xref: /linux/fs/proc/base.c (revision 7f3edee81fbd49114c28057512906f169caa0bed)
1 /*
2  *  linux/fs/proc/base.c
3  *
4  *  Copyright (C) 1991, 1992 Linus Torvalds
5  *
6  *  proc base directory handling functions
7  *
8  *  1999, Al Viro. Rewritten. Now it covers the whole per-process part.
9  *  Instead of using magical inumbers to determine the kind of object
10  *  we allocate and fill in-core inodes upon lookup. They don't even
11  *  go into icache. We cache the reference to task_struct upon lookup too.
12  *  Eventually it should become a filesystem in its own. We don't use the
13  *  rest of procfs anymore.
14  *
15  *
16  *  Changelog:
17  *  17-Jan-2005
18  *  Allan Bezerra
19  *  Bruna Moreira <bruna.moreira@indt.org.br>
20  *  Edjard Mota <edjard.mota@indt.org.br>
21  *  Ilias Biris <ilias.biris@indt.org.br>
22  *  Mauricio Lin <mauricio.lin@indt.org.br>
23  *
24  *  Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT
25  *
26  *  A new process specific entry (smaps) included in /proc. It shows the
27  *  size of rss for each memory area. The maps entry lacks information
28  *  about physical memory size (rss) for each mapped file, i.e.,
29  *  rss information for executables and library files.
30  *  This additional information is useful for any tools that need to know
31  *  about physical memory consumption for a process specific library.
32  *
33  *  Changelog:
34  *  21-Feb-2005
35  *  Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT
36  *  Pud inclusion in the page table walking.
37  *
38  *  ChangeLog:
39  *  10-Mar-2005
40  *  10LE Instituto Nokia de Tecnologia - INdT:
41  *  A better way to walks through the page table as suggested by Hugh Dickins.
42  *
43  *  Simo Piiroinen <simo.piiroinen@nokia.com>:
44  *  Smaps information related to shared, private, clean and dirty pages.
45  *
46  *  Paul Mundt <paul.mundt@nokia.com>:
47  *  Overall revision about smaps.
48  */
49 
50 #include <asm/uaccess.h>
51 
52 #include <linux/errno.h>
53 #include <linux/time.h>
54 #include <linux/proc_fs.h>
55 #include <linux/stat.h>
56 #include <linux/init.h>
57 #include <linux/capability.h>
58 #include <linux/file.h>
59 #include <linux/string.h>
60 #include <linux/seq_file.h>
61 #include <linux/namei.h>
62 #include <linux/mnt_namespace.h>
63 #include <linux/mm.h>
64 #include <linux/rcupdate.h>
65 #include <linux/kallsyms.h>
66 #include <linux/resource.h>
67 #include <linux/module.h>
68 #include <linux/mount.h>
69 #include <linux/security.h>
70 #include <linux/ptrace.h>
71 #include <linux/cgroup.h>
72 #include <linux/cpuset.h>
73 #include <linux/audit.h>
74 #include <linux/poll.h>
75 #include <linux/nsproxy.h>
76 #include <linux/oom.h>
77 #include <linux/elf.h>
78 #include <linux/pid_namespace.h>
79 #include "internal.h"
80 
81 /* NOTE:
82  *	Implementing inode permission operations in /proc is almost
83  *	certainly an error.  Permission checks need to happen during
84  *	each system call not at open time.  The reason is that most of
85  *	what we wish to check for permissions in /proc varies at runtime.
86  *
87  *	The classic example of a problem is opening file descriptors
88  *	in /proc for a task before it execs a suid executable.
89  */
90 
91 
92 /* Worst case buffer size needed for holding an integer. */
93 #define PROC_NUMBUF 13
94 
95 struct pid_entry {
96 	char *name;
97 	int len;
98 	mode_t mode;
99 	const struct inode_operations *iop;
100 	const struct file_operations *fop;
101 	union proc_op op;
102 };
103 
104 #define NOD(NAME, MODE, IOP, FOP, OP) {			\
105 	.name = (NAME),					\
106 	.len  = sizeof(NAME) - 1,			\
107 	.mode = MODE,					\
108 	.iop  = IOP,					\
109 	.fop  = FOP,					\
110 	.op   = OP,					\
111 }
112 
113 #define DIR(NAME, MODE, OTYPE)							\
114 	NOD(NAME, (S_IFDIR|(MODE)),						\
115 		&proc_##OTYPE##_inode_operations, &proc_##OTYPE##_operations,	\
116 		{} )
117 #define LNK(NAME, OTYPE)					\
118 	NOD(NAME, (S_IFLNK|S_IRWXUGO),				\
119 		&proc_pid_link_inode_operations, NULL,		\
120 		{ .proc_get_link = &proc_##OTYPE##_link } )
121 #define REG(NAME, MODE, OTYPE)				\
122 	NOD(NAME, (S_IFREG|(MODE)), NULL,		\
123 		&proc_##OTYPE##_operations, {})
124 #define INF(NAME, MODE, OTYPE)				\
125 	NOD(NAME, (S_IFREG|(MODE)), 			\
126 		NULL, &proc_info_file_operations,	\
127 		{ .proc_read = &proc_##OTYPE } )
128 
129 int maps_protect;
130 EXPORT_SYMBOL(maps_protect);
131 
132 static struct fs_struct *get_fs_struct(struct task_struct *task)
133 {
134 	struct fs_struct *fs;
135 	task_lock(task);
136 	fs = task->fs;
137 	if(fs)
138 		atomic_inc(&fs->count);
139 	task_unlock(task);
140 	return fs;
141 }
142 
143 static int get_nr_threads(struct task_struct *tsk)
144 {
145 	/* Must be called with the rcu_read_lock held */
146 	unsigned long flags;
147 	int count = 0;
148 
149 	if (lock_task_sighand(tsk, &flags)) {
150 		count = atomic_read(&tsk->signal->count);
151 		unlock_task_sighand(tsk, &flags);
152 	}
153 	return count;
154 }
155 
156 static int proc_cwd_link(struct inode *inode, struct dentry **dentry, struct vfsmount **mnt)
157 {
158 	struct task_struct *task = get_proc_task(inode);
159 	struct fs_struct *fs = NULL;
160 	int result = -ENOENT;
161 
162 	if (task) {
163 		fs = get_fs_struct(task);
164 		put_task_struct(task);
165 	}
166 	if (fs) {
167 		read_lock(&fs->lock);
168 		*mnt = mntget(fs->pwdmnt);
169 		*dentry = dget(fs->pwd);
170 		read_unlock(&fs->lock);
171 		result = 0;
172 		put_fs_struct(fs);
173 	}
174 	return result;
175 }
176 
177 static int proc_root_link(struct inode *inode, struct dentry **dentry, struct vfsmount **mnt)
178 {
179 	struct task_struct *task = get_proc_task(inode);
180 	struct fs_struct *fs = NULL;
181 	int result = -ENOENT;
182 
183 	if (task) {
184 		fs = get_fs_struct(task);
185 		put_task_struct(task);
186 	}
187 	if (fs) {
188 		read_lock(&fs->lock);
189 		*mnt = mntget(fs->rootmnt);
190 		*dentry = dget(fs->root);
191 		read_unlock(&fs->lock);
192 		result = 0;
193 		put_fs_struct(fs);
194 	}
195 	return result;
196 }
197 
198 #define MAY_PTRACE(task) \
199 	(task == current || \
200 	(task->parent == current && \
201 	(task->ptrace & PT_PTRACED) && \
202 	 (task->state == TASK_STOPPED || task->state == TASK_TRACED) && \
203 	 security_ptrace(current,task) == 0))
204 
205 struct mm_struct *mm_for_maps(struct task_struct *task)
206 {
207 	struct mm_struct *mm = get_task_mm(task);
208 	if (!mm)
209 		return NULL;
210 	down_read(&mm->mmap_sem);
211 	task_lock(task);
212 	if (task->mm != mm)
213 		goto out;
214 	if (task->mm != current->mm && __ptrace_may_attach(task) < 0)
215 		goto out;
216 	task_unlock(task);
217 	return mm;
218 out:
219 	task_unlock(task);
220 	up_read(&mm->mmap_sem);
221 	mmput(mm);
222 	return NULL;
223 }
224 
225 static int proc_pid_cmdline(struct task_struct *task, char * buffer)
226 {
227 	int res = 0;
228 	unsigned int len;
229 	struct mm_struct *mm = get_task_mm(task);
230 	if (!mm)
231 		goto out;
232 	if (!mm->arg_end)
233 		goto out_mm;	/* Shh! No looking before we're done */
234 
235  	len = mm->arg_end - mm->arg_start;
236 
237 	if (len > PAGE_SIZE)
238 		len = PAGE_SIZE;
239 
240 	res = access_process_vm(task, mm->arg_start, buffer, len, 0);
241 
242 	// If the nul at the end of args has been overwritten, then
243 	// assume application is using setproctitle(3).
244 	if (res > 0 && buffer[res-1] != '\0' && len < PAGE_SIZE) {
245 		len = strnlen(buffer, res);
246 		if (len < res) {
247 		    res = len;
248 		} else {
249 			len = mm->env_end - mm->env_start;
250 			if (len > PAGE_SIZE - res)
251 				len = PAGE_SIZE - res;
252 			res += access_process_vm(task, mm->env_start, buffer+res, len, 0);
253 			res = strnlen(buffer, res);
254 		}
255 	}
256 out_mm:
257 	mmput(mm);
258 out:
259 	return res;
260 }
261 
262 static int proc_pid_auxv(struct task_struct *task, char *buffer)
263 {
264 	int res = 0;
265 	struct mm_struct *mm = get_task_mm(task);
266 	if (mm) {
267 		unsigned int nwords = 0;
268 		do
269 			nwords += 2;
270 		while (mm->saved_auxv[nwords - 2] != 0); /* AT_NULL */
271 		res = nwords * sizeof(mm->saved_auxv[0]);
272 		if (res > PAGE_SIZE)
273 			res = PAGE_SIZE;
274 		memcpy(buffer, mm->saved_auxv, res);
275 		mmput(mm);
276 	}
277 	return res;
278 }
279 
280 
281 #ifdef CONFIG_KALLSYMS
282 /*
283  * Provides a wchan file via kallsyms in a proper one-value-per-file format.
284  * Returns the resolved symbol.  If that fails, simply return the address.
