx) 3585 { 3586 struct tgid_iter iter; 3587 struct proc_fs_info *fs_info = proc_sb_info(file_inode(file)->i_sb); 3588 struct pid_namespace *ns = proc_pid_ns(file_inode(file)->i_sb); 3589 loff_t pos = ctx->pos; 3590 3591 if (pos >= PID_MAX_LIMIT + TGID_OFFSET) 3592 return 0; 3593 3594 if (pos == TGID_OFFSET - 2) { 3595 struct inode *inode = d_inode(fs_info->proc_self); 3596 if (!dir_emit(ctx, "self", 4, inode->i_ino, DT_LNK)) 3597 return 0; 3598 ctx->pos = pos = pos + 1; 3599 } 3600 if (pos == TGID_OFFSET - 1) { 3601 struct inode *inode = d_inode(fs_info->proc_thread_self); 3602 if (!dir_emit(ctx, "thread-self", 11, inode->i_ino, DT_LNK)) 3603 return 0; 3604 ctx->pos = pos = pos + 1; 3605 } 3606 iter.tgid = pos - TGID_OFFSET; 3607 iter.task = NULL; 3608 for (iter = next_tgid(ns, iter); 3609 iter.task; 3610 iter.tgid += 1, iter = next_tgid(ns, iter)) { 3611 char name[10 + 1]; 3612 unsigned int len; 3613 3614 cond_resched(); 3615 if (!has_pid_permissions(fs_info, iter.task, HIDEPID_INVISIBLE)) 3616 continue; 3617 3618 len = snprintf(name, sizeof(name), "%u", iter.tgid); 3619 ctx->pos = iter.tgid + TGID_OFFSET; 3620 if (!proc_fill_cache(file, ctx, name, len, 3621 proc_pid_instantiate, iter.task, NULL)) { 3622 put_task_struct(iter.task); 3623 return 0; 3624 } 3625 } 3626 ctx->pos = PID_MAX_LIMIT + TGID_OFFSET; 3627 return 0; 3628 } 3629 3630 /* 3631 * proc_tid_comm_permission is a special permission function exclusively 3632 * used for the node /proc/<pid>/task/<tid>/comm. 3633 * It bypasses generic permission checks in the case where a task of the same 3634 * task group attempts to access the node. 3635 * The rationale behind this is that glibc and bionic access this node for 3636 * cross thread naming (pthread_set/getname_np(!self)). However, if 3637 * PR_SET_DUMPABLE gets set to 0 this node among others becomes uid=0 gid=0, 3638 * which locks out the cross thread naming implementation. 3639 * This function makes sure that the node is always accessible for members of 3640 * same thread group. 3641 */ 3642 static int proc_tid_comm_permission(struct mnt_idmap *idmap, 3643 struct inode *inode, int mask) 3644 { 3645 bool is_same_tgroup; 3646 struct task_struct *task; 3647 3648 task = get_proc_task(inode); 3649 if (!task) 3650 return -ESRCH; 3651 is_same_tgroup = same_thread_group(current, task); 3652 put_task_struct(task); 3653 3654 if (likely(is_same_tgroup && !(mask & MAY_EXEC))) { 3655 /* This file (/proc/<pid>/task/<tid>/comm) can always be 3656 * read or written by the members of the corresponding 3657 * thread group. 