1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * linux/fs/proc/base.c 4 * 5 * Copyright (C) 1991, 1992 Linus Torvalds 6 * 7 * proc base directory handling functions 8 * 9 * 1999, Al Viro. Rewritten. Now it covers the whole per-process part. 10 * Instead of using magical inumbers to determine the kind of object 11 * we allocate and fill in-core inodes upon lookup. They don't even 12 * go into icache. We cache the reference to task_struct upon lookup too. 13 * Eventually it should become a filesystem in its own. We don't use the 14 * rest of procfs anymore. 15 * 16 * 17 * Changelog: 18 * 17-Jan-2005 19 * Allan Bezerra 20 * Bruna Moreira <bruna.moreira@indt.org.br> 21 * Edjard Mota <edjard.mota@indt.org.br> 22 * Ilias Biris <ilias.biris@indt.org.br> 23 * Mauricio Lin <mauricio.lin@indt.org.br> 24 * 25 * Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT 26 * 27 * A new process specific entry (smaps) included in /proc. It shows the 28 * size of rss for each memory area. The maps entry lacks information 29 * about physical memory size (rss) for each mapped file, i.e., 30 * rss information for executables and library files. 31 * This additional information is useful for any tools that need to know 32 * about physical memory consumption for a process specific library. 33 * 34 * Changelog: 35 * 21-Feb-2005 36 * Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT 37 * Pud inclusion in the page table walking. 38 * 39 * ChangeLog: 40 * 10-Mar-2005 41 * 10LE Instituto Nokia de Tecnologia - INdT: 42 * A better way to walks through the page table as suggested by Hugh Dickins. 43 * 44 * Simo Piiroinen <simo.piiroinen@nokia.com>: 45 * Smaps information related to shared, private, clean and dirty pages. 46 * 47 * Paul Mundt <paul.mundt@nokia.com>: 48 * Overall revision about smaps. 49 */ 50 51 #include <linux/uaccess.h> 52 53 #include <linux/errno.h> 54 #include <linux/time.h> 55 #include <linux/proc_fs.h> 56 #include <linux/stat.h> 57 #include <linux/task_io_accounting_ops.h> 58 #include <linux/init.h> 59 #include <linux/capability.h> 60 #include <linux/file.h> 61 #include <linux/fdtable.h> 62 #include <linux/generic-radix-tree.h> 63 #include <linux/string.h> 64 #include <linux/seq_file.h> 65 #include <linux/namei.h> 66 #include <linux/mnt_namespace.h> 67 #include <linux/mm.h> 68 #include <linux/swap.h> 69 #include <linux/rcupdate.h> 70 #include <linux/kallsyms.h> 71 #include <linux/stacktrace.h> 72 #include <linux/resource.h> 73 #include <linux/module.h> 74 #include <linux/mount.h> 75 #include <linux/security.h> 76 #include <linux/ptrace.h> 77 #include <linux/printk.h> 78 #include <linux/cache.h> 79 #include <linux/cgroup.h> 80 #include <linux/cpuset.h> 81 #include <linux/audit.h> 82 #include <linux/poll.h> 83 #include <linux/nsproxy.h> 84 #include <linux/oom.h> 85 #include <linux/elf.h> 86 #include <linux/pid_namespace.h> 87 #include <linux/user_namespace.h> 88 #include <linux/fs_struct.h> 89 #include <linux/slab.h> 90 #include <linux/sched/autogroup.h> 91 #include <linux/sched/mm.h> 92 #include <linux/sched/coredump.h> 93 #include <linux/sched/debug.h> 94 #include <linux/sched/stat.h> 95 #include <linux/posix-timers.h> 96 #include <linux/time_namespace.h> 97 #include <linux/resctrl.h> 98 #include <linux/cn_proc.h> 99 #include <trace/events/oom.h> 100 #include "internal.h" 101 #include "fd.h" 102 103 #include "../../lib/kstrtox.h" 104 105 /* NOTE: 106 * Implementing inode permission operations in /proc is almost 107 * certainly an error. Permission checks need to happen during 108 * each system call not at open time. The reason is that most of 109 * what we wish to check for permissions in /proc varies at runtime. 110 * 111 * The classic example of a problem is opening file descriptors 112 * in /proc for a task before it execs a suid executable. 113 */ 114 115 static u8 nlink_tid __ro_after_init; 116 static u8 nlink_tgid __ro_after_init; 117 118 struct pid_entry { 119 const char *name; 120 unsigned int len; 121 umode_t mode; 122 const struct inode_operations *iop; 123 const struct file_operations *fop; 124 union proc_op op; 125 }; 126 127 #define NOD(NAME, MODE, IOP, FOP, OP) { \ 128 .name = (NAME), \ 129 .len = sizeof(NAME) - 1, \ 130 .mode = MODE, \ 131 .iop = IOP, \ 132 .fop = FOP, \ 133 .op = OP, \ 134 } 135 136 #define DIR(NAME, MODE, iops, fops) \ 137 NOD(NAME, (S_IFDIR|(MODE)), &iops, &fops, {} ) 138 #define LNK(NAME, get_link) \ 139 NOD(NAME, (S_IFLNK|S_IRWXUGO), \ 140 &proc_pid_link_inode_operations, NULL, \ 141 { .proc_get_link = get_link } ) 142 #define REG(NAME, MODE, fops) \ 143 NOD(NAME, (S_IFREG|(MODE)), NULL, &fops, {}) 144 #define ONE(NAME, MODE, show) \ 145 NOD(NAME, (S_IFREG|(MODE)), \ 146 NULL, &proc_single_file_operations, \ 147 { .proc_show = show } ) 148 #define ATTR(LSM, NAME, MODE) \ 149 NOD(NAME, (S_IFREG|(MODE)), \ 150 NULL, &proc_pid_attr_operations, \ 151 { .lsm = LSM }) 152 153 /* 154 * Count the number of hardlinks for the pid_entry table, excluding the . 155 * and .. links. 156 */ 157 static unsigned int __init pid_entry_nlink(const struct pid_entry *entries, 158 unsigned int n) 159 { 160 unsigned int i; 161 unsigned int count; 162 163 count = 2; 164 for (i = 0; i < n; ++i) { 165 if (S_ISDIR(entries[i].mode)) 166 ++count; 167 } 168 169 return count; 170 } 171 172 static int get_task_root(struct task_struct *task, struct path *root) 173 { 174 int result = -ENOENT; 175 176 task_lock(task); 177 if (task->fs) { 178 get_fs_root(task->fs, root); 179 result = 0; 180 } 181 task_unlock(task); 182 return result; 183 } 184 185 static int proc_cwd_link(struct dentry *dentry, struct path *path) 186 { 187 struct task_struct *task = get_proc_task(d_inode(dentry)); 188 int result = -ENOENT; 189 190 if (task) { 191 task_lock(task); 192 if (task->fs) { 193 get_fs_pwd(task->fs, path); 194 result = 0; 195 } 196 task_unlock(task); 197 put_task_struct(task); 198 } 199 return result; 200 } 201 202 static int proc_root_link(struct dentry *dentry, struct path *path) 203 { 204 struct task_struct *task = get_proc_task(d_inode(dentry)); 205 int result = -ENOENT; 206 207 if (task) { 208 result = get_task_root(task, path); 209 put_task_struct(task); 210 } 211 return result; 212 } 213 214 /* 215 * If the user used setproctitle(), we just get the string from 216 * user space at arg_start, and limit it to a maximum of one page. 217 */ 218 static ssize_t get_mm_proctitle(struct mm_struct *mm, char __user *buf, 219 size_t count, unsigned long pos, 220 unsigned long arg_start) 221 { 222 char *page; 223 int ret, got; 224 225 if (pos >= PAGE_SIZE) 226 return 0; 227 228 page = (char *)__get_free_page(GFP_KERNEL); 229 if (!page) 230 return -ENOMEM; 231 232 ret = 0; 233 got = access_remote_vm(mm, arg_start, page, PAGE_SIZE, FOLL_ANON); 234 if (got > 0) { 235 int len = strnlen(page, got); 236 237 /* Include the NUL character if it was found */ 238 if (len < got) 239 len++; 240 241 if (len > pos) { 242 len -= pos; 243 if (len > count) 244 len = count; 245 len -= copy_to_user(buf, page+pos, len); 246 if (!len) 247 len = -EFAULT; 248 ret = len; 249 } 250 } 251 free_page((unsigned long)page); 252 return ret; 253 } 254 255 static ssize_t get_mm_cmdline(struct mm_struct *mm, char __user *buf, 256 size_t count, loff_t *ppos) 257 { 258 unsigned long arg_start, arg_end, env_start, env_end; 259 unsigned long pos, len; 260 char *page, c; 261 262 /* Check if process spawned far enough to have cmdline. */ 263 if (!mm->env_end) 264 return 0; 265 266 spin_lock(&mm->arg_lock); 267 arg_start = mm->arg_start; 268 arg_end = mm->arg_end; 269 env_start = mm->env_start; 270 env_end = mm->env_end; 271 spin_unlock(&mm->arg_lock); 272 273 if (arg_start >= arg_end) 274 return 0; 275 276 /* 277 * We allow setproctitle() to overwrite the argument 278 * strings, and overflow past the original end. But 279 * only when it overflows into the environment area. 280 */ 281 if (env_start != arg_end || env_end < env_start) 282 env_start = env_end = arg_end; 283 len = env_end - arg_start; 284 285 /* We're not going to care if "*ppos" has high bits set */ 286 pos = *ppos; 287 if (pos >= len) 288 return 0; 289 if (count > len - pos) 290 count = len - pos; 291 if (!count) 292 return 0; 293 294 /* 295 * Magical special case: if the argv[] end byte is not 296 * zero, the user has overwritten it with setproctitle(3). 297 * 298 * Possible future enhancement: do this only once when 299 * pos is 0, and set a flag in the 'struct file'. 300 */ 301 if (access_remote_vm(mm, arg_end-1, &c, 1, FOLL_ANON) == 1 && c) 302 return get_mm_proctitle(mm, buf, count, pos, arg_start); 303 304 /* 305 * For the non-setproctitle() case we limit things strictly 306 * to the [arg_start, arg_end[ range. 307 */ 308 pos += arg_start; 309 if (pos < arg_start || pos >= arg_end) 310 return 0; 311 if (count > arg_end - pos) 312 count = arg_end - pos; 313 314 page = (char *)__get_free_page(GFP_KERNEL); 315 if (!page) 316 return -ENOMEM; 317 318 len = 0; 319 while (count) { 320 int got; 321 size_t size = min_t(size_t, PAGE_SIZE, count); 322 323 got = access_remote_vm(mm, pos, page, size, FOLL_ANON); 324 if (got <= 0) 325 break; 326 got -= copy_to_user(buf, page, got); 327 if (unlikely(!got)) { 328 if (!len) 329 len = -EFAULT; 330 break; 331 } 332 pos += got; 333 buf += got; 334 len += got; 335 count -= got; 336 } 337 338 free_page((unsigned long)page); 339 return len; 340 } 341 342 static ssize_t get_task_cmdline(struct task_struct *tsk, char __user *buf, 343 size_t count, loff_t *pos) 344 { 345 struct mm_struct *mm; 346 ssize_t ret; 347 348 mm = get_task_mm(tsk); 349 if (!mm) 350 return 0; 351 352 ret = get_mm_cmdline(mm, buf, count, pos); 353 mmput(mm); 354 return ret; 355 } 356 357 static ssize_t proc_pid_cmdline_read(struct file *file, char __user *buf, 358 size_t count, loff_t *pos) 359 { 360 struct task_struct *tsk; 361 ssize_t ret; 362 363 BUG_ON(*pos < 0); 364 365 tsk = get_proc_task(file_inode(file)); 366 if (!tsk) 367 return -ESRCH; 368 ret = get_task_cmdline(tsk, buf, count, pos); 369 put_task_struct(tsk); 370 if (ret > 0) 371 *pos += ret; 372 return ret; 373 } 374 375 static const struct file_operations proc_pid_cmdline_ops = { 376 .read = proc_pid_cmdline_read, 377 .llseek = generic_file_llseek, 378 }; 379 380 #ifdef CONFIG_KALLSYMS 381 /* 382 * Provides a wchan file via kallsyms in a proper one-value-per-file format. 383 * Returns the resolved symbol. If that fails, simply return the address. 384 */ 385 static int proc_pid_wchan(struct seq_file *m, struct pid_namespace *ns, 386 struct pid *pid, struct task_struct *task) 387 { 388 unsigned long wchan; 389 char symname[KSYM_NAME_LEN]; 390 391 if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS)) 392 goto print0; 393 394 wchan = get_wchan(task); 395 if (wchan && !lookup_symbol_name(wchan, symname)) { 396 seq_puts(m, symname); 397 return 0; 398 } 399 400 print0: 401 seq_putc(m, '0'); 402 return 0; 403 } 404 #endif /* CONFIG_KALLSYMS */ 405 406 static int lock_trace(struct task_struct *task) 407 { 408 int err = down_read_killable(&task->signal->exec_update_lock); 409 if (err) 410 return err; 411 if (!ptrace_may_access(task, PTRACE_MODE_ATTACH_FSCREDS)) { 412 up_read(&task->signal->exec_update_lock); 413 return -EPERM; 414 } 415 return 0; 416 } 417 418 static void unlock_trace(struct task_struct *task) 419 { 420 up_read(&task->signal->exec_update_lock); 421 } 422 423 #ifdef CONFIG_STACKTRACE 424 425 #define MAX_STACK_TRACE_DEPTH 64 426 427 static int proc_pid_stack(struct seq_file *m, struct pid_namespace *ns, 428 struct pid *pid, struct task_struct *task) 429 { 430 unsigned long *entries; 431 int err; 432 433 /* 434 * The ability to racily run the kernel stack unwinder on a running task 435 * and then observe the unwinder output is scary; while it is useful for 436 * debugging kernel issues, it can also allow an attacker to leak kernel 437 * stack contents. 438 * Doing this in a manner that is at least safe from races would require 439 * some work to ensure that the remote task can not be scheduled; and 440 * even then, this would still expose the unwinder as local attack 441 * surface. 