285  */
286 static int proc_pid_wchan(struct task_struct *task, char *buffer)
287 {
288 	unsigned long wchan;
289 	char symname[KSYM_NAME_LEN];
290 
291 	wchan = get_wchan(task);
292 
293 	if (lookup_symbol_name(wchan, symname) < 0)
294 		return sprintf(buffer, "%lu", wchan);
295 	else
296 		return sprintf(buffer, "%s", symname);
297 }
298 #endif /* CONFIG_KALLSYMS */
299 
300 #ifdef CONFIG_SCHEDSTATS
301 /*
302  * Provides /proc/PID/schedstat
303  */
304 static int proc_pid_schedstat(struct task_struct *task, char *buffer)
305 {
306 	return sprintf(buffer, "%llu %llu %lu\n",
307 			task->sched_info.cpu_time,
308 			task->sched_info.run_delay,
309 			task->sched_info.pcount);
310 }
311 #endif
312 
313 #ifdef CONFIG_LATENCYTOP
314 static int lstats_show_proc(struct seq_file *m, void *v)
315 {
316 	int i;
317 	struct task_struct *task = m->private;
318 	seq_puts(m, "Latency Top version : v0.1\n");
319 
320 	for (i = 0; i < 32; i++) {
321 		if (task->latency_record[i].backtrace[0]) {
322 			int q;
323 			seq_printf(m, "%i %li %li ",
324 				task->latency_record[i].count,
325 				task->latency_record[i].time,
326 				task->latency_record[i].max);
327 			for (q = 0; q < LT_BACKTRACEDEPTH; q++) {
328 				char sym[KSYM_NAME_LEN];
329 				char *c;
330 				if (!task->latency_record[i].backtrace[q])
331 					break;
332 				if (task->latency_record[i].backtrace[q] == ULONG_MAX)
333 					break;
334 				sprint_symbol(sym, task->latency_record[i].backtrace[q]);
335 				c = strchr(sym, '+');
336 				if (c)
337 					*c = 0;
338 				seq_printf(m, "%s ", sym);
339 			}
340 			seq_printf(m, "\n");
341 		}
342 
343 	}
344 	return 0;
345 }
346 
347 static int lstats_open(struct inode *inode, struct file *file)
348 {
349 	int ret;
350 	struct seq_file *m;
351 	struct task_struct *task = get_proc_task(inode);
352 
353 	ret = single_open(file, lstats_show_proc, NULL);
354 	if (!ret) {
355 		m = file->private_data;
356 		m->private = task;
357 	}
358 	return ret;
359 }
360 
361 static ssize_t lstats_write(struct file *file, const char __user *buf,
362 			    size_t count, loff_t *offs)
363 {
364 	struct seq_file *m;
365 	struct task_struct *task;
366 
367 	m = file->private_data;
368 	task = m->private;
369 	clear_all_latency_tracing(task);
370 
371 	return count;
372 }
373 
374 static const struct file_operations proc_lstats_operations = {
375 	.open		= lstats_open,
376 	.read		= seq_read,
377 	.write		= lstats_write,
378 	.llseek		= seq_lseek,
379 	.release	= single_release,
380 };
381 
382 #endif
383 
384 /* The badness from the OOM killer */
385 unsigned long badness(struct task_struct *p, unsigned long uptime);
386 static int proc_oom_score(struct task_struct *task, char *buffer)
387 {
388 	unsigned long points;
389 	struct timespec uptime;
390 
391 	do_posix_clock_monotonic_gettime(&uptime);
392 	read_lock(&tasklist_lock);
393 	points = badness(task, uptime.tv_sec);
394 	read_unlock(&tasklist_lock);
395 	return sprintf(buffer, "%lu\n", points);
396 }
397 
398 struct limit_names {
399 	char *name;
400 	char *unit;
401 };
402 
403 static const struct limit_names lnames[RLIM_NLIMITS] = {
404 	[RLIMIT_CPU] = {"Max cpu time", "ms"},
405 	[RLIMIT_FSIZE] = {"Max file size", "bytes"},
406 	[RLIMIT_DATA] = {"Max data size", "bytes"},
407 	[RLIMIT_STACK] = {"Max stack size", "bytes"},
408 	[RLIMIT_CORE] = {"Max core file size", "bytes"},
409 	[RLIMIT_RSS] = {"Max resident set", "bytes"},
410 	[RLIMIT_NPROC] = {"Max processes", "processes"},
411 	[RLIMIT_NOFILE] = {"Max open files", "files"},
412 	[RLIMIT_MEMLOCK] = {"Max locked memory", "bytes"},
413 	[RLIMIT_AS] = {"Max address space", "bytes"},
414 	[RLIMIT_LOCKS] = {"Max file locks", "locks"},
415 	[RLIMIT_SIGPENDING] = {"Max pending signals", "signals"},
416 	[RLIMIT_MSGQUEUE] = {"Max msgqueue size", "bytes"},
417 	[RLIMIT_NICE] = {"Max nice priority", NULL},
418 	[RLIMIT_RTPRIO] = {"Max realtime priority", NULL},
419 };
420 
421 /* Display limits for a process */
422 static int proc_pid_limits(struct task_struct *task, char *buffer)
423 {
424 	unsigned int i;
425 	int count = 0;
426 	unsigned long flags;
427 	char *bufptr = buffer;
428 
429 	struct rlimit rlim[RLIM_NLIMITS];
430 
431 	rcu_read_lock();
432 	if (!lock_task_sighand(task,&flags)) {
433 		rcu_read_unlock();
434 		return 0;
435 	}
436 	memcpy(rlim, task->signal->rlim, sizeof(struct rlimit) * RLIM_NLIMITS);
437 	unlock_task_sighand(task, &flags);
438 	rcu_read_unlock();
439 
440 	/*
441 	 * print the file header
442 	 */
443 	count += sprintf(&bufptr[count], "%-25s %-20s %-20s %-10s\n",
444 			"Limit", "Soft Limit", "Hard Limit", "Units");
445 
446 	for (i = 0; i < RLIM_NLIMITS; i++) {
447 		if (rlim[i].rlim_cur == RLIM_INFINITY)
448 			count += sprintf(&bufptr[count], "%-25s %-20s ",
449 					 lnames[i].name, "unlimited");
450 		else
451 			count += sprintf(&bufptr[count], "%-25s %-20lu ",
452 					 lnames[i].name, rlim[i].rlim_cur);
453 
454 		if (rlim[i].rlim_max == RLIM_INFINITY)
455 			count += sprintf(&bufptr[count], "%-20s ", "unlimited");
456 		else
457 			count += sprintf(&bufptr[count], "%-20lu ",
458 					 rlim[i].rlim_max);
459 
460 		if (lnames[i].unit)
461 			count += sprintf(&bufptr[count], "%-10s\n",
462 					 lnames[i].unit);
463 		else
464 			count += sprintf(&bufptr[count], "\n");
465 	}
466 
467 	return count;
468 }
469 
470 /************************************************************************/
471 /*                       Here the fs part begins                        */
472 /************************************************************************/
473 
474 /* permission checks */
475 static int proc_fd_access_allowed(struct inode *inode)
476 {
477 	struct task_struct *task;
478 	int allowed = 0;
479 	/* Allow access to a task's file descriptors if it is us or we
480 	 * may use ptrace attach to the process and find out that
481 	 * information.
482 	 */
483 	task = get_proc_task(inode);
484 	if (task) {
485 		allowed = ptrace_may_attach(task);
486 		put_task_struct(task);
487 	}
488 	return allowed;
489 }
490 
491 static int proc_setattr(struct dentry *dentry, struct iattr *attr)
492 {
493 	int error;
494 	struct inode *inode = dentry->d_inode;
495 
496 	if (attr->ia_valid & ATTR_MODE)
497 		return -EPERM;
498 
499 	error = inode_change_ok(inode, attr);
500 	if (!error)
501 		error = inode_setattr(inode, attr);
502 	return error;
503 }
504 
505 static const struct inode_operations proc_def_inode_operations = {
506 	.setattr	= proc_setattr,
507 };
508 
509 extern struct seq_operations mounts_op;
510 struct proc_mounts {
511 	struct seq_file m;
512 	int event;
513 };
514 
515 static int mounts_open(struct inode *inode, struct file *file)
516 {
517 	struct task_struct *task = get_proc_task(inode);
518 	struct nsproxy *nsp;
519 	struct mnt_namespace *ns = NULL;
520 	struct proc_mounts *p;
521 	int ret = -EINVAL;
522 
523 	if (task) {
524 		rcu_read_lock();
525 		nsp = task_nsproxy(task);
526 		if (nsp) {
527 			ns = nsp->mnt_ns;
528 			if (ns)
529 				get_mnt_ns(ns);
530 		}
531 		rcu_read_unlock();
532 
533 		put_task_struct(task);
534 	}
535 
536 	if (ns) {
537 		ret = -ENOMEM;
538 		p = kmalloc(sizeof(struct proc_mounts), GFP_KERNEL);
539 		if (p) {
540 			file->private_data = &p->m;
541 			ret = seq_open(file, &mounts_op);
542 			if (!ret) {
543 				p->m.private = ns;
544 				p->event = ns->event;
545 				return 0;
546 			}
547 			kfree(p);
548 		}
549 		put_mnt_ns(ns);
550 	}
551 	return ret;
552 }
553 
554 static int mounts_release(struct inode *inode, struct file *file)
555 {
556 	struct seq_file *m = file->private_data;
557 	struct mnt_namespace *ns = m->private;
558 	put_mnt_ns(ns);
559 	return seq_release(inode, file);
560 }
561 
562 static unsigned mounts_poll(struct file *file, poll_table *wait)
563 {
564 	struct proc_mounts *p = file->private_data;
565 	struct mnt_namespace *ns = p->m.private;
566 	unsigned res = 0;
567 
568 	poll_wait(file, &ns->poll, wait);
569 
570 	spin_lock(&vfsmount_lock);
571 	if (p->event != ns->event) {
572 		p->event = ns->event;
573 		res = POLLERR;
574 	}
575 	spin_unlock(&vfsmount_lock);
576 
577 	return res;
578 }
579 
580 static const struct file_operations proc_mounts_operations = {
581 	.open		= mounts_open,
582 	.read		= seq_read,
583 	.llseek		= seq_lseek,
584 	.release	= mounts_release,
585 	.poll		= mounts_poll,
586 };
587 
588 extern struct seq_operations mountstats_op;
589 static int mountstats_open(struct inode *inode, struct file *file)
590 {
591 	int ret = seq_open(file, &mountstats_op);
592 
593 	if (!ret) {
594 		struct seq_file *m = file->private_data;
595 		struct nsproxy *nsp;
596 		struct mnt_namespace *mnt_ns = NULL;
597 		struct task_struct *task = get_proc_task(inode);
598 
599 		if (task) {
600 			rcu_read_lock();
601 			nsp = task_nsproxy(task);
602 			if (nsp) {
603 				mnt_ns = nsp->mnt_ns;
604 				if (mnt_ns)
605 					get_mnt_ns(mnt_ns);
606 			}
607 			rcu_read_unlock();
608 
609 			put_task_struct(task);
610 		}
611 
612 		if (mnt_ns)
613 			m->private = mnt_ns;
614 		else {
615 			seq_release(inode, file);
616 			ret = -EINVAL;
617 		}
618 	}
619 	return ret;
620 }
621 
622 static const struct file_operations proc_mountstats_operations = {
623 	.open		= mountstats_open,
624 	.read		= seq_read,
625 	.llseek		= seq_lseek,
626 	.release	= mounts_release,
627 };
628 
629 #define PROC_BLOCK_SIZE	(3*1024)		/* 4K page size but our output routines use some slack for overruns */
630 
631 static ssize_t proc_info_read(struct file * file, char __user * buf,
632 			  size_t count, loff_t *ppos)
633 {
634 	struct inode * inode = file->f_path.dentry->d_inode;
635 	unsigned long page;
636 	ssize_t length;
637 	struct task_struct *task = get_proc_task(inode);
638 
639 	length = -ESRCH;
640 	if (!task)
641 		goto out_no_task;
642 
643 	if (count > PROC_BLOCK_SIZE)
644 		count = PROC_BLOCK_SIZE;
645 
646 	length = -ENOMEM;
647 	if (!(page = __get_free_page(GFP_TEMPORARY)))
648 		goto out;
649 
650 	length = PROC_I(inode)->op.proc_read(task, (char*)page);
651 
652 	if (length >= 0)
653 		length = simple_read_from_buffer(buf, count, ppos, (char *)page, length);
654 	free_page(page);
655 out:
656 	put_task_struct(task);
657 out_no_task:
658 	return length;
659 }
660 
661 static const struct file_operations proc_info_file_operations = {
662 	.read		= proc_info_read,
663 };
664 
665 static int mem_open(struct inode* inode, struct file* file)
666 {
667 	file->private_data = (void*)((long)current->self_exec_id);
668 	return 0;
669 }
670 
671 static ssize_t mem_read(struct file * file, char __user * buf,
672 			size_t count, loff_t *ppos)
673 {
674 	struct task_struct *task = get_proc_task(file->f_path.dentry->d_inode);
675 	char *page;
676 	unsigned long src = *ppos;
677 	int ret = -ESRCH;
678 	struct mm_struct *mm;
679 
680 	if (!task)
681 		goto out_no_task;
682 
683 	if (!MAY_PTRACE(task) || !ptrace_may_attach(task))
684 		goto out;
685 
686 	ret = -ENOMEM;
687 	page = (char *)__get_free_page(GFP_TEMPORARY);
688 	if (!page)
689 		goto out;
690 
691 	ret = 0;
692 
693 	mm = get_task_mm(task);
694 	if (!mm)
695 		goto out_free;
696 
697 	ret = -EIO;
698 
699 	if (file->private_data != (void*)((long)current->self_exec_id))
700 		goto out_put;
701 
702 	ret = 0;
703 
704 	while (count > 0) {
705 		int this_len, retval;
706 
707 		this_len = (count > PAGE_SIZE) ? PAGE_SIZE : count;
708 		retval = access_process_vm(task, src, page, this_len, 0);
709 		if (!retval || !MAY_PTRACE(task) || !ptrace_may_attach(task)) {
710 			if (!ret)
711 				ret = -EIO;
712 			break;
713 		}
714 
715 		if (copy_to_user(buf, page, retval)) {
716 			ret = -EFAULT;
717 			break;
718 		}
719 
720 		ret += retval;
721 		src += retval;
722 		buf += retval;
723 		count -= retval;
724 	}
725 	*ppos = src;
726 
727 out_put:
728 	mmput(mm);
729 out_free:
730 	free_page((unsigned long) page);
731 out:
732 	put_task_struct(task);
733 out_no_task:
734 	return ret;
735 }
736 
737 #define mem_write NULL
738 
739 #ifndef mem_write
740 /* This is a security hazard */
741 static ssize_t mem_write(struct file * file, const char __user *buf,
742 			 size_t count, loff_t *ppos)
743 {
744 	int copied;
745 	char *page;
746 	struct task_struct *task = get_proc_task(file->f_path.dentry->d_inode);
747 	unsigned long dst = *ppos;
748 
749 	copied = -ESRCH;
750 	if (!task)
751 		goto out_no_task;
752 
753 	if (!MAY_PTRACE(task) || !ptrace_may_attach(task))
754 		goto out;
755 
756 	copied = -ENOMEM;
757 	page = (char *)__get_free_page(GFP_TEMPORARY);
758 	if (!page)
759 		goto out;
760 
761 	copied = 0;
762 	while (count > 0) {
763 		int this_len, retval;
764 
765 		this_len = (count > PAGE_SIZE) ? PAGE_SIZE : count;
766 		if (copy_from_user(page, buf, this_len)) {
767 			copied = -EFAULT;
768 			break;
769 		}