3658 */ 3659 return 0; 3660 } 3661 3662 return generic_permission(&nop_mnt_idmap, inode, mask); 3663 } 3664 3665 static const struct inode_operations proc_tid_comm_inode_operations = { 3666 .setattr = proc_setattr, 3667 .permission = proc_tid_comm_permission, 3668 }; 3669 3670 /* 3671 * Tasks 3672 */ 3673 static const struct pid_entry tid_base_stuff[] = { 3674 DIR("fd", S_IRUSR|S_IXUSR, proc_fd_inode_operations, proc_fd_operations), 3675 DIR("fdinfo", S_IRUGO|S_IXUGO, proc_fdinfo_inode_operations, proc_fdinfo_operations), 3676 DIR("ns", S_IRUSR|S_IXUGO, proc_ns_dir_inode_operations, proc_ns_dir_operations), 3677 #ifdef CONFIG_NET 3678 DIR("net", S_IRUGO|S_IXUGO, proc_net_inode_operations, proc_net_operations), 3679 #endif 3680 REG("environ", S_IRUSR, proc_environ_operations), 3681 REG("auxv", S_IRUSR, proc_auxv_operations), 3682 ONE("status", S_IRUGO, proc_pid_status), 3683 ONE("personality", S_IRUSR, proc_pid_personality), 3684 ONE("limits", S_IRUGO, proc_pid_limits), 3685 #ifdef CONFIG_SCHED_DEBUG 3686 REG("sched", S_IRUGO|S_IWUSR, proc_pid_sched_operations), 3687 #endif 3688 NOD("comm", S_IFREG|S_IRUGO|S_IWUSR, 3689 &proc_tid_comm_inode_operations, 3690 &proc_pid_set_comm_operations, {}), 3691 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK 3692 ONE("syscall", S_IRUSR, proc_pid_syscall), 3693 #endif 3694 REG("cmdline", S_IRUGO, proc_pid_cmdline_ops), 3695 ONE("stat", S_IRUGO, proc_tid_stat), 3696 ONE("statm", S_IRUGO, proc_pid_statm), 3697 REG("maps", S_IRUGO, proc_pid_maps_operations), 3698 #ifdef CONFIG_PROC_CHILDREN 3699 REG("children", S_IRUGO, proc_tid_children_operations), 3700 #endif 3701 #ifdef CONFIG_NUMA 3702 REG("numa_maps", S_IRUGO, proc_pid_numa_maps_operations), 3703 #endif 3704 REG("mem", S_IRUSR|S_IWUSR, proc_mem_operations), 3705 LNK("cwd", proc_cwd_link), 3706 LNK("root", proc_root_link), 3707 LNK("exe", proc_exe_link), 3708 REG("mounts", S_IRUGO, proc_mounts_operations), 3709 REG("mountinfo", S_IRUGO, proc_mountinfo_operations), 3710 #ifdef CONFIG_PROC_PAGE_MONITOR 3711 REG("clear_refs", S_IWUSR, proc_clear_refs_operations), 3712 REG("smaps", S_IRUGO, proc_pid_smaps_operations), 3713 REG("smaps_rollup", S_IRUGO, proc_pid_smaps_rollup_operations), 3714 REG("pagemap", S_IRUSR, proc_pagemap_operations), 3715 #endif 3716 #ifdef CONFIG_SECURITY 3717 DIR("attr", S_IRUGO|S_IXUGO, proc_attr_dir_inode_operations, proc_attr_dir_operations), 3718 #endif 3719 #ifdef CONFIG_KALLSYMS 3720 ONE("wchan", S_IRUGO, proc_pid_wchan), 3721 #endif 3722 #ifdef CONFIG_STACKTRACE 3723 ONE("stack", S_IRUSR, proc_pid_stack), 3724 #endif 3725 #ifdef CONFIG_SCHED_INFO 3726 ONE("schedstat", S_IRUGO, proc_pid_schedstat), 3727 #endif 3728 #ifdef CONFIG_LATENCYTOP 3729 REG("latency", S_IRUGO, proc_lstats_operations), 3730 #endif 3731 #ifdef CONFIG_PROC_PID_CPUSET 3732 ONE("cpuset", S_IRUGO, proc_cpuset_show), 3733 #endif 3734 #ifdef CONFIG_CGROUPS 3735 ONE("cgroup", S_IRUGO, proc_cgroup_show), 3736 #endif 3737 #ifdef CONFIG_PROC_CPU_RESCTRL 3738 ONE("cpu_resctrl_groups", S_IRUGO, proc_resctrl_show), 3739 #endif 3740 ONE("oom_score", S_IRUGO, proc_oom_score), 3741 REG("oom_adj", S_IRUGO|S_IWUSR, proc_oom_adj_operations), 3742 REG("oom_score_adj", S_IRUGO|S_IWUSR, proc_oom_score_adj_operations), 