442 * Therefore, this interface is restricted to root. 443 */ 444 if (!file_ns_capable(m->file, &init_user_ns, CAP_SYS_ADMIN)) 445 return -EACCES; 446 447 entries = kmalloc_array(MAX_STACK_TRACE_DEPTH, sizeof(*entries), 448 GFP_KERNEL); 449 if (!entries) 450 return -ENOMEM; 451 452 err = lock_trace(task); 453 if (!err) { 454 unsigned int i, nr_entries; 455 456 nr_entries = stack_trace_save_tsk(task, entries, 457 MAX_STACK_TRACE_DEPTH, 0); 458 459 for (i = 0; i < nr_entries; i++) { 460 seq_printf(m, "[<0>] %pB\n", (void *)entries[i]); 461 } 462 463 unlock_trace(task); 464 } 465 kfree(entries); 466 467 return err; 468 } 469 #endif 470 471 #ifdef CONFIG_SCHED_INFO 472 /* 473 * Provides /proc/PID/schedstat 474 */ 475 static int proc_pid_schedstat(struct seq_file *m, struct pid_namespace *ns, 476 struct pid *pid, struct task_struct *task) 477 { 478 if (unlikely(!sched_info_on())) 479 seq_puts(m, "0 0 0\n"); 480 else 481 seq_printf(m, "%llu %llu %lu\n", 482 (unsigned long long)task->se.sum_exec_runtime, 483 (unsigned long long)task->sched_info.run_delay, 484 task->sched_info.pcount); 485 486 return 0; 487 } 488 #endif 489 490 #ifdef CONFIG_LATENCYTOP 491 static int lstats_show_proc(struct seq_file *m, void *v) 492 { 493 int i; 494 struct inode *inode = m->private; 495 struct task_struct *task = get_proc_task(inode); 496 497 if (!task) 498 return -ESRCH; 499 seq_puts(m, "Latency Top version : v0.1\n"); 500 for (i = 0; i < LT_SAVECOUNT; i++) { 501 struct latency_record *lr = &task->latency_record[i]; 502 if (lr->backtrace[0]) { 503 int q; 504 seq_printf(m, "%i %li %li", 505 lr->count, lr->time, lr->max); 506 for (q = 0; q < LT_BACKTRACEDEPTH; q++) { 507 unsigned long bt = lr->backtrace[q]; 508 509 if (!bt) 510 break; 511 seq_printf(m, " %ps", (void *)bt); 512 } 513 seq_putc(m, '\n'); 514 } 515 516 } 517 put_task_struct(task); 518 return 0; 519 } 520 521 static int lstats_open(struct inode *inode, struct file *file) 522 { 523 return single_open(file, lstats_show_proc, inode); 524 } 525 526 static ssize_t lstats_write(struct file *file, const char __user *buf, 527 size_t count, loff_t *offs) 528 { 529 struct task_struct *task = get_proc_task(file_inode(file)); 530 531 if (!task) 532 return -ESRCH; 533 clear_tsk_latency_tracing(task); 534 put_task_struct(task); 535 536 return count; 537 } 538 539 static const struct file_operations proc_lstats_operations = { 540 .open = lstats_open, 541 .read = seq_read, 542 .write = lstats_write, 543 .llseek = seq_lseek, 544 .release = single_release, 545 }; 546 547 #endif 548 549 static int proc_oom_score(struct seq_file *m, struct pid_namespace *ns, 550 struct pid *pid, struct task_struct *task) 551 { 552 unsigned long totalpages = totalram_pages() + total_swap_pages; 553 unsigned long points = 0; 554 long badness; 555 556 badness = oom_badness(task, totalpages); 557 /* 558 * Special case OOM_SCORE_ADJ_MIN for all others scale the 559 * badness value into [0, 2000] range which we have been 560 * exporting for a long time so userspace might depend on it. 561 */ 562 if (badness != LONG_MIN) 563 points = (1000 + badness * 1000 / (long)totalpages) * 2 / 3; 564 565 seq_printf(m, "%lu\n", points); 566 567 return 0; 568 } 569 570 struct limit_names { 571 const char *name; 572 const char *unit; 573 }; 574 575 static const struct limit_names lnames[RLIM_NLIMITS] = { 576 [RLIMIT_CPU] = {"Max cpu time", "seconds"}, 577 [RLIMIT_FSIZE] = {"Max file size", "bytes"}, 578 [RLIMIT_DATA] = {"Max data size", "bytes"}, 579 [RLIMIT_STACK] = {"Max stack size", "bytes"}, 580 [RLIMIT_CORE] = {"Max core file size", "bytes"}, 581 [RLIMIT_RSS] = {"Max resident set", "bytes"}, 582 [RLIMIT_NPROC] = {"Max processes", "processes"}, 583 [RLIMIT_NOFILE] = {"Max open files", "files"}, 584 [RLIMIT_MEMLOCK] = {"Max locked memory", "bytes"}, 585 [RLIMIT_AS] = {"Max address space", "bytes"}, 586 [RLIMIT_LOCKS] = {"Max file locks", "locks"}, 587 [RLIMIT_SIGPENDING] = {"Max pending signals", "signals"}, 588 [RLIMIT_MSGQUEUE] = {"Max msgqueue size", "bytes"}, 589 [RLIMIT_NICE] = {"Max nice priority", NULL}, 590 [RLIMIT_RTPRIO] = {"Max realtime priority", NULL}, 591 [RLIMIT_RTTIME] = {"Max realtime timeout", "us"}, 592 }; 593 594 /* Display limits for a process */ 595 static int proc_pid_limits(struct seq_file *m, struct pid_namespace *ns, 596 struct pid *pid, struct task_struct *task) 597 { 598 unsigned int i; 599 unsigned long flags; 600 601 struct rlimit rlim[RLIM_NLIMITS]; 602 603 if (!lock_task_sighand(task, &flags)) 604 return 0; 605 memcpy(rlim, task->signal->rlim, sizeof(struct rlimit) * RLIM_NLIMITS); 606 unlock_task_sighand(task, &flags); 607 608 /* 609 * print the file header 610 */ 611 seq_puts(m, "Limit " 612 "Soft Limit " 613 "Hard Limit " 614 "Units \n"); 615 616 for (i = 0; i < RLIM_NLIMITS; i++) { 617 if (rlim[i].rlim_cur == RLIM_INFINITY) 618 seq_printf(m, "%-25s %-20s ", 619 lnames[i].name, "unlimited"); 620 else 621 seq_printf(m, "%-25s %-20lu ", 622 lnames[i].name, rlim[i].rlim_cur); 623 624 if (rlim[i].rlim_max == RLIM_INFINITY) 625 seq_printf(m, "%-20s ", "unlimited"); 626 else 627 seq_printf(m, "%-20lu ", rlim[i].rlim_max); 628 629 if (lnames[i].unit) 630 seq_printf(m, "%-10s\n", lnames[i].unit); 631 else 632 seq_putc(m, '\n'); 633 } 634 635 return 0; 636 } 637 638 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK 639 static int proc_pid_syscall(struct seq_file *m, struct pid_namespace *ns, 640 struct pid *pid, struct task_struct *task) 641 { 642 struct syscall_info info; 643 u64 *args = &info.data.args[0]; 644 int res; 645 646 res = lock_trace(task); 647 if (res) 648 return res; 649 650 if (task_current_syscall(task, &info)) 651 seq_puts(m, "running\n"); 652 else if (info.data.nr < 0) 653 seq_printf(m, "%d 0x%llx 0x%llx\n", 654 info.data.nr, info.sp, info.data.instruction_pointer); 655 else 656 seq_printf(m, 657 "%d 0x%llx 0x%llx 0x%llx 0x%llx 0x%llx 0x%llx 0x%llx 0x%llx\n", 658 info.data.nr, 659 args[0], args[1], args[2], args[3], args[4], args[5], 660 info.sp, info.data.instruction_pointer); 661 unlock_trace(task); 662 663 return 0; 664 } 665 #endif /* CONFIG_HAVE_ARCH_TRACEHOOK */ 666 667 /************************************************************************/ 668 /* Here the fs part begins */ 669 /************************************************************************/ 670 671 /* permission checks */ 672 static bool proc_fd_access_allowed(struct inode *inode) 673 { 674 struct task_struct *task; 675 bool allowed = false; 676 /* Allow access to a task's file descriptors if it is us or we 677 * may use ptrace attach to the process and find out that 678 * information. 679 */ 680 task = get_proc_task(inode); 681 if (task) { 682 allowed = ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS); 683 put_task_struct(task); 684 } 685 return allowed; 686 } 687 688 int proc_setattr(struct user_namespace *mnt_userns, struct dentry *dentry, 689 struct iattr *attr) 690 { 691 int error; 692 struct inode *inode = d_inode(dentry); 693 694 if (attr->ia_valid & ATTR_MODE) 695 return -EPERM; 696 697 error = setattr_prepare(&init_user_ns, dentry, attr); 698 if (error) 699 return error; 700 701 setattr_copy(&init_user_ns, inode, attr); 702 mark_inode_dirty(inode); 703 return 0; 704 } 705 706 /* 707 * May current process learn task's sched/cmdline info (for hide_pid_min=1) 708 * or euid/egid (for hide_pid_min=2)? 709 */ 710 static bool has_pid_permissions(struct proc_fs_info *fs_info, 711 struct task_struct *task, 712 enum proc_hidepid hide_pid_min) 713 { 714 /* 715 * If 'hidpid' mount option is set force a ptrace check, 716 * we indicate that we are using a filesystem syscall 717 * by passing PTRACE_MODE_READ_FSCREDS 718 */ 719 if (fs_info->hide_pid == HIDEPID_NOT_PTRACEABLE) 720 return ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS); 721 722 if (fs_info->hide_pid < hide_pid_min) 723 return true; 724 if (in_group_p(fs_info->pid_gid)) 725 return true; 726 return ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS); 727 } 728 729 730 static int proc_pid_permission(struct user_namespace *mnt_userns, 731 struct inode *inode, int mask) 732 { 733 struct proc_fs_info *fs_info = proc_sb_info(inode->i_sb); 734 struct task_struct *task; 735 bool has_perms; 736 737 task = get_proc_task(inode); 738 if (!task) 739 return -ESRCH; 740 has_perms = has_pid_permissions(fs_info, task, HIDEPID_NO_ACCESS); 741 put_task_struct(task); 742 743 if (!has_perms) { 744 if (fs_info->hide_pid == HIDEPID_INVISIBLE) { 745 /* 746 * Let's make getdents(), stat(), and open() 747 * consistent with each other. If a process 748 * may not stat() a file, it shouldn't be seen 749 * in procfs at all. 750 */ 751 return -ENOENT; 752 } 753 754 return -EPERM; 755 } 756 return generic_permission(&init_user_ns, inode, mask); 757 } 758 759 760 761 static const struct inode_operations proc_def_inode_operations = { 762 .setattr = proc_setattr, 763 }; 764 765 static int proc_single_show(struct seq_file *m, void *v) 766 { 767 struct inode *inode = m->private; 768 struct pid_namespace *ns = proc_pid_ns(inode->i_sb); 769 struct pid *pid = proc_pid(inode); 770 struct task_struct *task; 771 int ret; 772 773 task = get_pid_task(pid, PIDTYPE_PID); 774 if (!task) 775 return -ESRCH; 776 777 ret = PROC_I(inode)->op.proc_show(m, ns, pid, task); 778 779 put_task_struct(task); 780 return ret; 781 } 782 783 static int proc_single_open(struct inode *inode, struct file *filp) 784 { 785 return single_open(filp, proc_single_show, inode); 786 } 787 788 static const struct file_operations proc_single_file_operations = { 789 .open = proc_single_open, 790 .read = seq_read, 791 .llseek = seq_lseek, 792 .release = single_release, 793 }; 794 795 796 struct mm_struct *proc_mem_open(struct inode *inode, unsigned int mode) 797 { 798 struct task_struct *task = get_proc_task(inode); 799 struct mm_struct *mm = ERR_PTR(-ESRCH); 800 801 if (task) { 802 mm = mm_access(task, mode | PTRACE_MODE_FSCREDS); 803 put_task_struct(task); 804 805 if (!IS_ERR_OR_NULL(mm)) { 806 /* ensure this mm_struct can't be freed */ 807 mmgrab(mm); 808 /* but do not pin its memory */ 809 mmput(mm); 810 } 811 } 812 813 return mm; 814 } 815 816 static int __mem_open(struct inode *inode, struct file *file, unsigned int mode) 817 { 818 struct mm_struct *mm = proc_mem_open(inode, mode); 819 820 if (IS_ERR(mm)) 821 return PTR_ERR(mm); 822 823 file->private_data = mm; 824 return 0; 825 } 826 827 static int mem_open(struct inode *inode, struct file *file) 828 { 829 int ret = __mem_open(inode, file, PTRACE_MODE_ATTACH); 830 831 /* OK to pass negative loff_t, we can catch out-of-range */ 832 file->f_mode |= FMODE_UNSIGNED_OFFSET; 833 834 return ret; 835 } 836 837 static ssize_t mem_rw(struct file *file, char __user *buf, 838 size_t count, loff_t *ppos, int write) 839 { 840 struct mm_struct *mm = file->private_data; 841 unsigned long addr = *ppos; 842 ssize_t copied; 843 char *page; 844 unsigned int flags; 845 846 if (!mm) 847 return 0; 848 849 page = (char *)__get_free_page(GFP_KERNEL); 850 if (!page) 851 return -ENOMEM; 852 853 copied = 0; 854 if (!mmget_not_zero(mm)) 855 goto free; 856 857 flags = FOLL_FORCE | (write ? FOLL_WRITE : 0); 858 859 while (count > 0) { 860 size_t this_len = min_t(size_t, count, PAGE_SIZE); 861 862 if (write && copy_from_user(page, buf, this_len)) { 863 copied = -EFAULT; 864 break; 865 } 866 867 this_len = access_remote_vm(mm, addr, page, this_len, flags); 868 if (!this_len) { 869 if (!copied) 870 copied = -EIO; 871 break; 872 } 873 874 if (!write && copy_to_user(buf, page, this_len)) { 875 copied = -EFAULT; 876 break; 877 } 878 879 buf += this_len; 880 addr += this_len; 881 copied += this_len; 882 count -= this_len; 883 } 884 *ppos = addr; 885 886 mmput(mm); 887 free: 888 free_page((unsigned long) page); 889 return copied; 890 } 891 892 static ssize_t mem_read(struct file *file, char __user *buf, 893 size_t count, loff_t *ppos) 894 { 895 return mem_rw(file, buf, count, ppos, 0); 896 } 897 898 static ssize_t mem_write(struct file *file, const char __user *buf, 899 size_t count, loff_t *ppos) 900 { 901 return mem_rw(file, (char __user*)buf, count, ppos, 1); 902 } 903 904 loff_t mem_lseek(struct file *file, loff_t offset, int orig) 905 { 906 switch (orig) { 907 case 0: 908 file->f_pos = offset; 909 break; 910 case 1: 911 file->f_pos += offset; 912 break; 913 default: 914 return -EINVAL; 915 } 916 force_successful_syscall_return(); 917 return file->f_pos; 918 } 919 920 static int mem_release(struct inode *inode, struct file *file) 921 { 922 struct mm_struct *mm = file->private_data; 923 if (mm) 924 mmdrop(mm); 925 return 0; 926 } 927 928 static const struct file_operations proc_mem_operations = { 929 .llseek = mem_lseek, 930 .read = mem_read, 931 .write = mem_write, 932 .open = mem_open, 933 .release = mem_release, 934 }; 935 936 static int environ_open(struct inode *inode, struct file *file) 937 { 938 return __mem_open(inode, file, PTRACE_MODE_READ); 939 } 940 941 static ssize_t environ_read(struct file *file, char __user *buf, 942 size_t count, loff_t *ppos) 943 { 944 char *page; 945 unsigned long src = *ppos; 946 int ret = 0; 947 struct mm_struct *mm = file->private_data; 948 unsigned long env_start, env_end; 949 950 /* Ensure the process spawned far enough to have an environment. */ 951 if (!mm || !mm->env_end) 952 return 0; 953 954 page = (char *)__get_free_page(GFP_KERNEL); 955 if (!page) 956 return -ENOMEM; 957 958 ret = 0; 959 if (!mmget_not_zero(mm)) 960 goto free; 961 962 spin_lock(&mm->arg_lock); 963 env_start = mm->env_start; 964 env_end = mm->env_end; 965 spin_unlock(&mm->arg_lock); 966 967 while (count > 0) { 968 size_t this_len, max_len; 969 int retval; 970 971 if (src >= (env_end - env_start)) 972 break; 973 974 this_len = env_end - (env_start + src); 975 976 max_len = min_t(size_t, PAGE_SIZE, count); 977 this_len = min(max_len, this_len); 978 979 retval = access_remote_vm(mm, (env_start + src), page, this_len, FOLL_ANON); 980 981 if (retval <= 0) { 982 ret = retval; 983 break; 984 } 985 986 if (copy_to_user(buf, page, retval)) { 987 ret = -EFAULT; 988 break; 989 } 990 991 ret += retval; 992 src += retval; 993 buf += retval; 994 count -= retval; 995 } 996 *ppos = src; 997 mmput(mm); 998 999 free: 1000 free_page((unsigned long) page); 1001 return ret; 1002 } 1003 1004 static const struct file_operations proc_environ_operations = { 1005 .open = environ_open, 1006 .read = environ_read, 1007 .llseek = generic_file_llseek, 1008 .release = mem_release, 1009 }; 1010 1011 static int auxv_open(struct inode *inode, struct file *file) 1012 { 1013 return __mem_open(inode, file, PTRACE_MODE_READ_FSCREDS); 1014 } 1015 1016 static ssize_t auxv_read(struct file *file, char __user *buf, 1017 size_t count, loff_t *ppos) 1018 { 1019 struct mm_struct *mm = file->private_data; 1020 unsigned int nwords = 0; 1021 1022 if (!mm) 1023 return 0; 1024 do { 1025 nwords += 2; 1026 } while (mm->saved_auxv[nwords - 2] != 0); /* AT_NULL */ 1027 return simple_read_from_buffer(buf, count, ppos, mm->saved_auxv, 1028 nwords * sizeof(mm->saved_auxv[0])); 1029 } 1030 1031 static const struct file_operations proc_auxv_operations = { 1032 .open = auxv_open, 1033 .read = auxv_read, 1034 .llseek = generic_file_llseek, 1035 .release = mem_release, 1036 }; 1037 1038 static ssize_t oom_adj_read(struct file *file, char __user *buf, size_t count, 1039 loff_t *ppos) 1040 { 1041 struct task_struct *task = get_proc_task(file_inode(file)); 1042 char buffer[PROC_NUMBUF]; 1043 int oom_adj = OOM_ADJUST_MIN; 1044 size_t len; 1045 1046 if (!task) 1047 return -ESRCH; 1048 if (task->signal->oom_score_adj == OOM_SCORE_ADJ_MAX) 1049 oom_adj = OOM_ADJUST_MAX; 1050 else 1051 oom_adj = (task->signal->oom_score_adj * -OOM_DISABLE) / 1052 OOM_SCORE_ADJ_MAX; 1053 put_task_struct(task); 1054 if (oom_adj > OOM_ADJUST_MAX) 1055 oom_adj = OOM_ADJUST_MAX; 1056 len = snprintf(buffer, sizeof(buffer), "%d\n", oom_adj); 1057 return simple_read_from_buffer(buf, count, ppos, buffer, len); 1058 } 1059 1060 static int __set_oom_adj(struct file *file, int oom_adj, bool legacy) 1061 { 1062 struct mm_struct *mm = NULL; 1063 struct task_struct *task; 1064 int err = 0; 1065 1066 task = get_proc_task(file_inode(file)); 1067 if (!task) 1068 return -ESRCH; 1069 1070 mutex_lock(&oom_adj_mutex); 1071 if (legacy) { 1072 if (oom_adj < task->signal->oom_score_adj && 1073 !capable(CAP_SYS_RESOURCE)) { 1074 err = -EACCES; 1075 goto err_unlock; 1076 } 1077 /* 1078 * /proc/pid/oom_adj is provided for legacy purposes, ask users to use 1079 * /proc/pid/oom_score_adj instead. 