770 		retval = access_process_vm(task, dst, page, this_len, 1);
771 		if (!retval) {
772 			if (!copied)
773 				copied = -EIO;
774 			break;
775 		}
776 		copied += retval;
777 		buf += retval;
778 		dst += retval;
779 		count -= retval;
780 	}
781 	*ppos = dst;
782 	free_page((unsigned long) page);
783 out:
784 	put_task_struct(task);
785 out_no_task:
786 	return copied;
787 }
788 #endif
789 
790 static loff_t mem_lseek(struct file * file, loff_t offset, int orig)
791 {
792 	switch (orig) {
793 	case 0:
794 		file->f_pos = offset;
795 		break;
796 	case 1:
797 		file->f_pos += offset;
798 		break;
799 	default:
800 		return -EINVAL;
801 	}
802 	force_successful_syscall_return();
803 	return file->f_pos;
804 }
805 
806 static const struct file_operations proc_mem_operations = {
807 	.llseek		= mem_lseek,
808 	.read		= mem_read,
809 	.write		= mem_write,
810 	.open		= mem_open,
811 };
812 
813 static ssize_t environ_read(struct file *file, char __user *buf,
814 			size_t count, loff_t *ppos)
815 {
816 	struct task_struct *task = get_proc_task(file->f_dentry->d_inode);
817 	char *page;
818 	unsigned long src = *ppos;
819 	int ret = -ESRCH;
820 	struct mm_struct *mm;
821 
822 	if (!task)
823 		goto out_no_task;
824 
825 	if (!ptrace_may_attach(task))
826 		goto out;
827 
828 	ret = -ENOMEM;
829 	page = (char *)__get_free_page(GFP_TEMPORARY);
830 	if (!page)
831 		goto out;
832 
833 	ret = 0;
834 
835 	mm = get_task_mm(task);
836 	if (!mm)
837 		goto out_free;
838 
839 	while (count > 0) {
840 		int this_len, retval, max_len;
841 
842 		this_len = mm->env_end - (mm->env_start + src);
843 
844 		if (this_len <= 0)
845 			break;
846 
847 		max_len = (count > PAGE_SIZE) ? PAGE_SIZE : count;
848 		this_len = (this_len > max_len) ? max_len : this_len;
849 
850 		retval = access_process_vm(task, (mm->env_start + src),
851 			page, this_len, 0);
852 
853 		if (retval <= 0) {
854 			ret = retval;
855 			break;
856 		}
857 
858 		if (copy_to_user(buf, page, retval)) {
859 			ret = -EFAULT;
860 			break;
861 		}
862 
863 		ret += retval;
864 		src += retval;
865 		buf += retval;
866 		count -= retval;
867 	}
868 	*ppos = src;
869 
870 	mmput(mm);
871 out_free:
872 	free_page((unsigned long) page);
873 out:
874 	put_task_struct(task);
875 out_no_task:
876 	return ret;
877 }
878 
879 static const struct file_operations proc_environ_operations = {
880 	.read		= environ_read,
881 };
882 
883 static ssize_t oom_adjust_read(struct file *file, char __user *buf,
884 				size_t count, loff_t *ppos)
885 {
886 	struct task_struct *task = get_proc_task(file->f_path.dentry->d_inode);
887 	char buffer[PROC_NUMBUF];
888 	size_t len;
889 	int oom_adjust;
890 
891 	if (!task)
892 		return -ESRCH;
893 	oom_adjust = task->oomkilladj;
894 	put_task_struct(task);
895 
896 	len = snprintf(buffer, sizeof(buffer), "%i\n", oom_adjust);
897 
898 	return simple_read_from_buffer(buf, count, ppos, buffer, len);
899 }
900 
901 static ssize_t oom_adjust_write(struct file *file, const char __user *buf,
902 				size_t count, loff_t *ppos)
903 {
904 	struct task_struct *task;
905 	char buffer[PROC_NUMBUF], *end;
906 	int oom_adjust;
907 
908 	memset(buffer, 0, sizeof(buffer));
909 	if (count > sizeof(buffer) - 1)
910 		count = sizeof(buffer) - 1;
911 	if (copy_from_user(buffer, buf, count))
912 		return -EFAULT;
913 	oom_adjust = simple_strtol(buffer, &end, 0);
914 	if ((oom_adjust < OOM_ADJUST_MIN || oom_adjust > OOM_ADJUST_MAX) &&
915 	     oom_adjust != OOM_DISABLE)
916 		return -EINVAL;
917 	if (*end == '\n')
918 		end++;
919 	task = get_proc_task(file->f_path.dentry->d_inode);
920 	if (!task)
921 		return -ESRCH;
922 	if (oom_adjust < task->oomkilladj && !capable(CAP_SYS_RESOURCE)) {
923 		put_task_struct(task);
924 		return -EACCES;
925 	}
926 	task->oomkilladj = oom_adjust;
927 	put_task_struct(task);
928 	if (end - buffer == 0)
929 		return -EIO;
930 	return end - buffer;
931 }
932 
933 static const struct file_operations proc_oom_adjust_operations = {
934 	.read		= oom_adjust_read,
935 	.write		= oom_adjust_write,
936 };
937 
938 #ifdef CONFIG_MMU
939 static ssize_t clear_refs_write(struct file *file, const char __user *buf,
940 				size_t count, loff_t *ppos)
941 {
942 	struct task_struct *task;
943 	char buffer[PROC_NUMBUF], *end;
944 	struct mm_struct *mm;
945 
946 	memset(buffer, 0, sizeof(buffer));
947 	if (count > sizeof(buffer) - 1)
948 		count = sizeof(buffer) - 1;
949 	if (copy_from_user(buffer, buf, count))
950 		return -EFAULT;
951 	if (!simple_strtol(buffer, &end, 0))
952 		return -EINVAL;
953 	if (*end == '\n')
954 		end++;
955 	task = get_proc_task(file->f_path.dentry->d_inode);
956 	if (!task)
957 		return -ESRCH;
958 	mm = get_task_mm(task);
959 	if (mm) {
960 		clear_refs_smap(mm);
961 		mmput(mm);
962 	}
963 	put_task_struct(task);
964 	if (end - buffer == 0)
965 		return -EIO;
966 	return end - buffer;
967 }
968 
969 static struct file_operations proc_clear_refs_operations = {
970 	.write		= clear_refs_write,
971 };
972 #endif
973 
974 #ifdef CONFIG_AUDITSYSCALL
975 #define TMPBUFLEN 21
976 static ssize_t proc_loginuid_read(struct file * file, char __user * buf,
977 				  size_t count, loff_t *ppos)
978 {
979 	struct inode * inode = file->f_path.dentry->d_inode;
980 	struct task_struct *task = get_proc_task(inode);
981 	ssize_t length;
982 	char tmpbuf[TMPBUFLEN];
983 
984 	if (!task)
985 		return -ESRCH;
986 	length = scnprintf(tmpbuf, TMPBUFLEN, "%u",
987 				audit_get_loginuid(task->audit_context));
988 	put_task_struct(task);
989 	return simple_read_from_buffer(buf, count, ppos, tmpbuf, length);
990 }
991 
992 static ssize_t proc_loginuid_write(struct file * file, const char __user * buf,
993 				   size_t count, loff_t *ppos)
994 {
995 	struct inode * inode = file->f_path.dentry->d_inode;
996 	char *page, *tmp;
997 	ssize_t length;
998 	uid_t loginuid;
999 
1000 	if (!capable(CAP_AUDIT_CONTROL))
1001 		return -EPERM;
1002 
1003 	if (current != pid_task(proc_pid(inode), PIDTYPE_PID))
1004 		return -EPERM;
1005 
1006 	if (count >= PAGE_SIZE)
1007 		count = PAGE_SIZE - 1;
1008 
1009 	if (*ppos != 0) {
1010 		/* No partial writes. */
1011 		return -EINVAL;
1012 	}
1013 	page = (char*)__get_free_page(GFP_TEMPORARY);
1014 	if (!page)
1015 		return -ENOMEM;
1016 	length = -EFAULT;
1017 	if (copy_from_user(page, buf, count))
1018 		goto out_free_page;
1019 
1020 	page[count] = '\0';
1021 	loginuid = simple_strtoul(page, &tmp, 10);
1022 	if (tmp == page) {
1023 		length = -EINVAL;
1024 		goto out_free_page;
1025 
1026 	}
1027 	length = audit_set_loginuid(current, loginuid);
1028 	if (likely(length == 0))
1029 		length = count;
1030 
1031 out_free_page:
1032 	free_page((unsigned long) page);
1033 	return length;
1034 }
1035 
1036 static const struct file_operations proc_loginuid_operations = {
1037 	.read		= proc_loginuid_read,
1038 	.write		= proc_loginuid_write,
1039 };
1040 #endif
1041 
1042 #ifdef CONFIG_FAULT_INJECTION
1043 static ssize_t proc_fault_inject_read(struct file * file, char __user * buf,
1044 				      size_t count, loff_t *ppos)
1045 {
1046 	struct task_struct *task = get_proc_task(file->f_dentry->d_inode);
1047 	char buffer[PROC_NUMBUF];
1048 	size_t len;
1049 	int make_it_fail;
1050 
1051 	if (!task)
1052 		return -ESRCH;
1053 	make_it_fail = task->make_it_fail;
1054 	put_task_struct(task);
1055 
1056 	len = snprintf(buffer, sizeof(buffer), "%i\n", make_it_fail);
1057 
1058 	return simple_read_from_buffer(buf, count, ppos, buffer, len);
1059 }
1060 
1061 static ssize_t proc_fault_inject_write(struct file * file,
1062 			const char __user * buf, size_t count, loff_t *ppos)
1063 {
1064 	struct task_struct *task;
1065 	char buffer[PROC_NUMBUF], *end;
1066 	int make_it_fail;
1067 
1068 	if (!capable(CAP_SYS_RESOURCE))
1069 		return -EPERM;
1070 	memset(buffer, 0, sizeof(buffer));
1071 	if (count > sizeof(buffer) - 1)
1072 		count = sizeof(buffer) - 1;
1073 	if (copy_from_user(buffer, buf, count))
1074 		return -EFAULT;
1075 	make_it_fail = simple_strtol(buffer, &end, 0);
1076 	if (*end == '\n')
1077 		end++;
1078 	task = get_proc_task(file->f_dentry->d_inode);
1079 	if (!task)
1080 		return -ESRCH;
1081 	task->make_it_fail = make_it_fail;
1082 	put_task_struct(task);
1083 	if (end - buffer == 0)
1084 		return -EIO;
1085 	return end - buffer;
1086 }
1087 
1088 static const struct file_operations proc_fault_inject_operations = {
1089 	.read		= proc_fault_inject_read,
1090 	.write		= proc_fault_inject_write,
1091 };
1092 #endif
1093 
1094 
1095 #ifdef CONFIG_SCHED_DEBUG
1096 /*
1097  * Print out various scheduling related per-task fields:
1098  */
1099 static int sched_show(struct seq_file *m, void *v)
1100 {
1101 	struct inode *inode = m->private;
1102 	struct task_struct *p;
1103 
1104 	WARN_ON(!inode);
1105 
1106 	p = get_proc_task(inode);
1107 	if (!p)
1108 		return -ESRCH;
1109 	proc_sched_show_task(p, m);
1110 
1111 	put_task_struct(p);
1112 
1113 	return 0;
1114 }
1115 
1116 static ssize_t
1117 sched_write(struct file *file, const char __user *buf,
1118 	    size_t count, loff_t *offset)
1119 {
1120 	struct inode *inode = file->f_path.dentry->d_inode;
1121 	struct task_struct *p;
1122 
1123 	WARN_ON(!inode);
1124 
1125 	p = get_proc_task(inode);
1126 	if (!p)
1127 		return -ESRCH;
1128 	proc_sched_set_task(p);
1129 
1130 	put_task_struct(p);
1131 
1132 	return count;
1133 }
1134 
1135 static int sched_open(struct inode *inode, struct file *filp)
1136 {
1137 	int ret;
1138 
1139 	ret = single_open(filp, sched_show, NULL);
1140 	if (!ret) {
1141 		struct seq_file *m = filp->private_data;
1142 
1143 		m->private = inode;
1144 	}
1145 	return ret;
1146 }
1147 
1148 static const struct file_operations proc_pid_sched_operations = {
1149 	.open		= sched_open,
1150 	.read		= seq_read,
1151 	.write		= sched_write,
1152 	.llseek		= seq_lseek,
1153 	.release	= single_release,
1154 };
1155 
1156 #endif
1157 
1158 static void *proc_pid_follow_link(struct dentry *dentry, struct nameidata *nd)
1159 {
1160 	struct inode *inode = dentry->d_inode;
1161 	int error = -EACCES;
1162 
1163 	/* We don't need a base pointer in the /proc filesystem */
1164 	path_release(nd);
1165 
1166 	/* Are we allowed to snoop on the tasks file descriptors? */
1167 	if (!proc_fd_access_allowed(inode))
1168 		goto out;
1169 
1170 	error = PROC_I(inode)->op.proc_get_link(inode, &nd->dentry, &nd->mnt);
1171 	nd->last_type = LAST_BIND;
1172 out:
1173 	return ERR_PTR(error);
1174 }
1175 
1176 static int do_proc_readlink(struct dentry *dentry, struct vfsmount *mnt,
1177 			    char __user *buffer, int buflen)
1178 {
1179 	struct inode * inode;
1180 	char *tmp = (char*)__get_free_page(GFP_TEMPORARY);
1181 	char *path;
1182 	int len;
1183 
1184 	if (!tmp)
1185 		return -ENOMEM;
1186 
1187 	inode = dentry->d_inode;
1188 	path = d_path(dentry, mnt, tmp, PAGE_SIZE);
1189 	len = PTR_ERR(path);
1190 	if (IS_ERR(path))
1191 		goto out;
1192 	len = tmp + PAGE_SIZE - 1 - path;
1193 
1194 	if (len > buflen)
1195 		len = buflen;
1196 	if (copy_to_user(buffer, path, len))
1197 		len = -EFAULT;
1198  out:
1199 	free_page((unsigned long)tmp);
1200 	return len;
1201 }
1202 
1203 static int proc_pid_readlink(struct dentry * dentry, char __user * buffer, int buflen)
1204 {
1205 	int error = -EACCES;
1206 	struct inode *inode = dentry->d_inode;
1207 	struct dentry *de;
1208 	struct vfsmount *mnt = NULL;
1209 
1210 	/* Are we allowed to snoop on the tasks file descriptors? */
1211 	if (!proc_fd_access_allowed(inode))
1212 		goto out;
1213 
1214 	error = PROC_I(inode)->op.proc_get_link(inode, &de, &mnt);
1215 	if (error)
1216 		goto out;
1217 
1218 	error = do_proc_readlink(de, mnt, buffer, buflen);
1219 	dput(de);
1220 	mntput(mnt);
1221 out:
1222 	return error;
1223 }
1224 
1225 static const struct inode_operations proc_pid_link_inode_operations = {
1226 	.readlink	= proc_pid_readlink,
1227 	.follow_link	= proc_pid_follow_link,
1228 	.setattr	= proc_setattr,
1229 };
1230 
1231 
1232 /* building an inode */
1233 
1234 static int task_dumpable(struct task_struct *task)
1235 {
1236 	int dumpable = 0;
1237 	struct mm_struct *mm;
1238 
1239 	task_lock(task);
1240 	mm = task->mm;
1241 	if (mm)
1242 		dumpable = get_dumpable(mm);
1243 	task_unlock(task);
1244 	if(dumpable == 1)
1245 		return 1;
1246 	return 0;
1247 }
1248 
1249 
1250 static struct inode *proc_pid_make_inode(struct super_block * sb, struct task_struct *task)
1251 {
1252 	struct inode * inode;
1253 	struct proc_inode *ei;
1254 
1255 	/* We need a new inode */
1256 
1257 	inode = new_inode(sb);
1258 	if (!inode)
1259 		goto out;
1260 
1261 	/* Common stuff */
1262 	ei = PROC_I(inode);
1263 	inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
1264 	inode->i_op = &proc_def_inode_operations;
1265 
1266 	/*
1267 	 * grab the reference to task.