3743 #ifdef CONFIG_AUDIT 3744 REG("loginuid", S_IWUSR|S_IRUGO, proc_loginuid_operations), 3745 REG("sessionid", S_IRUGO, proc_sessionid_operations), 3746 #endif 3747 #ifdef CONFIG_FAULT_INJECTION 3748 REG("make-it-fail", S_IRUGO|S_IWUSR, proc_fault_inject_operations), 3749 REG("fail-nth", 0644, proc_fail_nth_operations), 3750 #endif 3751 #ifdef CONFIG_TASK_IO_ACCOUNTING 3752 ONE("io", S_IRUSR, proc_tid_io_accounting), 3753 #endif 3754 #ifdef CONFIG_USER_NS 3755 REG("uid_map", S_IRUGO|S_IWUSR, proc_uid_map_operations), 3756 REG("gid_map", S_IRUGO|S_IWUSR, proc_gid_map_operations), 3757 REG("projid_map", S_IRUGO|S_IWUSR, proc_projid_map_operations), 3758 REG("setgroups", S_IRUGO|S_IWUSR, proc_setgroups_operations), 3759 #endif 3760 #ifdef CONFIG_LIVEPATCH 3761 ONE("patch_state", S_IRUSR, proc_pid_patch_state), 3762 #endif 3763 #ifdef CONFIG_PROC_PID_ARCH_STATUS 3764 ONE("arch_status", S_IRUGO, proc_pid_arch_status), 3765 #endif 3766 #ifdef CONFIG_SECCOMP_CACHE_DEBUG 3767 ONE("seccomp_cache", S_IRUSR, proc_pid_seccomp_cache), 3768 #endif 3769 #ifdef CONFIG_KSM 3770 ONE("ksm_merging_pages", S_IRUSR, proc_pid_ksm_merging_pages), 3771 ONE("ksm_stat", S_IRUSR, proc_pid_ksm_stat), 3772 #endif 3773 }; 3774 3775 static int proc_tid_base_readdir(struct file *file, struct dir_context *ctx) 3776 { 3777 return proc_pident_readdir(file, ctx, 3778 tid_base_stuff, ARRAY_SIZE(tid_base_stuff)); 3779 } 3780 3781 static struct dentry *proc_tid_base_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags) 3782 { 3783 return proc_pident_lookup(dir, dentry, 3784 tid_base_stuff, 3785 tid_base_stuff + ARRAY_SIZE(tid_base_stuff)); 3786 } 3787 3788 static const struct file_operations proc_tid_base_operations = { 3789 .read = generic_read_dir, 3790 .iterate_shared = proc_tid_base_readdir, 3791 .llseek = generic_file_llseek, 3792 }; 3793 3794 static const struct inode_operations proc_tid_base_inode_operations = { 3795 .lookup = proc_tid_base_lookup, 3796 .getattr = pid_getattr, 3797 .setattr = proc_setattr, 3798 }; 3799 3800 static struct dentry *proc_task_instantiate(struct dentry *dentry, 3801 struct task_struct *task, const void *ptr) 3802 { 3803 struct inode *inode; 3804 inode = proc_pid_make_base_inode(dentry->d_sb, task, 3805 S_IFDIR | S_IRUGO | S_IXUGO); 3806 if (!inode) 3807 return ERR_PTR(-ENOENT); 3808 3809 inode->i_op = &proc_tid_base_inode_operations; 3810 inode->i_fop = &proc_tid_base_operations; 3811 inode->i_flags |= S_IMMUTABLE; 3812 3813 set_nlink(inode, nlink_tid); 3814 pid_update_inode(task, inode); 3815 3816 d_set_d_op(dentry, &pid_dentry_operations); 3817 return d_splice_alias(inode, dentry); 3818 } 3819 3820 static struct dentry *proc_task_lookup(struct inode *dir, struct dentry * dentry, unsigned int flags) 3821 { 3822 struct task_struct *task; 3823 struct task_struct *leader = get_proc_task(dir); 3824 unsigned tid; 3825 