1080 */ 1081 pr_warn_once("%s (%d): /proc/%d/oom_adj is deprecated, please use /proc/%d/oom_score_adj instead.\n", 1082 current->comm, task_pid_nr(current), task_pid_nr(task), 1083 task_pid_nr(task)); 1084 } else { 1085 if ((short)oom_adj < task->signal->oom_score_adj_min && 1086 !capable(CAP_SYS_RESOURCE)) { 1087 err = -EACCES; 1088 goto err_unlock; 1089 } 1090 } 1091 1092 /* 1093 * Make sure we will check other processes sharing the mm if this is 1094 * not vfrok which wants its own oom_score_adj. 1095 * pin the mm so it doesn't go away and get reused after task_unlock 1096 */ 1097 if (!task->vfork_done) { 1098 struct task_struct *p = find_lock_task_mm(task); 1099 1100 if (p) { 1101 if (test_bit(MMF_MULTIPROCESS, &p->mm->flags)) { 1102 mm = p->mm; 1103 mmgrab(mm); 1104 } 1105 task_unlock(p); 1106 } 1107 } 1108 1109 task->signal->oom_score_adj = oom_adj; 1110 if (!legacy && has_capability_noaudit(current, CAP_SYS_RESOURCE)) 1111 task->signal->oom_score_adj_min = (short)oom_adj; 1112 trace_oom_score_adj_update(task); 1113 1114 if (mm) { 1115 struct task_struct *p; 1116 1117 rcu_read_lock(); 1118 for_each_process(p) { 1119 if (same_thread_group(task, p)) 1120 continue; 1121 1122 /* do not touch kernel threads or the global init */ 1123 if (p->flags & PF_KTHREAD || is_global_init(p)) 1124 continue; 1125 1126 task_lock(p); 1127 if (!p->vfork_done && process_shares_mm(p, mm)) { 1128 p->signal->oom_score_adj = oom_adj; 1129 if (!legacy && has_capability_noaudit(current, CAP_SYS_RESOURCE)) 1130 p->signal->oom_score_adj_min = (short)oom_adj; 1131 } 1132 task_unlock(p); 1133 } 1134 rcu_read_unlock(); 1135 mmdrop(mm); 1136 } 1137 err_unlock: 1138 mutex_unlock(&oom_adj_mutex); 1139 put_task_struct(task); 1140 return err; 1141 } 1142 1143 /* 1144 * /proc/pid/oom_adj exists solely for backwards compatibility with previous 1145 * kernels. The effective policy is defined by oom_score_adj, which has a 1146 * different scale: oom_adj grew exponentially and oom_score_adj grows linearly. 1147 * Values written to oom_adj are simply mapped linearly to oom_score_adj. 1148 * Processes that become oom disabled via oom_adj will still be oom disabled 1149 * with this implementation. 1150 * 1151 * oom_adj cannot be removed since existing userspace binaries use it. 1152 */ 1153 static ssize_t oom_adj_write(struct file *file, const char __user *buf, 1154 size_t count, loff_t *ppos) 1155 { 1156 char buffer[PROC_NUMBUF]; 1157 int oom_adj; 1158 int err; 1159 1160 memset(buffer, 0, sizeof(buffer)); 1161 if (count > sizeof(buffer) - 1) 1162 count = sizeof(buffer) - 1; 1163 if (copy_from_user(buffer, buf, count)) { 1164 err = -EFAULT; 1165 goto out; 1166 } 1167 1168 err = kstrtoint(strstrip(buffer), 0, &oom_adj); 1169 if (err) 1170 goto out; 1171 if ((oom_adj < OOM_ADJUST_MIN || oom_adj > OOM_ADJUST_MAX) && 1172 oom_adj != OOM_DISABLE) { 1173 err = -EINVAL; 1174 goto out; 1175 } 1176 1177 /* 1178 * Scale /proc/pid/oom_score_adj appropriately ensuring that a maximum 1179 * value is always attainable. 1180 */ 1181 if (oom_adj == OOM_ADJUST_MAX) 1182 oom_adj = OOM_SCORE_ADJ_MAX; 1183 else 1184 oom_adj = (oom_adj * OOM_SCORE_ADJ_MAX) / -OOM_DISABLE; 1185 1186 err = __set_oom_adj(file, oom_adj, true); 1187 out: 1188 return err < 0 ? err : count; 1189 } 1190 1191 static const struct file_operations proc_oom_adj_operations = { 1192 .read = oom_adj_read, 1193 .write = oom_adj_write, 1194 .llseek = generic_file_llseek, 1195 }; 1196 1197 static ssize_t oom_score_adj_read(struct file *file, char __user *buf, 1198 size_t count, loff_t *ppos) 1199 { 1200 struct task_struct *task = get_proc_task(file_inode(file)); 1201 char buffer[PROC_NUMBUF]; 1202 short oom_score_adj = OOM_SCORE_ADJ_MIN; 1203 size_t len; 1204 1205 if (!task) 1206 return -ESRCH; 1207 oom_score_adj = task->signal->oom_score_adj; 1208 put_task_struct(task); 1209 len = snprintf(buffer, sizeof(buffer), "%hd\n", oom_score_adj); 1210 return simple_read_from_buffer(buf, count, ppos, buffer, len); 1211 } 1212 1213 static ssize_t oom_score_adj_write(struct file *file, const char __user *buf, 1214 size_t count, loff_t *ppos) 1215 { 1216 char buffer[PROC_NUMBUF]; 1217 int oom_score_adj; 1218 int err; 1219 1220 memset(buffer, 0, sizeof(buffer)); 1221 if (count > sizeof(buffer) - 1) 1222 count = sizeof(buffer) - 1; 1223 if (copy_from_user(buffer, buf, count)) { 1224 err = -EFAULT; 1225 goto out; 1226 } 1227 1228 err = kstrtoint(strstrip(buffer), 0, &oom_score_adj); 1229 if (err) 1230 goto out; 1231 if (oom_score_adj < OOM_SCORE_ADJ_MIN || 1232 oom_score_adj > OOM_SCORE_ADJ_MAX) { 1233 err = -EINVAL; 1234 goto out; 1235 } 1236 1237 err = __set_oom_adj(file, oom_score_adj, false); 1238 out: 1239 return err < 0 ? err : count; 1240 } 1241 1242 static const struct file_operations proc_oom_score_adj_operations = { 1243 .read = oom_score_adj_read, 1244 .write = oom_score_adj_write, 1245 .llseek = default_llseek, 1246 }; 1247 1248 #ifdef CONFIG_AUDIT 1249 #define TMPBUFLEN 11 1250 static ssize_t proc_loginuid_read(struct file * file, char __user * buf, 1251 size_t count, loff_t *ppos) 1252 { 1253 struct inode * inode = file_inode(file); 1254 struct task_struct *task = get_proc_task(inode); 1255 ssize_t length; 1256 char tmpbuf[TMPBUFLEN]; 1257 1258 if (!task) 1259 return -ESRCH; 1260 length = scnprintf(tmpbuf, TMPBUFLEN, "%u", 1261 from_kuid(file->f_cred->user_ns, 1262 audit_get_loginuid(task))); 1263 put_task_struct(task); 1264 return simple_read_from_buffer(buf, count, ppos, tmpbuf, length); 1265 } 1266 1267 static ssize_t proc_loginuid_write(struct file * file, const char __user * buf, 1268 size_t count, loff_t *ppos) 1269 { 1270 struct inode * inode = file_inode(file); 1271 uid_t loginuid; 1272 kuid_t kloginuid; 1273 int rv; 1274 1275 /* Don't let kthreads write their own loginuid */ 1276 if (current->flags & PF_KTHREAD) 1277 return -EPERM; 1278 1279 rcu_read_lock(); 1280 if (current != pid_task(proc_pid(inode), PIDTYPE_PID)) { 1281 rcu_read_unlock(); 1282 return -EPERM; 1283 } 1284 rcu_read_unlock(); 1285 1286 if (*ppos != 0) { 1287 /* No partial writes. */ 1288 return -EINVAL; 1289 } 1290 1291 rv = kstrtou32_from_user(buf, count, 10, &loginuid); 1292 if (rv < 0) 1293 return rv; 1294 1295 /* is userspace tring to explicitly UNSET the loginuid? */ 1296 if (loginuid == AUDIT_UID_UNSET) { 1297 kloginuid = INVALID_UID; 1298 } else { 1299 kloginuid = make_kuid(file->f_cred->user_ns, loginuid); 1300 if (!uid_valid(kloginuid)) 1301 return -EINVAL; 1302 } 1303 1304 rv = audit_set_loginuid(kloginuid); 1305 if (rv < 0) 1306 return rv; 1307 return count; 1308 } 1309 1310 static const struct file_operations proc_loginuid_operations = { 1311 .read = proc_loginuid_read, 1312 .write = proc_loginuid_write, 1313 .llseek = generic_file_llseek, 1314 }; 1315 1316 static ssize_t proc_sessionid_read(struct file * file, char __user * buf, 1317 size_t count, loff_t *ppos) 1318 { 1319 struct inode * inode = file_inode(file); 1320 struct task_struct *task = get_proc_task(inode); 1321 ssize_t length; 1322 char tmpbuf[TMPBUFLEN]; 1323 1324 if (!task) 1325 return -ESRCH; 1326 length = scnprintf(tmpbuf, TMPBUFLEN, "%u", 1327 audit_get_sessionid(task)); 1328 put_task_struct(task); 1329 return simple_read_from_buffer(buf, count, ppos, tmpbuf, length); 1330 } 1331 1332 static const struct file_operations proc_sessionid_operations = { 1333 .read = proc_sessionid_read, 1334 .llseek = generic_file_llseek, 1335 }; 1336 #endif 1337 1338 #ifdef CONFIG_FAULT_INJECTION 1339 static ssize_t proc_fault_inject_read(struct file * file, char __user * buf, 1340 size_t count, loff_t *ppos) 1341 { 1342 struct task_struct *task = get_proc_task(file_inode(file)); 1343 char buffer[PROC_NUMBUF]; 1344 size_t len; 1345 int make_it_fail; 1346 1347 if (!task) 1348 return -ESRCH; 1349 make_it_fail = task->make_it_fail; 1350 put_task_struct(task); 1351 1352 len = snprintf(buffer, sizeof(buffer), "%i\n", make_it_fail); 1353 1354 return simple_read_from_buffer(buf, count, ppos, buffer, len); 1355 } 1356 1357 static ssize_t proc_fault_inject_write(struct file * file, 1358 const char __user * buf, size_t count, loff_t *ppos) 1359 { 1360 struct task_struct *task; 1361 char buffer[PROC_NUMBUF]; 1362 int make_it_fail; 1363 int rv; 1364 1365 if (!capable(CAP_SYS_RESOURCE)) 1366 return -EPERM; 1367 memset(buffer, 0, sizeof(buffer)); 1368 if (count > sizeof(buffer) - 1) 1369 count = sizeof(buffer) - 1; 1370 if (copy_from_user(buffer, buf, count)) 1371 return -EFAULT; 1372 rv = kstrtoint(strstrip(buffer), 0, &make_it_fail); 1373 if (rv < 0) 1374 return rv; 1375 if (make_it_fail < 0 || make_it_fail > 1) 1376 return -EINVAL; 1377 1378 task = get_proc_task(file_inode(file)); 1379 if (!task) 1380 return -ESRCH; 1381 task->make_it_fail = make_it_fail; 1382 put_task_struct(task); 1383 1384 return count; 1385 } 1386 1387 static const struct file_operations proc_fault_inject_operations = { 1388 .read = proc_fault_inject_read, 1389 .write = proc_fault_inject_write, 1390 .llseek = generic_file_llseek, 1391 }; 1392 1393 static ssize_t proc_fail_nth_write(struct file *file, const char __user *buf, 1394 size_t count, loff_t *ppos) 1395 { 1396 struct task_struct *task; 1397 int err; 1398 unsigned int n; 1399 1400 err = kstrtouint_from_user(buf, count, 0, &n); 1401 if (err) 1402 return err; 1403 1404 task = get_proc_task(file_inode(file)); 1405 if (!task) 1406 return -ESRCH; 1407 task->fail_nth = n; 1408 put_task_struct(task); 1409 1410 return count; 1411 } 1412 1413 static ssize_t proc_fail_nth_read(struct file *file, char __user *buf, 1414 size_t count, loff_t *ppos) 1415 { 1416 struct task_struct *task; 1417 char numbuf[PROC_NUMBUF]; 1418 ssize_t len; 1419 1420 task = get_proc_task(file_inode(file)); 1421 if (!task) 1422 return -ESRCH; 1423 len = snprintf(numbuf, sizeof(numbuf), "%u\n", task->fail_nth); 1424 put_task_struct(task); 1425 return simple_read_from_buffer(buf, count, ppos, numbuf, len); 1426 } 1427 1428 static const struct file_operations proc_fail_nth_operations = { 1429 .read = proc_fail_nth_read, 1430 .write = proc_fail_nth_write, 1431 }; 1432 #endif 1433 1434 1435 #ifdef CONFIG_SCHED_DEBUG 1436 /* 1437 * Print out various scheduling related per-task fields: 1438 */ 1439 static int sched_show(struct seq_file *m, void *v) 1440 { 1441 struct inode *inode = m->private; 1442 struct pid_namespace *ns = proc_pid_ns(inode->i_sb); 1443 struct task_struct *p; 1444 1445 p = get_proc_task(inode); 1446 if (!p) 1447 return -ESRCH; 1448 proc_sched_show_task(p, ns, m); 1449 1450 put_task_struct(p); 1451 1452 return 0; 1453 } 1454 1455 static ssize_t 1456 sched_write(struct file *file, const char __user *buf, 1457 size_t count, loff_t *offset) 1458 { 1459 struct inode *inode = file_inode(file); 1460 struct task_struct *p; 1461 1462 p = get_proc_task(inode); 1463 if (!p) 1464 return -ESRCH; 1465 proc_sched_set_task(p); 1466 1467 put_task_struct(p); 1468 1469 return count; 1470 } 1471 1472 static int sched_open(struct inode *inode, struct file *filp) 1473 { 1474 return single_open(filp, sched_show, inode); 1475 } 1476 1477 static const struct file_operations proc_pid_sched_operations = { 1478 .open = sched_open, 1479 .read = seq_read, 1480 .write = sched_write, 1481 .llseek = seq_lseek, 1482 .release = single_release, 1483 }; 1484 1485 #endif 1486 1487 #ifdef CONFIG_SCHED_AUTOGROUP 1488 /* 1489 * Print out autogroup related information: 1490 */ 1491 static int sched_autogroup_show(struct seq_file *m, void *v) 1492 { 1493 struct inode *inode = m->private; 1494 struct task_struct *p; 1495 1496 p = get_proc_task(inode); 1497 if (!p) 1498 return -ESRCH; 1499 proc_sched_autogroup_show_task(p, m); 1500 1501 put_task_struct(p); 1502 1503 return 0; 1504 } 1505 1506 static ssize_t 1507 sched_autogroup_write(struct