1268 	 */
1269 	ei->pid = get_task_pid(task, PIDTYPE_PID);
1270 	if (!ei->pid)
1271 		goto out_unlock;
1272 
1273 	inode->i_uid = 0;
1274 	inode->i_gid = 0;
1275 	if (task_dumpable(task)) {
1276 		inode->i_uid = task->euid;
1277 		inode->i_gid = task->egid;
1278 	}
1279 	security_task_to_inode(task, inode);
1280 
1281 out:
1282 	return inode;
1283 
1284 out_unlock:
1285 	iput(inode);
1286 	return NULL;
1287 }
1288 
1289 static int pid_getattr(struct vfsmount *mnt, struct dentry *dentry, struct kstat *stat)
1290 {
1291 	struct inode *inode = dentry->d_inode;
1292 	struct task_struct *task;
1293 	generic_fillattr(inode, stat);
1294 
1295 	rcu_read_lock();
1296 	stat->uid = 0;
1297 	stat->gid = 0;
1298 	task = pid_task(proc_pid(inode), PIDTYPE_PID);
1299 	if (task) {
1300 		if ((inode->i_mode == (S_IFDIR|S_IRUGO|S_IXUGO)) ||
1301 		    task_dumpable(task)) {
1302 			stat->uid = task->euid;
1303 			stat->gid = task->egid;
1304 		}
1305 	}
1306 	rcu_read_unlock();
1307 	return 0;
1308 }
1309 
1310 /* dentry stuff */
1311 
1312 /*
1313  *	Exceptional case: normally we are not allowed to unhash a busy
1314  * directory. In this case, however, we can do it - no aliasing problems
1315  * due to the way we treat inodes.
1316  *
1317  * Rewrite the inode's ownerships here because the owning task may have
1318  * performed a setuid(), etc.
1319  *
1320  * Before the /proc/pid/status file was created the only way to read
1321  * the effective uid of a /process was to stat /proc/pid.  Reading
1322  * /proc/pid/status is slow enough that procps and other packages
1323  * kept stating /proc/pid.  To keep the rules in /proc simple I have
1324  * made this apply to all per process world readable and executable
1325  * directories.
1326  */
1327 static int pid_revalidate(struct dentry *dentry, struct nameidata *nd)
1328 {
1329 	struct inode *inode = dentry->d_inode;
1330 	struct task_struct *task = get_proc_task(inode);
1331 	if (task) {
1332 		if ((inode->i_mode == (S_IFDIR|S_IRUGO|S_IXUGO)) ||
1333 		    task_dumpable(task)) {
1334 			inode->i_uid = task->euid;
1335 			inode->i_gid = task->egid;
1336 		} else {
1337 			inode->i_uid = 0;
1338 			inode->i_gid = 0;
1339 		}
1340 		inode->i_mode &= ~(S_ISUID | S_ISGID);
1341 		security_task_to_inode(task, inode);
1342 		put_task_struct(task);
1343 		return 1;
1344 	}
1345 	d_drop(dentry);
1346 	return 0;
1347 }
1348 
1349 static int pid_delete_dentry(struct dentry * dentry)
1350 {
1351 	/* Is the task we represent dead?
1352 	 * If so, then don't put the dentry on the lru list,
1353 	 * kill it immediately.
1354 	 */
1355 	return !proc_pid(dentry->d_inode)->tasks[PIDTYPE_PID].first;
1356 }
1357 
1358 static struct dentry_operations pid_dentry_operations =
1359 {
1360 	.d_revalidate	= pid_revalidate,
1361 	.d_delete	= pid_delete_dentry,
1362 };
1363 
1364 /* Lookups */
1365 
1366 typedef struct dentry *instantiate_t(struct inode *, struct dentry *,
1367 				struct task_struct *, const void *);
1368 
1369 /*
1370  * Fill a directory entry.
1371  *
1372  * If possible create the dcache entry and derive our inode number and
1373  * file type from dcache entry.
1374  *
1375  * Since all of the proc inode numbers are dynamically generated, the inode
1376  * numbers do not exist until the inode is cache.  This means creating the
1377  * the dcache entry in readdir is necessary to keep the inode numbers
1378  * reported by readdir in sync with the inode numbers reported
1379  * by stat.
1380  */
1381 static int proc_fill_cache(struct file *filp, void *dirent, filldir_t filldir,
1382 	char *name, int len,
1383 	instantiate_t instantiate, struct task_struct *task, const void *ptr)
1384 {
1385 	struct dentry *child, *dir = filp->f_path.dentry;
1386 	struct inode *inode;
1387 	struct qstr qname;
1388 	ino_t ino = 0;
1389 	unsigned type = DT_UNKNOWN;
1390 
1391 	qname.name = name;
1392 	qname.len  = len;
1393 	qname.hash = full_name_hash(name, len);
1394 
1395 	child = d_lookup(dir, &qname);
1396 	if (!child) {
1397 		struct dentry *new;
1398 		new = d_alloc(dir, &qname);
1399 		if (new) {
1400 			child = instantiate(dir->d_inode, new, task, ptr);
1401 			if (child)
1402 				dput(new);
1403 			else
1404 				child = new;
1405 		}
1406 	}
1407 	if (!child || IS_ERR(child) || !child->d_inode)
1408 		goto end_instantiate;
1409 	inode = child->d_inode;
1410 	if (inode) {
1411 		ino = inode->i_ino;
1412 		type = inode->i_mode >> 12;
1413 	}
1414 	dput(child);
1415 end_instantiate:
1416 	if (!ino)
1417 		ino = find_inode_number(dir, &qname);
1418 	if (!ino)
1419 		ino = 1;
1420 	return filldir(dirent, name, len, filp->f_pos, ino, type);
1421 }
1422 
1423 static unsigned name_to_int(struct dentry *dentry)
1424 {
1425 	const char *name = dentry->d_name.name;
1426 	int len = dentry->d_name.len;
1427 	unsigned n = 0;
1428 
1429 	if (len > 1 && *name == '0')
1430 		goto out;
1431 	while (len-- > 0) {
1432 		unsigned c = *name++ - '0';
1433 		if (c > 9)
1434 			goto out;
1435 		if (n >= (~0U-9)/10)
1436 			goto out;
1437 		n *= 10;
1438 		n += c;
1439 	}
1440 	return n;
1441 out:
1442 	return ~0U;
1443 }
1444 
1445 #define PROC_FDINFO_MAX 64
1446 
1447 static int proc_fd_info(struct inode *inode, struct dentry **dentry,
1448 			struct vfsmount **mnt, char *info)
1449 {
1450 	struct task_struct *task = get_proc_task(inode);
1451 	struct files_struct *files = NULL;
1452 	struct file *file;
1453 	int fd = proc_fd(inode);
1454 
1455 	if (task) {
1456 		files = get_files_struct(task);
1457 		put_task_struct(task);
1458 	}
1459 	if (files) {
1460 		/*
1461 		 * We are not taking a ref to the file structure, so we must
1462 		 * hold ->file_lock.
1463 		 */
1464 		spin_lock(&files->file_lock);
1465 		file = fcheck_files(files, fd);
1466 		if (file) {
1467 			if (mnt)
1468 				*mnt = mntget(file->f_path.mnt);
1469 			if (dentry)
1470 				*dentry = dget(file->f_path.dentry);
1471 			if (info)
1472 				snprintf(info, PROC_FDINFO_MAX,
1473 					 "pos:\t%lli\n"
1474 					 "flags:\t0%o\n",
1475 					 (long long) file->f_pos,
1476 					 file->f_flags);
1477 			spin_unlock(&files->file_lock);
1478 			put_files_struct(files);
1479 			return 0;
1480 		}
1481 		spin_unlock(&files->file_lock);
1482 		put_files_struct(files);
1483 	}
1484 	return -ENOENT;
1485 }
1486 
1487 static int proc_fd_link(struct inode *inode, struct dentry **dentry,
1488 			struct vfsmount **mnt)
1489 {
1490 	return proc_fd_info(inode, dentry, mnt, NULL);
1491 }
1492 
1493 static int tid_fd_revalidate(struct dentry *dentry, struct nameidata *nd)
1494 {
1495 	struct inode *inode = dentry->d_inode;
1496 	struct task_struct *task = get_proc_task(inode);
1497 	int fd = proc_fd(inode);
1498 	struct files_struct *files;
1499 
1500 	if (task) {
1501 		files = get_files_struct(task);
1502 		if (files) {
1503 			rcu_read_lock();
1504 			if (fcheck_files(files, fd)) {
1505 				rcu_read_unlock();
1506 				put_files_struct(files);
1507 				if (task_dumpable(task)) {
1508 					inode->i_uid = task->euid;
1509 					inode->i_gid = task->egid;
1510 				} else {
1511 					inode->i_uid = 0;
1512 					inode->i_gid = 0;
1513 				}
1514 				inode->i_mode &= ~(S_ISUID | S_ISGID);
1515 				security_task_to_inode(task, inode);
1516 				put_task_struct(task);
1517 				return 1;
1518 			}
1519 			rcu_read_unlock();
1520 			put_files_struct(files);
1521 		}
1522 		put_task_struct(task);
1523 	}
1524 	d_drop(dentry);
1525 	return 0;
1526 }
1527 
1528 static struct dentry_operations tid_fd_dentry_operations =
1529 {
1530 	.d_revalidate	= tid_fd_revalidate,
1531 	.d_delete	= pid_delete_dentry,
1532 };
1533 
1534 static struct dentry *proc_fd_instantiate(struct inode *dir,
1535 	struct dentry *dentry, struct task_struct *task, const void *ptr)
1536 {
1537 	unsigned fd = *(const unsigned *)ptr;
1538 	struct file *file;
1539 	struct files_struct *files;
1540  	struct inode *inode;
1541  	struct proc_inode *ei;
1542 	struct dentry *error = ERR_PTR(-ENOENT);
1543 
1544 	inode = proc_pid_make_inode(dir->i_sb, task);
1545 	if (!inode)
1546 		goto out;
1547 	ei = PROC_I(inode);
1548 	ei->fd = fd;
1549 	files = get_files_struct(task);
1550 	if (!files)
1551 		goto out_iput;
1552 	inode->i_mode = S_IFLNK;
1553 
1554 	/*
1555 	 * We are not taking a ref to the file structure, so we must
1556 	 * hold ->file_lock.