struct proc_fs_info *fs_info; 3826 struct pid_namespace *ns; 3827 struct dentry *result = ERR_PTR(-ENOENT); 3828 3829 if (!leader) 3830 goto out_no_task; 3831 3832 tid = name_to_int(&dentry->d_name); 3833 if (tid == ~0U) 3834 goto out; 3835 3836 fs_info = proc_sb_info(dentry->d_sb); 3837 ns = fs_info->pid_ns; 3838 rcu_read_lock(); 3839 task = find_task_by_pid_ns(tid, ns); 3840 if (task) 3841 get_task_struct(task); 3842 rcu_read_unlock(); 3843 if (!task) 3844 goto out; 3845 if (!same_thread_group(leader, task)) 3846 goto out_drop_task; 3847 3848 result = proc_task_instantiate(dentry, task, NULL); 3849 out_drop_task: 3850 put_task_struct(task); 3851 out: 3852 put_task_struct(leader); 3853 out_no_task: 3854 return result; 3855 } 3856 3857 /* 3858 * Find the first tid of a thread group to return to user space. 3859 * 3860 * Usually this is just the thread group leader, but if the users 3861 * buffer was too small or there was a seek into the middle of the 3862 * directory we have more work todo. 3863 * 3864 * In the case of a short read we start with find_task_by_pid. 3865 * 3866 * In the case of a seek we start with the leader and walk nr 3867 * threads past it. 3868 */ 3869 static struct task_struct *first_tid(struct pid *pid, int tid, loff_t f_pos, 3870 struct pid_namespace *ns) 3871 { 3872 struct task_struct *pos, *task; 3873 unsigned long nr = f_pos; 3874 3875 if (nr != f_pos) /* 32bit overflow? */ 3876 return NULL; 3877 3878 rcu_read_lock(); 3879 task = pid_task(pid, PIDTYPE_PID); 3880 if (!task) 3881 goto fail; 3882 3883 /* Attempt to start with the tid of a thread */ 3884 if (tid && nr) { 3885 pos = find_task_by_pid_ns(tid, ns); 3886 if (pos && same_thread_group(pos, task)) 3887 goto found; 3888 } 3889 3890 /* If nr exceeds the number of threads there is nothing todo */ 3891 if (nr >= get_nr_threads(task)) 3892 goto fail; 3893 3894 /* If we haven't found our starting place yet start 3895 * with the leader and walk nr threads forward. 3896 */ 3897 for_each_thread(task, pos) { 3898 if (!nr--) 3899 goto found; 3900 } 3901 fail: 3902 pos = NULL; 3903 goto out; 3904 found: 3905 get_task_struct(pos); 3906 out: 3907 rcu_read_unlock(); 3908 return pos; 3909 } 3910 3911 /* 3912 * Find the next thread in the thread list. 3913 * Return NULL if there is an error or no next thread. 3914 * 3915 * The reference to the input task_struct is released. 3916 */ 3917 static struct task_struct *next_tid(struct task_struct *start) 3918 { 3919 struct task_struct *pos = NULL; 3920 rcu_read_lock(); 3921 if (pid_alive(start)) { 3922 pos = __next_thread(start); 3923 if (pos) 3924 get_task_struct(pos); 3925 } 3926 rcu_read_unlock(); 3927 put_task_struct(start); 3928 return pos; 3929 } 3930 3931 /* for the /proc/TGID/task/ directories */ 3932 static int proc_task_readdir(struct file *file, struct dir_context *ctx) 3933 { 3934 struct inode *inode = file_inode(file); 3935 struct task_struct *task; 3936 struct pid_namespace *ns; 3937 int tid; 3938 3939 if (proc_inode_is_dead(inode)) 3940 return -ENOENT; 3941 3942 if (!dir_emit_dots(file, ctx)) 3943 return 0; 3944 3945 /* We cache the tgid value that the last readdir call couldn't 3946 * return and lseek resets it to 0. 