file *file, const char __user *buf, 1508 size_t count, loff_t *offset) 1509 { 1510 struct inode *inode = file_inode(file); 1511 struct task_struct *p; 1512 char buffer[PROC_NUMBUF]; 1513 int nice; 1514 int err; 1515 1516 memset(buffer, 0, sizeof(buffer)); 1517 if (count > sizeof(buffer) - 1) 1518 count = sizeof(buffer) - 1; 1519 if (copy_from_user(buffer, buf, count)) 1520 return -EFAULT; 1521 1522 err = kstrtoint(strstrip(buffer), 0, &nice); 1523 if (err < 0) 1524 return err; 1525 1526 p = get_proc_task(inode); 1527 if (!p) 1528 return -ESRCH; 1529 1530 err = proc_sched_autogroup_set_nice(p, nice); 1531 if (err) 1532 count = err; 1533 1534 put_task_struct(p); 1535 1536 return count; 1537 } 1538 1539 static int sched_autogroup_open(struct inode *inode, struct file *filp) 1540 { 1541 int ret; 1542 1543 ret = single_open(filp, sched_autogroup_show, NULL); 1544 if (!ret) { 1545 struct seq_file *m = filp->private_data; 1546 1547 m->private = inode; 1548 } 1549 return ret; 1550 } 1551 1552 static const struct file_operations proc_pid_sched_autogroup_operations = { 1553 .open = sched_autogroup_open, 1554 .read = seq_read, 1555 .write = sched_autogroup_write, 1556 .llseek = seq_lseek, 1557 .release = single_release, 1558 }; 1559 1560 #endif /* CONFIG_SCHED_AUTOGROUP */ 1561 1562 #ifdef CONFIG_TIME_NS 1563 static int timens_offsets_show(struct seq_file *m, void *v) 1564 { 1565 struct task_struct *p; 1566 1567 p = get_proc_task(file_inode(m->file)); 1568 if (!p) 1569 return -ESRCH; 1570 proc_timens_show_offsets(p, m); 1571 1572 put_task_struct(p); 1573 1574 return 0; 1575 } 1576 1577 static ssize_t timens_offsets_write(struct file *file, const char __user *buf, 1578 size_t count, loff_t *ppos) 1579 { 1580 struct inode *inode = file_inode(file); 1581 struct proc_timens_offset offsets[2]; 1582 char *kbuf = NULL, *pos, *next_line; 1583 struct task_struct *p; 1584 int ret, noffsets; 1585 1586 /* Only allow < page size writes at the beginning of the file */ 1587 if ((*ppos != 0) || (count >= PAGE_SIZE)) 1588 return -EINVAL; 1589 1590 /* Slurp in the user data */ 1591 kbuf = memdup_user_nul(buf, count); 1592 if (IS_ERR(kbuf)) 1593 return PTR_ERR(kbuf); 1594 1595 /* Parse the user data */ 1596 ret = -EINVAL; 1597 noffsets = 0; 1598 for (pos = kbuf; pos; pos = next_line) { 1599 struct proc_timens_offset *off = &offsets[noffsets]; 1600 char clock[10]; 1601 int err; 1602 1603 /* Find the end of line and ensure we don't look past it */ 1604 next_line = strchr(pos, '\n'); 1605 if (next_line) { 1606 *next_line = '\0'; 1607 next_line++; 1608 if (*next_line == '\0') 1609 next_line = NULL; 1610 } 1611 1612 err = sscanf(pos, "%9s %lld %lu", clock, 1613 &off->val.tv_sec, &off->val.tv_nsec); 1614 if (err != 3 || off->val.tv_nsec >= NSEC_PER_SEC) 1615 goto out; 1616 1617 clock[sizeof(clock) - 1] = 0; 1618 if (strcmp(clock, "monotonic") == 0 || 1619 strcmp(clock, __stringify(CLOCK_MONOTONIC)) == 0) 1620 off->clockid = CLOCK_MONOTONIC; 1621 else if (strcmp(clock, "boottime") == 0 || 1622 strcmp(clock, __stringify(CLOCK_BOOTTIME)) == 0) 1623 off->clockid = CLOCK_BOOTTIME; 1624 else 1625 goto out; 1626 1627 noffsets++; 1628 if (noffsets == ARRAY_SIZE(offsets)) { 1629 if (next_line) 1630 count = next_line - kbuf; 1631 break; 1632 } 1633 } 1634 1635 ret = -ESRCH; 1636 p = get_proc_task(inode); 1637 if (!p) 1638 goto out; 1639 ret = proc_timens_set_offset(file, p, offsets, noffsets); 1640 put_task_struct(p); 1641 if (ret) 1642 goto out; 1643 1644 ret = count; 1645 out: 1646 kfree(kbuf); 1647 return ret; 1648 } 1649 1650 static int timens_offsets_open(struct inode *inode, struct file *filp) 1651 { 1652 return single_open(filp, timens_offsets_show, inode); 1653 } 1654 1655 static const struct file_operations proc_timens_offsets_operations = { 1656 .open = timens_offsets_open, 1657 .read = seq_read, 1658 .write = timens_offsets_write, 1659 .llseek = seq_lseek, 1660 .release = single_release, 1661 }; 1662 #endif /* CONFIG_TIME_NS */ 1663 1664 static ssize_t comm_write(struct file *file, const char __user *buf, 1665 size_t count, loff_t *offset) 1666 { 1667 struct inode *inode = file_inode(file); 1668 struct task_struct *p; 1669 char buffer[TASK_COMM_LEN]; 1670 const size_t maxlen = sizeof(buffer) - 1; 1671 1672 memset(buffer, 0, sizeof(buffer)); 1673 if (copy_from_user(buffer, buf, count > maxlen ? maxlen : count)) 1674 return -EFAULT; 1675 1676 p = get_proc_task(inode); 1677 if (!p) 1678 return -ESRCH; 1679 1680 if (same_thread_group(current, p)) { 1681 set_task_comm(p, buffer); 1682 proc_comm_connector(p); 1683 } 1684 else 1685 count = -EINVAL; 1686 1687 put_task_struct(p); 1688 1689 return count; 1690 } 1691 1692 static int comm_show(struct seq_file *m, void *v) 1693 { 1694 struct inode *inode = m->private; 1695 struct task_struct *p; 1696 1697 p = get_proc_task(inode); 1698 if (!p) 1699 return -ESRCH; 1700 1701 proc_task_name(m, p, false); 1702 seq_putc(m, '\n'); 1703 1704 put_task_struct(p); 1705 1706 return 0; 1707 } 1708 1709 static int comm_open(struct inode *inode, struct file *filp) 1710 { 1711 return single_open(filp, comm_show, inode); 1712 } 1713 1714 static const struct file_operations proc_pid_set_comm_operations = { 1715 .open = comm_open, 1716 .read = seq_read, 1717 .write = comm_write, 1718 .llseek = seq_lseek, 1719 .release = single_release, 1720 }; 1721 1722 static int proc_exe_link(struct dentry *dentry, struct path *exe_path) 1723 { 1724 struct task_struct *task; 1725 struct file *exe_file; 1726 1727 task = get_proc_task(d_inode(dentry)); 1728 if (!task) 1729 return -ENOENT; 1730 exe_file = get_task_exe_file(task); 1731 put_task_struct(task); 1732 if (exe_file) { 1733 *exe_path = exe_file->f_path; 1734 path_get(&exe_file->f_path); 1735 fput(exe_file); 1736 return 0; 1737 } else 1738 return -ENOENT; 1739 } 1740 1741 static const char *proc_pid_get_link(struct dentry *dentry, 1742 struct inode *inode, 1743 struct delayed_call *done) 1744 { 1745 struct path path; 1746 int error = -EACCES; 1747 1748 if (!dentry) 1749 return ERR_PTR(-ECHILD); 1750 1751 /* Are we allowed to snoop on the tasks file descriptors? */ 1752 if (!proc_fd_access_allowed(inode)) 1753 goto out; 1754 1755 error = PROC_I(inode)->op.proc_get_link(dentry, &path); 1756 if (error) 1757 goto out; 1758 1759 error = nd_jump_link(&path); 1760 out: 1761 return ERR_PTR(error); 1762 } 1763 1764 static int do_proc_readlink(struct path *path, char __user *buffer, int buflen) 1765 { 1766 char *tmp = kmalloc(PATH_MAX, GFP_KERNEL); 1767 char *pathname; 1768 int len; 1769 1770 if (!tmp) 1771 return -ENOMEM; 1772 1773 pathname = d_path(path, tmp, PATH_MAX); 1774 len = PTR_ERR(pathname); 1775 if (IS_ERR(pathname)) 1776 goto out; 1777 len = tmp + PATH_MAX - 1 - pathname; 1778 1779 if (len > buflen) 1780 len = buflen; 1781 if (copy_to_user(buffer, pathname, len)) 1782 len = -EFAULT; 1783 out: 1784 kfree(tmp); 1785 return len; 1786 } 1787 1788 static int proc_pid_readlink(struct dentry * dentry, char __user * buffer, int buflen) 1789 { 1790 int error = -EACCES; 1791 struct inode *inode = d_inode(dentry); 1792 struct path path; 1793 1794 /* Are we allowed to snoop on the tasks file descriptors? */ 1795 if (!proc_fd_access_allowed(inode)) 1796 goto out; 1797 1798 error = PROC_I(inode)->op.proc_get_link(dentry, &path); 1799 if (error) 1800 goto out; 1801 1802 error = do_proc_readlink(&path, buffer, buflen); 1803 path_put(&path); 1804 out: 1805 return error; 1806 } 1807 1808 const struct inode_operations proc_pid_link_inode_operations = { 1809 .readlink = proc_pid_readlink, 1810 .get_link = proc_pid_get_link, 1811 .setattr = proc_setattr, 1812 }; 1813 1814 1815 /* building an inode */ 1816 1817 void task_dump_owner(struct task_struct *task, umode_t mode, 1818 kuid_t *ruid, kgid_t *rgid) 1819 { 1820 /* Depending on the state of dumpable compute who should own a 1821 * proc file for a task. 1822 */ 1823 const struct cred *cred; 1824 kuid_t uid; 1825 kgid_t gid; 1826 1827 if (unlikely(task->flags & PF_KTHREAD)) { 1828 *ruid = GLOBAL_ROOT_UID; 1829 *rgid = GLOBAL_ROOT_GID; 1830 return; 1831 } 1832 1833 /* Default to the tasks effective ownership */ 1834 rcu_read_lock(); 1835 cred = __task_cred(task); 1836 uid = cred->euid; 1837 gid = cred->egid; 1838 rcu_read_unlock(); 1839 1840 /* 1841 * Before the /proc/pid/status file was created the only way to read 1842 * the effective uid of a /process was to stat /proc/pid. Reading 1843 * /proc/pid/status is slow enough that procps and other packages 1844 * kept stating /proc/pid. To keep the rules in /proc simple I have 1845 * made this apply to all per process world readable and executable 1846 * directories. 1847 */ 1848 if (mode != (S_IFDIR|S_IRUGO|S_IXUGO)) { 1849 struct mm_struct *mm; 1850 task_lock(task); 1851 mm = task->mm; 1852 /* Make non-dumpable tasks owned by some root */ 1853 if (mm) { 1854 if (get_dumpable(mm) != SUID_DUMP_USER) { 1855 struct user_namespace *user_ns = mm->user_ns; 1856 1857 uid = make_kuid(user_ns, 0); 1858 if (!uid_valid(uid)) 1859 uid = GLOBAL_ROOT_UID; 1860 1861 gid = make_kgid(user_ns, 0); 1862 if (!gid_valid(gid)) 1863 gid = GLOBAL_ROOT_GID; 1864 } 1865 } else { 1866 uid = GLOBAL_ROOT_UID; 1867 gid = GLOBAL_ROOT_GID; 1868 } 1869 task_unlock(task); 1870 } 1871 *ruid = uid; 1872 *rgid = gid; 1873 } 1874 1875 void proc_pid_evict_inode(struct proc_inode *ei) 1876 { 1877 struct pid *pid = ei->pid; 1878 1879 if (S_ISDIR(ei->vfs_inode.i_mode)) { 1880 spin_lock(&pid->lock); 1881 hlist_del_init_rcu(&ei->sibling_inodes); 1882 spin_unlock(&pid->lock); 1883 } 1884 1885 put_pid(pid); 1886 } 1887 1888 struct inode *proc_pid_make_inode(struct super_block * sb, 1889 struct task_struct *task, umode_t mode) 1890 { 1891 struct inode * inode; 1892 struct proc_inode *ei; 1893 struct pid *pid; 1894 1895 /* We need a new inode */ 1896 1897 inode = new_inode(sb); 1898 if (!inode) 1899 goto out; 1900 1901 /* Common stuff */ 1902 ei = PROC_I(inode); 1903 inode->i_mode = mode; 1904 inode->i_ino = get_next_ino(); 1905 inode->i_mtime = inode->i_atime = inode->i_ctime = current_time(inode); 1906 inode->i_op = &proc_def_inode_operations; 1907 1908 /* 1909 * grab the reference to task. 1910 */ 1911 pid = get_task_pid(task, PIDTYPE_PID); 1912 if (!pid) 1913 goto out_unlock; 1914 1915 /* Let the pid remember us for quick removal */ 1916 ei->pid = pid; 1917 if (S_ISDIR(mode)) { 1918 spin_lock(&pid->lock); 1919 hlist_add_head_rcu(&ei->sibling_inodes, &pid->inodes); 1920 spin_unlock(&pid->lock); 1921 } 1922 1923 task_dump_owner(task, 0, &inode->i_uid, &inode->i_gid); 1924 security_task_to_inode(task, inode); 1925 1926 out: 1927 return inode; 1928 1929 out_unlock: 1930 iput(inode); 1931 return NULL; 1932 } 1933 1934 int pid_getattr(struct user_namespace *mnt_userns, const struct path *path, 1935 struct kstat *stat, u32 request_mask, unsigned int query_flags) 1936 { 1937 struct inode *inode = d_inode(path->dentry); 1938 struct proc_fs_info *fs_info = proc_sb_info(inode->i_sb); 1939 struct task_struct *task; 1940 1941 generic_fillattr(&init_user_ns, inode, stat); 1942 1943 stat->uid = GLOBAL_ROOT_UID; 1944 stat->gid = GLOBAL_ROOT_GID; 1945 rcu_read_lock(); 1946 task = pid_task(proc_pid(inode), PIDTYPE_PID); 1947 if (task) { 1948 if (!has_pid_permissions(fs_info, task, HIDEPID_INVISIBLE)) { 1949 rcu_read_unlock(); 1950 /* 1951 * This doesn't prevent learning whether PID exists, 1952 * it only makes getattr() consistent with readdir(). 1953 */ 1954 return -ENOENT; 1955 } 1956 task_dump_owner(task, inode->i_mode, &stat->uid, &stat->gid); 1957 } 1958 rcu_read_unlock(); 1959 return 0; 1960 } 1961 1962 /* dentry stuff */ 1963 1964 /* 1965 * Set <pid>/... inode ownership (can change due to setuid(), etc.) 1966 */ 1967 void pid_update_inode(struct task_struct *task, struct inode *inode) 1968 { 1969 task_dump_owner(task, inode->i_mode, &inode->i_uid, &inode->i_gid); 1970 1971 inode->i_mode &= ~(S_ISUID | S_ISGID); 1972 security_task_to_inode(task, inode); 1973 } 1974 1975 /* 1976 * Rewrite the inode's ownerships here because the owning task may have 1977 * performed a setuid(), etc. 1978 * 1979 */ 1980 static int pid_revalidate(struct dentry *dentry, unsigned int flags) 1981 { 1982 struct inode *inode; 1983 struct task_struct *task; 1984 int ret = 0; 1985 1986 rcu_read_lock(); 1987 inode = d_inode_rcu(dentry); 1988 if (!inode) 1989 goto out; 1990 task = pid_task(proc_pid(inode), PIDTYPE_PID); 1991 1992 if (task) { 1993 pid_update_inode(task, inode); 1994 ret = 1; 1995 } 1996 out: 1997 rcu_read_unlock(); 1998 return ret; 1999 } 2000 2001 static inline bool proc_inode_is_dead(struct inode *inode) 2002 { 2003 return !proc_pid(inode)->tasks[PIDTYPE_PID].first; 2004 } 2005 2006 int pid_delete_dentry(const struct dentry *dentry) 2007 { 2008 /* Is the task we represent dead? 2009 * If so, then don't put the dentry on the lru list, 2010 * kill it immediately. 2011 */ 2012 return proc_inode_is_dead(d_inode(dentry)); 2013 } 2014 2015 const struct dentry_operations pid_dentry_operations = 2016 { 2017 .d_revalidate = pid_revalidate, 2018 .d_delete = pid_delete_dentry, 2019 }; 2020 2021 /* Lookups */ 2022 2023 /* 2024 * Fill a directory entry. 2025 * 2026 * If possible create the dcache entry and derive our inode number and 2027 * file type from dcache entry. 