1557 	 */
1558 	spin_lock(&files->file_lock);
1559 	file = fcheck_files(files, fd);
1560 	if (!file)
1561 		goto out_unlock;
1562 	if (file->f_mode & 1)
1563 		inode->i_mode |= S_IRUSR | S_IXUSR;
1564 	if (file->f_mode & 2)
1565 		inode->i_mode |= S_IWUSR | S_IXUSR;
1566 	spin_unlock(&files->file_lock);
1567 	put_files_struct(files);
1568 
1569 	inode->i_op = &proc_pid_link_inode_operations;
1570 	inode->i_size = 64;
1571 	ei->op.proc_get_link = proc_fd_link;
1572 	dentry->d_op = &tid_fd_dentry_operations;
1573 	d_add(dentry, inode);
1574 	/* Close the race of the process dying before we return the dentry */
1575 	if (tid_fd_revalidate(dentry, NULL))
1576 		error = NULL;
1577 
1578  out:
1579 	return error;
1580 out_unlock:
1581 	spin_unlock(&files->file_lock);
1582 	put_files_struct(files);
1583 out_iput:
1584 	iput(inode);
1585 	goto out;
1586 }
1587 
1588 static struct dentry *proc_lookupfd_common(struct inode *dir,
1589 					   struct dentry *dentry,
1590 					   instantiate_t instantiate)
1591 {
1592 	struct task_struct *task = get_proc_task(dir);
1593 	unsigned fd = name_to_int(dentry);
1594 	struct dentry *result = ERR_PTR(-ENOENT);
1595 
1596 	if (!task)
1597 		goto out_no_task;
1598 	if (fd == ~0U)
1599 		goto out;
1600 
1601 	result = instantiate(dir, dentry, task, &fd);
1602 out:
1603 	put_task_struct(task);
1604 out_no_task:
1605 	return result;
1606 }
1607 
1608 static int proc_readfd_common(struct file * filp, void * dirent,
1609 			      filldir_t filldir, instantiate_t instantiate)
1610 {
1611 	struct dentry *dentry = filp->f_path.dentry;
1612 	struct inode *inode = dentry->d_inode;
1613 	struct task_struct *p = get_proc_task(inode);
1614 	unsigned int fd, ino;
1615 	int retval;
1616 	struct files_struct * files;
1617 	struct fdtable *fdt;
1618 
1619 	retval = -ENOENT;
1620 	if (!p)
1621 		goto out_no_task;
1622 	retval = 0;
1623 
1624 	fd = filp->f_pos;
1625 	switch (fd) {
1626 		case 0:
1627 			if (filldir(dirent, ".", 1, 0, inode->i_ino, DT_DIR) < 0)
1628 				goto out;
1629 			filp->f_pos++;
1630 		case 1:
1631 			ino = parent_ino(dentry);
1632 			if (filldir(dirent, "..", 2, 1, ino, DT_DIR) < 0)
1633 				goto out;
1634 			filp->f_pos++;
1635 		default:
1636 			files = get_files_struct(p);
1637 			if (!files)
1638 				goto out;
1639 			rcu_read_lock();
1640 			fdt = files_fdtable(files);
1641 			for (fd = filp->f_pos-2;
1642 			     fd < fdt->max_fds;
1643 			     fd++, filp->f_pos++) {
1644 				char name[PROC_NUMBUF];
1645 				int len;
1646 
1647 				if (!fcheck_files(files, fd))
1648 					continue;
1649 				rcu_read_unlock();
1650 
1651 				len = snprintf(name, sizeof(name), "%d", fd);
1652 				if (proc_fill_cache(filp, dirent, filldir,
1653 						    name, len, instantiate,
1654 						    p, &fd) < 0) {
1655 					rcu_read_lock();
1656 					break;
1657 				}
1658 				rcu_read_lock();
1659 			}
1660 			rcu_read_unlock();
1661 			put_files_struct(files);
1662 	}
1663 out:
1664 	put_task_struct(p);
1665 out_no_task:
1666 	return retval;
1667 }
1668 
1669 static struct dentry *proc_lookupfd(struct inode *dir, struct dentry *dentry,
1670 				    struct nameidata *nd)
1671 {
1672 	return proc_lookupfd_common(dir, dentry, proc_fd_instantiate);
1673 }
1674 
1675 static int proc_readfd(struct file *filp, void *dirent, filldir_t filldir)
1676 {
1677 	return proc_readfd_common(filp, dirent, filldir, proc_fd_instantiate);
1678 }
1679 
1680 static ssize_t proc_fdinfo_read(struct file *file, char __user *buf,
1681 				      size_t len, loff_t *ppos)
1682 {
1683 	char tmp[PROC_FDINFO_MAX];
1684 	int err = proc_fd_info(file->f_path.dentry->d_inode, NULL, NULL, tmp);
1685 	if (!err)
1686 		err = simple_read_from_buffer(buf, len, ppos, tmp, strlen(tmp));
1687 	return err;
1688 }
1689 
1690 static const struct file_operations proc_fdinfo_file_operations = {
1691 	.open		= nonseekable_open,
1692 	.read		= proc_fdinfo_read,
1693 };
1694 
1695 static const struct file_operations proc_fd_operations = {
1696 	.read		= generic_read_dir,
1697 	.readdir	= proc_readfd,
1698 };
1699 
1700 /*
1701  * /proc/pid/fd needs a special permission handler so that a process can still
1702  * access /proc/self/fd after it has executed a setuid().
1703  */
1704 static int proc_fd_permission(struct inode *inode, int mask,
1705 				struct nameidata *nd)
1706 {
1707 	int rv;
1708 
1709 	rv = generic_permission(inode, mask, NULL);
1710 	if (rv == 0)
1711 		return 0;
1712 	if (task_pid(current) == proc_pid(inode))
1713 		rv = 0;
1714 	return rv;
1715 }
1716 
1717 /*
1718  * proc directories can do almost nothing..
1719  */
1720 static const struct inode_operations proc_fd_inode_operations = {
1721 	.lookup		= proc_lookupfd,
1722 	.permission	= proc_fd_permission,
1723 	.setattr	= proc_setattr,
1724 };
1725 
1726 static struct dentry *proc_fdinfo_instantiate(struct inode *dir,
1727 	struct dentry *dentry, struct task_struct *task, const void *ptr)
1728 {
1729 	unsigned fd = *(unsigned *)ptr;
1730  	struct inode *inode;
1731  	struct proc_inode *ei;
1732 	struct dentry *error = ERR_PTR(-ENOENT);
1733 
1734 	inode = proc_pid_make_inode(dir->i_sb, task);
1735 	if (!inode)
1736 		goto out;
1737 	ei = PROC_I(inode);
1738 	ei->fd = fd;
1739 	inode->i_mode = S_IFREG | S_IRUSR;
1740 	inode->i_fop = &proc_fdinfo_file_operations;
1741 	dentry->d_op = &tid_fd_dentry_operations;
1742 	d_add(dentry, inode);
1743 	/* Close the race of the process dying before we return the dentry */
1744 	if (tid_fd_revalidate(dentry, NULL))
1745 		error = NULL;
1746 
1747  out:
1748 	return error;
1749 }
1750 
1751 static struct dentry *proc_lookupfdinfo(struct inode *dir,
1752 					struct dentry *dentry,
1753 					struct nameidata *nd)
1754 {
1755 	return proc_lookupfd_common(dir, dentry, proc_fdinfo_instantiate);
1756 }
1757 
1758 static int proc_readfdinfo(struct file *filp, void *dirent, filldir_t filldir)
1759 {
1760 	return proc_readfd_common(filp, dirent, filldir,
1761 				  proc_fdinfo_instantiate);
1762 }
1763 
1764 static const struct file_operations proc_fdinfo_operations = {
1765 	.read		= generic_read_dir,
1766 	.readdir	= proc_readfdinfo,
1767 };
1768 
1769 /*
1770  * proc directories can do almost nothing..
1771  */
1772 static const struct inode_operations proc_fdinfo_inode_operations = {
1773 	.lookup		= proc_lookupfdinfo,
1774 	.setattr	= proc_setattr,
1775 };
1776 
1777 
1778 static struct dentry *proc_pident_instantiate(struct inode *dir,
1779 	struct dentry *dentry, struct task_struct *task, const void *ptr)
1780 {
1781 	const struct pid_entry *p = ptr;
1782 	struct inode *inode;
1783 	struct proc_inode *ei;
1784 	struct dentry *error = ERR_PTR(-EINVAL);
1785 
1786 	inode = proc_pid_make_inode(dir->i_sb, task);
1787 	if (!inode)
1788 		goto out;
1789 
1790 	ei = PROC_I(inode);
1791 	inode->i_mode = p->mode;
1792 	if (S_ISDIR(inode->i_mode))
1793 		inode->i_nlink = 2;	/* Use getattr to fix if necessary */
1794 	if (p->iop)
1795 		inode->i_op = p->iop;
1796 	if (p->fop)
1797 		inode->i_fop = p->fop;
1798 	ei->op = p->op;
1799 	dentry->d_op = &pid_dentry_operations;
1800 	d_add(dentry, inode);
1801 	/* Close the race of the process dying before we return the dentry */
1802 	if (pid_revalidate(dentry, NULL))
1803 		error = NULL;
1804 out:
1805 	return error;
1806 }
1807 
1808 static struct dentry *proc_pident_lookup(struct inode *dir,
1809 					 struct dentry *dentry,
1810 					 const struct pid_entry *ents,
1811 					 unsigned int nents)
1812 {
1813 	struct inode *inode;
1814 	struct dentry *error;
1815 	struct task_struct *task = get_proc_task(dir);
1816 	const struct pid_entry *p, *last;
1817 
1818 	error = ERR_PTR(-ENOENT);
1819 	inode = NULL;
1820 
1821 	if (!task)
1822 		goto out_no_task;
1823 
1824 	/*
1825 	 * Yes, it does not scale. And it should not. Don't add
1826 	 * new entries into /proc/<tgid>/ without very good reasons.