3947 */ 3948 ns = proc_pid_ns(inode->i_sb); 3949 tid = (int)(intptr_t)file->private_data; 3950 file->private_data = NULL; 3951 for (task = first_tid(proc_pid(inode), tid, ctx->pos - 2, ns); 3952 task; 3953 task = next_tid(task), ctx->pos++) { 3954 char name[10 + 1]; 3955 unsigned int len; 3956 3957 tid = task_pid_nr_ns(task, ns); 3958 if (!tid) 3959 continue; /* The task has just exited. */ 3960 len = snprintf(name, sizeof(name), "%u", tid); 3961 if (!proc_fill_cache(file, ctx, name, len, 3962 proc_task_instantiate, task, NULL)) { 3963 /* returning this tgid failed, save it as the first 3964 * pid for the next readir call */ 3965 file->private_data = (void *)(intptr_t)tid; 3966 put_task_struct(task); 3967 break; 3968 } 3969 } 3970 3971 return 0; 3972 } 3973 3974 static int proc_task_getattr(struct mnt_idmap *idmap, 3975 const struct path *path, struct kstat *stat, 3976 u32 request_mask, unsigned int query_flags) 3977 { 3978 struct inode *inode = d_inode(path->dentry); 3979 struct task_struct *p = get_proc_task(inode); 3980 generic_fillattr(&nop_mnt_idmap, request_mask, inode, stat); 3981 3982 if (p) { 3983 stat->nlink += get_nr_threads(p); 3984 put_task_struct(p); 3985 } 3986 3987 return 0; 3988 } 3989 3990 /* 3991 * proc_task_readdir() set @file->private_data to a positive integer 3992 * value, so casting that to u64 is safe. generic_llseek_cookie() will 3993 * set @cookie to 0, so casting to an int is safe. The WARN_ON_ONCE() is 3994 * here to catch any unexpected change in behavior either in 3995 * proc_task_readdir() or generic_llseek_cookie(). 3996 */ 3997 static loff_t proc_dir_llseek(struct file *file, loff_t offset, int whence) 3998 { 3999 u64 cookie = (u64)(intptr_t)file->private_data; 4000 loff_t off; 4001 4002 off = generic_llseek_cookie(file, offset, whence, &cookie); 4003 WARN_ON_ONCE(cookie > INT_MAX); 4004 file->private_data = (void *)(intptr_t)cookie; /* serialized by f_pos_lock */ 4005 return off; 4006 } 4007 4008 static const struct inode_operations proc_task_inode_operations = { 4009 .lookup = proc_task_lookup, 4010 .getattr = proc_task_getattr, 4011 .setattr = proc_setattr, 4012 .permission = proc_pid_permission, 4013 }; 4014 4015 static const struct file_operations proc_task_operations = { 4016 .read = generic_read_dir, 4017 .iterate_shared = proc_task_readdir, 4018 .llseek = proc_dir_llseek, 4019 }; 4020 4021 void __init set_proc_pid_nlink(void) 4022 { 4023 nlink_tid = pid_entry_nlink(tid_base_stuff, ARRAY_SIZE(tid_base_stuff)); 4024 nlink_tgid = pid_entry_nlink(tgid_base_stuff, ARRAY_SIZE(tgid_base_stuff)); 4025 } 4026