2028 * 2029 * Since all of the proc inode numbers are dynamically generated, the inode 2030 * numbers do not exist until the inode is cache. This means creating 2031 * the dcache entry in readdir is necessary to keep the inode numbers 2032 * reported by readdir in sync with the inode numbers reported 2033 * by stat. 2034 */ 2035 bool proc_fill_cache(struct file *file, struct dir_context *ctx, 2036 const char *name, unsigned int len, 2037 instantiate_t instantiate, struct task_struct *task, const void *ptr) 2038 { 2039 struct dentry *child, *dir = file->f_path.dentry; 2040 struct qstr qname = QSTR_INIT(name, len); 2041 struct inode *inode; 2042 unsigned type = DT_UNKNOWN; 2043 ino_t ino = 1; 2044 2045 child = d_hash_and_lookup(dir, &qname); 2046 if (!child) { 2047 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq); 2048 child = d_alloc_parallel(dir, &qname, &wq); 2049 if (IS_ERR(child)) 2050 goto end_instantiate; 2051 if (d_in_lookup(child)) { 2052 struct dentry *res; 2053 res = instantiate(child, task, ptr); 2054 d_lookup_done(child); 2055 if (unlikely(res)) { 2056 dput(child); 2057 child = res; 2058 if (IS_ERR(child)) 2059 goto end_instantiate; 2060 } 2061 } 2062 } 2063 inode = d_inode(child); 2064 ino = inode->i_ino; 2065 type = inode->i_mode >> 12; 2066 dput(child); 2067 end_instantiate: 2068 return dir_emit(ctx, name, len, ino, type); 2069 } 2070 2071 /* 2072 * dname_to_vma_addr - maps a dentry name into two unsigned longs 2073 * which represent vma start and end addresses. 2074 */ 2075 static int dname_to_vma_addr(struct dentry *dentry, 2076 unsigned long *start, unsigned long *end) 2077 { 2078 const char *str = dentry->d_name.name; 2079 unsigned long long sval, eval; 2080 unsigned int len; 2081 2082 if (str[0] == '0' && str[1] != '-') 2083 return -EINVAL; 2084 len = _parse_integer(str, 16, &sval); 2085 if (len & KSTRTOX_OVERFLOW) 2086 return -EINVAL; 2087 if (sval != (unsigned long)sval) 2088 return -EINVAL; 2089 str += len; 2090 2091 if (*str != '-') 2092 return -EINVAL; 2093 str++; 2094 2095 if (str[0] == '0' && str[1]) 2096 return -EINVAL; 2097 len = _parse_integer(str, 16, &eval); 2098 if (len & KSTRTOX_OVERFLOW) 2099 return -EINVAL; 2100 if (eval != (unsigned long)eval) 2101 return -EINVAL; 2102 str += len; 2103 2104 if (*str != '\0') 2105 return -EINVAL; 2106 2107 *start = sval; 2108 *end = eval; 2109 2110 return 0; 2111 } 2112 2113 static int map_files_d_revalidate(struct dentry *dentry, unsigned int flags) 2114 { 2115 unsigned long vm_start, vm_end; 2116 bool exact_vma_exists = false; 2117 struct mm_struct *mm = NULL; 2118 struct task_struct *task; 2119 struct inode *inode; 2120 int status = 0; 2121 2122 if (flags & LOOKUP_RCU) 2123 return -ECHILD; 2124 2125 inode = d_inode(dentry); 2126 task = get_proc_task(inode); 2127 if (!task) 2128 goto out_notask; 2129 2130 mm = mm_access(task, PTRACE_MODE_READ_FSCREDS); 2131 if (IS_ERR_OR_NULL(mm)) 2132 goto out; 2133 2134 if (!dname_to_vma_addr(dentry, &vm_start, &vm_end)) { 2135 status = mmap_read_lock_killable(mm); 2136 if (!status) { 2137 exact_vma_exists = !!find_exact_vma(mm, vm_start, 2138 vm_end); 2139 mmap_read_unlock(mm); 2140 } 2141 } 2142 2143 mmput(mm); 2144 2145 if (exact_vma_exists) { 2146 task_dump_owner(task, 0, &inode->i_uid, &inode->i_gid); 2147 2148 security_task_to_inode(task, inode); 2149 status = 1; 2150 } 2151 2152 out: 2153 put_task_struct(task); 2154 2155 out_notask: 2156 return status; 2157 } 2158 2159 static const struct dentry_operations tid_map_files_dentry_operations = { 2160 .d_revalidate = map_files_d_revalidate, 2161 .d_delete = pid_delete_dentry, 2162 }; 2163 2164 static int map_files_get_link(struct dentry *dentry, struct path *path) 2165 { 2166 unsigned long vm_start, vm_end; 2167 struct vm_area_struct *vma; 2168 struct task_struct *task; 2169 struct mm_struct *mm; 2170 int rc; 2171 2172 rc = -ENOENT; 2173 task = get_proc_task(d_inode(dentry)); 2174 if (!task) 2175 goto out; 2176 2177 mm = get_task_mm(task); 2178 put_task_struct(task); 2179 if (!mm) 2180 goto out; 2181 2182 rc = dname_to_vma_addr(dentry, &vm_start, &vm_end); 2183 if (rc) 2184 goto out_mmput; 2185 2186 rc = mmap_read_lock_killable(mm); 2187 if (rc) 2188 goto out_mmput; 2189 2190 rc = -ENOENT; 2191 vma = find_exact_vma(mm, vm_start, vm_end); 2192 if (vma && vma->vm_file) { 2193 *path = vma->vm_file->f_path; 2194 path_get(path); 2195 rc = 0; 2196 } 2197 mmap_read_unlock(mm); 2198 2199 out_mmput: 2200 mmput(mm); 2201 out: 2202 return rc; 2203 } 2204 2205 struct map_files_info { 2206 unsigned long start; 2207 unsigned long end; 2208 fmode_t mode; 2209 }; 2210 2211 /* 2212 * Only allow CAP_SYS_ADMIN and CAP_CHECKPOINT_RESTORE to follow the links, due 2213 * to concerns about how the symlinks may be used to bypass permissions on 2214 * ancestor directories in the path to the file in question. 2215 */ 2216 static const char * 2217 proc_map_files_get_link(struct dentry *dentry, 2218 struct inode *inode, 2219 struct delayed_call *done) 2220 { 2221 if (!checkpoint_restore_ns_capable(&init_user_ns)) 2222 return ERR_PTR(-EPERM); 2223 2224 return proc_pid_get_link(dentry, inode, done); 2225 } 2226 2227 /* 2228 * Identical to proc_pid_link_inode_operations except for get_link() 2229 */ 2230 static const struct inode_operations proc_map_files_link_inode_operations = { 2231 .readlink = proc_pid_readlink, 2232 .get_link = proc_map_files_get_link, 2233 .setattr = proc_setattr, 2234 }; 2235 2236 static struct dentry * 2237 proc_map_files_instantiate(struct dentry *dentry, 2238 struct task_struct *task, const void *ptr) 2239 { 2240 fmode_t mode = (fmode_t)(unsigned long)ptr; 2241 struct proc_inode *ei; 2242 struct inode *inode; 2243 2244 inode = proc_pid_make_inode(dentry->d_sb, task, S_IFLNK | 2245 ((mode & FMODE_READ ) ? S_IRUSR : 0) | 2246 ((mode & FMODE_WRITE) ? S_IWUSR : 0)); 2247 if (!inode) 2248 return ERR_PTR(-ENOENT); 2249 2250 ei = PROC_I(inode); 2251 ei->op.proc_get_link = map_files_get_link; 2252 2253 inode->i_op = &proc_map_files_link_inode_operations; 2254 inode->i_size = 64; 2255 2256 d_set_d_op(dentry, &tid_map_files_dentry_operations); 2257 return d_splice_alias(inode, dentry); 2258 } 2259 2260 static struct dentry *proc_map_files_lookup(struct inode *dir, 2261 struct dentry *dentry, unsigned int flags) 2262 { 2263 unsigned long vm_start, vm_end; 2264 struct vm_area_struct *vma; 2265 struct task_struct *task; 2266 struct dentry *result; 2267 struct mm_struct *mm; 2268 2269 result = ERR_PTR(-ENOENT); 2270 task = get_proc_task(dir); 2271 if (!task) 2272 goto out; 2273 2274 result = ERR_PTR(-EACCES); 2275 if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS)) 2276 goto out_put_task; 2277 2278 result = ERR_PTR(-ENOENT); 2279 if (dname_to_vma_addr(dentry, &vm_start, &vm_end)) 2280 goto out_put_task; 2281 2282 mm = get_task_mm(task); 2283 if (!mm) 2284 goto out_put_task; 2285 2286 result = ERR_PTR(-EINTR); 2287 if (mmap_read_lock_killable(mm)) 2288 goto out_put_mm; 2289 2290 result = ERR_PTR(-ENOENT); 2291 vma = find_exact_vma(mm, vm_start, vm_end); 2292 if (!vma) 2293 goto out_no_vma; 2294 2295 if (vma->vm_file) 2296 result = proc_map_files_instantiate(dentry, task, 2297 (void *)(unsigned long)vma->vm_file->f_mode); 2298 2299 out_no_vma: 2300 mmap_read_unlock(mm); 2301 out_put_mm: 2302 mmput(mm); 2303 out_put_task: 2304 put_task_struct(task); 2305 out: 2306 return result; 2307 } 2308 2309 static const struct inode_operations proc_map_files_inode_operations = { 2310 .lookup = proc_map_files_lookup, 2311 .permission = proc_fd_permission, 2312 .setattr = proc_setattr, 2313 }; 2314 2315 static int 2316 proc_map_files_readdir(struct file *file, struct dir_context *ctx) 2317 { 2318 struct vm_area_struct *vma; 2319 struct task_struct *task; 2320 struct mm_struct *mm; 2321 unsigned long nr_files, pos, i; 2322 GENRADIX(struct map_files_info) fa; 2323 struct map_files_info *p; 2324 int ret; 2325 2326 genradix_init(&fa); 2327 2328 ret = -ENOENT; 2329 task = get_proc_task(file_inode(file)); 2330 if (!task) 2331 goto out; 2332 2333 ret = -EACCES; 2334 if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS)) 2335 goto out_put_task; 2336 2337 ret = 0; 2338 if (!dir_emit_dots(file, ctx)) 2339 goto out_put_task; 2340 2341 mm = get_task_mm(task); 2342 if (!mm) 2343 goto out_put_task; 2344 2345 ret = mmap_read_lock_killable(mm); 2346 if (ret) { 2347 mmput(mm); 2348 goto out_put_task; 2349 } 2350 2351 nr_files = 0; 2352 2353 /* 2354 * We need two passes here: 2355 * 2356 * 1) Collect vmas of mapped files with mmap_lock taken 2357 * 2) Release mmap_lock and instantiate entries 2358 * 2359 * otherwise we get lockdep complained, since filldir() 2360 * routine might require mmap_lock taken in might_fault(). 2361 */ 2362 2363 for (vma = mm->mmap, pos = 2; vma; vma = vma->vm_next) { 2364 if (!vma->vm_file) 2365 continue; 2366 if (++pos <= ctx->pos) 2367 continue; 2368 2369 p = genradix_ptr_alloc(&fa, nr_files++, GFP_KERNEL); 2370 if (!p) { 2371 ret = -ENOMEM; 2372 mmap_read_unlock(mm); 2373 mmput(mm); 2374 goto out_put_task; 2375 } 2376 2377 p->start = vma->vm_start; 2378 p->end = vma->vm_end; 2379 p->mode = vma->vm_file->f_mode; 2380 } 2381 mmap_read_unlock(mm); 2382 mmput(mm); 2383 2384 for (i = 0; i < nr_files; i++) { 2385 char buf[4 * sizeof(long) + 2]; /* max: %lx-%lx\0 */ 2386 unsigned int len; 2387 2388 p = genradix_ptr(&fa, i); 2389 len = snprintf(buf, sizeof(buf), "%lx-%lx", p->start, p->end); 2390 if (!proc_fill_cache(file, ctx, 2391 buf, len, 2392 proc_map_files_instantiate, 2393 task, 2394 (void *)(unsigned long)p->mode)) 2395 break; 2396 ctx->pos++; 2397 } 2398 2399 out_put_task: 2400 put_task_struct(task); 2401 out: 2402 genradix_free(&fa); 2403 return ret; 2404 } 2405 2406 static const struct file_operations proc_map_files_operations = { 2407 .read = generic_read_dir, 2408 .iterate_shared = proc_map_files_readdir, 2409 .llseek = generic_file_llseek, 2410 }; 2411 2412 #if defined(CONFIG_CHECKPOINT_RESTORE) && defined(CONFIG_POSIX_TIMERS) 2413 struct timers_private { 2414 struct pid *pid; 2415 struct task_struct *task; 2416 struct sighand_struct *sighand; 2417 struct pid_namespace *ns; 2418 unsigned long flags; 2419 }; 2420 2421 static void *timers_start(struct seq_file *m, loff_t *pos) 2422 { 2423 struct timers_private *tp = m->private; 2424 2425 tp->task = get_pid_task(tp->pid, PIDTYPE_PID); 2426 if (!tp->task) 2427 return ERR_PTR(-ESRCH); 2428 2429 tp->sighand = lock_task_sighand(tp->task, &tp->flags); 2430 if (!tp->sighand) 2431 return ERR_PTR(-ESRCH); 2432 2433 return seq_list_start(&tp->task->signal->posix_timers, *pos); 2434 } 2435 2436 static void *timers_next(struct seq_file *m, void *v, loff_t *pos) 2437 { 2438 struct timers_private *tp = m->private; 2439 return seq_list_next(v, &tp->task->signal->posix_timers, pos); 2440 } 2441 2442 static void timers_stop(struct seq_file *m, void *v) 2443 { 2444 struct timers_private *tp = m->private; 2445 2446 if (tp->sighand) { 2447 unlock_task_sighand(tp->task, &tp->flags); 2448 tp->sighand = NULL; 2449 } 2450 2451 if (tp->task) { 2452 put_task_struct(tp->task); 2453 tp->task = NULL; 2454 } 2455 } 2456 2457 static int show_timer(struct seq_file *m, void *v) 2458 { 2459 struct k_itimer *timer; 2460 struct timers_private *tp = m->private; 2461 int notify; 2462 static const char * const nstr[] = { 2463 [SIGEV_SIGNAL] = "signal", 2464 [SIGEV_NONE] = "none", 2465 [SIGEV_THREAD] = "thread", 2466 }; 2467 2468 timer = list_entry((struct list_head *)v, struct k_itimer, list); 2469 notify = timer->it_sigev_notify; 2470 2471 seq_printf(m, "ID: %d\n", timer->it_id); 2472 seq_printf(m, "signal: %d/%px\n", 2473 timer->sigq->info.si_signo, 2474 timer->sigq->info.si_value.sival_ptr); 2475 seq_printf(m, "notify: %s/%s.