1827 	 */
1828 	last = &ents[nents - 1];
1829 	for (p = ents; p <= last; p++) {
1830 		if (p->len != dentry->d_name.len)
1831 			continue;
1832 		if (!memcmp(dentry->d_name.name, p->name, p->len))
1833 			break;
1834 	}
1835 	if (p > last)
1836 		goto out;
1837 
1838 	error = proc_pident_instantiate(dir, dentry, task, p);
1839 out:
1840 	put_task_struct(task);
1841 out_no_task:
1842 	return error;
1843 }
1844 
1845 static int proc_pident_fill_cache(struct file *filp, void *dirent,
1846 	filldir_t filldir, struct task_struct *task, const struct pid_entry *p)
1847 {
1848 	return proc_fill_cache(filp, dirent, filldir, p->name, p->len,
1849 				proc_pident_instantiate, task, p);
1850 }
1851 
1852 static int proc_pident_readdir(struct file *filp,
1853 		void *dirent, filldir_t filldir,
1854 		const struct pid_entry *ents, unsigned int nents)
1855 {
1856 	int i;
1857 	struct dentry *dentry = filp->f_path.dentry;
1858 	struct inode *inode = dentry->d_inode;
1859 	struct task_struct *task = get_proc_task(inode);
1860 	const struct pid_entry *p, *last;
1861 	ino_t ino;
1862 	int ret;
1863 
1864 	ret = -ENOENT;
1865 	if (!task)
1866 		goto out_no_task;
1867 
1868 	ret = 0;
1869 	i = filp->f_pos;
1870 	switch (i) {
1871 	case 0:
1872 		ino = inode->i_ino;
1873 		if (filldir(dirent, ".", 1, i, ino, DT_DIR) < 0)
1874 			goto out;
1875 		i++;
1876 		filp->f_pos++;
1877 		/* fall through */
1878 	case 1:
1879 		ino = parent_ino(dentry);
1880 		if (filldir(dirent, "..", 2, i, ino, DT_DIR) < 0)
1881 			goto out;
1882 		i++;
1883 		filp->f_pos++;
1884 		/* fall through */
1885 	default:
1886 		i -= 2;
1887 		if (i >= nents) {
1888 			ret = 1;
1889 			goto out;
1890 		}
1891 		p = ents + i;
1892 		last = &ents[nents - 1];
1893 		while (p <= last) {
1894 			if (proc_pident_fill_cache(filp, dirent, filldir, task, p) < 0)
1895 				goto out;
1896 			filp->f_pos++;
1897 			p++;
1898 		}
1899 	}
1900 
1901 	ret = 1;
1902 out:
1903 	put_task_struct(task);
1904 out_no_task:
1905 	return ret;
1906 }
1907 
1908 #ifdef CONFIG_SECURITY
1909 static ssize_t proc_pid_attr_read(struct file * file, char __user * buf,
1910 				  size_t count, loff_t *ppos)
1911 {
1912 	struct inode * inode = file->f_path.dentry->d_inode;
1913 	char *p = NULL;
1914 	ssize_t length;
1915 	struct task_struct *task = get_proc_task(inode);
1916 
1917 	if (!task)
1918 		return -ESRCH;
1919 
1920 	length = security_getprocattr(task,
1921 				      (char*)file->f_path.dentry->d_name.name,
1922 				      &p);
1923 	put_task_struct(task);
1924 	if (length > 0)
1925 		length = simple_read_from_buffer(buf, count, ppos, p, length);
1926 	kfree(p);
1927 	return length;
1928 }
1929 
1930 static ssize_t proc_pid_attr_write(struct file * file, const char __user * buf,
1931 				   size_t count, loff_t *ppos)
1932 {
1933 	struct inode * inode = file->f_path.dentry->d_inode;
1934 	char *page;
1935 	ssize_t length;
1936 	struct task_struct *task = get_proc_task(inode);
1937 
1938 	length = -ESRCH;
1939 	if (!task)
1940 		goto out_no_task;
1941 	if (count > PAGE_SIZE)
1942 		count = PAGE_SIZE;
1943 
1944 	/* No partial writes. */
1945 	length = -EINVAL;
1946 	if (*ppos != 0)
1947 		goto out;
1948 
1949 	length = -ENOMEM;
1950 	page = (char*)__get_free_page(GFP_TEMPORARY);
1951 	if (!page)
1952 		goto out;
1953 
1954 	length = -EFAULT;
1955 	if (copy_from_user(page, buf, count))
1956 		goto out_free;
1957 
1958 	length = security_setprocattr(task,
1959 				      (char*)file->f_path.dentry->d_name.name,
1960 				      (void*)page, count);
1961 out_free:
1962 	free_page((unsigned long) page);
1963 out:
1964 	put_task_struct(task);
1965 out_no_task:
1966 	return length;
1967 }
1968 
1969 static const struct file_operations proc_pid_attr_operations = {
1970 	.read		= proc_pid_attr_read,
1971 	.write		= proc_pid_attr_write,
1972 };
1973 
1974 static const struct pid_entry attr_dir_stuff[] = {
1975 	REG("current",    S_IRUGO|S_IWUGO, pid_attr),
1976 	REG("prev",       S_IRUGO,	   pid_attr),
1977 	REG("exec",       S_IRUGO|S_IWUGO, pid_attr),
1978 	REG("fscreate",   S_IRUGO|S_IWUGO, pid_attr),
1979 	REG("keycreate",  S_IRUGO|S_IWUGO, pid_attr),
1980 	REG("sockcreate", S_IRUGO|S_IWUGO, pid_attr),
1981 };
1982 
1983 static int proc_attr_dir_readdir(struct file * filp,
1984 			     void * dirent, filldir_t filldir)
1985 {
1986 	return proc_pident_readdir(filp,dirent,filldir,
1987 				   attr_dir_stuff,ARRAY_SIZE(attr_dir_stuff));
1988 }
1989 
1990 static const struct file_operations proc_attr_dir_operations = {
1991 	.read		= generic_read_dir,
1992 	.readdir	= proc_attr_dir_readdir,
1993 };
1994 
1995 static struct dentry *proc_attr_dir_lookup(struct inode *dir,
1996 				struct dentry *dentry, struct nameidata *nd)
1997 {
1998 	return proc_pident_lookup(dir, dentry,
1999 				  attr_dir_stuff, ARRAY_SIZE(attr_dir_stuff));
2000 }
2001 
2002 static const struct inode_operations proc_attr_dir_inode_operations = {
2003 	.lookup		= proc_attr_dir_lookup,
2004 	.getattr	= pid_getattr,
2005 	.setattr	= proc_setattr,
2006 };
2007 
2008 #endif
2009 
2010 #if defined(USE_ELF_CORE_DUMP) && defined(CONFIG_ELF_CORE)
2011 static ssize_t proc_coredump_filter_read(struct file *file, char __user *buf,
2012 					 size_t count, loff_t *ppos)
2013 {
2014 	struct task_struct *task = get_proc_task(file->f_dentry->d_inode);
2015 	struct mm_struct *mm;
2016 	char buffer[PROC_NUMBUF];
2017 	size_t len;
2018 	int ret;
2019 
2020 	if (!task)
2021 		return -ESRCH;
2022 
2023 	ret = 0;
2024 	mm = get_task_mm(task);
2025 	if (mm) {
2026 		len = snprintf(buffer, sizeof(buffer), "%08lx\n",
2027 			       ((mm->flags & MMF_DUMP_FILTER_MASK) >>
2028 				MMF_DUMP_FILTER_SHIFT));
2029 		mmput(mm);
2030 		ret = simple_read_from_buffer(buf, count, ppos, buffer, len);
2031 	}
2032 
2033 	put_task_struct(task);
2034 
2035 	return ret;
2036 }
2037 
2038 static ssize_t proc_coredump_filter_write(struct file *file,
2039 					  const char __user *buf,
2040 					  size_t count,
2041 					  loff_t *ppos)
2042 {
2043 	struct task_struct *task;
2044 	struct mm_struct *mm;
2045 	char buffer[PROC_NUMBUF], *end;
2046 	unsigned int val;
2047 	int ret;
2048 	int i;
2049 	unsigned long mask;
2050 
2051 	ret = -EFAULT;
2052 	memset(buffer, 0, sizeof(buffer));
2053 	if (count > sizeof(buffer) - 1)
2054 		count = sizeof(buffer) - 1;
2055 	if (copy_from_user(buffer, buf, count))
2056 		goto out_no_task;
2057 
2058 	ret = -EINVAL;
2059 	val = (unsigned int)simple_strtoul(buffer, &end, 0);
2060 	if (*end == '\n')
2061 		end++;
2062 	if (end - buffer == 0)
2063 		goto out_no_task;
2064 
2065 	ret = -ESRCH;
2066 	task = get_proc_task(file->f_dentry->d_inode);
2067 	if (!task)
2068 		goto out_no_task;
2069 
2070 	ret = end - buffer;
2071 	mm = get_task_mm(task);
2072 	if (!mm)
2073 		goto out_no_mm;
2074 
2075 	for (i = 0, mask = 1; i < MMF_DUMP_FILTER_BITS; i++, mask <<= 1) {
2076 		if (val & mask)
2077 			set_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags);
2078 		else
2079 			clear_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags);
2080 	}
2081 
2082 	mmput(mm);
2083  out_no_mm:
2084 	put_task_struct(task);
2085  out_no_task:
2086 	return ret;
2087 }
2088 
2089 static const struct file_operations proc_coredump_filter_operations = {
2090 	.read		= proc_coredump_filter_read,
2091 	.write		= proc_coredump_filter_write,
2092 };
2093 #endif
2094 
2095 /*
2096  * /proc/self:
2097  */
2098 static int proc_self_readlink(struct dentry *dentry, char __user *buffer,
2099 			      int buflen)
2100 {
2101 	char tmp[PROC_NUMBUF];
2102 	sprintf(tmp, "%d", task_tgid_vnr(current));
2103 	return vfs_readlink(dentry,buffer,buflen,tmp);
2104 }
2105 
2106 static void *proc_self_follow_link(struct dentry *dentry, struct nameidata *nd)
2107 {
2108 	char tmp[PROC_NUMBUF];
2109 	sprintf(tmp, "%d", task_tgid_vnr(current));
2110 	return ERR_PTR(vfs_follow_link(nd,tmp));
2111 }
2112 
2113 static const struct inode_operations proc_self_inode_operations = {
2114 	.readlink	= proc_self_readlink,
2115 	.follow_link	= proc_self_follow_link,
2116 };
2117 
2118 /*
2119  * proc base
2120  *
2121  * These are the directory entries in the root directory of /proc
2122  * that properly belong to the /proc filesystem, as they describe
2123  * describe something that is process related.
2124  */
2125 static const struct pid_entry proc_base_stuff[] = {
2126 	NOD("self", S_IFLNK|S_IRWXUGO,
2127 		&proc_self_inode_operations, NULL, {}),
2128 };
2129 
2130 /*
2131  *	Exceptional case: normally we are not allowed to unhash a busy
2132  * directory. In this case, however, we can do it - no aliasing problems
2133  * due to the way we treat inodes.
2134  */
2135 static int proc_base_revalidate(struct dentry *dentry, struct nameidata *nd)
2136 {
2137 	struct inode *inode = dentry->d_inode;
2138 	struct task_struct *task = get_proc_task(inode);
2139 	if (task) {
2140 		put_task_struct(task);
2141 		return 1;
2142 	}
2143 	d_drop(dentry);
2144 	return 0;
2145 }
2146 
2147 static struct dentry_operations proc_base_dentry_operations =
2148 {
2149 	.d_revalidate	= proc_base_revalidate,
2150 	.d_delete	= pid_delete_dentry,
2151 };
2152 
2153 static struct dentry *proc_base_instantiate(struct inode *dir,
2154 	struct dentry *dentry, struct task_struct *task, const void *ptr)
2155 {
2156 	const struct pid_entry *p = ptr;
2157 	struct inode *inode;
2158 	struct proc_inode *ei;
2159 	struct dentry *error = ERR_PTR(-EINVAL);
2160 
2161 	/* Allocate the inode */
2162 	error = ERR_PTR(-ENOMEM);
2163 	inode = new_inode(dir->i_sb);
2164 	if (!inode)
2165 		goto out;
2166 
2167 	/* Initialize the inode */
2168 	ei = PROC_I(inode);
2169 	inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
2170 
2171 	/*
2172 	 * grab the reference to the task.