%d\n", 2476 nstr[notify & ~SIGEV_THREAD_ID], 2477 (notify & SIGEV_THREAD_ID) ? "tid" : "pid", 2478 pid_nr_ns(timer->it_pid, tp->ns)); 2479 seq_printf(m, "ClockID: %d\n", timer->it_clock); 2480 2481 return 0; 2482 } 2483 2484 static const struct seq_operations proc_timers_seq_ops = { 2485 .start = timers_start, 2486 .next = timers_next, 2487 .stop = timers_stop, 2488 .show = show_timer, 2489 }; 2490 2491 static int proc_timers_open(struct inode *inode, struct file *file) 2492 { 2493 struct timers_private *tp; 2494 2495 tp = __seq_open_private(file, &proc_timers_seq_ops, 2496 sizeof(struct timers_private)); 2497 if (!tp) 2498 return -ENOMEM; 2499 2500 tp->pid = proc_pid(inode); 2501 tp->ns = proc_pid_ns(inode->i_sb); 2502 return 0; 2503 } 2504 2505 static const struct file_operations proc_timers_operations = { 2506 .open = proc_timers_open, 2507 .read = seq_read, 2508 .llseek = seq_lseek, 2509 .release = seq_release_private, 2510 }; 2511 #endif 2512 2513 static ssize_t timerslack_ns_write(struct file *file, const char __user *buf, 2514 size_t count, loff_t *offset) 2515 { 2516 struct inode *inode = file_inode(file); 2517 struct task_struct *p; 2518 u64 slack_ns; 2519 int err; 2520 2521 err = kstrtoull_from_user(buf, count, 10, &slack_ns); 2522 if (err < 0) 2523 return err; 2524 2525 p = get_proc_task(inode); 2526 if (!p) 2527 return -ESRCH; 2528 2529 if (p != current) { 2530 rcu_read_lock(); 2531 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) { 2532 rcu_read_unlock(); 2533 count = -EPERM; 2534 goto out; 2535 } 2536 rcu_read_unlock(); 2537 2538 err = security_task_setscheduler(p); 2539 if (err) { 2540 count = err; 2541 goto out; 2542 } 2543 } 2544 2545 task_lock(p); 2546 if (slack_ns == 0) 2547 p->timer_slack_ns = p->default_timer_slack_ns; 2548 else 2549 p->timer_slack_ns = slack_ns; 2550 task_unlock(p); 2551 2552 out: 2553 put_task_struct(p); 2554 2555 return count; 2556 } 2557 2558 static int timerslack_ns_show(struct seq_file *m, void *v) 2559 { 2560 struct inode *inode = m->private; 2561 struct task_struct *p; 2562 int err = 0; 2563 2564 p = get_proc_task(inode); 2565 if (!p) 2566 return -ESRCH; 2567 2568 if (p != current) { 2569 rcu_read_lock(); 2570 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) { 2571 rcu_read_unlock(); 2572 err = -EPERM; 2573 goto out; 2574 } 2575 rcu_read_unlock(); 2576 2577 err = security_task_getscheduler(p); 2578 if (err) 2579 goto out; 2580 } 2581 2582 task_lock(p); 2583 seq_printf(m, "%llu\n", p->timer_slack_ns); 2584 task_unlock(p); 2585 2586 out: 2587 put_task_struct(p); 2588 2589 return err; 2590 } 2591 2592 static int timerslack_ns_open(struct inode *inode, struct file *filp) 2593 { 2594 return single_open(filp, timerslack_ns_show, inode); 2595 } 2596 2597 static const struct file_operations proc_pid_set_timerslack_ns_operations = { 2598 .open = timerslack_ns_open, 2599 .read = seq_read, 2600 .write = timerslack_ns_write, 2601 .llseek = seq_lseek, 2602 .release = single_release, 2603 }; 2604 2605 static struct dentry *proc_pident_instantiate(struct dentry *dentry, 2606 struct task_struct *task, const void *ptr) 2607 { 2608 const struct pid_entry *p = ptr; 2609 struct inode *inode; 2610 struct proc_inode *ei; 2611 2612 inode = proc_pid_make_inode(dentry->d_sb, task, p->mode); 2613 if (!inode) 2614 return ERR_PTR(-ENOENT); 2615 2616 ei = PROC_I(inode); 2617 if (S_ISDIR(inode->i_mode)) 2618 set_nlink(inode, 2); /* Use getattr to fix if necessary */ 2619 if (p->iop) 2620 inode->i_op = p->iop; 2621 if (p->fop) 2622 inode->i_fop = p->fop; 2623 ei->op = p->op; 2624 pid_update_inode(task, inode); 2625 d_set_d_op(dentry, &pid_dentry_operations); 2626 return d_splice_alias(inode, dentry); 2627 } 2628 2629 static struct dentry *proc_pident_lookup(struct inode *dir, 2630 struct dentry *dentry, 2631 const struct pid_entry *p, 2632 const struct pid_entry *end) 2633 { 2634 struct task_struct *task = get_proc_task(dir); 2635 struct dentry *res = ERR_PTR(-ENOENT); 2636 2637 if (!task) 2638 goto out_no_task; 2639 2640 /* 2641 * Yes, it does not scale. And it should not. Don't add 2642 * new entries into /proc/<tgid>/ without very good reasons. 2643 */ 2644 for (; p < end; p++) { 2645 if (p->len != dentry->d_name.len) 2646 continue; 2647 if (!memcmp(dentry->d_name.name, p->name, p->len)) { 2648 res = proc_pident_instantiate(dentry, task, p); 2649 break; 2650 } 2651 } 2652 put_task_struct(task); 2653 out_no_task: 2654 return res; 2655 } 2656 2657 static int proc_pident_readdir(struct file *file, struct dir_context *ctx, 2658 const struct pid_entry *ents, unsigned int nents) 2659 { 2660 struct task_struct *task = get_proc_task(file_inode(file)); 2661 const struct pid_entry *p; 2662 2663 if (!task) 2664 return -ENOENT; 2665 2666 if (!dir_emit_dots(file, ctx)) 2667 goto out; 2668 2669 if (ctx->pos >= nents + 2) 2670 goto out; 2671 2672 for (p = ents + (ctx->pos - 2); p < ents + nents; p++) { 2673 if (!proc_fill_cache(file, ctx, p->name, p->len, 2674 proc_pident_instantiate, task, p)) 2675 break; 2676 ctx->pos++; 2677 } 2678 out: 2679 put_task_struct(task); 2680 return 0; 2681 } 2682 2683 #ifdef CONFIG_SECURITY 2684 static int proc_pid_attr_open(struct inode *inode, struct file *file) 2685 { 2686 file->private_data = NULL; 2687 __mem_open(inode, file, PTRACE_MODE_READ_FSCREDS); 2688 return 0; 2689 } 2690 2691 static ssize_t proc_pid_attr_read(struct file * file, char __user * buf, 2692 size_t count, loff_t *ppos) 2693 { 2694 struct inode * inode = file_inode(file); 2695 char *p = NULL; 2696 ssize_t length; 2697 struct task_struct *task = get_proc_task(inode); 2698 2699 if (!task) 2700 return -ESRCH; 2701 2702 length = security_getprocattr(task, PROC_I(inode)->op.lsm, 2703 (char*)file->f_path.dentry->d_name.name, 2704 &p); 2705 put_task_struct(task); 2706 if (length > 0) 2707 length = simple_read_from_buffer(buf, count, ppos, p, length); 2708 kfree(p); 2709 return length; 2710 } 2711 2712 static ssize_t proc_pid_attr_write(struct file * file, const char __user * buf, 2713 size_t count, loff_t *ppos) 2714 { 2715 struct inode * inode = file_inode(file); 2716 struct task_struct *task; 2717 void *page; 2718 int rv; 2719 2720 /* A task may only write when it was the opener. */ 2721 if (file->private_data != current->mm) 2722 return -EPERM; 2723 2724 rcu_read_lock(); 2725 task = pid_task(proc_pid(inode), PIDTYPE_PID); 2726 if (!task) { 2727 rcu_read_unlock(); 2728 return -ESRCH; 2729 } 2730 /* A task may only write its own attributes. */ 2731 if (current != task) { 2732 rcu_read_unlock(); 2733 return -EACCES; 2734 } 2735 /* Prevent changes to overridden credentials. */ 2736 if (current_cred() != current_real_cred()) { 2737 rcu_read_unlock(); 2738 return -EBUSY; 2739 } 2740 rcu_read_unlock(); 2741 2742 if (count > PAGE_SIZE) 2743 count = PAGE_SIZE; 2744 2745 /* No partial writes. */ 2746 if (*ppos != 0) 2747 return -EINVAL; 2748 2749 page = memdup_user(buf, count); 2750 if (IS_ERR(page)) { 2751 rv = PTR_ERR(page); 2752 goto out; 2753 } 2754 2755 /* Guard against adverse ptrace interaction */ 2756 rv = mutex_lock_interruptible(¤t->signal->cred_guard_mutex); 2757 if (rv < 0) 2758 goto out_free; 2759 2760 rv = security_setprocattr(PROC_I(inode)->op.lsm, 2761 file->f_path.dentry->d_name.name, page, 2762 count); 2763 mutex_unlock(¤t->signal->cred_guard_mutex); 2764 out_free: 2765 kfree(page); 2766 out: 2767 return rv; 2768 } 2769 2770 static const struct file_operations proc_pid_attr_operations = { 2771 .open = proc_pid_attr_open, 2772 .read = proc_pid_attr_read, 2773 .write = proc_pid_attr_write, 2774 .llseek = generic_file_llseek, 2775 .release = mem_release, 2776 }; 2777 2778 #define LSM_DIR_OPS(LSM) \ 2779 static int proc_##LSM##_attr_dir_iterate(struct file *filp, \ 2780 struct dir_context *ctx) \ 2781 { \ 2782 return proc_pident_readdir(filp, ctx, \ 2783 LSM##_attr_dir_stuff, \ 2784 ARRAY_SIZE(LSM##_attr_dir_stuff)); \ 2785 } \ 2786 \ 2787 static const struct file_operations proc_##LSM##_attr_dir_ops = { \ 2788 .read = generic_read_dir, \ 2789 .iterate = proc_##LSM##_attr_dir_iterate, \ 2790 .llseek = default_llseek, \ 2791 }; \ 2792 \ 2793 static struct dentry *proc_##LSM##_attr_dir_lookup(struct inode *dir, \ 2794 struct dentry *dentry, unsigned int flags) \ 2795 { \ 2796 return proc_pident_lookup(dir, dentry, \ 2797 LSM##_attr_dir_stuff, \ 2798 LSM##_attr_dir_stuff + ARRAY_SIZE(LSM##_attr_dir_stuff)); \ 2799 } \ 2800 \ 2801 static const struct inode_operations proc_##LSM##_attr_dir_inode_ops = { \ 2802 .lookup = proc_##LSM##_attr_dir_lookup, \ 2803 .getattr = pid_getattr, \ 2804 .setattr = proc_setattr, \ 2805 } 2806 2807 #ifdef CONFIG_SECURITY_SMACK 2808 static const struct pid_entry smack_attr_dir_stuff[] = { 2809 ATTR("smack", "current", 0666), 2810 }; 2811 LSM_DIR_OPS(smack); 2812 #endif 2813 2814 #ifdef CONFIG_SECURITY_APPARMOR 2815 static const struct pid_entry apparmor_attr_dir_stuff[] = { 2816 ATTR("apparmor", "current", 0666), 2817 ATTR("apparmor", "prev", 0444), 2818 ATTR("apparmor", "exec", 0666), 2819 }; 2820 LSM_DIR_OPS(apparmor); 2821 #endif 2822 2823 static const struct pid_entry attr_dir_stuff[] = { 2824 ATTR(NULL, "current", 0666), 2825 ATTR(NULL, "prev", 0444), 2826 ATTR(NULL, "exec", 0666), 2827 ATTR(NULL, "fscreate", 0666), 2828 ATTR(NULL, "keycreate", 0666), 2829 ATTR(NULL, "sockcreate", 0666), 2830 #ifdef CONFIG_SECURITY_SMACK 2831 DIR("smack", 0555, 2832 proc_smack_attr_dir_inode_ops, proc_smack_attr_dir_ops), 2833 #endif 2834 #ifdef CONFIG_SECURITY_APPARMOR 2835 DIR("apparmor", 0555, 2836 proc_apparmor_attr_dir_inode_ops, proc_apparmor_attr_dir_ops), 2837 #endif 2838 }; 2839 2840 static int proc_attr_dir_readdir(struct file *file, struct dir_context *ctx) 2841 { 2842 return proc_pident_readdir(file, ctx, 2843 attr_dir_stuff, ARRAY_SIZE(attr_dir_stuff)); 2844 } 2845 2846 static const struct file_operations proc_attr_dir_operations = { 2847 .read = generic_read_dir, 2848 .iterate_shared = proc_attr_dir_readdir, 2849 .llseek = generic_file_llseek, 2850 }; 2851 2852 static struct dentry *proc_attr_dir_lookup(struct inode *dir, 2853 struct dentry *dentry, unsigned int flags) 2854 { 2855 return proc_pident_lookup(dir, dentry, 2856 attr_dir_stuff, 2857 attr_dir_stuff + ARRAY_SIZE(attr_dir_stuff)); 2858 } 2859 2860 static const struct inode_operations proc_attr_dir_inode_operations = { 2861 .lookup = proc_attr_dir_lookup, 2862 .getattr = pid_getattr, 2863 .setattr = proc_setattr, 2864 }; 2865 2866 #endif 2867 2868 #ifdef CONFIG_ELF_CORE 2869 static ssize_t proc_coredump_filter_read(struct file *file, char __user *buf, 2870 size_t count, loff_t *ppos) 2871 { 2872 struct task_struct *task = get_proc_task(file_inode(file)); 2873 struct mm_struct *mm; 2874 char buffer[PROC_NUMBUF]; 2875 size_t len; 2876 int ret; 2877 2878 if (!task) 2879 return -ESRCH; 2880 2881 ret = 0; 2882 mm = get_task_mm(task); 2883 if (mm) { 2884 len = snprintf(buffer, sizeof(buffer), "%08lx\n", 2885 ((mm->flags & MMF_DUMP_FILTER_MASK) >> 2886 MMF_DUMP_FILTER_SHIFT)); 2887 mmput(mm); 2888 ret = simple_read_from_buffer(buf, count, ppos, buffer, len); 2889 } 2890 2891 put_task_struct(task); 2892 2893 return ret; 2894 } 2895 2896 static ssize_t proc_coredump_filter_write(struct file *file, 2897 const char __user *buf, 2898 size_t count, 2899 loff_t *ppos) 2900 { 2901 struct task_struct *task; 2902 struct mm_struct *mm; 2903 unsigned int val; 2904 int ret; 2905 int i; 2906 unsigned long mask; 2907 2908 ret = kstrtouint_from_user(buf, count, 0, &val); 2909 if (ret < 0) 2910 return ret; 2911 2912 ret = -ESRCH; 2913 task = get_proc_task(file_inode(file)); 2914 if (!task) 2915 goto out_no_task; 2916 2917 mm = get_task_mm(task); 2918 if (!mm) 2919 goto out_no_mm; 2920 ret = 0; 2921 2922 for (i = 0, mask = 1; i < MMF_DUMP_FILTER_BITS; i++, mask <<= 1) { 2923 if (val & mask) 2924 set_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags); 2925 else 2926 clear_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags); 2927 } 2928 2929 mmput(mm); 2930 out_no_mm: 2931 put_task_struct(task); 2932 out_no_task: 2933 if (ret < 0) 2934 return ret; 2935 return count; 2936 } 2937 2938 static const struct file_operations proc_coredump_filter_operations = { 2939 .read = proc_coredump_filter_read, 2940 .write = proc_coredump_filter_write, 2941 .llseek = generic_file_llseek, 2942 }; 2943 #endif 2944 2945 #ifdef CONFIG_TASK_IO_ACCOUNTING 2946 static int do_io_accounting(struct task_struct *task, struct seq_file *m, int whole) 2947 { 2948 struct task_io_accounting acct = task->ioac; 2949 unsigned long flags; 2950 int result; 2951 2952 result = down_read_killable(&task->signal->exec_update_lock); 2953 if (result) 2954 return result; 2955 2956 if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS)) { 2957 result = -EACCES; 2958 goto out_unlock; 2959 } 2960 2961 if (whole && lock_task_sighand(task, &flags)) { 2962 struct task_struct *t = task; 2963 2964 task_io_accounting_add(&acct, &task->signal->ioac); 2965 while_each_thread(task, t) 2966 task_io_accounting_add(&acct, &t->ioac); 2967 2968 unlock_task_sighand(task, &flags); 2969 } 2970 seq_printf(m, 2971 "rchar: %llu\n" 2972 "wchar: %llu\n" 2973 "syscr: %llu\n" 2974 "syscw: %llu\n" 2975 "read_bytes: %llu\n" 2976 "write_bytes: %llu\n" 2977 "cancelled_write_bytes: %llu\n", 2978 (unsigned long long)acct.rchar, 2979 (unsigned long long)acct.wchar, 2980 (unsigned long long)acct.syscr, 2981 (unsigned long long)acct.syscw, 2982 (unsigned long long)acct.read_bytes, 2983 (unsigned long long)acct.write_bytes, 2984 (unsigned long long)acct.cancelled_write_bytes); 2985 result = 0; 2986 2987 out_unlock: 2988 up_read(&task->signal->exec_update_lock); 2989 return result; 2990 } 2991 2992 static int proc_tid_io_accounting(struct seq_file *m, struct pid_namespace *ns, 2993 struct pid *pid, struct task_struct *task) 2994 { 2995 return do_io_accounting(task, m, 0); 2996 } 2997 2998 static int proc_tgid_io_accounting(struct seq_file *m, struct pid_namespace *ns, 2999 struct pid *pid, struct task_struct *task) 3000 { 3001 return do_io_accounting(task, m, 1); 3002 } 3003 #endif /* CONFIG_TASK_IO_ACCOUNTING */ 3004 3005 #ifdef CONFIG_USER_NS 3006 static int proc_id_map_open(struct inode *inode, struct file *file, 3007 const struct seq_operations *seq_ops) 3008 { 3009 struct user_namespace *ns = NULL; 3010 struct task_struct *task; 3011 struct seq_file *seq; 3012 int ret = -EINVAL; 3013 3014 task = get_proc_task(inode); 3015 if (task) { 3016 rcu_read_lock(); 3017 ns = get_user_ns(task_cred_xxx(task, user_ns)); 3018 rcu_read_unlock(); 3019 put_task_struct(task); 3020 } 3021 if (!ns) 3022 goto err; 3023 3024 ret = seq_open(file, seq_ops); 3025 if (ret) 3026 goto err_put_ns; 3027 3028 seq = file->private_data; 3029 seq->private = ns; 3030 3031 return 0; 3032 err_put_ns: 3033 put_user_ns(ns); 3034 err: 3035 return ret; 3036 } 3037 3038 static int proc_id_map_release(struct inode *inode, struct file *file) 3039 { 3040 struct seq_file *seq = file->private_data; 3041 struct user_namespace *ns = seq->private; 3042 put_user_ns(ns); 3043 return seq_release(inode, file); 3044 } 3045 3046 static int proc_uid_map_open(struct inode *inode, struct file *file) 3047 { 3048 return proc_id_map_open(inode, file, &proc_uid_seq_operations); 3049 } 3050 3051 static int proc_gid_map_open(struct inode *inode, struct file *file) 3052 { 3053 return proc_id_map_open(inode, file, &proc_gid_seq_operations); 3054 } 3055 3056 