2173 	 */
2174 	ei->pid = get_task_pid(task, PIDTYPE_PID);
2175 	if (!ei->pid)
2176 		goto out_iput;
2177 
2178 	inode->i_uid = 0;
2179 	inode->i_gid = 0;
2180 	inode->i_mode = p->mode;
2181 	if (S_ISDIR(inode->i_mode))
2182 		inode->i_nlink = 2;
2183 	if (S_ISLNK(inode->i_mode))
2184 		inode->i_size = 64;
2185 	if (p->iop)
2186 		inode->i_op = p->iop;
2187 	if (p->fop)
2188 		inode->i_fop = p->fop;
2189 	ei->op = p->op;
2190 	dentry->d_op = &proc_base_dentry_operations;
2191 	d_add(dentry, inode);
2192 	error = NULL;
2193 out:
2194 	return error;
2195 out_iput:
2196 	iput(inode);
2197 	goto out;
2198 }
2199 
2200 static struct dentry *proc_base_lookup(struct inode *dir, struct dentry *dentry)
2201 {
2202 	struct dentry *error;
2203 	struct task_struct *task = get_proc_task(dir);
2204 	const struct pid_entry *p, *last;
2205 
2206 	error = ERR_PTR(-ENOENT);
2207 
2208 	if (!task)
2209 		goto out_no_task;
2210 
2211 	/* Lookup the directory entry */
2212 	last = &proc_base_stuff[ARRAY_SIZE(proc_base_stuff) - 1];
2213 	for (p = proc_base_stuff; p <= last; p++) {
2214 		if (p->len != dentry->d_name.len)
2215 			continue;
2216 		if (!memcmp(dentry->d_name.name, p->name, p->len))
2217 			break;
2218 	}
2219 	if (p > last)
2220 		goto out;
2221 
2222 	error = proc_base_instantiate(dir, dentry, task, p);
2223 
2224 out:
2225 	put_task_struct(task);
2226 out_no_task:
2227 	return error;
2228 }
2229 
2230 static int proc_base_fill_cache(struct file *filp, void *dirent,
2231 	filldir_t filldir, struct task_struct *task, const struct pid_entry *p)
2232 {
2233 	return proc_fill_cache(filp, dirent, filldir, p->name, p->len,
2234 				proc_base_instantiate, task, p);
2235 }
2236 
2237 #ifdef CONFIG_TASK_IO_ACCOUNTING
2238 static int proc_pid_io_accounting(struct task_struct *task, char *buffer)
2239 {
2240 	return sprintf(buffer,
2241 #ifdef CONFIG_TASK_XACCT
2242 			"rchar: %llu\n"
2243 			"wchar: %llu\n"
2244 			"syscr: %llu\n"
2245 			"syscw: %llu\n"
2246 #endif
2247 			"read_bytes: %llu\n"
2248 			"write_bytes: %llu\n"
2249 			"cancelled_write_bytes: %llu\n",
2250 #ifdef CONFIG_TASK_XACCT
2251 			(unsigned long long)task->rchar,
2252 			(unsigned long long)task->wchar,
2253 			(unsigned long long)task->syscr,
2254 			(unsigned long long)task->syscw,
2255 #endif
2256 			(unsigned long long)task->ioac.read_bytes,
2257 			(unsigned long long)task->ioac.write_bytes,
2258 			(unsigned long long)task->ioac.cancelled_write_bytes);
2259 }
2260 #endif
2261 
2262 /*
2263  * Thread groups
2264  */
2265 static const struct file_operations proc_task_operations;
2266 static const struct inode_operations proc_task_inode_operations;
2267 
2268 static const struct pid_entry tgid_base_stuff[] = {
2269 	DIR("task",       S_IRUGO|S_IXUGO, task),
2270 	DIR("fd",         S_IRUSR|S_IXUSR, fd),
2271 	DIR("fdinfo",     S_IRUSR|S_IXUSR, fdinfo),
2272 	REG("environ",    S_IRUSR, environ),
2273 	INF("auxv",       S_IRUSR, pid_auxv),
2274 	INF("status",     S_IRUGO, pid_status),
2275 	INF("limits",	  S_IRUSR, pid_limits),
2276 #ifdef CONFIG_SCHED_DEBUG
2277 	REG("sched",      S_IRUGO|S_IWUSR, pid_sched),
2278 #endif
2279 	INF("cmdline",    S_IRUGO, pid_cmdline),
2280 	INF("stat",       S_IRUGO, tgid_stat),
2281 	INF("statm",      S_IRUGO, pid_statm),
2282 	REG("maps",       S_IRUGO, maps),
2283 #ifdef CONFIG_NUMA
2284 	REG("numa_maps",  S_IRUGO, numa_maps),
2285 #endif
2286 	REG("mem",        S_IRUSR|S_IWUSR, mem),
2287 	LNK("cwd",        cwd),
2288 	LNK("root",       root),
2289 	LNK("exe",        exe),
2290 	REG("mounts",     S_IRUGO, mounts),
2291 	REG("mountstats", S_IRUSR, mountstats),
2292 #ifdef CONFIG_MMU
2293 	REG("clear_refs", S_IWUSR, clear_refs),
2294 	REG("smaps",      S_IRUGO, smaps),
2295 #endif
2296 #ifdef CONFIG_SECURITY
2297 	DIR("attr",       S_IRUGO|S_IXUGO, attr_dir),
2298 #endif
2299 #ifdef CONFIG_KALLSYMS
2300 	INF("wchan",      S_IRUGO, pid_wchan),
2301 #endif
2302 #ifdef CONFIG_SCHEDSTATS
2303 	INF("schedstat",  S_IRUGO, pid_schedstat),
2304 #endif
2305 #ifdef CONFIG_LATENCYTOP
2306 	REG("latency",  S_IRUGO, lstats),
2307 #endif
2308 #ifdef CONFIG_PROC_PID_CPUSET
2309 	REG("cpuset",     S_IRUGO, cpuset),
2310 #endif
2311 #ifdef CONFIG_CGROUPS
2312 	REG("cgroup",  S_IRUGO, cgroup),
2313 #endif
2314 	INF("oom_score",  S_IRUGO, oom_score),
2315 	REG("oom_adj",    S_IRUGO|S_IWUSR, oom_adjust),
2316 #ifdef CONFIG_AUDITSYSCALL
2317 	REG("loginuid",   S_IWUSR|S_IRUGO, loginuid),
2318 #endif
2319 #ifdef CONFIG_FAULT_INJECTION
2320 	REG("make-it-fail", S_IRUGO|S_IWUSR, fault_inject),
2321 #endif
2322 #if defined(USE_ELF_CORE_DUMP) && defined(CONFIG_ELF_CORE)
2323 	REG("coredump_filter", S_IRUGO|S_IWUSR, coredump_filter),
2324 #endif
2325 #ifdef CONFIG_TASK_IO_ACCOUNTING
2326 	INF("io",	S_IRUGO, pid_io_accounting),
2327 #endif
2328 };
2329 
2330 static int proc_tgid_base_readdir(struct file * filp,
2331 			     void * dirent, filldir_t filldir)
2332 {
2333 	return proc_pident_readdir(filp,dirent,filldir,
2334 				   tgid_base_stuff,ARRAY_SIZE(tgid_base_stuff));
2335 }
2336 
2337 static const struct file_operations proc_tgid_base_operations = {
2338 	.read		= generic_read_dir,
2339 	.readdir	= proc_tgid_base_readdir,
2340 };
2341 
2342 static struct dentry *proc_tgid_base_lookup(struct inode *dir, struct dentry *dentry, struct nameidata *nd){
2343 	return proc_pident_lookup(dir, dentry,
2344 				  tgid_base_stuff, ARRAY_SIZE(tgid_base_stuff));
2345 }
2346 
2347 static const struct inode_operations proc_tgid_base_inode_operations = {
2348 	.lookup		= proc_tgid_base_lookup,
2349 	.getattr	= pid_getattr,
2350 	.setattr	= proc_setattr,
2351 };
2352 
2353 static void proc_flush_task_mnt(struct vfsmount *mnt, pid_t pid, pid_t tgid)
2354 {
2355 	struct dentry *dentry, *leader, *dir;
2356 	char buf[PROC_NUMBUF];
2357 	struct qstr name;
2358 
2359 	name.name = buf;
2360 	name.len = snprintf(buf, sizeof(buf), "%d", pid);
2361 	dentry = d_hash_and_lookup(mnt->mnt_root, &name);
2362 	if (dentry) {
2363 		shrink_dcache_parent(dentry);
2364 		d_drop(dentry);
2365 		dput(dentry);
2366 	}
2367 
2368 	if (tgid == 0)
2369 		goto out;
2370 
2371 	name.name = buf;
2372 	name.len = snprintf(buf, sizeof(buf), "%d", tgid);
2373 	leader = d_hash_and_lookup(mnt->mnt_root, &name);
2374 	if (!leader)
2375 		goto out;
2376 
2377 	name.name = "task";
2378 	name.len = strlen(name.name);
2379 	dir = d_hash_and_lookup(leader, &name);
2380 	if (!dir)
2381 		goto out_put_leader;
2382 
2383 	name.name = buf;
2384 	name.len = snprintf(buf, sizeof(buf), "%d", pid);
2385 	dentry = d_hash_and_lookup(dir, &name);
2386 	if (dentry) {
2387 		shrink_dcache_parent(dentry);
2388 		d_drop(dentry);
2389 		dput(dentry);
2390 	}
2391 
2392 	dput(dir);
2393 out_put_leader:
2394 	dput(leader);
2395 out:
2396 	return;
2397 }
2398 
2399 /**
2400  * proc_flush_task -  Remove dcache entries for @task from the /proc dcache.
2401  * @task: task that should be flushed.
2402  *
2403  * When flushing dentries from proc, one needs to flush them from global
2404  * proc (proc_mnt) and from all the namespaces' procs this task was seen
2405  * in. This call is supposed to do all of this job.
2406  *
2407  * Looks in the dcache for
2408  * /proc/@pid
2409  * /proc/@tgid/task/@pid
2410  * if either directory is present flushes it and all of it'ts children
2411  * from the dcache.
2412  *
2413  * It is safe and reasonable to cache /proc entries for a task until
2414  * that task exits.  After that they just clog up the dcache with
2415  * useless entries, possibly causing useful dcache entries to be
2416  * flushed instead.  This routine is proved to flush those useless
2417  * dcache entries at process exit time.
2418  *
2419  * NOTE: This routine is just an optimization so it does not guarantee
2420  *       that no dcache entries will exist at process exit time it
2421  *       just makes it very unlikely that any will persist.
2422  */
2423 
2424 void proc_flush_task(struct task_struct *task)
2425 {
2426 	int i;
2427 	struct pid *pid, *tgid = NULL;
2428 	struct upid *upid;
2429 
2430 	pid = task_pid(task);
2431 	if (thread_group_leader(task))
2432 		tgid = task_tgid(task);
2433 
2434 	for (i = 0; i <= pid->level; i++) {
2435 		upid = &pid->numbers[i];
2436 		proc_flush_task_mnt(upid->ns->proc_mnt, upid->nr,
2437 			tgid ? tgid->numbers[i].nr : 0);
2438 	}
2439 
2440 	upid = &pid->numbers[pid->level];
2441 	if (upid->nr == 1)
2442 		pid_ns_release_proc(upid->ns);
2443 }
2444 
2445 static struct dentry *proc_pid_instantiate(struct inode *dir,
2446 					   struct dentry * dentry,
2447 					   struct task_struct *task, const void *ptr)
2448 {
2449 	struct dentry *error = ERR_PTR(-ENOENT);
2450 	struct inode *inode;
2451 
2452 	inode = proc_pid_make_inode(dir->i_sb, task);
2453 	if (!inode)
2454 		goto out;
2455 
2456 	inode->i_mode = S_IFDIR|S_IRUGO|S_IXUGO;
2457 	inode->i_op = &proc_tgid_base_inode_operations;
2458 	inode->i_fop = &proc_tgid_base_operations;
2459 	inode->i_flags|=S_IMMUTABLE;
2460 	inode->i_nlink = 5;
2461 #ifdef CONFIG_SECURITY
2462 	inode->i_nlink += 1;
2463 #endif
2464 
2465 	dentry->d_op = &pid_dentry_operations;
2466 
2467 	d_add(dentry, inode);
2468 	/* Close the race of the process dying before we return the dentry */
2469 	if (pid_revalidate(dentry, NULL))
2470 		error = NULL;
2471 out:
2472 	return error;
2473 }
2474 
2475 struct dentry *proc_pid_lookup(struct inode *dir, struct dentry * dentry, struct nameidata *nd)
2476 {
2477 	struct dentry *result = ERR_PTR(-ENOENT);
2478 	struct task_struct *task;
2479 	unsigned tgid;
2480 	struct pid_namespace *ns;
2481 
2482 	result = proc_base_lookup(dir, dentry);
2483 	if (!IS_ERR(result) || PTR_ERR(result) != -ENOENT)
2484 		goto out;
2485 
2486 	tgid = name_to_int(dentry);
2487 	if (tgid == ~0U)
2488 		goto out;
2489 
2490 	ns = dentry->d_sb->s_fs_info;
2491 	rcu_read_lock();
2492 	task = find_task_by_pid_ns(tgid, ns);
2493 	if (task)
2494 		get_task_struct(task);
2495 	rcu_read_unlock();
2496 	if (!task)
2497 		goto out;
2498 
2499 	result = proc_pid_instantiate(dir, dentry, task, NULL);
2500 	put_task_struct(task);
2501 out:
2502 	return result;
2503 }
2504 
2505 /*
2506  * Find the first task with tgid >= tgid
2507  *
2508  */
2509 struct tgid_iter {
2510 	unsigned int tgid;
2511 	struct task_struct *task;
2512 };
2513 static struct tgid_iter next_tgid(struct pid_namespace *ns, struct tgid_iter iter)
2514 {
2515 	struct pid *pid;
2516 
2517 	if (iter.task)
2518 		put_task_struct(iter.task);
2519 	rcu_read_lock();
2520 retry:
2521 	iter.task = NULL;
2522 	pid = find_ge_pid(iter.tgid, ns);
2523 	if (pid) {
2524 		iter.tgid = pid_nr_ns(pid, ns);
2525 		iter.task = pid_task(pid, PIDTYPE_PID);
2526 		/* What we to know is if the pid we have find is the
2527 		 * pid of a thread_group_leader.  Testing for task
2528 		 * being a thread_group_leader is the obvious thing
2529 		 * todo but there is a window when it fails, due to
2530 		 * the pid transfer logic in de_thread.
2531 		 *
2532 		 * So we perform the straight forward test of seeing
2533 		 * if the pid we have found is the pid of a thread
2534 		 * group leader, and don't worry if the task we have
2535 		 * found doesn't happen to be a thread group leader.
2536 		 * As we don't care in the case of readdir.
2537 		 */
2538 		if (!iter.task || !has_group_leader_pid(iter.task)) {
2539 			iter.tgid += 1;
2540 			goto retry;
2541 		}
2542 		get_task_struct(iter.task);
2543 	}
2544 	rcu_read_unlock();
2545 	return iter;
2546 }
2547 
2548 #define TGID_OFFSET (FIRST_PROCESS_ENTRY + ARRAY_SIZE(proc_base_stuff))
2549 
2550 static int proc_pid_fill_cache(struct file *filp, void *dirent, filldir_t filldir,
2551 	struct tgid_iter iter)
2552 {
2553 	char name[PROC_NUMBUF];
2554 	int len = snprintf(name, sizeof(name), "%d", iter.tgid);
2555 	return proc_fill_cache(filp, dirent, filldir, name, len,
2556 				proc_pid_instantiate, iter.task, NULL);
2557 }
2558 
2559 /* for the /proc/ directory itself, after non-process stuff has been done */
2560 int proc_pid_readdir(struct file * filp, void * dirent, filldir_t filldir)
2561 {
2562 	unsigned int nr = filp->f_pos - FIRST_PROCESS_ENTRY;
2563 	struct task_struct *reaper = get_proc_task(filp->f_path.dentry->d_inode);
2564 	struct tgid_iter iter;
2565 	struct pid_namespace *ns;
2566 
2567 	if (!reaper)
2568 		goto out_no_task;
2569 
2570 	for (; nr < ARRAY_SIZE(proc_base_stuff); filp->f_pos++, nr++) {
2571 		const struct pid_entry *p = &proc_base_stuff[nr];
2572 		if (proc_base_fill_cache(filp, dirent, filldir, reaper, p) < 0)
2573 			goto out;
2574 	}
2575 
2576 	ns = filp->f_dentry->d_sb->s_fs_info;
2577 	iter.task = NULL;
2578 	iter.tgid = filp->f_pos - TGID_OFFSET;
2579 	for (iter = next_tgid(ns, iter);
2580 	     iter.task;
2581 	     iter.tgid += 1, iter = next_tgid(ns, iter)) {
2582 		filp->f_pos = iter.tgid + TGID_OFFSET;
2583 		if (proc_pid_fill_cache(filp, dirent, filldir, iter) < 0) {
2584 			put_task_struct(iter.task);
2585 			goto out;
2586 		}
2587 	}
2588 	filp->f_pos = PID_MAX_LIMIT + TGID_OFFSET;
2589 out:
2590 	put_task_struct(reaper);
2591 out_no_task:
2592 	return 0;
2593 }
2594 
2595 /*
2596  * Tasks
2597  */
2598 static const struct pid_entry tid_base_stuff[] = {
2599 	DIR("fd",        S_IRUSR|S_IXUSR, fd),
2600 	DIR("fdinfo",    S_IRUSR|S_IXUSR, fdinfo),
2601 	REG("environ",   S_IRUSR, environ),
2602 	INF("auxv",      S_IRUSR, pid_auxv),
2603 	INF("status",    S_IRUGO, pid_status),
2604 	INF("limits",	 S_IRUSR, pid_limits),
2605 #ifdef CONFIG_SCHED_DEBUG
2606 	REG("sched",     S_IRUGO|S_IWUSR, pid_sched),
2607 #endif
2608 	INF("cmdline",   S_IRUGO, pid_cmdline),
2609 	INF("stat",      S_IRUGO, tid_stat),
2610 	INF("statm",     S_IRUGO, pid_statm),
2611 	REG("maps",      S_IRUGO, maps),
2612 #ifdef CONFIG_NUMA
2613 	REG("numa_maps", S_IRUGO, numa_maps),
2614 #endif
2615 	REG("mem",       S_IRUSR|S_IWUSR, mem),
2616 	LNK("cwd",       cwd),
2617 	LNK("root",      root),
2618 	LNK("exe",       exe),
2619 	REG("mounts",    S_IRUGO, mounts),
2620 #ifdef CONFIG_MMU
2621 	REG("clear_refs", S_IWUSR, clear_refs),
2622 	REG("smaps",     S_IRUGO, smaps),
2623 #endif
2624 #ifdef CONFIG_SECURITY
2625 	DIR("attr",      S_IRUGO|S_IXUGO, attr_dir),
2626 #endif
2627 #ifdef CONFIG_KALLSYMS
2628 	INF("wchan",     S_IRUGO, pid_wchan),
2629 #endif
2630 #ifdef CONFIG_SCHEDSTATS
2631 	INF("schedstat", S_IRUGO, pid_schedstat),
2632 #endif
2633 #ifdef CONFIG_LATENCYTOP
2634 	REG("latency",  S_IRUGO, lstats),
2635 #endif
2636 #ifdef CONFIG_PROC_PID_CPUSET
2637 	REG("cpuset",    S_IRUGO, cpuset),
2638 #endif
2639 #ifdef CONFIG_CGROUPS
2640 	REG("cgroup",  S_IRUGO, cgroup),
2641 #endif
2642 	INF("oom_score", S_IRUGO, oom_score),
2643 	REG("oom_adj",   S_IRUGO|S_IWUSR, oom_adjust),
2644 #ifdef CONFIG_AUDITSYSCALL
2645 	REG("loginuid",  S_IWUSR|S_IRUGO, loginuid),
2646 #endif
2647 #ifdef CONFIG_FAULT_INJECTION
2648 	REG("make-it-fail", S_IRUGO|S_IWUSR, fault_inject),
2649 #endif
2650 };
2651 
2652 static int proc_tid_base_readdir(struct file * filp,
2653 			     void * dirent, filldir_t filldir)
2654 {
2655 	return proc_pident_readdir(filp,dirent,filldir,
2656 				   tid_base_stuff,ARRAY_SIZE(tid_base_stuff));
2657 }
2658 
2659 static struct dentry *proc_tid_base_lookup(struct inode *dir, struct dentry *dentry, struct nameidata *nd){
2660 	return proc_pident_lookup(dir, dentry,
2661 				  tid_base_stuff, ARRAY_SIZE(tid_base_stuff));
2662 }
2663 
2664 static const struct file_operations proc_tid_base_operations = {
2665 	.read		= generic_read_dir,
2666 	.readdir	= proc_tid_base_readdir,
2667 };
2668 
2669 static const struct inode_operations proc_tid_base_inode_operations = {
2670 	.lookup		= proc_tid_base_lookup,
2671 	.getattr	= pid_getattr,
2672 	.setattr	= proc_setattr,
2673 };
2674 
2675 static struct dentry *proc_task_instantiate(struct inode *dir,
2676 	struct dentry *dentry, struct task_struct *task, const void *ptr)
2677 {
2678 	struct dentry *error = ERR_PTR(-ENOENT);
2679 	struct inode *inode;
2680 	inode = proc_pid_make_inode(dir->i_sb, task);
2681 
2682 	if (!inode)
2683 		goto out;
2684 	inode->i_mode = S_IFDIR|S_IRUGO|S_IXUGO;
2685 	inode->i_op = &proc_tid_base_inode_operations;
2686 	inode->i_fop = &proc_tid_base_operations;
2687 	inode->i_flags|=S_IMMUTABLE;
2688 	inode->i_nlink = 4;
2689 #ifdef CONFIG_SECURITY
2690 	inode->i_nlink += 1;
2691 #endif
2692 
2693 	dentry->d_op = &pid_dentry_operations;
2694 
2695 	d_add(dentry, inode);
2696 	/* Close the race of the process dying before we return the dentry */
2697 	if (pid_revalidate(dentry, NULL))
2698 		error = NULL;
2699 out:
2700 	return error;
2701 }
2702 
2703 static struct dentry *proc_task_lookup(struct inode *dir, struct dentry * dentry, struct nameidata *nd)
2704 {
2705 	struct dentry *result = ERR_PTR(-ENOENT);
2706 	struct task_struct *task;
2707 	struct task_struct *leader = get_proc_task(dir);
2708 	unsigned tid;
2709 	struct pid_namespace *ns;
2710 
2711 	if (!leader)
2712 		goto out_no_task;
2713 
2714 	tid = name_to_int(dentry);
2715 	if (tid == ~0U)
2716 		goto out;
2717 
2718 	ns = dentry->d_sb->s_fs_info;
2719 	rcu_read_lock();
2720 	task = find_task_by_pid_ns(tid, ns);
2721 	if (task)
2722 		get_task_struct(task);
2723 	rcu_read_unlock();
2724 	if (!task)
2725 		goto out;
2726 	if (!same_thread_group(leader, task))
2727 		goto out_drop_task;
2728 
2729 	result = proc_task_instantiate(dir, dentry, task, NULL);
2730 out_drop_task:
2731 	put_task_struct(task);
2732 out:
2733 	put_task_struct(leader);
2734 out_no_task:
2735 	return result;
2736 }
2737 
2738 /*
2739  * Find the first tid of a thread group to return to user space.
2740  *
2741  * Usually this is just the thread group leader, but if the users
2742  * buffer was too small or there was a seek into the middle of the
2743  * directory we have more work todo.
2744  *
2745  * In the case of a short read we start with find_task_by_pid.
2746  *
2747  * In the case of a seek we start with the leader and walk nr
2748  * threads past it.
2749  */
2750 static struct task_struct *first_tid(struct task_struct *leader,
2751 		int tid, int nr, struct pid_namespace *ns)
2752 {
2753 	struct task_struct *pos;
2754 
2755 	rcu_read_lock();
2756 	/* Attempt to start with the pid of a thread */
2757 	if (tid && (nr > 0)) {
2758 		pos = find_task_by_pid_ns(tid, ns);
2759 		if (pos && (pos->group_leader == leader))
2760 			goto found;
2761 	}
2762 
2763 	/* If nr exceeds the number of threads there is nothing todo */
2764 	pos = NULL;
2765 	if (nr && nr >= get_nr_threads(leader))
2766 		goto out;
2767 
2768 	/* If we haven't found our starting place yet start
2769 	 * with the leader and walk nr threads forward.
2770 	 */
2771 	for (pos = leader; nr > 0; --nr) {
2772 		pos = next_thread(pos);
2773 		if (pos == leader) {
2774 			pos = NULL;
2775 			goto out;
2776 		}
2777 	}
2778 found:
2779 	get_task_struct(pos);
2780 out:
2781 	rcu_read_unlock();
2782 	return pos;
2783 }
2784 
2785 /*
2786  * Find the next thread in the thread list.
2787  * Return NULL if there is an error or no next thread.
2788  *
2789  * The reference to the input task_struct is released.
2790  */
2791 static struct task_struct *next_tid(struct task_struct *start)
2792 {
2793 	struct task_struct *pos = NULL;
2794 	rcu_read_lock();
2795 	if (pid_alive(start)) {
2796 		pos = next_thread(start);
2797 		if (thread_group_leader(pos))
2798 			pos = NULL;
2799 		else
2800 			get_task_struct(pos);
2801 	}
2802 	rcu_read_unlock();
2803 	put_task_struct(start);
2804 	return pos;
2805 }
2806 
2807 static int proc_task_fill_cache(struct file *filp, void *dirent, filldir_t filldir,
2808 	struct task_struct *task, int tid)
2809 {
2810 	char name[PROC_NUMBUF];
2811 	int len = snprintf(name, sizeof(name), "%d", tid);
2812 	return proc_fill_cache(filp, dirent, filldir, name, len,
2813 				proc_task_instantiate, task, NULL);
2814 }
2815 
2816 /* for the /proc/TGID/task/ directories */
2817 static int proc_task_readdir(struct file * filp, void * dirent, filldir_t filldir)
2818 {
2819 	struct dentry *dentry = filp->f_path.dentry;
2820 	struct inode *inode = dentry->d_inode;
2821 	struct task_struct *leader = NULL;
2822 	struct task_struct *task;
2823 	int retval = -ENOENT;
2824 	ino_t ino;
2825 	int tid;
2826 	unsigned long pos = filp->f_pos;  /* avoiding "long long" filp->f_pos */
2827 	struct pid_namespace *ns;
2828 
2829 	task = get_proc_task(inode);
2830 	if (!task)
2831 		goto out_no_task;
2832 	rcu_read_lock();
2833 	if (pid_alive(task)) {
2834 		leader = task->group_leader;
2835 		get_task_struct(leader);
2836 	}
2837 	rcu_read_unlock();
2838 	put_task_struct(task);
2839 	if (!leader)
2840 		goto out_no_task;
2841 	retval = 0;
2842 
2843 	switch (pos) {
2844 	case 0:
2845 		ino = inode->i_ino;
2846 		if (filldir(dirent, ".", 1, pos, ino, DT_DIR) < 0)
2847 			goto out;
2848 		pos++;
2849 		/* fall through */
2850 	case 1:
2851 		ino = parent_ino(dentry);
2852 		if (filldir(dirent, "..", 2, pos, ino, DT_DIR) < 0)
2853 			goto out;
2854 		pos++;
2855 		/* fall through */
2856 	}
2857 
2858 	/* f_version caches the tgid value that the last readdir call couldn't
2859 	 * return. lseek aka telldir automagically resets f_version to 0.
2860 	 */
2861 	ns = filp->f_dentry->d_sb->s_fs_info;
2862 	tid = (int)filp->f_version;
2863 	filp->f_version = 0;
2864 	for (task = first_tid(leader, tid, pos - 2, ns);
2865 	     task;
2866 	     task = next_tid(task), pos++) {
2867 		tid = task_pid_nr_ns(task, ns);
2868 		if (proc_task_fill_cache(filp, dirent, filldir, task, tid) < 0) {
2869 			/* returning this tgid failed, save it as the first
2870 			 * pid for the next readir call */
2871 			filp->f_version = (u64)tid;
2872 			put_task_struct(task);
2873 			break;
2874 		}
2875 	}
2876 out:
2877 	filp->f_pos = pos;
2878 	put_task_struct(leader);
2879 out_no_task:
2880 	return retval;
2881 }
2882 
2883 static int proc_task_getattr(struct vfsmount *mnt, struct dentry *dentry, struct kstat *stat)
2884 {
2885 	struct inode *inode = dentry->d_inode;
2886 	struct task_struct *p = get_proc_task(inode);
2887 	generic_fillattr(inode, stat);
2888 
2889 	if (p) {
2890 		rcu_read_lock();
2891 		stat->nlink += get_nr_threads(p);
2892 		rcu_read_unlock();
2893 		put_task_struct(p);
2894 	}
2895 
2896 	return 0;
2897 }
2898 
2899 static const struct inode_operations proc_task_inode_operations = {
2900 	.lookup		= proc_task_lookup,
2901 	.getattr	= proc_task_getattr,
2902 	.setattr	= proc_setattr,
2903 };
2904 
2905 static const struct file_operations proc_task_operations = {
2906 	.read		= generic_read_dir,
2907 	.readdir	= proc_task_readdir,
2908 };
2909