static int proc_projid_map_open(struct inode *inode, struct file *file) 3057 { 3058 return proc_id_map_open(inode, file, &proc_projid_seq_operations); 3059 } 3060 3061 static const struct file_operations proc_uid_map_operations = { 3062 .open = proc_uid_map_open, 3063 .write = proc_uid_map_write, 3064 .read = seq_read, 3065 .llseek = seq_lseek, 3066 .release = proc_id_map_release, 3067 }; 3068 3069 static const struct file_operations proc_gid_map_operations = { 3070 .open = proc_gid_map_open, 3071 .write = proc_gid_map_write, 3072 .read = seq_read, 3073 .llseek = seq_lseek, 3074 .release = proc_id_map_release, 3075 }; 3076 3077 static const struct file_operations proc_projid_map_operations = { 3078 .open = proc_projid_map_open, 3079 .write = proc_projid_map_write, 3080 .read = seq_read, 3081 .llseek = seq_lseek, 3082 .release = proc_id_map_release, 3083 }; 3084 3085 static int proc_setgroups_open(struct inode *inode, struct file *file) 3086 { 3087 struct user_namespace *ns = NULL; 3088 struct task_struct *task; 3089 int ret; 3090 3091 ret = -ESRCH; 3092 task = get_proc_task(inode); 3093 if (task) { 3094 rcu_read_lock(); 3095 ns = get_user_ns(task_cred_xxx(task, user_ns)); 3096 rcu_read_unlock(); 3097 put_task_struct(task); 3098 } 3099 if (!ns) 3100 goto err; 3101 3102 if (file->f_mode & FMODE_WRITE) { 3103 ret = -EACCES; 3104 if (!ns_capable(ns, CAP_SYS_ADMIN)) 3105 goto err_put_ns; 3106 } 3107 3108 ret = single_open(file, &proc_setgroups_show, ns); 3109 if (ret) 3110 goto err_put_ns; 3111 3112 return 0; 3113 err_put_ns: 3114 put_user_ns(ns); 3115 err: 3116 return ret; 3117 } 3118 3119 static int proc_setgroups_release(struct inode *inode, struct file *file) 3120 { 3121 struct seq_file *seq = file->private_data; 3122 struct user_namespace *ns = seq->private; 3123 int ret = single_release(inode, file); 3124 put_user_ns(ns); 3125 return ret; 3126 } 3127 3128 static const struct file_operations proc_setgroups_operations = { 3129 .open = proc_setgroups_open, 3130 .write = proc_setgroups_write, 3131 .read = seq_read, 3132 .llseek = seq_lseek, 3133 .release = proc_setgroups_release, 3134 }; 3135 #endif /* CONFIG_USER_NS */ 3136 3137 static int proc_pid_personality(struct seq_file *m, struct pid_namespace *ns, 3138 struct pid *pid, struct task_struct *task) 3139 { 3140 int err = lock_trace(task); 3141 if (!err) { 3142 seq_printf(m, "%08x\n", task->personality); 3143 unlock_trace(task); 3144 } 3145 return err; 3146 } 3147 3148 #ifdef CONFIG_LIVEPATCH 3149 static int proc_pid_patch_state(struct seq_file *m, struct pid_namespace *ns, 3150 struct pid *pid, struct task_struct *task) 3151 { 3152 seq_printf(m, "%d\n", task->patch_state); 3153 return 0; 3154 } 3155 #endif /* CONFIG_LIVEPATCH */ 3156 3157 #ifdef CONFIG_KSM 3158 static int proc_pid_ksm_merging_pages(struct seq_file *m, struct pid_namespace *ns, 3159 struct pid *pid, struct task_struct *task) 3160 { 3161 struct mm_struct *mm; 3162 3163 mm = get_task_mm(task); 3164 if (mm) { 3165 seq_printf(m, "%lu\n", mm->ksm_merging_pages); 3166 mmput(mm); 3167 } 3168 3169 return 0; 3170 } 3171 #endif /* CONFIG_KSM */ 3172 3173 #ifdef CONFIG_STACKLEAK_METRICS 3174 static int proc_stack_depth(struct seq_file *m, struct pid_namespace *ns, 3175 struct pid *pid, struct task_struct *task) 3176 { 3177 unsigned long prev_depth = THREAD_SIZE - 3178 (task->prev_lowest_stack & (THREAD_SIZE - 1)); 3179 unsigned long depth = THREAD_SIZE - 3180 (task->lowest_stack & (THREAD_SIZE - 1)); 3181 3182 seq_printf(m, "previous stack depth: %lu\nstack depth: %lu\n", 3183 prev_depth, depth); 3184 return 0; 3185 } 3186 #endif /* CONFIG_STACKLEAK_METRICS */ 3187 3188 /* 3189 * Thread groups 3190 */ 3191 static const struct file_operations proc_task_operations; 3192 static const struct inode_operations proc_task_inode_operations; 3193 3194 static const struct pid_entry tgid_base_stuff[] = { 3195 DIR("task", S_IRUGO|S_IXUGO, proc_task_inode_operations, proc_task_operations), 3196 DIR("fd", S_IRUSR|S_IXUSR, proc_fd_inode_operations, proc_fd_operations), 3197 DIR("map_files", S_IRUSR|S_IXUSR, proc_map_files_inode_operations, proc_map_files_operations), 3198 DIR("fdinfo", S_IRUGO|S_IXUGO, proc_fdinfo_inode_operations, proc_fdinfo_operations), 3199 DIR("ns", S_IRUSR|S_IXUGO, proc_ns_dir_inode_operations, proc_ns_dir_operations), 3200 #ifdef CONFIG_NET 3201 DIR("net", S_IRUGO|S_IXUGO, proc_net_inode_operations, proc_net_operations), 3202 #endif 3203 REG("environ", S_IRUSR, proc_environ_operations), 3204 REG("auxv", S_IRUSR, proc_auxv_operations), 3205 ONE("status", S_IRUGO, proc_pid_status), 3206 ONE("personality", S_IRUSR, proc_pid_personality), 3207 ONE("limits", S_IRUGO, proc_pid_limits), 3208 #ifdef CONFIG_SCHED_DEBUG 3209 REG("sched", S_IRUGO|S_IWUSR, proc_pid_sched_operations), 3210 #endif 3211 #ifdef CONFIG_SCHED_AUTOGROUP 3212 REG("autogroup", S_IRUGO|S_IWUSR, proc_pid_sched_autogroup_operations), 3213 #endif 3214 #ifdef CONFIG_TIME_NS 3215 REG("timens_offsets", S_IRUGO|S_IWUSR, proc_timens_offsets_operations), 3216 #endif 3217 REG("comm", S_IRUGO|S_IWUSR, proc_pid_set_comm_operations), 3218 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK 3219 ONE("syscall", S_IRUSR, proc_pid_syscall), 3220 #endif 3221 REG("cmdline", S_IRUGO, proc_pid_cmdline_ops), 3222 ONE("stat", S_IRUGO, proc_tgid_stat), 3223 ONE("statm", S_IRUGO, proc_pid_statm), 3224 REG("maps", S_IRUGO, proc_pid_maps_operations), 3225 #ifdef CONFIG_NUMA 3226 REG("numa_maps", S_IRUGO, proc_pid_numa_maps_operations), 3227 #endif 3228 REG("mem", S_IRUSR|S_IWUSR, proc_mem_operations), 3229 LNK("cwd", proc_cwd_link), 3230 LNK("root", proc_root_link), 3231 LNK("exe", proc_exe_link), 3232 REG("mounts", S_IRUGO, proc_mounts_operations), 3233 REG("mountinfo", S_IRUGO, proc_mountinfo_operations), 3234 REG("mountstats", S_IRUSR, proc_mountstats_operations), 3235 #ifdef CONFIG_PROC_PAGE_MONITOR 3236 REG("clear_refs", S_IWUSR, proc_clear_refs_operations), 3237 REG("smaps", S_IRUGO, proc_pid_smaps_operations), 3238 REG("smaps_rollup", S_IRUGO, proc_pid_smaps_rollup_operations), 3239 REG("pagemap", S_IRUSR, proc_pagemap_operations), 3240 #endif 3241 #ifdef CONFIG_SECURITY 3242 DIR("attr", S_IRUGO|S_IXUGO, proc_attr_dir_inode_operations, proc_attr_dir_operations), 3243 #endif 3244 #ifdef CONFIG_KALLSYMS 3245 ONE("wchan", S_IRUGO, proc_pid_wchan), 3246 #endif 3247 #ifdef CONFIG_STACKTRACE 3248 ONE("stack", S_IRUSR, proc_pid_stack), 3249 #endif 3250 #ifdef CONFIG_SCHED_INFO 3251 ONE("schedstat", S_IRUGO, proc_pid_schedstat), 3252 #endif 3253 #ifdef CONFIG_LATENCYTOP 3254 REG("latency", S_IRUGO, proc_lstats_operations), 3255 #endif 3256 #ifdef CONFIG_PROC_PID_CPUSET 3257 ONE("cpuset", S_IRUGO, proc_cpuset_show), 3258 #endif 3259 #ifdef CONFIG_CGROUPS 3260 ONE("cgroup", S_IRUGO, proc_cgroup_show), 3261 #endif 3262 #ifdef CONFIG_PROC_CPU_RESCTRL 3263 ONE("cpu_resctrl_groups", S_IRUGO, proc_resctrl_show), 3264 #endif 3265 ONE("oom_score", S_IRUGO, proc_oom_score), 3266 REG("oom_adj", S_IRUGO|S_IWUSR, proc_oom_adj_operations), 3267 REG("oom_score_adj", S_IRUGO|S_IWUSR, proc_oom_score_adj_operations), 3268 #ifdef CONFIG_AUDIT 3269 REG("loginuid", S_IWUSR|S_IRUGO, proc_loginuid_operations), 3270 REG("sessionid", S_IRUGO, proc_sessionid_operations), 3271 #endif 3272 #ifdef CONFIG_FAULT_INJECTION 3273 REG("make-it-fail", S_IRUGO|S_IWUSR, proc_fault_inject_operations), 3274 REG("fail-nth", 0644, proc_fail_nth_operations), 3275 #endif 3276 #ifdef CONFIG_ELF_CORE 3277 REG("coredump_filter", S_IRUGO|S_IWUSR, proc_coredump_filter_operations), 3278 #endif 3279 #ifdef CONFIG_TASK_IO_ACCOUNTING 3280 ONE("io", S_IRUSR, proc_tgid_io_accounting), 3281 #endif 3282 #ifdef CONFIG_USER_NS 3283 REG("uid_map", S_IRUGO|S_IWUSR, proc_uid_map_operations), 3284 REG("gid_map", S_IRUGO|S_IWUSR, proc_gid_map_operations), 3285 REG("projid_map", S_IRUGO|S_IWUSR, proc_projid_map_operations), 3286 REG("setgroups", S_IRUGO|S_IWUSR, proc_setgroups_operations), 3287 #endif 3288 #if defined(CONFIG_CHECKPOINT_RESTORE) && defined(CONFIG_POSIX_TIMERS) 3289 REG("timers", S_IRUGO, proc_timers_operations), 3290 #endif 3291 REG("timerslack_ns", S_IRUGO|S_IWUGO, proc_pid_set_timerslack_ns_operations), 3292 #ifdef CONFIG_LIVEPATCH 3293 ONE("patch_state", S_IRUSR, proc_pid_patch_state), 3294 #endif 3295 #ifdef CONFIG_STACKLEAK_METRICS 3296 ONE("stack_depth", S_IRUGO, proc_stack_depth), 3297 #endif 3298 #ifdef CONFIG_PROC_PID_ARCH_STATUS 3299 ONE("arch_status", S_IRUGO, proc_pid_arch_status), 3300 #endif 3301 #ifdef CONFIG_SECCOMP_CACHE_DEBUG 3302 ONE("seccomp_cache", S_IRUSR, proc_pid_seccomp_cache), 3303 #endif 3304 #ifdef CONFIG_KSM 3305 ONE("ksm_merging_pages", S_IRUSR, proc_pid_ksm_merging_pages), 3306 #endif 3307 }; 3308 3309 static int proc_tgid_base_readdir(struct file *file, struct dir_context *ctx) 3310 { 3311 return proc_pident_readdir(file, ctx, 3312 tgid_base_stuff, ARRAY_SIZE(tgid_base_stuff)); 3313 } 3314 3315 static const struct file_operations proc_tgid_base_operations = { 3316 .read = generic_read_dir, 3317 .iterate_shared = proc_tgid_base_readdir, 3318 .llseek = generic_file_llseek, 3319 }; 3320 3321 struct pid *tgid_pidfd_to_pid(const struct file *file) 3322 { 3323 if (file->f_op != &proc_tgid_base_operations) 3324 return ERR_PTR(-EBADF); 3325 3326 return proc_pid(file_inode(file)); 3327 } 3328 3329 static struct dentry *proc_tgid_base_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags) 3330 { 3331 return proc_pident_lookup(dir, dentry, 3332 tgid_base_stuff, 3333 tgid_base_stuff + ARRAY_SIZE(tgid_base_stuff)); 3334 } 3335 3336 static const struct inode_operations proc_tgid_base_inode_operations = { 3337 .lookup = proc_tgid_base_lookup, 3338 .getattr = pid_getattr, 3339 .setattr = proc_setattr, 3340 .permission = proc_pid_permission, 3341 }; 3342 3343 /** 3344 * proc_flush_pid - Remove dcache entries for @pid from the /proc dcache. 3345 * @pid: pid that should be flushed. 3346 * 3347 * This function walks a list of inodes (that belong to any proc 3348 * filesystem) that are attached to the pid and flushes them from 3349 * the dentry cache. 3350 * 3351 * It is safe and reasonable to cache /proc entries for a task until 3352 * that task exits. After that they just clog up the dcache with 3353 * useless entries, possibly causing useful dcache entries to be 3354 * flushed instead. This routine is provided to flush those useless 3355 * dcache entries when a process is reaped. 3356 * 3357 * NOTE: This routine is just an optimization so it does not guarantee 3358 * that no dcache entries will exist after a process is reaped 3359 * it just makes it very unlikely that any will persist. 3360 */ 3361 3362 void proc_flush_pid(struct pid *pid) 3363 { 3364 proc_invalidate_siblings_dcache(&pid->inodes, &pid->lock); 3365 } 3366 3367 static struct dentry *proc_pid_instantiate(struct dentry * dentry, 3368 struct task_struct *task, const void *ptr) 3369 { 3370 struct inode *inode; 3371 3372 inode = proc_pid_make_inode(dentry->d_sb, task, S_IFDIR | S_IRUGO | S_IXUGO); 3373 if (!inode) 3374 return ERR_PTR(-ENOENT); 3375 3376 inode->i_op = &proc_tgid_base_inode_operations; 3377 inode->i_fop = &proc_tgid_base_operations; 3378 inode->i_flags|=S_IMMUTABLE; 3379 3380 set_nlink(inode, nlink_tgid); 3381 pid_update_inode(task, inode); 3382 3383 d_set_d_op(dentry, &pid_dentry_operations); 3384 return d_splice_alias(inode, dentry); 3385 } 3386 3387 struct dentry *proc_pid_lookup(struct dentry *dentry, unsigned int flags) 3388 { 3389 struct task_struct *task; 3390 unsigned tgid; 3391 struct proc_fs_info *fs_info; 3392 struct pid_namespace *ns; 3393 struct dentry *result = ERR_PTR(-ENOENT); 3394 3395 tgid = name_to_int(&dentry->d_name); 3396 if (tgid == ~0U) 3397 goto out; 3398 3399 fs_info = proc_sb_info(dentry->d_sb); 3400 ns = fs_info->pid_ns; 3401 rcu_read_lock(); 3402 task = find_task_by_pid_ns(tgid, ns); 3403 if (task) 3404 get_task_struct(task); 3405 rcu_read_unlock(); 3406 if (!task) 3407 goto out; 3408 3409 /* Limit procfs to only ptraceable tasks */ 3410 if (fs_info->hide_pid == HIDEPID_NOT_PTRACEABLE) { 3411 if (!has_pid_permissions(fs_info, task, HIDEPID_NO_ACCESS)) 3412 goto out_put_task; 3413 } 3414 3415 result = proc_pid_instantiate(dentry, task, NULL); 3416 out_put_task: 3417 put_task_struct(task); 3418 out: 3419 return result; 3420 } 3421 3422 /* 3423 * Find the first task with tgid >= tgid 3424 * 3425 */ 3426 struct tgid_iter { 3427 unsigned int tgid; 3428 struct task_struct *task; 3429 }; 3430 static struct tgid_iter next_tgid(struct pid_namespace *ns, struct tgid_iter iter) 3431 { 3432 struct pid *pid; 3433 3434 if (iter.task) 3435 put_task_struct(iter.task); 3436 rcu_read_lock(); 3437 retry: 3438 iter.task = NULL; 3439 pid = find_ge_pid(iter.tgid, ns); 3440 if (pid) { 3441 iter.tgid = pid_nr_ns(pid, ns); 3442 iter.task = pid_task(pid, PIDTYPE_TGID); 3443 if (!iter.task) { 3444 iter.tgid += 1; 3445 goto retry; 3446 } 3447 get_task_struct(iter.task); 3448 } 3449 rcu_read_unlock(); 3450 return iter; 3451 } 3452 3453 #define TGID_OFFSET (FIRST_PROCESS_ENTRY + 2) 3454 3455 /* for the /proc/ directory itself, after non-process stuff has been done */ 3456 int proc_pid_readdir(struct file *file, struct dir_context *ctx) 3457 { 3458 struct tgid_iter iter; 3459 struct proc_fs_info *fs_info = proc_sb_info(file_inode(file)->i_sb); 3460 struct pid_namespace *ns = proc_pid_ns(file_inode(file)->i_sb); 3461 loff_t pos = ctx->pos; 3462 3463 if (pos >= PID_MAX_LIMIT + TGID_OFFSET) 3464 return 0; 3465 3466 if (pos == TGID_OFFSET - 2) { 3467 struct inode *inode = d_inode(fs_info->proc_self); 3468 if (!dir_emit(ctx, "self", 4, inode->i_ino, DT_LNK)) 3469 return 0; 3470 ctx->pos = pos = pos + 1; 3471 } 3472 if (pos == TGID_OFFSET - 1) { 3473 struct inode *inode = d_inode(fs_info->proc_thread_self); 3474 if (!dir_emit(ctx, "thread-self", 11, inode->i_ino, DT_LNK)) 3475 return 0; 3476 ctx->pos = pos = pos + 1; 3477 } 3478 iter.tgid = pos - TGID_OFFSET; 3479 iter.task = NULL; 3480 for (iter = next_tgid(ns, iter); 3481 iter.task; 3482 iter.tgid += 1, iter = next_tgid(ns, iter)) { 3483 char name[10 + 1]; 3484 unsigned int len; 3485 3486 cond_resched(); 3487 if (!has_pid_permissions(fs_info, iter.task, HIDEPID_INVISIBLE)) 3488 continue; 3489 3490 len = snprintf(name, sizeof(name), "%u", iter.tgid); 3491 ctx->pos = iter.tgid + TGID_OFFSET; 3492 if (!proc_fill_cache(file, ctx, name, len, 3493 proc_pid_instantiate, iter.task, NULL)) { 3494 put_task_struct(iter.task); 3495 return 0; 3496 } 3497 } 3498 ctx->pos = PID_MAX_LIMIT + TGID_OFFSET; 3499 return 0; 3500 } 3501 3502 /* 3503 * proc_tid_comm_permission is a special permission function exclusively 3504 * used for the node /proc/<pid>/task/<tid>/comm. 3505 * It bypasses generic permission checks in the case where a task of the same 3506 * task group attempts to access the node. 3507 * The rationale behind this is that glibc and bionic access this node for 3508 * cross thread naming (pthread_set/getname_np(!self)). However, if 3509 * PR_SET_DUMPABLE gets set to 0 this node among others becomes uid=0 gid=0, 3510 * which locks out the cross thread naming implementation. 3511 * This function makes sure that the node is always accessible for members of 3512 * same thread group. 3513 */ 3514 static int proc_tid_comm_permission(struct user_namespace *mnt_userns, 3515 struct inode *inode, int mask) 3516 { 3517 bool is_same_tgroup; 3518 struct task_struct *task; 3519 3520 task = get_proc_task(inode); 3521 if (!task) 3522 return -ESRCH; 3523 is_same_tgroup = same_thread_group(current, task); 3524 put_task_struct(task); 3525 3526 if (likely(is_same_tgroup && !(mask & MAY_EXEC))) { 3527 /* This file (/proc/<pid>/task/<tid>/comm) can always be 3528 * read or written by the members of the corresponding 3529 * thread group. 3530 */ 3531 return 0; 3532 } 3533 3534 return generic_permission(&init_user_ns, inode, mask); 3535 } 3536 3537 static const struct inode_operations proc_tid_comm_inode_operations = { 3538 .permission = proc_tid_comm_permission, 3539 }; 3540 3541 /* 3542 * Tasks 3543 */ 3544 static const struct pid_entry tid_base_stuff[] = { 3545 DIR("fd", S_IRUSR|S_IXUSR, proc_fd_inode_operations, proc_fd_operations), 3546 DIR("fdinfo", S_IRUGO|S_IXUGO, proc_fdinfo_inode_operations, proc_fdinfo_operations), 3547 DIR("ns", S_IRUSR|S_IXUGO, proc_ns_dir_inode_operations, proc_ns_dir_operations), 3548 #ifdef CONFIG_NET 3549 DIR("net", S_IRUGO|S_IXUGO, proc_net_inode_operations, proc_net_operations), 3550 #endif 3551 REG("environ", S_IRUSR, proc_environ_operations), 3552 REG("auxv", S_IRUSR, proc_auxv_operations), 3553 ONE("status", S_IRUGO, proc_pid_status), 3554 ONE("personality", S_IRUSR, proc_pid_personality), 3555 ONE("limits", S_IRUGO, proc_pid_limits), 3556 #ifdef CONFIG_SCHED_DEBUG 3557 REG("sched", S_IRUGO|S_IWUSR, proc_pid_sched_operations), 3558 #endif 3559 NOD("comm", S_IFREG|S_IRUGO|S_IWUSR, 3560 &proc_tid_comm_inode_operations, 3561 &proc_pid_set_comm_operations, {}), 3562 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK 3563 ONE("syscall", S_IRUSR, proc_pid_syscall), 3564 #endif 3565 REG("cmdline", S_IRUGO, proc_pid_cmdline_ops), 3566 ONE("stat", S_IRUGO, proc_tid_stat), 3567 ONE("statm", S_IRUGO, proc_pid_statm), 3568 REG("maps", S_IRUGO, proc_pid_maps_operations), 3569 #ifdef CONFIG_PROC_CHILDREN 3570 REG("children", S_IRUGO, proc_tid_children_operations), 3571 #endif 3572 #ifdef CONFIG_NUMA 3573 REG("numa_maps", S_IRUGO, proc_pid_numa_maps_operations), 3574 #endif 3575 REG("mem", S_IRUSR|S_IWUSR, proc_mem_operations), 3576 LNK("cwd", proc_cwd_link), 3577 LNK("root", proc_root_link), 3578 LNK("exe", proc_exe_link), 3579 REG("mounts", S_IRUGO, proc_mounts_operations), 3580 REG("mountinfo", S_IRUGO, proc_mountinfo_operations), 3581 #ifdef CONFIG_PROC_PAGE_MONITOR 3582 REG("clear_refs", S_IWUSR, proc_clear_refs_operations), 3583 REG("smaps", S_IRUGO, proc_pid_smaps_operations), 3584 REG("smaps_rollup", S_IRUGO, proc_pid_smaps_rollup_operations), 3585 REG("pagemap", S_IRUSR, proc_pagemap_operations), 3586 #endif 3587 #ifdef CONFIG_SECURITY 3588 DIR("attr", S_IRUGO|S_IXUGO, proc_attr_dir_inode_operations, proc_attr_dir_operations), 3589 #endif 3590 #ifdef CONFIG_KALLSYMS 3591 ONE("wchan", S_IRUGO, proc_pid_wchan), 3592 #endif 3593 #ifdef CONFIG_STACKTRACE 3594 ONE("stack", S_IRUSR, proc_pid_stack), 3595 #endif 3596 #ifdef CONFIG_SCHED_INFO 3597 ONE("schedstat", S_IRUGO, proc_pid_schedstat), 3598 #endif 3599 #ifdef CONFIG_LATENCYTOP 3600 REG("latency", S_IRUGO, proc_lstats_operations), 3601 #endif 3602 #ifdef CONFIG_PROC_PID_CPUSET 3603 ONE("cpuset", S_IRUGO, proc_cpuset_show), 3604 #endif 3605 #ifdef CONFIG_CGROUPS 3606 ONE("cgroup", S_IRUGO, proc_cgroup_show), 3607 #endif 3608 #ifdef CONFIG_PROC_CPU_RESCTRL 3609 ONE("cpu_resctrl_groups", S_IRUGO, proc_resctrl_show), 3610 #endif 3611 ONE("oom_score", S_IRUGO, proc_oom_score), 3612 REG("oom_adj", S_IRUGO|S_IWUSR, proc_oom_adj_operations), 3613 REG("oom_score_adj", S_IRUGO|S_IWUSR, proc_oom_score_adj_operations), 3614 #ifdef CONFIG_AUDIT 3615 REG("loginuid", S_IWUSR|S_IRUGO, proc_loginuid_operations), 3616 REG("sessionid", S_IRUGO, proc_sessionid_operations), 3617 #endif 3618 #ifdef CONFIG_FAULT_INJECTION 3619 REG("make-it-fail", S_IRUGO|S_IWUSR, proc_fault_inject_operations), 3620 REG("fail-nth", 0644, proc_fail_nth_operations), 3621 #endif 3622 #ifdef CONFIG_TASK_IO_ACCOUNTING 3623 ONE("io", S_IRUSR, proc_tid_io_accounting), 3624 #endif 3625 #ifdef CONFIG_USER_NS 3626 REG("uid_map", S_IRUGO|S_IWUSR, proc_uid_map_operations), 3627 REG("gid_map", S_IRUGO|S_IWUSR, proc_gid_map_operations), 3628 REG("projid_map", S_IRUGO|S_IWUSR, proc_projid_map_operations), 3629 REG("setgroups", S_IRUGO|S_IWUSR, proc_setgroups_operations), 3630 #endif 3631 #ifdef CONFIG_LIVEPATCH 3632 ONE("patch_state", S_IRUSR, proc_pid_patch_state), 3633 #endif 3634 #ifdef CONFIG_PROC_PID_ARCH_STATUS 3635 ONE("arch_status", S_IRUGO, proc_pid_arch_status), 3636 #endif 3637 #ifdef CONFIG_SECCOMP_CACHE_DEBUG 3638 ONE("seccomp_cache", S_IRUSR, proc_pid_seccomp_cache), 3639 #endif 3640 #ifdef CONFIG_KSM 3641 ONE("ksm_merging_pages", S_IRUSR, proc_pid_ksm_merging_pages), 3642 #endif 3643 }; 3644 3645 static int proc_tid_base_readdir(struct file *file, struct dir_context *ctx) 3646 { 3647 return proc_pident_readdir(file, ctx, 3648 tid_base_stuff, ARRAY_SIZE(tid_base_stuff)); 3649 } 3650 3651 static struct dentry *proc_tid_base_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags) 3652 { 3653 return proc_pident_lookup(dir, dentry, 3654 tid_base_stuff, 3655 tid_base_stuff + ARRAY_SIZE(tid_base_stuff)); 3656 } 3657 3658 static const struct file_operations proc_tid_base_operations = { 3659 .read = generic_read_dir, 3660 .iterate_shared = proc_tid_base_readdir, 3661 .llseek = generic_file_llseek, 3662 }; 3663 3664 static const struct inode_operations proc_tid_base_inode_operations = { 3665 .lookup = proc_tid_base_lookup, 3666 .getattr = pid_getattr, 3667 .setattr = proc_setattr, 3668 }; 3669 3670 static struct dentry *proc_task_instantiate(struct dentry *dentry, 3671 struct task_struct *task, const void *ptr) 3672 { 3673 struct inode *inode; 3674 inode = proc_pid_make_inode(dentry->d_sb, task, S_IFDIR | S_IRUGO | S_IXUGO); 3675 if (!inode) 3676 return ERR_PTR(-ENOENT); 3677 3678 inode->i_op = &proc_tid_base_inode_operations; 3679 inode->i_fop = &proc_tid_base_operations; 3680 inode->i_flags |= S_IMMUTABLE; 3681 3682 set_nlink(inode, nlink_tid); 3683 pid_update_inode(task, inode); 3684 3685 d_set_d_op(dentry, &pid_dentry_operations); 3686 return d_splice_alias(inode, dentry); 3687 } 3688 3689 static struct dentry *proc_task_lookup(struct inode *dir, struct dentry * dentry, unsigned int flags) 3690 { 3691 struct task_struct *task; 3692 struct task_struct *leader = get_proc_task(dir); 3693 unsigned tid; 3694 struct proc_fs_info *fs_info; 3695 struct pid_namespace *ns; 3696 struct dentry *result = ERR_PTR(-ENOENT); 3697 3698 if (!leader) 3699 goto out_no_task; 3700 3701 tid = name_to_int(&dentry->d_name); 3702 if (tid == ~0U) 3703 goto out; 3704 3705 fs_info = proc_sb_info(dentry->d_sb); 3706 ns = fs_info->pid_ns; 3707 rcu_read_lock(); 3708 task = find_task_by_pid_ns(tid, ns); 3709 if (task) 3710 get_task_struct(task); 3711 rcu_read_unlock(); 3712 if (!task) 3713 goto out; 3714 if (!same_thread_group(leader, task)) 3715 goto out_drop_task; 3716 3717 result = proc_task_instantiate(dentry, task, NULL); 3718 out_drop_task: 3719 put_task_struct(task); 3720 out: 3721 put_task_struct(leader); 3722 out_no_task: 3723 return result; 3724 } 3725 3726 /* 3727 * Find the first tid of a thread group to return to user space. 3728 * 3729 * Usually this is just the thread group leader, but if the users 3730 * buffer was too small or there was a seek into the middle of the 3731 * directory we have more work todo. 3732 * 3733 * In the case of a short read we start with find_task_by_pid. 3734 * 3735 * In the case of a seek we start with the leader and walk nr 3736 * threads past it. 3737 */ 3738 static struct task_struct *first_tid(struct pid *pid, int tid, loff_t f_pos, 3739 struct pid_namespace *ns) 3740 { 3741 struct task_struct *pos, *task; 3742 unsigned long nr = f_pos; 3743 3744 if (nr != f_pos) /* 32bit overflow? */ 3745 return NULL; 3746 3747 rcu_read_lock(); 3748 task = pid_task(pid, PIDTYPE_PID); 3749 if (!task) 3750 goto fail; 3751 3752 /* Attempt to start with the tid of a thread */ 3753 if (tid && nr) { 3754 pos = find_task_by_pid_ns(tid, ns); 3755 if (pos && same_thread_group(pos, task)) 3756 goto found; 3757 } 3758 3759 /* If nr exceeds the number of threads there is nothing todo */ 3760 if (nr >= get_nr_threads(task)) 3761 goto fail; 3762 3763 /* If we haven't found our starting place yet start 3764 * with the leader and walk nr threads forward. 3765 */ 3766 pos = task = task->group_leader; 3767 do { 3768 if (!nr--) 3769 goto found; 3770 } while_each_thread(task, pos); 3771 fail: 3772 pos = NULL; 3773 goto out; 3774 found: 3775 get_task_struct(pos); 3776 out: 3777 rcu_read_unlock(); 3778 return pos; 3779 } 3780 3781 /* 3782 * Find the next thread in the thread list. 3783 * Return NULL if there is an error or no next thread. 3784 * 3785 * The reference to the input task_struct is released. 3786 */ 3787 static struct task_struct *next_tid(struct task_struct *start) 3788 { 3789 struct task_struct *pos = NULL; 3790 rcu_read_lock(); 3791 if (pid_alive(start)) { 3792 pos = next_thread(start); 3793 if (thread_group_leader(pos)) 3794 pos = NULL; 3795 else 3796 get_task_struct(pos); 3797 } 3798 rcu_read_unlock(); 3799 put_task_struct(start); 3800 return pos; 3801 } 3802 3803 /* for the /proc/TGID/task/ directories */ 3804 static int proc_task_readdir(struct file *file, struct dir_context *ctx) 3805 { 3806 struct inode *inode = file_inode(file); 3807 struct task_struct *task; 3808 struct pid_namespace *ns; 3809 int tid; 3810 3811 if (proc_inode_is_dead(inode)) 3812 return -ENOENT; 3813 3814 if (!dir_emit_dots(file, ctx)) 3815 return 0; 3816 3817 /* f_version caches the tgid value that the last readdir call couldn't 3818 * return. lseek aka telldir automagically resets f_version to 0. 3819 */ 3820 ns = proc_pid_ns(inode->i_sb); 3821 tid = (int)file->f_version; 3822 file->f_version = 0; 3823 for (task = first_tid(proc_pid(inode), tid, ctx->pos - 2, ns); 3824 task; 3825 task = next_tid(task), ctx->pos++) { 3826 char name[10 + 1]; 3827 unsigned int len; 3828 3829 tid = task_pid_nr_ns(task, ns); 3830 if (!tid) 3831 continue; /* The task has just exited. */ 3832 len = snprintf(name, sizeof(name), "%u", tid); 3833 if (!proc_fill_cache(file, ctx, name, len, 3834 proc_task_instantiate, task, NULL)) { 3835 /* returning this tgid failed, save it as the first 3836 * pid for the next readir call */ 3837 file->f_version = (u64)tid; 3838 put_task_struct(task); 3839 break; 3840 } 3841 } 3842 3843 return 0; 3844 } 3845 3846 static int proc_task_getattr(struct user_namespace *mnt_userns, 3847 const struct path *path, struct kstat *stat, 3848 u32 request_mask, unsigned int query_flags) 3849 { 3850 struct inode *inode = d_inode(path->dentry); 3851 struct task_struct *p = get_proc_task(inode); 3852 generic_fillattr(&init_user_ns, inode, stat); 3853 3854 if (p) { 3855 stat->nlink += get_nr_threads(p); 3856 put_task_struct(p); 3857 } 3858 3859 return 0; 3860 } 3861 3862 static const struct inode_operations proc_task_inode_operations = { 3863 .lookup = proc_task_lookup, 3864 .getattr = proc_task_getattr, 3865 .setattr = proc_setattr, 3866 .permission = proc_pid_permission, 3867 }; 3868 3869 static const struct file_operations proc_task_operations = { 3870 .read = generic_read_dir, 3871 .iterate_shared = proc_task_readdir, 3872 .llseek = generic_file_llseek, 3873 }; 3874 3875 void __init set_proc_pid_nlink(void) 3876 { 3877 nlink_tid = pid_entry_nlink(tid_base_stuff, ARRAY_SIZE(tid_base_stuff)); 3878 nlink_tgid = pid_entry_nlink(tgid_base_stuff, ARRAY_SIZE(tgid_base_stuff)); 3879 } 3880